

wwPDB EM Validation Summary Report (i)

Apr 22, 2024 – 04:54 pm BST

PDB ID	:	7NHN
EMDB ID	:	EMD-12334
Title	:	VgaL, an antibiotic resistance ABCF, in complex with 70S ribosome from
		Listeria monocytogenes
Authors	:	Crowe-McAuliffe, C.; Turnbull, K.J.; Hauryliuk, V.; Wilson, D.N.
Deposited on	:	2021-02-10
Resolution	:	2.90 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev92
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of	Quality of chain						
1	0	567	27%	• 19%						
2	D	77	73% 22% •							
3	b	14	36% 36% 21%	43%						
4	А	2928	10%	23% ••						
5	a	1542	19%	19% •						
6	G	277	• 97%	•••						
7	Н	209	97%							
8	Ι	207	9%							

Continued on next page...

Mol	Chain	Length	Quality of chain	
9	J	179	61%	
10	K	178	51%	7%
11	м	145	•	770
11	M	145	98%	•
12	N	122	99%	•
13	0	146	97%	••
14	Р	144	92%	8%
15	Q	135	90%	• 10%
16	R	119	45%	
17	S	114	97%	••
18	Т	119	• 95%	• •
19	U	102	98%	
20	V	118	93%	7%
21	W	94	96%	•
22	Х	103	91%	• 8%
23	Z	96	75%	24%
24	1	62	90%	• 6%
25	2	63	94%	6%
26	3	59	95%	5%
27	5	57	88%	5% 7%
28	6	49	8%	
29	7	44	93%	• 5%
30	8	66	94%	• 5%
31	9	37	97%	
32	В	114	82%	18%
		0.40	78%	
- 33	с	249	85%	15%

Continued from previous page...

Continued on next page...

Mol	Chain	Length	Quality of chain	
			58%	
34	d	218	93%	• 6%
95		200	80%	
- 35	е	200	100%	
36	f	167	4070	
- 50	1	107	96%	• •
37	ø	97	96%	·
	0		63%	
38	h	156	90%	10%
			56%	
39	i	132	98%	·
			67%	
40	j	130	95%	••••
41	,	100	69%	
41	k	102	94%	6%
49	1	190	/5%	
42	1	129	88%	12%
/3	m	137	060/	
- 10	111	101	69%	••
44	n	121	93%	• 6%
			21%	
45	0	61	98%	•
			54%	
46	р	89	96%	• •
			52%	
47	q	90	98%	·
40		07	64%	
48	r	87	92%	8%
40	S	70	700/	220/
49	5	19	/8%	22%
50	t	92	88%	12%
			50%	12/0
51	u	84	94%	• 5%
			84%	
52	4	81	95%	• •

Continued from previous page...

2 Entry composition (i)

There are 57 unique types of molecules in this entry. The entry contains 144375 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Lmo0919 protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	0	461	Total 3647	C 2298	N 650	O 689	S 10	0	0

There are 46 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
0	104	GLN	GLU	engineered mutation	UNP Q8Y8I3
0	408	GLN	GLU	engineered mutation	UNP Q8Y8I3
0	524	GLY	-	expression tag	UNP Q8Y8I3
0	525	GLY	-	expression tag	UNP Q8Y8I3
0	526	HIS	-	expression tag	UNP Q8Y8I3
0	527	HIS	-	expression tag	UNP Q8Y8I3
0	528	HIS	-	expression tag	UNP Q8Y8I3
0	529	HIS	-	expression tag	UNP Q8Y8I3
0	530	HIS	-	expression tag	UNP Q8Y8I3
0	531	HIS	-	expression tag	UNP Q8Y8I3
0	532	ALA	-	expression tag	UNP Q8Y8I3
0	533	LYS	-	expression tag	UNP Q8Y8I3
0	534	GLY	-	expression tag	UNP Q8Y8I3
0	535	GLY	-	expression tag	UNP Q8Y8I3
0	536	GLU	-	expression tag	UNP Q8Y8I3
0	537	ASN	-	expression tag	UNP Q8Y8I3
0	538	LEU	-	expression tag	UNP Q8Y8I3
0	539	TYR	-	expression tag	UNP Q8Y8I3
0	540	PHE	-	expression tag	UNP Q8Y8I3
0	541	GLN	-	expression tag	UNP Q8Y8I3
0	542	GLY	-	expression tag	UNP Q8Y8I3
0	543	VAL	-	expression tag	UNP Q8Y8I3
0	544	ALA	-	expression tag	UNP Q8Y8I3
0	545	ASP	-	expression tag	UNP Q8Y8I3
0	546	TYR	-	expression tag	UNP Q8Y8I3
0	547	LYS	-	expression tag	UNP Q8Y8I3
0	548	ASP	-	expression tag	UNP Q8Y8I3
0	549	HIS	-	expression tag	UNP Q8Y8I3

Continued on next page...

Chain	Residue	Modelled	Actual	Comment	Reference
0	550	ASP	-	expression tag	UNP Q8Y8I3
0	551	GLY	-	expression tag	UNP Q8Y8I3
0	552	ASP	-	expression tag	UNP Q8Y8I3
0	553	TYR	-	expression tag	UNP Q8Y8I3
0	554	LYS	-	expression tag	UNP Q8Y8I3
0	555	ASP	-	expression tag	UNP Q8Y8I3
0	556	HIS	-	expression tag	UNP Q8Y8I3
0	557	ASP	-	expression tag	UNP Q8Y8I3
0	558	ILE	-	expression tag	UNP Q8Y8I3
0	559	ASP	-	expression tag	UNP Q8Y8I3
0	560	TYR	-	expression tag	UNP Q8Y8I3
0	561	LYS	-	expression tag	UNP Q8Y8I3
0	562	ASP	-	expression tag	UNP Q8Y8I3
0	563	ASP	-	expression tag	UNP Q8Y8I3
0	564	ASP	-	expression tag	UNP Q8Y8I3
0	565	ASP	-	expression tag	UNP Q8Y8I3
0	566	LYS	-	expression tag	UNP Q8Y8I3
0	567	GLY	-	expression tag	UNP Q8Y8I3

Continued from previous page...

• Molecule 2 is a RNA chain called tRNA-fMet.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	D	74	Total 1580	С 704	N 284	0 518	Р 74	0	0

• Molecule 3 is a RNA chain called RNA (5'-R(P*GP*AP*GP*GP*UP*NP*NP*NP*NP*NP*NP*NP) *NP*AP*UP*G)-3').

Mol	Chain	Residues	Atoms					AltConf	Trace
3	b	8	Total 176	C 78	N 34	O 56	Р 8	0	0

• Molecule 4 is a RNA chain called 23S rRNA.

Mol	Chain	Residues			AltConf	Trace			
4	А	2908	Total 62459	C 27874	N 11545	O 20132	Р 2908	0	0

• Molecule 5 is a RNA chain called 16S rRNA.

Mol	Chain	Residues		1	Atoms			AltConf	Trace
5	a	1513	Total 32445	C 14473	N 5939	O 10520	Р 1513	0	0

• Molecule 6 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues		Ate	AltConf	Trace			
6	G	273	Total 2108	C 1307	N 415	O 379	${ m S} 7$	0	0

• Molecule 7 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues		At	oms	AltConf	Trace		
7	Н	206	Total 1582	C 995	N 291	0 292	$\frac{S}{4}$	0	0

• Molecule 8 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
8	Ι	203	Total 1563	C 987	N 286	O 290	0	0

• Molecule 9 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
9	J	175	Total 1365	C 865	N 236	0 258	S 6	0	0

• Molecule 10 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
10	K	165	Total 1271	C 801	N 232	0 237	S 1	0	0

• Molecule 11 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
11	М	142	Total 1117	C 708	N 201	O 205	${ m S} { m 3}$	0	0

• Molecule 12 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	oms			AltConf	Trace
12	Ν	122	Total 925	C 573	N 175	0 172	${f S}{5}$	0	0

• Molecule 13 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
13	О	144	Total 1094	C 675	N 214	O 205	0	0

• Molecule 14 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	Р	133	Total 1055	C 675	N 205	0 170	${ m S}{ m 5}$	0	0

• Molecule 15 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	oms			AltConf	Trace
15	Q	122	Total	С	N	0	S	0	0
	-0		983	619	191	172	1	-	_

• Molecule 16 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
16	R	118	Total 914	$\begin{array}{c} \mathrm{C} \\ 564 \end{array}$	N 176	0 174	0	0

• Molecule 17 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
17	S	112	Total	С	N	0	0	0
			905	570	181	154	-	-

• Molecule 18 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		At	oms		AltConf	Trace	
18	Т	116	Total 939	C 596	N 185	0 154	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0

• Molecule 19 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	U	101	Total 786	$\begin{array}{c} \mathrm{C} \\ 507 \end{array}$	N 134	0 144	S 1	0	0

• Molecule 20 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
20	V	110	Total 848	C 534	N 160	0 154	0	0

• Molecule 21 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	W	90	Total 731	C 462	N 129	0 138	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 22 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	Х	95	Total 723	C 459	N 134	0 127	S 3	0	0

• Molecule 23 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
23	Ζ	73	Total 563	C 345	N 111	O 106	S 1	0	0

• Molecule 24 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
24	1	58	Total 457	C 283	N 96	O 76	${ m S}$ 2	0	0

• Molecule 25 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
25	2	59	Total 487	C 298	N 94	0 94	S 1	0	0

• Molecule 26 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
26	3	56	Total 433	C 272	N 82	0 78	S 1	0	0

• Molecule 27 is a protein called 50S ribosomal protein L32-2.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
27	5	53	Total 425	C 259	N 87	0 74	${ m S}{ m 5}$	0	0

• Molecule 28 is a protein called 50S ribosomal protein L33 1.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
28	6	47	Total 400	C 243	N 81	O 73	${ m S} { m 3}$	0	0

• Molecule 29 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
29	7	42	Total 357	C 217	N 87	O 52	S 1	0	0

• Molecule 30 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
30	8	63	Total 512	C 317	N 113	0 78	$\frac{S}{4}$	0	0

• Molecule 31 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
31	9	36	Total 292	C 183	N 59	0 44	S 6	0	0

• Molecule 32 is a RNA chain called 5S rRNA.

Mol	Chain	Residues		A	toms			AltConf	Trace
32	В	114	Total 2428	C 1082	N 428	0 804	Р 114	0	0

• Molecule 33 is a protein called 30S ribosomal protein S2.

Mol	Chain	Residues		At	oms			AltConf	Trace
33	с	212	Total 1720	C 1096	N 306	O 312	S 6	0	0

• Molecule 34 is a protein called 30S ribosomal protein S3.

Mol	Chain	Residues		Ate	AltConf	Trace			
34	d	204	Total 1624	C 1013	N 311	O 297	${ m S} { m 3}$	0	0

• Molecule 35 is a protein called 30S ribosomal protein S4.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	е	199	Total 1596	C 999	N 302	O 293	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 36 is a protein called 30S ribosomal protein S5.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
36	f	161	Total 1180	C 738	N 217	0 223	${ m S} { m 2}$	0	0

• Molecule 37 is a protein called 30S ribosomal protein S6.

Mol	Chain	Residues		At	AltConf	Trace			
37	g	93	Total 782	C 495	N 136	0 149	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 38 is a protein called 30S ribosomal protein S7.

Mol	Chain	Residues		At	oms	AltConf	Trace		
38	h	141	Total 1114	C 695	N 209	O 202	S 8	0	0

• Molecule 39 is a protein called 30S ribosomal protein S8.

Mol	Chain	Residues		At	oms	AltConf	Trace		
39	i	130	Total 1015	C 646	N 179	0 188	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 40 is a protein called 30S ribosomal protein S9.

Mol	Chain	Residues		At	oms			AltConf	Trace
40	j	126	Total 985	C 618	N 194	0 172	S 1	0	0

• Molecule 41 is a protein called 30S ribosomal protein S10.

Mol	Chain	Residues		At	oms			AltConf	Trace
41	k	96	Total 771	C 485	N 141	0 143	${S \over 2}$	0	0

• Molecule 42 is a protein called 30S ribosomal protein S11.

Mol	Chain	Residues		At	oms			AltConf	Trace
42	1	114	Total 837	C 516	N 161	O 157	${ m S} { m 3}$	0	0

• Molecule 43 is a protein called 30S ribosomal protein S12.

Mol	Chain	Residues		At	oms		AltConf	Trace	
43	m	134	Total 1040	C 645	N 209	0 184	${ m S} { m 2}$	0	0

• Molecule 44 is a protein called 30S ribosomal protein S13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
44	n	114	Total 906	$\begin{array}{c} \mathrm{C} \\ 557 \end{array}$	N 180	0 168	S 1	0	0

• Molecule 45 is a protein called 30S ribosomal protein S14 type Z.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
45	0	60	Total	С	N	0	S	0	0
40	0	00	490	313	97	75	5	0	0

• Molecule 46 is a protein called 30S ribosomal protein S15.

Mol	Chain	Residues		At	oms			AltConf	Trace
46	р	86	Total 722	C 448	N 145	0 127	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 47 is a protein called 30S ribosomal protein S16.

Mol	Chain	Residues		At	oms			AltConf	Trace
47	q	88	Total 711	C 451	N 132	0 126	${ m S} { m 2}$	0	0

• Molecule 48 is a protein called 30S ribosomal protein S17.

Mol	Chain	Residues		At	oms			AltConf	Trace
48	r	80	Total 656	C 413	N 123	0 119	S 1	0	0

• Molecule 49 is a protein called 30S ribosomal protein S18.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
49	S	62	Total 504	C 325	N 92	O 85	${S \over 2}$	0	0

• Molecule 50 is a protein called 30S ribosomal protein S19.

Mol	Chain	Residues		At	oms			AltConf	Trace
50	t	81	Total 655	C 418	N 120	0 115	${ m S} { m 2}$	0	0

• Molecule 51 is a protein called 30S ribosomal protein S20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
51	u	80	Total 611	C 369	N 125	0 116	S 1	0	0

• Molecule 52 is a protein called 50S ribosomal protein L31 type B.

Mol	Chain	Residues		At	oms		AltConf	Trace	
52	4	79	Total 637	C 403	N 109	0 124	S 1	0	0

• Molecule 53 is ADENOSINE-5'-TRIPHOSPHATE (three-letter code: ATP) (formula: $C_{10}H_{16}N_5O_{13}P_3$).

Mol	Chain	Residues		Ate	oms			AltConf
52	0	1	Total	С	Ν	Ο	Р	0
- 55	0	1	31	10	5	13	3	0
53 0	0	1	Total	С	Ν	Ο	Р	0
	0		31	10	5	13	3	U

• Molecule 54 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
54	0	2	Total Mg 2 2	0
54	D	1	Total Mg 1 1	0
54	b	1	Total Mg 1 1	0
54	А	114	Total Mg 114 114	0
54	a	21	Total Mg 21 21	0
54	G	1	Total Mg 1 1	0
54	Н	1	Total Mg 1 1	0
54	О	1	Total Mg 1 1	0
54	О	1	Total Mg 1 1	0

• Molecule 55 is SPERMIDINE (three-letter code: SPD) (formula: $C_7H_{19}N_3$).

Mol	Chain	Residues	Atoms	AltConf
55	А	1	Total C N 10 7 3	0
55	a	1	Total C N 10 7 3	0

• Molecule 56 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	AltConf
56	А	17	Total K 17 17	0
56	a	3	Total K 3 3	0
56	Р	1	Total K 1 1	0

• Molecule 57 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
57	5	1	Total Zn 1 1	0
57	9	1	Total Zn 1 1	0
57	0	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Lmo0919 protein

• Molecule 4: 23S rRNA

• Molecule 6: 50S ribosom	al protein L2		
Chain G:	97%		
MET A2 A2 A2 A1 A1 C1 A1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	R221 R260 R263 R273 R273 L25 L25 L25 L25 L25 L25 L25 L25		
• Molecule 7: 50S ribosom	al protein L3		
Chain H:	97%		
MET T2 E18 E18 E18 V139 V154 V154 E167 E182	K207 ALA LYS		
• Molecule 8: 50S ribosom	nal protein L4		
Chain I:	98%		
MET PRO LVS L4 A14 A14 B21 B21 B21 B21 B21 B21 B21 B21 B21 B21	E121 E127 E127 D132 D132 D132 E159 E159 E159 E161 E161 E200 E200	L206 ALA	
• Molecule 9: 50S ribosom	nal protein L5		
Chain J:	61% 98%		
MET N2 R3 R3 L4 K5 D6 D6 E11 112 A15 K10 K10 K10 K10 K10 K15 K15 K15 K15 K15 K15 K15 K15 K15 K16 K16 K16 K16 K16 K16 K17 K16 K17 K17 K17 K17 K17 K17 K17 K17 K17 K17	K19 F20 Y22 Y22 S24 E27 K30 K30 K30 K30 K30 K30 K30 K30 K30 K30	A45 A47 A47 A47 A47 C51 S52 S52 S52 S52 S52 S52 S52 S52 S52 S52	qe3 K69 A70 K71 N72 S73 I74 A75 G75
F77 R78 L79 R80 E81 G82 M83 P94 P94 F94 E94 R95 F99 F99 F99	P1101 K102 T105 V106 S107 V110 P109 P109 P109 P109 P110 P110 P111 P113 P113 P115 P115 P115 S116 V115 S116 V117 S118 V117 S118 V117	M120 F122 F122 D123 C124 R125 C124 R125 C124 C124 C123 E134 C135 C135 C135 C135 C135 C135 C135 C135	P139 E140 E141 D142 Y143 P144 Q145 Q145 V146 S147 X148 V149
R150 G151 M152 M152 M153 V154 V154 A160 K161 S165 B163 E165 E165 B165 B165	L169 L170 L171 Q172 Q172 P176 P176 P176 CLN CLN		
• Molecule 10: 50S riboso	mal protein L6		
Chain K:	93%	7%	
MET SER ARG ARG ARG ALY LLYS LLYS LLYS LLYS LLYS AL3 AL3 AL3 AL3 AL3 AL3 AL3 AL3 AL4 AL3 AL4 AL4 AL4 AL4 AL4 AL4 AL4 AL4 AL4 AL4	T118 L119 N20 221 222 723 723 724 725 726 728 728 728 728 729 729 729 729 729 729 729 729 729 729	E36 F37 F37 F33 F33 F33 F42 F44 F44 F45 F45 C47 C47 C47 F45 F45 C47 F45 F45 F45 F45 F45 F45 F45 F45 F45 F45	150 M51 V52 V52 S53 F55 F55 F55 N55 N57 K59 N68 N68
H6.1 R6.2 G6.6 R6.9 V77 G77 C77 C77 E8.1 E8.4	L85 190 691 691 895 699 6100 7101 K102 L103 C103 C103 C103 C103 C103 C103 C103 C	F114 F115 V116 A117 P118 F113 F123 F123 F123 F123 F123 F123 F123	K134 N137 1445 A145 A146

• Molecule 11: 50S ribosomal protein L13

• Molecule 23: 50S ribosomal protein L27

Chain Z:	75%	• 24%
MET LEU LIEU LISU PHE ASP CLN CLN HIS ALA ALA	LYS LYS GLY GLY SER THR THR SER R22 B8 B8 B8 B8 B8 B8 B8 B8 B8 CLU VAL VAL VAL VAL	
• Molecule 24:	50S ribosomal protein L28	
Chain 1:	90%	• 6%
MET K1A R18 R10 L139 L39 L39 V40	M41 642 F 44 F 44 K45 K45 K45 K45 K45 K45 K45 K45 K45 K	
• Molecule 25:	50S ribosomal protein L29	
Chain 2:	%94%	6%
MET LYS A3 N4 D5 L9 E9 S10	T11 D16 E81 LEU ALA	
• Molecule 26:	50S ribosomal protein L30	
Chain 3:	95%	5%
MET ALA K3 E58 VAL		
• Molecule 27:	50S ribosomal protein L32-2	
Chain 5:	88%	5% 7%
MET A2 V3 N16 R16 B53 V54	ASIN SER	
• Molecule 28:	50S ribosomal protein L33 1	
Chain 6:	96%	•
MET R2 G13 E28 E28	SV1	
• Molecule 29:	50S ribosomal protein L34	
Chain 7:	93%	• 5%
MET K2 R29 S43 ALA		

• Molecule 30: 50S ribosom	nal protein L35		
Chain 8:	94%	• 5%	2
MET P2 R57 MET MET LYS			
• Molecule 31: 50S ribosom	nal protein L36		
Chain 9:	97%		
MI Et 2 K1 3 K1 3 F1 8 F1 8 F1 8 F1 8 F1 8 F1 8 F1 8 F1 8			
\bullet Molecule 32: 5S rRNA			
Chain B:	82%	18%	
C2 G5 G5 G5 G5 A1 C1 C2 4 C2 4 C2 4 C2 4 C2 4 C2 4 C2 5 C2 4 C2 5 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	C34 C40 C40 C40 C38 C40 C40 C40 C40 C40 C40 C40 C40 C40 C40	C106 G107 G114 G115	
• Molecule 33: 30S ribosom	nal protein S2		
Chain c:	78% 85%	15%	1
MET PRO PRO ILEU SER SER SER SER SER CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	UIS R21 R21 R22 W23 W23 P26 K26 K26 K28 K29 F31 F31 F33 F33	E34 R35 R35 R35 R36 R37 F38 F38 F49 F44 F41 F43 F45 F45 F45 F45 F45 F45	V 44 K 48 K 49 D 51 D 51 E 52 A 53 F 56 M 57 R 56 R 56 E 59 V 60
A61 862 862 863 864 865 166 167 166 167 168 71 172 871 871 873 873 875 875	A. 10 477 879 879 881 881 882 883 883 887 888 887 888 887 888 887 888	F31 V92 H94 H94 K95 W96 L97 L101 T102 F104 F104 F104	T105 1107 0108 K109 K110 0112 0112 0112 K115 K115 K115 K115 K115 K115 K115 K
D123 G124 F126 F126 E127 V128 V128 P130 F130 K131 K131 K132 K133 K133 L136 L137	K138 K139 E140 E141 E142 K143 K143 F144 F144 F145 F147 F147 C148 G149 G150 G150	K152 D153 M154 K155 C156 C156 C156 D156 D158 D158 F160 F161 F162 T163	P.166 R.167 K.168 E.169 R.170 A.172 A.172 A.172 A.172 A.174 A.174 A.176 A.176 A.176 A.176 A.176 A.176 A.177 A.177 A.177 A.177 A.176 A.176 A.176 A.177 A.177 A.177 A.176 A.176 A.177 A.177 A.176 A.176 A.177 A.177 A.176 A.177 A.177 A.177 A.177 A.177 A.177 A.176 A.177 A.177 A.177 A.176 A.177 A.177 A.176 A.176 A.177 A.177 A.177 A.176 A.1777 A.177 A.177 A.177 A.1777 A.177 A.177 A.177 A.177 A.177 A.17
1183 1184 6185 1186 1186 1186 1186 1186 1189 1189 1192 1192 1196 1196 1196	V199 1200 P201 A202 A202 D204 A206 A206 R206 A206 V210 V210 V210	L213 T214 A215 K216 M217 A216 A218 A220 1221 1221 1221 C223 V224 V224	q225 GLY GLY GLU GLU GLU GLU PRO GLU CLU CLU CLU CLU CLU ALA ALA
THR GLU GLU GLU THR GLU ALA			
• Molecule 34: 30S ribosom	nal protein S3		
	58%		

• Molecule 35: 30S ribosomal protein S4

• Molecule 36: 30S ribosomal protein S5

• Molecule 38: 30S ribosomal protein S7

• Molecule 47: 30S ribosomal protein S16

• Molecule 51: 30S ribosomal protein S20

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	45548	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	26.3	Depositor
Minimum defocus (nm)	-700	Depositor
Maximum defocus (nm)	-1900	Depositor
Magnification	165000	Depositor
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	0.173	Depositor
Minimum map value	-0.096	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.006	Depositor
Recommended contour level	0.025	Depositor
Map size (Å)	366.432, 366.432, 366.432	wwPDB
Map dimensions	352, 352, 352	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.041, 1.041, 1.041	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: K, SPD, ZN, ATP, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	0	0.53	0/3699	0.63	0/4976	
2	D	0.96	0/1765	1.12	3/2750~(0.1%)	
3	b	0.69	0/196	1.13	2/302~(0.7%)	
4	А	1.36	55/69974~(0.1%)	1.26	295/109160~(0.3%)	
5	a	0.85	0/36323	1.06	32/56652~(0.1%)	
6	G	0.81	0/2144	0.78	5/2875~(0.2%)	
7	Н	0.91	2/1604~(0.1%)	0.73	0/2156	
8	Ι	0.83	0/1583	0.73	0/2133	
9	J	0.46	0/1383	0.69	0/1863	
10	Κ	0.44	0/1293	0.61	0/1749	
11	М	0.81	0/1140	0.68	0/1533	
12	Ν	0.83	0/932	0.76	1/1248~(0.1%)	
13	0	0.75	1/1105~(0.1%)	0.78	2/1470~(0.1%)	
14	Р	0.79	0/1077	0.75	0/1439	
15	Q	0.80	0/994	0.82	1/1329~(0.1%)	
16	R	0.51	0/923	0.70	0/1232	
17	S	0.81	0/917	0.82	0/1230	
18	Т	0.94	0/952	0.85	4/1266~(0.3%)	
19	U	0.95	0/799	0.71	1/1072~(0.1%)	
20	V	0.83	0/858	0.82	0/1160	
21	W	0.78	0/739	0.77	0/990	
22	Х	0.65	1/733~(0.1%)	0.68	0/980	
23	Ζ	0.85	0/570	0.86	0/758	
24	1	0.69	0/462	0.87	3/612~(0.5%)	
25	2	0.56	0/488	0.73	0/651	
26	3	0.71	0/436	0.73	0/585	
27	5	0.94	1/433~(0.2%)	0.85	1/577~(0.2%)	
28	6	0.70	0/404	0.76	0/541	
29	7	1.01	0/360	0.96	1/469~(0.2%)	
30	8	0.86	$0/\overline{519}$	0.85	1/675 (0.1%)	
31	9	0.78	0/295	0.69	0/387	
32	В	0.82	0/2711	1.07	2/4224~(0.0%)	

Mal	Chain	Bond lengths		Bond angles		
INIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
33	с	0.38	0/1749	0.64	0/2351	
34	d	0.47	0/1649	0.68	1/2218~(0.0%)	
35	е	0.44	0/1624	0.66	0/2179	
36	f	0.53	0/1192	0.71	2/1609~(0.1%)	
37	g	0.39	0/794	0.61	0/1063	
38	h	0.42	0/1128	0.65	0/1514	
39	i	0.48	0/1028	0.69	0/1382	
40	j	0.49	0/1003	0.71	1/1349~(0.1%)	
41	k	0.47	0/783	0.68	0/1056	
42	l	0.38	0/851	0.66	0/1148	
43	m	0.57	0/1056	0.80	0/1418	
44	n	0.46	0/912	0.76	2/1220~(0.2%)	
45	0	0.61	0/500	0.73	0/664	
46	р	0.42	0/732	0.73	1/980~(0.1%)	
47	q	0.47	0/724	0.71	0/971	
48	r	0.45	0/665	0.68	0/889	
49	s	0.41	0/512	0.68	0/686	
50	t	0.47	0/671	0.63	0/902	
51	u	0.43	0/614	0.71	1/817~(0.1%)	
52	4	0.41	0/654	0.63	0/881	
All	All	1.07	60/156652~(0.0%)	1.09	362/234341~(0.2%)	

The worst 5 of 60 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
4	А	1067	A	N9-C4	-6.93	1.33	1.37
4	А	628	G	N9-C4	-6.37	1.32	1.38
4	А	554	С	C4-C5	-6.19	1.38	1.43
4	А	846	А	N9-C4	-5.98	1.34	1.37
4	А	1705	С	C4-C5	-5.83	1.38	1.43

The worst 5 of 362 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	А	554	С	C6-N1-C2	-10.30	116.18	120.30
4	А	2507	С	C6-N1-C2	-8.88	116.75	120.30
4	А	1823	С	C5-C4-N4	-8.61	114.17	120.20
4	А	1666	С	C5-C4-N4	-8.57	114.20	120.20
4	А	2699	С	N3-C2-O2	-8.39	116.03	121.90

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Favoured Allowed		Perce	ntiles
1	0	459/567~(81%)	430 (94%)	29~(6%)	0	100	100
6	G	271/277~(98%)	256 (94%)	15 (6%)	0	100	100
7	Н	204/209~(98%)	191 (94%)	13 (6%)	0	100	100
8	Ι	201/207~(97%)	190 (94%)	11 (6%)	0	100	100
9	J	173/179~(97%)	163 (94%)	10 (6%)	0	100	100
10	К	163/178~(92%)	155 (95%)	8 (5%)	0	100	100
11	М	140/145~(97%)	136 (97%)	4 (3%)	0	100	100
12	Ν	120/122 (98%)	114 (95%)	6 (5%)	0	100	100
13	Ο	142/146~(97%)	134 (94%)	8 (6%)	0	100	100
14	Р	131/144 (91%)	126 (96%)	5 (4%)	0	100	100
15	Q	118/135 (87%)	113 (96%)	5 (4%)	0	100	100
16	R	116/119 (98%)	106 (91%)	10 (9%)	0	100	100
17	S	110/114 (96%)	103 (94%)	7 (6%)	0	100	100
18	Т	114/119~(96%)	107 (94%)	7 (6%)	0	100	100
19	U	99/102~(97%)	93 (94%)	6 (6%)	0	100	100
20	V	108/118~(92%)	106 (98%)	2(2%)	0	100	100
21	W	88/94~(94%)	82 (93%)	6 (7%)	0	100	100
22	Х	93/103~(90%)	91 (98%)	2 (2%)	0	100	100
23	Z	71/96~(74%)	67 (94%)	4 (6%)	0	100	100
24	1	56/62~(90%)	51 (91%)	5 (9%)	0	100	100
25	2	57/63~(90%)	54 (95%)	3 (5%)	0	100	100

Continued on next page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
26	3	54/59~(92%)	$51 \ (94\%)$	3~(6%)	0	100	100
27	5	51/57~(90%)	49 (96%)	2(4%)	0	100	100
28	6	45/49~(92%)	43 (96%)	2 (4%)	0	100	100
29	7	40/44 (91%)	39~(98%)	1 (2%)	0	100	100
30	8	61/66~(92%)	53~(87%)	8 (13%)	0	100	100
31	9	34/37~(92%)	30 (88%)	4 (12%)	0	100	100
33	с	210/249~(84%)	188 (90%)	22 (10%)	0	100	100
34	d	202/218~(93%)	185 (92%)	17 (8%)	0	100	100
35	е	197/200~(98%)	182 (92%)	15 (8%)	0	100	100
36	f	159/167~(95%)	149 (94%)	10 (6%)	0	100	100
37	g	91/97~(94%)	83 (91%)	8 (9%)	0	100	100
38	h	139/156~(89%)	130 (94%)	9 (6%)	0	100	100
39	i	128/132~(97%)	116 (91%)	12 (9%)	0	100	100
40	j	124/130~(95%)	114 (92%)	10 (8%)	0	100	100
41	k	94/102~(92%)	87~(93%)	7 (7%)	0	100	100
42	1	112/129~(87%)	100 (89%)	12 (11%)	0	100	100
43	m	132/137~(96%)	120 (91%)	12 (9%)	0	100	100
44	n	112/121~(93%)	103 (92%)	9 (8%)	0	100	100
45	О	58/61~(95%)	55~(95%)	3(5%)	0	100	100
46	р	84/89~(94%)	81 (96%)	3 (4%)	0	100	100
47	q	86/90~(96%)	81 (94%)	5 (6%)	0	100	100
48	r	78/87~(90%)	73 (94%)	5 (6%)	0	100	100
49	s	60/79~(76%)	59~(98%)	1 (2%)	0	100	100
50	t	79/92~(86%)	75~(95%)	4 (5%)	0	100	100
51	u	78/84~(93%)	76~(97%)	2 (3%)	0	100	100
52	4	77/81~(95%)	59~(77%)	18 (23%)	0	100	100
All	All	5619/6112~(92%)	5249 (93%)	370 (7%)	0	100	100

Continued from previous page...

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	0	400/492~(81%)	396~(99%)	4 (1%)	76	92
6	G	221/225~(98%)	220 (100%)	1 (0%)	88	96
7	Η	169/171~(99%)	168 (99%)	1 (1%)	86	96
8	Ι	171/174~(98%)	170 (99%)	1 (1%)	86	96
9	J	151/155~(97%)	151 (100%)	0	100	100
10	К	137/147~(93%)	137 (100%)	0	100	100
11	М	119/121~(98%)	119 (100%)	0	100	100
12	Ν	101/101 (100%)	101 (100%)	0	100	100
13	О	113/115~(98%)	113 (100%)	0	100	100
14	Р	105/113~(93%)	105 (100%)	0	100	100
15	Q	102/111~(92%)	102 (100%)	0	100	100
16	R	96/97~(99%)	96 (100%)	0	100	100
17	S	98/100 (98%)	97~(99%)	1 (1%)	76	92
18	Т	95/97~(98%)	95 (100%)	0	100	100
19	U	82/82~(100%)	82 (100%)	0	100	100
20	V	91/97~(94%)	91 (100%)	0	100	100
21	W	80/84~(95%)	80 (100%)	0	100	100
22	Х	81/88~(92%)	81 (100%)	0	100	100
23	Ζ	58/76~(76%)	57 (98%)	1 (2%)	60	86
24	1	50/53~(94%)	50 (100%)	0	100	100
25	2	52/55~(94%)	52 (100%)	0	100	100
26	3	50/52~(96%)	50 (100%)	0	100	100
27	5	$\overline{47/50}\ (94\%)$	46 (98%)	1 (2%)	53	81
28	6	46/48~(96%)	46 (100%)	0	100	100
29	7	38/39~(97%)	38 (100%)	0	100	100
30	8	53/56~(95%)	53 (100%)	0	100	100

Continued on next page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
31	9	35/35~(100%)	35~(100%)	0	100	100
33	с	185/215~(86%)	185 (100%)	0	100	100
34	d	165/177~(93%)	164 (99%)	1 (1%)	86	96
35	е	169/170~(99%)	169 (100%)	0	100	100
36	f	126/131~(96%)	126 (100%)	0	100	100
37	g	83/85~(98%)	83 (100%)	0	100	100
38	h	117/130 (90%)	117 (100%)	0	100	100
39	i	108/110 (98%)	108 (100%)	0	100	100
40	j	99/102~(97%)	97~(98%)	2 (2%)	55	82
41	k	88/93~(95%)	88 (100%)	0	100	100
42	1	86/100 (86%)	86 (100%)	0	100	100
43	m	115/118 (98%)	113 (98%)	2 (2%)	60	86
44	n	97/102~(95%)	97 (100%)	0	100	100
45	О	51/52~(98%)	51 (100%)	0	100	100
46	р	79/81~(98%)	79 (100%)	0	100	100
47	q	78/80~(98%)	78 (100%)	0	100	100
48	r	73/78~(94%)	73 (100%)	0	100	100
49	S	56/67~(84%)	56 (100%)	0	100	100
50	t	70/78~(90%)	70 (100%)	0	100	100
51	u	63/66~(96%)	63 (100%)	0	100	100
52	4	71/73~(97%)	69~(97%)	2 (3%)	43	76
All	All	4820/5142 (94%)	4803 (100%)	17 (0%)	91	97

Continued from previous page...

5 of 17 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
43	m	96	ARG
52	4	61	LYS
17	S	51	ARG
23	Ζ	22	ARG
27	5	37	ARG

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 14 such side chains are listed below:

Mol	Chain	Res	Type
34	d	175	HIS
38	h	68	ASN
46	р	62	HIS
43	m	25	ASN
46	р	37	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
2	D	73/77~(94%)	16~(21%)	0
3	b	6/14~(42%)	1 (16%)	0
32	В	113/114~(99%)	18 (15%)	1 (0%)
4	А	2905/2928~(99%)	571 (19%)	48 (1%)
5	a	1509/1542~(97%)	294~(19%)	0
All	All	4606/4675~(98%)	900 (19%)	49 (1%)

5 of 900 RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
2	D	5	G
2	D	6	G
2	D	8	U
2	D	9	G
2	D	13	С

5 of 49 RNA pucker outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
4	А	1533	А
4	А	1946	А
4	А	1569	U
4	А	1880	А
4	А	2320	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 171 ligands modelled in this entry, 167 are monoatomic - leaving 4 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Tuno Chain		Dec Link		Bond lengths			Bond angles			
IVIOI	туре	Unain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
53	ATP	0	602	54	26,33,33	0.73	0	$31,\!52,\!52$	0.74	2 (6%)
55	SPD	А	3001	-	9,9,9	0.49	0	8,8,8	1.36	2 (25%)
53	ATP	0	601	54	26,33,33	0.68	0	31,52,52	0.73	2 (6%)
55	SPD	a	1601	-	$9,\!9,\!9$	0.28	0	8,8,8	0.86	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
53	ATP	0	602	54	-	7/18/38/38	0/3/3/3
55	SPD	А	3001	-	-	4/7/7/7	-
53	ATP	0	601	54	-	7/18/38/38	0/3/3/3
55	SPD	a	1601	-	-	2/7/7/7	-

There are no bond length outliers.

The worst 5 of 6 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
55	А	3001	SPD	C4-C5-N6	-2.76	104.68	112.14
55	А	3001	SPD	C8-C7-N6	-2.38	105.71	112.14
53	0	602	ATP	C5-C6-N6	2.32	123.87	120.35
53	0	601	ATP	C5-C6-N6	2.27	123.81	120.35
53	0	602	ATP	PB-O3B-PG	2.03	139.78	132.83

There are no chirality outliers.

5 of 20 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
53	0	601	ATP	C5'-O5'-PA-O1A
53	0	601	ATP	C5'-O5'-PA-O2A
53	0	601	ATP	C5'-O5'-PA-O3A
53	0	602	ATP	C5'-O5'-PA-O2A
53	0	602	ATP	C3'-C4'-C5'-O5'

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-12334. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 176

Z Index: 176

6.2.2 Raw map

X Index: 210

Y Index: 210

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 174

Z Index: 186

6.3.2 Raw map

X Index: 180

Y Index: 225

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.025. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 510 $\rm nm^3;$ this corresponds to an approximate mass of 461 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.345 ${\rm \AA}^{-1}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.345 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	2.90	-	-
Author-provided FSC curve	2.91	3.37	2.94
Unmasked-calculated*	3.17	4.27	3.24

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-12334 and PDB model 7NHN. Per-residue inclusion information can be found in section 3 on page 16.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.025 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.025).

9.4 Atom inclusion (i)

At the recommended contour level, 70% of all backbone atoms, 66% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.025) and Q-score for the entire model and for each chain.

Cham	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.6580	0.5340
0	0.4960	0.5080
1	0.6680	0.5450
2	0.5900	0.5190
3	0.6890	0.5490
4	0.1590	0.3490
5	0.7690	0.5920
6	0.6670	0.5580
7	0.8050	0.6050
8	0.7950	0.5970
9	0.6790	0.5630
A	0.8020	0.5750
В	0.6380	0.5140
D	0.6980	0.5650
G	0.7450	0.5870
Н	0.7660	0.5900
Ι	0.6670	0.5530
J	0.3340	0.4490
Κ	0.3660	0.4460
М	0.7530	0.5880
Ν	0.7130	0.5730
Ο	0.6250	0.5350
Р	0.7110	0.5620
Q	0.7370	0.5750
R	0.4380	0.4590
S	0.7160	0.5630
Т	0.7580	0.5830
U	0.7170	0.5770
V	0.7460	0.5790
W	0.6640	0.5460
Х	0.5380	0.5250
Z	0.7360	0.5810
a	0.5980	0.5070
b	0.3050	0.4010
с	0.1630	0.3880

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
d	0.3690	0.4470
е	0.2500	0.4260
f	0.4360	0.4920
g	0.1370	0.3280
h	0.2870	0.4300
i	0.3660	0.4630
j	0.3230	0.4270
k	0.2470	0.4010
1	0.2080	0.3950
m	0.4650	0.5100
n	0.2820	0.4100
О	0.5100	0.4980
р	0.3580	0.4250
q	0.4020	0.4740
r	0.3280	0.4650
S	0.2390	0.4010
t	0.3110	0.4380
u	0.3960	0.4520

