

wwPDB X-ray Structure Validation Summary Report (i)

Oct 17, 2021 – 03:54 AM EDT

PDB ID : 1MVK

Title: X-ray structure of the tetrameric mutant of the B1 domain of streptococcal

protein G

Authors: Frank, M.K.; Dyda, F.; Dobrodumov, A.; Gronenborn, A.M.

Deposited on : 2002-09-25

Resolution : 2.50 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at

https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (i)) were used in the production of this report:

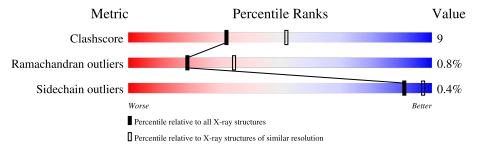
MolProbity : 4.02b-467

Mogul : 1.8.5 (274361), CSD as541be (2020)

Xtriage (Phenix) : NOT EXECUTED EDS : NOT EXECUTED

Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.23.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 2.50 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	Similar resolution	
Metric	$(\# \mathrm{Entries})$	$(\# ext{Entries}, ext{ resolution range}(ext{Å}))$	
Clashscore	141614	5346 (2.50-2.50)	
Ramachandran outliers	138981	5231 (2.50-2.50)	
Sidechain outliers	138945	5233 (2.50-2.50)	

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Note EDS was not executed.

Mol	Chain	Length	Quality of chain					
1	A	56	71%	11%	18%			
1	В	56	66%	16%	18%			
1	С	56	61%	21%	18%			
1	D	56	59% 2	1%	20%			
1	Е	56	66%	14%	20%			
1	F	56	75%	7%	18%			
1	G	56	80%		16%			
1	Н	56	73%	12%	• 11%			

Continued from previous page...

Mol	Chain	Length	Quality of chain				
1	I	56	66%	20%	14%		
1	J	56	61%	21%	18%		
1	K	56	66%	12% •	18%		
1	L	56	62%	20%	18%		

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 4718 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Immunoglobulin G binding protein G.

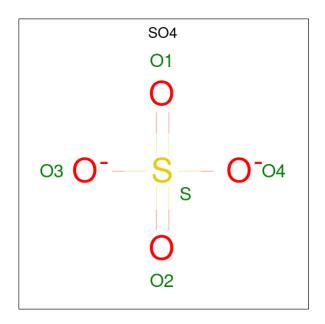
Mol	Chain	Residues		Ato	ms			ZeroOcc	AltConf	Trace
1	A	46	Total	С	N	О	S	0	0	0
1	A	40	372	238	56	77	1	0	U	0
1	В	46	Total	С	N	О	S	0	0	0
1	Б	40	372	238	56	77	1	0	U	0
1	С	46	Total	С	N	О	S	0	0	0
1		40	372	238	56	77	1	0	U	U
1	D	45	Total	С	N	О	S	0	0	0
1	D	40	363	233	55	74	1	0	U	U
1	Е	45	Total	С	N	О	S	0	0	0
1	12	40	362	232	55	74	1		U	U
1	F	46	Total	С	N	О	S	0	0	0
1	I.	40	372	238	56	77	1		U	U
1	G	47	Total	С	N	О	S	0	0	0
1	G	41	376	240	57	78	1		U	0
1	Н	50	Total C N O S	0	0	0				
1	11	30	399	254	61	83	1		0	
1	I	48	Total	С	N	Ο	S	0	0	0
1	1	40	383	244	58	80	1	0	U	U
1	J	46	Total	С	N	О	S	0	0	0
1	9	40	372	238	56	77	1	U	0	
1	K	46	Total	С	N	О	S	0	0	0
	17	40	372	238	56	77	1		U	
1	L	46	Total	С	N	О	S	0	0	0
1	П	40	370	237	56	76	1		U	U

There are 84 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	1	MET	-	initiating methionine	UNP P06654
A	2	GLN	THR	engineered mutation	UNP P06654
A	5	VAL	LEU	engineered mutation	UNP P06654
A	26	PHE	ALA	engineered mutation	UNP P06654
A	30	VAL	PHE	engineered mutation	UNP P06654

 $Continued\ from\ previous\ page...$

Chain	Residue	Modelled	Actual	Comment	Reference
A	33	PHE	TYR	engineered mutation	UNP P06654
A	34	PHE	ALA	engineered mutation	UNP P06654
В	1	MET	-	initiating methionine	UNP P06654
В	2	GLN	THR	engineered mutation	UNP P06654
В	5	VAL	LEU	engineered mutation	UNP P06654
В	26	PHE	ALA	engineered mutation	UNP P06654
В	30	VAL	PHE	engineered mutation	UNP P06654
В	33	PHE	TYR	engineered mutation	UNP P06654
В	34	PHE	ALA	engineered mutation	UNP P06654
С	1	MET	-	initiating methionine	UNP P06654
С	2	GLN	THR	engineered mutation	UNP P06654
С	5	VAL	LEU	engineered mutation	UNP P06654
С	26	PHE	ALA	engineered mutation	UNP P06654
С	30	VAL	PHE	engineered mutation	UNP P06654
С	33	PHE	TYR	engineered mutation	UNP P06654
С	34	PHE	ALA	engineered mutation	UNP P06654
D	1	MET	-	initiating methionine	UNP P06654
D	2	GLN	THR	engineered mutation	UNP P06654
D	5	VAL	LEU	engineered mutation	UNP P06654
D	26	PHE	ALA	engineered mutation	UNP P06654
D	30	VAL	PHE	engineered mutation	UNP P06654
D	33	PHE	TYR	engineered mutation	UNP P06654
D	34	PHE	ALA	engineered mutation	UNP P06654
Е	1	MET	-	initiating methionine	UNP P06654
Е	2	GLN	THR	engineered mutation	UNP P06654
Е	5	VAL	LEU	engineered mutation	UNP P06654
Е	26	PHE	ALA	engineered mutation	UNP P06654
Е	30	VAL	PHE	engineered mutation	UNP P06654
Е	33	PHE	TYR	engineered mutation	UNP P06654
Е	34	PHE	ALA	engineered mutation	UNP P06654
F	1	MET	-	initiating methionine	UNP P06654
F	2	GLN	THR	engineered mutation	UNP P06654
F	5	VAL	LEU	engineered mutation	UNP P06654
F	26	PHE	ALA	engineered mutation	UNP P06654
F	30	VAL	PHE	engineered mutation	UNP P06654
F	33	PHE	TYR	engineered mutation	UNP P06654
F	34	PHE	ALA	engineered mutation	UNP P06654
G	1	MET	-	initiating methionine	UNP P06654
G	2	GLN	THR	engineered mutation	UNP P06654
G	5	VAL	LEU	engineered mutation	UNP P06654
G	26	PHE	ALA	engineered mutation	UNP P06654
G	30	VAL	PHE	engineered mutation	UNP P06654



 $Continued\ from\ previous\ page...$

Chain	Residue	Modelled Modelled	Actual	Comment	Reference
G	33	PHE	TYR	engineered mutation	UNP P06654
G	34	PHE	ALA	engineered mutation	UNP P06654
Н	1	MET	-	initiating methionine	UNP P06654
Н	2	GLN	THR	engineered mutation	UNP P06654
Н	5	VAL	LEU	engineered mutation	UNP P06654
Н	26	PHE	ALA	engineered mutation	UNP P06654
Н	30	VAL	PHE	engineered mutation	UNP P06654
Н	33	PHE	TYR	engineered mutation	UNP P06654
Н	34	PHE	ALA	engineered mutation	UNP P06654
I	1	MET	-	initiating methionine	UNP P06654
I	2	GLN	THR	engineered mutation	UNP P06654
I	5	VAL	LEU	engineered mutation	UNP P06654
I	26	PHE	ALA	engineered mutation	UNP P06654
I	30	VAL	PHE	engineered mutation	UNP P06654
I	33	PHE	TYR	engineered mutation	UNP P06654
I	34	PHE	ALA	engineered mutation	UNP P06654
J	1	MET	_	initiating methionine	UNP P06654
J	2	GLN	THR	engineered mutation	UNP P06654
J	5	VAL	LEU	engineered mutation	UNP P06654
J	26	PHE	ALA	engineered mutation	UNP P06654
J	30	VAL	PHE	engineered mutation	UNP P06654
J	33	PHE	TYR	engineered mutation	UNP P06654
J	34	PHE	ALA	engineered mutation	UNP P06654
K	1	MET	-	initiating methionine	UNP P06654
K	2	GLN	THR	engineered mutation	UNP P06654
K	5	VAL	LEU	engineered mutation	UNP P06654
K	26	PHE	ALA	engineered mutation	UNP P06654
K	30	VAL	PHE	engineered mutation	UNP P06654
K	33	PHE	TYR	engineered mutation	UNP P06654
K	34	PHE	ALA	engineered mutation	UNP P06654
L	1	MET	-	initiating methionine	UNP P06654
L	2	GLN	THR	engineered mutation	UNP P06654
L	5	VAL	LEU	engineered mutation	UNP P06654
L	26	PHE	ALA	engineered mutation	UNP P06654
L	30	VAL	PHE	engineered mutation	UNP P06654
L	33	PHE	TYR	engineered mutation	UNP P06654
L	34	PHE	ALA	engineered mutation	UNP P06654

 \bullet Molecule 2 is SULFATE ION (three-letter code: SO4) (formula: $\mathrm{O_4S}).$

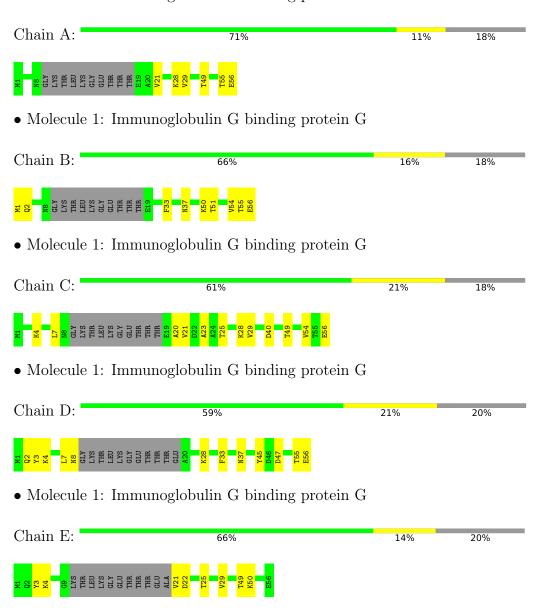
Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	D	1	Total O S 5 4 1	0	0
2	Н	1	Total O S 5 4 1	0	0
2	К	1	Total O S 5 4 1	0	0

• Molecule 3 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	A	22	Total O 22 22	0	0
3	В	25	Total O 25 25	0	0
3	С	14	Total O 14 14	0	0
3	D	22	Total O 22 22	0	0
3	Е	10	Total O 10 10	0	0
3	F	23	Total O 23 23	0	0
3	G	17	Total O 17 17	0	0
3	Н	20	Total O 20 20	0	0
3	I	16	Total O 16 16	0	0

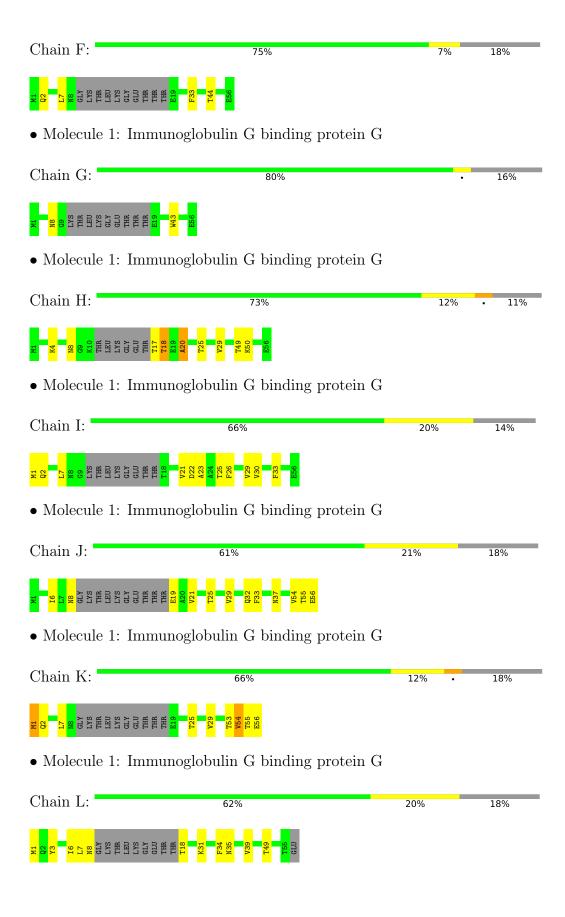
Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	J	13	Total O 13 13	0	0
3	K	19	Total O 19 19	0	0
3	L	17	Total O 17 17	0	0



3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.


Note EDS was not executed.

• Molecule 1: Immunoglobulin G binding protein G

• Molecule 1: Immunoglobulin G binding protein G

4 Data and refinement statistics (i)

Xtriage (Phenix) and EDS were not executed - this section is therefore incomplete.

Property	Value	Source	
Space group	P 21 21 2	Depositor	
Cell constants	76.10Å 210.40Å 55.30Å	Depositor	
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor	
Resolution (Å)	30.00 - 2.50	Depositor	
% Data completeness	(Not available) (30.00-2.50)	Depositor	
(in resolution range)	(1000 available) (90.00 2.90)	Depositor	
R_{merge}	(Not available)	Depositor	
R_{sym}	0.08	Depositor	
Refinement program	X-PLOR 3.1	Depositor	
R, R_{free}	0.237 , 0.283	Depositor	
Estimated twinning fraction	No twinning to report.	Xtriage	
Total number of atoms	4718	wwPDB-VP	
Average B, all atoms (Å ²)	58.0	wwPDB-VP	

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: SO4

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond angles		
MIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	A	0.44	0/378	0.58	0/511	
1	В	0.49	0/378	0.60	0/511	
1	С	0.53	0/378	0.57	0/511	
1	D	0.43	0/369	0.65	0/499	
1	Е	0.40	0/368	0.56	0/497	
1	F	0.39	0/378	0.52	0/511	
1	G	0.42	0/382	0.55	0/516	
1	Н	0.64	0/405	0.76	1/547~(0.2%)	
1	I	0.45	0/389	0.61	0/526	
1	J	0.43	0/378	0.54	0/511	
1	K	0.45	0/378	0.57	0/511	
1	L	0.43	0/376	0.57	0/509	
All	All	0.46	0/4557	0.59	1/6160 (0.0%)	

There are no bond length outliers.

All (1) bond angle outliers are listed below:

\mathbf{Mol}	Chain	Res	Type	Atoms	\mathbf{Z}	$\operatorname{Observed}(^{o})$	$\operatorname{Ideal}({}^o)$
1	Н	20	ALA	N-CA-C	5.42	125.64	111.00

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	372	0	348	6	0
1	В	372	0	348	10	0
1	С	372	0	348	13	0
1	D	363	0	342	13	0
1	Е	362	0	340	8	0
1	F	372	0	348	4	0
1	G	376	0	351	1	0
1	Н	399	0	378	8	0
1	I	383	0	358	16	0
1	J	372	0	348	15	0
1	K	372	0	348	6	0
1	L	370	0	349	9	0
2	D	5	0	0	0	0
2	Н	5	0	0	0	0
2	K	5	0	0	0	0
3	A	22	0	0	2	0
3	В	25	0	0	3	0
3	С	14	0	0	1	0
3	D	22	0	0	1	0
3	Е	10	0	0	0	0
3	F	23	0	0	0	0
3	G	17	0	0	0	0
3	Н	20	0	0	1	0
3	I	16	0	0	2	0
3	J	13	0	0	0	0
3	K	19	0	0	1	0
3	L	17	0	0	1	0
All	All	4718	0	4206	77	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 9.

The worst 5 of 77 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	$\begin{array}{c} {\rm Interatomic} \\ {\rm distance} \ ({\rm \AA}) \end{array}$	$\begin{array}{c} \text{Clash} \\ \text{overlap } (\text{\AA}) \end{array}$
1:B:2:GLN:HB3	1:C:49:THR:HG22	1.75	0.69
1:J:55:THR:HG22	1:J:55:THR:O	1.92	0.69
1:H:20:ALA:HA	3:H:4071:HOH:O	1.93	0.67
1:B:54:VAL:HG12	1:B:56:GLU:H	1.62	0.64
3:I:4189:HOH:O	1:K:54:VAL:HA	1.98	0.63

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	A	42/56 (75%)	42 (100%)	0	0	100	100
1	В	42/56 (75%)	41 (98%)	1 (2%)	0	100	100
1	С	42/56 (75%)	41 (98%)	0	1 (2%)	6	9
1	D	41/56 (73%)	39 (95%)	2 (5%)	0	100	100
1	E	41/56 (73%)	41 (100%)	0	0	100	100
1	F	42/56 (75%)	41 (98%)	1 (2%)	0	100	100
1	G	43/56 (77%)	41 (95%)	1 (2%)	1 (2%)	6	10
1	Н	46/56~(82%)	45 (98%)	1 (2%)	0	100	100
1	I	44/56 (79%)	44 (100%)	0	0	100	100
1	J	42/56~(75%)	39 (93%)	3 (7%)	0	100	100
1	K	42/56 (75%)	40 (95%)	0	2 (5%)	2	2
1	L	42/56 (75%)	42 (100%)	0	0	100	100
All	All	509/672 (76%)	496 (97%)	9 (2%)	4 (1%)	19	35

All (4) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	G	8	ASN
1	K	54	VAL
1	K	55	THR
1	С	20	ALA

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was

analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
1	A	40/48 (83%)	40 (100%)	0	100	100	
1	В	40/48 (83%)	40 (100%)	0	100	100	
1	С	40/48 (83%)	40 (100%)	0	100	100	
1	D	39/48 (81%)	39 (100%)	0	100	100	
1	Е	39/48 (81%)	39 (100%)	0	100	100	
1	F	40/48 (83%)	40 (100%)	0	100	100	
1	G	40/48 (83%)	40 (100%)	0	100	100	
1	Н	43/48 (90%)	42 (98%)	1 (2%)	50	76	
1	I	41/48 (85%)	41 (100%)	0	100	100	
1	J	40/48 (83%)	40 (100%)	0	100	100	
1	K	40/48 (83%)	39 (98%)	1 (2%)	47	73	
1	L	40/48 (83%)	40 (100%)	0	100	100	
All	All	482/576 (84%)	480 (100%)	2 (0%)	91	97	

All (2) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	Н	18	THR
1	K	1	MET

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 11 such sidechains are listed below:

Mol	Chain	Res	Type
1	Н	8	ASN
1	I	35	ASN
1	L	35	ASN
1	J	8	ASN
1	F	2	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

3 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Res	Link	Be	ond leng	gths	В	ond ang	gles
IVIOI	туре	Chain	nes	Lilik	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
2	SO4	D	105	-	4,4,4	0.78	0	6,6,6	0.05	0
2	SO4	Н	107	-	4,4,4	0.72	0	6,6,6	0.08	0
2	SO4	K	106	-	4,4,4	0.77	0	6,6,6	0.06	0

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

EDS was not executed - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS was not executed - this section is therefore empty.

6.3 Carbohydrates (i)

EDS was not executed - this section is therefore empty.

6.4 Ligands (i)

EDS was not executed - this section is therefore empty.

6.5 Other polymers (i)

EDS was not executed - this section is therefore empty.

