

Oct 24, 2022 - 06:32 PM EDT

PDB ID	:	7NAQ
EMDB ID	:	EMD-24278
Title	:	Human PA200-20S proteasome complex
Authors	:	Zhao, J.; Makhija, S.; Huang, B.; Cheng, Y.
Deposited on	:	2021-06-22
Resolution	:	3.20 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 43
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	234	88%	5% 7%
1	0	234	90%	9% •
2	В	261	86%	• 13%
2	Р	261	• 89%	7% 5%
3	С	248	86%	5% 9%
3	Q	248	• 90%	7% •
4	D	241	93%	• 5%
4	R	241	93%	•••

Mol	Chain	Length	Quality of chain		
5	Е	263	82%	9% 9%	
5	S	263	85%	5% 10%	
6	F	255	85%	10% •	
6	Т	255	89%	• 6%	
7	G	246	93%	• •	
7	U	246	93%	6% •	
8	Н	277	73% 6%	21%	
8	V	277	71% 8%	20%	
9	Ι	205	92%	8%	
9	W	205	94%	5%	
10	J	201	94%	••	
10	Х	201	89%	9% •	
11	Κ	263	71% 5%	24%	
11	Y	263	68% 8%	24%	
12	L	241	• 79% 9	% 12%	
12	Ζ	241	82%	6% 12%	
13	М	264	75% 6%	18%	
13	a	264	82%	18%	
14	Ν	239	77% 7%	15%	
14	b	239	85%	15%	
15	с	1843	9%	•	

2 Entry composition (i)

There are 16 unique types of molecules in this entry. The entry contains 59084 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Proteasome subunit alpha type-2.

Mol	Chain	Residues		Ate		AltConf	Trace		
1	А	217	Total 1568	C 1022	N 281	O 260	${f S}{5}$	0	0
1	0	230	Total 1677	C 1093	N 292	O 288	$\frac{S}{4}$	0	0

• Molecule 2 is a protein called Proteasome subunit alpha type-4.

Mol	Chain	Residues		Ate		AltConf	Trace		
2	В	228	Total 1603	C 1028	N 288	O 283	${S \atop 4}$	0	0
2	Р	249	Total 1790	C 1149	N 318	O 316	${f S}7$	0	0

• Molecule 3 is a protein called Proteasome subunit alpha type-7.

Mol	Chain	Residues		Ate		AltConf	Trace		
2	C	225	Total	С	Ν	0	S	0	0
	U	220	1596	1019	295	280	2	0	0
2	0	220	Total	С	Ν	0	S	0	0
D Q	Q	239	1686	1079	308	294	5	0	0

• Molecule 4 is a protein called Proteasome subunit alpha type-5.

Mol	Chain	Residues		At		AltConf	Trace		
4	D	229	Total 1616	C 1039	N 283	O 285	S 9	0	0
4	R	235	Total 1648	C 1054	N 289	O 296	S 9	0	0

• Molecule 5 is a protein called Proteasome subunit alpha type-1.

Mol	Chain	Residues		At		AltConf	Trace	
5 E	240	Total	С	Ν	0	\mathbf{S}	0	0
		240	1806	1147	333	315	11	0
5 S	227	Total	С	Ν	0	S	0	0
	ß	201	1738	1109	323	299	7	0

• Molecule 6 is a protein called Proteasome subunit alpha type-3.

Mol	Chain	Residues		Ate	AltConf	Trace			
6	Б	244	Total	С	Ν	0	S	0	0
ОГ	244	1800	1156	317	319	8	0	0	
6	т	240	Total	С	Ν	0	S	0	0
0 1	1	240	1773	1138	313	313	9	0	

• Molecule 7 is a protein called Proteasome subunit alpha type-6.

Mol	Chain	Residues		At	AltConf	Trace			
7	G	238	Total 1742	C 1123	N 301	O 306	S 12	0	0
7	U	244	Total 1792	C 1149	N 311	0 321	S 11	0	0

• Molecule 8 is a protein called Proteasome subunit beta type-7.

Mol	Chain	Residues	Atoms					AltConf	Trace
8	н	220	Total	С	Ν	Ο	\mathbf{S}	0	0
8	11		1598	1017	273	298	10	0	0
8	V	221	Total	С	Ν	Ο	\mathbf{S}	0	0
0	V	V 221	1604	1015	274	305	10	U	0

• Molecule 9 is a protein called Proteasome subunit beta type-3.

Mol	Chain	Residues	Atoms					AltConf	Trace
Q	0 I	204	Total	С	Ν	0	S	0	0
3	I	204	1548	996	264	270	18	0	0
0) W	W 204	Total	С	Ν	0	S	0	0
9			1528	982	260	268	18	0	0

• Molecule 10 is a protein called Proteasome subunit beta type-2.

Mol	Chain	Residues	Atoms				AltConf	Trace	
10	J	196	Total 1519	C 984	N 263	O 263	S 9	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms					AltConf	Trace
10	Х	197	Total 1514	C 985	N 264	0 257	S 8	0	0

• Molecule 11 is a protein called Proteasome subunit beta type-5.

Mol	Chain	Residues	Atoms					AltConf	Trace
11	K	201	Total	С	Ν	0	S	0	0
	Γ	201	1518	968	272	269	9	0	0
11	V	Y 200	Total	С	Ν	0	S	0	0
	Ĩ		1509	965	269	268	$\overline{7}$	0	

• Molecule 12 is a protein called Proteasome subunit beta type-1.

Mol	Chain	Residues	Atoms					AltConf	Trace
19	19 I	019	Total	С	Ν	0	\mathbf{S}	0	0
		213	1582	1015	276	281	10	0	U
10	Z	Z 213	Total	С	Ν	0	\mathbf{S}	0	0
12			1582	1016	277	279	10	0	

• Molecule 13 is a protein called Proteasome subunit beta type-4.

Mol	Chain	Residues	Atoms					AltConf	Trace
13	М	216	Total	С	Ν	Ο	\mathbf{S}	0	0
10	111	210	1642	1045	290	296	11	0	0
12	0	a 216	Total	С	Ν	0	S	0	0
13	a		1635	1043	289	293	10	0	

• Molecule 14 is a protein called Proteasome subunit beta type-6.

Mol	Chain	Residues	Atoms					AltConf	Trace
14	N	202	Total 1432	C 914	N 255	0 254	S 9	0	0
14	b	203	Total 1468	C 929	N 259	O 269	S 11	0	0

• Molecule 15 is a protein called Proteasome activator complex subunit 4.

Mol	Chain	Residues		A	AltConf	Trace			
15	С	1799	Total 13534	C 8844	N 2378	O 2261	S 51	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
с	821	ILE	LEU	conflict	UNP Q14997
с	822	LEU	ILE	conflict	UNP Q14997

 $\bullet \ \ {\rm Molecule \ 16 \ is \ INOSITOL \ HEXAKISPHOSPHATE \ (three-letter \ code: \ IHP) \ (formula: \ C_6H_{18}O_{24}P_6).}$

Mol	Chain	Residues	A	AltConf			
16	C	1	Total	С	Ο	Р	0
10	C	1	36	6	24	6	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Proteasome subunit alpha type-2

• Molecule 6: Proteasome subunit alpha type-3

Chain T:	89 % • 6%	-
MET SER SER LLE GLY GLY S33 S33 S33 S34	V49 K51 K51 K51 K51 K51 L54 M65 M65 M65 M215 W215 W215 M208 K244 GLU W215 M216 M215 M215 M216 M215 M216 M216 M217 M218 M219 M219 M219 M214 M215 M216 M217 M218 M218 M219 M31 M31 M31 M31	
• Molecule 7:	: Proteasome subunit alpha type-6	
Chain G:	93%	·
MET SER ARG GLY SER ALA ALA ALA ALA ALA	M. 1 (224) (224) (278) (278) (278) (214) (
• Molecule 7:	: Proteasome subunit alpha type-6	
Chain U:	93% 6%	
MET S2 R3 N33 N33 A41 V42 V42 R43	644 047 1550 1550 1550 1563 1563 1563 1563 170 1242 1242 1242 1242	
• Molecule 8:	: Proteasome subunit beta type-7	
Chain H:	73% 6% 21%	-
MET ALA ALA ALA ALA VAL SER VAL TYR ALA PRO	VAL VAL CLY CLY CLY CLY CLY CLY CLY ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	T55 V76 A97
M127 G170 S171 N172 N181 K182	R187 P186 E205 E205 CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	
• Molecule 8:	: Proteasome subunit beta type-7	
Chain V:	71% 8% 20%	-
MET ALA ALA ALA VAL SER VAL TYR ALA PRO	VALU VALU CLY CLY CLY CLY CLY CLY CLY CLY ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	K33 Y42 C43 T55
I59 L63 M86 M86	A97 L98 L110 V125 L132 L167 L167 L183 L183 L183 L183 L183 L183 L121 C194 C196 C196 C196 C196 C196 C196 C196 C196	
• Molecule 9:	: Proteasome subunit beta type-3	
Chain I:	92% 8%	•
MET 81 N6 N6 R26 q30	R47 Y73 E77 E77 G128 R79 R128 R128 K191 K191 K191 K191 K191 K191 K193	
• Molecule 9:	: Proteasome subunit beta type-3	

Chain W:	94%	5%	
MET 51 82 82 84 7 84 7 157 157 1124	C128 P134 P135 P135 P177 V177 M179 M208 M209		
• Molecule 10:	Proteasome subunit beta type-2		
Chain J:	94%		
M1 T78 N82 1121 A122 T148	T151 RM 70 PH 0 LLYS CLN CLN SER SER		
• Molecule 10:	Proteasome subunit beta type-2		
Chain X:	89%	9% •	I
M1 L44 Y73 T78 L88 L88	Y88 Y88 L102 D108 0112 Y117 Y117 Y116 Y116 Y116 Y117 1123 T123 T123 T123 T123 T123 T123 T123		
• Molecule 11:	Proteasome subunit beta type-5		
Chain K:	71% 5%	24%	
MET ALA LEU ALA SER SER VAL LEU GLU GLU PRO ILEU	PR0 ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	TRP GLY VAL PRO GLU PRO GLU TLE GLU	MET LEU HIS GLY T1
R19 Q29 N38 P33 L41 L42	R61 V133 V133 Y161 Y165 Y175 Y175 Y175 Y175 Y175 Y175 Y175 Y175 Y175 <		
• Molecule 11:	Proteasome subunit beta type-5		
Chain Y:	68% 8%	24%	I
MET ALA LEU ALA SER VAL LEU GLU GLU PRO	PR0 ASN ASN ASN ASN ALX ALX PHE CLY CLY CLY CLY ALA ASP ALA ASP ALA ASP CLY CLY CLY CLY CLY CLY CLY ALA ALA ALA ALA ALA ALA ALA ALA CLY CLY ALA ALA ALA ALA ALA ALA ALA ALA ALA A	TRP GLY VAL PRO GLU GLU FRO GLU GLU	MET LEU HIS GLY T1
G11 S18 V31 V34 N38	L41 A50 R64 E67 E67 A78 L82 L82 L82 L82 L82 L82 L82 L82 L160 T160 T160 T160 T160 T160 T160 T160 T		
• Molecule 12:	Proteasome subunit beta type-1		
Chain L:	79%	9% 12%	
MET LEU LEU SER SER SER ALA ALA ALA ALA	GLY ASC ASP ASP CLY MET CLY MEU CLU CLU CLU CLU CLU CLU CLU CLU CLU CL	R100 D114 K118 V121 A143	E162
D191 A192 L193 V198 R211 K212 D213			

• Molecule 12: Prote	easome subunit beta type-1		
Chain Z:	82%	6% 12%	
MET LEU SER SER SER ALA MLA MLA ALA ALA PRO CLY ARP ARG ARP ARP ARP ARP ARP ARP ARP ARP ARP ARP	CLY MET CLY CLU CLU ALA ALA ALA CLA CLA CLU CLU CLU CLA CLU CLU CLA CLU CLA CLU CLA CLU CLA CLA CLA CLA CLA CLA CLA CLA CLA CLA	1109 1126 1126 1126 1128 1128 1128 1128 1128	
• Molecule 13: Prote	easome subunit beta type-4		
Chain M:	75%	6% 18%	
MET OLU OLU ALLA ALLA PHIE CLY SER SER SER SER GLY CLY CLY CLY CLY CLY CLY CLY CLY CLY C	PRIO ALLA PRIO CLY CLN CLY CLN CLN CLY CLN CLY ALA ARG ALA ARG ALA ARG ALA ARG ALA ARG ALA ARG ALA ARG ARG ARG ARG ARG ARG ARG ARG ARG AR	QLY THR THR ARG ARG T1 T1 T1 T2 MR MR MR MR MR MR S48	L51 G52 A53
554 193 193 1109 1109 1336 144 144 147	L164 S216 PHE PLE CLU		
• Molecule 13: Prote	easome subunit beta type-4		
Chain a:	82%	18%	
MET OLU ALA ALA ALA CLEU CLEU CLEU SER ARG GLY CLEU TRP ALA GLY GLY	PR0 PR0 PLA CLY CLY CLY CLY CLY CLY PR0 PR0 PR0 PR0 PR0 PR0 PR0 PR0 PR0 ALA ALA ALA ALA ALA ALA ARC	GLY PRO TLE THR ARC T1 C1 C1 PHE GLV C1U	
• Molecule 14: Prote	easome subunit beta type-6		
Chain N:	77%	7% 15%	
MET ALA ALA ALA LEU LEU LEU ALA ALA ALA ALA ALA ALA ALA ALA	ALA ALA GLY GLY GLY GLY ALA ALA FRA FRA CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	135 C43 V55 V59 L75 L75 L75 L78 198 199	1127
T156 1176 1174 1174 1176 1177			
• Molecule 14: Prote	easome subunit beta type-6		
Chain b:	85%	15%	
MET ALA ALA ALA ALA LEU ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ALA TRP GLY CLU CLU CLU CLU CLU CLU ALA ALA ALA CLU CLU CLU CLV CLU CLV CLU CLV CLU CLV CLU CLV CLU CLV CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	P203 PR0 ALA	
• Molecule 15: Prote	easome activator complex subunit	4	
Chain c:	97%		
MET PRO PRO ALA ALA ALA ALA ALA ALA CLU PRO PRO CLU PRO	CLY CLY ARG CLU PRO CLU PRO CLV PRO CLV PRO CLV PRO CLS C24 C24 C25 C24 C25 C25 C25 C25 C25 C25 C25 C25 C25 C25	R84 E104 E104 E252 S293 S293 C295 V295 L297 V298	F301 F302 T303 N304 N423
	WORLDWIDE PROTEIN DATA BANK		

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	50767	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI POLARA 300	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	40	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT $(4k \ge 4k)$	Depositor
Maximum map value	24.703	Depositor
Minimum map value	-14.370	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	1.000	Depositor
Recommended contour level	4.0	Depositor
Map size (Å)	388.992, 388.992, 388.992	wwPDB
Map dimensions	320, 320, 320	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.2156, 1.2156, 1.2156	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: IHP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond lengths		Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.56	0/1603	0.56	0/2186	
1	0	0.54	0/1716	0.58	0/2342	
2	В	0.50	0/1623	0.57	0/2208	
2	Р	0.47	0/1820	0.58	0/2480	
3	С	0.47	0/1616	0.63	0/2201	
3	Q	0.45	0/1711	0.58	0/2340	
4	D	0.47	0/1641	0.56	0/2234	
4	R	0.44	0/1675	0.54	0/2284	
5	Е	0.52	0/1842	0.61	0/2501	
5	S	0.47	0/1772	0.61	0/2414	
6	F	0.54	0/1835	0.61	0/2489	
6	Т	0.51	0/1808	0.56	0/2454	
7	G	0.56	0/1775	0.56	0/2420	
7	U	0.51	0/1825	0.56	0/2484	
8	Н	0.58	0/1625	0.64	0/2212	
8	V	0.55	0/1630	0.62	0/2217	
9	Ι	0.57	0/1577	0.60	0/2130	
9	W	0.58	0/1557	0.59	0/2111	
10	J	0.59	0/1551	0.61	1/2106~(0.0%)	
10	Х	0.61	0/1547	0.60	0/2102	
11	Κ	0.60	0/1549	0.64	0/2098	
11	Y	0.57	0/1540	0.62	0/2089	
12	L	0.57	0/1612	0.62	1/2180~(0.0%)	
12	Ζ	0.56	0/1612	0.61	0/2180	
13	М	0.60	0/1675	0.62	0/2274	
13	a	0.61	0/1668	0.63	0/2268	
14	N	0.61	0/1458	0.62	0/1985	
14	b	$0.\overline{59}$	$0/1\overline{495}$	0.58	$0/2\overline{031}$	
15	с	0.38	0/13872	0.56	1/18979~(0.0%)	
All	All	0.51	0/60230	0.59	3/81999~(0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
2	Р	0	1
15	с	0	4
All	All	0	5

There are no bond length outliers.

All (3) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
12	L	38	ARG	NE-CZ-NH1	5.85	123.23	120.30
10	J	170	ARG	NE-CZ-NH1	5.52	123.06	120.30
15	с	632	ARG	NE-CZ-NH1	5.06	122.83	120.30

There are no chirality outliers.

All (5) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
2	Р	53	HIS	Peptide
15	с	1019	VAL	Peptide
15	с	1175	LEU	Peptide
15	с	670	ASP	Peptide
15	с	932	LYS	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1568	0	1504	7	0
1	0	1677	0	1603	15	0
2	В	1603	0	1515	2	0
2	Р	1790	0	1691	11	0
3	С	1596	0	1504	5	0
3	Q	1686	0	1587	10	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
4	D	1616	0	1532	5	0
4	R	1648	0	1549	7	0
5	Е	1806	0	1749	17	0
5	S	1738	0	1650	9	0
6	F	1800	0	1714	22	0
6	Т	1773	0	1676	8	0
7	G	1742	0	1684	7	0
7	U	1792	0	1722	8	0
8	Н	1598	0	1567	10	0
8	V	1604	0	1579	16	0
9	Ι	1548	0	1564	9	0
9	W	1528	0	1504	9	0
10	J	1519	0	1495	3	0
10	Х	1514	0	1494	12	0
11	K	1518	0	1458	10	0
11	Y	1509	0	1435	11	0
12	L	1582	0	1547	12	0
12	Ζ	1582	0	1552	9	0
13	М	1642	0	1593	10	0
13	a	1635	0	1575	0	0
14	N	1432	0	1369	9	0
14	b	1468	0	1417	0	0
15	с	13534	0	13005	0	0
16	с	36	0	6	0	0
All	All	59084	0	56840	232	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

All (232) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
8:V:21:THR:OG1	8:V:25:VAL:O	1.99	0.80
5:S:117:GLN:NE2	6:T:83:ASP:OD1	2.15	0.80
14:N:35:THR:OG1	14:N:43:CYS:SG	2.40	0.79
14:N:75:LEU:O	14:N:78:THR:OG1	2.03	0.74
3:C:146:GLN:OE1	3:C:159:ASN:ND2	2.21	0.73
5:E:148:CYS:SG	5:E:150:SER:OG	2.49	0.70
12:L:24:ALA:HB1	12:L:193:LEU:HD11	1.72	0.70
5:E:148:CYS:HG	5:E:150:SER:HG	1.39	0.69
2:P:86:LEU:HD12	2:P:114:LEU:HD11	1.74	0.69

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
5:S:47:VAL:HG12	5:S:195:LEU:HD22	1.75	0.68
8:H:205:GLU:O	8:H:208:THR:OG1	2.09	0.68
11:Y:38:ASN:OD1	11:Y:41:LEU:N	2.27	0.68
1:A:110:VAL:HG22	1:A:135:ILE:HD13	1.76	0.66
3:C:55:ASP:OD2	3:C:57:ARG:NH1	2.28	0.66
9:W:26:ARG:NE	9:W:179:VAL:O	2.28	0.66
11:Y:64:ARG:NH1	11:Y:67:GLU:OE2	2.29	0.65
12:Z:125:ASP:OD1	12:Z:129:SER:N	2.29	0.65
14:N:7:GLN:NE2	14:N:8:PHE:O	2.30	0.65
1:O:106:THR:O	1:O:110:VAL:HG23	1.97	0.64
4:R:37:ALA:HB2	4:R:50:VAL:HG23	1.80	0.64
9:W:57:THR:OG1	10:X:121:LEU:O	2.13	0.64
5:S:146:GLN:NE2	5:S:147:THR:O	2.30	0.64
1:O:203:THR:OG1	1:O:204:GLU:OE1	2.16	0.63
12:L:28:ARG:NH2	12:L:191:ASP:OD1	2.32	0.63
13:M:89:HIS:O	13:M:93:THR:HG23	1.98	0.63
8:H:41:ILE:HD12	8:H:76:VAL:HG22	1.81	0.62
3:Q:94:HIS:O	3:Q:98:VAL:HG22	1.99	0.62
1:O:110:VAL:HG22	1:O:135:ILE:HD13	1.82	0.62
8:H:171:SER:O	8:H:172:ASN:ND2	2.32	0.62
4:D:119:LEU:O	4:D:122:GLN:N	2.32	0.62
5:S:167:SER:O	5:S:170:THR:OG1	2.18	0.61
9:I:29:ILE:HG22	9:I:30:GLN:H	1.66	0.60
4:D:120:ALA:HB1	4:D:125:PHE:CE2	2.37	0.59
8:H:7:VAL:HG12	8:H:12:ILE:HG22	1.85	0.59
2:P:119:GLN:NE2	3:Q:79:ASP:OD1	2.35	0.59
2:P:90:LEU:HG	2:P:114:LEU:HD13	1.84	0.58
13:M:46:ASN:OD1	13:M:48:SER:N	2.37	0.58
5:E:167:SER:O	5:E:170:THR:OG1	2.17	0.57
13:M:136:SER:OG	13:M:147:GLN:OE1	2.21	0.57
3:Q:31:THR:OG1	3:Q:163:ARG:O	2.13	0.57
9:I:193:LYS:NZ	9:I:195:THR:OG1	2.38	0.57
3:C:215:GLN:NE2	3:C:216:SER:O	2.37	0.57
7:U:43:ARG:NH1	7:U:163:PHE:O	2.38	0.56
6:F:159:GLY:H	7:G:65:THR:HG21	1.71	0.56
3:Q:116:GLN:O	3:Q:119:THR:OG1	2.21	0.56
5:E:35:THR:HG21	5:E:73:SER:CB	2.36	0.56
13:M:144:TYR:HB3	8:V:132:LEU:HD12	1.88	0.56
3:Q:94:HIS:ND1	3:Q:102:VAL:HG22	2.20	0.56
6:F:69:VAL:HG23	6:F:73:VAL:HG13	1.87	0.56
8:H:181:ASN:OD1	8:H:182:LYS:N	2.40	0.55

Atom-1	Atom-2	Interatomic	Clash
1100111-1	110000-2	distance (Å)	overlap (Å)
7:U:51:VAL:HG12	7:U:217:VAL:HG22	1.89	0.55
5:E:157:ARG:NH2	5:E:176:MET:SD	2.81	0.54
10:J:78:THR:O	10:J:82:ASN:ND2	2.37	0.54
6:F:215:TRP:CZ3	6:F:227:VAL:HG13	2.43	0.54
8:H:41:ILE:CD1	8:H:76:VAL:HG22	2.37	0.54
10:X:91:CYS:HG	10:X:98:TYR:HE2	1.54	0.54
5:E:34:ALA:O	5:E:62:LYS:NZ	2.41	0.54
6:F:87:LEU:HD13	6:F:135:PHE:CE1	2.43	0.53
6:T:51:LYS:O	6:T:210:GLU:N	2.41	0.53
10:X:44:LEU:HD11	10:X:102:LEU:HD12	1.90	0.53
6:F:189:ILE:O	6:F:193:VAL:HG23	2.07	0.53
4:D:121:LEU:HD22	5:E:79:ALA:HB1	1.90	0.53
5:E:157:ARG:NH2	6:F:56:LYS:O	2.41	0.53
8:V:18:THR:OG1	8:V:31:CYS:N	2.41	0.53
11:Y:160:ILE:HG21	11:Y:174:VAL:HG23	1.90	0.53
13:M:41:ARG:NH1	13:M:53:ALA:O	2.42	0.53
12:L:62:LEU:O	12:L:65:THR:OG1	2.25	0.52
10:X:139:THR:HG23	10:X:163:CYS:HB3	1.92	0.52
5:S:63:ILE:HG21	5:S:223:ILE:HD13	1.91	0.52
7:G:49:VAL:HG12	7:G:219:VAL:HG12	1.92	0.52
3:Q:184:ASP:O	3:Q:187:THR:OG1	2.24	0.52
4:D:98:ASN:OD1	11:K:61:ARG:NH2	2.41	0.51
8:V:19:ARG:NH2	8:V:167:LEU:O	2.44	0.51
6:F:69:VAL:CG2	6:F:73:VAL:HG13	2.41	0.51
3:Q:108:THR:HG22	3:Q:133:ILE:HD13	1.93	0.51
1:O:204:GLU:OE1	1:O:204:GLU:N	2.42	0.51
9:W:134:ASP:OD1	9:W:135:PHE:N	2.43	0.51
8:V:43:CYS:SG	8:V:98:LEU:HD12	2.51	0.50
12:L:143:ALA:HB1	9:W:144:GLN:OE1	2.11	0.50
12:L:148:LEU:HD23	12:L:178:VAL:HG22	1.92	0.50
14:N:3:ILE:HD12	14:N:99:ILE:HD12	1.94	0.50
9:I:26:ARG:NH2	9:I:179:VAL:O	2.43	0.50
6:F:6:GLY:HA2	6:F:9:LEU:HD13	1.94	0.50
12:L:49:LYS:O	12:L:198:VAL:HG11	2.10	0.50
6:F:152:ASP:OD1	6:F:156:VAL:HG12	2.11	0.50
11:Y:164:THR:HG22	11:Y:171:GLY:N	2.27	0.50
5:E:152:ASN:OD1	5:E:153:TYR:N	2.45	0.50
14:N:59:VAL:HG11	14:N:83:PHE:CZ	2.47	0.50
6:F:34:SER:CB	6:F:52:LEU:HD23	2.42	0.49
12:Z:12:ILE:HD12	12:Z:109:ILE:HD12	1.94	0.49
6:T:215:TRP:CE3	6:T:227:VAL:HG22	2.47	0.49

Atom-1	Atom-2	Interatomic	Clash	
		distance (A)	overlap (A)	
11:Y:34:VAL:HG11	11:Y:177:TYR:CE1	2.47	0.49	
12:Z:27:THR:OG1	12:Z:192:ALA:HB3	2.12	0.49	
6:F:186:CYS:O	6:F:190:VAL:HG23	2.12	0.49	
9:W:203:MET:SD	9:W:203:MET:N	2.85	0.49	
11:K:41:LEU:O	11:K:42:LEU:HD22	2.13	0.49	
13:M:144:TYR:CB	8:V:132:LEU:HD12	2.43	0.49	
14:N:55:VAL:O	14:N:59:VAL:HG12	2.13	0.49	
1:O:67:ILE:HD11	1:O:73:LEU:CD1	2.43	0.48	
7:U:238:HIS:O	7:U:242:LEU:HD23	2.14	0.48	
13:M:9:THR:OG1	13:M:25:ASP:OD2	2.28	0.48	
7:U:103:TYR:O	8:V:81:ARG:NH2	2.47	0.48	
2:P:82:ASP:O	2:P:86:LEU:HD23	2.14	0.48	
12:Z:198:VAL:HG22	12:Z:203:ILE:HD12	1.96	0.48	
9:I:124:ASP:OD1	9:I:128:CYS:N	2.44	0.48	
1:O:211:ILE:HD11	1:O:218:ARG:NH2	2.29	0.48	
6:F:36:ALA:HB1	6:F:49:VAL:HG12	1.96	0.47	
6:F:120:HIS:NE2	7:G:86:ASP:OD1	2.48	0.47	
12:L:27:THR:OG1	12:L:192:ALA:HB3	2.13	0.47	
9:I:6:ASN:O	9:I:26:ARG:NH2	2.46	0.47	
1:O:221:THR:HG23	1:O:224:GLU:H	1.78	0.47	
2:P:54:LYS:O	2:P:55:LEU:HD22	2.14	0.47	
7:G:144:ASP:O	7:G:148:GLY:N	2.44	0.47	
6:F:213:LEU:HB3	6:F:227:VAL:HG21	1.96	0.47	
1:A:21:ILE:HD11	1:A:121:THR:OG1	2.14	0.46	
8:V:219:LEU:HD13	9:W:47:ARG:HE	1.79	0.46	
11:K:153:TYR:CE2	11:K:187:VAL:HG21	2.50	0.46	
1:O:64:VAL:HG22	1:O:74:VAL:HG22	1.98	0.46	
3:Q:91:CYS:HA	3:Q:102:VAL:HG21	1.97	0.46	
5:S:211:SER:HB3	5:S:223:ILE:HD11	1.98	0.46	
8:V:59:ILE:O	8:V:63:LEU:HD23	2.15	0.46	
6:F:36:ALA:CB	6:F:49:VAL:HG12	2.46	0.46	
6:F:215:TRP:CE3	6:F:227:VAL:HG22	2.50	0.46	
6:T:53:VAL:HG12	6:T:208:ALA:O	2.16	0.46	
14:N:156:THR:O	14:N:160:LEU:HD23	2.16	0.46	
5:E:178:GLU:OE1	5:E:178:GLU:N	2.49	0.46	
5:E:80:ASP:O	5:E:84:LEU:HD23	2.16	0.46	
6:F:124:LEU:HD23	6:F:124:LEU:H	1.81	0.46	
4:R:79:SER:HB3	4:R:170:ILE:HD12	1.97	0.46	
1:O:110:VAL:HG22	1:O:135:ILE:CD1	2.46	0.45	
12:Z:68:ILE:O	12:Z:72:LEU:HD23	2.16	0.45	
11:K:166:ARG:NE	10:X:144:ASP:OD2	2.49	0.45	

Atom-1	Atom-2	Interatomic	Clash	
	1100111 2	distance (Å)	overlap (Å)	
1:0:118:GLN:O	1:0:121:THR:OG1	2.29	0.45	
12:L:211:ARG:NH1	12:L:213:ASP:OD2	2.50	0.45	
1:O:211:ILE:HD11	1:0:218:ARG:CZ	2.46	0.45	
5:S:63:ILE:C	5:S:64:LEU:HD22	2.37	0.45	
8:H:51:ASP:O	8:H:55:THR:HG22	2.16	0.45	
10:X:108:ASP:O	10:X:112:GLY:N	2.48	0.45	
1:A:110:VAL:HG22	1:A:135:ILE:CD1	2.44	0.45	
4:R:70:ILE:HD11	4:R:76:CYS:SG	2.57	0.45	
3:Q:225:ILE:O	3:Q:229:VAL:HG13	2.17	0.45	
1:A:114:ALA:HB1	1:A:152:GLY:O	2.17	0.45	
2:B:76:VAL:HG22	2:B:134:LEU:HD22	1.98	0.45	
8:H:19:ARG:HE	8:H:170:GLY:HA3	1.82	0.45	
2:P:109:GLN:NE2	10:X:73:TYR:OH	2.50	0.45	
5:S:168:ALA:O	5:S:172:LEU:HD23	2.17	0.45	
9:W:124:ASP:OD1	9:W:128:CYS:N	2.42	0.45	
6:F:70:ASP:HB3	6:F:73:VAL:HG12	1.99	0.44	
8:V:110:LEU:HD21	8:V:125:VAL:HG22	2.00	0.44	
13:M:150:LEU:O	13:M:154:LEU:HD23	2.17	0.44	
14:N:127:ILE:HD11	14:N:136:TYR:CD1	2.53	0.44	
1:0:53:SER:O	1:O:55:LEU:N	2.51	0.44	
1:O:110:VAL:HG21	1:O:146:PHE:CD2	2.52	0.44	
12:Z:205:GLU:N	12:Z:205:GLU:OE1	2.50	0.44	
6:F:159:GLY:N	7:G:65:THR:HG21	2.33	0.44	
2:P:206:LEU:HD23	2:P:207:SER:N	2.33	0.44	
6:T:113:ASP:OD2	7:U:88:ARG:NH2	2.46	0.44	
12:Z:14:ALA:CB	12:Z:109:ILE:HG21	2.48	0.44	
6:F:39:ILE:HD12	6:F:193:VAL:HG22	2.00	0.44	
13:M:51:LEU:HD12	13:M:52:GLY:N	2.32	0.44	
5:E:35:THR:OG1	5:E:62:LYS:NZ	2.35	0.43	
4:R:45:GLY:CA	4:R:191:LEU:HD21	2.47	0.43	
11:K:133:VAL:HG21	10:X:137:PHE:HB3	2.00	0.43	
7:U:44:GLY:N	7:U:47:CYS:O	2.46	0.43	
11:K:38:ASN:HB2	11:K:39:PRO:HD2	2.00	0.43	
12:L:16:ALA:HB2	12:L:121:VAL:HG23	2.00	0.43	
8:V:55:THR:HG23	8:V:86:MET:CE	2.49	0.43	
10:X:78:THR:HG22	10:X:116:TYR:OH	2.18	0.43	
14:N:174:ILE:HG22	14:N:176:LEU:CD2	2.48	0.43	
7:U:41:ALA:HB2	7:U:50:ILE:HD13	2.01	0.43	
2:B:140:ASP:O	2:B:144:GLY:N	2.46	0.43	
12:L:28:ARG:NH2	12:L:212:LYS:O	2.52	0.43	
11:K:153:TYR:CZ	11:K:187:VAL:HG21	2.54	0.43	

	hi o	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
10:X:117:TYR:O	10:X:124:LEU:HD12	2.19	0.43	
1:A:187:ILE:HD13	1:A:228:TYR:CZ	2.54	0.43	
2:P:172:VAL:HA	2:P:175:LEU:HD12	2.00	0.42	
4:R:210:LEU:HD23	4:R:211:ASN:N	2.33	0.42	
8:H:97:ALA:HB1	8:H:127:MET:CE	2.49	0.42	
9:I:164:GLU:O	9:I:167:SER:OG	2.30	0.42	
11:Y:50:ALA:HB2	12:Z:127:VAL:HG13	2.01	0.42	
12:L:28:ARG:NE	12:L:191:ASP:OD2	2.47	0.42	
3:Q:134:VAL:HG12	3:Q:144:LEU:HA	2.02	0.42	
6:F:215:TRP:HZ3	6:F:227:VAL:HG13	1.83	0.42	
7:G:72:ILE:HD11	7:G:78:CYS:SG	2.59	0.42	
5:E:5:GLN:HG3	6:F:9:LEU:HD11	2.01	0.42	
4:R:79:SER:CB	4:R:170:ILE:HD12	2.50	0.42	
1:0:73:LEU:HD12	1:O:86:VAL:HG22	2.01	0.42	
11:K:161:TYR:O	11:K:164:THR:OG1	2.31	0.42	
4:R:37:ALA:HB3	4:R:170:ILE:HD11	2.01	0.42	
6:T:33:SER:OG	6:T:34:SER:N	2.52	0.42	
2:P:84:ASN:O	2:P:87:THR:OG1	2.34	0.42	
2:P:86:LEU:CD1	2:P:114:LEU:HD11	2.45	0.42	
10:J:148:THR:H	10:J:151:ILE:HD11	1.84	0.41	
8:V:219:LEU:HD13	9:W:47:ARG:NE	2.35	0.41	
1:O:67:ILE:HD11	1:O:73:LEU:HD12	2.02	0.41	
6:T:49:VAL:HG11	6:T:65:ARG:HB2	2.02	0.41	
10:X:44:LEU:CD1	10:X:102:LEU:HD12	2.50	0.41	
5:E:35:THR:HG23	5:E:48:ALA:HB2	2.01	0.41	
11:K:19:ARG:HE	11:K:29:GLN:HE22	1.68	0.41	
6:T:215:TRP:HE3	6:T:227:VAL:HG22	1.85	0.41	
8:V:1:THR:HG23	8:V:33:LYS:NZ	2.35	0.41	
10:J:121:LEU:O	10:J:122:ALA:HB3	2.21	0.41	
1:A:39:ALA:HB3	1:A:42:GLY:O	2.21	0.41	
5:E:109:VAL:HG12	5:E:134:ILE:HD13	2.03	0.41	
8:V:96:ALA:HB1	8:V:98:LEU:HD21	2.02	0.41	
11:Y:18:SER:O	11:Y:31:VAL:HG12	2.21	0.41	
11:Y:41:LEU:HD13	11:Y:103:GLY:HA3	2.03	0.41	
10:X:88:LEU:HG	10:X:122:ALA:HB2	2.01	0.41	
11:Y:138:VAL:HG11	11:Y:159:ALA:HA	2.02	0.41	
3:C:22:ALA:HB1	3:C:128:GLY:HA2	2.02	0.41	
11:K:38:ASN:OD1	11:K:41:LEU:N	2.54	0.41	
8:V:42:TYR:CE1	8:V:183:LEU:HD11	2.56	0.41	
5:E:38:LEU:HD23	5:E:45:VAL:HG23	2.03	0.41	
8:H:187:ARG:HB3	8:H:188:PRO:HD3	2.02	0.41	

Commuea from previo	bus puye		
Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
9:I:47:ARG:NH2	9:I:191:LYS:O	2.53	0.41
2:P:69:ASN:OD1	2:P:71:ASP:N	2.47	0.41
8:V:1:THR:HG23	8:V:33:LYS:HZ2	1.86	0.41
9:I:77:GLU:O	9:I:79:ARG:N	2.53	0.41
12:L:114:ASP:OD1	12:L:118:LYS:N	2.54	0.41
13:M:54:SER:O	13:M:109:THR:N	2.49	0.41
11:Y:78:ALA:O	11:Y:82:LEU:HD13	2.21	0.41
5:S:212:ILE:O	5:S:223:ILE:HD12	2.20	0.40
5:E:164:ARG:O	5:E:198:THR:HG22	2.22	0.40
7:U:33:ASN:OD1	7:U:170:VAL:HG12	2.22	0.40
11:Y:11:GLY:HA3	11:Y:178:HIS:HE2	1.85	0.40
3:C:43:LEU:HD11	3:C:72:ALA:HB2	2.03	0.40
4:D:120:ALA:HB1	4:D:125:PHE:CD2	2.57	0.40
9:W:184:VAL:HG13	9:W:199:LEU:HD12	2.03	0.40
1:A:67:ILE:CD1	1:A:86:VAL:HG23	2.51	0.40
7:G:11:ARG:O	7:G:24:GLN:NE2	2.49	0.40
9:I:73:TYR:OH	9:I:79:ARG:NH2	2.55	0.40
12:Z:209:SER:C	12:Z:210:LEU:HD12	2.42	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	\mathbf{ntiles}
1	А	215/234~(92%)	214 (100%)	1 (0%)	0	100	100
1	Ο	228/234~(97%)	225~(99%)	2(1%)	1 (0%)	34	69
2	В	224/261~(86%)	222 (99%)	2(1%)	0	100	100
2	Р	247/261~(95%)	241 (98%)	6(2%)	0	100	100
3	С	221/248~(89%)	211 (96%)	10 (4%)	0	100	100
3	Q	235/248~(95%)	233 (99%)	2(1%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
4	D	224/241~(93%)	222 (99%)	2 (1%)	0	100	100
4	R	233/241~(97%)	232 (100%)	1 (0%)	0	100	100
5	Е	238/263~(90%)	233 (98%)	5 (2%)	0	100	100
5	S	235/263~(89%)	234 (100%)	1 (0%)	0	100	100
6	F	242/255~(95%)	237 (98%)	4 (2%)	1 (0%)	34	69
6	Т	238/255~(93%)	238 (100%)	0	0	100	100
7	G	236/246~(96%)	232 (98%)	4 (2%)	0	100	100
7	U	242/246~(98%)	242 (100%)	0	0	100	100
8	Н	218/277 (79%)	214 (98%)	4 (2%)	0	100	100
8	V	219/277~(79%)	215 (98%)	4 (2%)	0	100	100
9	Ι	202/205~(98%)	193 (96%)	9 (4%)	0	100	100
9	W	202/205~(98%)	194 (96%)	8 (4%)	0	100	100
10	J	194/201~(96%)	191 (98%)	3 (2%)	0	100	100
10	Х	195/201~(97%)	191 (98%)	4 (2%)	0	100	100
11	K	199/263~(76%)	198 (100%)	1 (0%)	0	100	100
11	Y	198/263~(75%)	196 (99%)	2(1%)	0	100	100
12	L	211/241 (88%)	209 (99%)	2 (1%)	0	100	100
12	Z	211/241 (88%)	209 (99%)	2(1%)	0	100	100
13	М	214/264~(81%)	211 (99%)	3 (1%)	0	100	100
13	a	214/264~(81%)	212 (99%)	2(1%)	0	100	100
14	N	200/239~(84%)	199 (100%)	1 (0%)	0	100	100
14	b	201/239~(84%)	201 (100%)	0	0	100	100
15	с	$17\overline{93/1843}\ (97\%)$	1743 (97%)	48 (3%)	2 (0%)	51	83
All	All	$79\overline{29/8719} \ (91\%)$	7792 (98%)	133 (2%)	4 (0%)	54	83

All (4) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	0	54	ILE
15	с	1019	VAL
15	с	1752	PRO
6	F	227	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	134/191~(70%)	134 (100%)	0	100	100
1	Ο	148/191~(78%)	148 (100%)	0	100	100
2	В	133/221~(60%)	133 (100%)	0	100	100
2	Р	$156/221 \ (71\%)$	156 (100%)	0	100	100
3	С	134/211~(64%)	132 (98%)	2 (2%)	65	85
3	Q	146/211~(69%)	146 (100%)	0	100	100
4	D	145/203~(71%)	145 (100%)	0	100	100
4	R	147/203~(72%)	147 (100%)	0	100	100
5	Е	175/224 (78%)	175 (100%)	0	100	100
5	S	158/224 (70%)	158 (100%)	0	100	100
6	F	163/212~(77%)	162 (99%)	1 (1%)	86	94
6	Т	160/212~(76%)	159 (99%)	1 (1%)	86	94
7	G	165/210~(79%)	165 (100%)	0	100	100
7	U	169/210~(80%)	169 (100%)	0	100	100
8	Н	158/228~(69%)	158 (100%)	0	100	100
8	V	163/228~(72%)	162 (99%)	1 (1%)	86	94
9	Ι	158/174 (91%)	158 (100%)	0	100	100
9	W	151/174 (87%)	150 (99%)	1 (1%)	84	94
10	J	148/171 (86%)	148 (100%)	0	100	100
10	Х	145/171 (85%)	145 (100%)	0	100	100
11	K	137/202~(68%)	137 (100%)	0	100	100
11	Y	133/202~(66%)	133 (100%)	0	100	100
12	L	153/199~(77%)	152 (99%)	1 (1%)	84	94
12	Z	153/199~(77%)	153 (100%)	0	100	100
13	М	160/215~(74%)	160 (100%)	0	100	100
13	a	156/215~(73%)	156 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
14	Ν	126/181~(70%)	126 (100%)	0	100	100
14	b	139/181~(77%)	139 (100%)	0	100	100
15	с	1291/1673~(77%)	1288 (100%)	3~(0%)	93	98
All	All	5504/7357~(75%)	5494 (100%)	10~(0%)	93	98

Continued from previous page...

All (10) residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
3	С	124	ARG
3	С	227	LYS
6	F	179	LEU
12	L	100	ARG
6	Т	215	TRP
8	V	194	LYS
9	W	47	ARG
15	с	554	CYS
15	с	1536	ARG
15	с	1732	CYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (27) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	51	GLN
3	С	94	HIS
3	С	215	GLN
6	F	63	ASN
10	J	63	ASN
10	J	186	ASN
11	Κ	29	GLN
11	Κ	191	ASN
12	L	152	GLN
13	М	108	ASN
14	N	7	GLN
2	Р	109	GLN
2	Р	167	ASN
5	S	8	ASN
6	Т	63	ASN
6	Т	97	ASN
9	W	39	GLN
9	W	172	ASN

Mol	Chain	Res	Type
10	Х	61	GLN
12	Ζ	152	GLN
12	Ζ	157	ASN
15	с	607	GLN
15	с	877	ASN
15	с	984	ASN
15	с	1145	ASN
15	с	1496	GLN
15	с	1714	GLN

Continued from previous page...

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

1 ligand is modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	Link	Bo	ond leng	\mathbf{ths}	Bond angles		
WIOI	Type	Ullalli	nes		Counts RMSZ $\# Z$		# Z >2	Counts	RMSZ	# Z > 2
16	IHP	с	1901	-	36,36,36	0.83	0	$54,\!60,\!60$	1.30	5 (9%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the

Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
16	IHP	с	1901	-	-	4/30/54/54	0/1/1/1

There are no bond length outliers.

All (5) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
16	с	1901	IHP	C6-C5-C4	3.37	117.79	110.41
16	с	1901	IHP	C5-C6-C1	3.18	117.37	110.41
16	с	1901	IHP	O15-C5-C4	2.50	114.57	108.69
16	с	1901	IHP	C6-C1-C2	2.29	115.42	110.41
16	с	1901	IHP	O16-C6-C5	2.05	113.52	108.69

There are no chirality outliers.

All (4) torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
16	с	1901	IHP	C4-C5-O15-P5
16	с	1901	IHP	C6-C5-O15-P5
16	с	1901	IHP	C5-O15-P5-O25
16	с	1901	IHP	C1-O11-P1-O31

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
3	С	1
3	Q	1
4	D	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	С	116:GLN	С	117:ARG	N	3.61
1	Q	199:VAL	С	200:GLN	N	3.56
1	D	121:LEU	С	122:GLN	N	3.06

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-24278. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 160

Z Index: 160

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 180

Y Index: 179

Z Index: 166

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 4.0. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 390 $\rm nm^3;$ this corresponds to an approximate mass of 352 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.312 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.312 \AA^{-1}

8.2 Resolution estimates (i)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Estimation criterion (FSC cut-off)			
Resolution estimate (A)	0.143	0.5	Half-bit	
Reported by author	3.20	-	-	
Author-provided FSC curve	3.16	3.61	3.19	
Unmasked-calculated*	-	-	-	

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-24278 and PDB model 7NAQ. Per-residue inclusion information can be found in section 3 on page 8.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 4.0 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (4.0).

9.4 Atom inclusion (i)

At the recommended contour level, 92% of all backbone atoms, 79% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (4.0) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.7852	0.4830
А	0.8443	0.4950
В	0.7835	0.4770
С	0.7776	0.4650
D	0.7986	0.4840
Е	0.8202	0.4890
F	0.8363	0.4920
G	0.8230	0.4900
Н	0.8315	0.4990
Ι	0.8130	0.5090
J	0.8369	0.5110
K	0.8583	0.5050
L	0.8172	0.5040
М	0.8565	0.5120
N	0.8850	0.5200
0	0.8156	0.4900
Р	0.7938	0.4780
Q	0.7965	0.4720
R	0.7708	0.4770
S	0.8181	0.4820
Т	0.8106	0.4770
U	0.7909	0.4810
V	0.8171	0.4920
W	0.8239	0.5100
Х	0.8391	0.5090
Y	0.8494	0.5030
Z	0.8271	0.5050
a	0.8502	0.5120
b	0.8524	0.5150
с	0.6626	0.4460

0.0

1.0

