

Full wwPDB X-ray Structure Validation Report (i)

Aug 30, 2023 - 01:13 PM EDT

PDB ID	:	3MT6
Title	:	Structure of ClpP from Escherichia coli in complex with ADEP1
Authors	:	Chung, Y.S.
Deposited on	:	2010-04-30
Resolution	:	1.90 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 1.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	Similar resolution $(\#\text{Entries}, \text{resolution}, \text{range}(\text{\AA}))$
D	(#Entries)	(# Entries, resolution range(A))
R _{free}	130704	0207 (1.90-1.90)
Ramachandran outliers	138981	$6760 \ (1.90-1.90)$
Sidechain outliers	138945	6760 (1.90-1.90)
RSRZ outliers	127900	6082 (1.90-1.90)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	207	2% 9 1%	• 7%
1	В	207	3%	. 9%
	D	201	4%	• 376
1	C	207	88%	• 9%
1	D	207	90%	• 9%
1	Е	207	3% 	• 9%
1	F	207	5% 90%	• 8%

Mol	Chain	Length	Quality of chain	
1	a	007	4%	
1	G	207	91%	• 8%
1	Н	207	88%	• 10%
			2%	
1	Ι	207	89%	• 8%
1	т	207	3%	00/
	J	201	4%	• 8%
1	Κ	207	89%	• 9%
1	т	207	3%	
	L	207		• 10%
1	М	207	91%	• 8%
			4%	
1	N	207	89%	• 10%
1	0	207	3%	0%
	0	201	4%	• 976
1	Р	207	90%	• 8%
1	0	207	6%	
	Q	207	3%	• 10%
1	R	207	87%	13%
1	G	007	4%	
1	5	207	4%	11%
1	Т	207	89%	10%
			4%	
1	U	207	89%	10%
1	V	207	87%	. 12%
	•	201	3%	• 1270
1	W	207	87%	• 12%
1	v	207	<u>6%</u>	201
1	Λ	201	<u> </u>	• 8%
1	Y	207	88%	• 10%
1	7	007	4%	
	L	207	5%	12%
1	a	207	86%	• 12%
	,		3%	
	b	207	86%	• 13%
2	1	7	14% 57%	29%
			14%	
2	2	7	14% 71%	14%
2	3	7		1 / 0/
	9	•		14/0

Mol	Chain	Length		Quality of chain			
			29%				
2	4	7	14%	71%	14%		
			14%				
2	с	7	14%	71%	14%		
			14%	, 273	21,0		
2	d	7	14%	71%	14%		
	u	•	1470	/1/0	1470		
2	ρ	7	1.49/	710/	1 / 0/		
	C	1	14%	/170	14 %		
2	f	7	20%	E 70/	1.40/		
	L	1	29%	57%	14%		
2	ď	7	1 40/	F 70/	20%		
	g	1	14%	57%	29%		
0	h	7	1470				
	11	1	29%	57%	14%		
0	<u>.</u>	7	14 %				
	1	(29%	57%	14%		
0		-	14%		_		
2	J	(29%	57%	14%		
		_	14%				
2	k	1	14%	71%	14%		
_	_	_	14%				
2	l	7	14%	71%	14%		
			29%				
2	m	7	14%	71%	14%		
2	n	7	14%	71%	14%		
2	0	7	14%	71%	14%		
			14%				
2	р	7	29%	57%	14%		
	-				14%		
2	q	7	29%	57%	14%		
	_		14%				
2	r	7	29%	57%	14%		
			14%				
2	s	7	14%	71%	14%		
			14%				
2	t	7	14%	71%	14%		
	-		14%				
2	11	7	14%	57%	29%		
		•	14%	5.70			
2	V	7	14%	71%	14%		
	•	•	14%	1 ± /0	1770		
2	117	7	14%	57%	20%		
	vv	1	14/0	57%	23/0		
2	v	7	1.4.9/	E70/	200/		
	Λ	1	14%	<u>ک</u> / %	29%		
		7	1470				
	У	1	14%	71%	14%		
			14%				
2	Z	(14%	71%	14%		

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 46463 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
1	B	180	Total	С	Ν	Ο	S	0	1	0
1	п	100	1408	893	238	265	12	0	T	0
1	S	18/	Total	С	Ν	Ο	\mathbf{S}	0	1	0
1	5	104	1440	914	245	269	12	0	T	0
1	Т	186	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	4	0
	-	100	1481	938	253	278	12	0	1	0
1	U	186	Total	С	Ν	Ο	\mathbf{S}	0	2	0
	0	100	1466	929	251	274	12	Ŭ		
1	0	189	Total	С	Ν	Ο	\mathbf{S}	0	2	0
	Ŭ	100	1487	939	256	280	12	Ŭ	-	
1	Р	190	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	-	100	1484	937	255	280	12	Ŭ		0
1	0	187	Total	С	Ν	Ο	\mathbf{S}	0	1	0
	્ય	101	1459	923	247	277	12	0	1	
1	Y	186	Total	С	Ν	Ο	\mathbf{S}	0	2	0
	-	100	1468	930	251	275	12	<u> </u>	_	
1	Z	183	Total	С	Ν	Ο	\mathbf{S}	0	1	0
		100	1432	909	242	269	12	0	1	
1	a	183	Total	С	Ν	Ο	\mathbf{S}	0	1	0
		100	1435	909	245	269	12	Ŭ	-	
1	b	180	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	~	100	1404	892	238	262	12	Ŭ		
1	V	183	Total	С	Ν	Ο	S	0	2	0
	•	100	1438	912	244	270	12	Ŭ	_	
1	W	183	Total	С	Ν	Ο	S	0	1	0
		100	1429	908	241	268	12	Ŭ	-	
1	X	190	Total	С	Ν	Ο	S	0	1	0
			1478	935	250	281	12	Ŭ	L	
1	М	190	Total	С	Ν	Ο	\mathbf{S}	0	1	0
		100	1484	938	253	281	12	Ŭ	÷	
1	L	187	Total	С	Ν	Ο	\mathbf{S}	0	0	0
		101	1454	921	246	275	12			

• Molecule 1 is a protein called ATP-dependent Clp protease proteolytic subunit.

Mol	Chain	Residues		A	toms			ZeroOcc	AltConf	Trace
1	V	100	Total	С	Ν	0	S	0	1	0
	n	188	1464	927	248	277	12	0	1	0
1	т	100	Total	С	Ν	0	S	0	1	0
	J	190	1492	942	258	280	12	0	1	0
1	т	100	Total	С	Ν	0	S	0	0	0
	1	190	1498	946	258	282	12	0	Z	0
1	п	196	Total	С	Ν	0	S	0	0	0
	п	100	1462	927	250	273	12	0	2	0
1	N	107	Total	С	Ν	0	S	0	0	0
	IN	107	1456	922	249	273	12	0	0	
1	Б	190	Total	С	Ν	0	S	0	0	0
	Ľ		1484	937	255	280	12	0	0	0
1	F	199	Total	С	Ν	0	S	0	0	0
		100	1467	928	250	277	12	0		
1	П	199	Total	С	Ν	0	S	0	1	0
	D	100	1473	932	251	278	12	0	L	0
1	С	188	Total	С	Ν	0	S	0	0	0
	U	100	1467	928	250	277	12	0	0	0
1	P	199	Total	С	Ν	0	S	0	0	0
	D	100	1468	929	250	277	12	0	0	0
1	Δ	102	Total	С	Ν	0	S	0	1	0
	A	192	1508	951	261	283	13			U
1	C	100	Total	С	Ν	0	S	0	1	0
	G	190	1490	941	255	282	12			U

• Molecule 2 is a protein called ACYLDEPSIPEPTIDE 1.

Mol	Chain	Residues	A	Aton	ns		ZeroOcc	AltConf	Trace
2	1	7	Total 52	C 38	N 6	0 8	0	0	0
2	2	7	Total 52	C 38	N 6	O 8	0	0	0
2	с	7	Total 52	C 38	N 6	0 8	0	0	0
2	d	7	Total 52	C 38	N 6	0 8	0	0	0
2	е	7	Total 52	C 38	N 6	0 8	0	0	0
2	f	7	Total 52	C 38	N 6	0 8	0	0	0
2	g	7	Total 52	C 38	N 6	O 8	0	0	0

Continued from previous page...

Mol	Chain	Residues	A	Aton	ns		ZeroOcc	AltConf	Trace
0	h	7	Total	С	Ν	Ο	0	0	0
	11	1	52	38	6	8	0	0	0
0	:	7	Total	С	Ν	Ο	0	0	0
	1	1	52	38	6	8	0	0	0
0	;	7	Total	С	Ν	Ο	0	0	0
	J	1	52	38	6	8	0	0	0
0	lr.	7	Total	С	Ν	Ο	0	0	0
	K	1	52	38	6	8	0	0	0
0	1	7	Total	С	Ν	Ο	0	0	0
	1	1	52	38	6	8	0	0	0
0		7	Total	С	Ν	Ο	0	0	0
	111	1	52	38	6	8	0	0	0
0		7	Total	С	Ν	Ο	0	0	0
	11	1	52	38	6	8	0	0	0
0	_	7	Total	С	Ν	0	0	0	0
	0	1	52	38	6	8	0	0	0
0		7	Total	С	Ν	0	0	0	0
	р	1	52	38	6	8	0	0	0
0		7	Total	С	Ν	Ο	0	0	0
2	q		52	38	6	8		0	0
0		7	Total	С	Ν	Ο	0	0	0
2	r		52	38	6	8		0	0
0		7	Total	С	Ν	Ο	0	0	0
2	S	(52	38	6	8	0	0	0
0		7	Total	С	Ν	Ο	0 0	0	0
2	t	(52	38	6	8	0	0	0
0		7	Total	С	Ν	Ο	0	0	0
2	V	(52	38	6	8	0	0	0
0		7	Total	С	Ν	Ο	0	0	0
	W	1	52	38	6	8	0	0	0
0		7	Total	С	Ν	Ο	0	0	0
2	X	(52	38	6	8	0	0	0
0		7	Total	С	Ν	0	0	0	0
2	У	(52	38	6	8	0	0	0
0		7	Total	С	Ν	Ο	0	0	0
2	Z	(52	38	6	8	0	0	0
0	0	7	Total	С	Ν	0	0	0	0
	ঠ	(52	38	6	8	U	U	U
	4	7	Total	С	Ν	0	0	0	0
	4	(52	38	6	8	U	U	U
		-	Total	С	Ν	0	0	0	0
2 u	u	u 7	52	38	6	8	0	U	U

• Molecule 3 is (4S)-2-METHYL-2,4-PENTANEDIOL (three-letter code: MPD) (formula: $C_6H_{14}O_2$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	R	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	R	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	R	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	S	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	Т	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	Т	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	U	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	U	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	Ο	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	Ο	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	Р	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	Р	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	Q	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	Q	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	Y	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	Z	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	Ζ	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	Z	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	a	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	b	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	b	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	V	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	V	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	W	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	W	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	Х	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	Х	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	М	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	М	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	М	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	L	1	$\begin{array}{c c} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	L	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	К	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	К	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	J	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	J	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	Ι	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	Ι	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	Н	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	Ν	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	Ν	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	F	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	Е	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	Е	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	Е	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
3	G	1	$\begin{array}{c ccc} \hline \text{Total} & \text{C} & \text{O} \\ \hline 8 & 6 & 2 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	G	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0

• Molecule 4 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	R	130	Total O 130 130	0	0
4	S	105	Total O 105 105	0	0
4	Т	141	Total O 141 141	0	0
4	U	136	Total O 136 136	0	0
4	О	123	Total O 123 123	0	0
4	Р	120	Total O 120 120	0	0
4	Q	125	Total O 125 125	0	0
4	Y	142	Total O 142 142	0	0
4	Z	124	Total O 124 124	0	0
4	a	129	Total O 129 129	0	0
4	b	114	Total O 114 114	0	0
4	V	108	Total O 108 108	0	0
4	W	102	Total O 102 102	0	0
4	Х	118	Total O 118 118	0	0
4	М	133	Total O 133 133	0	0
4	L	132	Total O 132 132	0	0
4	К	130	Total O 130 130	0	0
4	J	137	Total O 137 137	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	Ι	147	Total O 147 147	0	0
4	Н	123	Total O 123 123	0	0
4	Ν	137	Total O 137 137	0	0
4	F	123	Total O 123 123	0	0
4	Е	125	Total O 125 125	0	0
4	D	147	Total O 147 147	0	0
4	С	137	Total O 137 137	0	0
4	В	134	Total O 134 134	0	0
4	А	125	Total O 125 125	0	0
4	G	143	Total O 143 143	0	0
4	f	1	Total O 1 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: ATP-dependent Clp protease proteolytic subunit

• Molecule 1: ATP-dependent Clp protease proteolytic subunit

Chain B:	89%	• 9%
MET SER TYR SER GLY GLY GLY GLU ARP ARP PHE	PRD HIS MET MET AIC AIC CI HIS AIC ASN ASN	
• Molecule 1:	ATP-dependent Clp protease proteolytic subunit	
Chain A:	91%	• 7%
MET SER SER SER SER SER GLY GLY ASR ASN PHE	PRO MET MET ALA ALA F17 F17 H122 H191 H191 H192	
• Molecule 1:	ATP-dependent Clp protease proteolytic subunit	
Chain G:	91%	• 8%
MET SER TYR SER SER GLY GLY ARG ASN ASN ASN	PRD HIS MET ALA ALA ALA B11 C13 C13 C13 C13 C13 C13 C13 C13 C13 C	
• Molecule 2:	ACYLDEPSIPEPTIDE 1	
Chain 1: 14	% 57% 2	9%
011700 F701 P702 P703 A704 A704 A705 P706		
• Molecule 2:	ACYLDEPSIPEPTIDE 1	
Chain 2: 14	% 71%	14%
0 11700 F701 5702 P703 4704 A705 4705 P706 9705		
• Molecule 2:	ACYLDEPSIPEPTIDE 1	
Chain c: 14	% 71%	14%
011170 8701 8702 8703 8703 8703 8704 8705 8705 8706		
• Molecule 2:	ACYLDEPSIPEPTIDE 1	
Chain d: 14	% % 71%	14%

0TT700 F701 S702 P703 A704 A705 P706

• Molecul	le 2: ACY	LDEPSIPEPTIDE 1
Chain e:	14%	71%

14% • Molecule 2: ACYLDEPSIPEPTIDE 1 14% Chain f: 29% 57% 14% • Molecule 2: ACYLDEPSIPEPTIDE 1 14% Chain g: 57% 14% 29% • Molecule 2: ACYLDEPSIPEPTIDE 1 14% Chain h: 29% 57% 14% • Molecule 2: ACYLDEPSIPEPTIDE 1 14% Chain i: 29% 57% 14% • Molecule 2: ACYLDEPSIPEPTIDE 1 14% Chain j: 29% 57% 14%

• Molecule 2: ACYLDEPSIPEPTIDE 1	l	
Chain k: 14%	71%	14%
011700 F701 P703 A705 P706 P706		
• Molecule 2: ACYLDEPSIPEPTIDE 1	l	
Chain l: 14%	71%	14%
P17700 F701 P703 A704 A705 P706		
• Molecule 2: ACYLDEPSIPEPTIDE 1	l	
Chain m: 14%	71%	14%
011700 F701 F703 A704 A706 P706		
• Molecule 2: ACYLDEPSIPEPTIDE 1	L	
Chain n: 14%	71%	14%
011700 F701 A702 A705 A705 P706		
• Molecule 2: ACYLDEPSIPEPTIDE 1	L	
Chain o: 14%	71%	14%
011700 F701 P703 A704 A705 P706		
• Molecule 2: ACYLDEPSIPEPTIDE 1	L	
Chain p: 29%	57%	14%
0117700 8702 8702 1703 8704 8706 1706		
• Molecule 2: ACYLDEPSIPEPTIDE 1	l	
Chain q: 29%	57%	14%

• Molecule	e 2: ACYLE	DEPSIPEPTIDE 1	
Chain r:	14% 29%	57%	14%
011700 F701 S702 F703 A704 A705 P706			
• Molecule	e 2: ACYLE	DEPSIPEPTIDE 1	
Chain s:	14%	71%	14%
011700 F701 S702 P703 A704 A705 P706			
• Molecule	e 2: ACYLE	DEPSIPEPTIDE 1	
Chain t:	14%	71%	14%
011700 F701 S702 P703 A704 A705 P706			
• Molecule	e 2: ACYLE	DEPSIPEPTIDE 1	
Chain v:	14% 14%	71%	14%
011700 F701 S702 F703 A705 A705 P706			
• Molecule	e 2: ACYLE	DEPSIPEPTIDE 1	
Chain w:	14%	57%	29%
011700 F701 S702 P703 P703 A704 P706 P706			
• Molecule	e 2: ACYLE	DEPSIPEPTIDE 1	
Chain x:	14%	57%	29%
0017700 F701 6 8702 6 P703 6 A704 A705 7 P706			

• Molecule 2: ACYLDEPSIP	EPTIDE 1	
Chain y: 14%	71%	14%
011700 8701 8703 8704 8704 8704 8706 9706		
• Molecule 2: ACYLDEPSIPI	EPTIDE 1	
Chain z: 14%	71%	14%
011700 8701 8703 7704 7704 7704 7705 7705		
• Molecule 2: ACYLDEPSIPI	EPTIDE 1	
Chain 3: 14%	71%	14%
DTT700 8701 8703 8703 8703 8704 8705 8706		
• Molecule 2: ACYLDEPSIPH	EPTIDE 1	
Chain 4: 14%	71%	14%
0111700 8701 8703 8703 8704 8705 8706 8706		
• Molecule 2: ACYLDEPSIPH	EPTIDE 1	
Chain u: 14%	57%	29%
011700 5701 5703 7703 7704 7705 7705		

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	93.25Å 121.15Å 276.17Å	Deneiter
a, b, c, α , β , γ	90.00° 91.38° 90.00°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	29.90 - 1.90	Depositor
Resolution (A)	29.99 - 1.90	EDS
% Data completeness	98.1 (29.90-1.90)	Depositor
(in resolution range)	98.1 (29.99-1.90)	EDS
R _{merge}	0.07	Depositor
R _{sym}	0.06	Depositor
$< I/\sigma(I) > 1$	$3.26 (at 1.91 \text{\AA})$	Xtriage
Refinement program	PHENIX (phenix.refine: 1.4_159)	Depositor
D D.	0.178 , 0.204	Depositor
Π, Π_{free}	0.175 , 0.200	DCC
R_{free} test set	5212 reflections $(1.10%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	21.9	Xtriage
Anisotropy	0.035	Xtriage
Bulk solvent $k_{sol}(e/A^3)$, $B_{sol}(A^2)$	0.34 , 45.7	EDS
L-test for twinning ²	$< L > = 0.50, < L^2 > = 0.33$	Xtriage
Estimated twinning fraction	0.013 for h,-k,-l	Xtriage
F_o, F_c correlation	0.96	EDS
Total number of atoms	46463	wwPDB-VP
Average B, all atoms $(Å^2)$	24.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.50% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MP8, MAA, MPD, OTT

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	B	ond lengths	B	Sond angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.23	0/1535	0.42	0/2068
1	В	0.24	0/1491	0.42	0/2010
1	С	0.24	0/1490	0.42	0/2008
1	D	0.24	0/1499	0.42	0/2020
1	Е	0.24	0/1490	0.42	0/2008
1	F	0.23	0/1508	0.41	0/2033
1	G	0.23	0/1517	0.42	0/2045
1	Н	0.23	0/1491	0.41	0/2009
1	Ι	0.25	0/1528	0.43	0/2059
1	J	0.24	0/1519	0.43	0/2047
1	Κ	0.23	0/1490	0.41	0/2009
1	L	0.24	0/1477	0.41	0/1991
1	М	0.23	0/1511	0.41	0/2038
1	Ν	0.23	0/1479	0.41	0/1993
1	0	0.23	0/1516	0.42	0/2043
1	Р	0.23	0/1508	0.41	0/2033
1	Q	0.23	0/1485	0.42	0/2002
1	R	0.23	0/1434	0.42	0/1933
1	S	0.23	0/1466	0.42	0/1976
1	Т	0.23	0/1516	0.42	0/2042
1	U	0.24	0/1495	0.43	0/2014
1	V	0.23	0/1467	0.41	0/1977
1	W	0.23	0/1455	0.41	0/1962
1	Х	0.25	0/1505	0.43	0/2031
1	Y	0.23	0/1497	0.42	0/2017
1	Ζ	0.23	0/1458	0.41	0/1966
1	a	0.23	0/1461	0.41	0/1969
1	b	0.23	0/1427	0.41	0/1924
2	1	2.88	4/29~(13.8%)	3.44	7/37~(18.9%)
2	2	2.89	4/29~(13.8%)	3.43	6/37~(16.2%)
2	3	2.92	$4/29~(\overline{13.8\%})$	3.39	$6/37~(\overline{16.2\%})$
2	4	2.92	4/29~(13.8%)	3.51	8/37~(21.6%)

Mal	Chain	B	ond lengths	E	ond angles
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
2	с	2.90	4/29~(13.8%)	3.44	7/37~(18.9%)
2	d	2.88	4/29~(13.8%)	3.43	6/37~(16.2%)
2	е	2.90	4/29~(13.8%)	3.46	7/37~(18.9%)
2	f	2.91	4/29~(13.8%)	3.42	6/37~(16.2%)
2	g	2.93	4/29~(13.8%)	3.45	7/37~(18.9%)
2	h	2.93	4/29~(13.8%)	3.45	5/37~(13.5%)
2	i	2.89	4/29~(13.8%)	3.45	5/37~(13.5%)
2	j	2.89	4/29~(13.8%)	3.42	6/37~(16.2%)
2	k	2.91	4/29~(13.8%)	3.45	7/37~(18.9%)
2	1	2.92	4/29~(13.8%)	3.46	7/37~(18.9%)
2	m	2.88	4/29~(13.8%)	3.47	8/37~(21.6%)
2	n	2.92	4/29~(13.8%)	3.44	6/37~(16.2%)
2	0	2.84	4/29~(13.8%)	3.39	6/37~(16.2%)
2	р	2.91	4/29~(13.8%)	3.46	6/37~(16.2%)
2	q	2.91	4/29~(13.8%)	3.47	5/37~(13.5%)
2	r	2.91	4/29~(13.8%)	3.47	6/37~(16.2%)
2	s	2.88	4/29~(13.8%)	3.47	7/37~(18.9%)
2	t	2.91	4/29~(13.8%)	3.45	6/37~(16.2%)
2	u	2.92	4/29~(13.8%)	3.45	6/37~(16.2%)
2	V	2.92	4/29~(13.8%)	3.52	7/37~(18.9%)
2	W	2.89	4/29~(13.8%)	3.43	6/37~(16.2%)
2	Х	2.96	$\overline{4/29}~(13.8\%)$	3.51	8/37~(21.6%)
2	У	2.89	4/29~(13.8%)	3.45	6/37~(16.2%)
2	Z	2.91	4/29~(13.8%)	3.45	7/37~(18.9%)
All	All	0.46	112/42527~(0.3%)	0.62	180/57263~(0.3%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
2	g	0	1
2	W	0	1
2	Х	0	1
All	All	0	3

All (112) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
2	Х	702	SER	CA-CB	7.23	1.63	1.52
2	n	702	SER	CA-CB	7.20	1.63	1.52

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	1	702	SER	CA-CB	7.18	1.63	1.52
2	р	702	SER	CA-CB	7.17	1.63	1.52
2	Z	702	SER	CA-CB	7.15	1.63	1.52
2	g	702	SER	CA-CB	7.13	1.63	1.52
2	h	702	SER	CA-CB	7.12	1.63	1.52
2	V	702	SER	CA-CB	7.11	1.63	1.52
2	4	702	SER	CA-CB	7.11	1.63	1.52
2	с	702	SER	CA-CB	7.08	1.63	1.52
2	k	702	SER	CA-CB	7.08	1.63	1.52
2	t	702	SER	CA-CB	7.07	1.63	1.52
2	f	702	SER	CA-CB	7.06	1.63	1.52
2	е	702	SER	CA-CB	7.04	1.63	1.52
2	q	702	SER	CA-CB	7.04	1.63	1.52
2	r	702	SER	CA-CB	7.03	1.63	1.52
2	3	702	SER	CA-CB	7.01	1.63	1.52
2	u	702	SER	CA-CB	7.00	1.63	1.52
2	m	702	SER	CA-CB	7.00	1.63	1.52
2	W	702	SER	CA-CB	6.98	1.63	1.52
2	i	702	SER	CA-CB	6.96	1.63	1.52
2	1	702	SER	CA-CB	6.95	1.63	1.52
2	d	702	SER	CA-CB	6.94	1.63	1.52
2	У	702	SER	CA-CB	6.94	1.63	1.52
2	2	702	SER	CA-CB	6.89	1.63	1.52
2	s	702	SER	CA-CB	6.89	1.63	1.52
2	j	702	SER	CA-CB	6.88	1.63	1.52
2	0	702	SER	CA-CB	6.72	1.63	1.52
2	t	701	PHE	C-O	6.57	1.35	1.23
2	u	701	PHE	C-O	6.51	1.35	1.23
2	3	701	PHE	C-O	6.51	1.35	1.23
2	h	701	PHE	C-O	6.51	1.35	1.23
2	Х	701	PHE	C-O	6.50	1.35	1.23
2	2	701	PHE	C-O	6.50	1.35	1.23
2	4	701	PHE	C-O	6.48	1.35	1.23
2	с	701	PHE	C-O	6.47	1.35	1.23
2	m	701	PHE	C-O	6.47	1.35	1.23
2	V	701	PHE	C-O	6.46	1.35	1.23
2	Z	701	PHE	C-O	6.46	1.35	1.23
2	f	701	PHE	C-O	6.46	1.35	1.23
2	g	701	PHE	C-O	6.45	1.35	1.23
2	е	701	PHE	C-O	6.45	1.35	1.23
2	q	701	PHE	C-O	6.44	1.35	1.23
2	i	701	PHE	C-O	6.43	1.35	1.23

21/17	ΓG
OWL	LU

Continued from previous page									
Mol	Chain	Res	Type	Atoms		Observed(Å)	Ideal(Å)		
2	j	701	PHE	C-O	6.43	1.35	1.23		
2	r	701	PHE	C-O	6.43	1.35	1.23		
2	1	701	PHE	C-O	6.42	1.35	1.23		
2	1	701	PHE	C-O	6.42	1.35	1.23		
2	W	701	PHE	C-O	6.42	1.35	1.23		
2	k	701	PHE	C-O	6.41	1.35	1.23		
2	р	701	PHE	C-O	6.40	1.35	1.23		
2	n	701	PHE	C-O	6.39	1.35	1.23		
2	0	701	PHE	C-O	6.39	1.35	1.23		
2	У	701	PHE	С-О	6.38	1.35	1.23		
2	s	701	PHE	C-O	6.38	1.35	1.23		
2	d	701	PHE	C-O	6.38	1.35	1.23		
2	Х	702	SER	N-CA	6.32	1.58	1.46		
2	u	702	SER	N-CA	6.25	1.58	1.46		
2	k	702	SER	N-CA	6.15	1.58	1.46		
2	W	702	SER	N-CA	6.15	1.58	1.46		
2	3	702	SER	N-CA	6.14	1.58	1.46		
2	g	702	SER	N-CA	6.14	1.58	1.46		
2	d	702	SER	N-CA	6.14	1.58	1.46		
2	Z	702	SER	N-CA	6.13	1.58	1.46		
2	е	702	SER	N-CA	6.12	1.58	1.46		
2	1	702	SER	N-CA	6.10	1.58	1.46		
2	j	702	SER	N-CA	6.10	1.58	1.46		
2	h	702	SER	N-CA	6.09	1.58	1.46		
2	n	702	SER	N-CA	6.07	1.58	1.46		
2	V	702	SER	N-CA	6.07	1.58	1.46		
2	1	702	SER	N-CA	6.07	1.58	1.46		
2	S	702	SER	N-CA	6.06	1.58	1.46		
2	4	702	SER	N-CA	6.06	1.58	1.46		
2	с	702	SER	N-CA	6.05	1.58	1.46		
2	m	702	SER	N-CA	6.05	1.58	1.46		
2	р	702	SER	N-CA	6.04	1.58	1.46		
2	У	702	SER	N-CA	6.02	1.58	1.46		
2	q	702	SER	N-CA	6.02	1.58	1.46		
2	t	702	SER	N-CA	6.01	1.58	1.46		
2	2	702	SER	N-CA	6.00	1.58	1.46		
2	0	702	SER	N-CA	5.95	1.58	1.46		
2	f	702	SER	N-CA	5.94	1.58	1.46		
2	r	702	SER	N-CA	5.93	1.58	1.46		
2	i	702	SER	N-CA	5.91	1.58	1.46		
2	X	702	SER	C-N	5.69	1.45	1.34		
2	u	702	SER	C-N	5.60	1.44	1.34		

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	d	702	SER	C-N	5.57	1.44	1.34
2	k	702	SER	C-N	5.57	1.44	1.34
2	h	702	SER	C-N	5.55	1.44	1.34
2	r	702	SER	C-N	5.55	1.44	1.34
2	е	702	SER	C-N	5.54	1.44	1.34
2	р	702	SER	C-N	5.54	1.44	1.34
2	n	702	SER	C-N	5.54	1.44	1.34
2	1	702	SER	C-N	5.54	1.44	1.34
2	2	702	SER	C-N	5.52	1.44	1.34
2	3	702	SER	C-N	5.52	1.44	1.34
2	g	702	SER	C-N	5.51	1.44	1.34
2	4	702	SER	C-N	5.50	1.44	1.34
2	m	702	SER	C-N	5.50	1.44	1.34
2	W	702	SER	C-N	5.50	1.44	1.34
2	V	702	SER	C-N	5.50	1.44	1.34
2	1	702	SER	C-N	5.49	1.44	1.34
2	Z	702	SER	C-N	5.48	1.44	1.34
2	j	702	SER	C-N	5.47	1.44	1.34
2	У	702	SER	C-N	5.47	1.44	1.34
2	с	702	SER	C-N	5.46	1.44	1.34
2	f	702	SER	C-N	5.46	1.44	1.34
2	s	702	SER	C-N	5.44	1.44	1.34
2	0	702	SER	C-N	5.41	1.44	1.34
2	q	702	SER	C-N	5.41	1.44	1.34
2	t	702	SER	C-N	5.40	1.44	1.34
2	i	702	SER	C-N	5.39	1.44	1.34

All (180) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	q	701	PHE	O-C-N	10.39	139.32	122.70
2	у	701	PHE	O-C-N	10.32	139.21	122.70
2	g	701	PHE	O-C-N	10.24	139.09	122.70
2	2	701	PHE	O-C-N	10.18	138.99	122.70
2	u	701	PHE	O-C-N	10.18	138.98	122.70
2	V	701	PHE	O-C-N	10.17	138.97	122.70
2	h	701	PHE	O-C-N	10.16	138.95	122.70
2	Z	701	PHE	O-C-N	10.14	138.92	122.70
2	i	701	PHE	O-C-N	10.14	138.92	122.70
2	0	701	PHE	O-C-N	10.13	138.90	122.70
2	m	701	PHE	O-C-N	10.10	138.85	122.70
2	d	701	PHE	O-C-N	10.09	138.84	122.70

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	р	701	PHE	O-C-N	10.08	138.83	122.70
2	r	701	PHE	O-C-N	10.07	138.82	122.70
2	1	701	PHE	O-C-N	10.07	138.81	122.70
2	е	701	PHE	O-C-N	10.07	138.81	122.70
2	4	701	PHE	O-C-N	10.04	138.77	122.70
2	s	701	PHE	O-C-N	10.03	138.74	122.70
2	k	701	PHE	O-C-N	10.02	138.73	122.70
2	W	701	PHE	O-C-N	10.00	138.71	122.70
2	n	701	PHE	O-C-N	9.95	138.61	122.70
2	j	701	PHE	O-C-N	9.94	138.61	122.70
2	f	701	PHE	O-C-N	9.94	138.60	122.70
2	t	701	PHE	O-C-N	9.94	138.60	122.70
2	1	701	PHE	O-C-N	9.93	138.58	122.70
2	3	701	PHE	O-C-N	9.91	138.55	122.70
2	с	701	PHE	O-C-N	9.87	138.49	122.70
2	Х	701	PHE	O-C-N	9.82	138.41	122.70
2	Х	702	SER	CA-C-N	8.21	140.08	117.10
2	V	702	SER	CA-C-N	8.16	139.94	117.10
2	4	702	SER	CA-C-N	8.11	139.82	117.10
2	h	702	SER	CA-C-N	7.96	139.40	117.10
2	r	702	SER	CA-C-N	7.95	139.37	117.10
2	n	702	SER	CA-C-N	7.94	139.34	117.10
2	р	702	SER	CA-C-N	7.94	139.33	117.10
2	S	702	SER	CA-C-N	7.92	139.28	117.10
2	1	702	SER	CA-C-N	7.91	139.25	117.10
2	u	702	SER	CA-C-N	7.91	139.25	117.10
2	k	702	SER	CA-C-N	7.91	139.24	117.10
2	е	702	SER	CA-C-N	7.89	139.19	117.10
2	d	702	SER	CA-C-N	7.81	138.96	117.10
2	У	702	SER	CA-C-N	7.72	138.71	117.10
2	g	702	SER	CA-C-N	7.70	138.66	117.10
2	2	702	SER	CA-C-N	7.69	138.64	117.10
2	t	702	SER	CA-C-N	7.67	138.59	117.10
2	j	702	SER	CA-C-N	7.65	138.53	117.10
2	f	702	SER	CA-C-N	7.65	138.52	117.10
2	W	702	SER	CA-C-N	7.64	138.50	117.10
2	q	702	SER	CA-C-N	7.64	138.49	117.10
2	с	702	SER	CA-C-N	7.63	138.46	117.10
2	Z	702	SER	CA-C-N	7.63	138.47	117.10
2	i	702	SER	CA-C-N	7.58	138.32	117.10
2	m	702	SER	CA-C-N	7.56	138.26	117.10
2	3	702	SER	CA-C-N	7.44	137.93	117.10

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
2	1	702	SER	CA-C-N	7.43	137.89	117.10
2	0	702	SER	CA-C-N	7.22	137.31	117.10
2	с	705	ALA	CA-C-O	-6.02	107.45	120.10
2	Х	705	ALA	CA-C-O	-5.97	107.57	120.10
2	u	705	ALA	CA-C-O	-5.96	107.58	120.10
2	m	705	ALA	CA-C-O	-5.93	107.65	120.10
2	1	705	ALA	CA-C-O	-5.89	107.72	120.10
2	s	705	ALA	CA-C-O	-5.87	107.78	120.10
2	i	705	ALA	CA-C-O	-5.86	107.78	120.10
2	V	705	ALA	CA-C-O	-5.81	107.91	120.10
2	q	705	ALA	CA-C-O	-5.79	107.94	120.10
2	k	705	ALA	CA-C-O	-5.76	108.00	120.10
2	r	705	ALA	CA-C-O	-5.76	108.01	120.10
2	Х	702	SER	O-C-N	-5.75	110.17	121.10
2	2	705	ALA	CA-C-O	-5.75	108.03	120.10
2	r	701	PHE	CA-C-O	-5.75	108.03	120.10
2	4	705	ALA	CA-C-O	-5.74	108.06	120.10
2	f	705	ALA	CA-C-O	-5.67	108.19	120.10
2	k	701	PHE	CA-C-O	-5.67	108.19	120.10
2	4	702	SER	O-C-N	-5.66	110.34	121.10
2	3	705	ALA	CA-C-O	-5.66	108.22	120.10
2	V	702	SER	O-C-N	-5.66	110.35	121.10
2	W	705	ALA	CA-C-O	-5.65	108.23	120.10
2	Z	702	SER	N-CA-CB	5.64	118.96	110.50
2	Z	705	ALA	CA-C-O	-5.64	108.27	120.10
2	n	705	ALA	CA-C-O	-5.63	108.28	120.10
2	m	701	PHE	CA-C-O	-5.62	108.30	120.10
2	0	705	ALA	CA-C-O	-5.61	108.32	120.10
2	d	705	ALA	CA-C-O	-5.60	108.34	120.10
2	m	702	SER	N-CA-CB	5.59	118.89	110.50
2	Z	701	PHE	CA-C-O	-5.59	108.36	120.10
2	g	705	ALA	CA-C-O	-5.57	108.40	120.10
2	V	701	PHE	CA-C-O	-5.55	108.44	120.10
2	е	705	ALA	CA-C-O	-5.55	108.45	120.10
2	1	705	ALA	CA-C-O	-5.54	108.46	120.10
2	n	702	SER	O-C-N	-5.54	110.58	121.10
2	f	701	PHE	CA-C-O	-5.52	108.50	120.10
2	3	701	PHE	CA-C-O	-5.51	108.52	120.10
2	s	701	PHE	CA-C-O	-5.51	108.53	120.10
2	u	702	SER	O-C-N	-5.50	110.64	121.10
2	d	701	PHE	CA-C-O	-5.50	108.55	120.10
2	р	705	ALA	CA-C-O	-5.49	108.56	120.10

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
2	j	705	ALA	CA-C-O	-5.49	108.57	120.10
2	1	702	SER	N-CA-CB	5.49	118.73	110.50
2	h	702	SER	O-C-N	-5.48	110.69	121.10
2	е	701	PHE	CA-C-O	-5.47	108.61	120.10
2	Х	701	PHE	CA-C-O	-5.47	108.61	120.10
2	1	702	SER	O-C-N	-5.46	110.73	121.10
2	1	701	PHE	CA-C-O	-5.44	108.67	120.10
2	h	705	ALA	CA-C-O	-5.43	108.70	120.10
2	4	701	PHE	CA-C-O	-5.42	108.71	120.10
2	W	702	SER	O-C-N	-5.42	110.80	121.10
2	р	702	SER	O-C-N	-5.41	110.82	121.10
2	q	701	PHE	CA-C-O	-5.41	108.74	120.10
2	W	701	PHE	CA-C-O	-5.41	108.75	120.10
2	k	702	SER	O-C-N	-5.40	110.84	121.10
2	с	701	PHE	CA-C-O	-5.40	108.76	120.10
2	n	701	PHE	CA-C-O	-5.39	108.77	120.10
2	h	701	PHE	CA-C-O	-5.39	108.77	120.10
2	t	705	ALA	CA-C-O	-5.39	108.79	120.10
2	р	701	PHE	CA-C-O	-5.37	108.81	120.10
2	t	701	PHE	CA-C-O	-5.37	108.82	120.10
2	у	705	ALA	CA-C-O	-5.37	108.83	120.10
2	1	701	PHE	CA-C-O	-5.36	108.85	120.10
2	g	702	SER	O-C-N	-5.35	110.93	121.10
2	u	701	PHE	CA-C-O	-5.34	108.88	120.10
2	s	702	SER	O-C-N	-5.34	110.96	121.10
2	0	701	PHE	CA-C-O	-5.34	108.89	120.10
2	с	702	SER	N-CA-CB	5.33	118.50	110.50
2	Х	702	SER	N-CA-CB	5.31	118.47	110.50
2	е	702	SER	O-C-N	-5.31	111.01	121.10
2	q	702	SER	O-C-N	-5.31	111.01	121.10
2	m	702	SER	O-C-N	-5.29	111.05	121.10
2	4	703	PRO	N-CA-C	5.29	125.86	112.10
2	r	702	SER	O-C-N	-5.28	111.07	121.10
2	Z	703	PRO	CA-C-O	-5.28	107.54	120.20
2	Х	703	PRO	CA-C-O	-5.27	107.54	120.20
2	W	703	PRO	CA-C-O	-5.26	107.56	120.20
2	1	702	SER	O-C-N	-5.26	111.10	121.10
2	2	701	PHE	CA-C-O	-5.26	109.05	120.10
2	j	701	PHE	CA-C-O	-5.26	109.05	120.10
2	S	702	SER	N-CA-CB	5.25	118.38	110.50
2	с	702	SER	O-C-N	-5.25	111.13	121.10
2	d	702	SER	O-C-N	-5.23	111.16	121.10

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
2	i	701	PHE	CA-C-O	-5.23	109.11	120.10
2	t	702	SER	O-C-N	-5.23	111.17	121.10
2	Z	702	SER	O-C-N	-5.23	111.17	121.10
2	k	702	SER	N-CA-CB	5.22	118.34	110.50
2	g	701	PHE	CA-C-O	-5.22	109.14	120.10
2	2	702	SER	O-C-N	-5.22	111.19	121.10
2	V	703	PRO	CA-C-O	-5.20	107.71	120.20
2	у	701	PHE	CA-C-O	-5.20	109.18	120.10
2	t	703	PRO	N-CA-C	5.20	125.61	112.10
2	g	703	PRO	CA-C-O	-5.19	107.73	120.20
2	0	703	PRO	CA-C-O	-5.19	107.74	120.20
2	4	702	SER	N-CA-CB	5.18	118.28	110.50
2	1	703	PRO	CA-C-O	-5.18	107.77	120.20
2	m	703	PRO	CA-C-O	-5.17	107.80	120.20
2	3	703	PRO	CA-C-O	-5.14	107.85	120.20
2	k	703	PRO	CA-C-O	-5.14	107.87	120.20
2	S	703	PRO	CA-C-O	-5.11	107.93	120.20
2	u	703	PRO	CA-C-O	-5.11	107.94	120.20
2	е	703	PRO	CA-C-O	-5.10	107.95	120.20
2	1	703	PRO	CA-C-O	-5.10	107.96	120.20
2	j	702	SER	O-C-N	-5.10	111.41	121.10
2	е	702	SER	N-CA-CB	5.09	118.14	110.50
2	V	702	SER	N-CA-CB	5.09	118.14	110.50
2	d	703	PRO	CA-C-O	-5.08	108.01	120.20
2	У	703	PRO	N-CA-C	5.07	125.28	112.10
2	f	702	SER	O-C-N	-5.07	111.47	121.10
2	У	702	SER	O-C-N	-5.07	111.47	121.10
2	с	703	PRO	CA-C-O	-5.07	108.04	120.20
2	1	702	SER	N-CA-CB	5.06	118.09	110.50
2	3	702	SER	O-C-N	-5.04	111.53	121.10
2	n	703	PRO	CA-C-O	-5.03	108.12	120.20
2	j	702	SER	N-CA-CB	5.03	118.05	110.50
2	2	703	PRO	CA-C-O	-5.03	108.13	120.20
2	х	702	SER	CA-C-O	-5.03	109.55	120.10
2	р	702	SER	N-CA-CB	5.02	118.03	110.50
2	r	702	SER	CA-C-O	-5.02	$109.5\overline{5}$	120.10
2	i	702	SER	O-C-N	-5.02	111.57	121.10
2	f	702	SER	N-CA-CB	5.01	118.02	110.50
2	m	702	SER	CA-C-O	-5.01	109.58	120.10
2	4	703	PRO	CA-C-O	-5.01	108.18	120.20
2	0	702	SER	O-C-N	-5.01	111.59	121.10
2	g	702	SER	N-CA-CB	5.00	118.00	110.50

Continued from previous page...

There are no chirality outliers.

All (3) planarity outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Group
2	g	703	PRO	Mainchain
2	W	704	MAA	Mainchain
2	Х	705	ALA	Mainchain

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	191/207~(92%)	187~(98%)	4 (2%)	0	100	100
1	В	184/207~(89%)	180 (98%)	4 (2%)	0	100	100
1	С	184/207~(89%)	182 (99%)	2 (1%)	0	100	100
1	D	185/207~(89%)	182 (98%)	3 (2%)	0	100	100
1	Е	184/207~(89%)	182 (99%)	2 (1%)	0	100	100
1	F	188/207~(91%)	186 (99%)	2 (1%)	0	100	100
1	G	189/207~(91%)	187 (99%)	2 (1%)	0	100	100
1	Н	184/207~(89%)	182 (99%)	2 (1%)	0	100	100
1	Ι	190/207~(92%)	186 (98%)	4 (2%)	0	100	100
1	J	189/207~(91%)	186 (98%)	3 (2%)	0	100	100
1	K	185/207~(89%)	181 (98%)	4 (2%)	0	100	100
1	L	183/207~(88%)	180 (98%)	3 (2%)	0	100	100
1	М	189/207~(91%)	185 (98%)	4 (2%)	0	100	100
1	Ν	183/207~(88%)	180 (98%)	3 (2%)	0	100	100

α \cdot \cdot \cdot	C		
Continued	trom	nremons	ทกกค
Contentaca	JION	precious	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	Ο	189/207~(91%)	187 (99%)	2(1%)	0	100	100
1	Р	188/207~(91%)	185 (98%)	3(2%)	0	100	100
1	Q	184/207~(89%)	181 (98%)	3(2%)	0	100	100
1	R	177/207~(86%)	175 (99%)	2 (1%)	0	100	100
1	S	181/207~(87%)	179 (99%)	2 (1%)	0	100	100
1	Т	186/207~(90%)	183 (98%)	3 (2%)	0	100	100
1	U	184/207~(89%)	181 (98%)	3 (2%)	0	100	100
1	V	181/207~(87%)	179 (99%)	2 (1%)	0	100	100
1	W	180/207~(87%)	177 (98%)	3 (2%)	0	100	100
1	Х	189/207~(91%)	187 (99%)	2 (1%)	0	100	100
1	Y	184/207~(89%)	181 (98%)	3 (2%)	0	100	100
1	Z	180/207~(87%)	178 (99%)	2 (1%)	0	100	100
1	a	180/207~(87%)	176 (98%)	2 (1%)	2(1%)	14	5
1	b	176/207~(85%)	173 (98%)	3 (2%)	0	100	100
2	1	3/7~(43%)	1 (33%)	2(67%)	0	100	100
2	2	3/7~(43%)	2(67%)	1 (33%)	0	100	100
2	3	3/7~(43%)	1 (33%)	2(67%)	0	100	100
2	4	3/7~(43%)	3 (100%)	0	0	100	100
2	с	3/7~(43%)	2~(67%)	1 (33%)	0	100	100
2	d	3/7~(43%)	1 (33%)	2(67%)	0	100	100
2	е	3/7~(43%)	3 (100%)	0	0	100	100
2	f	3/7~(43%)	1 (33%)	2(67%)	0	100	100
2	g	3/7~(43%)	2(67%)	1 (33%)	0	100	100
2	h	3/7~(43%)	1 (33%)	2 (67%)	0	100	100
2	i	3/7~(43%)	2(67%)	1 (33%)	0	100	100
2	j	3/7~(43%)	2 (67%)	1 (33%)	0	100	100
2	k	3/7~(43%)	1 (33%)	2 (67%)	0	100	100
2	1	3/7~(43%)	2 (67%)	1 (33%)	0	100	100
2	m	3/7~(43%)	1 (33%)	2 (67%)	0	100	100
2	n	3/7~(43%)	1 (33%)	2(67%)	0	100	100
2	0	3/7~(43%)	1 (33%)	2(67%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
2	р	3/7~(43%)	1 (33%)	2(67%)	0	100	100
2	q	3/7~(43%)	1 (33%)	2(67%)	0	100	100
2	r	3/7~(43%)	1 (33%)	2~(67%)	0	100	100
2	S	3/7~(43%)	2(67%)	1 (33%)	0	100	100
2	t	3/7~(43%)	3~(100%)	0	0	100	100
2	u	3/7~(43%)	1 (33%)	1 (33%)	1 (33%)	0	0
2	v	3/7~(43%)	3~(100%)	0	0	100	100
2	W	3/7~(43%)	2~(67%)	1 (33%)	0	100	100
2	х	3/7~(43%)	1 (33%)	2~(67%)	0	100	100
2	У	3/7~(43%)	2~(67%)	1 (33%)	0	100	100
2	Z	3/7~(43%)	1 (33%)	2(67%)	0	100	100
All	All	5251/5992~(88%)	5133 (98%)	115 (2%)	3~(0%)	51	42

All (3) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	а	191	HIS
1	a	192	ARG
2	u	703	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	164/175~(94%)	161 (98%)	3(2%)	59 55
1	В	159/175~(91%)	155~(98%)	4 (2%)	47 41
1	С	159/175~(91%)	154 (97%)	5(3%)	40 32
1	D	160/175~(91%)	158 (99%)	2(1%)	69 68
1	Ε	159/175~(91%)	156~(98%)	3(2%)	57 53
1	F	161/175~(92%)	157 (98%)	4 (2%)	47 41

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	G	162/175~(93%)	160 (99%)	2(1%)	71	70
1	Н	158/175~(90%)	154 (98%)	4(2%)	47	41
1	Ι	163/175~(93%)	157~(96%)	6 (4%)	34	25
1	J	162/175~(93%)	158 (98%)	4 (2%)	47	41
1	Κ	158/175~(90%)	155 (98%)	3 (2%)	57	53
1	L	157/175~(90%)	155 (99%)	2 (1%)	69	68
1	М	161/175~(92%)	159 (99%)	2 (1%)	71	70
1	Ν	157/175~(90%)	155 (99%)	2 (1%)	69	68
1	О	162/175~(93%)	160 (99%)	2 (1%)	71	70
1	Р	161/175~(92%)	158 (98%)	3 (2%)	57	53
1	Q	158/175~(90%)	155 (98%)	3 (2%)	57	53
1	R	153/175~(87%)	153 (100%)	0	100	100
1	S	156/175~(89%)	156 (100%)	0	100	100
1	Т	162/175~(93%)	161 (99%)	1 (1%)	86	87
1	U	159/175~(91%)	158 (99%)	1 (1%)	86	87
1	V	156/175~(89%)	153 (98%)	3 (2%)	57	53
1	W	155/175~(89%)	153 (99%)	2 (1%)	69	68
1	Х	160/175~(91%)	157 (98%)	3 (2%)	57	53
1	Y	160/175~(91%)	156 (98%)	4 (2%)	47	41
1	Z	156/175~(89%)	155 (99%)	1 (1%)	86	87
1	a	156/175~(89%)	153 (98%)	3 (2%)	57	53
1	b	152/175~(87%)	150 (99%)	2 (1%)	69	68
2	1	3/3~(100%)	1 (33%)	2 (67%)	0	0
2	2	3/3~(100%)	2 (67%)	1 (33%)	0	0
2	3	3/3~(100%)	2(67%)	1 (33%)	0	0
2	4	3/3~(100%)	2 (67%)	1 (33%)	0	0
2	с	3/3~(100%)	2(67%)	1 (33%)	0	0
2	d	3/3~(100%)	2 (67%)	1 (33%)	0	0
2	е	3/3~(100%)	2(67%)	1 (33%)	0	0
2	f	3/3~(100%)	2 (67%)	1 (33%)	0	0
2	g	3/3~(100%)	2(67%)	1 (33%)	0	0

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
2	h	3/3~(100%)	2(67%)	1 (33%)	0 0
2	i	3/3~(100%)	2(67%)	1 (33%)	0 0
2	j	3/3~(100%)	2(67%)	1 (33%)	0 0
2	k	3/3~(100%)	2(67%)	1 (33%)	0 0
2	1	3/3~(100%)	2(67%)	1 (33%)	0 0
2	m	3/3~(100%)	2~(67%)	1 (33%)	0 0
2	n	3/3~(100%)	2~(67%)	1 (33%)	0 0
2	О	3/3~(100%)	2~(67%)	1 (33%)	0 0
2	р	3/3~(100%)	2~(67%)	1 (33%)	0
2	q	3/3~(100%)	2~(67%)	1 (33%)	0 0
2	r	3/3~(100%)	2~(67%)	1 (33%)	0 0
2	S	3/3~(100%)	2~(67%)	1 (33%)	0 0
2	t	3/3~(100%)	2~(67%)	1 (33%)	0
2	u	3/3~(100%)	2~(67%)	1 (33%)	0 0
2	v	3/3~(100%)	2~(67%)	1 (33%)	0 0
2	W	3/3~(100%)	2~(67%)	1 (33%)	0 0
2	х	3/3~(100%)	2~(67%)	1 (33%)	0 0
2	У	3/3~(100%)	2(67%)	1 (33%)	0 0
2	Z	3/3~(100%)	2(67%)	1(33%)	0 0
All	All	4530/4984 (91%)	4427 (98%)	103 (2%)	50 45

All (103) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	Т	122	HIS
1	U	122	HIS
1	0	11	SER
1	0	122	HIS
1	Р	9	GLN
1	Р	12	ARG
1	Р	122	HIS
1	Q	10	THR
1	Q	122	HIS
1	Q	185	VAL
1	Y	9	GLN

Mol	Chain	Res	Type
1	Y	10	THR
1	Y	16	SER
1	Y	122	HIS
1	Ζ	122	HIS
1	a	122	HIS
1	a	184	LEU
1	a	193	ASN
1	b	17	PHE
1	b	122	HIS
1	V	122	HIS
1	V	184	LEU
1	V	191	HIS
1	W	122	HIS
1	W	191	HIS
1	Х	7	ILE
1	Х	9	GLN
1	Х	122	HIS
1	М	19	ILE
1	М	122	HIS
1	L	9	GLN
1	L	122	HIS
1	Κ	9	GLN
1	Κ	122	HIS
1	Κ	184	LEU
1	J	7	ILE
1	J	9	GLN
1	J	12	ARG
1	J	122	HIS
1	Ι	2	LEU
1	Ι	9	GLN
1	Ι	12	ARG
1	Ι	15	ARG
1	Ι	94	GLN
1	Ι	122	HIS
1	Н	2	LEU
1	Н	7	ILE
1	Н	23	LEU
1	Н	122	HIS
1	Ν	15	ARG
1	Ν	122	HIS
1	F	9	GLN
1	F	15	ARG

Mol	Chain	Res	Type
1	F	122	HIS
1	F	191	HIS
1	Е	9	GLN
1	Е	122	HIS
1	Е	191	HIS
1	D	9	GLN
1	D	122	HIS
1	С	2	LEU
1	С	7	ILE
1	С	15	ARG
1	С	41	ASN
1	С	122	HIS
1	В	9	GLN
1	В	10	THR
1	В	15	ARG
1	В	122	HIS
1	А	17	PHE
1	А	122	HIS
1	А	192	ARG
1	G	9	GLN
1	G	122	HIS
2	1	702	SER
2	1	703	PRO
2	2	702	SER
2	с	702	SER
2	d	702	SER
2	е	702	SER
2	f	702	SER
2	g	702	SER
2	h	702	SER
2	i	702	SER
2	j	702	SER
2	k	702	SER
2	1	702	SER
2	m	702	SER
2	n	702	SER
2	0	702	SER
2	р	702	SER
2	q	702	SER
2	r	702	SER
2	s	702	SER
2	t	702	SER

Commuted from previous page										
Mol	Chain	Res	Type							
2	V	702	SER							
2	W	702	SER							
2	Х	702	SER							
2	У	702	SER							
2	Z	702	SER							
2	3	702	SER							
2	4	702	SER							
2	u	702	SER							

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (65) such sidechains are listed below:

Mol	Chain	Res	Type
1	R	38	HIS
1	R	163	GLN
1	S	116	ASN
1	Т	9	GLN
1	Т	116	ASN
1	Т	129	GLN
1	U	191	HIS
1	0	38	HIS
1	0	116	ASN
1	Р	9	GLN
1	Р	38	HIS
1	Р	116	ASN
1	Р	129	GLN
1	Q	38	HIS
1	Q	116	ASN
1	Q	129	GLN
1	Q	163	GLN
1	Y	9	GLN
1	Y	41	ASN
1	Y	116	ASN
1	Y	163	GLN
1	Y	191	HIS
1	Ζ	163	GLN
1	a	116	ASN
1	b	116	ASN
1	V	34	GLN
1	V	38	HIS
1	V	116	ASN
1	W	34	GLN
1	W	41	ASN

Mol	Chain	Res	Type
1	Х	64	ASN
1	М	34	GLN
1	L	9	GLN
1	L	34	GLN
1	L	38	HIS
1	L	94	GLN
1	K	9	GLN
1	J	9	GLN
1	J	34	GLN
1	J	64	ASN
1	J	163	GLN
1	J	191	HIS
1	Ι	34	GLN
1	Ι	38	HIS
1	Ι	94	GLN
1	Ν	116	ASN
1	F	9	GLN
1	Е	9	GLN
1	Е	38	HIS
1	Е	94	GLN
1	Е	116	ASN
1	Е	163	GLN
1	D	9	GLN
1	D	116	ASN
1	D	163	GLN
1	С	38	HIS
1	С	41	ASN
1	С	94	GLN
1	С	131	GLN
1	В	34	GLN
1	В	191	HIS
1	А	9	GLN
1	А	38	HIS
1	G	9	GLN
1	G	41	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

56 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Bog	Link	В	Bond lengths		Bond angles		
WIOI	Type	Ullalli	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
2	MAA	1	704	2	$4,\!5,\!6$	0.67	0	$1,\!5,\!7$	2.40	1 (100%)
2	MAA	d	704	2	$4,\!5,\!6$	0.67	0	$1,\!5,\!7$	2.48	1 (100%)
2	MAA	i	704	2	$4,\!5,\!6$	0.67	0	$1,\!5,\!7$	2.42	1 (100%)
2	MP8	n	706	2	$5,\!8,\!9$	1.67	1 (20%)	3,10,12	<mark>3.91</mark>	1 (33%)
2	MAA	2	704	2	$4,\!5,\!6$	0.69	0	$1,\!5,\!7$	2.45	1 (100%)
2	MP8	W	706	2	5,8,9	1.69	1 (20%)	3,10,12	4.01	1 (33%)
2	MP8	f	706	2	5,8,9	1.68	1 (20%)	3,10,12	<mark>3.89</mark>	1 (33%)
2	MAA	е	704	2	4,5,6	0.68	0	$1,\!5,\!7$	2.46	1 (100%)
2	MP8	е	706	2	$5,\!8,\!9$	1.69	1 (20%)	3,10,12	4.01	1 (33%)
2	MP8	Z	706	2	$5,\!8,\!9$	1.71	1 (20%)	3,10,12	4.03	1 (33%)
2	MP8	4	706	2	5,8,9	1.67	1 (20%)	3,10,12	<mark>3.96</mark>	1 (33%)
2	MAA	g	704	2	4,5,6	0.67	0	$1,\!5,\!7$	2.55	1 (100%)
2	MAA	У	704	2	4,5,6	0.66	0	$1,\!5,\!7$	2.56	1 (100%)
2	MP8	q	706	2	5,8,9	1.67	1 (20%)	3,10,12	4.05	1 (33%)
2	MP8	3	706	2	5,8,9	1.64	1 (20%)	3,10,12	3.94	1 (33%)
2	MAA	t	704	2	4,5,6	0.68	0	$1,\!5,\!7$	2.46	1 (100%)
2	MP8	У	706	2	$5,\!8,\!9$	1.73	1 (20%)	3,10,12	<mark>3.99</mark>	1 (33%)
2	MAA	V	704	2	4,5,6	0.71	0	$1,\!5,\!7$	2.19	1 (100%)
2	MAA	О	704	2	4,5,6	0.66	0	$1,\!5,\!7$	2.31	1 (100%)
2	MP8	g	706	2	5,8,9	1.65	1 (20%)	3,10,12	<mark>3.99</mark>	1 (33%)
2	MP8	1	706	2	5,8,9	1.69	1 (20%)	3,10,12	3.88	1 (33%)
2	MP8	0	706	2	5,8,9	1.67	1 (20%)	3,10,12	<mark>3.95</mark>	1 (33%)
2	MAA	s	704	2	4,5,6	0.69	0	$1,\!5,\!7$	2.41	1 (100%)
2	MP8	i	706	2	$5,\!8,\!9$	1.67	1 (20%)	3,10,12	<mark>3.99</mark>	1 (33%)
2	MP8	2	706	2	$5,\!8,\!9$	1.69	1 (20%)	3,10,12	4.07	1 (33%)
2	MAA	f	704	2	4,5,6	0.67	0	$1,\!5,\!7$	2.29	1 (100%)

Mal	Type	Chain	Dog	Link	Bond lengths		Bond angles			
WIOI	Type	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
2	MAA	р	704	2	$4,\!5,\!6$	0.67	0	$1,\!5,\!7$	2.33	1 (100%)
2	MAA	q	704	2	4,5,6	0.69	0	$1,\!5,\!7$	2.23	1 (100%)
2	MAA	r	704	2	4,5,6	0.64	0	$1,\!5,\!7$	2.44	1 (100%)
2	MAA	х	704	2	4,5,6	0.71	0	$1,\!5,\!7$	2.37	1 (100%)
2	MP8	m	706	2	5,8,9	1.67	1 (20%)	3,10,12	3.96	1 (33%)
2	MAA	1	704	2	4,5,6	0.69	0	$1,\!5,\!7$	2.41	1 (100%)
2	MP8	v	706	2	5,8,9	1.64	1 (20%)	3,10,12	3.99	1 (33%)
2	MAA	h	704	2	4,5,6	0.65	0	$1,\!5,\!7$	2.33	1 (100%)
2	MAA	W	704	2	4,5,6	0.68	0	1,5,7	2.34	1 (100%)
2	MAA	3	704	2	4,5,6	0.64	0	1,5,7	2.25	1 (100%)
2	MAA	4	704	2	4,5,6	0.67	0	1,5,7	2.43	1 (100%)
2	MP8	с	706	2	5,8,9	1.62	1 (20%)	3,10,12	4.01	1 (33%)
2	MP8	j	706	2	5,8,9	1.68	1 (20%)	3,10,12	<mark>3.89</mark>	1 (33%)
2	MP8	u	706	2	5,8,9	1.67	1 (20%)	3,10,12	3.91	1 (33%)
2	MAA	k	704	2	4,5,6	0.66	0	1,5,7	2.37	1 (100%)
2	MP8	s	706	2	5,8,9	1.66	1 (20%)	3,10,12	3.94	1 (33%)
2	MP8	1	706	2	5,8,9	1.66	1 (20%)	3,10,12	4.05	1 (33%)
2	MAA	Z	704	2	4,5,6	0.68	0	1,5,7	2.21	1 (100%)
2	MP8	х	706	2	5,8,9	1.67	1 (20%)	3,10,12	3.95	1 (33%)
2	MP8	d	706	2	5,8,9	1.68	1 (20%)	3,10,12	4.06	1 (33%)
2	MAA	С	704	2	4,5,6	0.67	0	1,5,7	2.50	1 (100%)
2	MAA	m	704	2	4,5,6	0.67	0	1,5,7	2.41	1 (100%)
2	MAA	u	704	2	4,5,6	0.68	0	1,5,7	2.15	1 (100%)
2	MP8	t	706	2	5,8,9	1.70	1 (20%)	3,10,12	3.91	1 (33%)
2	MP8	h	706	2	5,8,9	1.66	1 (20%)	3,10,12	3.97	1 (33%)
2	MP8	r	706	2	5,8,9	1.69	1 (20%)	3,10,12	3.96	1 (33%)
2	MAA	n	704	2	4,5,6	0.67	0	$1,\!5,\!7$	2.29	1 (100%)
2	MP8	р	706	2	5,8,9	1.66	1 (20%)	3,10,12	<mark>3.89</mark>	1 (33%)
2	MAA	j	704	2	4,5,6	0.68	0	$1,\!5,\!7$	2.58	1 (100%)
2	MP8	k	706	2	5,8,9	1.64	1 (20%)	3,10,12	4.03	1 (33%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

21/1	ΓC
JIVI .	LU

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	MAA	1	704	2	-	0/1/4/6	-
2	MAA	d	704	2	-	0/1/4/6	-
2	MAA	i	704	2	-	0/1/4/6	-
2	MP8	n	706	2	-	0/0/11/13	0/1/1/1
2	MAA	2	704	2	-	0/1/4/6	-
2	MP8	W	706	2	-	0/0/11/13	0/1/1/1
2	MP8	f	706	2	-	0/0/11/13	0/1/1/1
2	MAA	е	704	2	-	0/1/4/6	-
2	MP8	е	706	2	-	0/0/11/13	0/1/1/1
2	MP8	Z	706	2	-	0/0/11/13	0/1/1/1
2	MP8	4	706	2	-	0/0/11/13	0/1/1/1
2	MAA	g	704	2	-	0/1/4/6	-
2	MAA	У	704	2	-	0/1/4/6	-
2	MP8	q	706	2	-	0/0/11/13	0/1/1/1
2	MP8	3	706	2	-	0/0/11/13	0/1/1/1
2	MAA	t	704	2	-	0/1/4/6	-
2	MP8	У	706	2	-	0/0/11/13	0/1/1/1
2	MAA	V	704	2	-	0/1/4/6	-
2	MAA	0	704	2	-	0/1/4/6	-
2	MP8	g	706	2	-	0/0/11/13	0/1/1/1
2	MP8	1	706	2	-	0/0/11/13	0/1/1/1
2	MP8	0	706	2	-	0/0/11/13	0/1/1/1
2	MAA	S	704	2	-	0/1/4/6	-
2	MP8	i	706	2	-	0/0/11/13	0/1/1/1
2	MP8	2	706	2	-	0/0/11/13	0/1/1/1
2	MAA	f	704	2	-	0/1/4/6	-
2	MAA	р	704	2	-	0/1/4/6	-
2	MAA	q	704	2	-	0/1/4/6	-
2	MAA	r	704	2	-	0/1/4/6	-
2	MAA	Х	704	2	-	0/1/4/6	-
2	MP8	m	706	2	-	0/0/11/13	0/1/1/1
2	MAA	1	704	2	-	0/1/4/6	-
2	MP8	V	706	2	-	0/0/11/13	0/1/1/1
2	MAA	h	704	2	-	0/1/4/6	-
2	MAA	W	704	2	-	0/1/4/6	-
2	MAA	3	704	2	-	0/1/4/6	-
2	MAA	4	704	2	-	0/1/4/6	-
2	MP8	с	706	2	-	0/0/11/13	0/1/1/1
2	MP8	j	706	2	-	0/0/11/13	0/1/1/1
2	MP8	u	706	2	-	0/0/11/13	0/1/1/1
2	MAA	k	704	2	-	0/1/4/6	-
2	MP8	S	706	2	-	0/0/11/13	0/1/1/1
2	MP8	1	706	2	-	0/0/11/13	0/1/1/1

3MT	6
	~

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	MAA	Z	704	2	-	0/1/4/6	-
2	MP8	Х	706	2	-	0/0/11/13	0/1/1/1
2	MP8	d	706	2	-	0/0/11/13	0/1/1/1
2	MAA	с	704	2	-	0/1/4/6	-
2	MAA	m	704	2	-	0/1/4/6	-
2	MAA	u	704	2	-	0/1/4/6	-
2	MP8	t	706	2	-	0/0/11/13	0/1/1/1
2	MP8	h	706	2	-	0/0/11/13	0/1/1/1
2	MP8	r	706	2	-	0/0/11/13	0/1/1/1
2	MAA	n	704	2	-	0/1/4/6	-
2	MP8	р	706	2	-	0/0/11/13	0/1/1/1
2	MAA	j	704	2	-	0/1/4/6	-
2	MP8	k	706	2	-	0/0/11/13	0/1/1/1

All (28) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	у	706	MP8	CB-CA	-3.41	1.46	1.54
2	Z	706	MP8	CB-CA	-3.37	1.47	1.54
2	t	706	MP8	CB-CA	-3.32	1.47	1.54
2	1	706	MP8	CB-CA	-3.31	1.47	1.54
2	е	706	MP8	CB-CA	-3.30	1.47	1.54
2	W	706	MP8	CB-CA	-3.30	1.47	1.54
2	2	706	MP8	CB-CA	-3.29	1.47	1.54
2	d	706	MP8	CB-CA	-3.29	1.47	1.54
2	j	706	MP8	CB-CA	-3.28	1.47	1.54
2	r	706	MP8	CB-CA	-3.28	1.47	1.54
2	f	706	MP8	CB-CA	-3.27	1.47	1.54
2	q	706	MP8	CB-CA	-3.27	1.47	1.54
2	n	706	MP8	CB-CA	-3.26	1.47	1.54
2	s	706	MP8	CB-CA	-3.26	1.47	1.54
2	Х	706	MP8	CB-CA	-3.25	1.47	1.54
2	4	706	MP8	CB-CA	-3.25	1.47	1.54
2	m	706	MP8	CB-CA	-3.25	1.47	1.54
2	1	706	MP8	CB-CA	-3.25	1.47	1.54
2	u	706	MP8	CB-CA	-3.25	1.47	1.54
2	i	706	MP8	CB-CA	-3.24	1.47	1.54
2	р	706	MP8	CB-CA	-3.24	1.47	1.54
2	h	706	MP8	CB-CA	-3.24	1.47	1.54
2	0	706	MP8	CB-CA	-3.23	1.47	1.54
2	g	706	MP8	CB-CA	-3.21	1.47	1.54
2	k	706	MP8	CB-CA	-3.20	1.47	1.54

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	Observed(Å)	Ideal(Å)					
2	V	706	MP8	CB-CA	-3.19	1.47	1.54					
2	3	706	MP8	CB-CA	-3.15	1.47	1.54					
2	с	706	MP8	CB-CA	-3.15	1.47	1.54					

All (56) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	d	706	MP8	O-C-CA	-6.62	107.43	124.78
2	2	706	MP8	O-C-CA	-6.57	107.55	124.78
2	1	706	MP8	O-C-CA	-6.57	107.56	124.78
2	g	706	MP8	O-C-CA	-6.54	107.63	124.78
2	k	706	MP8	O-C-CA	-6.54	107.63	124.78
2	q	706	MP8	O-C-CA	-6.54	107.65	124.78
2	W	706	MP8	O-C-CA	-6.52	107.68	124.78
2	е	706	MP8	O-C-CA	-6.52	107.70	124.78
2	с	706	MP8	O-C-CA	-6.51	107.72	124.78
2	Z	706	MP8	O-C-CA	-6.48	107.79	124.78
2	i	706	MP8	O-C-CA	-6.48	107.80	124.78
2	h	706	MP8	O-C-CA	-6.48	107.80	124.78
2	V	706	MP8	O-C-CA	-6.47	107.82	124.78
2	у	706	MP8	O-C-CA	-6.47	107.83	124.78
2	0	706	MP8	O-C-CA	-6.45	107.87	124.78
2	s	706	MP8	O-C-CA	-6.45	107.88	124.78
2	r	706	MP8	O-C-CA	-6.43	107.93	124.78
2	m	706	MP8	O-C-CA	-6.42	107.94	124.78
2	3	706	MP8	O-C-CA	-6.40	108.01	124.78
2	4	706	MP8	O-C-CA	-6.40	108.02	124.78
2	Х	706	MP8	O-C-CA	-6.38	108.07	124.78
2	u	706	MP8	O-C-CA	-6.37	108.08	124.78
2	j	706	MP8	O-C-CA	-6.36	108.11	124.78
2	f	706	MP8	O-C-CA	-6.34	108.16	124.78
2	n	706	MP8	O-C-CA	-6.34	108.17	124.78
2	р	706	MP8	O-C-CA	-6.33	108.18	124.78
2	1	706	MP8	O-C-CA	-6.31	108.24	124.78
2	t	706	MP8	O-C-CA	-6.30	108.26	124.78
2	j	704	MAA	CB-CA-N	2.58	116.24	110.18
2	У	704	MAA	CB-CA-N	2.56	116.22	110.18
2	g	704	MAA	CB-CA-N	2.55	116.17	110.18
2	с	704	MAA	CB-CA-N	2.50	116.07	110.18
2	d	704	MAA	CB-CA-N	2.48	116.03	110.18
2	е	704	MAA	CB-CA-N	2.46	115.98	110.18
2	t	704	MAA	CB-CA-N	2.46	115.97	110.18

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$Observed(^{o})$	$Ideal(^{o})$
2	2	704	MAA	CB-CA-N	2.45	115.95	110.18
2	r	704	MAA	CB-CA-N	2.44	115.92	110.18
2	4	704	MAA	CB-CA-N	2.43	115.90	110.18
2	i	704	MAA	CB-CA-N	2.42	115.88	110.18
2	1	704	MAA	CB-CA-N	2.41	115.86	110.18
2	m	704	MAA	CB-CA-N	2.41	115.86	110.18
2	s	704	MAA	CB-CA-N	2.41	115.86	110.18
2	1	704	MAA	CB-CA-N	2.40	115.83	110.18
2	Х	704	MAA	CB-CA-N	2.37	115.76	110.18
2	k	704	MAA	CB-CA-N	2.37	115.76	110.18
2	W	704	MAA	CB-CA-N	2.34	115.69	110.18
2	р	704	MAA	CB-CA-N	2.33	115.68	110.18
2	h	704	MAA	CB-CA-N	2.33	115.66	110.18
2	0	704	MAA	CB-CA-N	2.31	115.61	110.18
2	f	704	MAA	CB-CA-N	2.29	115.58	110.18
2	n	704	MAA	CB-CA-N	2.29	115.56	110.18
2	3	704	MAA	CB-CA-N	2.25	115.48	110.18
2	q	704	MAA	CB-CA-N	2.23	115.43	110.18
2	Z	704	MAA	CB-CA-N	2.21	115.39	110.18
2	V	704	MAA	CB-CA-N	2.19	115.33	110.18
2	u	704	MAA	CB-CA-N	2.15	115.24	110.18

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

55 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the

3 4 1	m		D	T • 1	В	ond leng	gths	В	Sond angles		
Mol	Type	Chain	Res	Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
3	MPD	Ζ	802	-	7,7,7	0.27	0	9,10,10	0.20	0	
3	MPD	V	202	-	7,7,7	0.27	0	9,10,10	0.21	0	
3	MPD	J	801	-	7,7,7	0.28	0	9,10,10	0.19	0	
3	MPD	L	800	-	7,7,7	0.27	0	9,10,10	0.20	0	
3	MPD	С	800	-	7,7,7	0.27	0	9,10,10	0.20	0	
3	MPD	Е	801	-	7,7,7	0.28	0	9,10,10	0.20	0	
3	MPD	W	800	-	7,7,7	0.28	0	9,10,10	0.19	0	
3	MPD	K	800	-	7,7,7	0.26	0	9,10,10	0.20	0	
3	MPD	Ζ	801	-	7,7,7	0.25	0	9,10,10	0.17	0	
3	MPD	a	800	-	7,7,7	0.26	0	9,10,10	0.19	0	
3	MPD	Х	202	-	7,7,7	0.25	0	9,10,10	0.21	0	
3	MPD	L	801	-	7,7,7	0.26	0	9,10,10	0.24	0	
3	MPD	Е	802	-	7,7,7	0.27	0	9,10,10	0.18	0	
3	MPD	Х	201	-	7,7,7	0.27	0	9,10,10	0.18	0	
3	MPD	D	801	-	7,7,7	0.27	0	9,10,10	0.19	0	
3	MPD	b	801	-	7,7,7	0.26	0	9,10,10	0.23	0	
3	MPD	D	800	-	7,7,7	0.26	0	9,10,10	0.19	0	
3	MPD	А	801	-	7,7,7	0.26	0	9,10,10	0.19	0	
3	MPD	R	202	-	7,7,7	0.27	0	9,10,10	0.20	0	
3	MPD	Р	801	-	7,7,7	0.27	0	9,10,10	0.22	0	
3	MPD	N	801	-	7,7,7	0.25	0	9,10,10	0.17	0	
3	MPD	U	201	-	7,7,7	0.28	0	9,10,10	0.21	0	
3	MPD	V	201	-	7,7,7	0.25	0	$9,\!10,\!10$	0.18	0	
3	MPD	Ι	800	-	7,7,7	0.25	0	9,10,10	0.18	0	
3	MPD	Н	800	-	7,7,7	0.25	0	$9,\!10,\!10$	0.19	0	
3	MPD	В	800	-	7,7,7	0.26	0	$9,\!10,\!10$	0.20	0	
3	MPD	0	801	-	7,7,7	0.25	0	$9,\!10,\!10$	0.18	0	
3	MPD	Е	803	-	7,7,7	0.26	0	$9,\!10,\!10$	0.21	0	
3	MPD	R	203	-	7,7,7	0.27	0	$9,\!10,\!10$	0.20	0	
3	MPD	М	202	-	7,7,7	0.27	0	$9,\!10,\!10$	0.24	0	
3	MPD	А	800	-	7,7,7	0.27	0	$9,\!10,\!10$	0.19	0	
3	MPD	Q	801	-	7,7,7	0.26	0	$9,\!10,\!10$	0.19	0	
3	MPD	Q	800	-	7,7,7	0.28	0	$9,\!10,\!10$	0.18	0	
3	MPD	R	201	-	7,7,7	0.26	0	9,10,10	0.21	0	
3	MPD	Y	800	-	7,7,7	0.27	0	$9,\!10,\!10$	0.15	0	
3	MPD	М	201	-	7,7,7	0.26	0	9,10,10	0.18	0	
3	MPD	Ζ	803	-	7,7,7	0.27	0	9,10,10	0.24	0	
3	MPD	В	801	-	7,7,7	0.29	0	9,10,10	0.23	0	
3	MPD	G	800	-	7,7,7	0.27	0	9,10,10	0.16	0	
3	MPD	0	800	-	7,7,7	0.25	0	9,10,10	0.19	0	

expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Bos	Link	B	ond leng	gths	Bond angles		
WIOI	Type	Ullalli	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
3	MPD	N	800	-	7,7,7	0.29	0	9,10,10	0.18	0
3	MPD	Т	801	-	7,7,7	0.28	0	9,10,10	0.25	0
3	MPD	Т	800	-	7,7,7	0.27	0	9,10,10	0.17	0
3	MPD	b	800	-	7,7,7	0.27	0	9,10,10	0.18	0
3	MPD	W	801	-	7,7,7	0.28	0	9,10,10	0.21	0
3	MPD	K	801	-	7,7,7	0.25	0	9,10,10	0.20	0
3	MPD	Р	800	-	7,7,7	0.27	0	9,10,10	0.23	0
3	MPD	G	801	-	7,7,7	0.27	0	9,10,10	0.21	0
3	MPD	М	203	-	7,7,7	0.28	0	9,10,10	0.16	0
3	MPD	J	800	-	7,7,7	0.26	0	9,10,10	0.19	0
3	MPD	С	801	-	7,7,7	0.26	0	9,10,10	0.20	0
3	MPD	S	800	-	7,7,7	0.29	0	9,10,10	0.15	0
3	MPD	Ι	801	-	7,7,7	0.26	0	9,10,10	0.24	0
3	MPD	F	800	-	7,7,7	0.27	0	9,10,10	0.20	0
3	MPD	U	202	-	7,7,7	0.28	0	9,10,10	0.17	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	MPD	Z	802	-	-	1/5/5/5	-
3	MPD	V	202	-	-	2/5/5/5	-
3	MPD	J	801	-	-	1/5/5/5	-
3	MPD	L	800	-	-	3/5/5/5	-
3	MPD	С	800	-	-	2/5/5/5	-
3	MPD	Е	801	-	-	1/5/5/5	-
3	MPD	W	800	-	-	1/5/5/5	-
3	MPD	K	800	-	-	3/5/5/5	-
3	MPD	Z	801	-	-	3/5/5/5	-
3	MPD	a	800	-	-	3/5/5/5	-
3	MPD	Х	202	-	-	2/5/5/5	-
3	MPD	L	801	-	-	2/5/5/5	-
3	MPD	Е	802	-	-	3/5/5/5	-
3	MPD	Х	201	-	-	3/5/5/5	-
3	MPD	D	801	-	-	1/5/5/5	-
3	MPD	b	801	-	-	2/5/5/5	-
3	MPD	D	800	-	-	3/5/5/5	-
3	MPD	А	801	-	-	2/5/5/5	-

21/17	ΓG
2IVI 1	LU

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	MPD	R	202	-	-	3/5/5/5	-
3	MPD	Р	801	-	-	0/5/5/5	_
3	MPD	N	801	-	-	3/5/5/5	-
3	MPD	U	201	-	-	1/5/5/5	-
3	MPD	V	201	-	-	1/5/5/5	-
3	MPD	Ι	800	-	-	3/5/5/5	-
3	MPD	Н	800	-	-	3/5/5/5	-
3	MPD	В	800	-	-	3/5/5/5	-
3	MPD	0	801	-	-	3/5/5/5	-
3	MPD	Е	803	-	-	1/5/5/5	-
3	MPD	R	203	-	-	2/5/5/5	-
3	MPD	М	202	-	-	0/5/5/5	-
3	MPD	А	800	-	-	2/5/5/5	_
3	MPD	Q	801	-	-	1/5/5/5	-
3	MPD	Q	800	-	-	2/5/5/5	-
3	MPD	R	201	-	-	0/5/5/5	-
3	MPD	Y	800	-	-	3/5/5/5	-
3	MPD	М	201	-	-	3/5/5/5	-
3	MPD	Z	803	-	-	1/5/5/5	-
3	MPD	В	801	-	-	2/5/5/5	-
3	MPD	G	800	-	-	3/5/5/5	-
3	MPD	0	800	-	-	3/5/5/5	-
3	MPD	N	800	-	-	3/5/5/5	-
3	MPD	Т	801	-	-	0/5/5/5	-
3	MPD	Т	800	-	-	3/5/5/5	-
3	MPD	b	800	-	-	3/5/5/5	-
3	MPD	W	801	-	-	1/5/5/5	-
3	MPD	K	801	-	-	2/5/5/5	-
3	MPD	Р	800	-	-	0/5/5/5	-
3	MPD	G	801	-	-	2/5/5/5	_
3	MPD	М	203	-	-	3/5/5/5	-
3	MPD	J	800	-	-	3/5/5/5	-
3	MPD	С	801	-	-	0/5/5/5	-
3	MPD	S	800	-	-	3/5/5/5	-
3	MPD	Ι	801	-	-	1/5/5/5	-
3	MPD	F	800	-	-	2/5/5/5	-
3	MPD	U	202	-	-	3/5/5/5	-

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (110) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	S	800	MPD	O2-C2-C3-C4
3	b	800	MPD	O2-C2-C3-C4
3	J	800	MPD	O2-C2-C3-C4
3	Е	802	MPD	O2-C2-C3-C4
3	D	800	MPD	O2-C2-C3-C4
3	R	202	MPD	O2-C2-C3-C4
3	Т	800	MPD	O2-C2-C3-C4
3	U	202	MPD	O2-C2-C3-C4
3	0	800	MPD	O2-C2-C3-C4
3	0	801	MPD	O2-C2-C3-C4
3	Y	800	MPD	O2-C2-C3-C4
3	Ζ	801	MPD	O2-C2-C3-C4
3	a	800	MPD	O2-C2-C3-C4
3	Х	201	MPD	O2-C2-C3-C4
3	М	201	MPD	O2-C2-C3-C4
3	М	203	MPD	O2-C2-C3-C4
3	L	800	MPD	O2-C2-C3-C4
3	K	800	MPD	O2-C2-C3-C4
3	Ι	800	MPD	O2-C2-C3-C4
3	Н	800	MPD	O2-C2-C3-C4
3	N	800	MPD	O2-C2-C3-C4
3	N	801	MPD	O2-C2-C3-C4
3	F	800	MPD	O2-C2-C3-C4
3	В	800	MPD	O2-C2-C3-C4
3	В	801	MPD	O2-C2-C3-C4
3	А	800	MPD	O2-C2-C3-C4
3	G	800	MPD	O2-C2-C3-C4
3	R	202	MPD	C1-C2-C3-C4
3	R	202	MPD	CM-C2-C3-C4
3	R	203	MPD	CM-C2-C3-C4
3	S	800	MPD	C1-C2-C3-C4
3	S	800	MPD	CM-C2-C3-C4
3	Т	800	MPD	C1-C2-C3-C4
3	Т	800	MPD	CM-C2-C3-C4
3	U	201	MPD	C1-C2-C3-C4
3	U	202	MPD	C1-C2-C3-C4
3	U	202	MPD	CM-C2-C3-C4

Mol	Chain	Res	Type	Atoms
3	0	800	MPD	C1-C2-C3-C4
3	0	800	MPD	CM-C2-C3-C4
3	0	801	MPD	C1-C2-C3-C4
3	0	801	MPD	CM-C2-C3-C4
3	Q	800	MPD	C1-C2-C3-C4
3	Q	801	MPD	C1-C2-C3-C4
3	Y	800	MPD	C1-C2-C3-C4
3	Y	800	MPD	CM-C2-C3-C4
3	Ζ	801	MPD	C1-C2-C3-C4
3	Ζ	801	MPD	CM-C2-C3-C4
3	a	800	MPD	C1-C2-C3-C4
3	a	800	MPD	CM-C2-C3-C4
3	b	800	MPD	C1-C2-C3-C4
3	b	800	MPD	CM-C2-C3-C4
3	b	801	MPD	CM-C2-C3-C4
3	V	202	MPD	CM-C2-C3-C4
3	W	800	MPD	C1-C2-C3-C4
3	W	801	MPD	C1-C2-C3-C4
3	Х	201	MPD	C1-C2-C3-C4
3	Х	201	MPD	CM-C2-C3-C4
3	Х	202	MPD	CM-C2-C3-C4
3	М	201	MPD	C1-C2-C3-C4
3	М	201	MPD	CM-C2-C3-C4
3	М	203	MPD	C1-C2-C3-C4
3	М	203	MPD	CM-C2-C3-C4
3	L	800	MPD	C1-C2-C3-C4
3	L	800	MPD	CM-C2-C3-C4
3	L	801	MPD	CM-C2-C3-C4
3	K	800	MPD	C1-C2-C3-C4
3	K	800	MPD	CM-C2-C3-C4
3	K	801	MPD	CM-C2-C3-C4
3	J	800	MPD	C1-C2-C3-C4
3	J	800	MPD	CM-C2-C3-C4
3	Ι	800	MPD	C1-C2-C3-C4
3	Ι	800	MPD	CM-C2-C3-C4
3	Н	800	MPD	C1-C2-C3-C4
3	Н	800	MPD	CM-C2-C3-C4
3	N	800	MPD	C1-C2-C3-C4
3	N	800	MPD	CM-C2-C3-C4
3	N	801	MPD	C1-C2-C3-C4
3	N	801	MPD	CM-C2-C3-C4
3	F	800	MPD	C1-C2-C3-C4

Continued from previous page...

	3	1	1 0	
Mol	Chain	\mathbf{Res}	Type	Atoms
3	Е	801	MPD	C1-C2-C3-C4
3	Е	802	MPD	C1-C2-C3-C4
3	Е	802	MPD	CM-C2-C3-C4
3	Е	803	MPD	C1-C2-C3-C4
3	D	800	MPD	C1-C2-C3-C4
3	D	800	MPD	CM-C2-C3-C4
3	D	801	MPD	C1-C2-C3-C4
3	С	800	MPD	C1-C2-C3-C4
3	В	800	MPD	C1-C2-C3-C4
3	В	800	MPD	CM-C2-C3-C4
3	В	801	MPD	C1-C2-C3-C4
3	А	800	MPD	C1-C2-C3-C4
3	А	801	MPD	CM-C2-C3-C4
3	G	800	MPD	C1-C2-C3-C4
3	G	800	MPD	CM-C2-C3-C4
3	G	801	MPD	C1-C2-C3-C4
3	R	203	MPD	O2-C2-C3-C4
3	Q	800	MPD	O2-C2-C3-C4
3	Z	802	MPD	O2-C2-C3-C4
3	Z	803	MPD	O2-C2-C3-C4
3	b	801	MPD	O2-C2-C3-C4
3	V	201	MPD	O2-C2-C3-C4
3	V	202	MPD	O2-C2-C3-C4
3	Х	202	MPD	O2-C2-C3-C4
3	L	801	MPD	O2-C2-C3-C4
3	К	801	MPD	O2-C2-C3-C4
3	J	801	MPD	O2-C2-C3-C4
3	Ι	801	MPD	O2-C2-C3-C4
3	С	800	MPD	O2-C2-C3-C4
3	А	801	MPD	O2-C2-C3-C4
3	G	801	MPD	O2-C2-C3-C4

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

3MT6

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	> #RSRZ>2			$OWAB(Å^2)$	$Q{<}0.9$
1	А	192/207~(92%)	-0.13	5(2%)	56	58	14, 20, 36, 48	0
1	В	188/207~(90%)	-0.18	6 (3%)	47	50	13, 18, 40, 71	0
1	С	188/207~(90%)	-0.06	8 (4%)	35	38	12, 19, 42, 78	0
1	D	188/207~(90%)	-0.11	9~(4%)	30	33	13, 18, 40, 68	0
1	Ε	188/207~(90%)	-0.13	6 (3%)	47	50	15, 20, 40, 62	0
1	F	190/207~(91%)	-0.04	11 (5%)	23	25	16, 21, 45, 79	0
1	G	190/207~(91%)	-0.03	8 (4%)	36	39	16, 22, 44, 62	0
1	Н	186/207~(89%)	-0.20	7 (3%)	40	43	13, 19, 40, 61	0
1	Ι	190/207~(91%)	-0.22	4 (2%)	63	66	12, 18, 37, 54	0
1	J	190/207~(91%)	-0.14	6 (3%)	47	50	12, 18, 45, 63	0
1	Κ	188/207~(90%)	-0.09	9~(4%)	30	33	13, 19, 45, 70	0
1	L	187/207~(90%)	-0.08	6 (3%)	47	50	15, 21, 44, 72	0
1	М	190/207~(91%)	0.04	13~(6%)	17	19	16, 22, 45, 68	0
1	Ν	187/207~(90%)	-0.07	8 (4%)	35	38	15, 20, 45, 66	0
1	Ο	189/207~(91%)	-0.09	6 (3%)	47	50	16, 21, 38, 65	0
1	Р	190/207~(91%)	-0.04	8 (4%)	36	39	17, 22, 42, 62	0
1	Q	187/207~(90%)	0.07	12~(6%)	19	22	14, 21, 49, 75	0
1	R	180/207~(86%)	0.00	7 (3%)	39	42	15, 20, 37, 59	0
1	S	184/207~(88%)	0.04	8 (4%)	35	38	14, 20, 38, 60	0
1	Т	186/207~(89%)	-0.05	8 (4%)	35	38	13, 19, 40, 71	0
1	U	186/207~(89%)	-0.11	8 (4%)	35	38	14, 19, 37, 68	0
1	V	183/207~(88%)	0.19	10(5%)	25	28	17, 25, 47, 71	0
1	W	$18\overline{3}/207~(88\%)$	0.10	6 (3%)	46	49	17, 25, 44, 66	0
1	Х	190/207~(91%)	0.11	13~(6%)	17	19	15, 22, 50, 71	0

Continued from previous page...

Mol	Chain	Analysed	$<$ RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	$Q{<}0.9$
1	Y	186/207~(89%)	-0.16	6 (3%) 47 50	13, 19, 35, 66	0
1	Z	183/207~(88%)	-0.11	8 (4%) 34 37	14, 20, 39, 60	0
1	a	183/207~(88%)	0.18	10 (5%) 25 28	15, 21, 41, 73	0
1	b	180/207~(86%)	0.09	7 (3%) 39 42	15, 24, 43, 63	0
2	1	4/7~(57%)	1.13	1 (25%) 0 0	24, 31, 35, 40	0
2	2	4/7~(57%)	1.24	1 (25%) 0 0	22, 27, 31, 43	0
2	3	4/7~(57%)	1.77	1 (25%) 0 0	27, 32, 33, 44	0
2	4	4/7~(57%)	1.64	2 (50%) 0 0	34, 41, 44, 52	0
2	с	4/7~(57%)	1.35	1 (25%) 0 0	22, 30, 32, 43	0
2	d	4/7~(57%)	0.91	1 (25%) 0 0	20, 28, 31, 40	0
2	e	4/7~(57%)	0.90	0 100 100	23, 33, 33, 39	0
2	f	4/7~(57%)	0.91	1 (25%) 0 0	24, 31, 34, 46	0
2	g	4/7~(57%)	1.54	1 (25%) 0 0	26, 32, 36, 48	0
2	h	4/7~(57%)	0.91	1 (25%) 0 0	23, 30, 35, 44	0
2	i	4/7~(57%)	1.20	1 (25%) 0 0	21, 29, 32, 44	0
2	j	4/7~(57%)	1.23	1 (25%) 0 0	22, 29, 32, 44	0
2	k	4/7~(57%)	1.33	1 (25%) 0 0	24, 31, 33, 45	0
2	1	4/7~(57%)	1.28	1 (25%) 0 0	24, 31, 35, 44	0
2	m	4/7~(57%)	1.60	2(50%) 0 0	27, 31, 34, 41	0
2	n	4/7~(57%)	0.66	0 100 100	24, 33, 36, 46	0
2	О	4/7~(57%)	0.45	0 100 100	20, 26, 27, 36	0
2	р	4/7~(57%)	0.93	1 (25%) 0 0	25, 32, 33, 43	0
2	q	4/7~(57%)	1.12	1 (25%) 0 0	25, 33, 37, 45	0
2	r	4/7~(57%)	1.20	1 (25%) 0 0	22, 27, 29, 41	0
2	s	4/7~(57%)	1.07	1 (25%) 0 0	24, 32, 34, 44	0
2	t	4/7~(57%)	1.45	1 (25%) 0 0	23, 31, 33, 48	0
2	u	4/7~(57%)	0.83	1 (25%) 0 0	22, 27, 30, 43	0
2	v	4/7~(57%)	1.43	1 (25%) 0 0	33, 41, 43, 54	0
2	W	4/7~(57%)	0.85	1 (25%) 0 0	28, 34, 34, 42	0
2	X	4/7~(57%)	3.48	4 (100%) 0 0	28, 34, 35, 39	4 (100%)
2	у	4/7~(57%)	1.10	1 (25%) 0 0	22, 28, 29, 42	0

Continued	from	nrevious	naae
Commueu	jiom	previous	page

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(Å^2)$	$Q{<}0.9$
2	z	4/7~(57%)	1.69	1 (25%) 0 0	26, 34, 34, 45	0
All	All	5344/5992~(89%)	-0.02	253 (4%) 31 34	12, 21, 44, 79	4 (0%)

All (253) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	V	7	ILE	10.4
1	b	17	PHE	10.1
1	b	2	LEU	9.1
1	a	7	ILE	8.5
1	a	16	SER	8.1
1	V	16	SER	7.8
1	F	11	SER	7.5
1	W	17	PHE	7.3
1	R	191	HIS	7.3
1	F	10	THR	7.3
1	Н	1	ALA	7.0
1	Х	11	SER	6.9
1	V	17	PHE	6.9
1	М	12	ARG	6.6
1	Q	9	GLN	6.3
1	Х	9	GLN	6.2
1	L	13	GLY	6.2
1	Ζ	7	ILE	6.2
1	a	6	VAL	6.2
1	Х	10	THR	6.2
1	F	13	GLY	6.0
1	С	10	THR	6.0
1	Х	13	GLY	5.9
1	В	1	ALA	5.9
1	Y	7	ILE	5.8
1	W	7	ILE	5.7
1	В	10	THR	5.6
1	V	15	ARG	5.6
1	W	191	HIS	5.5
1	Ζ	17	PHE	5.4
1	С	13	GLY	5.4
1	Y	9	GLN	5.3
1	a	17	PHE	5.3
1	N	13	GLY	5.3
1	K	13	GLY	5.2
1	Y	15	ARG	5.1

1

Mol Chain

 \mathbf{S}

Ν	5.1
R	5.1
F	5.0
Ν	5.0
G	5.0
R	4.9
F	4.9
R	4.8
2	18

Continued from previous page...

Res

17

Type RSRZ

5.1

PHE

1	W	16	SER	5.1
1	М	13	GLY	5.1
1	Q	17	PHE	5.1
1	Q	10	THR	5.1
1	Κ	9	GLN	5.1
1	Y	10	THR	5.1
1	D	7	ILE	5.0
1	L	9	GLN	5.0
1	0	12	ARG	5.0
1	U	190	THR	4.9
1	S	7	ILE	4.9
1	Е	10	THR	4.8
1	V	191	HIS	4.8
1	J	12	ARG	4.8
1	F	9	GLN	4.7
1	b	5	MET	4.7
1	Ι	11	SER	4.7
1	a	193	ASN	4.7
1	Ζ	8	GLU	4.6
1	Q	7	ILE	4.6
1	S	191	HIS	4.6
1	Ν	7	ILE	4.5
1	a	3	VAL	4.5
1	S	16	SER	4.5
1	U	9	GLN	4.5
1	С	9	GLN	4.5
1	В	9	GLN	4.5
1	R	190	THR	4.4
1	V	190	THR	4.4
1	S	2	LEU	4.4
1	М	11	SER	4.4
1	J	191	HIS	4.4
1	Т	7	ILE	4.4
1	b	3	VAL	4.4
1	Q	16	SER	4.4
1	S	15	ARG	4.4
1	Р	11	SER	4.4
1	F	12	ARG	4.3
1	Р	10	THR	4.3
2	Х	701	PHE	4.3
1	Q	191	HIS	4.3
	(Y 1	1	1

Mol	Chain	Res	Type	RSRZ
1	N	17	PHE	4.3
1	a	192	ARG	4.2
1	С	15	ARG	4.2
1	K	10	THR	4.2
1	Т	9	GLN	4.2
1	Х	14	GLU	4.2
1	G	2	LEU	4.2
1	R	17	PHE	4.2
1	N	9	GLN	4.2
1	Т	15	ARG	4.2
1	V	8	GLU	4.1
1	Q	13	GLY	4.1
1	Р	15	ARG	4.1
2	Z	703	PRO	4.1
1	N	15	ARG	4.1
1	D	190	THR	4.1
1	U	191	HIS	4.0
1	b	6	VAL	4.0
1	G	190	THR	4.0
1	Е	15	ARG	4.0
2	t	703	PRO	3.9
1	В	15	ARG	3.9
1	Q	15	ARG	3.9
1	a	5	MET	3.8
1	Х	12	ARG	3.8
2	k	703	PRO	3.8
1	J	190	THR	3.8
1	U	7	ILE	3.8
1	R	3	VAL	3.8
1	K	14	GLU	3.7
2	Х	703	PRO	3.7
1	Р	12	ARG	3.7
1	J	13	GLY	3.7
1	Ι	190	THR	3.7
1	Е	7	ILE	3.7
1	М	7	ILE	3.7
1	b	191	HIS	3.7
1	С	14	GLU	3.7
1	Р	13	GLY	3.6
1	N	191	HIS	3.6
1	D	13	GLY	3.6
1	Ι	191	HIS	3.6

3.5	
3.5	
3.5	
3.5	
3.5	
3.5	
3.4	

Continued from previous page...

 Mol
 Chain
 Res
 Type
 RSRZ

	0110111		-5100	
1	0	13	GLY	3.6
2	g	703	PRO	3.6
2	с	703	PRO	3.6
1	А	192	ARG	3.5
1	F	15	ARG	3.5
1	V	6	VAL	3.5
1	Т	8	GLU	3.5
1	W	192	ARG	3.5
1	Х	190	THR	3.5
2	j	703	PRO	3.4
1	S	8	GLU	3.4
1	М	15	ARG	3.4
1	Х	7	ILE	3.4
2	х	705	ALA	3.4
1	Р	9	GLN	3.4
1	Х	62	TYR	3.4
1	Е	13	GLY	3.4
1	Ζ	16	SER	3.3
1	Y	16	SER	3.3
2	i	703	PRO	3.3
1	В	190	THR	3.2
1	С	17	PHE	3.2
1	Н	190	THR	3.2
1	Ζ	2	LEU	3.1
1	W	2	LEU	3.1
1	Н	7	ILE	3.2
1	Q	14	GLU	3.1
1	G	13	GLY	3.1
1	0	190	THR	3.1
2	r	703	PRO	3.1
1	G	14	GLU	3.1
1	М	10	THR	3.1
1	М	190	THR	3.1
1	В	191	HIS	3.1
1	К	2	LEU	3.1
1	Ν	14	GLU	3.1
1	А	193	ASN	3.0
1	D	9	GLN	3.0
1	М	191	HIS	3.0
1	Т	191	HIS	3.0
1	F	190	THR	3.0
2	2	703	PRO	3.0

Conti	nued from	n previo	us page	•
\mathbf{Mol}	Chain	Res	Type	RSRZ

2	S	703	PRO	3.0
1	Т	17	PHE	2.9
1	U	14	GLU	2.9
1	K	17	PHE	2.9
1	R	16	SER	2.9
1	V	5	MET	2.9
2	q	703	PRO	2.9
2	1	703	PRO	2.9
1	b	190	THR	2.9
1	Ν	8	GLU	2.9
1	K	7	ILE	2.9
1	М	14	GLU	2.8
2	m	705	ALA	2.8
1	D	10	THR	2.8
1	Т	190	THR	2.8
1	Х	15	ARG	2.8
1	Q	8	GLU	2.8
1	Х	2	LEU	2.8
2	3	703	PRO	2.8
1	Ζ	190	THR	2.7
1	L	190	THR	2.7
1	J	10	THR	2.7
2	1	703	PRO	2.7
1	R	6	VAL	2.7
1	D	191	HIS	2.7
2	h	703	PRO	2.7
2	V	703	PRO	2.7
2	u	703	PRO	2.7
1	Е	9	GLN	2.6
1	Ζ	191	HIS	2.6
2	р	703	PRO	2.6
1	С	190	THR	2.6
1	Н	191	HIS	2.6
1	a	191	HIS	2.5
1	F	7	ILE	2.5
1	Т	14	GLU	2.5
1	D	17	PHE	2.5
1	G	9	GLN	2.5
2	Х	702	SER	2.5
1	Р	7	ILE	2.4
1	S	63	ILE	2.4
1	М	8	GLU	2.4

Mol	Chain	Res	Type	RSRZ
1	Ζ	6	VAL	2.4
1	Y	2	LEU	2.4
1	K	191	HIS	2.4
2	4	705	ALA	2.4
1	U	16	SER	2.3
2	W	703	PRO	2.3
1	Н	17	PHE	2.3
2	m	703	PRO	2.3
2	4	703	PRO	2.3
1	V	56	GLU	2.3
1	F	8	GLU	2.3
1	J	11	SER	2.3
1	R	63	ILE	2.3
1	М	9	GLN	2.3
1	0	17	PHE	2.2
1	Q	190	THR	2.2
1	G	11	SER	2.2
1	Н	15	ARG	2.2
2	d	703	PRO	2.2
1	L	8	GLU	2.2
1	D	14	GLU	2.2
1	D	15	ARG	2.2
2	у	703	PRO	2.2
1	Х	17	PHE	2.2
1	М	17	PHE	2.2
1	G	191	HIS	2.2
1	G	12	ARG	2.2
1	a	190	THR	2.2
1	Е	191	HIS	2.2
1	U	17	PHE	2.2
1	Ι	12	ARG	2.2
1	0	34	GLN	2.2
1	Х	16	SER	2.2
1	Q	34[A]	GLN	2.2
1	L	2	LEU	2.1
1	H	14	GLU	2.1
1	U	8	GLU	2.1
1	С	191	HIS	2.1
1	М	16	SER	2.1
1	А	15	ARG	2.1
1	F	191	HIS	2.1
1	F	14	GLU	2.1

Mol	Chain	Res	Type	RSRZ
1	А	2	LEU	2.1
2	f	703	PRO	2.1
1	Κ	8	GLU	2.1
1	0	7	ILE	2.1
1	L	191	HIS	2.0
1	Р	190	THR	2.0
1	А	191	HIS	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q<0.9
2	MAA	X	704	6/7	0.61	0.36	$36,\!38,\!39,\!39$	6
2	MAA	4	704	6/7	0.74	0.39	45,50,54,54	0
2	MAA	Z	704	6/7	0.77	0.22	38,39,42,50	0
2	MAA	h	704	6/7	0.77	0.22	33,37,40,41	0
2	MAA	v	704	6/7	0.79	0.33	45,52,55,55	0
2	MAA	1	704	6/7	0.79	0.25	31,37,44,47	0
2	MAA	m	704	6/7	0.80	0.18	33,35,38,38	0
2	MAA	d	704	6/7	0.80	0.23	32,38,40,41	0
2	MAA	3	704	6/7	0.80	0.27	32,37,43,43	0
2	MAA	W	704	6/7	0.80	0.16	34,38,39,41	0
2	MAA	n	704	6/7	0.81	0.21	32,42,44,48	0
2	MAA	j	704	6/7	0.82	0.22	27,33,39,41	0
2	MAA	е	704	6/7	0.82	0.20	30,39,41,44	0
2	MAA	r	704	6/7	0.82	0.22	30,32,39,41	0
2	MP8	X	706	8/9	0.82	0.21	28,30,34,37	8
2	MAA	k	704	6/7	0.83	0.19	30,35,40,43	0
2	MAA	у	704	6/7	0.83	0.24	31,35,41,42	0
2	MAA	u	704	6/7	0.84	0.23	31,36,39,41	0
2	MAA	0	704	6/7	0.84	0.17	25,32,35,35	0
2	MAA	t	704	6/7	0.85	0.19	35,40,41,42	0
2	MAA	1	704	6/7	0.85	0.19	30,32,36,38	0
2	MAA	р	704	6/7	0.86	0.19	35,36,42,46	0
2	MAA	i	704	6/7	0.87	0.20	29,33,36,41	0
2	MP8	4	706	8/9	0.87	0.16	35,38,44,47	0
2	MAA	s	704	6/7	0.88	0.20	31,38,40,46	0
2	MP8	f	706	8/9	0.88	0.13	23,26,31,32	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
2	MAA	с	704	6/7	0.88	0.20	30,35,42,43	0
2	MP8	3	706	8/9	0.88	0.14	24,27,30,30	0
2	MAA	f	704	6/7	0.88	0.18	32,35,41,42	0
2	MP8	V	706	8/9	0.89	0.11	34,39,41,42	0
2	MAA	g	704	6/7	0.89	0.21	30,35,41,42	0
2	MAA	2	704	6/7	0.89	0.15	31,33,36,38	0
2	MAA	q	704	6/7	0.89	0.24	35,39,40,42	0
2	MP8	у	706	8/9	0.90	0.10	21,22,28,31	0
2	MP8	1	706	8/9	0.90	0.13	24,27,30,33	0
2	MP8	s	706	8/9	0.90	0.12	24,25,30,31	0
2	MP8	е	706	8/9	0.91	0.10	24,26,33,34	0
2	MP8	j	706	8/9	0.91	0.12	21,22,27,27	0
2	MP8	n	706	8/9	0.92	0.09	27,28,31,41	0
2	MP8	0	706	8/9	0.92	0.09	18,22,25,25	0
2	MP8	g	706	8/9	0.92	0.11	26,28,32,35	0
2	MP8	2	706	8/9	0.92	0.10	19,23,27,28	0
2	MP8	W	706	8/9	0.93	0.10	31,33,34,34	0
2	MP8	р	706	8/9	0.93	0.10	26,29,32,33	0
2	MP8	r	706	8/9	0.93	0.10	20,25,28,28	0
2	MP8	Z	706	8/9	0.93	0.11	24,28,34,34	0
2	MP8	i	706	8/9	0.93	0.08	21,23,26,30	0
2	MP8	с	706	8/9	0.93	0.10	23,25,31,33	0
2	MP8	m	706	8/9	0.94	0.11	$26,\!28,\!32,\!32$	0
2	MP8	d	706	8/9	0.94	0.10	20,24,30,30	0
2	MP8	t	706	8/9	0.94	0.09	22,25,28,30	0
2	MP8	h	706	8/9	0.94	0.08	$2\overline{4,27,30,32}$	0
2	MP8	k	706	8/9	0.94	0.08	23,27,29,30	0
2	MP8	u	706	8/9	0.94	0.08	19,23,28,30	0
2	MP8	q	706	8/9	0.95	0.10	$2\overline{1,24,30,31}$	0
2	MP8	1	706	8/9	0.95	0.09	24,28,31,35	0

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors($Å^2$)	Q<0.9
3	MPD	V	202	8/8	0.81	0.21	30,37,39,41	0
3	MPD	А	801	8/8	0.82	0.22	33,39,42,43	0
3	MPD	R	202	8/8	0.84	0.19	30,34,39,40	0
3	MPD	Y	800	8/8	0.85	0.18	19,23,27,27	0
3	MPD	Х	202	8/8	0.86	0.16	29,33,35,38	0
3	MPD	Ζ	801	8/8	0.86	0.17	29,32,36,36	0
3	MPD	Z	803	8/8	0.88	0.16	30,36,38,40	0
3	MPD	S	800	8/8	0.88	0.17	$19,\!22,\!27,\!29$	0
3	MPD	М	203	8/8	0.89	0.14	$29,\!34,\!36,\!39$	0
3	MPD	В	800	8/8	0.89	0.16	$16,\!21,\!23,\!31$	0
3	MPD	R	203	8/8	0.89	0.19	32,35,38,40	0
3	MPD	K	801	8/8	0.90	0.13	$26,\!30,\!37,\!40$	0
3	MPD	Ι	801	8/8	0.90	0.17	26,32,34,35	0
3	MPD	R	201	8/8	0.90	0.13	24,28,31,35	0
3	MPD	В	801	8/8	0.90	0.12	24,29,33,34	0
3	MPD	W	801	8/8	0.90	0.16	29,34,35,40	0
3	MPD	М	202	8/8	0.91	0.14	24,35,39,40	0
3	MPD	Р	800	8/8	0.91	0.17	21,27,35,38	0
3	MPD	L	801	8/8	0.91	0.12	28,32,34,36	0
3	MPD	K	800	8/8	0.91	0.14	18,22,26,27	0
3	MPD	b	801	8/8	0.91	0.14	30,34,40,42	0
3	MPD	J	801	8/8	0.91	0.10	26,30,32,35	0
3	MPD	Р	801	8/8	0.91	0.15	30,39,43,43	0
3	MPD	E	801	8/8	0.91	0.13	28,35,36,36	0
3	MPD	E	803	8/8	0.91	0.15	25,30,32,34	0
3	MPD	С	801	8/8	0.91	0.12	25,30,32,35	0
3	MPD	W	800	8/8	0.91	0.16	24,31,33,34	0
3	MPD	Т	801	8/8	0.91	0.18	26,34,36,38	0
3	MPD	0	800	8/8	0.91	0.16	22,24,28,30	0
3	MPD	D	801	8/8	0.92	0.12	25,29,31,33	0
3	MPD	b	800	8/8	0.92	0.13	22,26,29,32	0
3	MPD	N	800	8/8	0.92	0.15	20,26,27,27	0
3	MPD	Q	801	8/8	0.92	0.11	26,36,40,41	0
3	MPD	A	800	8/8	0.92	0.13	17,25,28,31	0
3	MPD	a	800	8/8	0.92	0.18	21,24,28,29	0
3	MPD	G	800	8/8	0.92	0.12	22,25,28,30	0
3	MPD	Q	800	8/8	0.93	0.13	22,27,29,30	0
3	MPD		800	8/8	0.93	0.17	17,20,23,26	0
3	MPD	M	201	8/8	0.93	0.15	18,26,27,28	0
3	MPD		800	8/8	0.93	0.14	16,21,25,26	0
3	MPD		202	8/8	0.93	0.14	19,24,29,30	0
3	MPD	V	201	8/8	0.93	0.12	23,29,33,33	0
3	MPD	Н	800	8/8	0.93	0.13	16,21,23,26	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors($Å^2$)	Q<0.9
3	MPD	L	800	8/8	0.93	0.13	21,24,28,29	0
3	MPD	N	801	8/8	0.93	0.13	32,34,36,42	0
3	MPD	Х	201	8/8	0.93	0.18	23,27,29,31	0
3	MPD	Z	802	8/8	0.94	0.14	24,31,32,32	0
3	MPD	Т	800	8/8	0.94	0.11	18,22,24,28	0
3	MPD	U	201	8/8	0.94	0.11	$27,\!30,\!32,\!35$	0
3	MPD	J	800	8/8	0.94	0.12	16,21,24,28	0
3	MPD	G	801	8/8	0.94	0.12	28,33,35,36	0
3	MPD	0	801	8/8	0.95	0.12	$28,\!30,\!34,\!35$	0
3	MPD	Ι	800	8/8	0.95	0.11	16,20,21,25	0
3	MPD	F	800	8/8	0.95	0.11	22,25,26,31	0
3	MPD	Ē	802	8/8	0.96	0.11	19,24,26,28	0

6.5 Other polymers (i)

There are no such residues in this entry.

