

Nov 19, 2022 – 10:16 AM EST

PDB ID	:	7MT3
EMDB ID	:	EMD-23975
Title	:	Mtb 70S with $P/E \ tRNA$
Authors	:	Cui, Z.; Zhang, J.
Deposited on	:	2021-05-12
Resolution	:	2.80 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 43
Mogul	:	1.8.5 (274361), CSD as 541 be (2020)
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.3

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.80 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	0	57	95%	5%
2	1	55	87%	13%
3	2	47	91%	• 6%
4	3	64	97%	·
5	4	37	97%	·
6	6	80	18%	29%
7	7	24	58% 63%	38%
8	8	235	93%	

Mol	Chain	Length	Quality of chain	
9	А	3138	81%	17% ••
10	В	115	88%	12%
11	С	280	96%	
12	D	217	98%	
13	Е	223	92%	• 7%
14	F	187	<mark>6%</mark> 94%	• 5%
15	G	179	97%	•••
16	Н	152	23%	
17	I	195	750/	259/
18	K	199	1370	2378
10	T	146	99%	
19		140	5%	
20	M	138	96%	••
21	N	180	•	36%
22	Ο	122	98%	·
23	Р	113	99%	
24	Q	129	95%	
25	R	104	94%	
26	S	197	57% • 43	3%
27	Т	100	94%	• 5%
28	U	105	83%	• 14%
29	V	215	80%	• 18%
30	W	86	83%	• 16%
31	Х	64	94%	
32	Y	77	88%	12%
33	Z	65	• 88%	• 9%

Mol	Chain	Length	Quality of chain	
34	a	1537	81%	17% •
35	с	274	9%75%	24%
36	d	201	12%	
37	е	220	76%	• 23%
38	f	96	99%	
39	g	156	<u>6%</u> 99%	••
40	h	132	98%	
41	i	151	82%	• 16%
42	j	101	30%	
43	k	139	83%	• 16%
44	1	124	94%	5%•
45	m	124	9%	• 6%
46	n	61	95%	• •
47	0	89	• 97%	••
48	р	162	6 9% •	30%
49	q	135	68% •	30%
50	r	84	73%	24%
51	s	93	89%	11%
52	t	86	98%	••
53	У	77	6% 75%	25%
54	Z	26	12% 8% • 77%	

2 Entry composition (i)

There are 56 unique types of molecules in this entry. The entry contains 147942 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues	Atoms				AltConf	Trace
1	0	54	Total 429	C 266	N 94	O 69	0	0

• Molecule 2 is a protein called 50S ribosomal protein L33 2.

Mol	Chain	Residues	Atoms				AltConf	Trace	
2	1	48	Total 400	C 245	N 84	O 67	S 4	0	0

• Molecule 3 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	0	4.4	Total	С	Ν	0	S	0	0
<u></u> Э		44	374	222	97	54	1	0	0

• Molecule 4 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues	Atoms				AltConf	Trace
4	3	62	Total 494	C 298	N 112	0 84	0	0

• Molecule 5 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues	Atoms				AltConf	Trace	
5	4	37	Total 299	C 182	N 66	O 47	$\frac{S}{4}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
4	1	VAL	MET	conflict	UNP P9WH89

• Molecule 6 is a protein called 50S ribosomal protein L31.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
6	6	57	Total 446	C 277	N 82	O 82	${ m S}{ m 5}$	0	0

• Molecule 7 is a protein called 50S ribosomal protein L37.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
7	7	15	Total 120	C 71	N 32	0 17	0	0

• Molecule 8 is a protein called 50S ribosomal protein L1.

Mol	Chain	Residues		Ate	AltConf	Trace			
8	8	230	Total 1704	C 1068	N 310	O 323	${ m S} { m 3}$	0	0

• Molecule 9 is a RNA chain called 23S rRNA.

Mol	Chain	Residues			Atoms			AltConf	Trace
9	А	3118	Total 66958	C 29847	N 12340	O 21653	Р 3118	0	0

• Molecule 10 is a RNA chain called 5S rRNA.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	AltConf	Trace			
10	В	115	Total 2458	C 1097	N 456	0 790	Р 115	0	0

• Molecule 11 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	С	272	Total 2088	C 1277	N 437	O 369	${ m S}{ m 5}$	0	0

• Molecule 12 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues		At	oms			AltConf	Trace
12	D	213	Total 1590	C 985	N 307	O 292	S 6	0	0

• Molecule 13 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	Е	207	Total 1552	C 958	N 303	O 289	${ m S} { m 2}$	0	0

• Molecule 14 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues		At	oms	Atoms					
14	F	178	Total 1408	C 885	N 267	0 251	${f S}{5}$	0	0		

• Molecule 15 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		At	oms			AltConf	Trace
15	G	174	Total 1330	C 836	N 249	0 244	S 1	0	0

• Molecule 16 is a protein called 50S ribosomal protein L9.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
16	Н	47	Total 350	C 220	N 64	O 65	S 1	0	0

• Molecule 17 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	AltConf	Trace			
17	J	146	Total 1143	С 724	N 217	0 199	${ m S} { m 3}$	0	0

• Molecule 18 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	K	122	Total 941	$\begin{array}{c} \mathrm{C} \\ 590 \end{array}$	N 180	O 169	${ m S} { m 2}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
K	1	VAL	MET	conflict	UNP A0A045HTP7

• Molecule 19 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	L	144	Total 1075	C 666	N 217	0 190	${ m S} { m 2}$	0	0

• Molecule 20 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues	Atoms					AltConf	Trace
20	М	134	Total 1072	C 679	N 215	0 177	S 1	0	0

• Molecule 21 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues	Atoms					AltConf	Trace
21	Ν	116	Total 908	C 574	N 175	0 158	S 1	0	0

• Molecule 22 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		Atoms				Trace
22	О	119	Total 905	$\begin{array}{c} \mathrm{C} \\ 552 \end{array}$	N 191	O 162	0	0

• Molecule 23 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		At	oms			AltConf	Trace
23	Р	112	Total 907	C 573	N 174	0 159	S 1	0	0

• Molecule 24 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		Atoms				Trace
24	Q	124	Total 993	C 616	N 207	O 170	0	0

• Molecule 25 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues	Atoms				AltConf	Trace
25	R	100	Total 757	C 482	N 138	O 137	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
R	1	MET	-	insertion	UNP P9WHC3

• Molecule 26 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues	Atoms				AltConf	Trace
26	S	113	Total 860	C 533	N 178	O 149	0	0

• Molecule 27 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		Ato	\mathbf{ms}		AltConf	Trace
27	Т	95	Total 741	C 469	N 138	0 134	0	0

• Molecule 28 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		At	AltConf	Trace			
28	U	90	Total 699	C 430	N 138	0 129	${S \over 2}$	0	0

• Molecule 29 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
29	V	177	Total 1319	C 822	N 243	O 254	0	0

• Molecule 30 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
30	W	72	Total 537	C 331	N 112	0 94	0	0

• Molecule 31 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
31	Х	62	Total 468	C 284	N 100	O 80	${S \atop 4}$	0	0

• Molecule 32 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		At	oms			AltConf	Trace
32	Y	68	Total 560	C 343	N 109	0 107	S 1	0	0

• Molecule 33 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
33	Ζ	59	Total 476	C 293	N 101	O 82	0	0

• Molecule 34 is a RNA chain called 16S rRNA.

Mol	Chain	Residues		1	AltConf	Trace			
34	a	1519	Total 32620	C 14535	N 5961	O 10605	Р 1519	0	0

• Molecule 35 is a protein called 30S ribosomal protein S3.

Mol	Chain	Residues		Ate	AltConf	Trace			
35	с	207	Total 1654	C 1030	N 322	O 298	$\frac{S}{4}$	0	0

• Molecule 36 is a protein called 30S ribosomal protein S4.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
36	d	200	Total 1650	C 1036	N 316	O 296	${S \over 2}$	0	0

• Molecule 37 is a protein called 30S ribosomal protein S5.

Mol	Chain	Residues		At	oms			AltConf	Trace
37	е	169	Total 1222	C 770	N 231	0 218	${ m S} { m 3}$	0	0

• Molecule 38 is a protein called 30S ribosomal protein S6.

Mol	Chain	Residues		At	oms			AltConf	Trace
38	f	95	Total 757	C 480	N 133	0 141	${ m S} { m 3}$	0	0

• Molecule 39 is a protein called 30S ribosomal protein S7.

Mol	Chain	Residues		At	oms			AltConf	Trace
39	g	155	Total 1230	C 768	N 241	O 219	${ m S} { m 2}$	0	0

• Molecule 40 is a protein called 30S ribosomal protein S8.

Mol	Chain	Residues		At	AltConf	Trace			
40	h	131	Total 1006	C 631	N 188	0 186	S 1	0	0

• Molecule 41 is a protein called 30S ribosomal protein S9.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
41	i	127	Total 992	C 628	N 195	O 169	0	0

• Molecule 42 is a protein called 30S ribosomal protein S10.

Mol	Chain	Residues		At	oms	AltConf	Trace		
42	j	99	Total 789	C 496	N 146	0 144	${ m S} { m 3}$	0	0

• Molecule 43 is a protein called 30S ribosomal protein S11.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
43	k	117	Total 873	C 540	N 175	O 158	0	0

• Molecule 44 is a protein called 30S ribosomal protein S12.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
44	1	122	Total 959	C 594	N 197	O 166	${ m S} { m 2}$	0	0

• Molecule 45 is a protein called 30S ribosomal protein S13.

Mol	Chain	Residues		At	AltConf	Trace			
45	m	116	Total 945	C 578	N 196	0 168	${ m S} { m 3}$	0	0

• Molecule 46 is a protein called 30S ribosomal protein S14 type Z.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
46	n	60	Total 468	C 294	N 96	O 73	${ m S}{ m 5}$	0	0

• Molecule 47 is a protein called 30S ribosomal protein S15.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
47	0	87	Total 718	C 449	N 144	O 125	0	0

• Molecule 48 is a protein called 30S ribosomal protein S16.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
48	р	113	Total 884	C 564	N 166	0 154	0	0

• Molecule 49 is a protein called 30S ribosomal protein S17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
49	q	95	Total 770	C 482	N 152	0 133	${ m S} { m 3}$	0	0

• Molecule 50 is a protein called 30S ribosomal protein S18 1.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
50	r	64	Total 506	C 315	N 98	O 90	${ m S} { m 3}$	0	0

• Molecule 51 is a protein called 30S ribosomal protein S19.

Mol	Chain	Residues		At	oms			AltConf	Trace
51	S	83	Total 672	C 432	N 125	0 114	S 1	0	0

• Molecule 52 is a protein called 30S ribosomal protein S20.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
52	t	85	Total 652	C 394	N 141	0 117	0	0

• Molecule 53 is a RNA chain called tRNA (Met).

Mol	Chain	Residues		\mathbf{A}^{\dagger}	toms			AltConf	Trace
53	У	77	Total 1644	С 732	N 297	O 538	Р 77	0	0

• Molecule 54 is a RNA chain called mRNA.

Mol	Chain	Residues		At	oms			AltConf	Trace
54	Z	6	Total 129	C 58	N 25	O 40	Р 6	0	0

• Molecule 55 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
55	1	1	Total Zn 1 1	0
55	4	1	Total Zn 1 1	0
55	6	1	Total Zn 1 1	0
55	Х	1	Total Zn 1 1	0
55	n	1	Total Zn 1 1	0
55	r	1	Total Zn 1 1	0

• Molecule 56 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
56	А	298	Total Mg 298 298	0
56	В	5	Total Mg 5 5	0
56	С	2	Total Mg 2 2	0
56	D	1	Total Mg 1 1	0
56	L	1	Total Mg 1 1	0
56	a	125	Total Mg 125 125	0
56	r	1	Total Mg 1 1	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
56	t	1	Total Mg 1 1	0
56	Z	1	Total Mg 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 50S ribosomal protein L32

2661 2662 26662 26667 22668 22668 22681 26681 26681 26681 26681 2712 2712 2713 2713 2714 2714 2714 2714 2714	2732 2736 27376 2731 2731 2731 2741 2743 2743 2743 2743 2743 2743 2743 2743	2791 2802 2803 2804 2804 2805 2805 2805 2847
C285 A285 A286 A286 A289 C287 C287 C287 C287 C287 C287 C295 C295 C295 C295 C295 C295 C295 C295	C296 C296 C296 C296 C296 C296 C296 C296	C302 C303 C303 C305 C305 C305 C305 C305 C305
A3085 A3085 A3107 C3109 C3112 C3119 C3112 C3120 C3120 C3120 C3121 C3122 C3120 C3121 C3122 C3121 C3122 C322 C3	A	
• Molecule 10: 5S rRNA		
Chain B:	88%	12%
U U2 A3 C4 C4 C4 C4 A65 A65 A65 A65 C68 C88 C88 C87 C87 C87 C87 C87 C87 C87 C8	012 010 105 115 115	
• Molecule 11: 50S ribosomal	protein L2	
Chain C:	96%	• •
MET A2 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14		
• Molecule 12: 50S ribosomal	protein L3	
Chain D:	98%	·
MET A2 B88 B89 B90 B90 CLY CLY CLY CLY		
• Molecule 13: 50S ribosomal	protein L4	
Chain E:	92%	• 7%
MET ALA ALA ALA ALA GLU GLU CU R 1 HR R 1 HR THR SER VAL	ALA	
• Molecule 14: 50S ribosomal	protein L5	
Chain F:	94%	• 5%
MET THR THR ALA ALA ALA ALA ALA ALA CS A A B B S A B S A B S MS MS MS MS MS MS MS MS MS MS MS MS M	E141 E141 A143 A143 V144 V144 V148 D149 V150 V150 V150 K185 K185 K185	ASN
• Molecule 15: 50S ribosomal	protein L6	
Chain G:	97%	•••
	PROTEIN DATA BANK	

MET R5 R5 R5 R5 R5 R5 R5 R5 R4 R5 R4 R5 R4 R5 R4 R5 R4 R5 R4 R5 R4 R5 R4 R5 R4 R5 R4 R5 R4 R5 R4 R5 R5 R4 R5 R5 R5 R5 R5 R5 R5 R5 R5 R5 R5 R5 R5
\bullet Molecule 16: 50S ribosomal protein L9
Chain H: 30% · 69%
MI I 24 I 25 I 25 I 26 I
ALA ALA ALA CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU
HIS SFAL SFAL SFAL SFAL HIS HIS FILEU VAL CLU CLU CLU CLU CLU CLU CLU CLU CLU CL
\bullet Molecule 17: 50S ribosomal protein L13
Chain J: 75% 25%
MET LEU CLEU CLEU CLEU CLEU CLEU ARR ARR ARR ARR ARR ARR ARR ARR ARR AR
\bullet Molecule 18: 50S ribosomal protein L14
Chain K: 99% .
• Molecule 19: 50S ribosomal protein L15
Chain L: 98%
Chain L: 98% • Molecule 20: 50S ribosomal protein L16 Chain M: 96% • • • • • • • • • • • • • • • • • • •
Chain L: 98% • Molecule 20: 50S ribosomal protein L16 Chain M: 96% • Molecule 21: 50S ribosomal protein L17

MET MET P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2
GLU PRO ALA ALA PRO ASIN ASIN
• Molecule 22: 50S ribosomal protein L18
Chain O: 98% ·
MET GLA 54 F122
• Molecule 23: 50S ribosomal protein L19
Chain P: 99%
Kr 12 kr 12 Ard
• Molecule 24: 50S ribosomal protein L20
Chain Q: 95% · ·
MET A2 A2 A2 A2 A2 A1 A1 A A1 A A1 A A1 A
• Molecule 25: 50S ribosomal protein L21
Chain R: 94% · ·
MET ALA 14 15 15 110 ALA ALA
• Molecule 26: 50S ribosomal protein L22
Chain S: 57% · 43%
MET THR THR THR THR THR THR THR THR THR TH
VAL LYS THR ALA LYS ALA LYS ALA PRO LYS PRO LYS ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
• Molecule 27: 50S ribosomal protein L23
Chain T: 94% · 5%

 \bullet Molecule 28: 50S ribosomal protein L24

Chain U:	83%	• 14%	
M1 A46 A46 A46 A46 A46 A14 A14 A14 A14 A14 A14 A14 A14 A14 A14	S76 K 833 N101 0103 0104 TLE		
• Molecule 29: 50S ribose	omal protein L25		
Chain V:	80%	• 18%	
MET ALA LYS SER SER SEG R10 H50 H51 V52 V52 S53 S53 S53	R87 R99 R100 G1114 G115 G117 G117 C1136 L136 L136	L136 E147 1156 A161 A164 G165 C168	K181 A182 A182 ALA GLU GLU GLU GLU GLU
VAL 912 VAL 91	ALLA GLU SELU GLU GLU		
• Molecule 30: 50S ribose	omal protein L27		
Chain W:	83%	• 16%	
MET HIS LIYS CLYS CLY CLYS CLY ALA ALA ALA SER SER SER SER SER THR THR	Аця		
• Molecule 31: 50S ribose	omal protein L28		
Chain X:	94%	•••	
MET 42 F14 R03 GLY			
• Molecule 32: 50S ribose	omal protein L29		
Chain Y:	88%	12%	
MET ALA VAL CLY CLY A59 A59 A72 CLY CLY CLY CLY SER SER			
• Molecule 33: 50S ribose	omal protein L30		
Chain Z:	88%	• 9%	
MET S2 R30 R30 G60 G60 G60 G1X C1X C1X THR C1X			

• Molecule 43: 30S ribosomal protein S11

Chain k:	83%	• 16%
MET PRO PRO ALA LYS LYS GLY PRO	THLA THR ARG CLYS CLYS CLYS CLV CLYS CLY ARG CLV CLN CLYS ARG CLV CLYS ARG CLY ARG CLY ARG CLY ARG CLYS ARG CLYS ARG CLYS ARG CLYS CLYS ARG CLYS CLYS CLYS CLYS CLYS CLYS CLYS CLYS	
• Molecule	44: 30S ribosomal protein S12	
Chain l:	94%	5% •
MET P2 T3 14 R13	817 K18 K44 R86 K133 R113 R113 R113 R113 R135 R123 C123 C123 C123 C123 C123 C123 C123 C	
• Molecule	45: 30S ribosomal protein S13	
Chain m:	9% 93%	• 6%
MET A2 R3 R1 D42 D42	T39 R57 R57 D69 D77 D78 B79 B711 ALA ALA	
• Molecule	46: 30S ribosomal protein S14 type Z	
Chain n:	95%	
MET A2 A17 L53 W61		
• Molecule	47: 30S ribosomal protein S15	
Chain o:	97%	
MET A2 K44 R88 ARG		
• Molecule	48: 30S ribosomal protein S16	
Chain p:	69% .	30%
MET A2 P46 A97 P98 K299	E104 E104 A112 A112 A113 A113 A113 A113 A114 A114 A114 A124 A124 A124 A124 A124	GLU GLN ASP ASP ALA PPRO ALA GLU GLU GLU CLU CLU CLU ALA ALA ALA
GLU SER		
• Molecule	49: 30S ribosomal protein S17	
Chain q:		30%

MET ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	LYS ALA ALA ALA LYS LYS LYS LYS ALA ALA ALA ALA ALA ALA ALA ASA ASA AS	K65 K68 R91 B100 E101 E101 A133 A134 K133
• Molecule 50: 30S ribos	somal protein S18 1	
Chain r:	73%	• 24%
MET ALA ALA LLYS SER SER SER SER ARG ARG ALA ARG CLU CLU CLU CLU PRO CLU VAL LYS PRO ARA	K19 127 127 127 127 127 127 127 127 127 127	
• Molecule 51: 30S ribos	somal protein S19	
Chain s:	89%	11%
MET P2 D12 K17 K18 K18 V19 V21 V21 V21 V21 C22 N23 E24 K25 E24 N26	T27 K28 Q29 A50 A50 A50 A50 A50 A50 A50 A50 A50 A50	
• Molecule 52: 30S ribos	somal protein S20	
Chain t:	98%	••
MET A2 R29 K46 L86		
• Molecule 53: tRNA (M	Aet)	
Chain y:	75%	25%
C1 C3 C3 C3 C3 C4 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	C41 C41 C41 C41 C49 C51 C55 C65 C65 C65 C65 C65 C65 C65 C65 C65	
• Molecule 54: mRNA		
Chain z: 12% 8% •	77%	
00 00 00 00 00 00 00 00 00 00 00 00 00	A A A A C C C C	

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	134676	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	48	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	0.453	Depositor
Minimum map value	-0.005	Depositor
Average map value	0.002	Depositor
Map value standard deviation	0.015	Depositor
Recommended contour level	0.03	Depositor
Map size (Å)	339.19998, 339.19998, 339.19998	wwPDB
Map dimensions	320, 320, 320	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.06, 1.06, 1.06	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MA6, 5MU, 2MG, 4OC, G7M, 5MC, MG, ZN, OMG, UR3

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bond angles	
1VIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	0	0.41	0/435	0.53	0/581
2	1	0.40	0/407	0.53	0/543
3	2	0.46	0/377	0.59	0/494
4	3	0.38	0/499	0.54	0/664
5	4	0.38	0/303	0.59	0/402
6	6	0.29	0/455	0.62	1/611~(0.2%)
7	7	0.23	0/120	0.45	0/153
8	8	0.29	1/1728~(0.1%)	0.49	0/2339
9	А	0.90	1/74925~(0.0%)	1.01	169/116904~(0.1%)
10	В	0.66	0/2748	0.94	0/4280
11	С	0.49	0/2129	0.61	0/2861
12	D	0.47	0/1613	0.60	0/2174
13	Ε	0.44	0/1575	0.58	0/2129
14	F	0.33	0/1429	0.53	0/1921
15	G	0.29	0/1351	0.55	0/1824
16	Н	0.29	0/353	0.60	0/474
17	J	0.49	0/1170	0.57	0/1584
18	Κ	0.49	0/951	0.63	1/1278~(0.1%)
19	L	0.42	0/1088	0.59	0/1453
20	М	0.32	0/1098	0.51	0/1481
21	Ν	0.46	0/925	0.57	0/1242
22	0	0.36	0/914	0.57	0/1228
23	Р	0.47	0/922	0.58	0/1236
24	Q	0.53	0/1006	0.60	1/1349~(0.1%)
25	R	0.49	0/766	0.57	0/1030
26	S	0.46	0/874	0.55	0/1186
27	Т	0.43	0/751	0.60	0/1012
28	U	0.39	0/705	0.67	0/941
29	V	0.29	0/1336	0.64	$\overline{1/1820}~(0.1\%)$
30	W	0.47	0/542	0.58	0/721
31	Х	0.52	0/476	0.66	1/638~(0.2%)
32	Y	0.37	0/564	0.56	0/756

Mal	Chain	Bo	ond lengths	Bond angles	
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
33	Ζ	0.39	0/480	0.60	0/645
34	a	0.71	0/36331	0.93	40/56686~(0.1%)
35	с	0.30	0/1678	0.52	0/2254
36	d	0.29	0/1683	0.51	0/2269
37	е	0.37	0/1238	0.55	0/1673
38	f	0.33	0/767	0.52	0/1036
39	g	0.28	0/1250	0.51	0/1686
40	h	0.41	0/1021	0.59	0/1379
41	i	0.32	0/1010	0.57	1/1356~(0.1%)
42	j	0.34	0/803	0.61	0/1086
43	k	0.36	0/891	0.53	0/1204
44	1	0.40	0/970	0.64	0/1295
45	m	0.29	0/953	0.56	0/1274
46	n	0.36	0/477	0.58	1/634~(0.2%)
47	0	0.33	0/727	0.54	0/973
48	р	0.36	0/901	0.59	0/1217
49	q	0.35	0/782	0.63	0/1045
50	r	0.38	0/511	0.61	1/685~(0.1%)
51	s	0.29	0/690	0.55	0/928
52	t	0.30	0/654	0.46	0/867
53	У	0.53	1/1836~(0.1%)	0.97	4/2859~(0.1%)
54	Z	0.70	0/144	1.35	1/222~(0.5%)
All	All	0.74	3/160332~(0.0%)	0.90	222/240582~(0.1%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
8	8	0	1
14	F	0	1
25	R	0	1
28	U	0	1
29	V	0	1
44	l	0	2
47	0	0	1
All	All	0	8

All (3) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
53	у	1	С	OP3-P	-10.70	1.48	1.61
9	А	616	А	N9-C4	-6.45	1.33	1.37
8	8	225	ASP	C-N	5.18	1.44	1.34

All (222) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
9	А	946	С	N3-C2-O2	-10.41	114.61	121.90
9	А	946	С	C2-N1-C1'	9.86	129.65	118.80
9	А	946	С	N1-C2-O2	9.81	124.78	118.90
9	А	882	С	C2-N1-C1'	9.69	129.46	118.80
9	А	2558	С	N1-C2-O2	9.50	124.60	118.90
34	a	1471	С	N1-C2-O2	9.21	124.43	118.90
9	А	946	С	C6-N1-C2	-8.86	116.76	120.30
34	a	1471	С	C2-N1-C1'	8.85	128.54	118.80
9	А	2309	С	N3-C2-O2	-8.80	115.74	121.90
9	А	2411	С	N1-C2-O2	8.78	124.17	118.90
9	А	3060	С	C2-N1-C1'	8.77	128.45	118.80
9	А	739	С	C2-N1-C1'	8.68	128.35	118.80
9	А	1134	С	C6-N1-C2	-8.65	116.84	120.30
9	А	1961	С	N1-C2-O2	8.63	124.08	118.90
9	А	1134	С	C5-C6-N1	8.49	125.25	121.00
9	А	3060	С	N3-C2-O2	-8.28	116.10	121.90
29	V	47	LEU	CA-CB-CG	8.14	134.03	115.30
34	a	1498	G	C4-N9-C1'	8.08	137.00	126.50
9	А	739	С	N3-C2-O2	-8.01	116.30	121.90
34	a	1471	С	N3-C2-O2	-7.99	116.31	121.90
9	А	2309	С	N1-C2-O2	7.96	123.68	118.90
9	А	2217	С	N3-C2-O2	-7.93	116.35	121.90
9	А	1517	С	N1-C2-O2	7.89	123.64	118.90
9	А	1517	C	C2-N1-C1'	7.77	127.35	118.80
9	А	739	C	N1-C2-O2	7.76	123.56	118.90
9	А	2558	C	N3-C2-O2	-7.75	116.48	121.90
34	a	22	C	C6-N1-C2	-7.44	117.33	120.30
9	А	2217	С	C2-N1-C1'	7.44	126.98	118.80
9	А	200	C	C6-N1-C2	-7.36	117.36	120.30
9	А	2411	С	N3-C2-O2	-7.35	116.75	121.90
9	А	2953	C	C6-N1-C2	-7.34	117.36	120.30
9	A	3060	С	N1-C2-O2	7.34	123.31	118.90
9	А	2411	С	C2-N1-C1'	7.31	126.84	118.80
9	А	3060	С	C6-N1-C2	-7.29	117.38	120.30
9	A	2559	G	C4-N9-C1'	7.27	135.95	126.50
9	A	882	С	N1-C2-O2	7.23	123.24	118.90

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	А	882	С	N3-C2-O2	-7.12	116.92	121.90
9	А	882	С	C6-N1-C1'	-7.09	112.30	120.80
9	А	2558	С	C2-N1-C1'	7.07	126.58	118.80
9	А	2411	С	C6-N1-C2	-7.07	117.47	120.30
9	А	1961	С	N3-C2-O2	-7.05	116.97	121.90
9	А	2217	С	N1-C2-O2	7.03	123.11	118.90
34	a	1498	G	N3-C4-N9	7.02	130.21	126.00
34	a	1471	С	C6-N1-C2	-6.95	117.52	120.30
9	А	1955	G	N3-C4-N9	-6.91	121.86	126.00
34	a	1498	G	C8-N9-C1'	-6.76	118.21	127.00
34	a	1498	G	N3-C4-C5	-6.73	125.24	128.60
9	А	1425	С	C6-N1-C2	-6.67	117.63	120.30
9	А	1833	С	C6-N1-C2	-6.67	117.63	120.30
34	a	22	С	C5-C6-N1	6.62	124.31	121.00
9	А	2884	С	C6-N1-C2	-6.60	117.66	120.30
9	А	1517	С	N3-C2-O2	-6.55	117.32	121.90
9	А	2310	С	C6-N1-C2	-6.50	117.70	120.30
34	a	1150	С	C2-N1-C1'	6.47	125.91	118.80
34	a	223	U	C2-N1-C1'	6.44	125.43	117.70
9	А	1115	С	C6-N1-C2	-6.43	117.73	120.30
9	А	754	С	C6-N1-C2	-6.42	117.73	120.30
9	А	1874	С	N1-C2-O2	6.32	122.69	118.90
9	А	2862	С	C6-N1-C2	-6.32	117.77	120.30
34	a	1498	G	C6-C5-N7	-6.31	126.61	130.40
9	А	2448	G	C4-N9-C1'	6.30	134.69	126.50
9	А	739	С	C6-N1-C1'	-6.29	113.26	120.80
9	А	2309	С	C2-N1-C1'	6.28	125.71	118.80
9	А	2559	G	C8-N9-C1'	-6.27	118.85	127.00
9	А	2884	C	C5-C6-N1	6.27	124.13	121.00
9	А	935	C	C6-N1-C2	-6.24	117.80	120.30
9	А	1961	С	C6-N1-C2	-6.13	117.85	120.30
9	А	576	C	C6-N1-C2	-6.12	117.85	120.30
9	А	1874	С	N3-C2-O2	-6.10	117.63	121.90
34	a	169	U	C2-N1-C1'	6.07	124.98	117.70
9	А	913	G	P-O3'-C3'	6.05	126.97	119.70
9	А	473	С	N1-C2-O2	6.05	122.53	118.90
9	A	2953	C	C5-C6-N1	6.03	124.01	121.00
9	A	2641	C	C6-N1-C2	-6.02	117.89	120.30
9	A	946	C	C6-N1-C1	-6.00	113.59	120.80
9	А	1072	G	C4-N9-C1'	6.00	134.30	126.50
9	A	1955	G	N3-C2-N2	-5.97	115.72	119.90
9	А	912	A	C2-N3-C4	5.93	113.56	110.60

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	А	2321	С	C6-N1-C2	-5.93	117.93	120.30
9	А	1445	С	C6-N1-C2	-5.92	117.93	120.30
34	a	730	С	C6-N1-C2	-5.91	117.94	120.30
9	А	473	С	N3-C2-O2	-5.89	117.77	121.90
9	А	963	С	C6-N1-C2	-5.88	117.95	120.30
9	А	1339	С	C6-N1-C2	-5.88	117.95	120.30
9	А	604	С	C6-N1-C2	-5.88	117.95	120.30
9	А	1425	С	C5-C6-N1	5.83	123.92	121.00
9	А	945	С	C6-N1-C2	-5.81	117.97	120.30
34	a	527	С	C6-N1-C2	-5.81	117.98	120.30
9	А	130	С	C6-N1-C2	-5.80	117.98	120.30
9	А	2966	U	C5-C6-N1	5.80	125.60	122.70
9	А	695	G	C4-N9-C1'	5.79	134.03	126.50
9	А	2056	С	C6-N1-C2	-5.79	117.98	120.30
53	У	35	С	C2-N1-C1'	5.77	125.14	118.80
9	А	2559	G	N3-C4-N9	5.74	129.45	126.00
34	a	1254	U	C2-N1-C1'	5.73	124.57	117.70
34	a	1471	С	C6-N1-C1'	-5.72	113.94	120.80
9	А	200	С	C5-C6-N1	5.70	123.85	121.00
9	А	697	С	C6-N1-C2	-5.70	118.02	120.30
34	a	223	U	N3-C2-O2	-5.70	118.21	122.20
9	A	820	С	C5-C6-N1	5.67	123.83	121.00
9	A	1953	G	N3-C2-N2	-5.67	115.94	119.90
9	A	1684	С	C6-N1-C2	-5.65	118.04	120.30
9	A	2558	С	C6-N1-C2	-5.64	118.04	120.30
34	a	1414	С	C6-N1-C2	-5.63	118.05	120.30
9	А	2159	С	C6-N1-C2	-5.63	118.05	120.30
34	a	315	С	N1-C2-O2	5.62	122.28	118.90
34	a	169	U	N1-C2-O2	5.62	126.73	122.80
9	А	1833	С	C5-C6-N1	5.60	123.80	121.00
9	A	550	С	C6-N1-C2	-5.60	118.06	120.30
9	A	869	С	N1-C2-O2	5.60	122.26	118.90
9	A	1905	C	N1-C2-O2	5.59	122.25	118.90
9	A	2968	С	C6-N1-C2	-5.58	118.07	120.30
9	A	200	С	C2-N1-C1'	5.57	124.93	118.80
9	A	2961	C	C6-N1-C2	-5.57	118.07	120.30
53	У	35	С	N1-C2-O2	5.56	122.24	118.90
54	Z	3	С	O4'-C1'-N1	5.55	112.64	108.20
41	i	144	LYS	C-N-CA	5.54	135.56	121.70
9	A	912	A	C4-N9-C1'	5.54	136.27	126.30
9	A	3060	C	C6-N1-C1'	-5.53	114.16	120.80
9	A	2452	C $ $	C6-N1-C2	-5.53	118.09	120.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$ $ Ideal(o)
9	А	2559	G	N3-C4-C5	-5.53	125.84	128.60
9	А	769	U	C2-N1-C1'	5.52	124.33	117.70
9	А	2993	С	C6-N1-C2	-5.51	118.10	120.30
34	a	554	А	N7-C8-N9	5.51	116.56	113.80
31	Х	14	PHE	CB-CG-CD1	5.51	124.65	120.80
34	a	1472	G	O4'-C1'-N9	5.50	112.60	108.20
9	А	485	С	C6-N1-C2	-5.50	118.10	120.30
9	А	2535	С	N1-C2-O2	5.50	122.20	118.90
9	А	2993	С	C2-N1-C1'	5.49	124.83	118.80
9	А	1428	С	C6-N1-C2	-5.48	118.11	120.30
34	a	294	С	C6-N1-C2	-5.46	118.11	120.30
9	А	1874	С	C6-N1-C2	-5.46	118.12	120.30
9	А	2702	С	C6-N1-C2	-5.44	118.12	120.30
9	А	912	А	C8-N9-C4	-5.43	103.63	105.80
46	n	53	LEU	CA-CB-CG	5.43	127.80	115.30
9	А	1113	G	C4-N9-C1'	5.43	133.56	126.50
9	А	1961	С	C2-N1-C1'	5.43	124.78	118.80
9	А	2873	С	C6-N1-C2	-5.43	118.13	120.30
9	А	912	А	N7-C8-N9	5.43	116.51	113.80
9	А	2993	С	N1-C2-O2	5.42	122.15	118.90
9	А	1436	С	C6-N1-C2	-5.41	118.14	120.30
9	А	1121	С	C6-N1-C2	-5.41	118.14	120.30
34	a	1150	С	N1-C2-O2	5.40	122.14	118.90
9	А	1684	С	C5-C6-N1	5.40	123.70	121.00
9	А	2217	С	C6-N1-C2	-5.39	118.14	120.30
34	a	236	С	C6-N1-C2	-5.39	118.14	120.30
9	А	1891	С	C6-N1-C2	-5.38	118.15	120.30
9	А	2920	U	N3-C2-O2	-5.37	118.44	122.20
9	А	2411	С	C5-C6-N1	5.37	123.69	121.00
9	А	1988	С	C6-N1-C2	-5.37	118.15	120.30
9	А	2262	С	C6-N1-C2	-5.37	118.15	120.30
9	А	1834	С	C6-N1-C2	-5.36	118.16	120.30
34	a	61	С	N1-C2-O2	5.36	122.12	118.90
9	А	20	С	C6-N1-C2	-5.36	118.16	120.30
9	А	2535	С	N3-C2-O2	-5.34	118.16	121.90
9	А	1879	С	C6-N1-C2	-5.34	118.16	120.30
34	a	745	С	C2-N1-C1'	5.34	124.67	118.80
9	А	1517	С	C6-N1-C1'	-5.33	114.41	120.80
9	А	1272	А	O4'-C1'-N9	5.32	112.46	108.20
9	А	2993	С	C5-C6-N1	5.31	123.66	121.00
9	А	867	С	N1-C2-O2	5.31	122.09	118.90

Continued on next page...

118.30

123.08

5.31

CB-CG-OD1

ASP

27

r

50

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	А	3029	С	N1-C2-O2	5.30	122.08	118.90
9	А	2355	U	C2-N1-C1'	5.30	124.06	117.70
9	А	1955	G	N3-C4-C5	5.30	131.25	128.60
53	у	1	С	N1-C2-O2	5.30	122.08	118.90
9	А	2029	С	C6-N1-C2	-5.29	118.18	120.30
9	А	2281	С	C5-C6-N1	5.29	123.64	121.00
9	А	2321	С	C5-C6-N1	5.29	123.64	121.00
9	А	877	G	O4'-C1'-N9	5.28	112.42	108.20
9	А	2989	G	C4-N9-C1'	5.27	133.35	126.50
9	А	860	С	C6-N1-C2	-5.26	118.19	120.30
9	А	859	С	C6-N1-C2	-5.26	118.20	120.30
34	a	61	С	C6-N1-C2	-5.25	118.20	120.30
9	А	2681	С	C6-N1-C2	-5.25	118.20	120.30
34	a	745	С	N1-C2-O2	5.25	122.05	118.90
9	А	2077	С	C6-N1-C2	-5.25	118.20	120.30
9	А	826	С	C6-N1-C2	-5.24	118.20	120.30
9	А	926	С	C5-C6-N1	5.23	123.62	121.00
9	А	506	С	C6-N1-C2	-5.22	118.21	120.30
9	А	2276	С	C5-C6-N1	5.22	123.61	121.00
9	А	2448	G	C8-N9-C1'	-5.22	120.21	127.00
34	a	22	С	N1-C2-O2	5.21	122.03	118.90
34	a	787	С	C6-N1-C2	-5.21	118.22	120.30
9	А	1488	С	C6-N1-C2	-5.20	118.22	120.30
34	a	315	С	C5-C6-N1	5.19	123.60	121.00
9	А	3076	С	C6-N1-C2	-5.18	118.23	120.30
34	a	1502	С	C6-N1-C2	-5.18	118.23	120.30
34	a	924	С	C6-N1-C2	-5.18	118.23	120.30
9	А	600	G	O4'-C1'-N9	5.18	112.34	108.20
9	А	1834	С	C5-C6-N1	5.18	123.59	121.00
9	А	1517	С	C6-N1-C2	-5.17	118.23	120.30
18	K	110	ARG	CA-CB-CG	5.17	124.78	113.40
9	А	1446	С	C6-N1-C2	-5.17	118.23	120.30
34	a	755	С	C6-N1-C2	-5.16	118.24	120.30
9	А	882	С	C6-N1-C2	-5.16	118.24	120.30
9	А	1953	G	N3-C4-N9	-5.15	122.91	126.00
9	A	270	С	C6-N1-C2	-5.15	118.24	120.30
9	А	820	С	C6-N1-C2	-5.14	118.24	120.30
9	А	507	С	C6-N1-C2	-5.13	118.25	120.30
9	А	473	С	C6-N1-C2	-5.13	118.25	120.30
34	a	1498	G	N7-C8-N9	5.13	115.66	113.10
9	А	408	С	C6-N1-C2	-5.11	118.26	120.30
34	a	1471	С	C5-C6-N1	5.10	123.55	121.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	А	2401	U	C2-N1-C1'	5.10	123.82	117.70
9	А	739	С	O4'-C1'-N1	5.09	112.27	108.20
9	А	2914	C	C6-N1-C2	-5.09	118.27	120.30
53	У	41	C	C6-N1-C2	-5.08	118.27	120.30
9	А	1531	C	C6-N1-C2	-5.08	118.27	120.30
9	А	943	C	C6-N1-C2	-5.07	118.27	120.30
9	А	47	С	C6-N1-C2	-5.07	118.27	120.30
9	А	913	G	OP1-P-O3'	5.07	116.34	105.20
24	Q	73	ASP	CB-CG-OD1	5.06	122.85	118.30
9	А	983	C	C6-N1-C2	-5.04	118.28	120.30
9	А	1068	C	C5-C6-N1	5.04	123.52	121.00
9	А	105	С	C6-N1-C2	-5.04	118.28	120.30
34	a	965	C	C6-N1-C2	-5.04	118.29	120.30
9	А	769	U	N1-C2-O2	5.01	126.31	122.80
9	A	3005	С	N1-C2-O2	5.01	121.91	118.90
9	A	505	С	C6-N1-C2	-5.01	118.30	120.30
6	6	4	ASP	CB-CG-OD1	5.00	122.80	118.30
9	A	2367	U	C2-N1-C1'	5.00	123.70	117.70

There are no chirality outliers.

All (8) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
8	8	225	ASP	Mainchain
14	F	142	GLN	Peptide
25	R	50	THR	Peptide
28	U	101	ASN	Peptide
29	V	136	LEU	Peptide
44	1	113	ALA	Peptide
44	1	115	SER	Peptide
47	0	44	LYS	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
1	0	52/57~(91%)	52 (100%)	0	0	100	100
2	1	46/55~(84%)	46 (100%)	0	0	100	100
3	2	42/47~(89%)	42 (100%)	0	0	100	100
4	3	60/64~(94%)	60 (100%)	0	0	100	100
5	4	35/37~(95%)	34 (97%)	1 (3%)	0	100	100
6	6	53/80~(66%)	46 (87%)	7 (13%)	0	100	100
7	7	11/24~(46%)	11 (100%)	0	0	100	100
8	8	228/235~(97%)	214 (94%)	14 (6%)	0	100	100
11	С	270/280~(96%)	259~(96%)	10 (4%)	1 (0%)	34	66
12	D	211/217~(97%)	194 (92%)	17 (8%)	0	100	100
13	Ε	205/223~(92%)	198 (97%)	7 (3%)	0	100	100
14	F	176/187~(94%)	160 (91%)	16 (9%)	0	100	100
15	G	172/179~(96%)	157 (91%)	15~(9%)	0	100	100
16	Η	45/152~(30%)	39~(87%)	6(13%)	0	100	100
17	J	144/195~(74%)	142 (99%)	2(1%)	0	100	100
18	Κ	120/122~(98%)	116 (97%)	4(3%)	0	100	100
19	L	142/146~(97%)	131 (92%)	11 (8%)	0	100	100
20	М	132/138~(96%)	126 (96%)	6~(4%)	0	100	100
21	Ν	114/180~(63%)	112 (98%)	2(2%)	0	100	100
22	Ο	117/122~(96%)	110 (94%)	7~(6%)	0	100	100
23	Р	110/113~(97%)	102 (93%)	8 (7%)	0	100	100
24	Q	122/129~(95%)	120 (98%)	2 (2%)	0	100	100
25	R	98/104 (94%)	90 (92%)	7 (7%)	1 (1%)	15	44
26	S	111/197~(56%)	111 (100%)	0	0	100	100
27	Т	$\overline{93/100} \ (93\%)$	88 (95%)	5 (5%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
28	U	86/105~(82%)	76~(88%)	10 (12%)	0	100	100
29	V	175/215~(81%)	142 (81%)	32 (18%)	1 (1%)	25	56
30	W	70/86~(81%)	65~(93%)	5 (7%)	0	100	100
31	Х	60/64~(94%)	59 (98%)	1 (2%)	0	100	100
32	Y	66/77~(86%)	63 (96%)	3 (4%)	0	100	100
33	Z	57/65~(88%)	55 (96%)	2 (4%)	0	100	100
35	с	205/274~(75%)	189 (92%)	16 (8%)	0	100	100
36	d	198/201~(98%)	180 (91%)	18 (9%)	0	100	100
37	е	167/220~(76%)	152 (91%)	15 (9%)	0	100	100
38	f	93/96~(97%)	91 (98%)	2 (2%)	0	100	100
39	g	153/156~(98%)	149 (97%)	4 (3%)	0	100	100
40	h	129/132~(98%)	123 (95%)	6 (5%)	0	100	100
41	i	125/151~(83%)	110 (88%)	15 (12%)	0	100	100
42	j	97/101~(96%)	85 (88%)	12 (12%)	0	100	100
43	k	115/139~(83%)	104 (90%)	11 (10%)	0	100	100
44	1	120/124~(97%)	89 (74%)	29 (24%)	2(2%)	9	29
45	m	114/124~(92%)	103 (90%)	11 (10%)	0	100	100
46	n	58/61~(95%)	56 (97%)	1 (2%)	1 (2%)	9	29
47	0	85/89~(96%)	79 (93%)	6 (7%)	0	100	100
48	р	111/162~(68%)	98 (88%)	12 (11%)	1 (1%)	17	46
49	q	93/135~(69%)	82 (88%)	11 (12%)	0	100	100
50	r	62/84~(74%)	58 (94%)	4 (6%)	0	100	100
51	S	81/93~(87%)	69 (85%)	12 (15%)	0	100	100
52	t	83/86~(96%)	81 (98%)	2 (2%)	0	100	100
All	All	5512/6423~(86%)	5118 (93%)	387 (7%)	7 (0%)	54	81

All (7) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
25	R	51	THR
44	l	114	ARG
46	n	17	ALA
29	V	135	ALA
48	р	46	PRO

Continued from previous page...

Mol	Chain	Res	Type
11	С	27	SER
44	1	4	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
1	0	44/47~(94%)	44 (100%)	0	100	100
2	1	45/51~(88%)	45 (100%)	0	100	100
3	2	38/40~(95%)	37~(97%)	1 (3%)	46	79
4	3	53/54~(98%)	53~(100%)	0	100	100
5	4	35/35~(100%)	34~(97%)	1 (3%)	42	76
6	6	49/66~(74%)	49 (100%)	0	100	100
7	7	11/20~(55%)	11 (100%)	0	100	100
8	8	175/179~(98%)	172 (98%)	3~(2%)	60	87
11	С	212/219~(97%)	211 (100%)	1 (0%)	88	96
12	D	163/166~(98%)	163 (100%)	0	100	100
13	Ε	159/172~(92%)	157~(99%)	2(1%)	69	91
14	F	147/155~(95%)	145~(99%)	2(1%)	67	90
15	G	143/147~(97%)	142 (99%)	1 (1%)	84	95
16	Н	36/121~(30%)	35~(97%)	1 (3%)	43	77
17	J	120/161~(74%)	120 (100%)	0	100	100
18	K	101/101 (100%)	100 (99%)	1 (1%)	76	93
19	L	108/110~(98%)	107~(99%)	1 (1%)	78	94
20	М	110/114~(96%)	109~(99%)	1 (1%)	78	94
21	Ν	94/139~(68%)	93~(99%)	1 (1%)	73	92
22	Ο	91/93~(98%)	91 (100%)	0	100	100
23	Р	98/99~(99%)	98 (100%)	0	100	100
24	Q	$97/99\ (98\%)$	97 (100%)	0	100	100

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
	5	1	1 0

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
25	R	81/83~(98%)	81 (100%)	0	100	100
26	S	87/140~(62%)	86~(99%)	1 (1%)	73	92
27	Т	81/83~(98%)	80~(99%)	1 (1%)	71	92
28	U	77/88~(88%)	75~(97%)	2(3%)	46	79
29	V	142/164~(87%)	140 (99%)	2(1%)	67	90
30	W	52/62~(84%)	51 (98%)	1 (2%)	57	85
31	Х	51/52~(98%)	50~(98%)	1 (2%)	55	84
32	Y	60/66~(91%)	60 (100%)	0	100	100
33	Ζ	51/55~(93%)	49 (96%)	2(4%)	32	66
35	с	170/210~(81%)	169 (99%)	1 (1%)	86	96
36	d	176/177~(99%)	176 (100%)	0	100	100
37	е	121/159~(76%)	119 (98%)	2 (2%)	60	87
38	f	84/85~(99%)	84 (100%)	0	100	100
39	g	130/131~(99%)	129 (99%)	1 (1%)	81	94
40	h	107/108~(99%)	106 (99%)	1 (1%)	78	94
41	i	102/120~(85%)	100 (98%)	2 (2%)	55	84
42	j	89/90~(99%)	89 (100%)	0	100	100
43	k	90/107~(84%)	89~(99%)	1 (1%)	73	92
44	1	104/105~(99%)	102 (98%)	2(2%)	57	85
45	m	99/104~(95%)	98~(99%)	1 (1%)	76	93
46	n	46/47~(98%)	46 (100%)	0	100	100
47	О	77/79~(98%)	77 (100%)	0	100	100
48	р	90/125~(72%)	89 (99%)	1 (1%)	73	92
49	q	85/105 (81%)	82 (96%)	3 (4%)	36	70
50	r	54/72~(75%)	52 (96%)	2 (4%)	34	68
51	S	75/85~(88%)	75 (100%)	0	100	100
52	t	64/65~(98%)	63~(98%)	1 (2%)	62	88
All	All	4574/5155 (89%)	4530 (99%)	44 (1%)	77	93

All (44) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
3	2	31	ARG
	~ .	•	

Mol	Chain	Res	Type
5	4	8	LYS
8	8	103	ARG
8	8	137	MET
8	8	231	ASN
11	С	4	ARG
13	Е	19	LYS
13	Е	81	ARG
14	F	14	ARG
14	F	78	ARG
15	G	96	ARG
16	Н	41	ARG
18	K	110	ARG
19	L	21	VAL
20	М	60	ARG
21	N	71	ARG
26	S	102	ARG
27	Т	70	ARG
28	U	93	LYS
28	U	103	LYS
29	V	10	ARG
29	V	87	ARG
30	W	14	ARG
31	Х	27	ARG
33	Ζ	30	ARG
33	Ζ	44	ARG
35	с	164	ARG
37	е	163	ASN
37	е	202	LYS
39	g	149	ARG
40	h	50	ARG
41	i	70	LYS
41	i	127	ARG
43	k	82	ARG
44	1	86	ARG
44	1	108	LYS
45	m	11	ARG
48	р	99	LYS
49	q	68	LYS
49	q	91	ARG
49	q	133	LYS
50	r	51	ARG
50	r	52	ARG

Continued from previous page...

Mol	Chain	Res	Type
52	${ m t}$	29	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (24) such sidechains are listed below:

Mol	Chain	Res	Type
7	7	17	ASN
8	8	170	ASN
8	8	231	ASN
12	D	34	ASN
12	D	183	HIS
13	Е	47	GLN
14	F	142	GLN
17	J	147	GLN
23	Р	79	ASN
24	Q	44	ASN
24	Q	122	ASN
29	V	43	GLN
29	V	91	GLN
29	V	127	ASN
35	с	176	HIS
36	d	111	GLN
36	d	115	HIS
37	е	163	ASN
40	h	38	GLN
41	i	65	HIS
41	i	66	GLN
47	0	51	HIS
51	s	23	ASN
51	s	29	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
10	В	113/115~(98%)	14 (12%)	0
34	a	1515/1537~(98%)	250~(16%)	0
53	У	76/77~(98%)	16 (21%)	0
54	Z	5/26~(19%)	3~(60%)	0
9	А	3116/3138 (99%)	475 (15%)	2(0%)
All	All	4825/4893~(98%)	758 (15%)	2(0%)

All (758) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
9	А	9	G
9	А	51	G
9	А	62	G
9	А	63	А
9	А	71	A
9	А	74	U
9	А	75	G
9	А	83	G
9	А	102	G
9	А	118	А
9	А	119	А
9	А	120	U
9	А	143	G
9	А	167	A
9	А	183	А
9	А	197	А
9	А	198	А
9	А	201	А
9	А	217	G
9	А	218	А
9	А	223	А
9	А	224	А
9	А	225	А
9	А	230	U
9	А	231	U
9	А	232	G
9	А	250	G
9	А	251	С
9	А	268	G
9	A	269	G
9	A	287	G
9	A	289	A
9	А	293	G
9	А	297	A
9	А	298	G
9	A	301	G
9	А	302	U
9	A	303	U
9	A	319	U
9	А	328	A
9	A	332	С
9	A	339	C

Mol	Chain	Res	Type
9	А	358	U
9	А	362	А
9	А	371	U
9	А	372	G
9	А	377	G
9	А	385	G
9	А	405	А
9	А	413	А
9	А	414	G
9	А	425	G
9	А	426	С
9	А	428	А
9	А	446	А
9	A	447	G
9	А	475	G
9	A	485	С
9	А	494	С
9	А	500	G
9	А	501	А
9	А	505	С
9	А	510	U
9	А	527	С
9	А	544	U
9	А	545	U
9	А	554	G
9	А	566	А
9	А	570	G
9	А	573	С
9	А	582	G
9	А	589	А
9	A	592	G
9	А	593	А
9	A	595	U
9	A	596	A
9	А	597	С
9	A	616	A
9	A	618	U
9	A	619	С
9	A	620	С
9	A	621	G
9	А	634	U
9	А	635	U

Mol	Chain	Res	Type
9	А	636	U
9	А	637	С
9	А	639	U
9	А	641	U
9	А	643	С
9	А	644	G
9	А	645	G
9	А	646	А
9	А	664	U
9	А	665	G
9	А	666	C
9	А	671	U
9	А	672	G
9	A	674	A
9	А	675	G
9	A	677	A
9	А	688	А
9	А	689	G
9	А	694	G
9	А	695	G
9	А	706	А
9	А	718	G
9	А	719	U
9	А	735	А
9	А	738	G
9	А	741	A
9	А	749	U
9	А	758	С
9	А	759	С
9	A	766	G
9	A	769	U
9	A	772	G
9	A	773	C
9	A	779	U
9	A	780	G
9	A	781	A
9	A	782	A
9	A	783	U
9	A	788	G
9	A	793	U
9	A	797	G
9	A	815	U

Mol	Chain	Res	Type
9	А	846	G
9	А	852	G
9	А	859	С
9	А	876	U
9	А	891	U
9	А	894	G
9	А	904	G
9	А	905	G
9	А	911	А
9	А	913	G
9	А	914	G
9	А	929	U
9	А	930	G
9	А	934	G
9	А	938	G
9	А	941	С
9	А	956	U
9	А	957	U
9	А	988	G
9	А	1025	A
9	А	1026	С
9	А	1036	С
9	А	1039	A
9	А	1044	С
9	А	1059	A
9	А	1061	A
9	А	1069	A
9	А	1074	G
9	А	1087	А
9	А	1089	G
9	A	1096	A
9	А	1102	A
9	A	1103	A
9	A	1112	A
9	A	1114	С
9	A	1118	G
9	А	1119	A
9	A	1125	G
9	A	1138	A
9	A	1142	G
9	А	1151	G
9	А	1154	G

Mol	Chain	Res	Type
9	А	1155	G
9	А	1159	G
9	А	1162	U
9	А	1168	G
9	А	1174	А
9	А	1177	A
9	А	1181	С
9	А	1186	А
9	А	1187	G
9	А	1189	U
9	А	1190	U
9	А	1191	G
9	А	1195	U
9	A	1199	A
9	А	1200	G
9	А	1202	А
9	А	1207	С
9	А	1208	С
9	А	1211	U
9	А	1212	G
9	А	1216	G
9	А	1217	А
9	А	1218	G
9	А	1219	U
9	А	1237	U
9	А	1238	С
9	А	1240	А
9	А	1241	G
9	А	1244	А
9	А	1258	А
9	А	1259	U
9	А	1262	A
9	A	1264	С
9	A	1271	С
9	А	1273	A
9	A	1304	U
9	A	1305	U
9	А	1308	G
9	A	1342	С
9	А	1368	A
9	А	1378	A
9	А	1384	А

Mol	Chain	Res	Type
9	А	1387	G
9	А	1399	А
9	А	1402	G
9	А	1403	А
9	А	1404	С
9	А	1406	А
9	А	1432	А
9	А	1433	А
9	А	1452	С
9	А	1456	С
9	А	1478	G
9	А	1481	С
9	А	1483	U
9	А	1490	А
9	А	1491	G
9	А	1496	А
9	А	1499	G
9	А	1501	С
9	А	1505	G
9	А	1509	А
9	А	1510	U
9	А	1515	А
9	А	1523	G
9	А	1542	G
9	А	1545	G
9	А	1555	А
9	А	1556	С
9	А	1560	U
9	А	1561	С
9	А	1567	U
9	А	1579	А
9	А	1580	А
9	A	1581	A
9	A	1582	A
9	A	1592	U
9	A	1609	U
9	A	1628	G
9	A	1643	G
9	А	1646	G
9	A	1647	U
9	A	1648	A
9	А	1653	А

Mol	Chain	Res	Type
9	А	1657	А
9	А	1658	A
9	А	1665	A
9	А	1666	С
9	А	1667	G
9	А	1696	A
9	А	1697	A
9	А	1698	С
9	А	1699	А
9	А	1705	G
9	А	1716	G
9	А	1717	G
9	А	1720	G
9	А	1727	A
9	А	1728	G
9	А	1730	С
9	А	1745	С
9	А	1746	U
9	А	1747	А
9	А	1754	А
9	А	1772	G
9	А	1773	U
9	А	1774	U
9	А	1795	С
9	А	1803	А
9	А	1806	А
9	А	1814	С
9	А	1820	А
9	А	1821	G
9	А	1830	С
9	А	1832	G
9	А	1842	С
9	A	1843	A
9	A	1845	A
9	A	1848	G
9	A	1881	U
9	A	1883	C
9	A	1886	G
9	A	1888	U
9	A	1889	A
9	A	1909	G
9	A	1910	С

Mol	Chain	Res	Type
9	А	1929	С
9	А	1949	U
9	А	1950	А
9	А	1955	G
9	А	1959	А
9	А	1963	U
9	А	1964	U
9	А	1966	С
9	А	1967	G
9	А	1970	G
9	А	1984	G
9	А	1990	G
9	А	1993	А
9	А	1998	U
9	А	2007	А
9	А	2010	G
9	А	2016	U
9	А	2020	А
9	А	2021	А
9	А	2025	А
9	А	2034	C
9	А	2035	G
9	А	2050	U
9	А	2061	U
9	А	2063	А
9	А	2094	C
9	А	2105	G
9	А	2107	А
9	А	2108	А
9	А	2109	G
9	А	2137	А
9	А	2138	А
9	A	2144	G
9	A	2145	G
9	А	2147	G
9	A	2148	G
9	А	2151	А
9	A	2152	С
9	A	2157	A
9	A	2159	С
9	A	2160	А
9	A	2168	G

Mol	Chain	Res	Type
9	А	2175	А
9	А	2176	А
9	А	2177	5MU
9	А	2180	С
9	А	2193	U
9	А	2203	С
9	А	2205	С
9	А	2208	А
9	А	2209	U
9	А	2210	G
9	А	2229	U
9	А	2231	U
9	А	2258	А
9	A	2259	С
9	A	2261	A
9	A	2269	А
9	А	2270	G
9	А	2274	С
9	А	2281	С
9	А	2293	С
9	А	2294	G
9	А	2297	А
9	А	2298	А
9	А	2299	G
9	А	2300	А
9	А	2330	G
9	А	2336	С
9	А	2339	U
9	А	2348	U
9	А	2349	G
9	A	2351	A
9	A	2352	G
9	A	2356	A
9	А	2361	G
9	А	2367	U
9	A	2368	G
9	A	2369	U
9	A	2373	A
9	А	2376	U
9	A	2377	С
9	А	2380	С
9	А	2381	G

Mol	Chain	Res	Type
9	А	2382	С
9	А	2388	G
9	А	2389	G
9	А	2393	G
9	А	2395	А
9	А	2399	G
9	А	2400	U
9	А	2401	U
9	А	2404	U
9	А	2409	U
9	А	2411	С
9	А	2414	С
9	А	2415	U
9	А	2435	А
9	А	2463	А
9	А	2476	G
9	А	2477	G
9	А	2481	U
9	А	2489	G
9	А	2490	G
9	А	2497	G
9	А	2504	А
9	А	2517	G
9	А	2521	С
9	А	2525	А
9	А	2543	А
9	А	2546	G
9	А	2558	С
9	А	2560	А
9	А	2563	G
9	A	2565	A
9	А	2573	A
9	А	2574	А
9	А	2583	G
9	A	2585	С
9	А	2588	С
9	А	2621	G
9	А	2623	А
9	А	2626	А
9	А	2644	А
9	А	2661	U
9	А	2663	А

Mol	Chain	Res	Type
9	А	2667	G
9	А	2668	А
9	А	2678	С
9	А	2679	С
9	А	2686	А
9	А	2712	С
9	А	2714	А
9	А	2732	G
9	А	2736	С
9	А	2738	U
9	А	2740	G
9	А	2742	U
9	А	2743	G
9	А	2751	G
9	А	2756	А
9	А	2758	С
9	А	2767	G
9	А	2802	А
9	А	2804	А
9	А	2805	G
9	А	2811	С
9	А	2820	G
9	А	2840	А
9	А	2847	U
9	А	2851	U
9	А	2853	U
9	А	2859	G
9	А	2868	А
9	А	2884	С
9	А	2898	A
9	А	2901	G
9	А	2920	U
9	А	2952	G
9	А	2962	С
9	А	2964	С
9	А	2986	А
9	А	3016	A
9	А	3019	A
9	А	3033	С
9	А	3038	U
9	А	3053	С
9	А	3055	С

Mol	Chain	Res	Type
9	А	3056	А
9	А	3058	А
9	А	3059	А
9	А	3070	А
9	А	3085	А
9	А	3107	А
9	А	3109	С
9	А	3112	G
9	А	3118	А
9	А	3119	С
9	А	3120	С
9	А	3121	G
9	А	3129	А
10	В	2	U
10	В	3	A
10	В	4	С
10	В	34	U
10	В	40	U
10	В	41	С
10	В	55	U
10	В	56	А
10	В	65	А
10	В	68	G
10	В	92	G
10	В	101	G
10	В	105	А
10	В	115	A
34	a	12	G
34	a	25	G
34	a	35	А
34	a	42	G
34	a	50	С
34	a	51	U
34	a	53	A
34	a	54	A
34	a	61	C
34	a	74	A
34	a	78	U
34	a	82	U
34	a	87	A
34	a	89	A
34	a	90	U

Mol	Chain	Res	Type
34	a	91	А
34	a	92	С
34	a	93	U
34	a	111	А
34	a	116	С
34	a	125	G
34	a	127	U
34	a	152	U
34	a	167	А
34	a	178	G
34	a	179	G
34	a	185	G
34	a	189	U
34	a	191	С
34	a	194	G
34	a	204	G
34	a	208	А
34	a	213	U
34	a	214	U
34	a	215	U
34	a	216	А
34	a	217	G
34	a	219	G
34	a	244	С
34	a	246	G
34	a	250	G
34	a	265	G
34	a	266	С
34	a	270	С
34	a	279	С
34	a	280	G
34	a	283	G
34	a	288	G
34	a	305	U
34	a	318	G
34	a	320	A
34	a	326	A
34	a	328	A
34	a	344	C
34	a	346	G
$\overline{34}$	a	351	C
34	a	353	G

Mol	Chain	\mathbf{Res}	Type
34	a	366	U
34	a	371	С
34	a	372	А
34	a	387	G
34	a	391	С
34	a	396	А
34	a	397	С
34	a	405	G
34	a	408	G
34	a	410	А
34	a	411	U
34	a	420	U
34	a	421	С
34	a	422	G
34	a	428	U
34	a	434	U
34	a	440	А
34	a	451	А
34	a	452	G
34	a	453	G
34	a	455	С
34	a	456	С
34	a	458	G
34	a	459	G
34	a	460	U
34	a	461	U
34	a	462	С
34	a	465	U
34	a	473	А
34	a	476	G
34	a	485	G
34	a	488	G
34	a	497	G
34	a	502	С
34	a	509	С
34	a	512	G
34	a	517	С
34	a	518	G7M
34	a	522	U
34	a	524	А
34	a	538	А
34	a	550	А

Mol	Chain	Res	Type
34	a	553	U
34	a	563	А
34	a	564	А
34	a	567	А
34	a	568	G
34	a	570	U
34	a	572	G
34	a	587	С
34	a	606	С
34	a	609	С
34	a	623	U
34	a	624	G
34	a	644	А
34	a	656	G
34	a	657	G
34	a	662	С
34	a	673	G
34	a	678	А
34	a	686	А
34	a	692	С
34	a	693	А
34	a	694	G
34	a	709	А
34	a	712	G
34	a	733	G
34	a	740	А
34	a	746	G
34	a	751	G
34	a	754	G
34	a	764	G
34	a	768	A
34	a	784	U
34	a	785	A
34	a	805	А
34	a	806	А
34	a	808	C
34	a	812	G
34	a	820	G
34	a	823	G
34	a	833	U
34	a	834	U
34	a	835	С

Mol	Chain	Res	Type
34	a	836	С
34	a	837	U
34	a	838	U
34	a	839	G
34	a	863	U
34	a	882	А
34	a	883	G
34	a	895	G
34	a	900	А
34	a	907	А
34	a	915	G
34	a	919	G
34	a	924	C
34	a	927	С
34	a	928	А
34	a	941	С
34	a	953	U
34	a	959	2MG
34	a	962	А
34	a	964	G
34	a	967	А
34	a	968	А
34	a	969	G
34	a	970	А
34	a	975	U
34	a	985	U
34	a	986	G
34	a	987	А
34	a	996	G
34	a	997	G
34	a	998	А
34	a	1016	G
34	a	1018	U
34	a	1020	C
34	a	1021	С
34	a	1022	U
34	a	1023	U
34	a	1024	G
34	a	1033	G
34	a	1044	G
34	a	1056	U
34	a	1076	U

Mol	Chain	Res	Type
34	a	1085	G
34	a	1086	U
34	a	1092	А
34	a	1116	U
34	a	1127	U
34	a	1128	А
34	a	1129	А
34	a	1131	G
34	a	1132	G
34	a	1149	А
34	a	1150	С
34	a	1151	U
34	a	1152	G
34	a	1156	G
34	a	1159	U
34	a	1163	С
34	a	1174	G
34	a	1176	G
34	a	1188	А
34	a	1189	А
34	a	1205	А
34	a	1219	А
34	a	1230	А
34	a	1249	U
34	a	1250	G
34	a	1252	G
34	a	1270	G
34	a	1272	А
34	a	1278	А
34	a	1279	А
34	a	1292	G
34	a	1294	U
34	a	1297	G
34	a	1312	C
34	a	1328	С
34	a	1332	G
34	a	1338	A
34	a	1345	G
34	a	1355	А
34	a	1356	A
34	a	1372	G
34	a	1379	G

Mol	Chain	Res	Type
34	a	1387	А
34	a	1390	С
34	a	1391	А
34	a	1393	С
34	a	1394	G
34	a	1412	G
34	a	1421	А
34	a	1435	G
34	a	1439	А
34	a	1444	U
34	a	1466	G
34	a	1467	G
34	a	1468	G
34	a	1471	С
34	a	1473	G
34	a	1474	С
34	a	1475	G
34	a	1480	G
34	a	1485	А
34	a	1490	G
34	a	1496	А
34	a	1510	G
34	a	1522	G
34	a	1523	G
34	a	1526	С
53	У	3	С
53	У	4	G
53	У	5	G
53	У	13	С
53	У	17	С
53	У	19	G
53	У	20	G
53	У	21	U
53	У	22	A
53	У	49	C
53	У	51	U
53	У	53	G
53	У	66	C
53	У	68	С
53	У	74	A
53	У	77	А
54	Z	2	А

Continued from previous page...

Mol	Chain	Res	Type
54	Z	3	С
54	Z	4	А

All (2) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
9	А	913	G
9	А	2177	5MU

5.4 Non-standard residues in protein, DNA, RNA chains (i)

9 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Trune	Chain	Dec	Timle	B	ond leng	gths	B	ond ang	les
	туре	Chain	nes	LIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
34	5MC	a	960	34	18,22,23	3.47	7 (38%)	26,32,35	1.00	1 (3%)
34	4OC	a	1395	34	20,23,24	2.93	8 (40%)	26,32,35	0.91	1 (3%)
34	MA6	a	1511	34	19,26,27	1.13	2 (10%)	18,38,41	3.28	2 (11%)
34	MA6	a	1512	34	19,26,27	1.12	2 (10%)	18,38,41	<mark>3.53</mark>	2 (11%)
34	G7M	a	518	34	20,26,27	<mark>3.95</mark>	10 (50%)	17,39,42	1.13	1 (5%)
9	OMG	А	2791	9	18,26,27	2.45	8 (44%)	19,38,41	1.48	4 (21%)
34	UR3	a	1491	34	19,22,23	2.65	5 (26%)	26,32,35	1.17	1 (3%)
9	5MU	А	2177	9	19,22,23	4.66	7 (36%)	28,32,35	<mark>3.72</mark>	9 (32%)
34	2MG	a	959	34	18,26,27	2.39	7 (38%)	16,38,41	1.44	4 (25%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
34	5MC	a	960	34	-	0/7/25/26	0/2/2/2

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
34	4OC	a	1395	34	-	2/9/29/30	0/2/2/2
34	MA6	a	1511	34	-	0/7/29/30	0/3/3/3
34	MA6	a	1512	34	-	3/7/29/30	0/3/3/3
34	G7M	a	518	34	-	0/3/25/26	0/3/3/3
9	OMG	А	2791	9	-	0/5/27/28	0/3/3/3
34	UR3	a	1491	34	-	0/7/25/26	0/2/2/2
9	5MU	А	2177	9	-	2/7/25/26	0/2/2/2
34	2MG	a	959	34	-	2/5/27/28	0/3/3/3

All (56) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
9	А	2177	5MU	C6-N1	10.67	1.56	1.38
34	a	518	G7M	C8-N7	9.90	1.51	1.33
34	a	518	G7M	C8-N9	9.66	1.50	1.33
9	А	2177	5MU	C2-N1	9.64	1.53	1.38
34	a	960	5MC	C6-C5	8.97	1.49	1.34
9	А	2177	5MU	C4-C5	8.94	1.59	1.44
9	А	2177	5MU	C4-N3	-7.88	1.24	1.38
34	a	1491	UR3	C6-C5	6.54	1.50	1.35
9	А	2177	5MU	C6-C5	6.34	1.45	1.34
34	a	960	5MC	C4-N3	6.24	1.44	1.34
34	a	1395	4OC	C4-N3	6.22	1.43	1.32
34	a	1395	4OC	C6-C5	6.06	1.49	1.35
34	a	960	5MC	C2-N3	5.88	1.48	1.36
34	a	1491	UR3	C2-N1	5.86	1.46	1.38
34	a	1395	4OC	C2-N3	5.75	1.48	1.36
9	А	2791	OMG	C2-N3	5.48	1.46	1.33
34	a	518	G7M	C2-N3	5.47	1.46	1.33
34	a	959	2MG	C2-N2	5.16	1.44	1.33
34	a	1491	UR3	C2-N3	5.12	1.48	1.39
34	a	959	2MG	C4-N3	4.93	1.49	1.37
34	a	518	G7M	C2-N2	4.79	1.45	1.34
9	А	2791	OMG	C4-N3	4.77	1.48	1.37
34	a	518	G7M	C6-N1	4.48	1.44	1.37
34	a	1395	4OC	C4-N4	4.40	1.44	1.35
34	a	959	2MG	C2-N1	4.32	1.43	1.36
34	a	960	5MC	C4-N4	4.27	1.45	1.34
34	a	960	5MC	C6-N1	4.25	1.45	1.38
9	А	2791	OMG	C2-N2	3.92	1.43	1.34
34	a	960	5MC	C2-N1	3.89	1.48	1.40

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
34	a	518	G7M	C4-N3	3.85	1.46	1.37
34	a	1395	4OC	C2-N1	3.70	1.48	1.40
9	А	2791	OMG	C6-N1	3.50	1.43	1.37
34	a	518	G7M	C2-N1	3.49	1.46	1.37
9	А	2177	5MU	O4-C4	-3.43	1.17	1.23
34	a	1395	4OC	C5-C4	3.32	1.47	1.40
34	a	959	2MG	C6-N1	3.18	1.42	1.37
34	a	1395	4OC	C6-N1	3.04	1.45	1.38
34	a	1491	UR3	C6-N1	3.01	1.45	1.38
34	a	960	5MC	O2-C2	-2.94	1.18	1.23
9	А	2177	5MU	O2-C2	-2.92	1.17	1.23
34	a	1511	MA6	C5-C4	-2.85	1.33	1.40
34	a	1395	4OC	O2-C2	-2.85	1.18	1.23
34	a	1512	MA6	C5-C4	-2.82	1.33	1.40
34	a	959	2MG	C5-C4	-2.72	1.36	1.43
34	a	959	2MG	C5-C6	2.70	1.52	1.47
9	А	2791	OMG	C5-C4	-2.70	1.36	1.43
9	А	2791	OMG	C5-C6	2.68	1.52	1.47
34	a	518	G7M	C5-C6	2.65	1.52	1.45
9	А	2791	OMG	O6-C6	-2.49	1.18	1.23
34	a	518	G7M	O6-C6	-2.40	1.18	1.23
34	a	959	2MG	O6-C6	-2.37	1.18	1.23
34	a	1491	UR3	O2-C2	-2.35	1.18	1.22
9	А	2791	OMG	C2-N1	2.30	1.43	1.37
34	a	1512	MA6	C2-N3	2.12	1.35	1.32
34	a	518	G7M	C5-C4	2.01	1.43	1.39
34	a	1511	MA6	C2-N3	2.00	1.35	1.32

Continued from previous page...

All (25) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$\mathbf{Ideal}(^{o})$
34	a	1512	MA6	N1-C6-N6	-13.57	102.78	117.06
9	А	2177	5MU	C5-C4-N3	12.57	126.04	115.31
34	a	1511	MA6	N1-C6-N6	-12.52	103.88	117.06
9	А	2177	5MU	C5-C6-N1	-10.57	112.46	123.34
34	a	1512	MA6	N3-C2-N1	-5.86	119.52	128.68
34	a	1511	MA6	N3-C2-N1	-5.45	120.16	128.68
9	А	2177	5MU	O4-C4-C5	-5.20	118.87	124.90
9	А	2177	5MU	C4-N3-C2	-5.07	120.79	127.35
9	А	2177	5MU	N3-C2-N1	4.63	121.03	114.89
34	a	1491	UR3	C4-N3-C2	-4.04	120.76	124.56
34	a	959	2MG	C5-C6-N1	3.73	120.54	113.95

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	А	2791	OMG	C5-C6-N1	3.49	120.11	113.95
9	А	2177	5MU	O2-C2-N1	-3.35	118.33	122.79
9	А	2791	OMG	C2-N1-C6	-3.07	119.44	125.10
34	a	960	5MC	C5-C6-N1	-3.01	120.24	123.34
9	А	2177	5MU	C5M-C5-C6	-2.88	119.00	122.85
34	a	518	G7M	C2-N1-C6	-2.71	120.10	125.10
9	А	2791	OMG	C8-N7-C5	2.65	108.03	102.99
9	А	2177	5MU	O4-C4-N3	-2.63	115.08	120.12
9	А	2177	5MU	C5M-C5-C4	2.61	121.64	118.77
34	a	959	2MG	C8-N7-C5	2.55	107.85	102.99
34	a	959	2MG	O6-C6-C5	-2.49	119.50	124.37
34	a	1395	4OC	CM4-N4-C4	-2.39	117.79	122.45
9	А	2791	OMG	O6-C6-C5	-2.37	119.75	124.37
34	a	959	2MG	CM2-N2-C2	-2.16	119.09	123.86

There are no chirality outliers.

All (9) torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
9	А	2177	5MU	O4'-C4'-C5'-O5'
34	а	959	2MG	O4'-C4'-C5'-O5'
34	a	959	2MG	C3'-C4'-C5'-O5'
34	a	1395	4OC	O4'-C4'-C5'-O5'
34	a	1512	MA6	O4'-C4'-C5'-O5'
34	a	1512	MA6	C3'-C4'-C5'-O5'
9	А	2177	5MU	C3'-C4'-C5'-O5'
34	a	1395	4OC	C3'-C4'-C5'-O5'
34	a	1512	MA6	C4'-C5'-O5'-P

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 441 ligands modelled in this entry, 441 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers. There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
10	В	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	В	76:U	O3'	77:A	Р	3.18

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-23975. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 160

Y Index: 160

Z Index: 160

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 166

Y Index: 196

Z Index: 142

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.03. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 836 nm^3 ; this corresponds to an approximate mass of 755 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.357 \AA^{-1}

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.357 \AA^{-1}

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)			
Resolution estimate (A)	0.143	0.5	Half-bit	
Reported by author	2.80	-	-	
Author-provided FSC curve	2.78	3.06	2.81	
Unmasked-calculated*	-	-	-	

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-23975 and PDB model 7MT3. Per-residue inclusion information can be found in section 3 on page 15.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.03 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.03).

9.4 Atom inclusion (i)

At the recommended contour level, 87% of all backbone atoms, 83% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.03) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.8339	0.5360
0	0.7488	0.5620
1	0.8686	0.5700
2	0.9273	0.6080
3	0.8729	0.6010
4	0.8403	0.5650
6	0.5783	0.3590
7	0.1491	0.3620
8	0.0910	0.2090
А	0.8557	0.5480
В	0.9147	0.5550
С	0.9105	0.5980
D	0.8861	0.5840
Е	0.8828	0.5730
F	0.7100	0.4700
G	0.6950	0.4600
Н	0.2303	0.4160
J	0.8815	0.5790
K	0.8650	0.5750
L	0.8708	0.5790
М	0.7625	0.5280
N	0.9050	0.5910
О	0.8131	0.5410
Р	0.8519	0.5620
Q	0.8988	0.5940
R	0.8890	0.5870
S	0.8991	0.5850
T	0.8764	0.5560
U	0.8341	0.5260
V	0.6448	0.4450
W	0.9208	0.5820
X	0.9317	0.5940
Y	0.8231	0.5480
Z	0.8659	0.5680
a	0.8844	0.5420

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
С	0.6853	0.4730
d	0.6700	0.4410
е	0.8040	0.5320
f	0.7259	0.4950
g	0.6768	0.4810
h	0.8484	0.5560
i	0.6799	0.4630
j	0.5716	0.4100
k	0.8150	0.5440
1	0.7892	0.5210
m	0.6767	0.4670
n	0.8133	0.5360
О	0.8104	0.5380
р	0.7369	0.4940
q	0.7847	0.5070
r	0.8049	0.5270
s	0.6263	0.4260
t	0.7984	0.5270
У	0.7415	0.4720
Z	0.7769	0.4760

