

wwPDB EM Validation Summary Report (i)

Apr 16, 2024 - 02:56 am BST

PDB ID	:	7NWW
EMDB ID	:	EMD-12636
Title	:	CspA-27 cotranslational folding intermediate 1
Authors	:	Agirrezabala, X.; Samatova, E.; Macher, M.; Liutkute, M.; Gil-Carton, D.;
		Novacek, J.; Valle, M.; Rodnina, M.V.
Deposited on	:	2021-03-17
Resolution	:	3.05 Å(reported)
Based on initial model	:	6ORE

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 92
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	FAILED
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.05 Å.

There are no overall percentile quality scores available for this entry.

MolProbity failed to run properly - the sequence quality summary graphics cannot be shown.

2 Entry composition (i)

There are 57 unique types of molecules in this entry. The entry contains 145149 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 23S rRNA.

Mol	Chain	Residues			AltConf	Trace			
1	1	2903	Total 62336	C 27816	N 11470	O 20147	Р 2903	0	0

• Molecule 2 is a RNA chain called 16S rRNA.

Mol	Chain	Residues		1		AltConf	Trace		
2	2	1534	Total 32929	C 14693	N 6041	O 10661	Р 1534	0	0

• Molecule 3 is a RNA chain called 5S rRNA.

Mol	Chain	Residues		At		AltConf	Trace		
3	3	120	Total 2569	C 1144	N 468	0 837	Р 120	0	0

• Molecule 4 is a RNA chain called mRNA.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
4	4	6	Total 126	C 56	N 20	0 44	Р 6	0	0

• Molecule 5 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues		Ate		AltConf	Trace		
5	С	271	Total 2082	C 1288	N 423	0 364	${ m S} 7$	0	0

• Molecule 6 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues		At	oms		AltConf	Trace	
6	D	209	Total 1565	C 979	N 288	0 294	$\frac{S}{4}$	0	0

• Molecule 7 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues		At	oms		AltConf	Trace	
7	Е	201	Total 1552	C 974	N 283	O 290	${ m S}{ m 5}$	0	0

• Molecule 8 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues		At	oms		AltConf	Trace	
8	F	177	Total 1410	C 899	N 249	O 256	S 6	0	0

• Molecule 9 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		At	oms		AltConf	Trace	
9	G	175	Total 1313	C 826	N 241	0 244	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 10 is a protein called 50S ribosomal protein L9.

Mol	Chain	Residues		At	oms		AltConf	Trace	
10	Н	149	Total 1111	C 699	N 197	0 214	S 1	0	0

• Molecule 11 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
11	Ι	142	Total 1129	C 714	N 212	0 199	${S \atop 4}$	0	0

• Molecule 12 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
12	J	123	Total 946	C 593	N 181	0 166	S 6	0	0

• Molecule 13 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	Κ	144	Total 1053	$\begin{array}{c} \mathrm{C} \\ 654 \end{array}$	N 207	O 190	${S \over 2}$	0	0

• Molecule 14 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	L	136	Total 1074	C 686	N 205	0 177	S 6	0	0

• Molecule 15 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	М	119	Total 951	C 588	N 195	0 163	${ m S}{ m 5}$	0	0

• Molecule 16 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
16	Ν	116	Total 892	C 552	N 178	O 162	0	0

• Molecule 17 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	Ο	114	Total 917	C 574	N 179	0 163	S 1	0	0

• Molecule 18 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
18	Р	117	Total 947	C 604	N 192	0 151	0	0

• Molecule 19 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		At	oms		AltConf	Trace	
19	Q	103	Total 816	C 516	N 153	0 145	${ m S} { m 2}$	0	0

• Molecule 20 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues		At	oms		AltConf	Trace	
20	R	110	Total 857	C 532	N 166	0 156	${ m S} { m 3}$	0	0

• Molecule 21 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		At	oms			AltConf	Trace
21	S	94	Total 746	$\begin{array}{c} \mathrm{C} \\ 470 \end{array}$	N 140	0 134	${ m S} { m 2}$	0	0

• Molecule 22 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
22	Т	103	Total 788	C 498	N 148	0 142	0	0

• Molecule 23 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues		At	oms	AltConf	Trace		
23	U	94	Total 753	C 479	N 137	0 134	${ m S} { m 3}$	0	0

• Molecule 24 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		At	oms			AltConf	Trace
24	V	80	Total 601	C 370	N 121	O 109	S 1	0	0

• Molecule 25 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		At	oms			AltConf	Trace
25	W	77	Total 625	C 388	N 129	O 106	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 26 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
26	v	62	Total	С	Ν	Ο	\mathbf{S}	0	0
20	Λ	02	501	308	98	94	1	0	0

• Molecule 27 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
27	Y	58	Total 448	C 281	N 87	0 78	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 28 is a protein called 50S ribosomal protein L31.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
28	Ζ	66	Total 522	C 323	N 99	0 94	S 6	0	0

• Molecule 29 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
29	a	56	Total 444	C 269	N 94	O 80	S 1	0	0

• Molecule 30 is a protein called 50S ribosomal protein L33.

Mol	Chain	Residues		Aton	ns		AltConf	Trace
30	b	52	Total 426	C 275	N 78	O 73	0	0

• Molecule 31 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
31	с	46	Total 377	C 228	N 90	O 57	${ m S} { m 2}$	0	0

• Molecule 32 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
32	d	64	Total 504	C 323	N 105	0 74	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 33 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
22	0	20	Total	С	N	0	S	0	0
00	е	- 30	302	185	65	48	4	0	0

• Molecule 34 is a protein called 30S ribosomal protein S2.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
34	f	225	Total 1760	C 1113	N 316	O 323	S 8	0	0

• Molecule 35 is a protein called 30S ribosomal protein S3.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	g	208	Total 1636	C 1036	N 307	O 290	${ m S} { m 3}$	0	0

• Molecule 36 is a protein called 30S ribosomal protein S4.

Mol	Chain	Residues		Ate	AltConf	Trace			
36	h	205	Total 1643	C 1026	N 315	O 298	$\frac{S}{4}$	0	0

• Molecule 37 is a protein called 30S ribosomal protein S5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	i	156	Total 1152	C 717	N 217	O 212	S 6	0	0

• Molecule 38 is a protein called 30S ribosomal protein S6.

Mol	Chain	Residues		At	oms			AltConf	Trace
38	j	104	Total 848	C 536	N 153	0 152	S 7	0	0

• Molecule 39 is a protein called 30S ribosomal protein S7.

Mol	Chain	Residues		At	oms	AltConf	Trace		
39	k	151	Total 1181	C 735	N 227	0 215	$\frac{S}{4}$	0	0

• Molecule 40 is a protein called 30S ribosomal protein S8.

Mol	Chain	Residues		At	oms	AltConf	Trace		
40	1	129	Total 979	C 616	N 173	0 184	S 6	0	0

• Molecule 41 is a protein called 30S ribosomal protein S9.

Mol	Chain	Residues		At	oms	AltConf	Trace		
41	m	127	Total 1022	C 634	N 206	0 179	${ m S} { m 3}$	0	0

• Molecule 42 is a protein called 30S ribosomal protein S10.

Mol	Chain	Residues		At	oms			AltConf	Trace
42	n	99	Total 790	$\begin{array}{c} \mathrm{C} \\ 495 \end{array}$	N 151	0 143	S 1	0	0

• Molecule 43 is a protein called 30S ribosomal protein S11.

Mol	Chain	Residues		At	oms	AltConf	Trace		
43	О	117	Total 877	C 540	N 174	O 160	${ m S} { m 3}$	0	0

• Molecule 44 is a protein called 30S ribosomal protein S12.

Mol	Chain	Residues	Atoms					AltConf	Trace
44	р	123	Total 957	C 591	N 196	0 165	${f S}{5}$	0	0

• Molecule 45 is a protein called 30S ribosomal protein S13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
45	q	116	Total 900	C 558	N 181	0 158	${ m S} { m 3}$	0	0

• Molecule 46 is a protein called 30S ribosomal protein S14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
46	r	100	Total 805	C 499	N 164	0 139	${ m S} { m 3}$	0	0

• Molecule 47 is a protein called 30S ribosomal protein S15.

Mol	Chain	Residues	Atoms					AltConf	Trace
47	S	88	Total 714	C 439	N 144	O 130	S 1	0	0

• Molecule 48 is a protein called 30S ribosomal protein S16.

Mol	Chain	Residues	Atoms					AltConf	Trace
48	t	82	Total 649	C 406	N 128	0 114	S 1	0	0

• Molecule 49 is a protein called 30S ribosomal protein S17.

Mol	Chain	Residues	Atoms					AltConf	Trace
49	u	80	Total 648	C 411	N 121	0 113	${ m S} { m 3}$	0	0

• Molecule 50 is a protein called 30S ribosomal protein S18.

Mol	Chain	Residues	Atoms					AltConf	Trace
50	v	66	Total 544	C 344	N 102	O 97	S 1	0	0

• Molecule 51 is a protein called 30S ribosomal protein S19.

Mol	Chain	Residues	Atoms					AltConf	Trace
51	W	83	Total 663	C 424	N 126	0 111	${S \over 2}$	0	0

• Molecule 52 is a protein called 30S ribosomal protein S20.

Mol	Chain	Residues	Atoms					AltConf	Trace
52	x	86	Total	С	Ν	Ο	\mathbf{S}	0	0
	~		669	414	138	114	3		

• Molecule 53 is a protein called 30S ribosomal protein S21.

Mol	Chain	Residues	Atoms					AltConf	Trace
53	У	70	Total 589	C 366	N 125	O 97	S 1	0	0

• Molecule 54 is a RNA chain called tRNA-Ser.

Mol	Chain	Residues	Atoms					AltConf	Trace
54	Z	88	Total 1891	C 841	N 341	O 621	Р 88	0	0

• Molecule 55 is a protein called 7.4 kDa cold shock protein.

Mol	Chain	Residues	Atoms				AltConf	Trace	
55	В	27	Total 205	C 132	N 32	O 39	${S \over 2}$	0	0

• Molecule 56 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
56	1	278	Total Mg 278 278	0
56	2	119	Total Mg 119 119	0
56	3	8	Total Mg 8 8	0
56	С	1	Total Mg 1 1	0
56	D	1	Total Mg 1 1	0
56	Р	1	Total Mg 1 1	0
56	a	1	Total Mg 1 1	0
56	h	1	Total Mg 1 1	0
56	q	1	Total Mg 1 1	0
56	Z	2	Total Mg 2 2	0

• Molecule 57 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
57	Z	1	Total Zn 1 1	0
57	е	1	Total Zn 1 1	0

MolProbity failed to run properly - this section is therefore empty.

3 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	35573	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	2.2	Depositor
Minimum defocus (nm)	0.5	Depositor
Maximum defocus (nm)	2.2	Depositor
Magnification	75000	Depositor
Image detector	FEI FALCON III $(4k \ge 4k)$	Depositor

4 Model quality (i)

4.1 Standard geometry (i)

MolProbity failed to run properly - this section is therefore empty.

4.2 Too-close contacts (i)

MolProbity failed to run properly - this section is therefore empty.

4.3 Torsion angles (i)

4.3.1 Protein backbone (i)

MolProbity failed to run properly - this section is therefore empty.

4.3.2 Protein sidechains (i)

MolProbity failed to run properly - this section is therefore empty.

4.3.3 RNA (i)

MolProbity failed to run properly - this section is therefore empty.

4.4 Non-standard residues in protein, DNA, RNA chains (i)

37 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal Truna Chain Dag		Tink	Bo	ond leng	$_{\rm sths}$	Bond angles				
MOI	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	2MG	2	1516	2	18,26,27	2.30	7 (38%)	16,38,41	1.35	4 (25%)
2	UR3	2	1498	2	19,22,23	2.58	6 (31%)	26,32,35	1.08	1 (3%)
54	OMG	Z	17	54	22,27,27	3.58	7 (31%)	26,41,41	11.78	12 (46%)

Mal	Trune	Chain	Dec	Tinle	Bond lengths			Bond angles		
NIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
1	6MZ	1	1618	1	$18,\!25,\!26$	1.76	4 (22%)	$16,\!36,\!39$	3.61	3 (18%)
1	PSU	1	2504	1	18,21,22	1.03	2 (11%)	22,30,33	1.81	4 (18%)
1	6MZ	1	2030	1	18,25,26	1.78	3 (16%)	16,36,39	3.51	4 (25%)
1	5MU	1	747	1	19,22,23	4.60	7 (36%)	28,32,35	3.68	9 (32%)
2	4OC	2	1402	2	20,23,24	2.91	8 (40%)	26,32,35	0.91	0
2	MA6	2	1519	2	18,26,27	1.18	1 (5%)	19,38,41	3.64	2 (10%)
1	3TD	1	1915	1	18,22,23	4.06	7 (38%)	22,32,35	1.56	2 (9%)
1	PSU	1	2605	1	18,21,22	0.98	2 (11%)	22,30,33	1.92	4 (18%)
2	PSU	2	516	2,56	18,21,22	0.94	2 (11%)	22,30,33	1.86	5 (22%)
1	PSU	1	2457	1	18,21,22	1.00	2 (11%)	22,30,33	2.02	5 (22%)
2	2MG	2	966	2	18,26,27	2.38	7 (38%)	16,38,41	1.41	4 (25%)
55	FME	В	1	55	8,9,10	0.96	0	7,9,11	0.69	0
2	2MG	2	1207	2	$18,\!26,\!27$	2.35	7 (38%)	16,38,41	1.24	3 (18%)
1	1MG	1	745	1	$18,\!26,\!27$	2.75	5 (27%)	19,39,42	1.25	2 (10%)
1	OMC	1	2498	$1,\!56$	$19,\!22,\!23$	2.68	7 (36%)	26,31,34	0.83	0
44	0TD	р	89	44	7,9,10	1.43	1 (14%)	6,11,13	1.86	2 (33%)
2	G7M	2	527	2	20,26,27	2.30	7 (35%)	17,39,42	1.02	1 (5%)
1	5MC	1	1962	1	18,22,23	<mark>3.31</mark>	7 (38%)	26,32,35	1.07	2 (7%)
1	2MA	1	2503	1,56	17,25,26	2.28	5 (29%)	17,37,40	1.36	3 (17%)
1	OMU	1	2552	1	19,22,23	2.86	8 (42%)	26,31,34	1.63	4 (15%)
1	PSU	1	955	1,56	18,21,22	1.00	1 (5%)	22,30,33	1.97	4 (18%)
2	MA6	2	1518	2	18,26,27	1.16	2 (11%)	19,38,41	3.44	2 (10%)
2	5MC	2	1407	2	18,22,23	3.25	7 (38%)	26,32,35	1.07	1 (3%)
1	5MU	1	1939	1,56	19,22,23	4.58	7 (36%)	28,32,35	3.66	9 (32%)
1	PSU	1	1911	1	18,21,22	0.99	1 (5%)	22,30,33	1.89	4 (18%)
54	5MU	Z	66	54	19,22,23	4.72	7 (36%)	28,32,35	3.94	9 (32%)
1	OMG	1	2251	54,1	18,26,27	2.23	7 (38%)	19,38,41	1.38	4 (21%)
1	PSU	1	746	1,56	18,21,22	1.00	1 (5%)	22,30,33	1.70	<mark>3 (13%)</mark>
1	PSU	1	1917	1	18,21,22	1.02	2 (11%)	22,30,33	1.99	5 (22%)
2	5MC	2	967	2	18,22,23	3.41	7 (38%)	26,32,35	0.98	2 (7%)
1	G7M	1	2069	1	20,26,27	2.19	9 (45%)	17,39,42	1.28	2 (11%)
1	PSU	1	2580	1	18,21,22	1.02	1 (5%)	22,30,33	2.02	6 (27%)
1	2MG	1	1835	1	18,26,27	2.25	7 (38%)	16,38,41	1.27	3 (18%)
1	2MG	1	2445	1	18,26,27	2.21	7 (38%)	16,38,41	1.28	4 (25%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	2MG	2	1516	2	-	0/5/27/28	0/3/3/3
2	UR3	2	1498	2	-	0/7/25/26	0/2/2/2
54	OMG	Z	17	54	-	4/8/28/28	0/3/3/3
1	6MZ	1	1618	1	-	4/5/27/28	0/3/3/3
1	PSU	1	2504	1	-	2/7/25/26	0/2/2/2
1	6MZ	1	2030	1	_	4/5/27/28	0/3/3/3
1	5MU	1	747	1	-	0/7/25/26	0/2/2/2
2	4OC	2	1402	2	-	2/9/29/30	0/2/2/2
2	MA6	2	1519	2	-	2/7/29/30	0/3/3/3
1	3TD	1	1915	1	-	2/7/25/26	0/2/2/2
1	PSU	1	2605	1	-	0/7/25/26	0/2/2/2
2	PSU	2	516	2,56	-	2/7/25/26	0/2/2/2
1	PSU	1	2457	1	-	0/7/25/26	0/2/2/2
2	2MG	2	966	2	-	2/5/27/28	0/3/3/3
55	FME	В	1	55	-	5/7/9/11	-
2	2MG	2	1207	2	-	0/5/27/28	0/3/3/3
1	1MG	1	745	1	-	0/3/25/26	0/3/3/3
1	OMC	1	2498	1,56	-	0/9/27/28	0/2/2/2
44	0TD	р	89	44	-	2/7/12/14	-
2	G7M	2	527	2	-	3/3/25/26	0/3/3/3
1	5MC	1	1962	1	-	0/7/25/26	0/2/2/2
1	2MA	1	2503	1,56	-	2/3/25/26	0/3/3/3
1	OMU	1	2552	1	-	1/9/27/28	0/2/2/2
1	PSU	1	955	1,56	-	0/7/25/26	0/2/2/2
2	MA6	2	1518	2	-	0/7/29/30	0/3/3/3
2	5MC	2	1407	2	-	0/7/25/26	0/2/2/2
1	5MU	1	1939	1,56	-	0/7/25/26	0/2/2/2
1	PSU	1	1911	1	_	0/7/25/26	0/2/2/2
54	5MU	Z	66	54	-	4/7/25/26	0/2/2/2
1	OMG	1	2251	54,1	-	0/5/27/28	0/3/3/3
1	PSU	1	746	$1,\!56$	_	1/7/25/26	0/2/2/2
1	PSU	1	1917	1	_	0/7/25/26	0/2/2/2
2	5MC	2	967	2	-	$0/7/\overline{25/26}$	0/2/2/2
1	G7M	1	2069	1	-	$1/3/\overline{25/26}$	0/3/3/3
1	PSU	1	2580	1	-	0/7/25/26	0/2/2/2

Continued on next page...

Continued from previous page...

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	2MG	1	1835	1	-	2/5/27/28	0/3/3/3
1	2MG	1	2445	1	-	2/5/27/28	0/3/3/3

The worst 5 of 178 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
1	1	1915	3TD	C6-C5	11.81	1.49	1.35
54	Z	66	5MU	C6-N1	10.76	1.56	1.38
1	1	747	5MU	C2-N1	10.70	1.55	1.38
1	1	1939	5MU	C2-N1	10.26	1.54	1.38
1	1	1939	5MU	C6-N1	9.96	1.55	1.38

The worst 5 of 134 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
54	Z	17	OMG	O6-C6-N1	-48.97	62.83	120.65
54	Z	17	OMG	O6-C6-C5	-31.10	63.64	124.37
2	2	1519	MA6	N1-C6-N6	-14.62	101.67	117.06
2	2	1518	MA6	N1-C6-N6	-13.81	102.53	117.06
1	1	747	5MU	C5-C4-N3	12.34	125.85	115.31

There are no chirality outliers.

5 of 47 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	2	516	PSU	O4'-C1'-C5-C4
2	2	516	PSU	O4'-C1'-C5-C6
2	2	527	G7M	C3'-C4'-C5'-O5'
2	2	1519	MA6	O4'-C4'-C5'-O5'
55	В	1	FME	O1-CN-N-CA

There are no ring outliers.

No monomer is involved in short contacts.

4.5 Carbohydrates (i)

There are no monosaccharides in this entry.

4.6 Ligand geometry (i)

Of 415 ligands modelled in this entry, 415 are monoatomic - leaving 0 for Mogul analysis. There are no bond length outliers. There are no bond angle outliers. There are no chirality outliers. There are no torsion outliers. There are no ring outliers. No monomer is involved in short contacts.

4.7 Other polymers (i)

There are no such residues in this entry.

4.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

5 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-12636. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

5.1 Orthogonal projections (i)

This section was not generated.

5.2 Central slices (i)

This section was not generated.

5.3 Largest variance slices (i)

This section was not generated.

5.4 Orthogonal standard-deviation projections (False-color) (i)

This section was not generated.

5.5 Orthogonal surface views (i)

This section was not generated.

5.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

6 Map analysis (i)

This section contains the results of statistical analysis of the map.

6.1 Map-value distribution (i)

This section was not generated.

6.2 Volume estimate versus contour level (i)

This section was not generated.

6.3 Rotationally averaged power spectrum (i)

This section was not generated. The rotationally averaged power spectrum had issues being displayed.

7 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

8 Map-model fit (i)

This section was not generated.

