

Nov 19, 2022 – 01:41 pm GMT

| PDB ID       | : | 5MPD                                                                           |
|--------------|---|--------------------------------------------------------------------------------|
| EMDB ID      | : | EMD-3534                                                                       |
| Title        | : | 26S proteasome in presence of ATP (s1)                                         |
| Authors      | : | Wehmer, M.; Rudack, T.; Beck, F.; Aufderheide, A.; Pfeifer, G.; Plitzko, J.M.; |
|              |   | Foerster, F.; Schulten, K.; Baumeister, W.; Sakata, E.                         |
| Deposited on | : | 2016-12-16                                                                     |
| Resolution   | : | 4.10  Å(reported)                                                              |
|              |   |                                                                                |

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| EMDB validation analysis       | : | 0.0.1. dev 43                                                      |
|--------------------------------|---|--------------------------------------------------------------------|
| MolProbity                     | : | 4.02b-467                                                          |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| $\operatorname{MapQ}$          | : | 1.9.9                                                              |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.31.2                                                             |

## 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $ELECTRON\ MICROSCOPY$ 

The reported resolution of this entry is 4.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | $egin{array}{llllllllllllllllllllllllllllllllllll$ | ${f EM} {f structures} \ (\#{f Entries})$ |  |  |
|-----------------------|----------------------------------------------------|-------------------------------------------|--|--|
| Clashscore            | 158937                                             | 4297                                      |  |  |
| Ramachandran outliers | 154571                                             | 4023                                      |  |  |
| Sidechain outliers    | 154315                                             | 3826                                      |  |  |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain              |     |         |
|-----|-------|--------|-------------------------------|-----|---------|
| 1   | W     | 268    | 63%<br>53% 17%                | 2   | 6%      |
| 2   | V     | 306    | 40%                           | 20% | 6% • 6% |
| 3   | Т     | 274    | 66%<br>71%                    | 22% | •••     |
| 4   | Х     | 156    | 81%           58%         22% |     | 19%     |
| 5   | Y     | 89     | 36%<br>42% 13% •              | 43% |         |
| 6   | Z     | 993    | 66%                           | 23% | • 9%    |
| 7   | Ν     | 945    | 75%                           | 18% | • 6%    |
| 8   | S     | 523    | 52%<br>69%                    | 17% | • 9%    |



| Continued | from | mrowing  | naao |
|-----------|------|----------|------|
| Commuea   | from | previous | page |

| Mol | Chain | Length | Quality of chain |       |     |  |  |  |  |  |
|-----|-------|--------|------------------|-------|-----|--|--|--|--|--|
|     |       |        | 12%              |       |     |  |  |  |  |  |
| 9   | Р     | 445    | 76%              | 20%   | • • |  |  |  |  |  |
|     |       |        | 14%              |       |     |  |  |  |  |  |
| 10  | Q     | 434    | 76%              | 20%   | •   |  |  |  |  |  |
|     |       |        | 24%              |       |     |  |  |  |  |  |
| 11  | R     | 429    | 67%              | 18% • | 11% |  |  |  |  |  |
|     |       |        | 43%              |       |     |  |  |  |  |  |
| 12  | U     | 338    | 74%              | 13% • | 12% |  |  |  |  |  |
|     |       |        | 51%              |       |     |  |  |  |  |  |
| 13  | 0     | 393    | 74%              | 21%   |     |  |  |  |  |  |



## 2 Entry composition (i)

There are 13 unique types of molecules in this entry. The entry contains 40974 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 26S proteasome regulatory subunit RPN10.

| Mol | Chain | Residues | Atoms         |          |          |          |                 | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|-----------------|---------|-------|
| 1   | W     | 197      | Total<br>1534 | C<br>962 | N<br>269 | O<br>300 | ${ m S} { m 3}$ | 0       | 0     |

• Molecule 2 is a protein called Ubiquitin carboxyl-terminal hydrolase RPN11.

| Mol | Chain | Residues | Atoms         |           |          |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|-------|
| 2   | V     | 289      | Total<br>2274 | C<br>1425 | N<br>389 | 0<br>446 | S<br>14 | 0       | 0     |

• Molecule 3 is a protein called 26S proteasome regulatory subunit RPN12.

| Mol | Chain | Residues | Atoms         |           |          |          |        | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|--------|---------|-------|
| 3   | Т     | 266      | Total<br>2192 | C<br>1405 | N<br>349 | 0<br>432 | S<br>6 | 0       | 0     |

• Molecule 4 is a protein called 26S proteasome regulatory subunit RPN13.

| Mol | Chain | Residues | Atoms         |          |          |          |               | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|---------------|---------|-------|
| 4   | Х     | 127      | Total<br>1032 | C<br>664 | N<br>169 | 0<br>195 | ${S \atop 4}$ | 0       | 0     |

• Molecule 5 is a protein called 26S proteasome complex subunit SEM1.

| Mol | Chain | Residues | Atoms        |          |         |          | AltConf | Trace |
|-----|-------|----------|--------------|----------|---------|----------|---------|-------|
| 5   | Y     | 51       | Total<br>435 | C<br>264 | N<br>69 | O<br>102 | 0       | 0     |

• Molecule 6 is a protein called 26S proteasome regulatory subunit RPN1.

| Mol | Chain | Residues |               | Α         | AltConf   | Trace     |         |   |   |
|-----|-------|----------|---------------|-----------|-----------|-----------|---------|---|---|
| 6   | Z     | 906      | Total<br>7005 | C<br>4416 | N<br>1150 | O<br>1409 | S<br>30 | 0 | 0 |



• Molecule 7 is a protein called 26S proteasome regulatory subunit RPN2.

| Mol | Chain | Residues | Atoms         |           |           |           |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|-----------|-----------|---------|---------|-------|
| 7   | Ν     | 890      | Total<br>6882 | C<br>4373 | N<br>1156 | O<br>1325 | S<br>28 | 0       | 0     |

• Molecule 8 is a protein called 26S proteasome regulatory subunit RPN3.

| Mol | Chain | Residues | Atoms         |           |          |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|-------|
| 8   | S     | 475      | Total<br>3894 | C<br>2488 | N<br>653 | 0<br>738 | S<br>15 | 0       | 0     |

• Molecule 9 is a protein called 26S proteasome regulatory subunit RPN5.

| Mol | Chain | Residues | Atoms         |           |          |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|-------|
| 9   | Р     | 440      | Total<br>3608 | C<br>2297 | N<br>604 | O<br>697 | S<br>10 | 0       | 0     |

• Molecule 10 is a protein called 26S proteasome regulatory subunit RPN6.

| Mol | Chain | Residues | Atoms         |           |          |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|-------|
| 10  | Q     | 434      | Total<br>3499 | C<br>2225 | N<br>577 | O<br>681 | S<br>16 | 0       | 0     |

• Molecule 11 is a protein called 26S proteasome regulatory subunit RPN7.

| Mol | Chain | Residues | Atoms         |           |          |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|-------|
| 11  | R     | 381      | Total<br>3060 | C<br>1955 | N<br>502 | O<br>593 | S<br>10 | 0       | 0     |

• Molecule 12 is a protein called 26S proteasome regulatory subunit RPN8.

| Mol | Chain | Residues | Atoms         |           |          |          |        | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|--------|---------|-------|
| 12  | U     | 298      | Total<br>2373 | C<br>1496 | N<br>404 | 0<br>466 | S<br>7 | 0       | 0     |

• Molecule 13 is a protein called 26S proteasome regulatory subunit RPN9.

| Mol | Chain | Residues | Atoms         |           |          |          |        | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|--------|---------|-------|
| 13  | О     | 388      | Total<br>3186 | C<br>2051 | N<br>519 | O<br>608 | S<br>8 | 0       | 0     |



### 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 26S proteasome regulatory subunit RPN10









• Molecule 6: 26S proteasome regulatory subunit RPN1



PROTEIN DATA BANK

















• Molecule 12: 26S proteasome regulatory subunit RPN8



• Molecule 13: 26S proteasome regulatory subunit RPN9









# 4 Experimental information (i)

| Property                           | Value                          | Source    |
|------------------------------------|--------------------------------|-----------|
| EM reconstruction method           | SINGLE PARTICLE                | Depositor |
| Imposed symmetry                   | POINT, C1                      | Depositor |
| Number of particles used           | 286500                         | Depositor |
| Resolution determination method    | FSC 0.143 CUT-OFF              | Depositor |
| CTF correction method              | PHASE FLIPPING AND AMPLITUDE   | Depositor |
|                                    | CORRECTION                     |           |
| Microscope                         | FEI TITAN KRIOS                | Depositor |
| Voltage (kV)                       | 300                            | Depositor |
| Electron dose $(e^-/\text{\AA}^2)$ | 45                             | Depositor |
| Minimum defocus (nm)               | 1500                           | Depositor |
| Maximum defocus (nm)               | 3500                           | Depositor |
| Magnification                      | Not provided                   |           |
| Image detector                     | GATAN K2 QUANTUM $(4k \ge 4k)$ | Depositor |
| Maximum map value                  | 0.211                          | Depositor |
| Minimum map value                  | -0.133                         | Depositor |
| Average map value                  | -0.000                         | Depositor |
| Map value standard deviation       | 0.006                          | Depositor |
| Recommended contour level          | 0.02                           | Depositor |
| Map size (Å)                       | 529.92, 529.92, 529.92         | wwPDB     |
| Map dimensions                     | 384, 384, 384                  | wwPDB     |
| Map angles (°)                     | 90.0, 90.0, 90.0               | wwPDB     |
| Pixel spacing (Å)                  | 1.38, 1.38, 1.38               | Depositor |



## 5 Model quality (i)

#### 5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | Chain   | B    | ond lengths      | E    | Sond angles      |
|-----|---------|------|------------------|------|------------------|
|     | Ullalli | RMSZ | # Z  > 5         | RMSZ | # Z  > 5         |
| 1   | W       | 1.70 | 14/1557~(0.9%)   | 1.79 | 29/2111~(1.4%)   |
| 2   | V       | 1.74 | 22/2309~(1.0%)   | 2.02 | 64/3115~(2.1%)   |
| 3   | Т       | 1.71 | 27/2235~(1.2%)   | 1.82 | 45/3017~(1.5%)   |
| 4   | Х       | 1.75 | 12/1058~(1.1%)   | 1.90 | 24/1432~(1.7%)   |
| 5   | Y       | 1.90 | 7/438~(1.6%)     | 1.92 | 10/583~(1.7%)    |
| 6   | Ζ       | 1.66 | 59/7122~(0.8%)   | 1.88 | 169/9645~(1.8%)  |
| 7   | Ν       | 1.74 | 61/6994~(0.9%)   | 1.84 | 142/9455~(1.5%)  |
| 8   | S       | 1.68 | 33/3966~(0.8%)   | 1.84 | 98/5355~(1.8%)   |
| 9   | Р       | 1.67 | 29/3663~(0.8%)   | 1.77 | 60/4940~(1.2%)   |
| 10  | Q       | 1.68 | 28/3556~(0.8%)   | 1.89 | 77/4787~(1.6%)   |
| 11  | R       | 1.73 | 31/3110~(1.0%)   | 1.95 | 83/4193~(2.0%)   |
| 12  | U       | 1.58 | 11/2407~(0.5%)   | 1.76 | 41/3258~(1.3%)   |
| 13  | 0       | 1.68 | 36/3247~(1.1%)   | 1.93 | 86/4380~(2.0%)   |
| All | All     | 1.69 | 370/41662~(0.9%) | 1.86 | 928/56271~(1.6%) |

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

| Mol | Chain | #Chirality outliers | #Planarity outliers |
|-----|-------|---------------------|---------------------|
| 1   | W     | 0                   | 6                   |
| 2   | V     | 0                   | 5                   |
| 3   | Т     | 0                   | 6                   |
| 4   | Х     | 0                   | 2                   |
| 5   | Y     | 0                   | 1                   |
| 6   | Ζ     | 0                   | 12                  |
| 7   | N     | 0                   | 23                  |
| 8   | S     | 0                   | 14                  |
| 9   | Р     | 0                   | 8                   |
| 10  | Q     | 0                   | 19                  |
| 11  | R     | 0                   | 12                  |
| 12  | U     | 0                   | 4                   |



Continued from previous page...

| Mol | Chain | #Chirality outliers | #Planarity outliers |
|-----|-------|---------------------|---------------------|
| 13  | 0     | 0                   | 11                  |
| All | All   | 0                   | 123                 |

All (370) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms  | Z      | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|--------|--------|-------------|----------|
| 7   | Ν     | 8   | PRO  | CA-CB  | 32.16  | 2.17        | 1.53     |
| 5   | Y     | 89  | GLN  | C-OXT  | -12.08 | 1.00        | 1.23     |
| 9   | Р     | 440 | HIS  | C-O    | -12.08 | 1.00        | 1.23     |
| 3   | Т     | 272 | ASN  | C-O    | -12.07 | 1.00        | 1.23     |
| 13  | 0     | 393 | VAL  | C-O    | -12.07 | 1.00        | 1.23     |
| 10  | Q     | 434 | TYR  | C-O    | -12.06 | 1.00        | 1.23     |
| 2   | V     | 306 | LYS  | C-O    | -12.06 | 1.00        | 1.23     |
| 4   | Х     | 133 | SER  | C-O    | -12.05 | 1.00        | 1.23     |
| 7   | Ν     | 925 | ASP  | C-O    | -12.05 | 1.00        | 1.23     |
| 1   | W     | 197 | SER  | C-O    | -12.04 | 1.00        | 1.23     |
| 10  | Q     | 434 | TYR  | C-OXT  | -12.05 | 1.00        | 1.23     |
| 11  | R     | 424 | THR  | C-O    | -12.04 | 1.00        | 1.23     |
| 13  | 0     | 393 | VAL  | C-OXT  | -12.04 | 1.00        | 1.23     |
| 2   | V     | 306 | LYS  | C-OXT  | -12.04 | 1.00        | 1.23     |
| 8   | S     | 492 | LYS  | C-O    | -12.03 | 1.00        | 1.23     |
| 5   | Y     | 89  | GLN  | C-O    | -12.01 | 1.00        | 1.23     |
| 8   | S     | 127 | THR  | CA-CB  | 10.47  | 1.80        | 1.53     |
| 7   | Ν     | 604 | ARG  | CZ-NH2 | 10.40  | 1.46        | 1.33     |
| 1   | W     | 25  | ARG  | NE-CZ  | 9.49   | 1.45        | 1.33     |
| 2   | V     | 196 | TYR  | CA-CB  | 9.21   | 1.74        | 1.53     |
| 7   | Ν     | 397 | SER  | CA-CB  | 8.76   | 1.66        | 1.52     |
| 9   | Р     | 357 | TYR  | CB-CG  | -8.72  | 1.38        | 1.51     |
| 7   | Ν     | 88  | ARG  | NE-CZ  | 8.58   | 1.44        | 1.33     |
| 7   | Ν     | 155 | GLY  | N-CA   | -8.35  | 1.33        | 1.46     |
| 6   | Ζ     | 759 | ARG  | CZ-NH2 | 8.25   | 1.43        | 1.33     |
| 5   | Y     | 65  | ASP  | CA-CB  | -8.19  | 1.35        | 1.53     |
| 2   | V     | 236 | SER  | CA-CB  | 8.14   | 1.65        | 1.52     |
| 1   | W     | 101 | ARG  | CZ-NH2 | 8.13   | 1.43        | 1.33     |
| 3   | Т     | 186 | ARG  | NE-CZ  | 8.11   | 1.43        | 1.33     |
| 6   | Ζ     | 753 | GLY  | CA-C   | -8.07  | 1.39        | 1.51     |
| 7   | Ν     | 889 | ARG  | NE-CZ  | 7.99   | 1.43        | 1.33     |
| 4   | X     | 22  | ARG  | CZ-NH1 | 7.98   | 1.43        | 1.33     |
| 6   | Ζ     | 371 | SER  | CA-CB  | 7.95   | 1.64        | 1.52     |
| 7   | N     | 417 | ARG  | NE-CZ  | 7.94   | 1.43        | 1.33     |
| 10  | Q     | 13  | ARG  | CZ-NH1 | 7.86   | 1.43        | 1.33     |
| 2   | V     | 171 | ARG  | NE-CZ  | 7.66   | 1.43        | 1.33     |

| Mol | Chain | Res | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|-------|-------------|----------|
| 2   | V     | 196 | TYR  | CD1-CE1 | 7.65  | 1.50        | 1.39     |
| 1   | W     | 179 | ARG  | CZ-NH1  | 7.63  | 1.43        | 1.33     |
| 9   | Р     | 47  | ARG  | NE-CZ   | 7.55  | 1.42        | 1.33     |
| 10  | Q     | 50  | ARG  | CD-NE   | 7.52  | 1.59        | 1.46     |
| 7   | N     | 584 | ARG  | CZ-NH2  | 7.50  | 1.42        | 1.33     |
| 2   | V     | 20  | ARG  | CZ-NH1  | 7.47  | 1.42        | 1.33     |
| 8   | S     | 382 | ARG  | CZ-NH2  | 7.44  | 1.42        | 1.33     |
| 7   | N     | 752 | SER  | CA-CB   | 7.44  | 1.64        | 1.52     |
| 13  | 0     | 356 | ARG  | CZ-NH2  | 7.42  | 1.42        | 1.33     |
| 3   | Т     | 103 | SER  | CA-CB   | 7.29  | 1.63        | 1.52     |
| 4   | Х     | 122 | TYR  | CB-CG   | 7.29  | 1.62        | 1.51     |
| 3   | Т     | 224 | ARG  | CD-NE   | 7.28  | 1.58        | 1.46     |
| 7   | Ν     | 786 | ARG  | NE-CZ   | 7.27  | 1.42        | 1.33     |
| 7   | Ν     | 112 | GLU  | CD-OE1  | 7.24  | 1.33        | 1.25     |
| 6   | Ζ     | 600 | GLU  | CG-CD   | 7.20  | 1.62        | 1.51     |
| 11  | R     | 383 | ARG  | CZ-NH1  | 7.16  | 1.42        | 1.33     |
| 9   | Р     | 310 | ARG  | CD-NE   | 7.16  | 1.58        | 1.46     |
| 9   | Р     | 273 | TYR  | CB-CG   | 7.15  | 1.62        | 1.51     |
| 11  | R     | 207 | ARG  | NE-CZ   | 7.10  | 1.42        | 1.33     |
| 11  | R     | 392 | ARG  | CZ-NH1  | 7.07  | 1.42        | 1.33     |
| 11  | R     | 207 | ARG  | CZ-NH1  | 7.06  | 1.42        | 1.33     |
| 6   | Ζ     | 155 | ARG  | CZ-NH2  | 7.03  | 1.42        | 1.33     |
| 12  | U     | 32  | ARG  | CD-NE   | 7.02  | 1.58        | 1.46     |
| 8   | S     | 251 | SER  | CA-CB   | 6.97  | 1.63        | 1.52     |
| 7   | Ν     | 906 | ARG  | NE-CZ   | 6.93  | 1.42        | 1.33     |
| 10  | Q     | 332 | ARG  | CZ-NH2  | 6.93  | 1.42        | 1.33     |
| 11  | R     | 209 | ARG  | CZ-NH2  | 6.90  | 1.42        | 1.33     |
| 11  | R     | 222 | ARG  | CZ-NH2  | 6.89  | 1.42        | 1.33     |
| 2   | V     | 196 | TYR  | CD2-CE2 | -6.89 | 1.29        | 1.39     |
| 7   | Ν     | 921 | ARG  | CZ-NH2  | 6.88  | 1.42        | 1.33     |
| 12  | U     | 24  | ARG  | CZ-NH2  | 6.86  | 1.42        | 1.33     |
| 6   | Z     | 826 | ARG  | CZ-NH2  | 6.85  | 1.42        | 1.33     |
| 13  | 0     | 135 | ARG  | NE-CZ   | 6.84  | 1.42        | 1.33     |
| 7   | N     | 139 | ARG  | NE-CZ   | 6.81  | 1.42        | 1.33     |
| 11  | R     | 247 | GLU  | CG-CD   | 6.80  | 1.62        | 1.51     |
| 10  | Q     | 124 | PHE  | CE2-CZ  | 6.79  | 1.50        | 1.37     |
| 12  | U     | 100 | ARG  | CZ-NH1  | 6.72  | 1.41        | 1.33     |
| 8   | S     | 480 | ARG  | CD-NE   | 6.67  | 1.57        | 1.46     |
| 6   | Z     | 928 | ARG  | CZ-NH2  | 6.66  | 1.41        | 1.33     |
| 12  | U     | 179 | ARG  | CZ-NH2  | 6.66  | 1.41        | 1.33     |
| 6   | Z     | 477 | TYR  | CE2-CZ  | 6.65  | 1.47        | 1.38     |
| 7   | Ν     | 398 | ARG  | CZ-NH2  | 6.62  | 1.41        | 1.33     |



| 001000 | nucu jion | 0 01000 | oue page |        |                   |             |          |
|--------|-----------|---------|----------|--------|-------------------|-------------|----------|
| Mol    | Chain     | Res     | Type     | Atoms  | Z                 | Observed(Å) | Ideal(Å) |
| 11     | R         | 334     | ARG      | NE-CZ  | 6.59              | 1.41        | 1.33     |
| 8      | S         | 211     | ARG      | NE-CZ  | 6.57              | 1.41        | 1.33     |
| 9      | Р         | 3       | ARG      | CZ-NH2 | 6.57              | 1.41        | 1.33     |
| 6      | Z         | 849     | ARG      | NE-CZ  | 6.57              | 1.41        | 1.33     |
| 6      | Ζ         | 138     | ARG      | CZ-NH1 | 6.55              | 1.41        | 1.33     |
| 7      | N         | 14      | ARG      | CZ-NH2 | 6.55              | 1.41        | 1.33     |
| 7      | N         | 883     | SER      | CA-CB  | 6.54              | 1.62        | 1.52     |
| 3      | Т         | 60      | ARG      | NE-CZ  | 6.54              | 1.41        | 1.33     |
| 8      | S         | 171     | TYR      | CA-CB  | -6.54             | 1.39        | 1.53     |
| 1      | W         | 101     | ARG      | CD-NE  | 6.54              | 1.57        | 1.46     |
| 4      | Х         | 59      | ARG      | CZ-NH1 | 6.51              | 1.41        | 1.33     |
| 7      | Ν         | 597     | ARG      | CZ-NH2 | 6.51              | 1.41        | 1.33     |
| 8      | S         | 52      | TYR      | CE1-CZ | 6.50              | 1.47        | 1.38     |
| 9      | Р         | 351     | ARG      | CZ-NH1 | 6.49              | 1.41        | 1.33     |
| 3      | Т         | 168     | SER      | CB-OG  | 6.49              | 1.50        | 1.42     |
| 8      | S         | 474     | GLU      | CB-CG  | 6.48              | 1.64        | 1.52     |
| 6      | Z         | 103     | TYR      | CG-CD1 | 6.47              | 1.47        | 1.39     |
| 8      | S         | 86      | SER      | CA-CB  | 6.44              | 1.62        | 1.52     |
| 6      | Z         | 919     | GLU      | CG-CD  | 6.42              | 1.61        | 1.51     |
| 6      | Z         | 39      | SER      | CA-CB  | 6.41              | 1.62        | 1.52     |
| 13     | 0         | 306     | ARG      | NE-CZ  | 6.41              | 1.41        | 1.33     |
| 6      | Z         | 16      | SER      | CB-OG  | -6.41             | 1.33        | 1.42     |
| 7      | N         | 516     | GLY      | CA-C   | -6.41             | 1.41        | 1.51     |
| 13     | 0         | 288     | ARG      | CZ-NH2 | 6.39              | 1.41        | 1.33     |
| 6      | Z         | 296     | SER      | CA-CB  | 6.39              | 1.62        | 1.52     |
| 7      | Ν         | 394     | ARG      | NE-CZ  | 6.32              | 1.41        | 1.33     |
| 6      | Z         | 385     | PHE      | CG-CD1 | 6.32              | 1.48        | 1.38     |
| 10     | Q         | 51      | ARG      | CZ-NH1 | 6.29              | 1.41        | 1.33     |
| 6      | Z         | 55      | ARG      | CZ-NH2 | 6.28              | 1.41        | 1.33     |
| 8      | S         | 384     | ARG      | NE-CZ  | 6.27              | 1.41        | 1.33     |
| 4      | Х         | 59      | ARG      | CZ-NH2 | 6.26              | 1.41        | 1.33     |
| 6      | Z         | 244     | ARG      | CZ-NH2 | 6.24              | 1.41        | 1.33     |
| 2      | V         | 196     | TYR      | CE2-CZ | -6.23             | 1.30        | 1.38     |
| 6      | Z         | 589     | SER      | CA-CB  | 6.22              | 1.62        | 1.52     |
| 1      | W         | 41      | ARG      | CZ-NH2 | 6.21              | 1.41        | 1.33     |
| 9      | P         | 136     | ARG      | NE-CZ  | 6.21              | 1.41        | 1.33     |
| 10     | Q         | 344     | GLU      | CG-CD  | 6.20              | 1.61        | 1.51     |
| 2      | V         | 269     | ARG      | NE-CZ  | 6.19              | 1.41        | 1.33     |
| 9      | P         | 298     | SER      | CB-OG  | $6.1\overline{9}$ | 1.50        | 1.42     |
| 6      | Z         | 504     | GLU      | CD-OE2 | 6.18              | 1.32        | 1.25     |
| 6      | Z         | 323     | TYR      | CB-CG  | -6.15             | 1.42        | 1.51     |
| 8      | S         | 51      | ARG      | CZ-NH2 | 6.15              | 1.41        | 1.33     |



| 001111 | nitiliaca from prettoas page |     |      |         |       |             |          |
|--------|------------------------------|-----|------|---------|-------|-------------|----------|
| Mol    | Chain                        | Res | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
| 12     | U                            | 277 | TYR  | CG-CD1  | 6.15  | 1.47        | 1.39     |
| 12     | U                            | 283 | ARG  | NE-CZ   | 6.14  | 1.41        | 1.33     |
| 4      | Х                            | 22  | ARG  | CD-NE   | 6.14  | 1.56        | 1.46     |
| 10     | Q                            | 332 | ARG  | CZ-NH1  | 6.13  | 1.41        | 1.33     |
| 11     | R                            | 209 | ARG  | CZ-NH1  | 6.12  | 1.41        | 1.33     |
| 11     | R                            | 422 | ARG  | CZ-NH2  | 6.12  | 1.41        | 1.33     |
| 11     | R                            | 331 | ARG  | NE-CZ   | 6.09  | 1.41        | 1.33     |
| 3      | Т                            | 265 | ASP  | N-CA    | -6.08 | 1.34        | 1.46     |
| 10     | Q                            | 245 | SER  | CB-OG   | 6.08  | 1.50        | 1.42     |
| 7      | N                            | 282 | TYR  | CD1-CE1 | 6.07  | 1.48        | 1.39     |
| 7      | N                            | 56  | SER  | CA-CB   | 6.06  | 1.62        | 1.52     |
| 6      | Z                            | 703 | SER  | CA-CB   | 6.06  | 1.62        | 1.52     |
| 7      | N                            | 203 | ARG  | NE-CZ   | 6.05  | 1.41        | 1.33     |
| 7      | N                            | 14  | ARG  | NE-CZ   | 6.04  | 1.40        | 1.33     |
| 3      | Т                            | 60  | ARG  | CZ-NH1  | 6.03  | 1.40        | 1.33     |
| 5      | Y                            | 86  | ARG  | CZ-NH2  | 6.03  | 1.40        | 1.33     |
| 6      | Z                            | 169 | VAL  | CB-CG1  | 6.02  | 1.65        | 1.52     |
| 6      | Z                            | 752 | ILE  | C-N     | 6.02  | 1.43        | 1.33     |
| 13     | 0                            | 220 | SER  | CA-CB   | 6.01  | 1.61        | 1.52     |
| 7      | N                            | 682 | PHE  | CB-CG   | -6.00 | 1.41        | 1.51     |
| 9      | Р                            | 262 | SER  | CA-CB   | 6.00  | 1.61        | 1.52     |
| 7      | N                            | 738 | GLN  | CA-C    | -6.00 | 1.37        | 1.52     |
| 6      | Z                            | 441 | TYR  | CZ-OH   | 5.99  | 1.48        | 1.37     |
| 6      | Z                            | 838 | TYR  | CZ-OH   | 5.99  | 1.48        | 1.37     |
| 7      | N                            | 894 | ARG  | NE-CZ   | 5.99  | 1.40        | 1.33     |
| 13     | 0                            | 58  | ARG  | NE-CZ   | 5.98  | 1.40        | 1.33     |
| 7      | N                            | 579 | SER  | CA-CB   | 5.97  | 1.61        | 1.52     |
| 11     | R                            | 338 | TYR  | CG-CD2  | 5.96  | 1.46        | 1.39     |
| 1      | W                            | 148 | GLU  | CG-CD   | 5.96  | 1.60        | 1.51     |
| 10     | Q                            | 172 | PRO  | N-CD    | -5.93 | 1.39        | 1.47     |
| 9      | Р                            | 2   | SER  | CA-CB   | 5.93  | 1.61        | 1.52     |
| 8      | S                            | 405 | ARG  | NE-CZ   | 5.93  | 1.40        | 1.33     |
| 4      | Х                            | 83  | SER  | CA-CB   | 5.92  | 1.61        | 1.52     |
| 7      | N                            | 247 | GLU  | CD-OE1  | 5.92  | 1.32        | 1.25     |
| 8      | S                            | 145 | PHE  | CG-CD2  | 5.91  | 1.47        | 1.38     |
| 12     | U                            | 253 | ASP  | CA-CB   | 5.90  | 1.67        | 1.53     |
| 6      | Z                            | 287 | ARG  | CZ-NH2  | 5.90  | 1.40        | 1.33     |
| 6      | Ζ                            | 623 | ARG  | CZ-NH2  | 5.90  | 1.40        | 1.33     |
| 9      | Р                            | 3   | ARG  | NE-CZ   | 5.89  | 1.40        | 1.33     |
| 11     | R                            | 43  | ARG  | CZ-NH2  | 5.86  | 1.40        | 1.33     |
| 7      | N                            | 653 | ARG  | NE-CZ   | 5.86  | 1.40        | 1.33     |
| 2      | V                            | 135 | ARG  | NE-CZ   | 5.85  | 1.40        | 1.33     |



| Mol | Chain | Res | Type | Atoms  | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|--------|-------|-------------|----------|
| 7   | Ν     | 880 | ARG  | CZ-NH1 | 5.85  | 1.40        | 1.33     |
| 3   | Т     | 98  | GLU  | CG-CD  | 5.84  | 1.60        | 1.51     |
| 2   | V     | 254 | ARG  | NE-CZ  | 5.84  | 1.40        | 1.33     |
| 11  | R     | 252 | TYR  | CG-CD2 | 5.83  | 1.46        | 1.39     |
| 11  | R     | 20  | ARG  | CZ-NH1 | 5.83  | 1.40        | 1.33     |
| 4   | Х     | 85  | ARG  | CZ-NH2 | 5.82  | 1.40        | 1.33     |
| 13  | 0     | 346 | GLU  | CD-OE1 | 5.81  | 1.32        | 1.25     |
| 3   | Т     | 186 | ARG  | CD-NE  | 5.81  | 1.56        | 1.46     |
| 8   | S     | 119 | TYR  | CG-CD2 | 5.81  | 1.46        | 1.39     |
| 13  | 0     | 284 | GLU  | CG-CD  | 5.80  | 1.60        | 1.51     |
| 13  | 0     | 311 | GLU  | CG-CD  | 5.80  | 1.60        | 1.51     |
| 7   | N     | 822 | GLY  | N-CA   | 5.79  | 1.54        | 1.46     |
| 10  | Q     | 349 | LYS  | CA-CB  | 5.79  | 1.66        | 1.53     |
| 9   | Р     | 117 | SER  | CA-CB  | 5.78  | 1.61        | 1.52     |
| 7   | Ν     | 901 | GLY  | N-CA   | -5.77 | 1.37        | 1.46     |
| 9   | Р     | 261 | LEU  | C-N    | 5.77  | 1.47        | 1.34     |
| 11  | R     | 65  | TYR  | CG-CD2 | 5.77  | 1.46        | 1.39     |
| 3   | Т     | 51  | TYR  | CB-CG  | -5.76 | 1.43        | 1.51     |
| 10  | Q     | 202 | ARG  | NE-CZ  | 5.75  | 1.40        | 1.33     |
| 11  | R     | 63  | TYR  | CB-CG  | -5.75 | 1.43        | 1.51     |
| 6   | Z     | 773 | ARG  | CZ-NH2 | 5.74  | 1.40        | 1.33     |
| 11  | R     | 290 | SER  | CA-CB  | 5.73  | 1.61        | 1.52     |
| 1   | W     | 53  | SER  | CA-CB  | -5.73 | 1.44        | 1.52     |
| 7   | N     | 417 | ARG  | CD-NE  | 5.73  | 1.56        | 1.46     |
| 9   | Р     | 123 | ARG  | CZ-NH1 | 5.71  | 1.40        | 1.33     |
| 4   | Х     | 110 | PRO  | N-CD   | -5.70 | 1.39        | 1.47     |
| 6   | Z     | 962 | ARG  | NE-CZ  | 5.70  | 1.40        | 1.33     |
| 13  | 0     | 371 | VAL  | CB-CG1 | 5.69  | 1.64        | 1.52     |
| 6   | Z     | 331 | GLY  | N-CA   | -5.69 | 1.37        | 1.46     |
| 9   | P     | 364 | ARG  | NE-CZ  | 5.69  | 1.40        | 1.33     |
| 2   | V     | 198 | SER  | CA-CB  | 5.69  | 1.61        | 1.52     |
| 1   | W     | 23  | ARG  | CZ-NH2 | 5.69  | 1.40        | 1.33     |
| 11  | R     | 214 | TYR  | CG-CD1 | 5.69  | 1.46        | 1.39     |
| 11  | R     | 24  | TYR  | CZ-OH  | 5.69  | 1.47        | 1.37     |
| 10  | Q     | 117 | VAL  | CB-CG1 | 5.67  | 1.64        | 1.52     |
| 7   | N     | 570 | ARG  | NE-CZ  | 5.66  | 1.40        | 1.33     |
| 6   | Z     | 586 | GLU  | CD-OE2 | 5.66  | 1.31        | 1.25     |
| 2   | V     | 272 | GLY  | N-CA   | -5.65 | 1.37        | 1.46     |
| 10  | Q     | 294 | ARG  | CZ-NH1 | 5.65  | 1.40        | 1.33     |
| 9   | P     | 15  | GLN  | CG-CD  | 5.64  | 1.64        | 1.51     |
| 13  | 0     | 210 | ARG  | NE-CZ  | 5.64  | 1.40        | 1.33     |
| 13  | 0     | 166 | ARG  | CZ-NH1 | 5.64  | 1.40        | 1.33     |



| 001000 | naca ji on | v preev | o ao page |        |       |             |          |
|--------|------------|---------|-----------|--------|-------|-------------|----------|
| Mol    | Chain      | Res     | Type      | Atoms  | Z     | Observed(Å) | Ideal(Å) |
| 2      | V          | 130     | GLU       | CD-OE2 | 5.63  | 1.31        | 1.25     |
| 13     | 0          | 330     | ARG       | CZ-NH1 | 5.63  | 1.40        | 1.33     |
| 2      | V          | 234     | GLU       | CB-CG  | 5.62  | 1.62        | 1.52     |
| 10     | Q          | 294     | ARG       | NE-CZ  | 5.62  | 1.40        | 1.33     |
| 12     | U          | 137     | TYR       | CZ-OH  | 5.62  | 1.47        | 1.37     |
| 6      | Z          | 798     | ARG       | CZ-NH2 | 5.62  | 1.40        | 1.33     |
| 9      | Р          | 421     | GLU       | CD-OE2 | 5.59  | 1.31        | 1.25     |
| 7      | Ν          | 222     | TYR       | CZ-OH  | 5.58  | 1.47        | 1.37     |
| 13     | 0          | 41      | LEU       | CA-CB  | -5.58 | 1.41        | 1.53     |
| 6      | Z          | 81      | SER       | CA-CB  | 5.58  | 1.61        | 1.52     |
| 8      | S          | 286     | TYR       | CG-CD2 | 5.58  | 1.46        | 1.39     |
| 3      | Т          | 88      | TYR       | CE2-CZ | 5.57  | 1.45        | 1.38     |
| 3      | Т          | 216     | GLU       | CG-CD  | 5.57  | 1.60        | 1.51     |
| 10     | Q          | 378     | SER       | CA-CB  | 5.57  | 1.61        | 1.52     |
| 3      | Т          | 220     | PHE       | CB-CG  | -5.56 | 1.42        | 1.51     |
| 4      | Х          | 11      | ARG       | CD-NE  | 5.56  | 1.55        | 1.46     |
| 6      | Z          | 295     | ARG       | CD-NE  | 5.56  | 1.55        | 1.46     |
| 13     | 0          | 147     | ARG       | NE-CZ  | 5.55  | 1.40        | 1.33     |
| 6      | Z          | 138     | ARG       | CZ-NH2 | 5.55  | 1.40        | 1.33     |
| 13     | 0          | 261     | GLY       | CA-C   | 5.55  | 1.60        | 1.51     |
| 6      | Z          | 564     | ARG       | CZ-NH1 | 5.55  | 1.40        | 1.33     |
| 2      | V          | 157     | ARG       | CZ-NH2 | 5.54  | 1.40        | 1.33     |
| 5      | Y          | 83      | ARG       | NE-CZ  | 5.54  | 1.40        | 1.33     |
| 11     | R          | 28      | GLU       | CG-CD  | 5.54  | 1.60        | 1.51     |
| 7      | N          | 813     | ARG       | NE-CZ  | 5.53  | 1.40        | 1.33     |
| 7      | N          | 585     | ARG       | CZ-NH2 | 5.53  | 1.40        | 1.33     |
| 8      | S          | 188     | TYR       | CG-CD2 | 5.53  | 1.46        | 1.39     |
| 13     | 0          | 369     | ARG       | CZ-NH1 | 5.53  | 1.40        | 1.33     |
| 3      | Т          | 91      | SER       | CA-CB  | 5.52  | 1.61        | 1.52     |
| 7      | Ν          | 103     | SER       | CA-CB  | 5.51  | 1.61        | 1.52     |
| 10     | Q          | 324     | GLU       | CD-OE1 | 5.51  | 1.31        | 1.25     |
| 7      | Ν          | 809     | ARG       | NE-CZ  | 5.51  | 1.40        | 1.33     |
| 10     | Q          | 414     | GLU       | CB-CG  | 5.51  | 1.62        | 1.52     |
| 7      | Ν          | 783     | SER       | CA-CB  | 5.50  | 1.61        | 1.52     |
| 8      | S          | 461     | PHE       | CG-CD1 | 5.50  | 1.47        | 1.38     |
| 7      | Ν          | 813     | ARG       | CZ-NH2 | 5.50  | 1.40        | 1.33     |
| 10     | Q          | 246     | TYR       | CZ-OH  | 5.50  | 1.47        | 1.37     |
| 13     | 0          | 60      | ARG       | CZ-NH2 | 5.49  | 1.40        | 1.33     |
| 13     | 0          | 210     | ARG       | CZ-NH2 | 5.49  | 1.40        | 1.33     |
| 6      | Z          | 494     | GLY       | N-CA   | -5.49 | 1.37        | 1.46     |
| 12     | U          | 120     | LEU       | N-CA   | -5.49 | 1.35        | 1.46     |
| 8      | S          | 298     | ARG       | CZ-NH2 | 5.49  | 1.40        | 1.33     |



|     | nucu jron | " PICOU | ous page | •••    |       |             |          |  |
|-----|-----------|---------|----------|--------|-------|-------------|----------|--|
| Mol | Chain     | Res     | Type     | Atoms  | Z     | Observed(Å) | Ideal(Å) |  |
| 13  | 0         | 106     | PHE      | CA-CB  | 5.48  | 1.66        | 1.53     |  |
| 6   | Z         | 216     | GLY      | CA-C   | -5.48 | 1.43        | 1.51     |  |
| 6   | Z         | 623     | ARG      | NE-CZ  | 5.48  | 1.40        | 1.33     |  |
| 8   | S         | 188     | TYR      | CG-CD1 | 5.48  | 1.46        | 1.39     |  |
| 10  | Q         | 39      | SER      | CA-CB  | 5.47  | 1.61        | 1.52     |  |
| 7   | N         | 921     | ARG      | CD-NE  | 5.46  | 1.55        | 1.46     |  |
| 6   | Z         | 8       | LYS      | CA-CB  | 5.44  | 1.66        | 1.53     |  |
| 11  | R         | 129     | GLU      | CB-CG  | 5.44  | 1.62        | 1.52     |  |
| 13  | 0         | 48      | PHE      | CB-CG  | -5.44 | 1.42        | 1.51     |  |
| 13  | 0         | 34      | GLU      | CB-CG  | 5.43  | 1.62        | 1.52     |  |
| 13  | 0         | 44      | SER      | CB-OG  | 5.43  | 1.49        | 1.42     |  |
| 8   | S         | 196     | ARG      | CD-NE  | 5.42  | 1.55        | 1.46     |  |
| 10  | Q         | 294     | ARG      | CD-NE  | 5.42  | 1.55        | 1.46     |  |
| 6   | Z         | 962     | ARG      | CD-NE  | 5.42  | 1.55        | 1.46     |  |
| 8   | S         | 212     | SER      | CA-CB  | 5.41  | 1.61        | 1.52     |  |
| 7   | N         | 610     | SER      | CA-CB  | 5.41  | 1.61        | 1.52     |  |
| 7   | N         | 515     | ARG      | CD-NE  | 5.40  | 1.55        | 1.46     |  |
| 12  | U         | 34      | VAL      | N-CA   | -5.40 | 1.35        | 1.46     |  |
| 6   | Z         | 64      | TYR      | CE2-CZ | 5.39  | 1.45        | 1.38     |  |
| 7   | N         | 431     | SER      | C-N    | 5.39  | 1.42        | 1.33     |  |
| 3   | Т         | 11      | LEU      | CA-CB  | 5.38  | 1.66        | 1.53     |  |
| 7   | Ν         | 894     | ARG      | CZ-NH2 | 5.38  | 1.40        | 1.33     |  |
| 11  | R         | 371     | PHE      | CB-CG  | -5.38 | 1.42        | 1.51     |  |
| 7   | N         | 422     | TYR      | CZ-OH  | 5.38  | 1.47        | 1.37     |  |
| 7   | N         | 235     | ALA      | C-N    | 5.37  | 1.42        | 1.33     |  |
| 13  | 0         | 344     | VAL      | CB-CG1 | 5.36  | 1.64        | 1.52     |  |
| 9   | Р         | 310     | ARG      | NE-CZ  | 5.36  | 1.40        | 1.33     |  |
| 6   | Z         | 832     | ARG      | CZ-NH2 | 5.36  | 1.40        | 1.33     |  |
| 10  | Q         | 254     | SER      | CA-C   | -5.36 | 1.39        | 1.52     |  |
| 8   | S         | 382     | ARG      | CD-NE  | 5.34  | 1.55        | 1.46     |  |
| 7   | N         | 422     | TYR      | CE2-CZ | 5.33  | 1.45        | 1.38     |  |
| 9   | Р         | 172     | GLU      | CG-CD  | 5.33  | 1.59        | 1.51     |  |
| 3   | Т         | 89      | TYR      | CB-CG  | -5.33 | 1.43        | 1.51     |  |
| 6   | Z         | 819     | GLY      | CA-C   | -5.33 | 1.43        | 1.51     |  |
| 11  | R         | 263     | ARG      | CZ-NH1 | 5.32  | 1.40        | 1.33     |  |
| 5   | Y         | 86      | ARG      | CZ-NH1 | 5.31  | 1.40        | 1.33     |  |
| 1   | W         | 17      | ARG      | CZ-NH1 | 5.31  | 1.40        | 1.33     |  |
| 3   | Т         | 150     | ARG      | CZ-NH1 | 5.30  | 1.40        | 1.33     |  |
| 9   | Р         | 232     | ARG      | CZ-NH2 | 5.30  | 1.40        | 1.33     |  |
| 9   | Р         | 421     | GLU      | CG-CD  | -5.30 | 1.44        | 1.51     |  |
| 3   | Т         | 60      | ARG      | CZ-NH2 | 5.30  | 1.40        | 1.33     |  |
| 13  | 0         | 41      | LEU      | N-CA   | -5.29 | 1.35        | 1.46     |  |



| Mol | Chain | Res | Type | Atoms  | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|--------|-------|-------------|----------|
| 5   | Y     | 86  | ARG  | NE-CZ  | 5.29  | 1.40        | 1.33     |
| 7   | N     | 618 | ARG  | NE-CZ  | 5.28  | 1.40        | 1.33     |
| 2   | V     | 257 | GLU  | CG-CD  | 5.27  | 1.59        | 1.51     |
| 7   | N     | 913 | PRO  | N-CD   | -5.27 | 1.40        | 1.47     |
| 1   | W     | 182 | TYR  | CB-CG  | -5.27 | 1.43        | 1.51     |
| 3   | Т     | 260 | ILE  | N-CA   | -5.27 | 1.35        | 1.46     |
| 13  | 0     | 98  | TYR  | CG-CD2 | 5.27  | 1.46        | 1.39     |
| 7   | N     | 139 | ARG  | CZ-NH1 | 5.25  | 1.39        | 1.33     |
| 13  | 0     | 373 | TRP  | CB-CG  | -5.25 | 1.40        | 1.50     |
| 7   | N     | 417 | ARG  | CZ-NH2 | 5.24  | 1.39        | 1.33     |
| 8   | S     | 421 | TYR  | CG-CD2 | 5.24  | 1.46        | 1.39     |
| 4   | Х     | 22  | ARG  | CZ-NH2 | 5.23  | 1.39        | 1.33     |
| 2   | V     | 243 | SER  | CA-CB  | 5.22  | 1.60        | 1.52     |
| 6   | Z     | 202 | ARG  | CZ-NH2 | 5.22  | 1.39        | 1.33     |
| 6   | Z     | 165 | TYR  | CE1-CZ | 5.21  | 1.45        | 1.38     |
| 10  | Q     | 17  | GLU  | N-CA   | 5.21  | 1.56        | 1.46     |
| 13  | 0     | 333 | SER  | CA-CB  | 5.20  | 1.60        | 1.52     |
| 2   | V     | 230 | TYR  | N-CA   | -5.20 | 1.35        | 1.46     |
| 9   | Р     | 161 | CYS  | N-CA   | -5.20 | 1.35        | 1.46     |
| 3   | Т     | 157 | TYR  | CG-CD2 | 5.19  | 1.46        | 1.39     |
| 6   | Z     | 113 | SER  | CA-CB  | 5.19  | 1.60        | 1.52     |
| 8   | S     | 464 | ARG  | CZ-NH2 | 5.19  | 1.39        | 1.33     |
| 10  | Q     | 232 | TYR  | CG-CD2 | 5.19  | 1.45        | 1.39     |
| 11  | R     | 392 | ARG  | CZ-NH2 | 5.19  | 1.39        | 1.33     |
| 6   | Z     | 174 | GLU  | CG-CD  | 5.18  | 1.59        | 1.51     |
| 3   | Т     | 233 | VAL  | N-CA   | -5.18 | 1.35        | 1.46     |
| 13  | 0     | 32  | PHE  | CA-CB  | 5.17  | 1.65        | 1.53     |
| 1   | W     | 37  | PHE  | CG-CD1 | 5.16  | 1.46        | 1.38     |
| 13  | 0     | 15  | ARG  | CZ-NH2 | 5.16  | 1.39        | 1.33     |
| 3   | Т     | 122 | PHE  | CG-CD2 | 5.16  | 1.46        | 1.38     |
| 6   | Z     | 55  | ARG  | NE-CZ  | 5.16  | 1.39        | 1.33     |
| 6   | Z     | 912 | PHE  | CG-CD1 | 5.15  | 1.46        | 1.38     |
| 8   | S     | 95  | PHE  | CG-CD1 | 5.15  | 1.46        | 1.38     |
| 13  | 0     | 212 | GLN  | CG-CD  | 5.14  | 1.62        | 1.51     |
| 3   | Т     | 223 | GLU  | CD-OE1 | -5.14 | 1.20        | 1.25     |
| 13  | 0     | 298 | GLU  | CB-CG  | 5.13  | 1.61        | 1.52     |
| 9   | Р     | 332 | GLU  | N-CA   | -5.13 | 1.36        | 1.46     |
| 7   | N     | 434 | SER  | CA-CB  | 5.12  | 1.60        | 1.52     |
| 6   | Z     | 384 | SER  | CA-CB  | 5.12  | 1.60        | 1.52     |
| 11  | R     | 48  | GLU  | CD-OE1 | 5.12  | 1.31        | 1.25     |
| 3   | Т     | 20  | TYR  | CE2-CZ | 5.12  | 1.45        | 1.38     |
| 9   | P     | 364 | ARG  | CZ-NH1 | 5.12  | 1.39        | 1.33     |



|     |       |     | us puye | •••     | 77    |             | <b>T1 1(8)</b> |
|-----|-------|-----|---------|---------|-------|-------------|----------------|
| Mol | Chain | Res | Type    | Atoms   | Z     | Observed(A) | Ideal(A)       |
| 8   | S     | 452 | TYR     | CG-CD2  | 5.11  | 1.45        | 1.39           |
| 10  | Q     | 398 | TYR     | CZ-OH   | 5.11  | 1.46        | 1.37           |
| 6   | Z     | 34  | GLU     | CD-OE2  | 5.10  | 1.31        | 1.25           |
| 7   | N     | 604 | ARG     | NE-CZ   | 5.10  | 1.39        | 1.33           |
| 11  | R     | 206 | ARG     | NE-CZ   | 5.10  | 1.39        | 1.33           |
| 8   | S     | 425 | ARG     | CZ-NH2  | 5.10  | 1.39        | 1.33           |
| 1   | W     | 4   | GLU     | CD-OE1  | 5.09  | 1.31        | 1.25           |
| 13  | 0     | 17  | GLU     | CG-CD   | 5.09  | 1.59        | 1.51           |
| 13  | 0     | 195 | TYR     | CG-CD2  | 5.08  | 1.45        | 1.39           |
| 8   | S     | 428 | ARG     | CZ-NH2  | 5.08  | 1.39        | 1.33           |
| 2   | V     | 304 | ALA     | CA-CB   | 5.08  | 1.63        | 1.52           |
| 8   | S     | 393 | ARG     | CD-NE   | 5.07  | 1.55        | 1.46           |
| 8   | S     | 82  | TYR     | CZ-OH   | 5.07  | 1.46        | 1.37           |
| 11  | R     | 221 | VAL     | CA-CB   | -5.07 | 1.44        | 1.54           |
| 2   | V     | 28  | TYR     | CE2-CZ  | 5.06  | 1.45        | 1.38           |
| 6   | Ζ     | 597 | SER     | CB-OG   | 5.06  | 1.48        | 1.42           |
| 6   | Z     | 358 | TYR     | CE1-CZ  | 5.06  | 1.45        | 1.38           |
| 10  | Q     | 104 | PHE     | CG-CD1  | 5.06  | 1.46        | 1.38           |
| 7   | N     | 800 | ALA     | CA-CB   | 5.05  | 1.63        | 1.52           |
| 9   | Р     | 423 | LEU     | CA-C    | -5.05 | 1.39        | 1.52           |
| 7   | N     | 597 | ARG     | NE-CZ   | 5.05  | 1.39        | 1.33           |
| 11  | R     | 328 | PHE     | CE2-CZ  | 5.04  | 1.47        | 1.37           |
| 10  | Q     | 86  | MET     | CG-SD   | -5.04 | 1.68        | 1.81           |
| 4   | Х     | 85  | ARG     | CZ-NH1  | 5.04  | 1.39        | 1.33           |
| 7   | Ν     | 902 | VAL     | CA-CB   | -5.04 | 1.44        | 1.54           |
| 8   | S     | 275 | TYR     | CB-CG   | -5.04 | 1.44        | 1.51           |
| 9   | Р     | 266 | TYR     | CG-CD1  | 5.03  | 1.45        | 1.39           |
| 11  | R     | 331 | ARG     | CZ-NH1  | 5.03  | 1.39        | 1.33           |
| 1   | W     | 21  | PHE     | CG-CD2  | 5.03  | 1.46        | 1.38           |
| 6   | Ζ     | 136 | ARG     | CZ-NH2  | 5.03  | 1.39        | 1.33           |
| 9   | Р     | 94  | GLN     | N-CA    | -5.03 | 1.36        | 1.46           |
| 12  | U     | 57  | GLU     | CD-OE2  | 5.02  | 1.31        | 1.25           |
| 6   | Ζ     | 408 | TYR     | CE1-CZ  | 5.02  | 1.45        | 1.38           |
| 8   | S     | 160 | ARG     | CD-NE   | 5.02  | 1.54        | 1.46           |
| 7   | N     | 893 | VAL     | N-CA    | -5.02 | 1.36        | 1.46           |
| 9   | Р     | 437 | GLU     | CG-CD   | 5.02  | 1.59        | 1.51           |
| 3   | Т     | 151 | TRP     | NE1-CE2 | -5.01 | 1.31        | 1.37           |
| 6   | Ζ     | 55  | ARG     | CZ-NH1  | 5.01  | 1.39        | 1.33           |
| 6   | Z     | 783 | VAL     | CB-CG2  | 5.01  | 1.63        | 1.52           |
| 3   | Т     | 252 | GLU     | N-CA    | -5.01 | 1.36        | 1.46           |

All (928) bond angle outliers are listed below:



| Mol | Chain | Res | Type | Atoms     | Z      | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------|--------|------------------|---------------|
| 7   | N     | 8   | PRO  | N-CA-CB   | -29.24 | 68.21            | 103.30        |
| 2   | V     | 196 | TYR  | CB-CA-C   | -25.02 | 60.37            | 110.40        |
| 2   | V     | 157 | ARG  | NE-CZ-NH1 | 16.47  | 128.53           | 120.30        |
| 13  | 0     | 330 | ARG  | NE-CZ-NH1 | 16.47  | 128.53           | 120.30        |
| 10  | Q     | 409 | TYR  | CB-CG-CD2 | -16.00 | 111.40           | 121.00        |
| 13  | 0     | 15  | ARG  | NE-CZ-NH1 | 15.89  | 128.24           | 120.30        |
| 6   | Ζ     | 574 | TYR  | CB-CG-CD2 | -15.65 | 111.61           | 121.00        |
| 6   | Z     | 439 | TYR  | CB-CG-CD1 | 15.32  | 130.19           | 121.00        |
| 8   | S     | 253 | PHE  | CB-CG-CD1 | -15.12 | 110.22           | 120.80        |
| 5   | Y     | 65  | ASP  | CB-CA-C   | -14.87 | 80.67            | 110.40        |
| 10  | Q     | 124 | PHE  | CB-CG-CD2 | -14.75 | 110.47           | 120.80        |
| 10  | Q     | 124 | PHE  | CB-CG-CD1 | 14.68  | 131.07           | 120.80        |
| 10  | Q     | 77  | PHE  | CB-CG-CD1 | 14.20  | 130.74           | 120.80        |
| 6   | Ζ     | 574 | TYR  | CB-CG-CD1 | 13.96  | 129.37           | 121.00        |
| 11  | R     | 338 | TYR  | CB-CG-CD2 | -13.80 | 112.72           | 121.00        |
| 10  | Q     | 50  | ARG  | NE-CZ-NH1 | 13.66  | 127.13           | 120.30        |
| 8   | S     | 158 | PHE  | CB-CG-CD2 | 13.53  | 130.27           | 120.80        |
| 7   | N     | 81  | TYR  | CB-CG-CD1 | 13.39  | 129.03           | 121.00        |
| 13  | 0     | 65  | PHE  | CB-CG-CD1 | 13.35  | 130.14           | 120.80        |
| 10  | Q     | 243 | PHE  | CB-CG-CD1 | -13.34 | 111.46           | 120.80        |
| 6   | Ζ     | 385 | PHE  | CB-CG-CD2 | -13.18 | 111.58           | 120.80        |
| 2   | V     | 157 | ARG  | NE-CZ-NH2 | -13.17 | 113.71           | 120.30        |
| 2   | V     | 196 | TYR  | N-CA-CB   | 13.07  | 134.13           | 110.60        |
| 7   | N     | 282 | TYR  | CB-CG-CD2 | 12.96  | 128.78           | 121.00        |
| 11  | R     | 305 | PHE  | CB-CG-CD2 | -12.94 | 111.74           | 120.80        |
| 6   | Ζ     | 269 | TYR  | CB-CG-CD2 | -12.92 | 113.25           | 121.00        |
| 6   | Ζ     | 264 | PHE  | CB-CG-CD2 | -12.81 | 111.83           | 120.80        |
| 13  | 0     | 58  | ARG  | NE-CZ-NH1 | -12.63 | 113.98           | 120.30        |
| 5   | Y     | 73  | PHE  | CB-CG-CD2 | 12.58  | 129.61           | 120.80        |
| 11  | R     | 224 | PHE  | CB-CG-CD1 | -12.57 | 112.00           | 120.80        |
| 2   | V     | 254 | ARG  | NE-CZ-NH1 | 12.55  | 126.57           | 120.30        |
| 6   | Ζ     | 103 | TYR  | CB-CG-CD1 | 12.47  | 128.49           | 121.00        |
| 8   | S     | 384 | ARG  | NE-CZ-NH2 | -12.41 | 114.10           | 120.30        |
| 12  | U     | 22  | TYR  | CB-CG-CD1 | 12.37  | 128.42           | 121.00        |
| 2   | V     | 114 | PHE  | CB-CG-CD1 | 12.36  | 129.45           | 120.80        |
| 6   | Ζ     | 738 | TYR  | CB-CG-CD1 | 12.24  | 128.35           | 121.00        |
| 8   | S     | 158 | PHE  | CB-CG-CD1 | -12.24 | 112.23           | 120.80        |
| 9   | Р     | 208 | PHE  | CB-CG-CD2 | -12.24 | 112.23           | 120.80        |
| 6   | Ζ     | 96  | TYR  | CB-CG-CD1 | -12.18 | 113.69           | 121.00        |
| 11  | R     | 417 | TYR  | CB-CG-CD2 | -12.03 | 113.78           | 121.00        |
| 7   | N     | 559 | TYR  | CB-CG-CD2 | -11.93 | 113.84           | 121.00        |
| 13  | 0     | 98  | TYR  | CB-CG-CD2 | -11.91 | 113.85           | 121.00        |
| 5   | Y     | 84  | TYR  | CB-CG-CD2 | -11.86 | 113.88           | 121.00        |



|     | <i>J</i> | . I | 1 5  |            |        |                  |               |
|-----|----------|-----|------|------------|--------|------------------|---------------|
| Mol | Chain    | Res | Type | Atoms      | Z      | $Observed(^{o})$ | $Ideal(^{o})$ |
| 2   | V        | 114 | PHE  | CB-CG-CD2  | -11.81 | 112.53           | 120.80        |
| 7   | N        | 906 | ARG  | NE-CZ-NH1  | 11.75  | 126.17           | 120.30        |
| 2   | V        | 197 | TYR  | N-CA-CB    | 11.69  | 131.64           | 110.60        |
| 9   | Р        | 356 | TYR  | CB-CG-CD2  | -11.66 | 114.00           | 121.00        |
| 11  | R        | 222 | ARG  | NE-CZ-NH1  | 11.65  | 126.13           | 120.30        |
| 8   | S        | 428 | ARG  | NE-CZ-NH2  | -11.64 | 114.48           | 120.30        |
| 9   | Р        | 273 | TYR  | CB-CG-CD2  | -11.61 | 114.04           | 121.00        |
| 7   | N        | 463 | TYR  | CB-CG-CD1  | 11.55  | 127.93           | 121.00        |
| 6   | Z        | 55  | ARG  | NE-CZ-NH1  | 11.36  | 125.98           | 120.30        |
| 10  | Q        | 12  | ARG  | NE-CZ-NH2  | -11.27 | 114.67           | 120.30        |
| 11  | R        | 312 | TYR  | CB-CG-CD1  | -11.26 | 114.24           | 121.00        |
| 6   | Ζ        | 928 | ARG  | NE-CZ-NH2  | -11.18 | 114.71           | 120.30        |
| 10  | Q        | 77  | PHE  | CB-CG-CD2  | -11.09 | 113.03           | 120.80        |
| 1   | W        | 23  | ARG  | NE-CZ-NH2  | -11.02 | 114.79           | 120.30        |
| 7   | Ν        | 299 | TYR  | CB-CG-CD2  | -10.92 | 114.44           | 121.00        |
| 7   | N        | 162 | ARG  | NE-CZ-NH2  | -10.92 | 114.84           | 120.30        |
| 8   | S        | 196 | ARG  | NE-CZ-NH1  | 10.90  | 125.75           | 120.30        |
| 7   | N        | 139 | ARG  | NE-CZ-NH1  | 10.89  | 125.74           | 120.30        |
| 13  | 0        | 179 | PHE  | CB-CG-CD1  | 10.84  | 128.39           | 120.80        |
| 11  | R        | 207 | ARG  | NE-CZ-NH1  | 10.84  | 125.72           | 120.30        |
| 9   | Р        | 359 | ARG  | NE-CZ-NH2  | -10.74 | 114.93           | 120.30        |
| 6   | Z        | 843 | ASP  | CB-CG-OD2  | -10.71 | 108.67           | 118.30        |
| 8   | S        | 126 | LYS  | N-CA-CB    | 10.70  | 129.85           | 110.60        |
| 8   | S        | 127 | THR  | N-CA-CB    | -10.63 | 90.11            | 110.30        |
| 6   | Z        | 137 | TYR  | CB-CG-CD1  | 10.56  | 127.34           | 121.00        |
| 4   | Х        | 122 | TYR  | CB-CG-CD2  | -10.56 | 114.67           | 121.00        |
| 2   | V        | 156 | PHE  | CB-CG-CD1  | -10.50 | 113.45           | 120.80        |
| 2   | V        | 228 | TYR  | CB-CG-CD1  | -10.48 | 114.71           | 121.00        |
| 7   | N        | 81  | TYR  | CB-CG-CD2  | -10.45 | 114.73           | 121.00        |
| 6   | Ζ        | 339 | PHE  | CB-CG-CD2  | -10.44 | 113.49           | 120.80        |
| 7   | N        | 896 | PHE  | CB-CG-CD1  | 10.39  | 128.07           | 120.80        |
| 11  | R        | 392 | ARG  | NE-CZ-NH2  | 10.32  | 125.46           | 120.30        |
| 6   | Z        | 970 | TYR  | CB-CG-CD1  | -10.32 | 114.81           | 121.00        |
| 7   | N        | 70  | TYR  | CB-CG-CD2  | -10.31 | 114.81           | 121.00        |
| 6   | Z        | 774 | ARG  | NE-CZ-NH1  | 10.25  | 125.43           | 120.30        |
| 11  | R        | 186 | TYR  | CB-CG-CD1  | -10.22 | 114.87           | 121.00        |
| 10  | Q        | 34  | ASP  | CB-CG-OD1  | 10.22  | 127.50           | 118.30        |
| 8   | S        | 425 | ARG  | NE-CZ-NH1  | 10.21  | 125.40           | 120.30        |
| 2   | V        | 196 | TYR  | CD1-CE1-CZ | -10.03 | 110.77           | 119.80        |
| 13  | 0        | 98  | TYR  | CB-CG-CD1  | 10.03  | 127.02           | 121.00        |
| 7   | N        | 282 | TYR  | CB-CG-CD1  | -10.02 | 114.99           | 121.00        |
| 7   | N        | 906 | ARG  | NE-CZ-NH2  | -10.01 | 115.29           | 120.30        |



| Mol | Chain | Res | Type | Atoms     | Ζ     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------|-------|------------------|---------------|
| 6   | Ζ     | 137 | TYR  | CB-CG-CD2 | -9.99 | 115.00           | 121.00        |
| 4   | Х     | 96  | ARG  | NE-CZ-NH2 | -9.98 | 115.31           | 120.30        |
| 3   | Т     | 150 | ARG  | NE-CZ-NH1 | 9.95  | 125.28           | 120.30        |
| 8   | S     | 82  | TYR  | CB-CG-CD1 | 9.85  | 126.91           | 121.00        |
| 4   | Х     | 122 | TYR  | CB-CG-CD1 | 9.84  | 126.90           | 121.00        |
| 11  | R     | 43  | ARG  | NE-CZ-NH2 | -9.71 | 115.45           | 120.30        |
| 6   | Ζ     | 248 | TYR  | CB-CG-CD2 | -9.67 | 115.20           | 121.00        |
| 11  | R     | 65  | TYR  | CB-CG-CD1 | -9.66 | 115.20           | 121.00        |
| 9   | Р     | 245 | TYR  | CB-CG-CD1 | 9.52  | 126.71           | 121.00        |
| 13  | 0     | 147 | ARG  | NE-CZ-NH1 | 9.46  | 125.03           | 120.30        |
| 7   | N     | 786 | ARG  | NE-CZ-NH1 | -9.45 | 115.57           | 120.30        |
| 10  | Q     | 294 | ARG  | NE-CZ-NH2 | -9.44 | 115.58           | 120.30        |
| 6   | Ζ     | 738 | TYR  | CB-CG-CD2 | -9.42 | 115.35           | 121.00        |
| 6   | Ζ     | 385 | PHE  | CB-CG-CD1 | 9.37  | 127.36           | 120.80        |
| 6   | Ζ     | 759 | ARG  | NE-CZ-NH1 | 9.33  | 124.96           | 120.30        |
| 9   | Р     | 328 | ALA  | N-CA-CB   | 9.29  | 123.11           | 110.10        |
| 7   | N     | 526 | TYR  | CB-CG-CD1 | -9.27 | 115.44           | 121.00        |
| 13  | 0     | 356 | ARG  | NE-CZ-NH2 | -9.27 | 115.66           | 120.30        |
| 11  | R     | 224 | PHE  | CB-CG-CD2 | 9.26  | 127.28           | 120.80        |
| 9   | Р     | 356 | TYR  | CB-CG-CD1 | 9.25  | 126.55           | 121.00        |
| 11  | R     | 338 | TYR  | CB-CG-CD1 | 9.25  | 126.55           | 121.00        |
| 11  | R     | 206 | ARG  | NE-CZ-NH1 | 9.22  | 124.91           | 120.30        |
| 7   | N     | 18  | ASP  | CB-CG-OD1 | -9.21 | 110.01           | 118.30        |
| 6   | Ζ     | 153 | TYR  | CB-CG-CD2 | -9.21 | 115.47           | 121.00        |
| 8   | S     | 286 | TYR  | CB-CG-CD2 | 9.21  | 126.53           | 121.00        |
| 9   | Р     | 245 | TYR  | CB-CG-CD2 | -9.16 | 115.50           | 121.00        |
| 7   | Ν     | 559 | TYR  | CB-CG-CD1 | 9.13  | 126.48           | 121.00        |
| 11  | R     | 63  | TYR  | CB-CG-CD1 | -9.12 | 115.53           | 121.00        |
| 6   | Ζ     | 928 | ARG  | NE-CZ-NH1 | 9.12  | 124.86           | 120.30        |
| 13  | 0     | 65  | PHE  | CB-CG-CD2 | -9.09 | 114.44           | 120.80        |
| 13  | 0     | 342 | ASP  | CB-CG-OD2 | -9.03 | 110.17           | 118.30        |
| 5   | Y     | 86  | ARG  | NE-CZ-NH2 | -9.03 | 115.79           | 120.30        |
| 11  | R     | 222 | ARG  | NE-CZ-NH2 | -9.01 | 115.79           | 120.30        |
| 8   | S     | 309 | PHE  | CB-CG-CD2 | 9.01  | 127.11           | 120.80        |
| 8   | S     | 127 | THR  | CA-CB-CG2 | 9.00  | 125.00           | 112.40        |
| 11  | R     | 357 | PHE  | CB-CG-CD1 | -8.99 | 114.51           | 120.80        |
| 6   | Ζ     | 103 | TYR  | CB-CG-CD2 | -8.98 | 115.61           | 121.00        |
| 2   | V     | 194 | ARG  | NE-CZ-NH1 | 8.95  | 124.78           | 120.30        |
| 8   | S     | 332 | PHE  | CB-CG-CD2 | -8.95 | 114.54           | 120.80        |
| 8   | S     | 95  | PHE  | CB-CG-CD1 | 8.94  | 127.06           | 120.80        |
| 5   | Y     | 84  | TYR  | CB-CG-CD1 | 8.94  | 126.36           | 121.00        |
| 6   | Ζ     | 264 | PHE  | CB-CG-CD1 | 8.90  | 127.03           | 120.80        |



| Mol | Chain | Res | Type | Atoms      | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|-------|------------------|---------------|
| 6   | Ζ     | 513 | ALA  | CB-CA-C    | 8.90  | 123.45           | 110.10        |
| 9   | Р     | 3   | ARG  | NE-CZ-NH2  | -8.89 | 115.85           | 120.30        |
| 6   | Ζ     | 298 | PHE  | CB-CG-CD1  | 8.88  | 127.01           | 120.80        |
| 4   | Х     | 45  | PHE  | CB-CG-CD1  | 8.88  | 127.01           | 120.80        |
| 13  | 0     | 41  | LEU  | N-CA-CB    | -8.87 | 92.66            | 110.40        |
| 6   | Ζ     | 912 | PHE  | CB-CG-CD2  | 8.84  | 126.98           | 120.80        |
| 10  | Q     | 309 | ARG  | NE-CZ-NH1  | 8.82  | 124.71           | 120.30        |
| 2   | V     | 155 | ALA  | N-CA-CB    | 8.80  | 122.42           | 110.10        |
| 5   | Y     | 65  | ASP  | N-CA-CB    | 8.80  | 126.44           | 110.60        |
| 13  | 0     | 32  | PHE  | CB-CG-CD1  | -8.80 | 114.64           | 120.80        |
| 9   | Р     | 138 | ARG  | NE-CZ-NH2  | -8.74 | 115.93           | 120.30        |
| 6   | Ζ     | 439 | TYR  | CB-CG-CD2  | -8.74 | 115.76           | 121.00        |
| 2   | V     | 135 | ARG  | NE-CZ-NH2  | -8.70 | 115.95           | 120.30        |
| 1   | W     | 26  | PHE  | CB-CG-CD2  | -8.70 | 114.71           | 120.80        |
| 12  | U     | 113 | TYR  | CB-CG-CD1  | -8.68 | 115.80           | 121.00        |
| 10  | Q     | 88  | PHE  | CB-CG-CD1  | -8.67 | 114.73           | 120.80        |
| 13  | 0     | 41  | LEU  | CB-CA-C    | 8.67  | 126.67           | 110.20        |
| 13  | 0     | 26  | PHE  | CB-CG-CD2  | 8.66  | 126.86           | 120.80        |
| 13  | 0     | 166 | ARG  | NE-CZ-NH1  | 8.63  | 124.61           | 120.30        |
| 5   | Y     | 83  | ARG  | NE-CZ-NH1  | 8.61  | 124.61           | 120.30        |
| 11  | R     | 63  | TYR  | CB-CG-CD2  | 8.61  | 126.16           | 121.00        |
| 4   | Х     | 100 | TRP  | CG-CD2-CE3 | -8.60 | 126.16           | 133.90        |
| 10  | Q     | 423 | VAL  | CA-CB-CG2  | 8.59  | 123.78           | 110.90        |
| 8   | S     | 52  | TYR  | CB-CG-CD2  | -8.55 | 115.87           | 121.00        |
| 9   | Р     | 213 | TYR  | CB-CG-CD1  | -8.54 | 115.87           | 121.00        |
| 7   | N     | 299 | TYR  | CB-CG-CD1  | 8.54  | 126.12           | 121.00        |
| 1   | W     | 113 | PHE  | CB-CG-CD1  | 8.53  | 126.77           | 120.80        |
| 7   | N     | 584 | ARG  | NE-CZ-NH2  | -8.52 | 116.04           | 120.30        |
| 13  | 0     | 29  | PHE  | CB-CG-CD2  | -8.51 | 114.84           | 120.80        |
| 5   | Y     | 73  | PHE  | CB-CG-CD1  | -8.51 | 114.84           | 120.80        |
| 10  | Q     | 88  | PHE  | CB-CG-CD2  | 8.51  | 126.75           | 120.80        |
| 6   | Ζ     | 722 | ASP  | CB-CG-OD1  | 8.50  | 125.95           | 118.30        |
| 4   | Х     | 85  | ARG  | NE-CZ-NH2  | -8.49 | 116.06           | 120.30        |
| 10  | Q     | 409 | TYR  | CB-CG-CD1  | 8.48  | 126.09           | 121.00        |
| 8   | S     | 186 | TYR  | CB-CG-CD1  | -8.47 | 115.92           | 121.00        |
| 6   | Ζ     | 4   | GLU  | N-CA-CB    | 8.42  | 125.75           | 110.60        |
| 6   | Z     | 244 | ARG  | NE-CZ-NH1  | 8.40  | 124.50           | 120.30        |
| 10  | Q     | 335 | PHE  | CB-CG-CD1  | 8.40  | 126.68           | 120.80        |
| 1   | W     | 140 | ASP  | CB-CG-OD2  | -8.37 | 110.77           | 118.30        |
| 1   | W     | 179 | ARG  | NE-CZ-NH2  | -8.36 | 116.12           | 120.30        |
| 11  | R     | 304 | TYR  | CB-CG-CD2  | 8.34  | 126.01           | 121.00        |
| 3   | Т     | 157 | TYR  | CB-CG-CD1  | 8.32  | 125.99           | 121.00        |



| Mol | Chain | Res | Type | Atoms      | Z     | Observed(°) | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|-------|-------------|---------------|
| 13  | 0     | 306 | ARG  | NE-CZ-NH1  | 8.30  | 124.45      | 120.30        |
| 2   | V     | 61  | TYR  | CB-CG-CD2  | -8.28 | 116.03      | 121.00        |
| 13  | 0     | 69  | PHE  | CB-CG-CD2  | -8.24 | 115.03      | 120.80        |
| 7   | N     | 139 | ARG  | NE-CZ-NH2  | -8.21 | 116.19      | 120.30        |
| 7   | N     | 500 | ASP  | CB-CG-OD1  | 8.20  | 125.68      | 118.30        |
| 7   | N     | 188 | TYR  | CB-CG-CD2  | -8.20 | 116.08      | 121.00        |
| 2   | V     | 183 | ALA  | C-N-CA     | 8.18  | 142.16      | 121.70        |
| 2   | V     | 254 | ARG  | NE-CZ-NH2  | -8.18 | 116.21      | 120.30        |
| 13  | 0     | 33  | TYR  | CB-CG-CD2  | -8.16 | 116.10      | 121.00        |
| 9   | Р     | 3   | ARG  | NE-CZ-NH1  | 8.16  | 124.38      | 120.30        |
| 2   | V     | 59  | ASP  | CB-CG-OD2  | -8.16 | 110.96      | 118.30        |
| 7   | N     | 604 | ARG  | NE-CZ-NH2  | -8.16 | 116.22      | 120.30        |
| 13  | 0     | 15  | ARG  | NE-CZ-NH2  | -8.16 | 116.22      | 120.30        |
| 3   | Т     | 73  | PHE  | CB-CG-CD1  | -8.10 | 115.13      | 120.80        |
| 6   | Z     | 272 | TYR  | CB-CG-CD2  | 8.09  | 125.85      | 121.00        |
| 7   | N     | 162 | ARG  | NE-CZ-NH1  | 8.05  | 124.33      | 120.30        |
| 3   | Т     | 109 | TYR  | CB-CG-CD2  | -8.01 | 116.19      | 121.00        |
| 2   | V     | 270 | TYR  | CB-CG-CD1  | -8.00 | 116.20      | 121.00        |
| 13  | 0     | 347 | LEU  | CB-CG-CD2  | 8.00  | 124.59      | 111.00        |
| 11  | R     | 307 | TYR  | CB-CG-CD2  | -7.98 | 116.21      | 121.00        |
| 8   | S     | 345 | TYR  | CB-CG-CD1  | -7.97 | 116.22      | 121.00        |
| 1   | W     | 78  | ASP  | CB-CG-OD1  | 7.97  | 125.47      | 118.30        |
| 12  | U     | 245 | ASP  | CB-CG-OD1  | -7.97 | 111.13      | 118.30        |
| 11  | R     | 124 | ASP  | CB-CG-OD2  | 7.94  | 125.45      | 118.30        |
| 3   | Т     | 60  | ARG  | NE-CZ-NH2  | -7.94 | 116.33      | 120.30        |
| 10  | Q     | 75  | ARG  | NE-CZ-NH1  | -7.92 | 116.34      | 120.30        |
| 2   | V     | 103 | MET  | CG-SD-CE   | -7.90 | 87.56       | 100.20        |
| 3   | Т     | 51  | TYR  | CB-CG-CD1  | 7.89  | 125.73      | 121.00        |
| 6   | Z     | 48  | ASP  | CB-CG-OD2  | -7.88 | 111.21      | 118.30        |
| 1   | W     | 182 | TYR  | CZ-CE2-CD2 | -7.87 | 112.72      | 119.80        |
| 2   | V     | 93  | ASP  | CB-CG-OD2  | -7.86 | 111.23      | 118.30        |
| 2   | V     | 228 | TYR  | CB-CG-CD2  | 7.86  | 125.71      | 121.00        |
| 11  | R     | 329 | PHE  | CB-CG-CD1  | 7.86  | 126.30      | 120.80        |
| 11  | R     | 179 | PHE  | CB-CG-CD2  | -7.86 | 115.30      | 120.80        |
| 11  | R     | 20  | ARG  | NE-CZ-NH1  | 7.85  | 124.23      | 120.30        |
| 12  | U     | 179 | ARG  | N-CA-CB    | 7.85  | 124.72      | 110.60        |
| 6   | Z     | 242 | PHE  | CB-CG-CD2  | -7.83 | 115.32      | 120.80        |
| 11  | R     | 180 | PHE  | CB-CG-CD2  | -7.81 | 115.33      | 120.80        |
| 7   | N     | 463 | TYR  | CB-CG-CD2  | -7.81 | 116.31      | 121.00        |
| 7   | N     | 739 | PHE  | CB-CG-CD2  | -7.81 | 115.33      | 120.80        |
| 2   | V     | 59  | ASP  | CB-CG-OD1  | 7.80  | 125.32      | 118.30        |
| 7   | Ν     | 394 | ARG  | NE-CZ-NH2  | 7.78  | 124.19      | 120.30        |



| $\alpha$ $\cdot$ $\cdot$ $\cdot$ | C    |          |      |
|----------------------------------|------|----------|------|
| Continued                        | from | previous | page |

| Mol | Chain | Res | Type | Atoms      | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|-------|------------------|---------------|
| 6   | Ζ     | 441 | TYR  | CB-CG-CD1  | 7.77  | 125.67           | 121.00        |
| 10  | Q     | 20  | TYR  | CB-CG-CD1  | -7.74 | 116.36           | 121.00        |
| 7   | Ν     | 894 | ARG  | NE-CZ-NH2  | -7.73 | 116.43           | 120.30        |
| 13  | 0     | 48  | PHE  | CB-CG-CD1  | 7.72  | 126.20           | 120.80        |
| 13  | 0     | 181 | PHE  | CB-CG-CD2  | -7.72 | 115.40           | 120.80        |
| 10  | Q     | 20  | TYR  | CG-CD1-CE1 | -7.71 | 115.13           | 121.30        |
| 2   | V     | 156 | PHE  | CB-CG-CD2  | 7.71  | 126.20           | 120.80        |
| 9   | Р     | 359 | ARG  | NE-CZ-NH1  | 7.70  | 124.15           | 120.30        |
| 13  | 0     | 248 | TYR  | CB-CG-CD2  | -7.70 | 116.38           | 121.00        |
| 6   | Ζ     | 202 | ARG  | NE-CZ-NH2  | -7.68 | 116.46           | 120.30        |
| 7   | N     | 204 | SER  | N-CA-CB    | 7.68  | 122.03           | 110.50        |
| 6   | Ζ     | 767 | TYR  | CB-CG-CD1  | 7.68  | 125.61           | 121.00        |
| 11  | R     | 305 | PHE  | CB-CG-CD1  | 7.67  | 126.17           | 120.80        |
| 11  | R     | 265 | ASP  | CB-CG-OD2  | 7.67  | 125.20           | 118.30        |
| 10  | Q     | 13  | ARG  | NE-CZ-NH2  | 7.67  | 124.14           | 120.30        |
| 7   | N     | 215 | MET  | CG-SD-CE   | -7.67 | 87.93            | 100.20        |
| 7   | N     | 742 | TRP  | CB-CG-CD2  | -7.66 | 116.64           | 126.60        |
| 6   | Ζ     | 175 | ASP  | CB-CG-OD2  | -7.64 | 111.43           | 118.30        |
| 13  | 0     | 263 | PHE  | CB-CG-CD2  | -7.62 | 115.46           | 120.80        |
| 2   | V     | 57  | PHE  | CB-CG-CD2  | -7.58 | 115.49           | 120.80        |
| 7   | N     | 8   | PRO  | CA-N-CD    | 7.56  | 122.28           | 111.70        |
| 10  | Q     | 219 | ASP  | CB-CG-OD1  | 7.55  | 125.10           | 118.30        |
| 7   | Ν     | 463 | TYR  | CD1-CE1-CZ | 7.55  | 126.59           | 119.80        |
| 8   | S     | 298 | ARG  | NE-CZ-NH1  | 7.55  | 124.07           | 120.30        |
| 9   | Р     | 318 | TYR  | CB-CG-CD1  | -7.53 | 116.48           | 121.00        |
| 11  | R     | 179 | PHE  | CB-CG-CD1  | 7.53  | 126.07           | 120.80        |
| 2   | V     | 155 | ALA  | CB-CA-C    | -7.52 | 98.83            | 110.10        |
| 3   | Т     | 224 | ARG  | NE-CZ-NH1  | 7.51  | 124.06           | 120.30        |
| 2   | V     | 69  | PHE  | CB-CG-CD1  | -7.50 | 115.55           | 120.80        |
| 8   | S     | 174 | ARG  | NE-CZ-NH2  | -7.49 | 116.56           | 120.30        |
| 13  | Ο     | 62  | TYR  | CB-CG-CD1  | 7.48  | 125.49           | 121.00        |
| 11  | R     | 99  | TYR  | CB-CG-CD1  | -7.46 | 116.52           | 121.00        |
| 10  | Q     | 34  | ASP  | CB-CG-OD2  | -7.45 | 111.59           | 118.30        |
| 8   | S     | 484 | ASP  | CB-CG-OD1  | -7.44 | 111.60           | 118.30        |
| 6   | Ζ     | 408 | TYR  | CB-CG-CD1  | 7.43  | 125.46           | 121.00        |
| 6   | Z     | 153 | TYR  | CB-CG-CD1  | 7.41  | 125.45           | 121.00        |
| 8   | S     | 174 | ARG  | NE-CZ-NH1  | 7.40  | 124.00           | 120.30        |
| 9   | Р     | 344 | ARG  | NE-CZ-NH2  | -7.40 | 116.60           | 120.30        |
| 12  | U     | 113 | TYR  | CB-CG-CD2  | 7.40  | 125.44           | 121.00        |
| 1   | W     | 41  | ARG  | NE-CZ-NH1  | 7.38  | 123.99           | 120.30        |
| 2   | V     | 229 | ASP  | CB-CG-OD1  | -7.36 | 111.68           | 118.30        |
| 7   | Ν     | 896 | PHE  | CB-CG-CD2  | -7.36 | 115.65           | 120.80        |



| Mol | Chain | Res | Type | Atoms      | Z     | $Observed(^{o})$ | Ideal(°) |
|-----|-------|-----|------|------------|-------|------------------|----------|
| 6   | Z     | 798 | ARG  | NE-CZ-NH2  | -7.36 | 116.62           | 120.30   |
| 2   | V     | 182 | LYS  | O-C-N      | -7.34 | 110.95           | 122.70   |
| 11  | R     | 65  | TYR  | CG-CD2-CE2 | -7.32 | 115.44           | 121.30   |
| 3   | Т     | 245 | TYR  | CB-CG-CD1  | -7.30 | 116.62           | 121.00   |
| 10  | Q     | 339 | TYR  | CG-CD1-CE1 | 7.30  | 127.14           | 121.30   |
| 6   | Ζ     | 603 | VAL  | CA-CB-CG2  | -7.29 | 99.97            | 110.90   |
| 7   | N     | 599 | TYR  | CB-CG-CD2  | 7.28  | 125.37           | 121.00   |
| 3   | Т     | 130 | ASP  | CB-CG-OD1  | -7.28 | 111.75           | 118.30   |
| 11  | R     | 335 | ARG  | NE-CZ-NH2  | -7.28 | 116.66           | 120.30   |
| 7   | N     | 584 | ARG  | NE-CZ-NH1  | 7.24  | 123.92           | 120.30   |
| 8   | S     | 346 | TYR  | CB-CG-CD2  | -7.24 | 116.66           | 121.00   |
| 8   | S     | 253 | PHE  | CD1-CG-CD2 | 7.24  | 127.71           | 118.30   |
| 7   | N     | 762 | ARG  | NE-CZ-NH2  | -7.23 | 116.68           | 120.30   |
| 11  | R     | 285 | ALA  | CB-CA-C    | -7.23 | 99.25            | 110.10   |
| 6   | Ζ     | 723 | ASP  | CB-CG-OD1  | 7.23  | 124.81           | 118.30   |
| 9   | Р     | 344 | ARG  | NE-CZ-NH1  | 7.23  | 123.91           | 120.30   |
| 7   | N     | 783 | SER  | N-CA-CB    | 7.21  | 121.32           | 110.50   |
| 6   | Ζ     | 231 | ASP  | CB-CG-OD2  | -7.21 | 111.81           | 118.30   |
| 7   | N     | 406 | TYR  | CB-CG-CD1  | 7.19  | 125.31           | 121.00   |
| 6   | Ζ     | 574 | TYR  | CZ-CE2-CD2 | 7.18  | 126.26           | 119.80   |
| 7   | N     | 888 | ASP  | CB-CG-OD1  | -7.17 | 111.84           | 118.30   |
| 2   | V     | 196 | TYR  | CZ-CE2-CD2 | 7.13  | 126.22           | 119.80   |
| 1   | W     | 113 | PHE  | CB-CG-CD2  | -7.13 | 115.81           | 120.80   |
| 7   | N     | 599 | TYR  | CB-CG-CD1  | -7.13 | 116.72           | 121.00   |
| 6   | Z     | 565 | PHE  | CB-CG-CD2  | -7.12 | 115.82           | 120.80   |
| 8   | S     | 171 | TYR  | CB-CA-C    | 7.09  | 124.58           | 110.40   |
| 6   | Z     | 613 | ASP  | CB-CG-OD2  | 7.09  | 124.68           | 118.30   |
| 11  | R     | 335 | ARG  | NE-CZ-NH1  | 7.08  | 123.84           | 120.30   |
| 6   | Z     | 843 | ASP  | CB-CG-OD1  | 7.08  | 124.67           | 118.30   |
| 3   | Т     | 122 | PHE  | CB-CG-CD2  | 7.07  | 125.75           | 120.80   |
| 8   | S     | 360 | PHE  | CB-CG-CD1  | 7.07  | 125.75           | 120.80   |
| 13  | 0     | 179 | PHE  | CB-CG-CD2  | -7.07 | 115.85           | 120.80   |
| 2   | V     | 154 | ASP  | CB-CG-OD1  | -7.07 | 111.94           | 118.30   |
| 8   | S     | 197 | SER  | CA-C-O     | -7.06 | 105.28           | 120.10   |
| 8   | S     | 25  | TYR  | CD1-CE1-CZ | -7.05 | 113.45           | 119.80   |
| 7   | N     | 212 | ASP  | CB-CG-OD1  | 7.04  | 124.64           | 118.30   |
| 4   | X     | 51  | ARG  | NE-CZ-NH1  | 7.02  | 123.81           | 120.30   |
| 9   | P     | 124 | VAL  | CA-CB-CG1  | 7.02  | 121.43           | 110.90   |
| 11  | R     | 422 | ARG  | NE-CZ-NH1  | 7.02  | 123.81           | 120.30   |
| 4   | X     | 48  | PHE  | CB-CG-CD2  | -7.01 | 115.89           | 120.80   |
| 10  | Q     | 434 | TYR  | CG-CD1-CE1 | -7.00 | 115.70           | 121.30   |
| 9   | P     | 345 | VAL  | CA-CB-CG1  | 6.99  | 121.39           | 110.90   |



| Mol | Chain | Res | Type | Atoms      | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|-------|------------------|---------------|
| 7   | Ν     | 735 | MET  | CG-SD-CE   | -6.97 | 89.05            | 100.20        |
| 10  | Q     | 82  | THR  | CA-CB-CG2  | -6.97 | 102.64           | 112.40        |
| 7   | N     | 567 | ALA  | N-CA-CB    | 6.96  | 119.85           | 110.10        |
| 10  | Q     | 427 | PHE  | CB-CG-CD1  | 6.96  | 125.67           | 120.80        |
| 6   | Z     | 564 | ARG  | NE-CZ-NH2  | -6.96 | 116.82           | 120.30        |
| 10  | Q     | 104 | PHE  | CB-CG-CD2  | -6.95 | 115.93           | 120.80        |
| 13  | 0     | 302 | VAL  | CA-CB-CG1  | -6.95 | 100.47           | 110.90        |
| 6   | Z     | 826 | ARG  | NE-CZ-NH1  | 6.94  | 123.77           | 120.30        |
| 7   | Ν     | 593 | PHE  | CB-CG-CD1  | -6.94 | 115.94           | 120.80        |
| 10  | Q     | 151 | TYR  | CB-CG-CD2  | 6.94  | 125.16           | 121.00        |
| 8   | S     | 298 | ARG  | NE-CZ-NH2  | -6.94 | 116.83           | 120.30        |
| 9   | Р     | 236 | GLU  | N-CA-CB    | 6.93  | 123.08           | 110.60        |
| 6   | Ζ     | 825 | ALA  | N-CA-CB    | 6.93  | 119.80           | 110.10        |
| 2   | V     | 251 | TYR  | CG-CD2-CE2 | -6.90 | 115.78           | 121.30        |
| 7   | N     | 69  | TYR  | CB-CG-CD2  | -6.88 | 116.87           | 121.00        |
| 2   | V     | 136 | ALA  | N-CA-CB    | 6.88  | 119.73           | 110.10        |
| 6   | Z     | 912 | PHE  | CB-CG-CD1  | -6.88 | 115.99           | 120.80        |
| 9   | Р     | 154 | ASP  | CB-CG-OD2  | -6.87 | 112.11           | 118.30        |
| 11  | R     | 292 | LEU  | CB-CG-CD1  | 6.86  | 122.66           | 111.00        |
| 11  | R     | 312 | TYR  | CB-CG-CD2  | 6.85  | 125.11           | 121.00        |
| 9   | Р     | 397 | ALA  | N-CA-CB    | 6.85  | 119.69           | 110.10        |
| 7   | N     | 178 | SER  | N-CA-CB    | 6.84  | 120.75           | 110.50        |
| 3   | Т     | 14  | ALA  | N-CA-CB    | 6.83  | 119.67           | 110.10        |
| 9   | Р     | 21  | PHE  | CB-CG-CD2  | 6.83  | 125.58           | 120.80        |
| 10  | Q     | 185 | TYR  | CB-CG-CD2  | -6.82 | 116.91           | 121.00        |
| 12  | U     | 243 | ASP  | CB-CG-OD2  | 6.82  | 124.44           | 118.30        |
| 7   | N     | 742 | TRP  | CE2-CD2-CG | -6.81 | 101.85           | 107.30        |
| 8   | S     | 480 | ARG  | NE-CZ-NH1  | 6.81  | 123.71           | 120.30        |
| 7   | N     | 556 | ALA  | N-CA-CB    | 6.79  | 119.61           | 110.10        |
| 1   | W     | 127 | ARG  | NE-CZ-NH1  | 6.79  | 123.69           | 120.30        |
| 13  | 0     | 330 | ARG  | NH1-CZ-NH2 | -6.79 | 111.93           | 119.40        |
| 7   | N     | 302 | PHE  | CB-CG-CD1  | -6.79 | 116.05           | 120.80        |
| 8   | S     | 52  | TYR  | CB-CG-CD1  | 6.78  | 125.07           | 121.00        |
| 10  | Q     | 162 | LEU  | N-CA-C     | -6.76 | 92.75            | 111.00        |
| 7   | N     | 526 | TYR  | CG-CD2-CE2 | -6.75 | 115.90           | 121.30        |
| 9   | Р     | 333 | ALA  | CB-CA-C    | -6.75 | 99.97            | 110.10        |
| 3   | Т     | 75  | PHE  | CB-CG-CD1  | -6.75 | 116.08           | 120.80        |
| 13  | 0     | 288 | ARG  | NE-CZ-NH2  | -6.74 | 116.93           | 120.30        |
| 4   | X     | 97  | TYR  | CB-CG-CD1  | 6.74  | 125.05           | 121.00        |
| 3   | Т     | 82  | PHE  | CB-CG-CD1  | 6.74  | 125.52           | 120.80        |
| 3   | Т     | 265 | ASP  | CB-CG-OD1  | 6.73  | 124.36           | 118.30        |
| 13  | 0     | 71  | ASP  | CB-CG-OD2  | -6.72 | 112.25           | 118.30        |



| Mol | Chain | Res             | Type | Atoms      | Z     | Observed(°) | $Ideal(^{o})$ |
|-----|-------|-----------------|------|------------|-------|-------------|---------------|
| 12  | U     | 124             | ASP  | CB-CG-OD1  | -6.71 | 112.26      | 118.30        |
| 6   | Ζ     | 165             | TYR  | CB-CG-CD2  | 6.71  | 125.02      | 121.00        |
| 8   | S     | 95              | PHE  | CB-CG-CD2  | -6.68 | 116.12      | 120.80        |
| 6   | Ζ     | 386             | VAL  | CA-CB-CG2  | -6.67 | 100.89      | 110.90        |
| 11  | R     | 124             | ASP  | CB-CG-OD1  | -6.66 | 112.30      | 118.30        |
| 2   | V     | 42              | ARG  | NE-CZ-NH1  | 6.66  | 123.63      | 120.30        |
| 3   | Т     | 82              | PHE  | CB-CG-CD2  | -6.66 | 116.14      | 120.80        |
| 10  | Q     | 151             | TYR  | CB-CG-CD1  | -6.66 | 117.01      | 121.00        |
| 9   | Р     | 123             | ARG  | NE-CZ-NH2  | -6.64 | 116.98      | 120.30        |
| 11  | R     | 365             | ASP  | CB-CG-OD2  | -6.63 | 112.33      | 118.30        |
| 6   | Ζ     | 231             | ASP  | CB-CG-OD1  | 6.63  | 124.27      | 118.30        |
| 11  | R     | 180             | PHE  | CB-CG-CD1  | 6.62  | 125.43      | 120.80        |
| 8   | S     | 253             | PHE  | CG-CD1-CE1 | -6.61 | 113.52      | 120.80        |
| 2   | V     | 138             | ALA  | N-CA-CB    | 6.61  | 119.35      | 110.10        |
| 8   | S     | 292             | TYR  | CB-CG-CD2  | -6.60 | 117.04      | 121.00        |
| 2   | V     | 172             | GLN  | N-CA-CB    | 6.60  | 122.47      | 110.60        |
| 6   | Ζ     | 544             | THR  | CA-CB-CG2  | -6.60 | 103.16      | 112.40        |
| 7   | N     | 548             | ARG  | NE-CZ-NH1  | 6.60  | 123.60      | 120.30        |
| 3   | Т     | 217             | THR  | CA-CB-CG2  | -6.59 | 103.17      | 112.40        |
| 7   | Ν     | 671             | LEU  | O-C-N      | -6.58 | 112.17      | 122.70        |
| 3   | Т     | 150             | ARG  | NE-CZ-NH2  | -6.58 | 117.01      | 120.30        |
| 7   | N     | 117             | TYR  | CB-CG-CD2  | -6.57 | 117.06      | 121.00        |
| 9   | Р     | 310             | ARG  | NE-CZ-NH1  | -6.56 | 117.02      | 120.30        |
| 2   | V     | 87              | PHE  | CB-CG-CD2  | -6.55 | 116.22      | 120.80        |
| 6   | Ζ     | 312             | TYR  | CG-CD1-CE1 | 6.54  | 126.53      | 121.30        |
| 12  | U     | 56              | PHE  | CB-CG-CD2  | -6.53 | 116.23      | 120.80        |
| 11  | R     | 210             | TYR  | CB-CG-CD2  | -6.52 | 117.09      | 121.00        |
| 6   | Ζ     | 837             | TYR  | CB-CG-CD1  | 6.52  | 124.91      | 121.00        |
| 13  | 0     | 26              | PHE  | CB-CG-CD1  | -6.51 | 116.24      | 120.80        |
| 6   | Ζ     | 167             | ASP  | CB-CG-OD2  | 6.51  | 124.16      | 118.30        |
| 2   | V     | 171             | ARG  | NE-CZ-NH1  | 6.51  | 123.56      | 120.30        |
| 7   | Ν     | 130             | ASP  | CB-CG-OD1  | 6.51  | 124.16      | 118.30        |
| 13  | 0     | 217             | LEU  | CB-CG-CD1  | 6.50  | 122.05      | 111.00        |
| 10  | Q     | 345             | SER  | N-CA-CB    | 6.50  | 120.25      | 110.50        |
| 2   | V     | 271             | VAL  | CA-CB-CG1  | 6.50  | 120.64      | 110.90        |
| 12  | U     | 25              | THR  | CA-CB-CG2  | -6.49 | 103.32      | 112.40        |
| 6   | Z     | 767             | TYR  | CG-CD1-CE1 | 6.48  | 126.49      | 121.30        |
| 13  | 0     | $\overline{29}$ | PHE  | CB-CG-CD1  | 6.48  | 125.34      | 120.80        |
| 8   | S     | 240             | ASP  | CB-CG-OD2  | -6.48 | 112.47      | 118.30        |
| 12  | U     | 22              | TYR  | CB-CG-CD2  | -6.47 | 117.12      | 121.00        |
| 13  | 0     | 187             | SER  | N-CA-CB    | 6.46  | 120.18      | 110.50        |
| 6   | Z     | 1               | MET  | CG-SD-CE   | -6.45 | 89.88       | 100.20        |



| Mol | Chain | Res | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|------------------|---------------|
| 1   | W     | 189 | PRO  | N-CA-CB     | 6.44  | 111.03           | 103.30        |
| 7   | N     | 722 | THR  | CA-CB-CG2   | -6.44 | 103.39           | 112.40        |
| 6   | Z     | 970 | TYR  | CB-CG-CD2   | 6.43  | 124.86           | 121.00        |
| 6   | Ζ     | 790 | MET  | N-CA-CB     | 6.43  | 122.18           | 110.60        |
| 11  | R     | 24  | TYR  | CD1-CE1-CZ  | -6.43 | 114.02           | 119.80        |
| 8   | S     | 248 | ASP  | CB-CG-OD1   | -6.42 | 112.52           | 118.30        |
| 10  | Q     | 104 | PHE  | CB-CG-CD1   | 6.42  | 125.30           | 120.80        |
| 2   | V     | 274 | GLN  | N-CA-CB     | 6.42  | 122.16           | 110.60        |
| 9   | Р     | 234 | TYR  | CB-CG-CD2   | -6.42 | 117.15           | 121.00        |
| 6   | Ζ     | 780 | MET  | CG-SD-CE    | -6.41 | 89.94            | 100.20        |
| 7   | Ν     | 575 | ALA  | CB-CA-C     | -6.41 | 100.48           | 110.10        |
| 13  | 0     | 178 | TYR  | CB-CG-CD2   | -6.41 | 117.15           | 121.00        |
| 4   | Х     | 17  | TYR  | CB-CG-CD1   | -6.41 | 117.16           | 121.00        |
| 10  | Q     | 294 | ARG  | CD-NE-CZ    | -6.40 | 114.64           | 123.60        |
| 7   | N     | 109 | TYR  | CB-CG-CD1   | -6.40 | 117.16           | 121.00        |
| 9   | Р     | 339 | GLU  | CB-CA-C     | -6.39 | 97.62            | 110.40        |
| 6   | Ζ     | 441 | TYR  | CA-CB-CG    | -6.39 | 101.26           | 113.40        |
| 10  | Q     | 434 | TYR  | CB-CG-CD1   | -6.39 | 117.17           | 121.00        |
| 8   | S     | 119 | TYR  | CB-CG-CD2   | 6.39  | 124.83           | 121.00        |
| 7   | N     | 577 | SER  | CB-CA-C     | -6.38 | 97.97            | 110.10        |
| 13  | 0     | 342 | ASP  | CB-CG-OD1   | 6.38  | 124.04           | 118.30        |
| 10  | Q     | 294 | ARG  | NE-CZ-NH1   | 6.37  | 123.48           | 120.30        |
| 7   | N     | 796 | VAL  | CG1-CB-CG2  | 6.36  | 121.08           | 110.90        |
| 7   | N     | 869 | ASP  | CB-CG-OD1   | -6.36 | 112.58           | 118.30        |
| 6   | Z     | 608 | TYR  | CB-CG-CD2   | -6.36 | 117.19           | 121.00        |
| 11  | R     | 417 | TYR  | CB-CG-CD1   | 6.36  | 124.81           | 121.00        |
| 1   | W     | 23  | ARG  | NE-CZ-NH1   | 6.35  | 123.47           | 120.30        |
| 9   | Р     | 213 | TYR  | CB-CG-CD2   | 6.35  | 124.81           | 121.00        |
| 4   | Х     | 10  | PHE  | CG-CD2-CE2  | 6.34  | 127.78           | 120.80        |
| 6   | Z     | 58  | GLU  | N-CA-CB     | 6.32  | 121.98           | 110.60        |
| 11  | R     | 417 | TYR  | CG-CD1-CE1  | -6.31 | 116.25           | 121.30        |
| 4   | Х     | 100 | TRP  | CE2-CD2-CE3 | 6.30  | 126.26           | 118.70        |
| 7   | N     | 260 | ASP  | CB-CG-OD1   | 6.30  | 123.97           | 118.30        |
| 12  | U     | 248 | ASP  | CB-CG-OD2   | -6.30 | 112.63           | 118.30        |
| 9   | Р     | 208 | PHE  | CB-CG-CD1   | 6.29  | 125.21           | 120.80        |
| 7   | N     | 88  | ARG  | NE-CZ-NH1   | -6.29 | 117.16           | 120.30        |
| 6   | Z     | 210 | TYR  | CB-CG-CD1   | 6.28  | 124.77           | 121.00        |
| 6   | Z     | 838 | TYR  | CG-CD1-CE1  | 6.28  | 126.32           | 121.30        |
| 3   | Т     | 51  | TYR  | CB-CG-CD2   | -6.28 | 117.23           | 121.00        |
| 7   | N     | 70  | TYR  | CB-CG-CD1   | 6.28  | 124.77           | 121.00        |
| 8   | S     | 326 | ASP  | CB-CG-OD2   | -6.27 | 112.66           | 118.30        |

Continued on next page...

120.30

123.44



6.27

NE-CZ-NH1

Q

12

ARG

10

| Mol | Chain | Res | Type | Atoms      | Z     | Observed(°) | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|-------|-------------|---------------|
| 3   | Т     | 78  | PHE  | CB-CG-CD1  | 6.27  | 125.19      | 120.80        |
| 11  | R     | 173 | THR  | CA-CB-CG2  | -6.27 | 103.62      | 112.40        |
| 7   | N     | 406 | TYR  | CB-CG-CD2  | -6.26 | 117.24      | 121.00        |
| 11  | R     | 166 | ALA  | N-CA-CB    | 6.26  | 118.86      | 110.10        |
| 13  | 0     | 71  | ASP  | CB-CG-OD1  | 6.26  | 123.93      | 118.30        |
| 8   | S     | 452 | TYR  | CD1-CE1-CZ | 6.26  | 125.43      | 119.80        |
| 3   | Т     | 68  | ALA  | N-CA-CB    | 6.25  | 118.86      | 110.10        |
| 6   | Z     | 426 | TYR  | CB-CG-CD1  | 6.25  | 124.75      | 121.00        |
| 13  | 0     | 253 | GLN  | N-CA-CB    | 6.25  | 121.85      | 110.60        |
| 2   | V     | 35  | LEU  | CB-CG-CD1  | 6.24  | 121.61      | 111.00        |
| 3   | Т     | 245 | TYR  | CG-CD1-CE1 | -6.24 | 116.31      | 121.30        |
| 3   | Т     | 81  | TYR  | CB-CG-CD1  | 6.24  | 124.74      | 121.00        |
| 11  | R     | 337 | VAL  | CA-CB-CG1  | 6.23  | 120.25      | 110.90        |
| 6   | Z     | 269 | TYR  | CG-CD2-CE2 | -6.23 | 116.32      | 121.30        |
| 7   | N     | 211 | PHE  | CB-CG-CD2  | 6.23  | 125.16      | 120.80        |
| 2   | V     | 196 | TYR  | CA-CB-CG   | -6.22 | 101.57      | 113.40        |
| 6   | Z     | 476 | ASP  | CB-CG-OD1  | 6.22  | 123.90      | 118.30        |
| 8   | S     | 399 | TYR  | CB-CG-CD1  | 6.22  | 124.73      | 121.00        |
| 4   | Х     | 29  | VAL  | CG1-CB-CG2 | 6.21  | 120.84      | 110.90        |
| 8   | S     | 80  | VAL  | CA-CB-CG1  | 6.21  | 120.22      | 110.90        |
| 13  | 0     | 60  | ARG  | NE-CZ-NH2  | 6.21  | 123.40      | 120.30        |
| 6   | Z     | 298 | PHE  | CG-CD2-CE2 | 6.20  | 127.62      | 120.80        |
| 9   | Р     | 187 | SER  | N-CA-CB    | 6.20  | 119.80      | 110.50        |
| 13  | 0     | 346 | GLU  | N-CA-CB    | 6.20  | 121.76      | 110.60        |
| 12  | U     | 283 | ARG  | NE-CZ-NH1  | 6.20  | 123.40      | 120.30        |
| 3   | Т     | 44  | LEU  | N-CA-CB    | 6.19  | 122.78      | 110.40        |
| 11  | R     | 270 | VAL  | CA-CB-CG1  | 6.18  | 120.17      | 110.90        |
| 3   | Т     | 75  | PHE  | CB-CG-CD2  | 6.18  | 125.12      | 120.80        |
| 1   | W     | 10  | ILE  | N-CA-C     | -6.17 | 94.33       | 111.00        |
| 13  | 0     | 210 | ARG  | NE-CZ-NH1  | 6.17  | 123.38      | 120.30        |
| 10  | Q     | 219 | ASP  | CB-CG-OD2  | -6.15 | 112.76      | 118.30        |
| 7   | N     | 417 | ARG  | NE-CZ-NH1  | -6.15 | 117.23      | 120.30        |
| 11  | R     | 256 | THR  | CA-CB-CG2  | -6.14 | 103.80      | 112.40        |
| 7   | N     | 788 | TYR  | CB-CG-CD1  | 6.13  | 124.68      | 121.00        |
| 13  | 0     | 378 | GLU  | CA-CB-CG   | 6.12  | 126.86      | 113.40        |
| 11  | R     | 363 | PHE  | CB-CG-CD1  | 6.12  | 125.08      | 120.80        |
| 2   | V     | 100 | ARG  | CD-NE-CZ   | 6.11  | 132.16      | 123.60        |
| 13  | 0     | 150 | LEU  | N-CA-CB    | 6.11  | 122.62      | 110.40        |
| 8   | S     | 382 | ARG  | NE-CZ-NH1  | -6.11 | 117.25      | 120.30        |
| 7   | N     | 515 | ARG  | NE-CZ-NH2  | -6.10 | 117.25      | 120.30        |
| 7   | N     | 810 | ALA  | CB-CA-C    | -6.10 | 100.95      | 110.10        |
| 6   | Z     | 623 | ARG  | NE-CZ-NH1  | 6.09  | 123.35      | 120.30        |



| Mol | Chain | Res | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|------------------|---------------|
| 13  | 0     | 49  | PHE  | CB-CG-CD1   | -6.09 | 116.54           | 120.80        |
| 7   | N     | 887 | ASP  | CB-CG-OD2   | -6.09 | 112.82           | 118.30        |
| 11  | R     | 210 | TYR  | CB-CG-CD1   | 6.09  | 124.65           | 121.00        |
| 10  | Q     | 111 | LEU  | O-C-N       | 6.08  | 132.43           | 122.70        |
| 8   | S     | 384 | ARG  | NE-CZ-NH1   | 6.08  | 123.34           | 120.30        |
| 1   | W     | 170 | HIS  | CA-CB-CG    | 6.07  | 123.93           | 113.60        |
| 4   | Х     | 90  | VAL  | CA-CB-CG2   | -6.07 | 101.79           | 110.90        |
| 7   | N     | 365 | PHE  | CB-CG-CD1   | -6.07 | 116.56           | 120.80        |
| 1   | W     | 151 | THR  | CA-CB-CG2   | -6.06 | 103.92           | 112.40        |
| 9   | Р     | 215 | SER  | N-CA-CB     | 6.06  | 119.59           | 110.50        |
| 7   | N     | 120 | ASP  | CB-CA-C     | -6.06 | 98.28            | 110.40        |
| 7   | N     | 587 | ALA  | CB-CA-C     | -6.06 | 101.02           | 110.10        |
| 8   | S     | 449 | LEU  | CB-CA-C     | 6.05  | 121.70           | 110.20        |
| 9   | Р     | 123 | ARG  | NE-CZ-NH1   | 6.05  | 123.33           | 120.30        |
| 6   | Ζ     | 803 | ALA  | N-CA-CB     | 6.05  | 118.57           | 110.10        |
| 8   | S     | 411 | LEU  | CB-CG-CD2   | 6.04  | 121.28           | 111.00        |
| 12  | U     | 72  | TYR  | CB-CG-CD2   | -6.04 | 117.37           | 121.00        |
| 13  | 0     | 181 | PHE  | CB-CG-CD1   | 6.04  | 125.03           | 120.80        |
| 8   | S     | 138 | MET  | CG-SD-CE    | -6.04 | 90.54            | 100.20        |
| 12  | U     | 239 | LEU  | CB-CG-CD2   | 6.03  | 121.25           | 111.00        |
| 1   | W     | 78  | ASP  | CB-CG-OD2   | -6.03 | 112.88           | 118.30        |
| 2   | V     | 243 | SER  | N-CA-CB     | 6.02  | 119.54           | 110.50        |
| 6   | Ζ     | 774 | ARG  | NE-CZ-NH2   | -6.02 | 117.29           | 120.30        |
| 10  | Q     | 153 | ASP  | CB-CA-C     | -6.02 | 98.37            | 110.40        |
| 6   | Ζ     | 406 | TRP  | CE2-CD2-CE3 | 6.01  | 125.91           | 118.70        |
| 2   | V     | 274 | GLN  | N-CA-C      | -6.01 | 94.78            | 111.00        |
| 6   | Ζ     | 206 | ASP  | CB-CG-OD1   | 6.00  | 123.70           | 118.30        |
| 8   | S     | 332 | PHE  | CD1-CE1-CZ  | -6.00 | 112.90           | 120.10        |
| 13  | 0     | 85  | SER  | N-CA-CB     | 6.00  | 119.51           | 110.50        |
| 8   | S     | 318 | CYS  | CB-CA-C     | -6.00 | 98.40            | 110.40        |
| 13  | 0     | 215 | TYR  | CG-CD1-CE1  | -5.99 | 116.50           | 121.30        |
| 11  | R     | 50  | VAL  | CA-CB-CG2   | -5.99 | 101.92           | 110.90        |
| 10  | Q     | 43  | GLY  | N-CA-C      | -5.98 | 98.15            | 113.10        |
| 11  | R     | 231 | LEU  | CB-CA-C     | -5.98 | 98.85            | 110.20        |
| 7   | N     | 123 | PHE  | CB-CG-CD1   | 5.97  | 124.98           | 120.80        |
| 8   | S     | 313 | SER  | N-CA-CB     | 5.97  | 119.45           | 110.50        |
| 9   | Р     | 333 | ALA  | N-CA-CB     | 5.97  | 118.45           | 110.10        |
| 8   | S     | 306 | SER  | N-CA-CB     | 5.96  | 119.44           | 110.50        |
| 8   | S     | 102 | SER  | N-CA-C      | -5.96 | 94.91            | 111.00        |
| 6   | Z     | 300 | ALA  | N-CA-CB     | 5.95  | 118.43           | 110.10        |
| 7   | N     | 310 | ASP  | CB-CG-OD2   | 5.94  | 123.65           | 118.30        |
| 7   | N     | 387 | ALA  | N-CA-CB     | 5.94  | 118.42           | 110.10        |


| Mol | Chain | Res | Type | Atoms      | Ζ     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|-------|------------------|---------------|
| 8   | S     | 217 | PHE  | CG-CD1-CE1 | 5.93  | 127.32           | 120.80        |
| 10  | Q     | 165 | PHE  | CG-CD2-CE2 | 5.93  | 127.32           | 120.80        |
| 10  | Q     | 318 | LEU  | CB-CG-CD1  | 5.93  | 121.08           | 111.00        |
| 6   | Ζ     | 63  | LEU  | CB-CG-CD1  | 5.92  | 121.07           | 111.00        |
| 11  | R     | 203 | ASP  | CB-CG-OD1  | 5.92  | 123.63           | 118.30        |
| 10  | Q     | 398 | TYR  | CB-CG-CD1  | 5.92  | 124.55           | 121.00        |
| 6   | Ζ     | 777 | PRO  | N-CA-CB    | 5.92  | 110.40           | 103.30        |
| 7   | N     | 422 | TYR  | CB-CG-CD2  | -5.91 | 117.45           | 121.00        |
| 8   | S     | 286 | TYR  | CG-CD2-CE2 | 5.91  | 126.03           | 121.30        |
| 7   | N     | 389 | TYR  | CB-CG-CD1  | -5.90 | 117.46           | 121.00        |
| 11  | R     | 388 | VAL  | N-CA-C     | -5.90 | 95.07            | 111.00        |
| 6   | Ζ     | 301 | THR  | CA-CB-CG2  | -5.89 | 104.16           | 112.40        |
| 7   | N     | 652 | VAL  | CA-CB-CG2  | -5.89 | 102.06           | 110.90        |
| 8   | S     | 118 | PHE  | N-CA-CB    | 5.89  | 121.20           | 110.60        |
| 9   | Р     | 357 | TYR  | CB-CG-CD1  | 5.89  | 124.53           | 121.00        |
| 6   | Ζ     | 894 | MET  | CG-SD-CE   | 5.88  | 109.62           | 100.20        |
| 2   | V     | 114 | PHE  | CB-CA-C    | -5.88 | 98.63            | 110.40        |
| 13  | 0     | 158 | ASP  | CB-CG-OD1  | 5.88  | 123.59           | 118.30        |
| 7   | Ν     | 55  | PHE  | CB-CG-CD2  | -5.88 | 116.68           | 120.80        |
| 10  | Q     | 232 | TYR  | CB-CG-CD2  | -5.88 | 117.47           | 121.00        |
| 9   | Р     | 124 | VAL  | CG1-CB-CG2 | -5.87 | 101.50           | 110.90        |
| 7   | N     | 418 | ASP  | CB-CA-C    | -5.87 | 98.66            | 110.40        |
| 11  | R     | 392 | ARG  | NH1-CZ-NH2 | -5.87 | 112.95           | 119.40        |
| 7   | Ν     | 14  | ARG  | NE-CZ-NH1  | 5.87  | 123.23           | 120.30        |
| 11  | R     | 394 | ASP  | CB-CG-OD2  | 5.87  | 123.58           | 118.30        |
| 10  | Q     | 258 | ALA  | N-CA-CB    | 5.86  | 118.30           | 110.10        |
| 13  | 0     | 306 | ARG  | NE-CZ-NH2  | -5.85 | 117.37           | 120.30        |
| 11  | R     | 49  | PHE  | N-CA-CB    | 5.85  | 121.13           | 110.60        |
| 1   | W     | 28  | ALA  | N-CA-CB    | 5.84  | 118.27           | 110.10        |
| 6   | Ζ     | 42  | ASP  | CB-CG-OD1  | 5.83  | 123.55           | 118.30        |
| 9   | Р     | 257 | TRP  | CB-CG-CD2  | -5.83 | 119.02           | 126.60        |
| 8   | S     | 399 | TYR  | CB-CG-CD2  | -5.83 | 117.50           | 121.00        |
| 8   | S     | 158 | PHE  | CG-CD2-CE2 | -5.82 | 114.39           | 120.80        |
| 6   | Ζ     | 565 | PHE  | CB-CA-C    | -5.82 | 98.76            | 110.40        |
| 13  | 0     | 161 | ASP  | CB-CG-OD2  | -5.82 | 113.06           | 118.30        |
| 6   | Ζ     | 612 | GLY  | O-C-N      | 5.82  | 132.00           | 122.70        |
| 6   | Ζ     | 815 | MET  | CG-SD-CE   | 5.81  | 109.50           | 100.20        |
| 8   | S     | 309 | PHE  | CD1-CG-CD2 | -5.81 | 110.74           | 118.30        |
| 6   | Ζ     | 909 | ARG  | NE-CZ-NH2  | 5.81  | 123.21           | 120.30        |
| 6   | Ζ     | 889 | VAL  | CA-CB-CG1  | 5.81  | 119.62           | 110.90        |
| 11  | R     | 265 | ASP  | CB-CG-OD1  | -5.80 | 113.08           | 118.30        |
| 12  | U     | 47  | ARG  | NE-CZ-NH1  | 5.80  | 123.20           | 120.30        |



|     | 9     | 1   | 1 0  |            |       |                  |               |
|-----|-------|-----|------|------------|-------|------------------|---------------|
| Mol | Chain | Res | Type | Atoms      | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
| 3   | Т     | 88  | TYR  | CB-CG-CD2  | -5.80 | 117.52           | 121.00        |
| 3   | Т     | 250 | MET  | N-CA-CB    | 5.80  | 121.03           | 110.60        |
| 7   | N     | 203 | ARG  | NE-CZ-NH2  | 5.79  | 123.20           | 120.30        |
| 7   | N     | 784 | TYR  | CB-CG-CD1  | -5.79 | 117.53           | 121.00        |
| 13  | 0     | 76  | LEU  | O-C-N      | -5.79 | 113.44           | 122.70        |
| 8   | S     | 481 | TYR  | CB-CG-CD1  | -5.78 | 117.53           | 121.00        |
| 7   | N     | 741 | TYR  | CB-CG-CD2  | -5.78 | 117.53           | 121.00        |
| 1   | W     | 55  | ALA  | CB-CA-C    | -5.77 | 101.44           | 110.10        |
| 6   | Z     | 96  | TYR  | CB-CG-CD2  | 5.77  | 124.46           | 121.00        |
| 12  | U     | 246 | GLU  | OE1-CD-OE2 | -5.76 | 116.38           | 123.30        |
| 6   | Z     | 218 | GLU  | N-CA-CB    | 5.76  | 120.97           | 110.60        |
| 2   | V     | 229 | ASP  | CB-CG-OD2  | 5.75  | 123.47           | 118.30        |
| 10  | Q     | 400 | TYR  | CZ-CE2-CD2 | -5.75 | 114.63           | 119.80        |
| 6   | Ζ     | 189 | ALA  | CB-CA-C    | -5.75 | 101.48           | 110.10        |
| 6   | Z     | 476 | ASP  | CB-CG-OD2  | -5.74 | 113.13           | 118.30        |
| 4   | Х     | 10  | PHE  | CZ-CE2-CD2 | -5.74 | 113.21           | 120.10        |
| 9   | Р     | 255 | ALA  | CB-CA-C    | -5.74 | 101.50           | 110.10        |
| 6   | Ζ     | 386 | VAL  | CG1-CB-CG2 | 5.73  | 120.07           | 110.90        |
| 3   | Т     | 122 | PHE  | CB-CG-CD1  | -5.73 | 116.79           | 120.80        |
| 12  | U     | 22  | TYR  | CG-CD2-CE2 | 5.73  | 125.88           | 121.30        |
| 10  | Q     | 190 | ASN  | N-CA-CB    | 5.72  | 120.90           | 110.60        |
| 2   | V     | 142 | ASP  | CB-CG-OD2  | -5.72 | 113.15           | 118.30        |
| 10  | Q     | 380 | MET  | CG-SD-CE   | 5.72  | 109.35           | 100.20        |
| 3   | Т     | 179 | ASP  | CB-CG-OD1  | -5.72 | 113.15           | 118.30        |
| 8   | S     | 317 | HIS  | CA-CB-CG   | 5.71  | 123.32           | 113.60        |
| 11  | R     | 123 | ASP  | CB-CG-OD2  | -5.71 | 113.16           | 118.30        |
| 9   | Р     | 96  | MET  | CG-SD-CE   | 5.71  | 109.34           | 100.20        |
| 13  | 0     | 300 | VAL  | CG1-CB-CG2 | -5.71 | 101.76           | 110.90        |
| 8   | S     | 20  | HIS  | N-CA-C     | 5.71  | 126.40           | 111.00        |
| 13  | 0     | 33  | TYR  | CG-CD2-CE2 | -5.70 | 116.74           | 121.30        |
| 8   | S     | 309 | PHE  | CG-CD1-CE1 | 5.70  | 127.07           | 120.80        |
| 12  | U     | 113 | TYR  | CZ-CE2-CD2 | -5.69 | 114.68           | 119.80        |
| 13  | 0     | 188 | PHE  | CB-CG-CD1  | 5.69  | 124.78           | 120.80        |
| 8   | S     | 83  | PRO  | C-N-CA     | 5.69  | 135.91           | 121.70        |
| 7   | N     | 726 | ASP  | N-CA-CB    | 5.68  | 120.83           | 110.60        |
| 7   | N     | 325 | PHE  | CB-CG-CD1  | -5.68 | 116.83           | 120.80        |
| 9   | Р     | 379 | TYR  | CG-CD1-CE1 | -5.68 | 116.76           | 121.30        |
| 1   | W     | 32  | SER  | N-CA-CB    | 5.68  | 119.02           | 110.50        |
| 6   | Ζ     | 295 | ARG  | CD-NE-CZ   | 5.68  | 131.55           | 123.60        |
| 7   | N     | 379 | LEU  | O-C-N      | -5.67 | 113.62           | 122.70        |
| 10  | Q     | 48  | ASP  | N-CA-CB    | 5.67  | 120.81           | 110.60        |
| 7   | N     | 745 | LEU  | CB-CG-CD2  | 5.67  | 120.64           | 111.00        |



| Mol      | Chain   | Roc        | Type        | Atoms      | 7     | Observed <sup>(0)</sup> | Idoal(0)   |
|----------|---------|------------|-------------|------------|-------|-------------------------|------------|
| 7        | M       | 269        | трр         |            | 5.67  | 114.07                  | 100 101 00 |
|          | C N     | 202        |             | N CA CP    | -5.07 | 114.97                  | 121.20     |
| <u> </u> | 5<br>7  | 320        | ASE         | CP CC OD2  | 5.07  | 120.00                  | 110.00     |
|          |         | 200        | ASP         | CD-CG-OD2  | -0.00 | 115.20                  | 110.00     |
| <u> </u> | IN<br>V | 532<br>051 | ALA         | CB-CA-C    | -5.00 | 101.01                  | 110.10     |
| 2        | V       | 251        | ADC         | CZ-CE2-CD2 | 5.00  | 124.89                  | 119.80     |
| 6        | Z       | 155        | ARG         | CD-NE-CZ   | 5.65  | 131.52                  | 123.60     |
| 6        | Z       | 23         | GLN         | CB-CG-CD   | -5.65 | 96.92                   | 111.60     |
| 6        | Z       | 849        | ARG         | N-CA-CB    | 5.65  | 120.77                  | 110.60     |
| 10       | Q       | 323        | LYS         | CB-CA-C    | -5.63 | 99.13                   | 110.40     |
| 13       | 0       | 248        | TYR         | CB-CG-CD1  | 5.63  | 124.38                  | 121.00     |
| 2        | V       | 230        | TYR         | CG-CD1-CE1 | 5.63  | 125.81                  | 121.30     |
| 6        | Z       | 607        | ALA         | CB-CA-C    | -5.63 | 101.66                  | 110.10     |
| 6        | Z       | 900        | LEU         | CB-CG-CD1  | 5.63  | 120.57                  | 111.00     |
| 7        | Ν       | 222        | TYR         | CB-CG-CD2  | -5.63 | 117.62                  | 121.00     |
| 10       | Q       | 20         | TYR         | CD1-CE1-CZ | 5.62  | 124.86                  | 119.80     |
| 9        | Р       | 428        | THR         | N-CA-CB    | 5.62  | 120.98                  | 110.30     |
| 6        | Z       | 421        | SER         | N-CA-CB    | 5.62  | 118.92                  | 110.50     |
| 8        | S       | 302        | HIS         | CA-CB-CG   | -5.62 | 104.05                  | 113.60     |
| 13       | 0       | 366        | MET         | CG-SD-CE   | -5.62 | 91.22                   | 100.20     |
| 3        | Т       | 127        | GLN         | N-CA-CB    | 5.61  | 120.69                  | 110.60     |
| 7        | N       | 771        | PHE         | CB-CG-CD1  | 5.60  | 124.72                  | 120.80     |
| 10       | Q       | 243        | PHE         | CG-CD1-CE1 | -5.60 | 114.64                  | 120.80     |
| 6        | Z       | 491        | LEU         | N-CA-CB    | 5.60  | 121.60                  | 110.40     |
| 9        | Р       | 39         | LEU         | CB-CG-CD1  | 5.60  | 120.52                  | 111.00     |
| 6        | Ζ       | 97         | PRO         | N-CA-CB    | 5.59  | 110.01                  | 103.30     |
| 9        | Р       | 103        | TYR         | CB-CG-CD2  | -5.59 | 117.64                  | 121.00     |
| 6        | Z       | 151        | HIS         | CB-CA-C    | -5.59 | 99.22                   | 110.40     |
| 8        | S       | 332        | PHE         | CB-CG-CD1  | 5.58  | 124.71                  | 120.80     |
| 3        | Т       | 22         | ALA         | N-CA-CB    | 5.58  | 117.92                  | 110.10     |
| 9        | Р       | 361        | THR         | N-CA-CB    | 5.58  | 120.91                  | 110.30     |
| 10       | Q       | 318        | LEU         | CB-CA-C    | 5.58  | 120.80                  | 110.20     |
| 6        | Z       | 175        | ASP         | CB-CG-OD1  | 5.58  | 123.32                  | 118.30     |
| 6        | Z       | 426        | TYR         | CD1-CE1-CZ | -5.58 | 114.78                  | 119.80     |
| 9        | P       | 273        | TYR         | CB-CG-CD1  | 5.58  | 124.35                  | 121.00     |
| 6        | Z       | 798        | ARG         | NE-CZ-NH1  | 5.57  | 123.09                  | 120.30     |
| 10       | 0       | 189        | ARG         | NE-CZ-NH2  | -5.57 | 117 51                  | 120.30     |
| 13       | 0       | 160        | LYS         | N-CA-CB    | 5.57  | 120.63                  | 110.60     |
| 6        | Z       | 330        | PHE         | CB-CG-CD1  | 5.57  | 124 70                  | 120.80     |
| 7        | N       | 330        | MET         | CG-SD-CE   | -5.57 | 91.30                   | 100.20     |
| 13       | 0       | 373        | TRP         | CB-CA-C    | -5.57 | 99.27                   | 110.40     |
| 6        | 7       | 118        | VAL         | CA-CB-CC1  | 5.51  | 110.21                  | 110.40     |
| 7        | N       | 549        | TVR         | CB-CG-CD1  | 5.50  | 124 34                  | 121.00     |
| 1        | 1 1     | 010        | 1 I I I I I |            | 0.00  | 1 141.01                | 1 141.00   |



| Continued  | from  | nrevious | page |
|------------|-------|----------|------|
| Contentaca | JIONI | precious | page |

| Mol | Chain | Res | Type | Atoms      | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|-------|------------------|---------------|
| 7   | Ν     | 353 | LEU  | CB-CG-CD1  | 5.56  | 120.45           | 111.00        |
| 6   | Ζ     | 564 | ARG  | NE-CZ-NH1  | 5.55  | 123.08           | 120.30        |
| 8   | S     | 186 | TYR  | CG-CD2-CE2 | -5.55 | 116.86           | 121.30        |
| 7   | N     | 471 | TYR  | CB-CG-CD2  | 5.55  | 124.33           | 121.00        |
| 7   | N     | 526 | TYR  | CD1-CG-CD2 | 5.55  | 124.00           | 117.90        |
| 12  | U     | 43  | SER  | N-CA-CB    | 5.55  | 118.82           | 110.50        |
| 8   | S     | 275 | TYR  | CB-CG-CD1  | -5.54 | 117.67           | 121.00        |
| 12  | U     | 137 | TYR  | CG-CD1-CE1 | -5.54 | 116.86           | 121.30        |
| 13  | 0     | 300 | VAL  | CA-CB-CG1  | 5.54  | 119.21           | 110.90        |
| 1   | W     | 170 | HIS  | CB-CA-C    | -5.54 | 99.32            | 110.40        |
| 7   | Ν     | 651 | PHE  | CB-CG-CD1  | 5.54  | 124.68           | 120.80        |
| 12  | U     | 66  | TRP  | CG-CD2-CE3 | -5.54 | 128.92           | 133.90        |
| 7   | Ν     | 84  | ALA  | CB-CA-C    | -5.53 | 101.80           | 110.10        |
| 6   | Ζ     | 272 | TYR  | CG-CD1-CE1 | 5.53  | 125.73           | 121.30        |
| 5   | Y     | 37  | ASP  | CB-CG-OD2  | -5.53 | 113.33           | 118.30        |
| 6   | Ζ     | 129 | ASN  | C-N-CA     | 5.53  | 133.91           | 122.30        |
| 13  | 0     | 32  | PHE  | CB-CG-CD2  | 5.53  | 124.67           | 120.80        |
| 7   | Ν     | 161 | TYR  | CB-CG-CD2  | -5.53 | 117.68           | 121.00        |
| 6   | Ζ     | 889 | VAL  | CA-CB-CG2  | -5.52 | 102.62           | 110.90        |
| 7   | Ν     | 322 | ASP  | CB-CG-OD1  | -5.52 | 113.33           | 118.30        |
| 6   | Ζ     | 293 | MET  | CG-SD-CE   | -5.52 | 91.37            | 100.20        |
| 11  | R     | 120 | LEU  | N-CA-CB    | 5.52  | 121.44           | 110.40        |
| 6   | Ζ     | 58  | GLU  | CB-CA-C    | -5.52 | 99.37            | 110.40        |
| 6   | Ζ     | 167 | ASP  | CB-CG-OD1  | -5.51 | 113.34           | 118.30        |
| 12  | U     | 66  | TRP  | CB-CG-CD2  | -5.51 | 119.43           | 126.60        |
| 2   | V     | 203 | TYR  | CA-CB-CG   | -5.51 | 102.93           | 113.40        |
| 11  | R     | 281 | SER  | N-CA-CB    | 5.51  | 118.76           | 110.50        |
| 13  | 0     | 215 | TYR  | CZ-CE2-CD2 | -5.51 | 114.84           | 119.80        |
| 13  | 0     | 58  | ARG  | NH1-CZ-NH2 | 5.51  | 125.46           | 119.40        |
| 10  | Q     | 246 | TYR  | CG-CD2-CE2 | 5.50  | 125.70           | 121.30        |
| 11  | R     | 367 | ASP  | CB-CG-OD1  | 5.50  | 123.25           | 118.30        |
| 7   | Ν     | 412 | TYR  | CZ-CE2-CD2 | -5.50 | 114.85           | 119.80        |
| 11  | R     | 259 | PHE  | CB-CG-CD1  | 5.50  | 124.65           | 120.80        |
| 6   | Ζ     | 265 | LEU  | CB-CA-C    | -5.50 | 99.76            | 110.20        |
| 6   | Ζ     | 530 | LEU  | O-C-N      | -5.49 | 113.91           | 122.70        |
| 6   | Ζ     | 963 | ALA  | CB-CA-C    | -5.49 | 101.87           | 110.10        |
| 8   | S     | 55  | ARG  | NE-CZ-NH1  | -5.49 | 117.56           | 120.30        |
| 9   | Р     | 273 | TYR  | CG-CD1-CE1 | -5.49 | 116.91           | 121.30        |
| 7   | N     | 433 | THR  | N-CA-CB    | 5.49  | 120.73           | 110.30        |
| 12  | U     | 277 | TYR  | CG-CD2-CE2 | -5.49 | 116.91           | 121.30        |
| 8   | S     | 421 | TYR  | CB-CA-C    | -5.48 | 99.43            | 110.40        |
| 6   | Ζ     | 356 | ASP  | CB-CG-OD1  | 5.48  | 123.23           | 118.30        |



| Mol | Chain | Res | Type | Atoms                             | Z     | $Observed(^{o})$    | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------------------------------|-------|---------------------|---------------|
| 2   | V     | 182 | LYS  | CA-C-N                            | 5.48  | 129.25              | 117.20        |
| 7   | Ν     | 412 | TYR  | CB-CG-CD2                         | -5.48 | 117.71              | 121.00        |
| 6   | Ζ     | 349 | THR  | CA-CB-CG2                         | -5.48 | 104.73              | 112.40        |
| 1   | W     | 9   | VAL  | CA-CB-CG1                         | 5.47  | 119.11              | 110.90        |
| 7   | Ν     | 591 | LEU  | CB-CG-CD1                         | 5.47  | 120.30              | 111.00        |
| 2   | V     | 251 | TYR  | CB-CG-CD2                         | -5.47 | 117.72              | 121.00        |
| 9   | Р     | 68  | SER  | N-CA-CB                           | 5.47  | 118.71              | 110.50        |
| 10  | Q     | 209 | TYR  | CB-CG-CD1                         | 5.47  | 124.28              | 121.00        |
| 8   | S     | 318 | CYS  | N-CA-CB                           | 5.47  | 120.44              | 110.60        |
| 9   | Р     | 326 | ASP  | CB-CG-OD1                         | 5.46  | 123.22              | 118.30        |
| 7   | N     | 762 | ARG  | NE-CZ-NH1                         | 5.46  | 123.03              | 120.30        |
| 7   | Ν     | 461 | GLU  | OE1-CD-OE2                        | 5.46  | 129.85              | 123.30        |
| 8   | S     | 467 | PHE  | CB-CG-CD2                         | -5.46 | 116.98              | 120.80        |
| 4   | Х     | 41  | GLU  | OE1-CD-OE2                        | 5.45  | 129.84              | 123.30        |
| 1   | W     | 152 | GLU  | OE1-CD-OE2                        | 5.45  | 129.84              | 123.30        |
| 2   | V     | 138 | ALA  | CB-CA-C                           | -5.45 | 101.92              | 110.10        |
| 3   | Т     | 73  | PHE  | CB-CG-CD2                         | 5.45  | 124.61              | 120.80        |
| 6   | Ζ     | 619 | ASP  | CB-CG-OD2                         | -5.45 | 113.40              | 118.30        |
| 11  | R     | 181 | TYR  | CA-CB-CG                          | -5.45 | 103.06              | 113.40        |
| 9   | Р     | 19  | GLU  | OE1-CD-OE2                        | 5.44  | 129.83              | 123.30        |
| 7   | N     | 739 | PHE  | CG-CD1-CE1                        | -5.44 | 114.81              | 120.80        |
| 13  | 0     | 288 | ARG  | NE-CZ-NH1                         | 5.44  | 123.02              | 120.30        |
| 11  | R     | 298 | ALA  | O-C-N                             | -5.44 | 114.00              | 122.70        |
| 10  | Q     | 214 | THR  | CA-CB-CG2                         | -5.43 | 104.79              | 112.40        |
| 7   | Ν     | 740 | TRP  | CH2-CZ2-CE2                       | 5.43  | 122.83              | 117.40        |
| 6   | Ζ     | 467 | VAL  | CA-CB-CG2                         | -5.43 | 102.75              | 110.90        |
| 6   | Ζ     | 838 | TYR  | CB-CG-CD1                         | 5.43  | 124.26              | 121.00        |
| 12  | U     | 117 | ASN  | CA-CB-CG                          | -5.43 | 101.46              | 113.40        |
| 13  | 0     | 181 | PHE  | CB-CA-C                           | -5.42 | 99.55               | 110.40        |
| 10  | Q     | 169 | ASP  | C-N-CA                            | 5.42  | 135.24              | 121.70        |
| 3   | Т     | 227 | PRO  | CA-N-CD                           | 5.42  | 119.28              | 111.70        |
| 10  | Q     | 127 | ARG  | NE-CZ-NH2                         | -5.41 | 117.59              | 120.30        |
| 10  | Q     | 232 | TYR  | CG-CD2-CE2                        | -5.41 | 116.97              | 121.30        |
| 6   | Ζ     | 901 | PHE  | CB-CG-CD1                         | -5.41 | 117.01              | 120.80        |
| 7   | Ν     | 95  | SER  | N-CA-CB                           | 5.41  | 118.61              | 110.50        |
| 13  | 0     | 11  | LEU  | $CB-\overline{CG}-\overline{CD1}$ | 5.41  | $1\overline{20.19}$ | 111.00        |
| 13  | 0     | 373 | TRP  | CB-CG-CD2                         | -5.41 | 119.57              | 126.60        |
| 9   | Р     | 299 | LEU  | CB-CG-CD1                         | 5.40  | 120.19              | 111.00        |
| 4   | X     | 41  | GLU  | N-CA-CB                           | 5.40  | 120.32              | 110.60        |
| 12  | U     | 288 | PHE  | CB-CG-CD2                         | 5.40  | 124.58              | 120.80        |
| 13  | Ō     | 340 | SER  | N-CA-CB                           | 5.40  | 118.60              | 110.50        |
| 9   | Р     | 240 | TYR  | CB-CG-CD2                         | -5.40 | 117.76              | 121.00        |



| Mol | Chain | Res | Type | Atoms      | Ζ     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|-------|------------------|---------------|
| 2   | V     | 108 | TYR  | CG-CD1-CE1 | -5.39 | 116.98           | 121.30        |
| 13  | 0     | 191 | THR  | CA-CB-CG2  | -5.39 | 104.85           | 112.40        |
| 4   | Х     | 96  | ARG  | NE-CZ-NH1  | 5.39  | 123.00           | 120.30        |
| 7   | N     | 753 | PHE  | CB-CG-CD2  | 5.39  | 124.57           | 120.80        |
| 10  | Q     | 333 | SER  | N-CA-CB    | 5.39  | 118.58           | 110.50        |
| 8   | S     | 82  | TYR  | CD1-CG-CD2 | -5.38 | 111.98           | 117.90        |
| 3   | Т     | 89  | TYR  | CG-CD1-CE1 | -5.38 | 117.00           | 121.30        |
| 9   | Р     | 183 | GLN  | CB-CA-C    | -5.38 | 99.65            | 110.40        |
| 10  | Q     | 113 | ASP  | CB-CG-OD2  | -5.38 | 113.46           | 118.30        |
| 11  | R     | 28  | GLU  | OE1-CD-OE2 | 5.37  | 129.75           | 123.30        |
| 11  | R     | 414 | LEU  | CA-CB-CG   | -5.37 | 102.94           | 115.30        |
| 10  | Q     | 429 | LYS  | O-C-N      | -5.37 | 114.11           | 122.70        |
| 6   | Z     | 15  | GLN  | CG-CD-OE1  | -5.37 | 110.86           | 121.60        |
| 4   | Х     | 60  | GLU  | OE1-CD-OE2 | -5.37 | 116.86           | 123.30        |
| 11  | R     | 99  | TYR  | CA-CB-CG   | -5.37 | 103.20           | 113.40        |
| 12  | U     | 277 | TYR  | CZ-CE2-CD2 | 5.37  | 124.63           | 119.80        |
| 6   | Z     | 60  | ASP  | N-CA-CB    | 5.36  | 120.26           | 110.60        |
| 11  | R     | 315 | VAL  | CG1-CB-CG2 | -5.36 | 102.32           | 110.90        |
| 6   | Z     | 397 | ASP  | CB-CG-OD1  | 5.36  | 123.12           | 118.30        |
| 10  | Q     | 264 | TYR  | CG-CD2-CE2 | -5.36 | 117.01           | 121.30        |
| 8   | S     | 403 | SER  | N-CA-CB    | 5.36  | 118.53           | 110.50        |
| 8   | S     | 286 | TYR  | CD1-CE1-CZ | 5.35  | 124.61           | 119.80        |
| 11  | R     | 382 | ASP  | CB-CA-C    | -5.35 | 99.70            | 110.40        |
| 6   | Z     | 323 | TYR  | CB-CG-CD1  | -5.35 | 117.79           | 121.00        |
| 3   | Т     | 177 | PHE  | CB-CG-CD1  | -5.34 | 117.06           | 120.80        |
| 6   | Z     | 428 | TRP  | CG-CD2-CE3 | -5.34 | 129.09           | 133.90        |
| 12  | U     | 34  | VAL  | CA-CB-CG1  | 5.34  | 118.92           | 110.90        |
| 3   | Т     | 93  | ASN  | C-N-CA     | 5.34  | 135.05           | 121.70        |
| 3   | Т     | 164 | LEU  | CB-CA-C    | -5.34 | 100.06           | 110.20        |
| 8   | S     | 431 | VAL  | CA-CB-CG2  | -5.34 | 102.89           | 110.90        |
| 6   | Ζ     | 112 | LYS  | CA-CB-CG   | 5.33  | 125.13           | 113.40        |
| 6   | Z     | 269 | TYR  | CD1-CE1-CZ | -5.33 | 115.00           | 119.80        |
| 7   | Ν     | 282 | TYR  | CZ-CE2-CD2 | 5.33  | 124.60           | 119.80        |
| 7   | N     | 335 | ALA  | CB-CA-C    | -5.33 | 102.10           | 110.10        |
| 7   | Ν     | 880 | ARG  | CB-CG-CD   | 5.33  | 125.46           | 111.60        |
| 12  | U     | 48  | VAL  | CA-CB-CG1  | -5.33 | 102.91           | 110.90        |
| 1   | W     | 31  | ASP  | CB-CG-OD2  | 5.32  | 123.09           | 118.30        |
| 6   | Z     | 299 | ASP  | CB-CG-OD2  | -5.32 | 113.51           | 118.30        |
| 2   | V     | 233 | LYS  | CB-CA-C    | -5.31 | 99.77            | 110.40        |
| 6   | Z     | 316 | ALA  | N-CA-CB    | 5.31  | 117.53           | 110.10        |
| 8   | S     | 425 | ARG  | NE-CZ-NH2  | -5.31 | 117.64           | 120.30        |
| 1   | W     | 140 | ASP  | CB-CA-C    | -5.31 | 99.78            | 110.40        |



| Mol | Chain | Res | Type | Atoms       | Z     | Observed(°) | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|-------------|---------------|
| 4   | Х     | 114 | LEU  | CB-CG-CD2   | 5.31  | 120.02      | 111.00        |
| 5   | Y     | 89  | GLN  | CA-C-O      | -5.30 | 108.96      | 120.10        |
| 7   | N     | 630 | ALA  | CB-CA-C     | -5.30 | 102.14      | 110.10        |
| 13  | 0     | 41  | LEU  | CB-CG-CD1   | 5.30  | 120.02      | 111.00        |
| 7   | N     | 362 | TRP  | CZ3-CH2-CZ2 | 5.30  | 127.96      | 121.60        |
| 3   | Т     | 197 | TYR  | CB-CG-CD1   | -5.29 | 117.82      | 121.00        |
| 6   | Ζ     | 269 | TYR  | CD1-CG-CD2  | 5.29  | 123.72      | 117.90        |
| 11  | R     | 301 | TYR  | CB-CG-CD2   | -5.29 | 117.83      | 121.00        |
| 8   | S     | 492 | LYS  | CA-C-O      | -5.29 | 108.99      | 120.10        |
| 2   | V     | 73  | GLN  | CB-CA-C     | -5.29 | 99.82       | 110.40        |
| 6   | Z     | 145 | ASP  | N-CA-CB     | 5.29  | 120.12      | 110.60        |
| 13  | 0     | 187 | SER  | CB-CA-C     | -5.29 | 100.05      | 110.10        |
| 11  | R     | 424 | THR  | CA-C-O      | -5.29 | 109.00      | 120.10        |
| 10  | Q     | 434 | TYR  | CA-C-O      | -5.29 | 109.00      | 120.10        |
| 13  | 0     | 393 | VAL  | CA-C-O      | -5.29 | 109.00      | 120.10        |
| 4   | Х     | 133 | SER  | CA-C-O      | -5.28 | 109.01      | 120.10        |
| 3   | Т     | 174 | PHE  | CB-CA-C     | -5.28 | 99.84       | 110.40        |
| 7   | N     | 925 | ASP  | CA-C-O      | -5.28 | 109.01      | 120.10        |
| 7   | N     | 255 | ALA  | N-CA-CB     | 5.28  | 117.49      | 110.10        |
| 9   | Р     | 440 | HIS  | CA-C-O      | -5.28 | 109.01      | 120.10        |
| 7   | N     | 699 | ALA  | CB-CA-C     | -5.28 | 102.18      | 110.10        |
| 8   | S     | 111 | ARG  | NE-CZ-NH2   | 5.28  | 122.94      | 120.30        |
| 13  | 0     | 213 | LEU  | CB-CG-CD2   | 5.28  | 119.97      | 111.00        |
| 8   | S     | 428 | ARG  | NH1-CZ-NH2  | 5.27  | 125.20      | 119.40        |
| 1   | W     | 197 | SER  | CA-C-O      | -5.27 | 109.03      | 120.10        |
| 1   | W     | 101 | ARG  | CA-CB-CG    | 5.27  | 124.99      | 113.40        |
| 2   | V     | 306 | LYS  | CA-C-O      | -5.27 | 109.03      | 120.10        |
| 7   | Ν     | 541 | ALA  | CB-CA-C     | -5.27 | 102.20      | 110.10        |
| 6   | Z     | 792 | VAL  | CA-CB-CG1   | 5.27  | 118.80      | 110.90        |
| 7   | N     | 618 | ARG  | O-C-N       | -5.27 | 114.27      | 122.70        |
| 10  | Q     | 69  | GLY  | CA-C-O      | 5.27  | 130.08      | 120.60        |
| 9   | Р     | 220 | TYR  | CG-CD1-CE1  | -5.27 | 117.09      | 121.30        |
| 13  | 0     | 164 | PRO  | CA-N-CD     | 5.26  | 119.07      | 111.70        |
| 3   | Т     | 272 | ASN  | CA-C-O      | -5.26 | 109.06      | 120.10        |
| 3   | Т     | 207 | ALA  | N-CA-CB     | 5.26  | 117.46      | 110.10        |
| 10  | Q     | 110 | SER  | O-C-N       | 5.25  | 131.11      | 122.70        |
| 13  | 0     | 147 | ARG  | CA-CB-CG    | 5.25  | 124.96      | 113.40        |
| 3   | Т     | 136 | LEU  | CB-CG-CD2   | -5.25 | 102.07      | 111.00        |
| 8   | S     | 275 | TYR  | CB-CG-CD2   | 5.25  | 124.15      | 121.00        |
| 11  | R     | 297 | TYR  | CB-CG-CD2   | -5.25 | 117.85      | 121.00        |
| 6   | Z     | 868 | ASN  | CB-CA-C     | -5.25 | 99.91       | 110.40        |
| 6   | Z     | 893 | PHE  | CG-CD1-CE1  | -5.24 | 115.03      | 120.80        |



| Mol | Chain | Res | Type | Atoms      | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|-------|------------------|---------------|
| 11  | R     | 252 | TYR  | CB-CA-C    | -5.24 | 99.91            | 110.40        |
| 13  | 0     | 9   | THR  | N-CA-CB    | 5.24  | 120.26           | 110.30        |
| 13  | 0     | 180 | LYS  | CB-CA-C    | -5.24 | 99.91            | 110.40        |
| 6   | Ζ     | 757 | SER  | N-CA-CB    | 5.24  | 118.36           | 110.50        |
| 7   | Ν     | 120 | ASP  | CB-CG-OD1  | -5.23 | 113.59           | 118.30        |
| 11  | R     | 171 | MET  | CG-SD-CE   | -5.23 | 91.84            | 100.20        |
| 7   | Ν     | 326 | SER  | N-CA-CB    | 5.22  | 118.34           | 110.50        |
| 13  | 0     | 307 | MET  | CG-SD-CE   | -5.22 | 91.84            | 100.20        |
| 8   | S     | 399 | TYR  | CG-CD1-CE1 | 5.22  | 125.48           | 121.30        |
| 12  | U     | 53  | ALA  | CB-CA-C    | -5.22 | 102.27           | 110.10        |
| 8   | S     | 257 | LEU  | CB-CG-CD2  | -5.22 | 102.13           | 111.00        |
| 7   | N     | 429 | GLU  | N-CA-CB    | 5.21  | 119.98           | 110.60        |
| 12  | U     | 49  | THR  | CA-CB-CG2  | -5.21 | 105.11           | 112.40        |
| 8   | S     | 150 | LYS  | N-CA-CB    | 5.21  | 119.97           | 110.60        |
| 11  | R     | 213 | TYR  | CB-CG-CD1  | -5.21 | 117.88           | 121.00        |
| 12  | U     | 66  | TRP  | CB-CG-CD1  | 5.21  | 133.77           | 127.00        |
| 12  | U     | 163 | ALA  | N-CA-CB    | 5.21  | 117.39           | 110.10        |
| 6   | Z     | 145 | ASP  | CB-CG-OD2  | 5.20  | 122.98           | 118.30        |
| 7   | N     | 526 | TYR  | CG-CD1-CE1 | -5.20 | 117.14           | 121.30        |
| 9   | Р     | 248 | ASP  | CB-CG-OD1  | -5.20 | 113.62           | 118.30        |
| 10  | Q     | 162 | LEU  | CB-CA-C    | 5.20  | 120.08           | 110.20        |
| 9   | Р     | 18  | LYS  | N-CA-CB    | 5.20  | 119.96           | 110.60        |
| 11  | R     | 24  | TYR  | CG-CD1-CE1 | 5.20  | 125.46           | 121.30        |
| 11  | R     | 345 | TYR  | CB-CG-CD2  | 5.19  | 124.11           | 121.00        |
| 3   | Т     | 247 | ASP  | CB-CG-OD2  | -5.19 | 113.63           | 118.30        |
| 4   | Х     | 50  | TRP  | CB-CG-CD2  | -5.19 | 119.85           | 126.60        |
| 12  | U     | 210 | TYR  | CB-CG-CD1  | 5.19  | 124.11           | 121.00        |
| 6   | Z     | 200 | THR  | CA-CB-CG2  | -5.19 | 105.14           | 112.40        |
| 6   | Z     | 408 | TYR  | CG-CD2-CE2 | 5.19  | 125.45           | 121.30        |
| 8   | S     | 472 | HIS  | N-CA-CB    | 5.18  | 119.93           | 110.60        |
| 10  | Q     | 51  | ARG  | N-CA-CB    | 5.18  | 119.93           | 110.60        |
| 10  | Q     | 238 | TYR  | CB-CG-CD1  | -5.18 | 117.89           | 121.00        |
| 6   | Z     | 837 | TYR  | CB-CG-CD2  | -5.18 | 117.89           | 121.00        |
| 6   | Z     | 823 | ASN  | CB-CG-OD1  | -5.17 | 111.25           | 121.60        |
| 4   | Х     | 7   | VAL  | CG1-CB-CG2 | -5.17 | 102.62           | 110.90        |
| 4   | X     | 103 | GLU  | CB-CG-CD   | -5.17 | 100.23           | 114.20        |
| 6   | Z     | 164 | VAL  | O-C-N      | -5.17 | 114.43           | 122.70        |
| 7   | N     | 747 | HIS  | CB-CA-C    | -5.17 | 100.06           | 110.40        |
| 7   | N     | 647 | ASP  | CB-CG-OD2  | -5.17 | 113.65           | 118.30        |
| 8   | S     | 202 | ASN  | N-CA-CB    | 5.17  | 119.90           | 110.60        |
| 6   | Z     | 195 | PHE  | CB-CG-CD1  | 5.16  | 124.41           | 120.80        |
| 8   | S     | 72  | GLU  | C-N-CA     | 5.16  | 134.60           | 121.70        |



| Mol | Chain | Res | Type | Atoms       | Ζ     | Observed(°) | Ideal(°) |
|-----|-------|-----|------|-------------|-------|-------------|----------|
| 9   | Р     | 30  | ASN  | CA-CB-CG    | -5.16 | 102.05      | 113.40   |
| 7   | N     | 51  | ASP  | N-CA-CB     | 5.16  | 119.88      | 110.60   |
| 11  | R     | 186 | TYR  | CG-CD2-CE2  | -5.16 | 117.17      | 121.30   |
| 12  | U     | 183 | ALA  | CB-CA-C     | 5.16  | 117.84      | 110.10   |
| 6   | Ζ     | 340 | LEU  | N-CA-C      | -5.15 | 97.09       | 111.00   |
| 6   | Ζ     | 813 | PHE  | CB-CG-CD2   | -5.15 | 117.19      | 120.80   |
| 6   | Ζ     | 243 | GLN  | CG-CD-OE1   | -5.15 | 111.30      | 121.60   |
| 7   | N     | 742 | TRP  | CE2-CD2-CE3 | 5.15  | 124.88      | 118.70   |
| 2   | V     | 114 | PHE  | N-CA-CB     | 5.14  | 119.86      | 110.60   |
| 13  | 0     | 142 | ASP  | N-CA-C      | -5.14 | 97.11       | 111.00   |
| 6   | Ζ     | 967 | THR  | CA-C-N      | -5.14 | 105.89      | 117.20   |
| 9   | Р     | 329 | PHE  | CB-CG-CD2   | -5.14 | 117.20      | 120.80   |
| 10  | Q     | 339 | TYR  | CZ-CE2-CD2  | 5.14  | 124.43      | 119.80   |
| 6   | Z     | 193 | PHE  | CB-CG-CD1   | -5.14 | 117.20      | 120.80   |
| 2   | V     | 69  | PHE  | N-CA-CB     | 5.13  | 119.84      | 110.60   |
| 13  | 0     | 62  | TYR  | CB-CG-CD2   | -5.13 | 117.92      | 121.00   |
| 13  | 0     | 63  | ASP  | CB-CG-OD2   | -5.13 | 113.68      | 118.30   |
| 7   | N     | 356 | LEU  | CB-CG-CD2   | -5.13 | 102.28      | 111.00   |
| 7   | N     | 866 | TYR  | CD1-CE1-CZ  | 5.13  | 124.42      | 119.80   |
| 12  | U     | 154 | PHE  | CB-CG-CD2   | 5.13  | 124.39      | 120.80   |
| 2   | V     | 199 | LEU  | CB-CA-C     | -5.12 | 100.46      | 110.20   |
| 7   | N     | 740 | TRP  | CZ3-CH2-CZ2 | -5.12 | 115.45      | 121.60   |
| 8   | S     | 275 | TYR  | CG-CD1-CE1  | 5.12  | 125.39      | 121.30   |
| 6   | Ζ     | 924 | LYS  | O-C-N       | -5.11 | 114.52      | 122.70   |
| 6   | Ζ     | 406 | TRP  | CG-CD2-CE3  | -5.11 | 129.30      | 133.90   |
| 8   | S     | 64  | ARG  | NE-CZ-NH2   | -5.11 | 117.74      | 120.30   |
| 8   | S     | 114 | TYR  | CB-CG-CD2   | -5.11 | 117.93      | 121.00   |
| 8   | S     | 350 | LYS  | N-CA-CB     | 5.11  | 119.80      | 110.60   |
| 13  | 0     | 317 | THR  | CA-CB-CG2   | -5.11 | 105.25      | 112.40   |
| 6   | Ζ     | 199 | ASP  | CB-CG-OD1   | -5.11 | 113.70      | 118.30   |
| 3   | Т     | 199 | PHE  | CB-CG-CD2   | -5.11 | 117.23      | 120.80   |
| 7   | Ν     | 269 | LEU  | CB-CG-CD2   | 5.11  | 119.68      | 111.00   |
| 6   | Ζ     | 219 | ASP  | CB-CG-OD2   | 5.10  | 122.89      | 118.30   |
| 11  | R     | 351 | LYS  | CB-CG-CD    | 5.10  | 124.87      | 111.60   |
| 7   | N     | 328 | PHE  | CB-CG-CD1   | 5.10  | 124.37      | 120.80   |
| 7   | N     | 756 | THR  | N-CA-CB     | 5.10  | 119.99      | 110.30   |
| 8   | S     | 348 | LEU  | CB-CG-CD2   | 5.10  | 119.67      | 111.00   |
| 12  | U     | 32  | ARG  | NE-CZ-NH2   | -5.10 | 117.75      | 120.30   |
| 6   | Ζ     | 882 | LEU  | CB-CG-CD1   | -5.10 | 102.34      | 111.00   |
| 10  | Q     | 81  | SER  | N-CA-CB     | 5.09  | 118.14      | 110.50   |
| 10  | Q     | 225 | LEU  | CB-CG-CD1   | 5.09  | 119.66      | 111.00   |
| 12  | U     | 229 | LEU  | CB-CA-C     | -5.09 | 100.52      | 110.20   |



| Mol | Chain | Res              | Type | Atoms      | Z                 | Observed(°) | $Ideal(^{o})$ |
|-----|-------|------------------|------|------------|-------------------|-------------|---------------|
| 9   | Р     | 76               | ASN  | O-C-N      | 5.09              | 130.85      | 122.70        |
| 8   | S     | 188              | TYR  | CB-CG-CD1  | -5.09             | 117.95      | 121.00        |
| 1   | W     | 187              | SER  | CB-CA-C    | -5.09             | 100.43      | 110.10        |
| 6   | Ζ     | 363              | ASP  | CB-CG-OD2  | -5.08             | 113.73      | 118.30        |
| 8   | S     | 456              | ASP  | CB-CG-OD2  | -5.08             | 113.73      | 118.30        |
| 11  | R     | 421              | VAL  | CG1-CB-CG2 | 5.07              | 119.02      | 110.90        |
| 8   | S     | 284              | LEU  | N-CA-CB    | 5.07              | 120.54      | 110.40        |
| 2   | V     | 94               | MET  | CA-CB-CG   | 5.07              | 121.92      | 113.30        |
| 11  | R     | 263              | ARG  | NE-CZ-NH1  | 5.07              | 122.83      | 120.30        |
| 1   | W     | 65               | PHE  | CB-CG-CD2  | -5.07             | 117.25      | 120.80        |
| 12  | U     | 27               | THR  | CA-CB-CG2  | -5.07             | 105.31      | 112.40        |
| 6   | Z     | 155              | ARG  | NE-CZ-NH1  | -5.07             | 117.77      | 120.30        |
| 8   | S     | 239              | ARG  | N-CA-CB    | 5.07              | 119.72      | 110.60        |
| 2   | V     | 63               | VAL  | N-CA-CB    | 5.06              | 122.64      | 111.50        |
| 6   | Z     | 74               | SER  | CB-CA-C    | -5.06             | 100.48      | 110.10        |
| 6   | Z     | 341              | TYR  | CG-CD1-CE1 | -5.06             | 117.25      | 121.30        |
| 12  | U     | 25               | THR  | N-CA-CB    | 5.06              | 119.92      | 110.30        |
| 10  | Q     | 341              | THR  | CA-CB-CG2  | -5.06             | 105.32      | 112.40        |
| 2   | V     | 72               | PRO  | CA-N-CD    | 5.06              | 118.78      | 111.70        |
| 6   | Z     | 491              | LEU  | O-C-N      | -5.05             | 114.61      | 123.20        |
| 12  | U     | 52               | PHE  | CB-CG-CD2  | -5.05             | 117.26      | 120.80        |
| 13  | 0     | 69               | PHE  | CB-CG-CD1  | 5.05              | 124.34      | 120.80        |
| 8   | S     | 250              | ALA  | CB-CA-C    | -5.05             | 102.52      | 110.10        |
| 13  | 0     | 352              | TRP  | N-CA-CB    | 5.05              | 119.69      | 110.60        |
| 6   | Z     | 460              | SER  | N-CA-CB    | 5.04              | 118.07      | 110.50        |
| 7   | N     | 905              | LEU  | CB-CA-C    | -5.04             | 100.62      | 110.20        |
| 9   | Р     | 327              | LEU  | CB-CG-CD2  | 5.04              | 119.57      | 111.00        |
| 10  | Q     | 84               | TYR  | CG-CD1-CE1 | -5.04             | 117.27      | 121.30        |
| 11  | R     | 181              | TYR  | CD1-CE1-CZ | -5.04             | 115.26      | 119.80        |
| 3   | Т     | 123              | HIS  | CA-CB-CG   | -5.04             | 105.03      | 113.60        |
| 8   | S     | 452              | TYR  | CB-CG-CD1  | 5.04              | 124.02      | 121.00        |
| 13  | 0     | 286              | PHE  | N-CA-CB    | 5.04              | 119.66      | 110.60        |
| 3   | Т     | 143              | SER  | N-CA-CB    | -5.03             | 102.96      | 110.50        |
| 7   | N     | 786              | ARG  | NE-CZ-NH2  | 5.03              | 122.81      | 120.30        |
| 7   | Ν     | 363              | ALA  | N-CA-CB    | 5.03              | 117.14      | 110.10        |
| 12  | U     | $14\overline{5}$ | ASP  | N-CA-CB    | $5.0\overline{3}$ | 119.65      | 110.60        |
| 6   | Z     | 799              | PHE  | CB-CG-CD2  | -5.02             | 117.28      | 120.80        |
| 6   | Z     | 522              | THR  | CA-CB-CG2  | -5.02             | 105.37      | 112.40        |
| 6   | Z     | 119              | LEU  | CB-CG-CD2  | -5.02             | 102.47      | 111.00        |
| 6   | Z     | 52               | LEU  | CB-CG-CD2  | 5.01              | 119.52      | 111.00        |
| 9   | P     | 395              | ARG  | CA-C-N     | 5.01              | 131.13      | 117.10        |
| 10  | Q     | 113              | ASP  | CB-CG-OD1  | 5.01              | 122.81      | 118.30        |



| Mol | Chain | Res | Type | Atoms      | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|-------|------------------|---------------|
| 7   | Ν     | 109 | TYR  | CG-CD1-CE1 | -5.01 | 117.29           | 121.30        |
| 8   | S     | 52  | TYR  | CZ-CE2-CD2 | 5.01  | 124.31           | 119.80        |
| 1   | W     | 88  | ALA  | CB-CA-C    | -5.00 | 102.59           | 110.10        |

There are no chirality outliers.

All (123) planarity outliers are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type | Group     |
|-----|-------|----------------|------|-----------|
| 7   | N     | 123            | PHE  | Sidechain |
| 7   | N     | 139            | ARG  | Sidechain |
| 7   | N     | 188            | TYR  | Sidechain |
| 7   | N     | 298            | TYR  | Sidechain |
| 7   | N     | 328            | PHE  | Sidechain |
| 7   | N     | 398            | ARG  | Sidechain |
| 7   | N     | 417            | ARG  | Sidechain |
| 7   | N     | 471            | TYR  | Sidechain |
| 7   | Ν     | 50             | TYR  | Sidechain |
| 7   | Ν     | 502            | PHE  | Sidechain |
| 7   | N     | 504            | TYR  | Sidechain |
| 7   | N     | 510            | HIS  | Sidechain |
| 7   | N     | 58             | ARG  | Sidechain |
| 7   | N     | 584            | ARG  | Sidechain |
| 7   | N     | 585            | ARG  | Sidechain |
| 7   | N     | 593            | PHE  | Sidechain |
| 7   | N     | 599            | TYR  | Sidechain |
| 7   | N     | 618            | ARG  | Sidechain |
| 7   | N     | 70             | TYR  | Sidechain |
| 7   | N     | 743            | PHE  | Sidechain |
| 7   | N     | 813            | ARG  | Sidechain |
| 7   | N     | 873            | ARG  | Sidechain |
| 7   | N     | 98             | VAL  | Peptide   |
| 13  | 0     | 228            | TYR  | Sidechain |
| 13  | 0     | 248            | TYR  | Sidechain |
| 13  | 0     | 252            | PHE  | Sidechain |
| 13  | 0     | 310            | PHE  | Sidechain |
| 13  | 0     | 356            | ARG  | Sidechain |
| 13  | 0     | 58             | ARG  | Sidechain |
| 13  | 0     | 60             | ARG  | Sidechain |
| 13  | 0     | 62             | TYR  | Sidechain |
| 13  | 0     | 70             | TYR  | Sidechain |
| 13  | 0     | 81             | TYR  | Sidechain |
| 13  | 0     | 98             | TYR  | Sidechain |



| Mol | Chain | Res | Type | Group              |
|-----|-------|-----|------|--------------------|
| 9   | Р     | 115 | ARG  | Sidechain          |
| 9   | Р     | 201 | ARG  | Sidechain          |
| 9   | Р     | 234 | TYR  | Sidechain          |
| 9   | Р     | 240 | TYR  | Sidechain          |
| 9   | Р     | 273 | TYR  | Sidechain          |
| 9   | Р     | 310 | ARG  | Sidechain          |
| 9   | Р     | 351 | ARG  | Sidechain          |
| 9   | Р     | 79  | LEU  | Mainchain          |
| 10  | Q     | 104 | PHE  | Sidechain          |
| 10  | Q     | 127 | ARG  | Sidechain          |
| 10  | Q     | 151 | TYR  | Sidechain          |
| 10  | Q     | 161 | LEU  | Peptide,Mainchain  |
| 10  | Q     | 163 | ARG  | Sidechain          |
| 10  | Q     | 185 | TYR  | Sidechain          |
| 10  | Q     | 20  | TYR  | Sidechain          |
| 10  | Q     | 202 | ARG  | Sidechain          |
| 10  | Q     | 255 | TYR  | Sidechain          |
| 10  | Q     | 291 | TYR  | Sidechain          |
| 10  | Q     | 294 | ARG  | Sidechain          |
| 10  | Q     | 306 | TYR  | Sidechain          |
| 10  | Q     | 309 | ARG  | Sidechain          |
| 10  | Q     | 354 | PHE  | Peptide            |
| 10  | Q     | 387 | TYR  | Sidechain          |
| 10  | Q     | 400 | TYR  | Sidechain          |
| 10  | Q     | 409 | TYR  | Sidechain          |
| 10  | Q     | 84  | TYR  | Sidechain          |
| 11  | R     | 123 | ASP  | Peptide            |
| 11  | R     | 186 | TYR  | Sidechain          |
| 11  | R     | 207 | ARG  | Sidechain          |
| 11  | R     | 210 | TYR  | Sidechain          |
| 11  | R     | 305 | PHE  | Sidechain          |
| 11  | R     | 331 | ARG  | Sidechain          |
| 11  | R     | 334 | ARG  | Sidechain          |
| 11  | R     | 335 | ARG  | Sidechain          |
| 11  | R     | 357 | PHE  | Sidechain          |
| 11  | R     | 417 | TYR  | Sidechain          |
| 11  | R     | 63  | TYR  | Sidechain          |
| 11  | R     | 70  | TYR  | Sidechain          |
| 8   | S     | 119 | TYR  | Sidechain          |
| 8   | S     | 145 | PHE  | Sidechain          |
| 8   | S     | 188 | TYR  | Sidechain          |
| 8   | S     | 197 | SER  | Peptide, Mainchain |



| Mol | Chain | Res | Type | Group     |
|-----|-------|-----|------|-----------|
| 8   | S     | 261 | HIS  | Peptide   |
| 8   | S     | 275 | TYR  | Sidechain |
| 8   | S     | 377 | TYR  | Sidechain |
| 8   | S     | 393 | ARG  | Sidechain |
| 8   | S     | 428 | ARG  | Sidechain |
| 8   | S     | 452 | TYR  | Sidechain |
| 8   | S     | 472 | HIS  | Sidechain |
| 8   | S     | 480 | ARG  | Sidechain |
| 8   | S     | 82  | TYR  | Sidechain |
| 3   | Т     | 157 | TYR  | Sidechain |
| 3   | Т     | 177 | PHE  | Sidechain |
| 3   | Т     | 211 | PHE  | Sidechain |
| 3   | Т     | 51  | TYR  | Sidechain |
| 3   | Т     | 81  | TYR  | Sidechain |
| 3   | Т     | 89  | TYR  | Sidechain |
| 12  | U     | 176 | ARG  | Sidechain |
| 12  | U     | 24  | ARG  | Sidechain |
| 12  | U     | 32  | ARG  | Sidechain |
| 12  | U     | 52  | PHE  | Sidechain |
| 2   | V     | 157 | ARG  | Sidechain |
| 2   | V     | 171 | ARG  | Sidechain |
| 2   | V     | 229 | ASP  | Peptide   |
| 2   | V     | 270 | TYR  | Sidechain |
| 2   | V     | 61  | TYR  | Sidechain |
| 1   | W     | 122 | ARG  | Sidechain |
| 1   | W     | 127 | ARG  | Sidechain |
| 1   | W     | 182 | TYR  | Sidechain |
| 1   | W     | 23  | ARG  | Sidechain |
| 1   | W     | 25  | ARG  | Sidechain |
| 1   | W     | 77  | HIS  | Sidechain |
| 4   | Х     | 51  | ARG  | Sidechain |
| 4   | Х     | 99  | PHE  | Sidechain |
| 5   | Y     | 86  | ARG  | Sidechain |
| 6   | Ζ     | 132 | HIS  | Sidechain |
| 6   | Z     | 210 | TYR  | Sidechain |
| 6   | Z     | 269 | TYR  | Sidechain |
| 6   | Z     | 312 | TYR  | Sidechain |
| 6   | Ζ     | 323 | TYR  | Sidechain |
| 6   | Ζ     | 385 | PHE  | Sidechain |
| 6   | Z     | 394 | TYR  | Sidechain |
| 6   | Z     | 426 | TYR  | Sidechain |
| 6   | Z     | 477 | TYR  | Sidechain |

Continued from previous page...



| Mol | Chain | Res | Type | Group     |
|-----|-------|-----|------|-----------|
| 6   | Ζ     | 773 | ARG  | Sidechain |
| 6   | Ζ     | 774 | ARG  | Sidechain |
| 6   | Ζ     | 849 | ARG  | Sidechain |

### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | W     | 1534  | 0        | 1542     | 17      | 0            |
| 2   | V     | 2274  | 0        | 2272     | 51      | 0            |
| 3   | Т     | 2192  | 0        | 2157     | 12      | 0            |
| 4   | Х     | 1032  | 0        | 1017     | 5       | 0            |
| 5   | Y     | 435   | 0        | 394      | 17      | 0            |
| 6   | Ζ     | 7005  | 0        | 6932     | 85      | 0            |
| 7   | N     | 6882  | 0        | 6959     | 42      | 0            |
| 8   | S     | 3894  | 0        | 3937     | 32      | 0            |
| 9   | Р     | 3608  | 0        | 3694     | 15      | 0            |
| 10  | Q     | 3499  | 0        | 3524     | 18      | 0            |
| 11  | R     | 3060  | 0        | 3083     | 12      | 0            |
| 12  | U     | 2373  | 0        | 2403     | 6       | 0            |
| 13  | 0     | 3186  | 0        | 3213     | 11      | 0            |
| All | All   | 40974 | 0        | 41127    | 301     | 0            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

All (301) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom 1          | Atom 9          | Interatomic  | Clash       |
|-----------------|-----------------|--------------|-------------|
| Atom-1          | Atom-2          | distance (Å) | overlap (Å) |
| 8:S:127:THR:CB  | 8:S:127:THR:CA  | 1.80         | 1.58        |
| 6:Z:30:LYS:CG   | 6:Z:37:GLN:HB3  | 1.22         | 1.55        |
| 6:Z:24:THR:HB   | 6:Z:25:PRO:CD   | 1.36         | 1.51        |
| 2:V:118:LEU:HB2 | 2:V:195:HIS:CD2 | 1.47         | 1.49        |
| 2:V:118:LEU:CB  | 2:V:195:HIS:NE2 | 1.80         | 1.44        |
| 5:Y:21:ASN:CG   | 8:S:55:ARG:NH1  | 1.68         | 1.39        |
| 6:Z:30:LYS:CG   | 6:Z:37:GLN:CB   | 2.03         | 1.34        |



|                  |                  | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 6:Z:85:VAL:CG1   | 6:Z:86:PRO:HD3   | 1.60         | 1.28        |
| 6:Z:30:LYS:CD    | 6:Z:37:GLN:HB3   | 1.64         | 1.26        |
| 5:Y:21:ASN:ND2   | 8:S:55:ARG:CZ    | 1.99         | 1.24        |
| 6:Z:30:LYS:HG3   | 6:Z:37:GLN:CB    | 1.63         | 1.24        |
| 6:Z:85:VAL:HG12  | 6:Z:86:PRO:CD    | 1.67         | 1.24        |
| 2:V:118:LEU:HB2  | 2:V:195:HIS:NE2  | 0.92         | 1.23        |
| 6:Z:85:VAL:CG1   | 6:Z:86:PRO:CD    | 2.18         | 1.19        |
| 7:N:36:TRP:CE3   | 7:N:36:TRP:O     | 1.95         | 1.19        |
| 6:Z:24:THR:CB    | 6:Z:25:PRO:CD    | 2.22         | 1.17        |
| 6:Z:85:VAL:CB    | 6:Z:86:PRO:HD2   | 1.69         | 1.17        |
| 6:Z:85:VAL:CB    | 6:Z:86:PRO:CD    | 2.22         | 1.17        |
| 6:Z:30:LYS:HG2   | 6:Z:37:GLN:HB3   | 1.23         | 1.15        |
| 7:N:856:PHE:O    | 7:N:857:TYR:O    | 1.64         | 1.14        |
| 6:Z:24:THR:HB    | 6:Z:25:PRO:HD2   | 1.20         | 1.14        |
| 6:Z:85:VAL:HB    | 6:Z:86:PRO:CD    | 1.77         | 1.13        |
| 7:N:708:ALA:HB1  | 7:N:713:VAL:HG22 | 1.30         | 1.13        |
| 1:W:126:ILE:HA   | 1:W:157:PHE:HZ   | 1.10         | 1.12        |
| 1:W:155:ASP:HB2  | 1:W:171:LEU:HD22 | 1.28         | 1.12        |
| 7:N:8:PRO:CB     | 7:N:8:PRO:CA     | 2.17         | 1.10        |
| 2:V:118:LEU:HD12 | 2:V:195:HIS:HD2  | 1.12         | 1.10        |
| 1:W:126:ILE:HA   | 1:W:157:PHE:CZ   | 1.86         | 1.09        |
| 6:Z:30:LYS:HG3   | 6:Z:37:GLN:CG    | 1.82         | 1.09        |
| 5:Y:65:ASP:HB2   | 11:R:331:ARG:CD  | 1.84         | 1.08        |
| 6:Z:85:VAL:HG12  | 6:Z:86:PRO:HD3   | 1.15         | 1.07        |
| 6:Z:24:THR:HB    | 6:Z:25:PRO:HD3   | 1.12         | 1.06        |
| 6:Z:282:ILE:HG13 | 6:Z:318:LYS:HD2  | 1.38         | 1.06        |
| 6:Z:85:VAL:O     | 6:Z:88:PRO:HD2   | 1.55         | 1.05        |
| 2:V:118:LEU:CB   | 2:V:195:HIS:CD2  | 2.32         | 1.04        |
| 6:Z:30:LYS:HG3   | 6:Z:37:GLN:CD    | 1.78         | 1.04        |
| 2:V:118:LEU:O    | 2:V:195:HIS:CE1  | 2.11         | 1.02        |
| 6:Z:282:ILE:HD11 | 6:Z:297:VAL:CG1  | 1.89         | 1.02        |
| 6:Z:24:THR:CB    | 6:Z:25:PRO:HD3   | 1.84         | 1.01        |
| 7:N:339:MET:HA   | 7:N:709:GLY:N    | 1.77         | 0.99        |
| 7:N:708:ALA:CB   | 7:N:713:VAL:HG22 | 1.93         | 0.97        |
| 7:N:36:TRP:O     | 7:N:36:TRP:CD2   | 2.17         | 0.97        |
| 6:Z:282:ILE:CD1  | 6:Z:297:VAL:HB   | 1.95         | 0.97        |
| 5:Y:65:ASP:HB2   | 11:R:331:ARG:HD3 | 1.47         | 0.95        |
| 6:Z:85:VAL:HB    | 6:Z:86:PRO:HD2   | 0.95         | 0.94        |
| 6:Z:49:LEU:HD21  | 6:Z:93:ARG:HG2   | 1.49         | 0.93        |
| 2:V:118:LEU:HD12 | 2:V:195:HIS:CD2  | 2.02         | 0.93        |
| 1:W:155:ASP:CB   | 1:W:171:LEU:HD22 | 1.98         | 0.93        |



| Atom-1            | Atom-2            | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|-------------------|-------------------|-----------------------------|----------------------|
| 2:V:118:LEU:CD1   | 2:V:195:HIS:HD2   | 1.83                        | 0.92                 |
| 6:Z:282:ILE:CD1   | 6:Z:297:VAL:CG1   | 2.49                        | 0.91                 |
| 8:S:127:THR:CB    | 8:S:127:THR:N     | 2.34                        | 0.91                 |
| 6:Z:85:VAL:HG12   | 6:Z:86:PRO:N      | 1.84                        | 0.90                 |
| 5:Y:65:ASP:HB2    | 11:R:331:ARG:HD2  | 1.51                        | 0.90                 |
| 7:N:707:ASN:O     | 7:N:709:GLY:N     | 2.05                        | 0.88                 |
| 6:Z:282:ILE:CD1   | 6:Z:297:VAL:HG11  | 2.05                        | 0.87                 |
| 7:N:6:ALA:HB2     | 7:N:35:LEU:CD1    | 2.06                        | 0.86                 |
| 2:V:157:ARG:O     | 2:V:196:TYR:CA    | 2.24                        | 0.86                 |
| 6:Z:282:ILE:CD1   | 6:Z:297:VAL:CB    | 2.54                        | 0.85                 |
| 5:Y:21:ASN:HD21   | 8:S:55:ARG:CZ     | 1.77                        | 0.85                 |
| 2:V:159:ILE:HD11  | 2:V:196:TYR:O     | 1.78                        | 0.83                 |
| 1:W:158:ILE:HG23  | 1:W:169:SER:HB2   | 1.61                        | 0.82                 |
| 2:V:159:ILE:HD11  | 2:V:196:TYR:CD1   | 2.15                        | 0.82                 |
| 7:N:708:ALA:HB1   | 7:N:713:VAL:CG2   | 2.10                        | 0.82                 |
| 2:V:24:LYS:HG3    | 2:V:196:TYR:CD1   | 2.14                        | 0.81                 |
| 6:Z:30:LYS:HD3    | 6:Z:37:GLN:HB3    | 1.61                        | 0.81                 |
| 2:V:157:ARG:H     | 2:V:196:TYR:HB2   | 1.46                        | 0.81                 |
| 2:V:118:LEU:O     | 2:V:195:HIS:HE1   | 1.65                        | 0.79                 |
| 5:Y:21:ASN:CG     | 8:S:55:ARG:CZ     | 2.45                        | 0.79                 |
| 6:Z:282:ILE:HD13  | 6:Z:297:VAL:CB    | 2.12                        | 0.78                 |
| 7:N:6:ALA:HB2     | 7:N:35:LEU:HD13   | 1.64                        | 0.78                 |
| 2:V:157:ARG:O     | 2:V:196:TYR:CB    | 2.32                        | 0.76                 |
| 2:V:24:LYS:HG3    | 2:V:196:TYR:CE1   | 2.20                        | 0.76                 |
| 2:V:158:LEU:HA    | 2:V:195:HIS:O     | 1.86                        | 0.76                 |
| 6:Z:30:LYS:HG2    | 6:Z:37:GLN:CB     | 1.91                        | 0.75                 |
| 11:R:280:ILE:HG13 | 11:R:281:SER:N    | 2.01                        | 0.75                 |
| 2:V:118:LEU:CG    | 2:V:195:HIS:CD2   | 2.70                        | 0.75                 |
| 6:Z:24:THR:CG2    | 6:Z:25:PRO:HD3    | 2.16                        | 0.74                 |
| 6:Z:282:ILE:HD11  | 6:Z:297:VAL:CB    | 2.18                        | 0.73                 |
| 6:Z:30:LYS:CD     | 6:Z:37:GLN:CB     | 2.53                        | 0.73                 |
| 6:Z:282:ILE:HD13  | 6:Z:297:VAL:HB    | 1.69                        | 0.71                 |
| 5:Y:33:ASP:C      | 5:Y:35:PHE:H      | 1.93                        | 0.70                 |
| 13:O:393:VAL:OXT  | 13:O:393:VAL:HG12 | 1.90                        | 0.70                 |
| 8:S:127:THR:CA    | 8:S:127:THR:HB    | 2.14                        | 0.69                 |
| 3:T:84:GLN:OE1    | 7:N:8:PRO:CB      | 2.41                        | 0.69                 |
| 7:N:6:ALA:HB2     | 7:N:35:LEU:HD12   | 1.74                        | 0.69                 |
| 2:V:196:TYR:HD1   | 2:V:197:TYR:HB3   | 1.59                        | 0.68                 |
| 6:Z:93:ARG:HB3    | 6:Z:94:PRO:CD     | 2.24                        | 0.68                 |
| 2:V:196:TYR:HD1   | 2:V:197:TYR:CB    | 2.07                        | 0.68                 |
| 6:Z:49:LEU:CD2    | 6:Z:93:ARG:HG2    | 2.22                        | 0.68                 |



|                   | i as page         | Interatomic  | Clash       |
|-------------------|-------------------|--------------|-------------|
| Atom-1            | Atom-2            | distance (Å) | overlap (Å) |
| 3:T:84:GLN:NE2    | 7:N:8:PRO:CB      | 2.57         | 0.68        |
| 2:V:159:ILE:HD11  | 2:V:196:TYR:CE1   | 2.29         | 0.67        |
| 2:V:118:LEU:CD1   | 2:V:195:HIS:CD2   | 2.68         | 0.67        |
| 6:Z:30:LYS:HD3    | 6:Z:37:GLN:CB     | 2.21         | 0.67        |
| 7:N:444:HIS:CD2   | 7:N:480:ALA:HB2   | 2.29         | 0.67        |
| 13:O:32:PHE:HB2   | 13:O:41:LEU:HD13  | 1.75         | 0.67        |
| 1:W:155:ASP:HB2   | 1:W:171:LEU:CD2   | 2.16         | 0.67        |
| 4:X:18:ASN:HD21   | 4:X:21:SER:H      | 1.43         | 0.66        |
| 6:Z:85:VAL:HG11   | 6:Z:86:PRO:HD3    | 1.69         | 0.66        |
| 8:S:345:TYR:CD1   | 8:S:345:TYR:N     | 2.61         | 0.65        |
| 5:Y:21:ASN:ND2    | 8:S:55:ARG:NH1    | 0.66         | 0.65        |
| 7:N:35:LEU:C      | 7:N:37:SER:H      | 1.98         | 0.65        |
| 8:S:339:GLN:HA    | 8:S:339:GLN:OE1   | 1.96         | 0.65        |
| 6:Z:282:ILE:HD11  | 6:Z:297:VAL:HB    | 1.73         | 0.64        |
| 2:V:157:ARG:O     | 2:V:196:TYR:HB2   | 1.96         | 0.64        |
| 9:P:93:ILE:HG22   | 9:P:97:ILE:HG13   | 1.81         | 0.63        |
| 3:T:84:GLN:OE1    | 7:N:8:PRO:HB3     | 1.98         | 0.63        |
| 1:W:126:ILE:CA    | 1:W:157:PHE:HZ    | 1.98         | 0.62        |
| 1:W:155:ASP:CG    | 1:W:171:LEU:HD22  | 2.20         | 0.62        |
| 3:T:80:ASN:ND2    | 7:N:11:ALA:O      | 2.19         | 0.62        |
| 7:N:35:LEU:O      | 7:N:37:SER:N      | 2.33         | 0.62        |
| 8:S:127:THR:CB    | 8:S:127:THR:C     | 2.65         | 0.61        |
| 6:Z:282:ILE:HD11  | 6:Z:297:VAL:HG12  | 1.77         | 0.61        |
| 8:S:127:THR:CB    | 8:S:127:THR:H     | 2.12         | 0.61        |
| 11:R:241:ILE:HG23 | 11:R:241:ILE:O    | 1.99         | 0.61        |
| 7:N:36:TRP:CD2    | 7:N:36:TRP:C      | 2.71         | 0.61        |
| 5:Y:21:ASN:HD22   | 8:S:55:ARG:HH11   | 0.61         | 0.60        |
| 13:O:266:PHE:CZ   | 13:O:270:ILE:HG13 | 2.35         | 0.60        |
| 8:S:127:THR:N     | 8:S:127:THR:HB    | 2.17         | 0.60        |
| 6:Z:93:ARG:HB3    | 6:Z:94:PRO:HD3    | 1.83         | 0.60        |
| 5:Y:21:ASN:HD22   | 8:S:55:ARG:NH1    | 1.25         | 0.60        |
| 2:V:117:TRP:CH2   | 2:V:184:ASN:ND2   | 2.70         | 0.59        |
| 5:Y:33:ASP:C      | 5:Y:35:PHE:N      | 2.56         | 0.59        |
| 6:Z:509:LEU:HA    | 6:Z:512:ILE:HD11  | 1.83         | 0.59        |
| 10:Q:78:ILE:CG2   | 10:Q:117:VAL:HG21 | 2.32         | 0.59        |
| 2:V:157:ARG:O     | 2:V:196:TYR:HA    | 2.00         | 0.59        |
| 6:Z:329:ILE:HD13  | 6:Z:464:ASP:OD1   | 2.02         | 0.59        |
| 1:W:158:ILE:HG23  | 1:W:169:SER:CB    | 2.31         | 0.59        |
| 7:N:447:SER:O     | 7:N:450:ILE:HG22  | 2.02         | 0.58        |
| 6:Z:30:LYS:HA     | 6:Z:37:GLN:OE1    | 2.03         | 0.58        |
| 6:Z:31:LYS:HD2    | 6:Z:79:THR:HG23   | 1.86         | 0.57        |



|                   |                   | Interatomic  | Clash       |
|-------------------|-------------------|--------------|-------------|
| Atom-1            | Atom-2            | distance (Å) | overlap (Å) |
| 13:O:393:VAL:OXT  | 13:O:393:VAL:CG1  | 2.53         | 0.56        |
| 2:V:118:LEU:CA    | 2:V:195:HIS:NE2   | 2.67         | 0.56        |
| 6:Z:24:THR:CB     | 6:Z:25:PRO:HD2    | 2.07         | 0.56        |
| 2:V:183:ALA:N     | 2:V:188:LEU:CD1   | 2.69         | 0.56        |
| 5:Y:21:ASN:HD21   | 8:S:55:ARG:NH1    | 0.65         | 0.56        |
| 10:Q:3:LEU:C      | 10:Q:3:LEU:HD23   | 2.26         | 0.56        |
| 6:Z:294:ILE:HD13  | 6:Z:327:GLN:HG2   | 1.89         | 0.55        |
| 2:V:196:TYR:CD1   | 2:V:197:TYR:HB3   | 2.39         | 0.55        |
| 6:Z:282:ILE:HD13  | 6:Z:297:VAL:CG2   | 2.37         | 0.55        |
| 7:N:707:ASN:C     | 7:N:709:GLY:N     | 2.59         | 0.55        |
| 7:N:856:PHE:O     | 7:N:857:TYR:C     | 2.41         | 0.55        |
| 8:S:164:ILE:HB    | 8:S:165:PRO:CD    | 2.37         | 0.54        |
| 8:S:427:ILE:HG22  | 8:S:427:ILE:O     | 2.07         | 0.54        |
| 6:Z:85:VAL:O      | 6:Z:88:PRO:CD     | 2.43         | 0.54        |
| 6:Z:282:ILE:HD13  | 6:Z:297:VAL:CG1   | 2.37         | 0.54        |
| 7:N:708:ALA:CB    | 7:N:713:VAL:CG2   | 2.75         | 0.54        |
| 2:V:303:VAL:O     | 2:V:306:LYS:O     | 2.24         | 0.54        |
| 8:S:481:TYR:HB2   | 8:S:482:PRO:HD3   | 1.89         | 0.54        |
| 10:Q:119:GLU:O    | 10:Q:122:ILE:HG22 | 2.07         | 0.54        |
| 12:U:14:VAL:HG21  | 12:U:48:VAL:HG12  | 1.90         | 0.54        |
| 6:Z:282:ILE:HD13  | 6:Z:297:VAL:HG21  | 1.89         | 0.54        |
| 7:N:707:ASN:C     | 7:N:709:GLY:H     | 2.10         | 0.53        |
| 10:Q:71:LYS:HG3   | 10:Q:73:LYS:H     | 1.74         | 0.53        |
| 2:V:157:ARG:N     | 2:V:196:TYR:HB2   | 2.20         | 0.53        |
| 2:V:159:ILE:CD1   | 2:V:196:TYR:O     | 2.55         | 0.53        |
| 1:W:30:ILE:HG23   | 1:W:76:LEU:HD21   | 1.89         | 0.53        |
| 6:Z:157:LEU:HB3   | 6:Z:207:ILE:HD12  | 1.91         | 0.53        |
| 1:W:126:ILE:CA    | 1:W:157:PHE:CZ    | 2.76         | 0.53        |
| 2:V:118:LEU:HB3   | 2:V:195:HIS:NE2   | 2.08         | 0.52        |
| 3:T:152:LEU:HD21  | 3:T:185:ILE:HD12  | 1.92         | 0.52        |
| 9:P:203:ILE:HG12  | 9:P:208:PHE:CZ    | 2.45         | 0.51        |
| 11:R:280:ILE:HG13 | 11:R:281:SER:H    | 1.76         | 0.51        |
| 3:T:84:GLN:CD     | 7:N:8:PRO:CB      | 2.79         | 0.51        |
| 7:N:6:ALA:CB      | 7:N:35:LEU:HD13   | 2.39         | 0.51        |
| 7:N:35:LEU:C      | 7:N:37:SER:N      | 2.60         | 0.51        |
| 8:S:123:THR:HG22  | 8:S:130:VAL:HG22  | 1.93         | 0.51        |
| 6:Z:282:ILE:HD13  | 6:Z:297:VAL:HG11  | 1.91         | 0.51        |
| 11:R:137:LEU:HB3  | 11:R:153:THR:HG21 | 1.91         | 0.51        |
| 2:V:250:GLN:HB3   | 2:V:276:PRO:HB3   | 1.92         | 0.51        |
| 6:Z:30:LYS:HG2    | 6:Z:37:GLN:HB2    | 1.87         | 0.51        |
| 9:P:48:GLN:HE22   | 9:P:89:LEU:HB3    | 1.76         | 0.50        |



|                   |                   | Interatomic    | Clash       |
|-------------------|-------------------|----------------|-------------|
| Atom-1            | Atom-2            | distance $(Å)$ | overlap (Å) |
| 6:Z:945:ILE:CG1   | 6:Z:965:LEU:HD21  | 2.41           | 0.50        |
| 6:Z:9:GLN:HA      | 6:Z:12:ILE:HD12   | 1.94           | 0.50        |
| 8:S:127:THR:HB    | 8:S:127:THR:H     | 1.74           | 0.50        |
| 2:V:143:PRO:HG2   | 2:V:144:ILE:HG23  | 1.93           | 0.50        |
| 2:V:183:ALA:C     | 2:V:188:LEU:HD12  | 2.32           | 0.50        |
| 6:Z:79:THR:O      | 6:Z:83:THR:HG23   | 2.12           | 0.50        |
| 7:N:7:ALA:HB3     | 7:N:8:PRO:HD2     | 1.94           | 0.50        |
| 8:S:345:TYR:H     | 8:S:345:TYR:HD1   | 1.51           | 0.50        |
| 10:Q:78:ILE:HG21  | 10:Q:117:VAL:HG21 | 1.93           | 0.50        |
| 6:Z:161:ILE:HD11  | 6:Z:207:ILE:HG13  | 1.95           | 0.49        |
| 5:Y:33:ASP:O      | 5:Y:35:PHE:N      | 2.46           | 0.49        |
| 1:W:158:ILE:CG2   | 1:W:169:SER:HB2   | 2.40           | 0.49        |
| 6:Z:542:ILE:HG12  | 6:Z:544:THR:H     | 1.76           | 0.49        |
| 8:S:164:ILE:HB    | 8:S:165:PRO:HD3   | 1.94           | 0.49        |
| 2:V:118:LEU:O     | 2:V:195:HIS:NE2   | 2.41           | 0.49        |
| 5:Y:65:ASP:CB     | 11:R:331:ARG:HD2  | 2.35           | 0.49        |
| 9:P:94:GLN:OE1    | 9:P:94:GLN:N      | 2.42           | 0.49        |
| 9:P:399:ILE:HG21  | 9:P:401:ASN:HD21  | 1.77           | 0.48        |
| 2:V:24:LYS:HG3    | 2:V:196:TYR:CZ    | 2.47           | 0.48        |
| 8:S:81:LEU:HD22   | 8:S:123:THR:HB    | 1.95           | 0.48        |
| 6:Z:88:PRO:HA     | 6:Z:91:PHE:HB2    | 1.95           | 0.48        |
| 13:O:169:ASN:HD22 | 13:O:198:THR:HG23 | 1.78           | 0.48        |
| 2:V:24:LYS:HG3    | 2:V:196:TYR:CG    | 2.48           | 0.48        |
| 2:V:183:ALA:N     | 2:V:188:LEU:HD12  | 2.29           | 0.48        |
| 2:V:193:ASN:C     | 2:V:193:ASN:HD22  | 2.17           | 0.48        |
| 2:V:159:ILE:HG12  | 2:V:196:TYR:CE2   | 2.48           | 0.48        |
| 13:O:41:LEU:O     | 13:O:45:LEU:CD2   | 2.62           | 0.48        |
| 2:V:172:GLN:HB3   | 2:V:196:TYR:OH    | 2.13           | 0.48        |
| 6:Z:354:PRO:HA    | 6:Z:357:ILE:HG12  | 1.96           | 0.48        |
| 6:Z:424:SER:HA    | 6:Z:457:ILE:HG21  | 1.94           | 0.48        |
| 2:V:184:ASN:HB2   | 2:V:188:LEU:HB2   | 1.95           | 0.47        |
| 7:N:7:ALA:N       | 7:N:8:PRO:HD2     | 2.28           | 0.47        |
| 6:Z:20:PRO:HB2    | 6:Z:24:THR:OG1    | 2.15           | 0.47        |
| 4:X:36:LYS:C      | 4:X:38:ASN:H      | 2.17           | 0.47        |
| 13:O:291:ILE:HD13 | 13:O:291:ILE:HA   | 1.66           | 0.47        |
| 2:V:157:ARG:O     | 2:V:196:TYR:CD2   | 2.68           | 0.47        |
| 7:N:860:LYS:O     | 7:N:861:TYR:C     | 2.54           | 0.47        |
| 7:N:860:LYS:O     | 7:N:861:TYR:O     | 2.32           | 0.47        |
| 9:P:349:ASN:O     | 9:P:353:ILE:HG13  | 2.15           | 0.47        |
| 2:V:117:TRP:CH2   | 2:V:184:ASN:CG    | 2.88           | 0.47        |
| 8:S:399:TYR:CD2   | 8:S:402:ILE:HD13  | 2.50           | 0.47        |



|                   | the page          | Interatomic  | Clash       |
|-------------------|-------------------|--------------|-------------|
| Atom-1            | Atom-2            | distance (Å) | overlap (Å) |
| 10:Q:78:ILE:HG22  | 10:Q:117:VAL:CG2  | 2.44         | 0.47        |
| 3:T:181:LEU:O     | 3:T:185:ILE:HG12  | 2.14         | 0.47        |
| 6:Z:542:ILE:HG23  | 6:Z:545:SER:H     | 1.80         | 0.47        |
| 7:N:778:LYS:HB2   | 7:N:860:LYS:O     | 2.15         | 0.47        |
| 2:V:196:TYR:HB3   | 2:V:197:TYR:O     | 2.15         | 0.46        |
| 10:Q:275:ILE:C    | 10:Q:275:ILE:HD12 | 2.36         | 0.46        |
| 10:Q:359:ILE:HD11 | 10:Q:390:LEU:HD21 | 1.97         | 0.46        |
| 1:W:10:ILE:HG22   | 1:W:33:VAL:HG22   | 1.98         | 0.46        |
| 6:Z:81:SER:O      | 6:Z:82:MET:HB3    | 2.16         | 0.46        |
| 6:Z:30:LYS:CG     | 6:Z:37:GLN:HB2    | 2.28         | 0.45        |
| 6:Z:282:ILE:CG1   | 6:Z:297:VAL:HG11  | 2.45         | 0.45        |
| 1:W:154:LEU:H     | 1:W:154:LEU:HG    | 1.53         | 0.45        |
| 9:P:266:TYR:CD1   | 9:P:329:PHE:HE2   | 2.35         | 0.45        |
| 5:Y:21:ASN:OD1    | 8:S:55:ARG:NH2    | 2.50         | 0.45        |
| 6:Z:581:VAL:HG12  | 6:Z:581:VAL:O     | 2.17         | 0.45        |
| 5:Y:21:ASN:OD1    | 8:S:55:ARG:NH1    | 2.35         | 0.45        |
| 11:R:280:ILE:CG1  | 11:R:281:SER:H    | 2.30         | 0.45        |
| 6:Z:945:ILE:HG12  | 6:Z:965:LEU:HD21  | 1.99         | 0.45        |
| 13:O:37:LEU:O     | 13:O:41:LEU:HB2   | 2.17         | 0.45        |
| 9:P:89:LEU:HG     | 9:P:90:LYS:H      | 1.82         | 0.44        |
| 10:Q:130:ARG:HG3  | 10:Q:133:LEU:H    | 1.82         | 0.44        |
| 9:P:193:TYR:CD1   | 9:P:230:HIS:CD2   | 3.06         | 0.44        |
| 6:Z:535:VAL:HG12  | 6:Z:536:GLY:N     | 2.32         | 0.44        |
| 6:Z:614:VAL:O     | 6:Z:617:ILE:HG12  | 2.17         | 0.44        |
| 1:W:143:ASN:OD1   | 1:W:147:ILE:HG23  | 2.17         | 0.44        |
| 6:Z:298:PHE:CE1   | 6:Z:315:ALA:HB1   | 2.53         | 0.44        |
| 6:Z:556:ILE:HD12  | 6:Z:556:ILE:C     | 2.38         | 0.44        |
| 3:T:79:GLU:O      | 3:T:82:PHE:HB3    | 2.18         | 0.43        |
| 8:S:427:ILE:O     | 8:S:427:ILE:CG2   | 2.65         | 0.43        |
| 10:Q:3:LEU:HB3    | 10:Q:4:PRO:HD3    | 2.00         | 0.43        |
| 10:Q:11:ALA:HB1   | 10:Q:27:TYR:CZ    | 2.54         | 0.43        |
| 2:V:159:ILE:HD11  | 2:V:196:TYR:CG    | 2.51         | 0.43        |
| 9:P:177:ILE:HG12  | 9:P:203:ILE:CD1   | 2.48         | 0.43        |
| 10:Q:95:LYS:HD3   | 10:Q:95:LYS:C     | 2.39         | 0.43        |
| 7:N:861:TYR:CG    | 7:N:862:SER:N     | 2.86         | 0.43        |
| 6:Z:701:ILE:HG13  | 6:Z:702:LYS:N     | 2.33         | 0.43        |
| 8:S:126:LYS:HD2   | 8:S:129:GLU:OE2   | 2.19         | 0.43        |
| 12:U:37:ILE:CG2   | 12:U:48:VAL:HG13  | 2.49         | 0.43        |
| 6:Z:419:VAL:HA    | 6:Z:422:ILE:HD12  | 2.01         | 0.43        |
| 7:N:450:ILE:CG2   | 7:N:451:GLY:N     | 2.82         | 0.43        |
| 1:W:15:TYR:CE1    | 13:O:39:PHE:CE2   | 3.07         | 0.42        |



|                   |                   | Interatomic  | Clash       |
|-------------------|-------------------|--------------|-------------|
| Atom-1            | Atom-2            | distance (Å) | overlap (Å) |
| 2:V:247:ILE:HG22  | 2:V:280:LEU:HG    | 2.01         | 0.42        |
| 6:Z:30:LYS:HB2    | 6:Z:30:LYS:HE2    | 1.48         | 0.42        |
| 7:N:5:THR:O       | 7:N:8:PRO:HG3     | 2.19         | 0.42        |
| 10:Q:264:TYR:N    | 10:Q:264:TYR:CD1  | 2.87         | 0.42        |
| 7:N:707:ASN:O     | 7:N:708:ALA:C     | 2.58         | 0.42        |
| 9:P:7:ILE:HG22    | 9:P:8:LYS:N       | 2.34         | 0.42        |
| 9:P:93:ILE:O      | 9:P:96:MET:HB2    | 2.20         | 0.42        |
| 3:T:70:ILE:HD11   | 3:T:78:PHE:CE1    | 2.53         | 0.42        |
| 4:X:78:ILE:HG12   | 4:X:114:LEU:O     | 2.19         | 0.42        |
| 10:Q:154:SER:O    | 10:Q:158:ILE:HG13 | 2.19         | 0.42        |
| 12:U:8:VAL:HG22   | 12:U:46:ILE:HD12  | 2.01         | 0.42        |
| 2:V:72:PRO:HA     | 12:U:83:ILE:HG12  | 2.01         | 0.42        |
| 2:V:217:HIS:CE1   | 2:V:219:GLU:C     | 2.93         | 0.42        |
| 6:Z:451:ALA:O     | 6:Z:455:ILE:HG13  | 2.19         | 0.42        |
| 13:O:41:LEU:HD12  | 13:O:41:LEU:HA    | 1.87         | 0.42        |
| 7:N:450:ILE:HG23  | 7:N:451:GLY:N     | 2.34         | 0.42        |
| 4:X:77:PRO:C      | 4:X:78:ILE:HG13   | 2.40         | 0.42        |
| 13:O:62:TYR:CE1   | 13:O:82:LEU:HD13  | 2.55         | 0.42        |
| 7:N:124:TYR:CD1   | 7:N:124:TYR:N     | 2.88         | 0.42        |
| 7:N:161:TYR:HA    | 7:N:202:PHE:CZ    | 2.54         | 0.42        |
| 10:Q:66:VAL:HG12  | 10:Q:66:VAL:O     | 2.20         | 0.41        |
| 6:Z:471:LEU:HD13  | 6:Z:471:LEU:C     | 2.41         | 0.41        |
| 8:S:78:VAL:HA     | 8:S:105:PRO:HA    | 2.02         | 0.41        |
| 9:P:433:ILE:HD13  | 12:U:210:TYR:HB2  | 2.01         | 0.41        |
| 10:Q:3:LEU:HD22   | 10:Q:33:LYS:HG2   | 2.02         | 0.41        |
| 7:N:523:LEU:HA    | 7:N:557:LEU:HD13  | 2.02         | 0.41        |
| 10:Q:129:LYS:HB3  | 10:Q:130:ARG:H    | 1.74         | 0.41        |
| 4:X:64:ILE:HG12   | 4:X:65:SER:N      | 2.36         | 0.41        |
| 2:V:193:ASN:C     | 2:V:193:ASN:ND2   | 2.73         | 0.41        |
| 3:T:205:ILE:HG22  | 3:T:217:THR:HG21  | 2.03         | 0.41        |
| 11:R:198:ILE:CG2  | 11:R:207:ARG:HG3  | 2.51         | 0.41        |
| 3:T:31:LYS:HZ1    | 3:T:81:TYR:HE1    | 1.66         | 0.41        |
| 6:Z:282:ILE:HG12  | 6:Z:297:VAL:HG11  | 2.02         | 0.41        |
| 9:P:177:ILE:HG12  | 9:P:203:ILE:HD13  | 2.02         | 0.41        |
| 11:R:198:ILE:HG23 | 11:R:207:ARG:HG3  | 2.03         | 0.41        |
| 1:W:26:PHE:O      | 1:W:30:ILE:HG13   | 2.21         | 0.41        |
| 12:U:37:ILE:HG23  | 12:U:48:VAL:CG1   | 2.51         | 0.41        |
| 3:T:70:ILE:HD11   | 3:T:78:PHE:CZ     | 2.56         | 0.40        |
| 6:Z:31:LYS:HB2    | 6:Z:31:LYS:HE2    | 1.95         | 0.40        |
| 6:Z:88:PRO:O      | 6:Z:92:LEU:HG     | 2.21         | 0.40        |
| 6:Z:945:ILE:HG13  | 6:Z:965:LEU:HD21  | 2.04         | 0.40        |



| Atom 1            | Atom 2           | Interatomic             | Clash       |
|-------------------|------------------|-------------------------|-------------|
| Atom-1            | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |
| 8:S:81:LEU:HD12   | 8:S:81:LEU:HA    | 1.93                    | 0.40        |
| 10:Q:129:LYS:HD2  | 10:Q:129:LYS:N   | 2.36                    | 0.40        |
| 6:Z:354:PRO:O     | 6:Z:357:ILE:HG12 | 2.21                    | 0.40        |
| 11:R:387:ILE:HG22 | 11:R:388:VAL:N   | 2.36                    | 0.40        |
| 7:N:7:ALA:N       | 7:N:8:PRO:CD     | 2.84                    | 0.40        |
| 8:S:119:TYR:O     | 8:S:123:THR:HG23 | 2.21                    | 0.40        |
| 9:P:48:GLN:NE2    | 9:P:89:LEU:HD23  | 2.36                    | 0.40        |

There are no symmetry-related clashes.

### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Favoured   | Allowed  | Outliers | Perce | entiles |
|-----|-------|-----------------|------------|----------|----------|-------|---------|
| 1   | W     | 195/268~(73%)   | 175 (90%)  | 13 (7%)  | 7 (4%)   | 3     | 28      |
| 2   | V     | 287/306~(94%)   | 262 (91%)  | 15 (5%)  | 10 (4%)  | 3     | 28      |
| 3   | Т     | 264/274~(96%)   | 240 (91%)  | 20 (8%)  | 4 (2%)   | 10    | 44      |
| 4   | Х     | 125/156~(80%)   | 105 (84%)  | 19 (15%) | 1 (1%)   | 19    | 58      |
| 5   | Y     | 47/89~(53%)     | 39 (83%)   | 6 (13%)  | 2 (4%)   | 2     | 24      |
| 6   | Z     | 902/993~(91%)   | 813 (90%)  | 66 (7%)  | 23 (2%)  | 5     | 34      |
| 7   | Ν     | 886/945 (94%)   | 842 (95%)  | 31 (4%)  | 13 (2%)  | 10    | 44      |
| 8   | S     | 473/523~(90%)   | 441 (93%)  | 17 (4%)  | 15 (3%)  | 4     | 30      |
| 9   | Р     | 438/445 (98%)   | 405 (92%)  | 22 (5%)  | 11 (2%)  | 5     | 34      |
| 10  | Q     | 432/434~(100%)  | 392 (91%)  | 32 (7%)  | 8 (2%)   | 8     | 39      |
| 11  | R     | 377/429 (88%)   | 353 (94%)  | 16 (4%)  | 8 (2%)   | 7     | 38      |
| 12  | U     | 296/338~(88%)   | 282 (95%)  | 12 (4%)  | 2 (1%)   | 22    | 60      |
| 13  | Ο     | 386/393~(98%)   | 366 (95%)  | 17 (4%)  | 3 (1%)   | 19    | 58      |
| All | All   | 5108/5593 (91%) | 4715 (92%) | 286 (6%) | 107 (2%) | 10    | 38      |



All (107) Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | V     | 184 | ASN  |
| 2   | V     | 197 | TYR  |
| 2   | V     | 274 | GLN  |
| 4   | Х     | 116 | ALA  |
| 6   | Ζ     | 24  | THR  |
| 6   | Z     | 82  | MET  |
| 6   | Z     | 85  | VAL  |
| 7   | N     | 36  | TRP  |
| 7   | N     | 708 | ALA  |
| 7   | N     | 857 | TYR  |
| 8   | S     | 47  | THR  |
| 8   | S     | 102 | SER  |
| 8   | S     | 150 | LYS  |
| 8   | S     | 449 | LEU  |
| 9   | Р     | 126 | THR  |
| 9   | Р     | 397 | ALA  |
| 10  | Q     | 75  | ARG  |
| 10  | Q     | 170 | ASP  |
| 1   | W     | 13  | SER  |
| 1   | W     | 144 | PHE  |
| 1   | W     | 149 | GLN  |
| 1   | W     | 165 | GLN  |
| 3   | Т     | 94  | HIS  |
| 3   | Т     | 173 | GLU  |
| 6   | Ζ     | 142 | ASP  |
| 6   | Ζ     | 233 | LEU  |
| 6   | Ζ     | 802 | ASP  |
| 6   | Ζ     | 870 | ALA  |
| 7   | N     | 123 | PHE  |
| 7   | Ν     | 345 | ASP  |
| 7   | Ν     | 378 | ASN  |
| 7   | Ν     | 436 | ASP  |
| 7   | N     | 861 | TYR  |
| 7   | Ν     | 895 | LYS  |
| 8   | S     | 44  | THR  |
| 8   | S     | 118 | PHE  |
| 8   | S     | 132 | ALA  |
| 8   | S     | 153 | GLU  |
| 8   | S     | 433 | GLU  |
| 9   | Р     | 89  | LEU  |
| 9   | Р     | 327 | LEU  |
| 10  | Q     | 253 | ASN  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 11  | R     | 238 | PHE  |
| 11  | R     | 393 | PRO  |
| 1   | W     | 3   | LEU  |
| 2   | V     | 185 | ILE  |
| 2   | V     | 262 | THR  |
| 5   | Y     | 70  | ASP  |
| 6   | Ζ     | 377 | ALA  |
| 6   | Ζ     | 513 | ALA  |
| 6   | Ζ     | 578 | GLY  |
| 6   | Ζ     | 887 | GLY  |
| 6   | Ζ     | 926 | ASN  |
| 6   | Ζ     | 940 | GLY  |
| 6   | Ζ     | 947 | GLY  |
| 7   | N     | 33  | ASP  |
| 7   | Ν     | 765 | ASP  |
| 7   | Ν     | 858 | LYS  |
| 8   | S     | 83  | PRO  |
| 8   | S     | 84  | ASP  |
| 8   | S     | 258 | GLU  |
| 9   | Р     | 6   | PRO  |
| 9   | Р     | 7   | ILE  |
| 10  | Q     | 18  | LYS  |
| 10  | Q     | 42  | ALA  |
| 10  | Q     | 51  | ARG  |
| 10  | Q     | 110 | SER  |
| 11  | R     | 124 | ASP  |
| 13  | 0     | 226 | LYS  |
| 1   | W     | 179 | ARG  |
| 2   | V     | 143 | PRO  |
| 2   | V     | 196 | TYR  |
| 2   | V     | 257 | GLU  |
| 5   | Y     | 34  | GLU  |
| 6   | Ζ     | 25  | PRO  |
| 6   | Ζ     | 237 | VAL  |
| 6   | Ζ     | 366 | LYS  |
| 6   | Ζ     | 557 | GLU  |
| 6   | Ζ     | 825 | ALA  |
| 7   | N     | 859 | ASN  |
| 8   | S     | 65  | ASN  |
| 8   | S     | 97  | THR  |
| 9   | Р     | 85  | LYS  |
| 9   | Р     | 150 | GLU  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 9   | Р     | 171 | MET  |
| 11  | R     | 280 | ILE  |
| 11  | R     | 375 | LYS  |
| 11  | R     | 395 | ASN  |
| 12  | U     | 41  | ALA  |
| 13  | 0     | 346 | GLU  |
| 1   | W     | 190 | ILE  |
| 2   | V     | 78  | VAL  |
| 3   | Т     | 132 | HIS  |
| 3   | Т     | 257 | THR  |
| 6   | Ζ     | 65  | GLU  |
| 6   | Z     | 463 | HIS  |
| 9   | Р     | 92  | SER  |
| 10  | Q     | 387 | TYR  |
| 11  | R     | 376 | GLN  |
| 12  | U     | 150 | THR  |
| 6   | Z     | 728 | LYS  |
| 11  | R     | 106 | ASN  |
| 2   | V     | 112 | PRO  |
| 6   | Ζ     | 86  | PRO  |
| 8   | S     | 96  | ILE  |
| 9   | Р     | 132 | VAL  |
| 13  | 0     | 205 | ILE  |

| Continued | from | previous | page |
|-----------|------|----------|------|
|-----------|------|----------|------|

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed      | Rotameric | Outliers | Percentiles |
|-----|-------|---------------|-----------|----------|-------------|
| 1   | W     | 171/230~(74%) | 165~(96%) | 6 (4%)   | 36 61       |
| 2   | V     | 253/268~(94%) | 242 (96%) | 11 (4%)  | 29 56       |
| 3   | Т     | 249/256~(97%) | 239~(96%) | 10 (4%)  | 31 57       |
| 4   | Х     | 116/144~(81%) | 112 (97%) | 4 (3%)   | 37 61       |
| 5   | Y     | 50/81~(62%)   | 48 (96%)  | 2(4%)    | 31 57       |
| 6   | Ζ     | 773/850~(91%) | 745~(96%) | 28~(4%)  | 35 60       |



| Mol | Chain | Analysed        | Rotameric  | Outliers | Perce | entiles |
|-----|-------|-----------------|------------|----------|-------|---------|
| 7   | Ν     | 745/797~(94%)   | 724 (97%)  | 21 (3%)  | 43    | 65      |
| 8   | S     | 447/489~(91%)   | 436 (98%)  | 11 (2%)  | 47    | 68      |
| 9   | Р     | 412/415~(99%)   | 402 (98%)  | 10 (2%)  | 49    | 69      |
| 10  | Q     | 391/391~(100%)  | 382~(98%)  | 9 (2%)   | 50    | 70      |
| 11  | R     | 333/379~(88%)   | 325~(98%)  | 8 (2%)   | 49    | 69      |
| 12  | U     | 271/308~(88%)   | 269~(99%)  | 2 (1%)   | 84    | 90      |
| 13  | Ο     | 363/368~(99%)   | 349~(96%)  | 14 (4%)  | 32    | 58      |
| All | All   | 4574/4976 (92%) | 4438 (97%) | 136 (3%) | 44    | 64      |

All (136) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | W     | 3   | LEU  |
| 1   | W     | 59  | PRO  |
| 1   | W     | 139 | VAL  |
| 1   | W     | 154 | LEU  |
| 1   | W     | 157 | PHE  |
| 1   | W     | 183 | GLU  |
| 2   | V     | 71  | MET  |
| 2   | V     | 109 | HIS  |
| 2   | V     | 117 | TRP  |
| 2   | V     | 173 | THR  |
| 2   | V     | 185 | ILE  |
| 2   | V     | 190 | HIS  |
| 2   | V     | 192 | LEU  |
| 2   | V     | 193 | ASN  |
| 2   | V     | 199 | LEU  |
| 2   | V     | 219 | GLU  |
| 2   | V     | 227 | MET  |
| 3   | Т     | 34  | LEU  |
| 3   | Т     | 58  | THR  |
| 3   | Т     | 76  | ASP  |
| 3   | Т     | 79  | GLU  |
| 3   | Т     | 82  | PHE  |
| 3   | Т     | 85  | LEU  |
| 3   | Т     | 130 | ASP  |
| 3   | Т     | 197 | TYR  |
| 3   | Т     | 214 | GLU  |
| 3   | Т     | 249 | MET  |
| 4   | Х     | 14  | VAL  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 4   | Х     | 28  | PRO  |
| 4   | Х     | 62  | ASP  |
| 4   | Х     | 122 | TYR  |
| 5   | Y     | 66  | ASP  |
| 5   | Y     | 72  | ASP  |
| 6   | Ζ     | 27  | LYS  |
| 6   | Z     | 29  | ASP  |
| 6   | Ζ     | 30  | LYS  |
| 6   | Ζ     | 81  | SER  |
| 6   | Ζ     | 93  | ARG  |
| 6   | Ζ     | 171 | LYS  |
| 6   | Ζ     | 185 | ASP  |
| 6   | Ζ     | 187 | SER  |
| 6   | Ζ     | 222 | ASP  |
| 6   | Ζ     | 236 | PHE  |
| 6   | Ζ     | 354 | PRO  |
| 6   | Ζ     | 402 | ASP  |
| 6   | Ζ     | 411 | LYS  |
| 6   | Ζ     | 434 | GLN  |
| 6   | Ζ     | 445 | PRO  |
| 6   | Ζ     | 548 | ASP  |
| 6   | Ζ     | 557 | GLU  |
| 6   | Ζ     | 563 | VAL  |
| 6   | Ζ     | 566 | LEU  |
| 6   | Ζ     | 609 | THR  |
| 6   | Z     | 703 | SER  |
| 6   | Ζ     | 756 | MET  |
| 6   | Ζ     | 767 | TYR  |
| 6   | Ζ     | 797 | THR  |
| 6   | Ζ     | 842 | GLN  |
| 6   | Ζ     | 874 | ASN  |
| 6   | Ζ     | 878 | LEU  |
| 6   | Ζ     | 910 | PRO  |
| 7   | N     | 105 | SER  |
| 7   | N     | 124 | TYR  |
| 7   | N     | 219 | ASN  |
| 7   | N     | 282 | TYR  |
| 7   | N     | 318 | LYS  |
| 7   | N     | 378 | ASN  |
| 7   | N     | 381 | GLU  |
| 7   | Ν     | 394 | ARG  |
| 7   | N     | 412 | TYR  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 7   | N     | 417 | ARG  |
| 7   | N     | 419 | THR  |
| 7   | N     | 455 | MET  |
| 7   | N     | 502 | PHE  |
| 7   | N     | 530 | GLU  |
| 7   | Ν     | 534 | ASP  |
| 7   | Ν     | 717 | LEU  |
| 7   | Ν     | 739 | PHE  |
| 7   | Ν     | 771 | PHE  |
| 7   | Ν     | 858 | LYS  |
| 7   | Ν     | 886 | LYS  |
| 7   | Ν     | 919 | THR  |
| 8   | S     | 60  | LEU  |
| 8   | S     | 101 | LYS  |
| 8   | S     | 119 | TYR  |
| 8   | S     | 133 | GLU  |
| 8   | S     | 222 | SER  |
| 8   | S     | 242 | LEU  |
| 8   | S     | 247 | VAL  |
| 8   | S     | 326 | ASP  |
| 8   | S     | 412 | ASN  |
| 8   | S     | 456 | ASP  |
| 8   | S     | 475 | TYR  |
| 9   | Р     | 21  | PHE  |
| 9   | Р     | 43  | GLU  |
| 9   | Р     | 121 | THR  |
| 9   | Р     | 133 | GLU  |
| 9   | Р     | 277 | GLN  |
| 9   | Р     | 309 | MET  |
| 9   | Р     | 312 | PRO  |
| 9   | Р     | 368 | LEU  |
| 9   | P     | 403 | GLU  |
| 9   | Р     | 416 | SER  |
| 10  | Q     | 75  | ARG  |
| 10  | Q     | 88  | PHE  |
| 10  | Q     | 104 | PHE  |
| 10  | Q     | 114 | GLN  |
| 10  | Q     | 118 | CYS  |
| 10  | Q     | 138 | SER  |
| 10  | Q     | 157 | LEU  |
| 10  | Q     | 166 | LYS  |
| 10  | Q     | 306 | TYR  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 11  | R     | 51  | LEU  |
| 11  | R     | 95  | ASP  |
| 11  | R     | 110 | ILE  |
| 11  | R     | 146 | ASP  |
| 11  | R     | 204 | TRP  |
| 11  | R     | 259 | PHE  |
| 11  | R     | 306 | PRO  |
| 11  | R     | 352 | SER  |
| 12  | U     | 180 | ASP  |
| 12  | U     | 261 | LEU  |
| 13  | 0     | 16  | MET  |
| 13  | 0     | 41  | LEU  |
| 13  | 0     | 45  | LEU  |
| 13  | 0     | 58  | ARG  |
| 13  | 0     | 66  | VAL  |
| 13  | 0     | 70  | TYR  |
| 13  | 0     | 91  | ASP  |
| 13  | 0     | 100 | ASP  |
| 13  | 0     | 105 | GLN  |
| 13  | 0     | 161 | ASP  |
| 13  | 0     | 195 | TYR  |
| 13  | 0     | 294 | MET  |
| 13  | 0     | 307 | MET  |
| 13  | 0     | 326 | HIS  |

| Continued | from   | nrevious | naae |
|-----------|--------|----------|------|
| Communueu | JIOIII | previous | puye |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (46) such sidechains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | V     | 40  | HIS  |
| 2   | V     | 195 | HIS  |
| 2   | V     | 217 | HIS  |
| 2   | V     | 220 | GLN  |
| 4   | Х     | 18  | ASN  |
| 6   | Ζ     | 15  | GLN  |
| 6   | Ζ     | 129 | ASN  |
| 6   | Ζ     | 156 | HIS  |
| 6   | Ζ     | 215 | ASN  |
| 6   | Ζ     | 307 | HIS  |
| 6   | Ζ     | 317 | GLN  |
| 6   | Ζ     | 539 | ASN  |
| 6   | Ζ     | 823 | ASN  |
| 6   | Ζ     | 829 | GLN  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 7   | Ν     | 240 | GLN  |
| 7   | Ν     | 256 | GLN  |
| 7   | Ν     | 288 | ASN  |
| 7   | Ν     | 300 | ASN  |
| 7   | Ν     | 444 | HIS  |
| 7   | Ν     | 666 | GLN  |
| 7   | Ν     | 703 | GLN  |
| 7   | Ν     | 747 | HIS  |
| 8   | S     | 19  | HIS  |
| 8   | S     | 112 | ASN  |
| 8   | S     | 139 | HIS  |
| 8   | S     | 172 | ASN  |
| 8   | S     | 290 | ASN  |
| 8   | S     | 314 | ASN  |
| 8   | S     | 317 | HIS  |
| 8   | S     | 334 | HIS  |
| 8   | S     | 470 | GLN  |
| 9   | Р     | 230 | HIS  |
| 9   | Р     | 296 | GLN  |
| 9   | Р     | 385 | ASN  |
| 9   | Р     | 401 | ASN  |
| 9   | Р     | 431 | HIS  |
| 10  | Q     | 135 | HIS  |
| 10  | Q     | 247 | HIS  |
| 11  | R     | 100 | ASN  |
| 11  | R     | 143 | GLN  |
| 11  | R     | 287 | GLN  |
| 12  | U     | 77  | ASN  |
| 12  | U     | 156 | HIS  |
| 12  | U     | 230 | GLN  |
| 13  | Ο     | 169 | ASN  |
| 13  | 0     | 273 | GLN  |

### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.



### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

## 5.6 Ligand geometry (i)

There are no ligands in this entry.

### 5.7 Other polymers (i)

There are no such residues in this entry.

### 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-3534. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

# 6.1 Orthogonal projections (i)

#### 6.1.1 Primary map



The images above show the map projected in three orthogonal directions.

### 6.2 Central slices (i)

#### 6.2.1 Primary map



X Index: 192

Y Index: 192





The images above show central slices of the map in three orthogonal directions.

### 6.3 Largest variance slices (i)

#### 6.3.1 Primary map



X Index: 177

Y Index: 212

Z Index: 208

The images above show the largest variance slices of the map in three orthogonal directions.

### 6.4 Orthogonal surface views (i)

#### 6.4.1 Primary map



The images above show the 3D surface view of the map at the recommended contour level 0.02. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.



# 6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.



# 7 Map analysis (i)

This section contains the results of statistical analysis of the map.

# 7.1 Map-value distribution (i)



The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.



### 7.2 Volume estimate (i)



The volume at the recommended contour level is  $881~{\rm nm^3};$  this corresponds to an approximate mass of 796 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.


### 7.3 Rotationally averaged power spectrum (i)



\*Reported resolution corresponds to spatial frequency of 0.244  $\rm \AA^{-1}$ 



# 8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.



## 9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-3534 and PDB model 5MPD. Per-residue inclusion information can be found in section 3 on page 6.

### 9.1 Map-model overlay (i)



The images above show the 3D surface view of the map at the recommended contour level 0.02 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.



#### 9.2 Q-score mapped to coordinate model (i)



The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

#### 9.3 Atom inclusion mapped to coordinate model (i)



The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.02).



#### 9.4 Atom inclusion (i)



At the recommended contour level, 50% of all backbone atoms, 34% of all non-hydrogen atoms, are inside the map.



#### Map-model fit summary (i) 9.5

The table lists the average atom inclusion at the recommended contour level (0.02) and Q-score for the entire model and for each chain.

| Chain | Atom inclusion | Q-score |                      |
|-------|----------------|---------|----------------------|
| All   | 0.3444         | 0.1690  |                      |
| N     | 0.2124         | 0.1430  | 1.0                  |
| 0     | 0.3944         | 0.1720  |                      |
| Р     | 0.6352         | 0.2450  |                      |
| Q     | 0.6213         | 0.2300  |                      |
| R     | 0.5315         | 0.2040  |                      |
| S     | 0.3548         | 0.1570  |                      |
| Т     | 0.2901         | 0.1490  |                      |
| U     | 0.4071         | 0.1900  |                      |
| V     | 0.4418         | 0.2060  |                      |
| W     | 0.1739         | 0.1320  | 0.0<br><b>0</b> <0.0 |
| Х     | 0.0049         | 0.0660  |                      |
| Y     | 0.3163         | 0.1370  |                      |
| Ζ     | 0.1294         | 0.1250  |                      |

