

# wwPDB X-ray Structure Validation Summary Report (i)

Oct 10, 2023 – 05:25 AM EDT

| PDB ID   | :                                                  | 7MHN                                                                     |
|----------|----------------------------------------------------|--------------------------------------------------------------------------|
| Title    | :                                                  | Ensemble refinement structure of SARS-CoV-2 main protease (Mpro) at 277  |
|          |                                                    | Κ                                                                        |
| Authors  | :                                                  | Ebrahim, A.; Riley, B.T.; Kumaran, D.; Andi, B.; Fuchs, M.R.; McSweeney, |
|          |                                                    | S.; Keedy, D.A.                                                          |
| sited on | :                                                  | 2021-04-15                                                               |
| solution | :                                                  | 2.19  Å(reported)                                                        |
|          | PDB ID<br>Title<br>Authors<br>sited on<br>solution | PDB ID :<br>Title :<br>Authors :<br>sited on :<br>solution :             |

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| MolProbity                     | : | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as541be (2020)                                 |
| Xtriage (Phenix)               | : | 1.13                                                               |
| EDS                            | : | 2.35.1                                                             |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| Refmac                         | : | 5.8.0158                                                           |
| CCP4                           | : | 7.0.044 (Gargrove)                                                 |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.35.1                                                             |

### 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $X\text{-}RAY \, DIFFRACTION$ 

The reported resolution of this entry is 2.19 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Matria                | Whole archive        | Similar resolution                                          |  |  |  |  |
|-----------------------|----------------------|-------------------------------------------------------------|--|--|--|--|
| Metric                | $(\# {\rm Entries})$ | $(\# { m Entries},  { m resolution}  { m range}({ m \AA}))$ |  |  |  |  |
| R <sub>free</sub>     | 130704               | 4898 (2.20-2.20)                                            |  |  |  |  |
| Ramachandran outliers | 138981               | 5503 (2.20-2.20)                                            |  |  |  |  |
| Sidechain outliers    | 138945               | 5504 (2.20-2.20)                                            |  |  |  |  |
| RSRZ outliers         | 127900               | 4800 (2.20-2.20)                                            |  |  |  |  |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain |        |
|-----|-------|--------|------------------|--------|
| 1   | 1-A   | 306    | 78%              | 19% ·  |
| 1   | 10-A  | 306    | 83%              | 14% •• |
| 1   | 11-A  | 306    | 81%              | 16% •  |
| 1   | 12-A  | 306    | 80%              | 16% •  |
| 1   | 13-A  | 306    | 80%              | 18% •  |
| 1   | 14-A  | 306    | 79%              | 17% •  |
| 1   | 15-A  | 306    | 79%              | 18% •  |



| Mol | Chain     | Length | Q        | uality of chain                        |
|-----|-----------|--------|----------|----------------------------------------|
|     |           |        | 17%      |                                        |
| 1   | 16-A      | 306    | 8        | 2% 16% •                               |
| 1   | 17 \      | 206    | 17%      |                                        |
| 1   | 17-A      | 300    | 17%      | 15% 5%                                 |
| 1   | 18-A      | 306    | 78'      | %                                      |
|     |           |        | 17%      |                                        |
| 1   | 19-A      | 306    | 78       | %                                      |
| 1   | 2.4       | 000    | 17%      |                                        |
|     | 2-A       | 306    | 80       | 16% · ·                                |
| 1   | 20-A      | 306    |          | 160/                                   |
|     | 20 11     | 000    | 17%      | 10% ••                                 |
| 1   | 21-A      | 306    | 79       | % 17% •                                |
|     |           |        | 17%      |                                        |
| 1   | 22-A      | 306    | 80       | )% 17% ••                              |
| 1   | 00 A      | 206    | 17%      |                                        |
|     | 23-A      | 300    | 8        | 1% 16% · ·                             |
| 1   | 24-A      | 306    | 8        | 1% 16%                                 |
|     |           |        | 17%      |                                        |
| 1   | 25-A      | 306    | 79       | % 18% ·                                |
|     |           |        | 17%      |                                        |
| 1   | 26-A      | 306    | 8        | 2% 16% ·                               |
| 1   | 97 A      | 306    | 17%      | 22%                                    |
|     | 21-A      | 500    | 17%      | • 22% •                                |
| 1   | 28-A      | 306    | 78'      | %                                      |
|     |           |        | 17%      |                                        |
| 1   | 29-A      | 306    | 779      | 6 18% ·                                |
| -   | 2.4       | 200    | 17%      |                                        |
|     | 3-A       | 306    | 80       | 0% 17% ·                               |
| 1   | 30-A      | 306    | 70       | 0/ 100/                                |
| 1   | 00 11     | 000    | 17%      | 70 1970 ·                              |
| 1   | 31-A      | 306    | 8        | 1% 16% ·                               |
|     |           |        | 17%      |                                        |
| 1   | 32-A      | 306    | 789      | % 19% ···                              |
| 1   | 22 A      | 206    | 17%      |                                        |
| 1   | 33-A      | 300    | 17%      | 84% 12% ••                             |
| 1   | 34-A      | 306    | 79       | % 18% ••                               |
| -   | ~ • • • • | 500    | 17%      | ······································ |
| 1   | 35-A      | 306    | 77%      | ۵                                      |
|     |           |        | 17%      |                                        |
| 1   | 36-A      | 306    | 79       | % 18% ·                                |
| 1   | 27 1      | 206    | 17%      |                                        |
|     | 31-A      | 006    | 17%      | 6 18% · ·                              |
| 1   | 38-A      | 306    | <u> </u> | 2% 13% .                               |
|     |           | 200    |          | 13/0                                   |



| Mol | Chain         | Length |       | Quality of chain |      |    |
|-----|---------------|--------|-------|------------------|------|----|
|     |               | 0      | 17%   |                  |      |    |
| 1   | 39-A          | 306    |       | 78%              | 19%  | •  |
|     |               |        | 17%   |                  |      |    |
| 1   | 4-A           | 306    |       | 80%              | 17%  | •• |
| -   | 10.1          | 20.0   | 17%   |                  |      |    |
|     | 40-A          | 306    | 1 70/ | 78%              | 19%  | •• |
| 1   | 41 A          | 200    | 17%   |                  |      | _  |
| 1   | 41-A          | 306    | 170/  | 81%              | 16%  | •  |
| 1   | 49 A          | 206    | 17%   |                  |      |    |
| 1   | 42-A          | 300    | 170/  | 85%              | 12%  | •  |
| 1   | 13 A          | 306    | 1770  | 02%              | 150/ |    |
| 1   | 4 <b>0</b> -A | 300    | 17%   | 82%              | 15%  | •  |
| 1   | 44-A          | 306    | 1770  | 82%              | 1.4% |    |
|     | 11 11         | 500    | 17%   | 02 /0            | 1470 | •  |
| 1   | 45-A          | 306    |       | 81%              | 15%  | •  |
|     | -             |        | 17%   |                  |      |    |
| 1   | 5-A           | 306    |       | 77%              | 21%  | •• |
|     |               |        | 17%   |                  |      |    |
| 1   | 6-A           | 306    |       | 82%              | 16%  | •• |
|     |               |        | 17%   |                  |      |    |
| 1   | 7-A           | 306    |       | 82%              | 16%  | •  |
|     |               | 2.0.0  | 17%   |                  |      | _  |
| 1   | 8-A           | 306    |       | 79%              | 17%  | •  |
| 1   | 0.4           | 200    | 17%   |                  |      | _  |
| 1   | 9-A           | 306    |       | 80%              | 17%  | •  |

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

| Mol | Type | Chain | Res | Chirality | Geometry | Clashes | Electron density |
|-----|------|-------|-----|-----------|----------|---------|------------------|
| 2   | DMS  | 1-A   | 402 | -         | -        | -       | Х                |
| 2   | DMS  | 10-A  | 402 | -         | -        | -       | Х                |
| 2   | DMS  | 11-A  | 402 | -         | -        | -       | Х                |
| 2   | DMS  | 12-A  | 402 | -         | -        | -       | Х                |
| 2   | DMS  | 13-A  | 402 | -         | -        | -       | Х                |
| 2   | DMS  | 14-A  | 402 | -         | -        | -       | Х                |
| 2   | DMS  | 15-A  | 402 | -         | -        | -       | Х                |
| 2   | DMS  | 16-A  | 402 | -         | -        | -       | Х                |
| 2   | DMS  | 17-A  | 402 | -         | -        | -       | Х                |
| 2   | DMS  | 18-A  | 402 | -         | -        | -       | Х                |
| 2   | DMS  | 19-A  | 402 | -         | -        | -       | Х                |
| 2   | DMS  | 2-A   | 402 | -         | -        | -       | Х                |
| 2   | DMS  | 20-A  | 401 | -         | Х        | -       | -                |
| 2   | DMS  | 20-A  | 402 | -         | -        | -       | Х                |
| 2   | DMS  | 21-A  | 402 | -         | -        | -       | Х                |



| Mol | Type | Chain | $\mathbf{Res}$ | Chirality | Geometry | Clashes | Electron density |
|-----|------|-------|----------------|-----------|----------|---------|------------------|
| 2   | DMS  | 22-A  | 402            | -         | -        | -       | X                |
| 2   | DMS  | 23-A  | 402            | _         | _        | _       | Х                |
| 2   | DMS  | 24-A  | 402            | -         | -        | _       | Х                |
| 2   | DMS  | 25-A  | 402            | -         | -        | _       | Х                |
| 2   | DMS  | 26-A  | 402            | -         | _        | -       | Х                |
| 2   | DMS  | 27-A  | 402            | -         | _        | -       | Х                |
| 2   | DMS  | 28-A  | 402            | -         | _        | -       | Х                |
| 2   | DMS  | 29-A  | 402            | -         | -        | _       | Х                |
| 2   | DMS  | 3-A   | 402            | -         | -        | _       | Х                |
| 2   | DMS  | 30-A  | 402            | -         | -        | -       | Х                |
| 2   | DMS  | 31-A  | 402            | -         | -        | -       | Х                |
| 2   | DMS  | 32-A  | 402            | -         | -        | -       | Х                |
| 2   | DMS  | 33-A  | 402            | -         | -        | -       | Х                |
| 2   | DMS  | 34-A  | 402            | -         | -        | -       | Х                |
| 2   | DMS  | 35-A  | 402            | -         | -        | -       | Х                |
| 2   | DMS  | 36-A  | 402            | -         | -        | -       | Х                |
| 2   | DMS  | 37-A  | 402            | -         | -        | -       | Х                |
| 2   | DMS  | 38-A  | 402            | -         | -        | -       | Х                |
| 2   | DMS  | 39-A  | 402            | -         | -        | -       | Х                |
| 2   | DMS  | 4-A   | 402            | -         | -        | -       | Х                |
| 2   | DMS  | 40-A  | 402            | -         | -        | -       | Х                |
| 2   | DMS  | 41-A  | 402            | -         | _        | _       | Х                |
| 2   | DMS  | 42-A  | 402            | -         | -        | -       | Х                |
| 2   | DMS  | 43-A  | 402            | -         | _        | _       | Х                |
| 2   | DMS  | 44-A  | 402            | _         | _        | -       | Х                |
| 2   | DMS  | 45-A  | 402            | -         | _        | -       | X                |
| 2   | DMS  | 5-A   | 402            | _         | _        | -       | X                |
| 2   | DMS  | 6-A   | 402            | _         | _        | -       | Х                |
| 2   | DMS  | 7-A   | 402            | _         | _        | _       | X                |
| 2   | DMS  | 8-A   | 402            | _         | _        | -       | Х                |
| 2   | DMS  | 9-A   | 402            | -         | _        | _       | Х                |



## 2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 213552 atoms, of which 104625 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain | Residues |       |              | Atom | IS  |     |              | ZeroOcc | AltConf  | Trace |
|-----|-------|----------|-------|--------------|------|-----|-----|--------------|---------|----------|-------|
| 1   | 1_Δ   | 306      | Total | С            | Η    | Ν   | 0   | S            | 0       | 0        | 0     |
|     | 1-7   | 500      | 4680  | 1499         | 2313 | 402 | 444 | 22           | 0       | 0        | 0     |
| 1   | 2-A   | 306      | Total | $\mathbf{C}$ | Η    | Ν   | Ο   | $\mathbf{S}$ | 0       | 0        | 0     |
|     | 2 11  | 500      | 4680  | 1499         | 2313 | 402 | 444 | 22           | 0       | 0        | 0     |
| 1   | 3-A   | 306      | Total | $\mathbf{C}$ | Η    | Ν   | Ο   | $\mathbf{S}$ | 0       | 0        | 0     |
| -   | 0.11  | 500      | 4680  | 1499         | 2313 | 402 | 444 | 22           | 0       | Ŭ        | 0     |
| 1   | 4-A   | 306      | Total | С            | Η    | Ν   | 0   | S            | 0       | 0        | 0     |
|     |       |          | 4680  | 1499         | 2313 | 402 | 444 | 22           | Ŭ,      | Ŭ        |       |
| 1   | 5-A   | 306      | Total | С            | Н    | Ν   | 0   | S            | 0       | 0        | 0     |
|     |       |          | 4680  | 1499         | 2313 | 402 | 444 | 22           |         | -        |       |
| 1   | 6-A   | 306      | Total | С            | Н    | Ν   | 0   | S            | 0       | 0        | 0     |
|     | 0.11  |          | 4680  | 1499         | 2313 | 402 | 444 | 22           | Ŭ,      |          |       |
| 1   | 7-A   | 306      | Total | С            | Н    | Ν   | 0   | S            | 0       | 0        | 0     |
|     |       |          | 4680  | 1499         | 2313 | 402 | 444 | 22           | -       |          |       |
| 1   | 8-A   | 306      | Total | С            | Н    | N   | 0   | S            | 0       | 0        | 0     |
|     |       |          | 4680  | 1499         | 2313 | 402 | 444 | 22           |         | -        | _     |
| 1   | 9-A   | 306      | Total | C            | Н    | N   | 0   | S            | 0       | 0        | 0     |
|     |       |          | 4680  | 1499         | 2313 | 402 | 444 | 22           | -       |          | _     |
| 1   | 10-A  | 306      | Total | С            | Н    | N   | 0   | S            | 0       | 0        | 0     |
|     |       |          | 4680  | 1499         | 2313 | 402 | 444 | 22           |         | ~        |       |
| 1   | 11-A  | 306      | Total | С            | Н    | Ν   | 0   | S            | 0       | 0        | 0     |
|     |       |          | 4680  | 1499         | 2313 | 402 | 444 | 22           |         | ~        |       |
| 1   | 12-A  | 306      | Total | С            | Н    | Ν   | 0   | S            | 0       | 0        | 0     |
|     |       |          | 4680  | 1499         | 2313 | 402 | 444 | 22           | _       | _        | _     |
| 1   | 13-A  | 306      | Total | С            | Н    | N   | 0   | S            | 0       | 0        | 0     |
|     |       |          | 4680  | 1499         | 2313 | 402 | 444 | 22           | _       | _        | _     |
| 1   | 14-A  | 306      | Total | С            | Н    | Ν   | 0   | S            | 0       | 0        | 0     |
|     |       |          | 4680  | 1499         | 2313 | 402 | 444 | 22           | Ŭ       | <u> </u> |       |
| 1   | 15-A  | 306      | Total | С            | Н    | Ν   | 0   | S            | 0       | 0        | 0     |
|     |       |          | 4680  | 1499         | 2313 | 402 | 444 | 22           | Ŭ       | , v      |       |
| 1   | 16-A  | 306      | Total | $\mathbf{C}$ | Η    | Ν   | Ο   | $\mathbf{S}$ | 0       | 0        | 0     |
|     | 10 11 | 300      | 4680  | 1499         | 2313 | 402 | 444 | 22           |         |          |       |

• Molecule 1 is a protein called 3C-like proteinase.



Continued from previous page...

| Mol | Chain         | Residues | Atoms |              |      |     |     |              | ZeroOcc | AltConf | Trace |
|-----|---------------|----------|-------|--------------|------|-----|-----|--------------|---------|---------|-------|
| 1   | 17 \          | 206      | Total | С            | Η    | Ν   | 0   | S            | 0       | 0       | 0     |
|     | 17-A          | 300      | 4680  | 1499         | 2313 | 402 | 444 | 22           | 0       | 0       | 0     |
| 1   | 18 /          | 206      | Total | С            | Η    | Ν   | 0   | S            | 0       | 0       | 0     |
|     | 10-A          | 500      | 4680  | 1499         | 2313 | 402 | 444 | 22           | 0       | 0       | 0     |
| 1   | 10 A          | 306      | Total | С            | Η    | Ν   | 0   | S            | 0       | 0       | 0     |
| 1   | 19-A          | 500      | 4680  | 1499         | 2313 | 402 | 444 | 22           | 0       | 0       | 0     |
| 1   | 20-4          | 306      | Total | С            | Η    | Ν   | 0   | $\mathbf{S}$ | 0       | 0       | 0     |
| 1   | 20-11         | 500      | 4680  | 1499         | 2313 | 402 | 444 | 22           | 0       | 0       | 0     |
| 1   | 21-A          | 306      | Total | $\mathbf{C}$ | Η    | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
|     | 21 11         | 500      | 4680  | 1499         | 2313 | 402 | 444 | 22           | 0       | 0       | 0     |
| 1   | 22-A          | 306      | Total | $\mathbf{C}$ | Η    | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
|     |               | 500      | 4680  | 1499         | 2313 | 402 | 444 | 22           | 0       | 0       | 0     |
| 1   | 23-A          | 306      | Total | $\mathbf{C}$ | Η    | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
|     | 20 11         | 500      | 4680  | 1499         | 2313 | 402 | 444 | 22           | 0       | 0       | 0     |
| 1   | 24-A          | 306      | Total | $\mathbf{C}$ | Η    | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
| 1   |               | 500      | 4680  | 1499         | 2313 | 402 | 444 | 22           | 0       | 0       | 0     |
| 1   | 25-A          | 306      | Total | $\mathbf{C}$ | Η    | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
| 1   | 20 11         | 500      | 4680  | 1499         | 2313 | 402 | 444 | 22           | 0       | 0       | 0     |
| 1   | 26-4          | 306      | Total | $\mathbf{C}$ | Η    | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
| 1   | 20 11         | 500      | 4680  | 1499         | 2313 | 402 | 444 | 22           | 0       | 0       | 0     |
| 1   | 27-A          | 306      | Total | $\mathbf{C}$ | Η    | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
| 1   |               | 500      | 4680  | 1499         | 2313 | 402 | 444 | 22           | 0       |         | 0     |
| 1   | 28-A          | 306      | Total | $\mathbf{C}$ | Η    | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
| 1   | 20 11         | 500      | 4680  | 1499         | 2313 | 402 | 444 | 22           | 0       | 0       | 0     |
| 1   | 20_ A         | 306      | Total | $\mathbf{C}$ | Η    | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
| 1   | 25-11         | 500      | 4680  | 1499         | 2313 | 402 | 444 | 22           | 0       | 0       | 0     |
| 1   | 30- A         | 306      | Total | $\mathbf{C}$ | Η    | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
| 1   | 00 11         | 500      | 4680  | 1499         | 2313 | 402 | 444 | 22           | 0       | 0       | 0     |
| 1   | 31_Δ          | 306      | Total | $\mathbf{C}$ | Η    | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
| 1   | 01-11         | 500      | 4680  | 1499         | 2313 | 402 | 444 | 22           | 0       | 0       | 0     |
| 1   | 32-A          | 306      | Total | $\mathbf{C}$ | Η    | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
| 1   | 02 11         | 500      | 4680  | 1499         | 2313 | 402 | 444 | 22           | 0       | 0       | 0     |
| 1   | 33 <u>-</u> Δ | 306      | Total | $\mathbf{C}$ | Η    | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
| 1   | 00-11         | 500      | 4680  | 1499         | 2313 | 402 | 444 | 22           | 0       | 0       | 0     |
| 1   | 34-4          | 306      | Total | $\mathbf{C}$ | Η    | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
| T   | 04-11         | 500      | 4680  | 1499         | 2313 | 402 | 444 | 22           | 0       | 0       | 0     |
| 1   | 35 A          | 306      | Total | $\mathbf{C}$ | Η    | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
|     | 00-A          | 500      | 4680  | 1499         | 2313 | 402 | 444 | 22           | 0       |         |       |
| 1   | 36 1          | 306      | Total | С            | H    | Ν   | 0   | $\mathbf{S}$ | 0 0     | 0       | 0     |
|     | 50-A          | 500      | 4680  | 1499         | 2313 | 402 | 444 | 22           |         | 0       |       |
| 1   | 37 Δ          | 306      | Total | С            | H    | N   | 0   | S            | 0       | 0       | 0     |
|     | JI-A          | 500      | 4680  | 1499         | 2313 | 402 | 444 | 22           |         | 0       |       |



| Mol | Chain         | Residues | Atoms |      |      |     |     |              | ZeroOcc | AltConf | Trace |
|-----|---------------|----------|-------|------|------|-----|-----|--------------|---------|---------|-------|
| 1   | 28 A          | 206      | Total | С    | Η    | Ν   | 0   | S            | 0       | 0       | 0     |
|     | 30-A          | 300      | 4680  | 1499 | 2313 | 402 | 444 | 22           | 0       | 0       | 0     |
| 1   | 1 30 A        | 306      | Total | С    | Η    | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
| 1   | 39-A          | 500      | 4680  | 1499 | 2313 | 402 | 444 | 22           | 0       | 0       | 0     |
| 1   | 40 A          | 306      | Total | С    | Η    | Ν   | 0   | $\mathbf{S}$ | 0       | 0       | 0     |
| 1   | 40-A          | 500      | 4680  | 1499 | 2313 | 402 | 444 | 22           | 0       | 0       | 0     |
| 1   | 1 41 4 206    | 306      | Total | С    | Η    | Ν   | 0   | $\mathbf{S}$ | 0       | 0       | 0     |
| 1   | 41-7          | 500      | 4680  | 1499 | 2313 | 402 | 444 | 22           |         | 0       | 0     |
| 1   | 49 A          | 206      | Total | С    | Η    | Ν   | 0   | $\mathbf{S}$ | 0       | 0       | 0     |
|     | 42-7          | 500      | 4680  | 1499 | 2313 | 402 | 444 | 22           | 0       | 0       | 0     |
| 1   | 43 Δ          | 306      | Total | С    | Η    | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
|     | 4 <b>0</b> -A | 500      | 4680  | 1499 | 2313 | 402 | 444 | 22           | 0       | 0       | 0     |
| 1   | 44 A          | 306      | Total | С    | Η    | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
|     | 44-7          | 500      | 4680  | 1499 | 2313 | 402 | 444 | 22           | 0       | 0       | 0     |
| 1   | 45 A          | 306      | Total | C    | Η    | N   | 0   | S            | 0       | 0       | 0     |
|     | 40-A          | 500      | 4680  | 1499 | 2313 | 402 | 444 | 22           |         | 0       | 0     |

• Molecule 2 is DIMETHYL SULFOXIDE (three-letter code: DMS) (formula:  $C_2H_6OS$ ).



| Mol | Chain | Residues |             | Ato                                                     | oms    |        |        | ZeroOcc | AltConf |
|-----|-------|----------|-------------|---------------------------------------------------------|--------|--------|--------|---------|---------|
| 2   | 1-A   | 1        | Total<br>10 | $\begin{array}{c} \mathrm{C} \\ \mathrm{2} \end{array}$ | Н<br>6 | 0<br>1 | S<br>1 | 0       | 0       |
| 2   | 2-A   | 1        | Total<br>10 | C<br>2                                                  | Н<br>6 | 0<br>1 | S<br>1 | 0       | 0       |
| 2   | 3-A   | 1        | Total<br>10 | $\begin{array}{c} \mathrm{C} \\ \mathrm{2} \end{array}$ | Н<br>6 | 0<br>1 | S<br>1 | 0       | 0       |



Continued from previous page...

| Mol | Chain         | Residues |         | Ato           | $\mathbf{pms}$ |   |              | ZeroOcc | AltConf  |
|-----|---------------|----------|---------|---------------|----------------|---|--------------|---------|----------|
| 0   | 4 4           | 1        | Total   | С             | Η              | Ο | S            | 0       | 0        |
|     | 4-A           | 1        | 10      | 2             | 6              | 1 | 1            | 0       | 0        |
| 2   | ۶ ۸           | 1        | Total   | С             | Η              | Ο | S            | 0       | 0        |
|     | 0-A           | 1        | 10      | 2             | 6              | 1 | 1            | 0       | 0        |
| 2   | 6 1           | 1        | Total   | С             | Η              | 0 | S            | 0       | 0        |
|     | 0-A           | 1        | 10      | 2             | 6              | 1 | 1            | 0       | 0        |
| 2   | $7_{-}\Delta$ | 1        | Total   | С             | Η              | Ο | $\mathbf{S}$ | 0       | 0        |
|     | 1 11          | 1        | 10      | 2             | 6              | 1 | 1            | 0       | 0        |
| 2   | 8-A           | 1        | Total   | С             | Η              | Ο | $\mathbf{S}$ | 0       | 0        |
|     | 0 11          | 1        | 10      | 2             | 6              | 1 | 1            | 0       | 0        |
| 2   | 9_Д           | 1        | Total   | С             | Η              | Ο | $\mathbf{S}$ | 0       | 0        |
|     | 0 11          | 1        | 10      | 2             | 6              | 1 | 1            | Ŭ       | 0        |
| 2   | 10-A          | 1        | Total   | С             | Η              | Ο | $\mathbf{S}$ | 0       | 0        |
|     | 10 11         | 1        | 10      | 2             | 6              | 1 | 1            | 0       | 0        |
| 2   | 11-A          | 1        | Total   | С             | Η              | Ο | $\mathbf{S}$ | 0       | 0        |
|     |               | -        | 10      | 2             | 6              | 1 | 1            |         |          |
| 2   | 12-A          | 1        | Total   | С             | Η              | Ο | $\mathbf{S}$ | 0       | 0        |
|     |               | -        | 10      | 2             | 6              | 1 | 1            | Ŭ       | <u> </u> |
| 2   | 13-A          | 1        | Total   | С             | Η              | Ο | $\mathbf{S}$ | 0       | 0        |
|     | 10 11         | -        | 10      | 2             | 6              | 1 | 1            | Ŭ       |          |
| 2   | 14-A          | 1        | Total   | С             | Н              | 0 | S            | 0       | 0        |
|     |               | -        | 10      | 2             | 6              | 1 | 1            | Ŭ       |          |
| 2   | 15-A          | 1        | Total   | С             | Н              | 0 | S            | 0       | 0        |
|     |               | _        | 10      | 2             | 6              | 1 | 1            |         |          |
| 2   | 16-A          | 1        | Total   | С             | Н              | 0 | S            | 0       | 0        |
|     | _             |          | 10      | 2             | 6              | 1 | 1            |         |          |
| 2   | 17-A          | 1        | Total   | С             | Н              | 0 | S            | 0       | 0        |
|     |               |          | 10      | 2             | 6              | 1 | 1            |         |          |
| 2   | 18-A          | 1        | Total   | С             | Н              | 0 | S            | 0       | 0        |
|     |               |          | 10      | 2             | 6              | 1 | 1            |         |          |
| 2   | 19-A          | 1        | Total   | C             | Н              | O | S            | 0       | 0        |
|     |               |          | 10      | $\frac{2}{2}$ | 6              | 1 | 1            |         |          |
| 2   | 20-A          | 1        | Total   | C             | Н              | O | S            | 0       | 0        |
|     |               |          | 10      | 2             | 6              | 1 | 1            |         |          |
| 2   | 21-A          | 1        | Total   | С             | Н              | 0 | S            | 0       | 0        |
|     |               |          | 10      | 2             | 6              | 1 | 1            |         |          |
| 2   | 2 22-A        | 1        | Total   | С             | Н              | 0 | S            | 0       | 0        |
|     |               |          |         | 10            | 2              | 6 | 1            | 1       |          |
| 2   | 2 23-A        | 1        | 'I'otal | C             | H              | 0 | S            | 0       | 0        |
|     |               | _        | 10      | 2             | 6              | 1 | 1            |         |          |
| 2   | 24-A          | 1        | Total   | С             | Н              | 0 | S            | 0       | 0        |
| _   |               | -        | 10      | 2             | 6              | 1 | 1            |         |          |



Continued from previous page...

| Mol | Chain                                                        | Residues |       | Ato | $\mathbf{ms}$ |   |              | ZeroOcc | AltConf |
|-----|--------------------------------------------------------------|----------|-------|-----|---------------|---|--------------|---------|---------|
| 0   | 05 A                                                         | 1        | Total | С   | Η             | 0 | S            | 0       | 0       |
| 2   | 25-A                                                         | 1        | 10    | 2   | 6             | 1 | 1            | 0       | 0       |
| 0   | 0C A                                                         | 1        | Total | С   | Η             | 0 | S            | 0       | 0       |
| 2   | 20-A                                                         | 1        | 10    | 2   | 6             | 1 | 1            | 0       | 0       |
| 0   | 07 1                                                         | 1        | Total | С   | Η             | Ο | S            | 0       | 0       |
| 2   | 27-A                                                         | 1        | 10    | 2   | 6             | 1 | 1            | 0       | 0       |
| 0   | 00 1                                                         | 1        | Total | С   | Η             | 0 | S            | 0       | 0       |
|     | 28-A                                                         | 1        | 10    | 2   | 6             | 1 | 1            | 0       | 0       |
| 0   | 20.4                                                         | 1        | Total | С   | Η             | 0 | S            | 0       | 0       |
|     | 29-A                                                         | 1        | 10    | 2   | 6             | 1 | 1            | 0       | 0       |
| 0   | 20 1                                                         | 1        | Total | С   | Η             | 0 | S            | 0       | 0       |
|     | 30-A                                                         | 1        | 10    | 2   | 6             | 1 | 1            | 0       | 0       |
| 0   | 91 A                                                         | 1        | Total | С   | Η             | 0 | S            | 0       | 0       |
|     | 51-A                                                         | 1        | 10    | 2   | 6             | 1 | 1            | 0       | 0       |
| 0   | 20 1                                                         | 1        | Total | С   | Η             | 0 | S            | 0       | 0       |
|     | 32-A                                                         | 1        | 10    | 2   | 6             | 1 | 1            | 0       | 0       |
| 0   | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br> | 1        | Total | С   | Η             | 0 | S            | 0       | 0       |
|     | -66<br>ЭЭ-А                                                  | 1        | 10    | 2   | 6             | 1 | 1            | 0       | 0       |
| 0   | 24 1                                                         | 1        | Total | С   | Η             | Ο | S            | 0       | 0       |
|     | 54-A                                                         | 1        | 10    | 2   | 6             | 1 | 1            | 0       | 0       |
| 9   | 25 A                                                         | 1        | Total | С   | Η             | Ο | S            | 0       | 0       |
|     | 33-A                                                         | 1        | 10    | 2   | 6             | 1 | 1            | 0       | 0       |
| 2   | 36-A                                                         | 1        | Total | С   | Η             | 0 | S            | 0       | 0       |
|     | 30-A                                                         | 1        | 10    | 2   | 6             | 1 | 1            | 0       | 0       |
| 2   | 37 1                                                         | 1        | Total | С   | Η             | 0 | $\mathbf{S}$ | 0       | 0       |
|     | 51-A                                                         | 1        | 10    | 2   | 6             | 1 | 1            | 0       | 0       |
| 2   | 38 A                                                         | 1        | Total | С   | Η             | Ο | $\mathbf{S}$ | 0       | 0       |
|     | J0-A                                                         | 1        | 10    | 2   | 6             | 1 | 1            | 0       | 0       |
| 2   | 30 A                                                         | 1        | Total | С   | Η             | Ο | $\mathbf{S}$ | 0       | 0       |
|     | 00-11                                                        | 1        | 10    | 2   | 6             | 1 | 1            | 0       | 0       |
| 2   | 40- <b>A</b>                                                 | 1        | Total | С   | Η             | Ο | $\mathbf{S}$ | 0       | 0       |
|     | 10 11                                                        | 1        | 10    | 2   | 6             | 1 | 1            | 0       | 0       |
| 2   | 41 <b>-</b> A                                                | 1        | Total | С   | Η             | Ο | $\mathbf{S}$ | 0       | 0       |
|     | 71 71                                                        | 1        | 10    | 2   | 6             | 1 | 1            | 0       | 0       |
| 2   | 42-A                                                         | 1        | Total | С   | Η             | Ο | $\mathbf{S}$ | 0       | 0       |
|     | 14 11                                                        | 1        | 10    | 2   | 6             | 1 | 1            |         |         |
| 2   | 2 43-A                                                       | 1        | Total | С   | Η             | 0 | $\mathbf{S}$ | 0       | 0       |
|     |                                                              | ±        | 10    | 2   | 6             | 1 | 1            |         | U       |
| 2   | 44- Δ                                                        | 1        | Total | С   | Η             | Ο | $\mathbf{S}$ | 0       | 0       |
|     |                                                              | *        | 10    | 2   | 6             | 1 | 1            |         |         |
| 2   | 45-A                                                         | 1        | Total | С   | Η             | Ο | $\mathbf{S}$ | 0       | 0       |
|     | 10 11                                                        | 1        | 10    | 2   | 6             | 1 | 1            |         |         |



Continued from previous page...

| Mol | Chain      | Residues |       | Ato | oms |   |              | ZeroOcc | AltConf |
|-----|------------|----------|-------|-----|-----|---|--------------|---------|---------|
| 0   | 1 1        | 1        | Total | С   | Η   | 0 | S            | 0       | 0       |
| 2   | 1-A        | 1        | 10    | 2   | 6   | 1 | 1            | 0       | 0       |
| 0   | 0.4        | 1        | Total | С   | Η   | 0 | S            | 0       | 0       |
| 2   | 2-A        | 1        | 10    | 2   | 6   | 1 | 1            | 0       | 0       |
| 0   |            | 1        | Total | С   | Η   | 0 | S            | 0       | 0       |
| 2   | 3-A        | 1        | 10    | 2   | 6   | 1 | 1            | 0       | 0       |
| 0   | 4 4        | 1        | Total | С   | Η   | 0 | S            | 0       | 0       |
|     | 4-A        | 1        | 10    | 2   | 6   | 1 | 1            | 0       | 0       |
| 0   | ۳ ۸        | 1        | Total | С   | Η   | Ο | S            | 0       | 0       |
|     | D-A        | 1        | 10    | 2   | 6   | 1 | 1            | 0       | 0       |
| 0   | C A        | 1        | Total | С   | Η   | 0 | S            | 0       | 0       |
|     | 0-A        | 1        | 10    | 2   | 6   | 1 | 1            | 0       | 0       |
| 0   | 7 1        | 1        | Total | С   | Η   | 0 | S            | 0       | 0       |
|     | (-A        | 1        | 10    | 2   | 6   | 1 | 1            | 0       | 0       |
| 2   | <u>о л</u> | 1        | Total | С   | Η   | Ο | S            | 0       | 0       |
|     | 0-A        | 1        | 10    | 2   | 6   | 1 | 1            | 0       | 0       |
| 2   | 0.4        | 1        | Total | С   | Η   | Ο | S            | 0       | 0       |
|     | 9-A        | 1        | 10    | 2   | 6   | 1 | 1            | U       | 0       |
| 0   | 10 1       | 1        | Total | С   | Η   | Ο | S            | 0       | 0       |
|     | 10-A       | 1        | 10    | 2   | 6   | 1 | 1            | 0       | 0       |
| 9   | 11 A       | 1        | Total | С   | Η   | 0 | S            | 0       | 0       |
|     | 11-A       | 1        | 10    | 2   | 6   | 1 | 1            | 0       | 0       |
| 9   | 19 \       | 1        | Total | С   | Η   | 0 | S            | 0       | 0       |
|     | 12-7       | 1        | 10    | 2   | 6   | 1 | 1            | 0       | 0       |
| 2   | 13 A       | 1        | Total | С   | Η   | 0 | S            | 0       | 0       |
|     | 10-A       | I        | 10    | 2   | 6   | 1 | 1            | 0       | 0       |
| 2   | 14 Δ       | 1        | Total | С   | Η   | Ο | $\mathbf{S}$ | 0       | 0       |
|     | 14-11      | 1        | 10    | 2   | 6   | 1 | 1            | 0       | 0       |
| 2   | 15-A       | 1        | Total | С   | Η   | Ο | $\mathbf{S}$ | 0       | 0       |
|     | 10-11      | I        | 10    | 2   | 6   | 1 | 1            | 0       | 0       |
| 2   | 16-A       | 1        | Total | С   | Η   | Ο | $\mathbf{S}$ | 0       | 0       |
|     | 10 11      | Ĩ        | 10    | 2   | 6   | 1 | 1            | 0       | 0       |
| 2   | 17-A       | 1        | Total | С   | Η   | Ο | $\mathbf{S}$ | 0       | 0       |
|     | 11 11      | 1        | 10    | 2   | 6   | 1 | 1            | 0       | 0       |
| 2   | 18-A       | 1        | Total | С   | Η   | 0 | $\mathbf{S}$ | 0       | 0       |
|     |            | 1        | 10    | 2   | 6   | 1 | 1            |         |         |
| 2   | 2 19-A     | 1        | Total | С   | Η   | 0 | $\mathbf{S}$ | 0       | 0       |
|     |            | 19-A     |       | 10  | 2   | 6 | 1            | 1       |         |
| 2   | 20-A       | 1        | Total | С   | Η   | 0 | $\mathbf{S}$ | 0       | 0       |
|     |            | *        | 10    | 2   | 6   | 1 | 1            |         |         |
| 2   | 21-A       | 1        | Total | С   | Η   | 0 | $\mathbf{S}$ | 0       | 0       |
|     | <u></u>    |          | 10    | 2   | 6   | 1 | 1            |         |         |



Continued from previous page...

| Mol | Chain    | Residues |       | Ato | oms |   |   | ZeroOcc | AltConf |
|-----|----------|----------|-------|-----|-----|---|---|---------|---------|
| 0   | 00.4     | 1        | Total | С   | Η   | Ο | S | 0       | 0       |
| 2   | 22-A     | 1        | 10    | 2   | 6   | 1 | 1 | 0       | 0       |
| 0   | 00.4     | 1        | Total | С   | Η   | Ο | S | 0       | 0       |
| 2   | 23-A     | 1        | 10    | 2   | 6   | 1 | 1 | 0       | 0       |
| 0   | 04.4     | 1        | Total | С   | Η   | 0 | S | 0       | 0       |
| 2   | 24-A     | 1        | 10    | 2   | 6   | 1 | 1 | 0       | 0       |
| 0   | 05 1     | 1        | Total | С   | Н   | 0 | S | 0       | 0       |
| 2   | 25-A     | 1        | 10    | 2   | 6   | 1 | 1 | 0       | 0       |
| 0   | 96 A     | 1        | Total | С   | Η   | 0 | S | 0       | 0       |
| 2   | 20-A     | 1        | 10    | 2   | 6   | 1 | 1 | 0       | 0       |
| 0   | 07 1     | 1        | Total | С   | Η   | 0 | S | 0       | 0       |
|     | 21-A     | 1        | 10    | 2   | 6   | 1 | 1 | 0       | 0       |
| 0   | <u> </u> | 1        | Total | С   | Η   | 0 | S | 0       | 0       |
|     | 28-A     | 1        | 10    | 2   | 6   | 1 | 1 | 0       | 0       |
| 0   | 00 A     | 1        | Total | С   | Η   | 0 | S | 0       | 0       |
|     | 29-A     | 1        | 10    | 2   | 6   | 1 | 1 | 0       | 0       |
| 0   | 20 1     | 1        | Total | С   | Η   | Ο | S | 0       | 0       |
|     | 30-A     | 1        | 10    | 2   | 6   | 1 | 1 | U       | 0       |
|     | 01 A     | 1        | Total | С   | Η   | Ο | S | 0       | 0       |
| 2   | 31-A     | 1        | 10    | 2   | 6   | 1 | 1 | 0       | 0       |
| 0   | 20.4     | 1        | Total | С   | Η   | Ο | S | 0       | 0       |
| 2   | 32-A     | 1        | 10    | 2   | 6   | 1 | 1 | 0       | 0       |
|     |          | 1        | Total | С   | Η   | 0 | S | 0       | 0       |
|     | 33-A     | 1        | 10    | 2   | 6   | 1 | 1 | 0       | 0       |
| 0   | D4 A     | 1        | Total | С   | Η   | 0 | S | 0       | 0       |
|     | 34-A     | 1        | 10    | 2   | 6   | 1 | 1 | 0       | 0       |
| 0   | 25 A     | 1        | Total | С   | Η   | 0 | S | 0       | 0       |
|     | 50-A     | 1        | 10    | 2   | 6   | 1 | 1 | 0       | 0       |
| 0   | 26 1     | 1        | Total | С   | Η   | 0 | S | 0       | 0       |
|     | 30-A     | 1        | 10    | 2   | 6   | 1 | 1 | 0       | 0       |
| 2   | 97 A     | 1        | Total | С   | Η   | Ο | S | 0       | 0       |
|     | 57-A     | 1        | 10    | 2   | 6   | 1 | 1 | 0       | 0       |
| 2   | 90 A     | 1        | Total | С   | Η   | Ο | S | 0       | 0       |
|     | 30-A     | 1        | 10    | 2   | 6   | 1 | 1 | 0       | 0       |
| 0   | 20 1     | 1        | Total | С   | Η   | 0 | S | 0       | 0       |
|     | 39-A     | 1        | 10    | 2   | 6   | 1 | 1 | 0       | 0       |
| 0   | 40-A     | 1        | Total | С   | Η   | 0 | S | 0       | Ο       |
|     |          |          | 10    | 2   | 6   | 1 | 1 |         | 0       |
| 0   | /1 A     | 1        | Total | С   | Η   | 0 | S | 0       | 0       |
|     | 41-A     |          | 10    | 2   | 6   | 1 | 1 | U       | U       |
| 0   | 49.4     | 1        | Total | С   | Η   | 0 | S | 0       | 0       |
| 2   | 42-A     | 1        | 10    | 2   | 6   | 1 | 1 |         | U       |



Continued from previous page...

| Mol    | Chain         | Residues | Atoms |   |   | ZeroOcc | AltConf      |   |   |
|--------|---------------|----------|-------|---|---|---------|--------------|---|---|
| 9 42 A | 1             | Total    | С     | Η | 0 | S       | 0            | 0 |   |
|        | 2 40-A        | 1        | 10    | 2 | 6 | 1       | 1            | 0 | 0 |
| 9      | 44 A          | 1        | Total | С | Η | 0       | $\mathbf{S}$ | 0 | 0 |
| 2 44-A | 1             | 10       | 2     | 6 | 1 | 1       | 0            | 0 |   |
| 0      | 45 A          | 1        | Total | С | Η | 0       | S            | 0 | 0 |
| 2      | 4 <b>0</b> -A | 40-A 1   | 10    | 2 | 6 | 1       | 1            |   | 0 |

• Molecule 3 is ZINC ION (three-letter code: ZN) (formula: Zn).

| Mol | Chain | Residues | Atoms           | ZeroOcc | AltConf |
|-----|-------|----------|-----------------|---------|---------|
| 3   | 1-A   | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 2-A   | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 3-A   | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 4-A   | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 5-A   | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 6-A   | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 7-A   | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 8-A   | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 9-A   | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 10-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 11-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 12-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 13-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 14-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 15-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 16-A  | 1        | Total Zn<br>1 1 | 0       | 0       |



Continued from previous page...

| Mol | Chain | Residues | Atoms           | ZeroOcc | AltConf |
|-----|-------|----------|-----------------|---------|---------|
| 3   | 17-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 18-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 19-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 20-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 21-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 22-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 23-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 24-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 25-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 26-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 27-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 28-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 29-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 30-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 31-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 32-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 33-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 34-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 35-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 36-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 37-A  | 1        | Total Zn<br>1 1 | 0       | 0       |



Continued from previous page...

| Mol | Chain | Residues | Atoms           | ZeroOcc | AltConf |
|-----|-------|----------|-----------------|---------|---------|
| 3   | 38-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 39-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 40-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 41-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 42-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 43-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 44-A  | 1        | Total Zn<br>1 1 | 0       | 0       |
| 3   | 45-A  | 1        | Total Zn<br>1 1 | 0       | 0       |

• Molecule 4 is water.

| Mol | Chain | Residues | Atoms          | ZeroOcc | AltConf  |  |
|-----|-------|----------|----------------|---------|----------|--|
| 4   | 1_Δ   | 45       | Total O        | 0       | 0        |  |
|     | 1-11  | 40       | 45 45          | 0       | 0        |  |
| 4   | 2-A   | 38       | Total O        | 0       | 0        |  |
|     | 2 11  | 50       | 38 38          | 0       | <u> </u> |  |
| 4   | 3-A   | -A 37    | Total O        | 0       | 0        |  |
|     | 0 11  |          | 37 37          | 0       | 0        |  |
|     | Δ_Δ   | 44       | Total O        | 0       | 0        |  |
|     |       | TT       | 44 44          | 0       | 0        |  |
| 4   | 5-A   | 47       | Total O        | 0       | 0        |  |
|     | 0.11  | 11       | 47 47          | Ŭ       | 0        |  |
| 4   | 6-A   | 45       | Total O        | 0       | 0        |  |
|     | 0.11  | 10       | 45 45          | Ŭ       | <u> </u> |  |
| 4   | 7-A   | 44       | Total O        | 0       | 0        |  |
|     | ,     |          | 44 44          | Ŭ       | 0        |  |
| 4   | 8-A   | 37       | Total O        | 0       | 0        |  |
|     |       |          | 37 37          | Ŭ       |          |  |
| 4   | 9-A   | 46       | Total O        | 0       | 0        |  |
|     |       | 10       | 46 46          | Ŭ       |          |  |
| 4   | 10-A  | 50       | Total O        | 0       | 0        |  |
|     |       | ~~       | 50 50          | Ŭ,      | Ŭ        |  |
| 4   | 11-A  | 50       | Total O        | 0       | 0        |  |
|     | 11 11 |          | $50 	ext{ }50$ |         | v        |  |



Continued from previous page...

| Mol | Chain | Residues | Atoms                                                               | ZeroOcc | AltConf |
|-----|-------|----------|---------------------------------------------------------------------|---------|---------|
| 4   | 12-A  | 48       | Total O<br>48 48                                                    | 0       | 0       |
| 4   | 13-A  | 48       | Total         O           48         48                             | 0       | 0       |
| 4   | 14-A  | 42       | Total O<br>42 42                                                    | 0       | 0       |
| 4   | 15-A  | 41       | Total         O           41         41                             | 0       | 0       |
| 4   | 16-A  | 42       | Total O<br>42 42                                                    | 0       | 0       |
| 4   | 17-A  | 42       | $\begin{array}{cc} \text{Total} & \text{O} \\ 42 & 42 \end{array}$  | 0       | 0       |
| 4   | 18-A  | 44       | Total         O           44         44                             | 0       | 0       |
| 4   | 19-A  | 41       | Total         O           41         41                             | 0       | 0       |
| 4   | 20-A  | 48       | Total         O           48         48                             | 0       | 0       |
| 4   | 21-A  | 42       | TotalO4242                                                          | 0       | 0       |
| 4   | 22-A  | 46       | Total         O           46         46                             | 0       | 0       |
| 4   | 23-A  | 55       | Total         O           55         55                             | 0       | 0       |
| 4   | 24-A  | 49       | Total         O           49         49                             | 0       | 0       |
| 4   | 25-A  | 54       | $\begin{array}{cc} \text{Total} & \text{O} \\ 54 & 54 \end{array}$  | 0       | 0       |
| 4   | 26-A  | 41       | Total         O           41         41                             | 0       | 0       |
| 4   | 27-A  | 39       | Total O<br>39 39                                                    | 0       | 0       |
| 4   | 28-A  | 40       | Total         O           40         40                             | 0       | 0       |
| 4   | 29-A  | 47       | Total O<br>47 47                                                    | 0       | 0       |
| 4   | 30-A  | 46       | $\begin{array}{ccc} \text{Total} & \text{O} \\ 46 & 46 \end{array}$ | 0       | 0       |
| 4   | 31-A  | 47       | $\begin{array}{cc} \text{Total} & \text{O} \\ 47 & 47 \end{array}$  | 0       | 0       |
| 4   | 32-A  | 45       | Total         O           45         45                             | 0       | 0       |





Chain Residues ZeroOcc AltConf Mol Atoms Total 33-A Total Ο 34-A Total 35-A Total Ο 36-A Total Ο 37-A Ο Total 38-A Total Ο 39-A Total Ο 40-A Total Ο 41-A Total Ο 42-A Total Ο 43-A Total Ο 44-A Total 45-A 

### 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.















• Molecule 1: 3C-like proteinase 17% Chain 7-A: 82% 16% • Molecule 1: 3C-like proteinase 17% Chain 8-A: 79% 17% L272 Q273 M276 N277 G278 R279 T280 T281 C300 S301 G302 G302 V303 T304 F305 F305 • Molecule 1: 3C-like proteinase 17% Chain 9-A: 80% 17% . 1276 1277 G278 • Molecule 1: 3C-like proteinase 17% Chain 10-A: 83% 14% . .







• Molecule 1: 3C-like proteinase





M276 N277 • Molecule 1: 3C-like proteinase 17% Chain 14-A: 79% 17% 224 279 1280 1281 M276 N277 **Q299** C300 S301 G302 V303 V303 F305 F305 • Molecule 1: 3C-like proteinase 17% Chain 15-A: 79% 18% 1302 /303 /304 7305 7305 • Molecule 1: 3C-like proteinase 17% Chain 16-A: 82% 16% • Molecule 1: 3C-like proteinase 17% Chain 17-A: 80% 15% 5% PROT

























• Molecule 1: 3C-like proteinase



• Molecule 1: 3C-like proteinase













PROTEIN DATA BANK







#### T304 F305 Q306

• Molecule 1: 3C-like proteinase





#### C300 S301 S301 C302 C302 C302 C303 F303 F305 C306









### 4 Data and refinement statistics (i)

| Property                                       | Value                                            | Source    |
|------------------------------------------------|--------------------------------------------------|-----------|
| Space group                                    | C 1 2 1                                          | Depositor |
| Cell constants                                 | 115.02Å $54.36$ Å $44.97$ Å                      | Depositor |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$         | $90.00^{\circ}$ $101.50^{\circ}$ $90.00^{\circ}$ | Depositor |
| $\mathbf{Posclution}(\mathbf{\hat{\lambda}})$  | 48.96 - 2.19                                     | Depositor |
| Resolution (A)                                 | 48.96 - 2.19                                     | EDS       |
| % Data completeness                            | 99.3 (48.96-2.19)                                | Depositor |
| (in resolution range)                          | 91.2 (48.96-2.19)                                | EDS       |
| $R_{merge}$                                    | 0.29                                             | Depositor |
| R <sub>sym</sub>                               | (Not available)                                  | Depositor |
| $< I/\sigma(I) > 1$                            | $1.03 (at 2.20 \text{\AA})$                      | Xtriage   |
| Refinement program                             | PHENIX (phenix.ensemble_refinement:1.19.2_4158)  | Depositor |
| D D.                                           | 0.153 , $0.215$                                  | Depositor |
| $\mathbf{n}, \mathbf{n}_{free}$                | 0.183 , $0.246$                                  | DCC       |
| $R_{free}$ test set                            | 741 reflections $(5.25\%)$                       | wwPDB-VP  |
| Wilson B-factor $(Å^2)$                        | 27.0                                             | Xtriage   |
| Anisotropy                                     | 0.312                                            | Xtriage   |
| Bulk solvent $k_{sol}(e/Å^3)$ , $B_{sol}(Å^2)$ | 0.59, 999.0                                      | EDS       |
| L-test for twinning <sup>2</sup>               | $< L >=0.49, < L^2>=0.33$                        | Xtriage   |
| Estimated twinning fraction                    | No twinning to report.                           | Xtriage   |
| $F_o, F_c$ correlation                         | 0.94                                             | EDS       |
| Total number of atoms                          | 213552                                           | wwPDB-VP  |
| Average B, all atoms $(Å^2)$                   | 34.0                                             | wwPDB-VP  |

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 9.17% of the height of the origin peak. No significant pseudotranslation is detected.

<sup>&</sup>lt;sup>2</sup>Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

# 5 Model quality (i)

### 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: DMS, ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | Chain | B    | ond lengths                  | Bond angles |                              |  |  |
|-----|-------|------|------------------------------|-------------|------------------------------|--|--|
|     | Chain | RMSZ | # Z  > 5                     | RMSZ        | # Z  > 5                     |  |  |
| 1   | 1-A   | 0.77 | 3/2420~(0.1%)                | 0.87        | 3/3289~(0.1%)                |  |  |
| 1   | 2-A   | 0.77 | 5/2420~(0.2%)                | 0.81        | 0/3289                       |  |  |
| 1   | 3-A   | 0.75 | 1/2420~(0.0%)                | 0.90        | 7/3289~(0.2%)                |  |  |
| 1   | 4-A   | 0.74 | 1/2420~(0.0%)                | 0.89        | 5/3289~(0.2%)                |  |  |
| 1   | 5-A   | 0.77 | 3/2420~(0.1%)                | 0.90        | 6/3289~(0.2%)                |  |  |
| 1   | 6-A   | 0.81 | 1/2420~(0.0%)                | 0.87        | 1/3289~(0.0%)                |  |  |
| 1   | 7-A   | 0.78 | 4/2420~(0.2%)                | 0.86        | 3/3289~(0.1%)                |  |  |
| 1   | 8-A   | 0.80 | 3/2420~(0.1%)                | 0.86        | 2/3289~(0.1%)                |  |  |
| 1   | 9-A   | 0.72 | 0/2420                       | 0.84        | 2/3289~(0.1%)                |  |  |
| 1   | 10-A  | 0.73 | 3/2420~(0.1%)                | 0.84        | 1/3289~(0.0%)                |  |  |
| 1   | 11-A  | 0.81 | 2/2420~(0.1%)                | 0.89        | 2/3289~(0.1%)                |  |  |
| 1   | 12-A  | 0.74 | 3/2420~(0.1%)                | 0.87        | 4/3289~(0.1%)                |  |  |
| 1   | 13-A  | 0.72 | 0/2420                       | 0.83        | 1/3289~(0.0%)                |  |  |
| 1   | 14-A  | 0.74 | 3/2420~(0.1%)                | 0.88        | 4/3289~(0.1%)                |  |  |
| 1   | 15-A  | 0.78 | 3/2420~(0.1%)                | 0.84        | 3/3289~(0.1%)                |  |  |
| 1   | 16-A  | 0.73 | 2/2420~(0.1%)                | 0.86        | 0/3289                       |  |  |
| 1   | 17-A  | 0.77 | 4/2420~(0.2%)                | 0.85        | 3/3289~(0.1%)                |  |  |
| 1   | 18-A  | 0.76 | 3/2420~(0.1%)                | 0.86        | 2/3289~(0.1%)                |  |  |
| 1   | 19-A  | 0.77 | 3/2420~(0.1%)                | 0.89        | 1/3289~(0.0%)                |  |  |
| 1   | 20-A  | 0.77 | 3/2420~(0.1%)                | 0.87        | 5/3289~(0.2%)                |  |  |
| 1   | 21-A  | 0.76 | 2/2420~(0.1%)                | 0.87        | 3/3289~(0.1%)                |  |  |
| 1   | 22-A  | 0.78 | 1/2420~(0.0%)                | 0.84        | 3/3289~(0.1%)                |  |  |
| 1   | 23-A  | 0.80 | 4/2420~(0.2%)                | 0.87        | 4/3289~(0.1%)                |  |  |
| 1   | 24-A  | 0.75 | 2/2420~(0.1%)                | 0.85        | 0/3289                       |  |  |
| 1   | 25-A  | 0.81 | 3/2420~(0.1%)                | 0.86        | 5/3289~(0.2%)                |  |  |
| 1   | 26-A  | 0.76 | 2/2420~(0.1%)                | 0.90        | 3/3289~(0.1%)                |  |  |
| 1   | 27-A  | 0.76 | 1/2420~(0.0%)                | 0.85        | 2/3289~(0.1%)                |  |  |
| 1   | 28-A  | 0.77 | $\overline{2/2420}\ (0.1\%)$ | 0.86        | $\overline{4/3289}\ (0.1\%)$ |  |  |
| 1   | 29-A  | 0.85 | 3/2420~(0.1%)                | 0.89        | 2/3289~(0.1%)                |  |  |
| 1   | 30-A  | 0.77 | 2/2420~(0.1%)                | 0.87        | 1/3289~(0.0%)                |  |  |
| 1   | 31-A  | 0.77 | $\overline{1/2420}~(0.0\%)$  | 0.87        | 0/3289                       |  |  |
| 1   | 32-A  | 0.75 | 2/2420~(0.1%)                | 0.84        | 4/3289~(0.1%)                |  |  |



| Mal   | Chain | E    | Bond lengths      | ]    | Bond angles       |  |  |
|-------|-------|------|-------------------|------|-------------------|--|--|
| IVI01 | Chain | RMSZ | # Z  > 5          | RMSZ | $# Z  > 5$        |  |  |
| 1     | 33-A  | 0.77 | 5/2420~(0.2%)     | 0.86 | 0/3289            |  |  |
| 1     | 34-A  | 0.82 | 4/2420~(0.2%)     | 0.85 | 2/3289~(0.1%)     |  |  |
| 1     | 35-A  | 0.80 | 3/2420~(0.1%)     | 0.86 | 2/3289~(0.1%)     |  |  |
| 1     | 36-A  | 0.76 | 1/2420~(0.0%)     | 0.86 | 0/3289            |  |  |
| 1     | 37-A  | 0.79 | 2/2420~(0.1%)     | 0.85 | 0/3289            |  |  |
| 1     | 38-A  | 0.79 | 4/2420~(0.2%)     | 0.88 | 4/3289~(0.1%)     |  |  |
| 1     | 39-A  | 0.76 | 2/2420~(0.1%)     | 0.89 | 7/3289~(0.2%)     |  |  |
| 1     | 40-A  | 0.73 | 2/2420~(0.1%)     | 0.87 | 1/3289~(0.0%)     |  |  |
| 1     | 41-A  | 0.72 | 0/2420            | 0.82 | 2/3289~(0.1%)     |  |  |
| 1     | 42-A  | 0.71 | 0/2420            | 0.79 | 1/3289~(0.0%)     |  |  |
| 1     | 43-A  | 0.74 | 1/2420~(0.0%)     | 0.83 | 0/3289            |  |  |
| 1     | 44-A  | 0.79 | 2/2420~(0.1%)     | 0.83 | 1/3289~(0.0%)     |  |  |
| 1     | 45-A  | 0.74 | 0/2420            | 0.84 | 2/3289~(0.1%)     |  |  |
| All   | All   | 0.77 | 101/108900~(0.1%) | 0.86 | 108/148005~(0.1%) |  |  |

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

| Mol | Chain | #Chirality outliers | #Planarity outliers |
|-----|-------|---------------------|---------------------|
| 1   | 1-A   | 0                   | 7                   |
| 1   | 2-A   | 0                   | 9                   |
| 1   | 3-A   | 0                   | 6                   |
| 1   | 4-A   | 0                   | 10                  |
| 1   | 5-A   | 0                   | 5                   |
| 1   | 6-A   | 0                   | 9                   |
| 1   | 7-A   | 0                   | 8                   |
| 1   | 8-A   | 0                   | 11                  |
| 1   | 9-A   | 0                   | 8                   |
| 1   | 10-A  | 0                   | 11                  |
| 1   | 11-A  | 0                   | 8                   |
| 1   | 12-A  | 0                   | 8                   |
| 1   | 13-A  | 0                   | 5                   |
| 1   | 14-A  | 0                   | 7                   |
| 1   | 15-A  | 0                   | 9                   |
| 1   | 16-A  | 0                   | 6                   |
| 1   | 17-A  | 0                   | 13                  |
| 1   | 18-A  | 0                   | 10                  |
| 1   | 19-A  | 0                   | 10                  |
| 1   | 20-A  | 0                   | 10                  |
| 1   | 21-A  | 0                   | 8                   |



| IVIOI | Chain | #Chirality outliers | #Planarity outliers |
|-------|-------|---------------------|---------------------|
| 1     | 22-A  | 0                   | 6                   |
| 1     | 23-A  | 0                   | 8                   |
| 1     | 24-A  | 0                   | 4                   |
| 1     | 25-A  | 0                   | 10                  |
| 1     | 26-A  | 0                   | 12                  |
| 1     | 27-A  | 0                   | 10                  |
| 1     | 28-A  | 0                   | 14                  |
| 1     | 29-A  | 0                   | 10                  |
| 1     | 30-A  | 0                   | 9                   |
| 1     | 31-A  | 0                   | 11                  |
| 1     | 32-A  | 0                   | 9                   |
| 1     | 33-A  | 0                   | 9                   |
| 1     | 34-A  | 0                   | 8                   |
| 1     | 35-A  | 0                   | 13                  |
| 1     | 36-A  | 0                   | 11                  |
| 1     | 37-A  | 0                   | 9                   |
| 1     | 38-A  | 0                   | 4                   |
| 1     | 39-A  | 0                   | 4                   |
| 1     | 40-A  | 0                   | 12                  |
| 1     | 41-A  | 0                   | 10                  |
| 1     | 42-A  | 0                   | 5                   |
| 1     | 43-A  | 0                   | 4                   |
| 1     | 44-A  | 0                   | 11                  |
| 1     | 45-A  | 0                   | 10                  |
| All   | All   | 0                   | 391                 |

The worst 5 of 101 bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms | Z      | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|-------|--------|-------------|----------|
| 1   | 29-A  | 145 | CYS  | CB-SG | 13.56  | 2.05        | 1.82     |
| 1   | 44-A  | 128 | CYS  | CB-SG | -13.36 | 1.59        | 1.82     |
| 1   | 8-A   | 145 | CYS  | CB-SG | 12.69  | 2.03        | 1.82     |
| 1   | 37-A  | 156 | CYS  | CB-SG | 12.57  | 2.03        | 1.82     |
| 1   | 8-A   | 156 | CYS  | CB-SG | -10.76 | 1.64        | 1.82     |

The worst 5 of 108 bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms     | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------|-------|------------------|---------------|
| 1   | 4-A   | 155 | ASP  | CB-CG-OD2 | -9.87 | 109.42           | 118.30        |
| 1   | 26-A  | 305 | PHE  | CB-CG-CD1 | 8.76  | 126.93           | 120.80        |
| 1   | 18-A  | 67  | LEU  | CA-CB-CG  | 7.82  | 133.28           | 115.30        |
| 1   | 14-A  | 300 | CYS  | CA-CB-SG  | -7.47 | 100.55           | 114.00        |



Continued from previous page...

| Mol | Chain | Res | Type | Atoms     | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------|-------|------------------|---------------|
| 1   | 3-A   | 155 | ASP  | CB-CG-OD2 | -7.42 | 111.63           | 118.30        |

There are no chirality outliers.

5 of 391 planarity outliers are listed below:

| Mol | Chain | Res | Type | Group     |
|-----|-------|-----|------|-----------|
| 1   | 1-A   | 151 | ASN  | Peptide   |
| 1   | 1-A   | 195 | GLY  | Peptide   |
| 1   | 1-A   | 217 | ARG  | Sidechain |
| 1   | 1-A   | 72  | ASN  | Peptide   |
| 1   | 1-A   | 73  | VAL  | Peptide   |

#### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | 1-A   | 2367  | 2313     | 2313     | 0       | 0            |
| 1   | 2-A   | 2367  | 2313     | 2313     | 0       | 0            |
| 1   | 3-A   | 2367  | 2313     | 2313     | 0       | 0            |
| 1   | 4-A   | 2367  | 2313     | 2313     | 0       | 0            |
| 1   | 5-A   | 2367  | 2313     | 2313     | 0       | 0            |
| 1   | 6-A   | 2367  | 2313     | 2313     | 0       | 0            |
| 1   | 7-A   | 2367  | 2313     | 2313     | 0       | 0            |
| 1   | 8-A   | 2367  | 2313     | 2313     | 0       | 0            |
| 1   | 9-A   | 2367  | 2313     | 2313     | 0       | 0            |
| 1   | 10-A  | 2367  | 2313     | 2313     | 0       | 0            |
| 1   | 11-A  | 2367  | 2313     | 2313     | 0       | 0            |
| 1   | 12-A  | 2367  | 2313     | 2313     | 0       | 0            |
| 1   | 13-A  | 2367  | 2313     | 2313     | 0       | 0            |
| 1   | 14-A  | 2367  | 2313     | 2313     | 0       | 0            |
| 1   | 15-A  | 2367  | 2313     | 2313     | 0       | 0            |
| 1   | 16-A  | 2367  | 2313     | 2313     | 0       | 0            |
| 1   | 17-A  | 2367  | 2313     | 2313     | 0       | 0            |
| 1   | 18-A  | 2367  | 2313     | 2313     | 0       | 0            |
| 1   | 19-A  | 2367  | 2313     | 2313     | 0       | 0            |
| 1   | 20-A  | 2367  | 2313     | 2313     | 0       | 0            |
| 1   | 21-A  | 2367  | 2313     | 2313     | 0       | 0            |



|   |       | <i>i previous</i> | page     | TT(addad) | Clashas | Comment Clashes |
|---|-------|-------------------|----------|-----------|---------|-----------------|
|   | Chain | Non-H             | H(model) | H(added)  | Clasnes | Symm-Clasnes    |
|   | 22-A  | 2367              | 2313     | 2313      | 0       | 0               |
|   | 23-A  | 2367              | 2313     | 2313      | 0       | 0               |
|   | 24-A  | 2367              | 2313     | 2313      | 0       | 0               |
| 1 | 25-A  | 2367              | 2313     | 2313      | 0       | 0               |
| 1 | 26-A  | 2367              | 2313     | 2313      | 0       | 0               |
| 1 | 27-A  | 2367              | 2313     | 2313      | 0       | 0               |
| 1 | 28-A  | 2367              | 2313     | 2313      | 0       | 0               |
| 1 | 29-A  | 2367              | 2313     | 2313      | 0       | 0               |
| 1 | 30-A  | 2367              | 2313     | 2313      | 0       | 0               |
| 1 | 31-A  | 2367              | 2313     | 2313      | 0       | 0               |
| 1 | 32-A  | 2367              | 2313     | 2313      | 0       | 0               |
| 1 | 33-A  | 2367              | 2313     | 2313      | 0       | 0               |
| 1 | 34-A  | 2367              | 2313     | 2313      | 0       | 0               |
| 1 | 35-A  | 2367              | 2313     | 2313      | 0       | 0               |
| 1 | 36-A  | 2367              | 2313     | 2311      | 0       | 0               |
| 1 | 37-A  | 2367              | 2313     | 2313      | 0       | 0               |
| 1 | 38-A  | 2367              | 2313     | 2313      | 0       | 0               |
| 1 | 39-A  | 2367              | 2313     | 2313      | 0       | 0               |
| 1 | 40-A  | 2367              | 2313     | 2313      | 0       | 0               |
| 1 | 41-A  | 2367              | 2313     | 2313      | 0       | 0               |
| 1 | 42-A  | 2367              | 2313     | 2313      | 0       | 0               |
| 1 | 43-A  | 2367              | 2313     | 2313      | 0       | 0               |
| 1 | 44-A  | 2367              | 2313     | 2313      | 0       | 0               |
| 1 | 45-A  | 2367              | 2313     | 2313      | 0       | 0               |
| 2 | 1-A   | 8                 | 12       | 12        | 0       | 0               |
| 2 | 2-A   | 8                 | 12       | 12        | 0       | 0               |
| 2 | 3-A   | 8                 | 12       | 12        | 0       | 0               |
| 2 | 4-A   | 8                 | 12       | 12        | 0       | 0               |
| 2 | 5-A   | 8                 | 12       | 12        | 0       | 0               |
| 2 | 6-A   | 8                 | 12       | 12        | 0       | 0               |
| 2 | 7-A   | 8                 | 12       | 12        | 0       | 0               |
| 2 | 8-A   | 8                 | 12       | 12        | 0       | 0               |
| 2 | 9-A   | 8                 | 12       | 12        | 0       | 0               |
| 2 | 10-A  | 8                 | 12       | 12        | 0       | 0               |
| 2 | 11-A  | 8                 | 12       | 12        | 0       | 0               |
| 2 | 12-A  | 8                 | 12       | 12        | 0       | 0               |
| 2 | 13-A  | 8                 | 12       | 12        | 0       | 0               |
| 2 | 14-A  | 8                 | 12       | 12        | 0       | 0               |
| 2 | 15-A  | 8                 | 12       | 12        | 0       | 0               |
| 2 | 16-A  | 8                 | 12       | 12        | 0       | 0               |
| 2 | 17-A  | 8                 | 12       | 12        | 0       | 0               |
| 2 | 18-A  | 8                 | 12       | 12        | 0       | 0               |



|               | Chain        | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|---------------|--------------|-------|----------|----------|---------|--------------|
| 2             |              | 8     | 12       | 12       |         |              |
| $\frac{2}{2}$ | 19-A<br>20-A | 8     | 12       | 12       | 0       | 0            |
| $\frac{2}{2}$ | 20-A         | 8     | 12       | 12       | 0       | 0            |
| $\frac{2}{2}$ | 21 M         | 8     | 12       | 12       | 0       | 0            |
| $\frac{2}{2}$ | 22-M         | 8     | 12       | 12       | 0       | 0            |
| $\frac{2}{2}$ | 20 A         | 8     | 12       | 12       | 0       | 0            |
| $\frac{2}{2}$ | 24 A         | 8     | 12       | 12       | 0       | 0            |
| 2             | 26-A         | 8     | 12       | 12       | 0       | 0            |
| 2             | 23 H         | 8     | 12       | 12       | 0       | 0            |
| 2             | 28-A         | 8     | 12       | 12       | 0       | 0            |
| 2             | 29-A         | 8     | 12       | 12       | 0       | 0            |
| 2             | 30-A         | 8     | 12       | 12       | 0       | 0            |
| 2             | 31-A         | 8     | 12       | 12       | 0       | 0            |
| 2             | 32-A         | 8     | 12       | 12       | 0       | 0            |
| 2             | 33-A         | 8     | 12       | 12       | 0       | 0            |
| 2             | 34-A         | 8     | 12       | 12       | 0       | 0            |
| 2             | 35-A         | 8     | 12       | 12       | 0       | 0            |
| 2             | 36-A         | 8     | 12       | 12       | 0       | 0            |
| 2             | 37-A         | 8     | 12       | 12       | 0       | 0            |
| 2             | 38-A         | 8     | 12       | 12       | 0       | 0            |
| 2             | 39-A         | 8     | 12       | 12       | 0       | 0            |
| 2             | 40-A         | 8     | 12       | 12       | 0       | 0            |
| 2             | 41-A         | 8     | 12       | 12       | 0       | 0            |
| 2             | 42-A         | 8     | 12       | 12       | 0       | 0            |
| 2             | 43-A         | 8     | 12       | 12       | 0       | 0            |
| 2             | 44-A         | 8     | 12       | 12       | 0       | 0            |
| 2             | 45-A         | 8     | 12       | 12       | 0       | 0            |
| 3             | 1-A          | 1     | 0        | 0        | 0       | 0            |
| 3             | 2-A          | 1     | 0        | 0        | 0       | 0            |
| 3             | 3-A          | 1     | 0        | 0        | 0       | 0            |
| 3             | 4-A          | 1     | 0        | 0        | 0       | 0            |
| 3             | 5-A          | 1     | 0        | 0        | 0       | 0            |
| 3             | 6-A          | 1     | 0        | 0        | 0       | 0            |
| 3             | 7-A          | 1     | 0        | 0        | 0       | 0            |
| 3             | 8-A          | 1     | 0        | 0        | 0       | 0            |
| 3             | 9-A          | 1     | 0        | 0        | 0       | 0            |
| 3             | 10-A         | 1     | 0        | 0        | 0       | 0            |
| 3             | 11-A         | 1     | 0        | 0        | 0       | 0            |
| 3             | 12-A         |       | 0        | 0        |         | 0            |
| 3             | 13-A         |       | 0        | 0        |         | 0            |
| 3             | 14-A         |       | 0        | 0        |         | 0            |
| 3             | 15-A         |       | 0        | 0        | 0       | 0            |



| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 3   | 16-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 17-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 18-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 19-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 20-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 21-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 22-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 23-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 24-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 25-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 26-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 27-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 28-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 29-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 30-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 31-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 32-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 33-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 34-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 35-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 36-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 37-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 38-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 39-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 40-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 41-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 42-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 43-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 44-A  | 1     | 0        | 0        | 0       | 0            |
| 3   | 45-A  | 1     | 0        | 0        | 0       | 0            |
| 4   | 1-A   | 45    | 0        | 0        | 0       | 0            |
| 4   | 2-A   | 38    | 0        | 0        | 0       | 0            |
| 4   | 3-A   | 37    | 0        | 0        | 0       | 0            |
| 4   | 4-A   | 44    | 0        | 0        | 0       | 0            |
| 4   | 5-A   | 47    | 0        | 0        | 0       | 0            |
| 4   | 6-A   | 45    | 0        | 0        | 0       | 0            |
| 4   | í-A   | 44    | 0        | 0        | 0       | 0            |
| 4   | 8-A   | 37    | 0        | 0        | 0       | 0            |
| 4   | 9-A   | 40    | 0        | 0        |         | 0            |
| 4   | 10-A  | 50    | 0        | 0        |         | 0            |
| 4   | 11-A  | 50    | 0        | 0        |         | 0            |
| 4   | 12-A  | 48    | 0        | 0        | 0       | 0            |



| Mol | Chain | Non-H  | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|--------|----------|----------|---------|--------------|
| 4   | 13-A  | 48     | 0        | 0        | 0       | 0            |
| 4   | 14-A  | 42     | 0        | 0        | 0       | 0            |
| 4   | 15-A  | 41     | 0        | 0        | 0       | 0            |
| 4   | 16-A  | 42     | 0        | 0        | 0       | 0            |
| 4   | 17-A  | 42     | 0        | 0        | 0       | 0            |
| 4   | 18-A  | 44     | 0        | 0        | 0       | 0            |
| 4   | 19-A  | 41     | 0        | 0        | 0       | 0            |
| 4   | 20-A  | 48     | 0        | 0        | 0       | 0            |
| 4   | 21-A  | 42     | 0        | 0        | 0       | 0            |
| 4   | 22-A  | 46     | 0        | 0        | 0       | 0            |
| 4   | 23-A  | 55     | 0        | 0        | 0       | 0            |
| 4   | 24-A  | 49     | 0        | 0        | 0       | 0            |
| 4   | 25-A  | 54     | 0        | 0        | 0       | 0            |
| 4   | 26-A  | 41     | 0        | 0        | 0       | 0            |
| 4   | 27-A  | 39     | 0        | 0        | 0       | 0            |
| 4   | 28-A  | 40     | 0        | 0        | 0       | 0            |
| 4   | 29-A  | 47     | 0        | 0        | 0       | 0            |
| 4   | 30-A  | 46     | 0        | 0        | 0       | 0            |
| 4   | 31-A  | 47     | 0        | 0        | 0       | 0            |
| 4   | 32-A  | 45     | 0        | 0        | 0       | 0            |
| 4   | 33-A  | 48     | 0        | 0        | 0       | 0            |
| 4   | 34-A  | 43     | 0        | 0        | 0       | 0            |
| 4   | 35-A  | 38     | 0        | 0        | 0       | 0            |
| 4   | 36-A  | 37     | 0        | 0        | 0       | 0            |
| 4   | 37-A  | 41     | 0        | 0        | 0       | 0            |
| 4   | 38-A  | 47     | 0        | 0        | 0       | 0            |
| 4   | 39-A  | 49     | 0        | 0        | 0       | 0            |
| 4   | 40-A  | 48     | 0        | 0        | 0       | 0            |
| 4   | 41-A  | 42     | 0        | 0        | 0       | 0            |
| 4   | 42-A  | 48     | 0        | 0        | 0       | 0            |
| 4   | 43-A  | 45     | 0        | 0        | 0       | 0            |
| 4   | 44-A  | 52     | 0        | 0        | 0       | 0            |
| 4   | 45-A  | 39     | 0        | 0        | 0       | 0            |
| All | All   | 108927 | 104625   | 104623   | 0       | 0            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). Clashscore could not be calculated for this entry.

There are no clashes within the asymmetric unit.

There are no symmetry-related clashes.



### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed                    | Favoured  | Allowed  | Outliers | Percentiles |  |
|-----|-------|-----------------------------|-----------|----------|----------|-------------|--|
| 1   | 1-A   | 304/306~(99%)               | 259~(85%) | 22 (7%)  | 23 (8%)  | 1 0         |  |
| 1   | 2-A   | 304/306~(99%)               | 258~(85%) | 29~(10%) | 17 (6%)  | 2  0        |  |
| 1   | 3-A   | 304/306~(99%)               | 263 (86%) | 24 (8%)  | 17 (6%)  | 2  0        |  |
| 1   | 4-A   | 304/306~(99%)               | 266 (88%) | 20 (7%)  | 18 (6%)  | 1 0         |  |
| 1   | 5-A   | 304/306~(99%)               | 255 (84%) | 29 (10%) | 20 (7%)  | 1 0         |  |
| 1   | 6-A   | 304/306~(99%)               | 258 (85%) | 29 (10%) | 17 (6%)  | 2 0         |  |
| 1   | 7-A   | 304/306~(99%)               | 261 (86%) | 32 (10%) | 11 (4%)  | 3 1         |  |
| 1   | 8-A   | 304/306~(99%)               | 256 (84%) | 26 (9%)  | 22 (7%)  | 1 0         |  |
| 1   | 9-A   | 304/306~(99%)               | 254 (84%) | 31 (10%) | 19 (6%)  | 1 0         |  |
| 1   | 10-A  | 304/306~(99%)               | 257 (84%) | 28 (9%)  | 19 (6%)  | 1 0         |  |
| 1   | 11-A  | 304/306~(99%)               | 260 (86%) | 29 (10%) | 15 (5%)  | 2 1         |  |
| 1   | 12-A  | 304/306~(99%)               | 262 (86%) | 26 (9%)  | 16 (5%)  | 2 0         |  |
| 1   | 13-A  | 304/306~(99%)               | 259 (85%) | 28 (9%)  | 17 (6%)  | 2 0         |  |
| 1   | 14-A  | 304/306~(99%)               | 256 (84%) | 32 (10%) | 16 (5%)  | 2 0         |  |
| 1   | 15-A  | 304/306~(99%)               | 257 (84%) | 24 (8%)  | 23 (8%)  | 1 0         |  |
| 1   | 16-A  | 304/306~(99%)               | 261 (86%) | 25 (8%)  | 18 (6%)  | 1 0         |  |
| 1   | 17-A  | 304/306~(99%)               | 253 (83%) | 30 (10%) | 21 (7%)  | 1 0         |  |
| 1   | 18-A  | 304/306~(99%)               | 252 (83%) | 30 (10%) | 22 (7%)  | 1 0         |  |
| 1   | 19-A  | 304/306~(99%)               | 259 (85%) | 27 (9%)  | 18 (6%)  | 1 0         |  |
| 1   | 20-A  | 304/306~(99%)               | 260 (86%) | 25 (8%)  | 19 (6%)  | 1 0         |  |
| 1   | 21-A  | 304/306~(99%)               | 244 (80%) | 43 (14%) | 17 (6%)  | 2 0         |  |
| 1   | 22-A  | $\overline{304/306}~(99\%)$ | 258 (85%) | 26 (9%)  | 20 (7%)  | 1 0         |  |
| 1   | 23-A  | $\overline{304/306}~(99\%)$ | 252 (83%) | 33 (11%) | 19 (6%)  | 1 0         |  |
| 1   | 24-A  | $\overline{304/306}~(99\%)$ | 254 (84%) | 32 (10%) | 18 (6%)  | 1 0         |  |
| 1   | 25-A  | 304/306~(99%)               | 256 (84%) | 32 (10%) | 16 (5%)  | 2 0         |  |



| Mol | Chain | Analysed          | Favoured    | Allowed    | Outliers | Percentiles |   |
|-----|-------|-------------------|-------------|------------|----------|-------------|---|
| 1   | 26-A  | 304/306~(99%)     | 261 (86%)   | 31~(10%)   | 12 (4%)  | 3           | 1 |
| 1   | 27-A  | 304/306~(99%)     | 254 (84%)   | 32 (10%)   | 18 (6%)  | 1           | 0 |
| 1   | 28-A  | 304/306~(99%)     | 247 (81%)   | 38 (12%)   | 19 (6%)  | 1           | 0 |
| 1   | 29-A  | 304/306~(99%)     | 259~(85%)   | 23 (8%)    | 22 (7%)  | 1           | 0 |
| 1   | 30-A  | 304/306~(99%)     | 259~(85%)   | 30 (10%)   | 15 (5%)  | 2           | 1 |
| 1   | 31-A  | 304/306~(99%)     | 261 (86%)   | 29 (10%)   | 14 (5%)  | 2           | 1 |
| 1   | 32-A  | 304/306~(99%)     | 254 (84%)   | 32 (10%)   | 18 (6%)  | 1           | 0 |
| 1   | 33-A  | 304/306~(99%)     | 260 (86%)   | 24 (8%)    | 20 (7%)  | 1           | 0 |
| 1   | 34-A  | 304/306~(99%)     | 250 (82%)   | 33 (11%)   | 21 (7%)  | 1           | 0 |
| 1   | 35-A  | 304/306~(99%)     | 260 (86%)   | 26 (9%)    | 18 (6%)  | 1           | 0 |
| 1   | 36-A  | 304/306~(99%)     | 260 (86%)   | 30 (10%)   | 14 (5%)  | 2           | 1 |
| 1   | 37-A  | 304/306~(99%)     | 252 (83%)   | 30 (10%)   | 22 (7%)  | 1           | 0 |
| 1   | 38-A  | 304/306~(99%)     | 254 (84%)   | 29 (10%)   | 21 (7%)  | 1           | 0 |
| 1   | 39-A  | 304/306~(99%)     | 249 (82%)   | 39~(13%)   | 16 (5%)  | 2           | 0 |
| 1   | 40-A  | 304/306~(99%)     | 256 (84%)   | 34 (11%)   | 14 (5%)  | 2           | 1 |
| 1   | 41-A  | 304/306~(99%)     | 263 (86%)   | 24 (8%)    | 17 (6%)  | 2           | 0 |
| 1   | 42-A  | 304/306~(99%)     | 272 (90%)   | 20 (7%)    | 12 (4%)  | 3           | 1 |
| 1   | 43-A  | 304/306~(99%)     | 258 (85%)   | 32 (10%)   | 14 (5%)  | 2           | 1 |
| 1   | 44-A  | 304/306~(99%)     | 255 (84%)   | 32 (10%)   | 17 (6%)  | 2           | 0 |
| 1   | 45-A  | 304/306~(99%)     | 263 (86%)   | 25 (8%)    | 16 (5%)  | 2           | 0 |
| All | All   | 13680/13770~(99%) | 11577 (85%) | 1305 (10%) | 798 (6%) | 1           | 0 |

Continued from previous page...

5 of 798 Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | 1-A   | 24  | THR  |
| 1   | 1-A   | 63  | ASN  |
| 1   | 1-A   | 72  | ASN  |
| 1   | 1-A   | 73  | VAL  |
| 1   | 1-A   | 152 | ILE  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar



resolution.

| Mol | Chain | Analysed       | Rotameric | Outliers | Percentiles |  |  |
|-----|-------|----------------|-----------|----------|-------------|--|--|
| 1   | 1-A   | 263/263~(100%) | 220 (84%) | 43 (16%) | 2 2         |  |  |
| 1   | 2-A   | 263/263~(100%) | 219~(83%) | 44 (17%) | 2 1         |  |  |
| 1   | 3-A   | 263/263~(100%) | 222 (84%) | 41 (16%) | 2 2         |  |  |
| 1   | 4-A   | 263/263~(100%) | 221 (84%) | 42 (16%) | 2 2         |  |  |
| 1   | 5-A   | 263/263~(100%) | 214 (81%) | 49 (19%) | 1 1         |  |  |
| 1   | 6-A   | 263/263~(100%) | 225 (86%) | 38 (14%) | 3 2         |  |  |
| 1   | 7-A   | 263/263~(100%) | 227 (86%) | 36 (14%) | 3 3         |  |  |
| 1   | 8-A   | 263/263~(100%) | 222 (84%) | 41 (16%) | 2 2         |  |  |
| 1   | 9-A   | 263/263~(100%) | 221 (84%) | 42 (16%) | 2 2         |  |  |
| 1   | 10-A  | 263/263~(100%) | 232 (88%) | 31 (12%) | 5 4         |  |  |
| 1   | 11-A  | 263/263~(100%) | 224 (85%) | 39~(15%) | 3 2         |  |  |
| 1   | 12-A  | 263/263~(100%) | 221 (84%) | 42 (16%) | 2 2         |  |  |
| 1   | 13-A  | 263/263~(100%) | 222 (84%) | 41 (16%) | 2 2         |  |  |
| 1   | 14-A  | 263/263~(100%) | 220 (84%) | 43 (16%) | 2 2         |  |  |
| 1   | 15-A  | 263/263~(100%) | 226 (86%) | 37 (14%) | 3 2         |  |  |
| 1   | 16-A  | 263/263~(100%) | 226 (86%) | 37 (14%) | 3 2         |  |  |
| 1   | 17-A  | 263/263~(100%) | 227 (86%) | 36 (14%) | 3 3         |  |  |
| 1   | 18-A  | 263/263~(100%) | 220 (84%) | 43 (16%) | 2 2         |  |  |
| 1   | 19-A  | 263/263~(100%) | 220 (84%) | 43 (16%) | 2 2         |  |  |
| 1   | 20-A  | 263/263~(100%) | 224 (85%) | 39 (15%) | 3 2         |  |  |
| 1   | 21-A  | 263/263~(100%) | 217 (82%) | 46 (18%) | 2 1         |  |  |
| 1   | 22-A  | 263/263~(100%) | 218 (83%) | 45 (17%) | 2 1         |  |  |
| 1   | 23-A  | 263/263~(100%) | 226 (86%) | 37 (14%) | 3 2         |  |  |
| 1   | 24-A  | 263/263~(100%) | 218 (83%) | 45 (17%) | 2 1         |  |  |
| 1   | 25-A  | 263/263~(100%) | 220 (84%) | 43 (16%) | 2 2         |  |  |
| 1   | 26-A  | 263/263~(100%) | 226 (86%) | 37 (14%) | 3 2         |  |  |
| 1   | 27-A  | 263/263~(100%) | 212 (81%) | 51 (19%) | 1 1         |  |  |
| 1   | 28-A  | 263/263~(100%) | 218 (83%) | 45 (17%) | 2 1         |  |  |
| 1   | 29-A  | 263/263~(100%) | 218 (83%) | 45 (17%) | 2 1         |  |  |

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.



| Mol | Chain | Analysed                     | Rotameric  | Outliers   | Percentiles |   |  |
|-----|-------|------------------------------|------------|------------|-------------|---|--|
| 1   | 30-A  | 263/263~(100%)               | 217~(82%)  | 46 (18%)   | 2           | 1 |  |
| 1   | 31-A  | 263/263~(100%)               | 222~(84%)  | 41 (16%)   | 2           | 2 |  |
| 1   | 32-A  | 263/263~(100%)               | 218~(83%)  | 45~(17%)   | 2           | 1 |  |
| 1   | 33-A  | 263/263~(100%)               | 236~(90%)  | 27~(10%)   | 7           | 6 |  |
| 1   | 34-A  | 263/263~(100%)               | 224~(85%)  | 39~(15%)   | 3           | 2 |  |
| 1   | 35-A  | 263/263~(100%)               | 218~(83%)  | 45~(17%)   | 2           | 1 |  |
| 1   | 36-A  | 263/263~(100%)               | 213~(81%)  | 50~(19%)   | 1           | 1 |  |
| 1   | 37-A  | 263/263~(100%)               | 212 (81%)  | 51~(19%)   | 1           | 1 |  |
| 1   | 38-A  | 263/263~(100%)               | 224~(85%)  | 39~(15%)   | 3           | 2 |  |
| 1   | 39-A  | 263/263~(100%)               | 215~(82%)  | 48 (18%)   | 1           | 1 |  |
| 1   | 40-A  | 263/263~(100%)               | 215~(82%)  | 48 (18%)   | 1           | 1 |  |
| 1   | 41-A  | 263/263~(100%)               | 222~(84%)  | 41 (16%)   | 2           | 2 |  |
| 1   | 42-A  | 263/263~(100%)               | 227~(86%)  | 36~(14%)   | 3           | 3 |  |
| 1   | 43-A  | 263/263~(100%)               | 219~(83%)  | 44 (17%)   | 2           | 1 |  |
| 1   | 44-A  | $26\overline{3}/263~(100\%)$ | 224 (85%)  | 39~(15%)   | 3           | 2 |  |
| 1   | 45-A  | 263/263~(100%)               | 224 (85%)  | 39~(15%)   | 3           | 2 |  |
| All | All   | 11835/11835 (100%)           | 9956 (84%) | 1879 (16%) | 2           | 2 |  |

Continued from previous page...

5 of 1879 residues with a non-rotameric sidechain are listed below:

| Mol | Chain | $\operatorname{Res}$ | Type |
|-----|-------|----------------------|------|
| 1   | 23-A  | 259                  | ILE  |
| 1   | 43-A  | 137                  | LYS  |
| 1   | 28-A  | 253                  | LEU  |
| 1   | 42-A  | 301                  | SER  |
| 1   | 39-A  | 77                   | VAL  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 413 such sidechains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | 29-A  | 69  | GLN  |
| 1   | 33-A  | 142 | ASN  |
| 1   | 44-A  | 256 | GLN  |
| 1   | 29-A  | 273 | GLN  |
| 1   | 31-A  | 83  | GLN  |



#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

#### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

#### 5.6 Ligand geometry (i)

Of 135 ligands modelled in this entry, 45 are monoatomic - leaving 90 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal  | Tuno | Chain   | Dog | Link | В      | ond leng | gths     | Bond angles |      |          |
|------|------|---------|-----|------|--------|----------|----------|-------------|------|----------|
| WIOI | туре | Ullalli | nes |      | Counts | RMSZ     | # Z  > 2 | Counts      | RMSZ | # Z  > 2 |
| 2    | DMS  | 4-A     | 402 | -    | 3,3,3  | 0.77     | 0        | $3,\!3,\!3$ | 1.92 | 2 (66%)  |
| 2    | DMS  | 33-A    | 401 | -    | 3,3,3  | 0.73     | 0        | 3,3,3       | 0.58 | 0        |
| 2    | DMS  | 7-A     | 402 | -    | 3,3,3  | 0.95     | 0        | 3,3,3       | 0.60 | 0        |
| 2    | DMS  | 6-A     | 402 | -    | 3,3,3  | 0.74     | 0        | $3,\!3,\!3$ | 1.72 | 1 (33%)  |
| 2    | DMS  | 31-A    | 401 | -    | 3,3,3  | 0.63     | 0        | 3,3,3       | 1.37 | 0        |
| 2    | DMS  | 27-A    | 401 | -    | 3,3,3  | 0.67     | 0        | $3,\!3,\!3$ | 1.02 | 0        |
| 2    | DMS  | 3-A     | 402 | -    | 3,3,3  | 0.73     | 0        | $3,\!3,\!3$ | 1.32 | 0        |
| 2    | DMS  | 43-A    | 402 | -    | 3,3,3  | 0.68     | 0        | $3,\!3,\!3$ | 1.25 | 0        |
| 2    | DMS  | 12-A    | 402 | -    | 3,3,3  | 0.71     | 0        | $3,\!3,\!3$ | 1.70 | 1 (33%)  |
| 2    | DMS  | 10-A    | 402 | -    | 3,3,3  | 0.79     | 0        | $3,\!3,\!3$ | 1.54 | 1 (33%)  |
| 2    | DMS  | 39-A    | 402 | -    | 3,3,3  | 0.91     | 0        | 3,3,3       | 1.07 | 0        |
| 2    | DMS  | 21-A    | 402 | -    | 3,3,3  | 0.79     | 0        | 3,3,3       | 1.25 | 0        |
| 2    | DMS  | 26-A    | 401 | -    | 3,3,3  | 0.58     | 0        | $3,\!3,\!3$ | 0.89 | 0        |
| 2    | DMS  | 40-A    | 401 | -    | 3,3,3  | 0.43     | 0        | $3,\!3,\!3$ | 0.21 | 0        |
| 2    | DMS  | 17-A    | 402 | -    | 3,3,3  | 0.83     | 0        | 3, 3, 3     | 0.65 | 0        |
| 2    | DMS  | 43-A    | 401 | -    | 3,3,3  | 0.64     | 0        | 3,3,3       | 1.12 | 0        |
| 2    | DMS  | 3-A     | 401 | -    | 3,3,3  | 0.76     | 0        | 3,3,3       | 0.99 | 0        |



|       | <b>T</b> a | Chain | Dag | T : 1- | B           | ond leng | $_{\rm gths}$ | I           | Bond an           | gles     |
|-------|------------|-------|-----|--------|-------------|----------|---------------|-------------|-------------------|----------|
| IVI01 | Type       | Chain | Res | LINK   | Counts      | RMSZ     | # Z  > 2      | Counts      | RMSZ              | # Z  > 2 |
| 2     | DMS        | 2-A   | 402 | -      | 3,3,3       | 0.85     | 0             | $3,\!3,\!3$ | 0.83              | 0        |
| 2     | DMS        | 4-A   | 401 | -      | 3,3,3       | 0.65     | 0             | $3,\!3,\!3$ | 1.16              | 0        |
| 2     | DMS        | 41-A  | 401 | -      | 3,3,3       | 0.67     | 0             | $3,\!3,\!3$ | 0.98              | 0        |
| 2     | DMS        | 32-A  | 402 | -      | 3,3,3       | 0.74     | 0             | $3,\!3,\!3$ | 1.54              | 0        |
| 2     | DMS        | 8-A   | 401 | -      | 3,3,3       | 0.46     | 0             | $3,\!3,\!3$ | 1.25              | 0        |
| 2     | DMS        | 1-A   | 401 | -      | $3,\!3,\!3$ | 0.97     | 0             | 3, 3, 3     | 1.95              | 1 (33%)  |
| 2     | DMS        | 37-A  | 402 | -      | 3,3,3       | 0.70     | 0             | $3,\!3,\!3$ | 0.51              | 0        |
| 2     | DMS        | 20-A  | 402 | -      | 3,3,3       | 0.73     | 0             | $3,\!3,\!3$ | 0.71              | 0        |
| 2     | DMS        | 10-A  | 401 | -      | 3, 3, 3     | 0.96     | 0             | $3,\!3,\!3$ | <mark>3.35</mark> | 2 (66%)  |
| 2     | DMS        | 15-A  | 401 | -      | 3,3,3       | 1.02     | 0             | $3,\!3,\!3$ | 0.97              | 0        |
| 2     | DMS        | 24-A  | 402 | -      | 3,3,3       | 0.64     | 0             | $3,\!3,\!3$ | 1.55              | 0        |
| 2     | DMS        | 25-A  | 402 | -      | 3,3,3       | 0.71     | 0             | $3,\!3,\!3$ | 1.54              | 0        |
| 2     | DMS        | 12-A  | 401 | -      | 3,3,3       | 0.62     | 0             | $3,\!3,\!3$ | 0.92              | 0        |
| 2     | DMS        | 34-A  | 401 | -      | 3,3,3       | 0.79     | 0             | $3,\!3,\!3$ | 0.47              | 0        |
| 2     | DMS        | 38-A  | 401 | -      | 3,3,3       | 0.78     | 0             | $3,\!3,\!3$ | 0.73              | 0        |
| 2     | DMS        | 7-A   | 401 | -      | 3, 3, 3     | 0.67     | 0             | $3,\!3,\!3$ | 1.44              | 1 (33%)  |
| 2     | DMS        | 9-A   | 402 | -      | 3,3,3       | 0.96     | 0             | $3,\!3,\!3$ | 0.88              | 0        |
| 2     | DMS        | 28-A  | 401 | -      | 3,3,3       | 0.69     | 0             | $3,\!3,\!3$ | 0.86              | 0        |
| 2     | DMS        | 30-A  | 402 | -      | 3,3,3       | 0.63     | 0             | 3,3,3       | 2.44              | 2 (66%)  |
| 2     | DMS        | 16-A  | 401 | -      | 3,3,3       | 0.64     | 0             | 3,3,3       | 1.51              | 1 (33%)  |
| 2     | DMS        | 22-A  | 401 | -      | 3,3,3       | 0.72     | 0             | 3,3,3       | 0.25              | 0        |
| 2     | DMS        | 23-A  | 402 | -      | 3,3,3       | 0.94     | 0             | 3,3,3       | 1.08              | 0        |
| 2     | DMS        | 28-A  | 402 | -      | 3,3,3       | 0.86     | 0             | 3, 3, 3     | 1.58              | 1 (33%)  |
| 2     | DMS        | 19-A  | 402 | -      | 3,3,3       | 0.67     | 0             | 3,3,3       | 0.85              | 0        |
| 2     | DMS        | 25-A  | 401 | -      | 3,3,3       | 0.66     | 0             | 3,3,3       | 2.38              | 2 (66%)  |
| 2     | DMS        | 8-A   | 402 | -      | 3,3,3       | 0.71     | 0             | 3,3,3       | 0.86              | 0        |
| 2     | DMS        | 42-A  | 402 | -      | 3,3,3       | 0.79     | 0             | 3,3,3       | 0.97              | 0        |
| 2     | DMS        | 14-A  | 402 | -      | 3,3,3       | 0.69     | 0             | 3,3,3       | 0.61              | 0        |
| 2     | DMS        | 27-A  | 402 | -      | 3,3,3       | 0.74     | 0             | 3, 3, 3     | 0.98              | 0        |
| 2     | DMS        | 44-A  | 402 | -      | 3,3,3       | 0.74     | 0             | $3,\!3,\!3$ | 0.94              | 0        |
| 2     | DMS        | 39-A  | 401 | -      | 3,3,3       | 0.80     | 0             | 3, 3, 3     | 1.11              | 0        |
| 2     | DMS        | 44-A  | 401 | -      | 3,3,3       | 0.83     | 0             | $3,\!3,\!3$ | 1.07              | 0        |
| 2     | DMS        | 6-A   | 401 | -      | 3,3,3       | 0.80     | 0             | $3,\!3,\!3$ | 1.02              | 0        |
| 2     | DMS        | 41-A  | 402 | -      | 3,3,3       | 0.98     | 0             | $3,\!3,\!3$ | 0.18              | 0        |
| 2     | DMS        | 15-A  | 402 | -      | 3,3,3       | 0.68     | 0             | 3,3,3       | 0.95              | 0        |
| 2     | DMS        | 36-A  | 402 | -      | 3,3,3       | 0.90     | 0             | $3,\!3,\!3$ | 1.25              | 0        |
| 2     | DMS        | 23-A  | 401 | -      | 3,3,3       | 0.46     | 0             | 3,3,3       | 1.29              | 0        |
| 2     | DMS        | 20-A  | 401 | _      | 3,3,3       | 0.60     | 0             | 3,3,3       | 3.02              | 3 (100%) |
| 2     | DMS        | 18-A  | 401 | -      | 3,3,3       | 0.86     | 0             | 3, 3, 3     | 1.54              | 1 (33%)  |
| 2     | DMS        | 13-A  | 401 | -      | 3,3,3       | 0.68     | 0             | $3,\!3,\!3$ | 0.72              | 0        |
| 2     | DMS        | 45-A  | 401 | -      | 3,3,3       | 0.76     | 0             | 3, 3, 3     | 1.23              | 1 (33%)  |



| Mal   | Turne | Chain | Dec | Tiple | Bond lengths |      | I        | Bond angles |      |         |
|-------|-------|-------|-----|-------|--------------|------|----------|-------------|------|---------|
| IVIOI | туре  | Unam  | nes | LIIIK | Counts       | RMSZ | # Z  > 2 | Counts      | RMSZ | # Z >2  |
| 2     | DMS   | 34-A  | 402 | -     | 3,3,3        | 0.77 | 0        | $3,\!3,\!3$ | 1.29 | 0       |
| 2     | DMS   | 1-A   | 402 | -     | 3, 3, 3      | 0.77 | 0        | $^{3,3,3}$  | 2.09 | 1 (33%) |
| 2     | DMS   | 24-A  | 401 | -     | 3,3,3        | 0.79 | 0        | 3, 3, 3     | 0.64 | 0       |
| 2     | DMS   | 35-A  | 402 | -     | 3,3,3        | 0.83 | 0        | 3,3,3       | 0.74 | 0       |
| 2     | DMS   | 33-A  | 402 | -     | 3,3,3        | 0.75 | 0        | $3,\!3,\!3$ | 0.55 | 0       |
| 2     | DMS   | 38-A  | 402 | -     | 3,3,3        | 0.85 | 0        | $3,\!3,\!3$ | 1.41 | 0       |
| 2     | DMS   | 29-A  | 402 | -     | 3,3,3        | 0.91 | 0        | $3,\!3,\!3$ | 0.86 | 0       |
| 2     | DMS   | 37-A  | 401 | -     | 3,3,3        | 0.70 | 0        | $3,\!3,\!3$ | 0.36 | 0       |
| 2     | DMS   | 21-A  | 401 | -     | 3, 3, 3      | 0.96 | 0        | $3,\!3,\!3$ | 1.82 | 2 (66%) |
| 2     | DMS   | 5-A   | 402 | -     | 3,3,3        | 0.84 | 0        | 3,3,3       | 0.36 | 0       |
| 2     | DMS   | 35-A  | 401 | -     | 3,3,3        | 0.25 | 0        | $3,\!3,\!3$ | 1.29 | 0       |
| 2     | DMS   | 32-A  | 401 | -     | 3,3,3        | 0.49 | 0        | $3,\!3,\!3$ | 2.09 | 1 (33%) |
| 2     | DMS   | 45-A  | 402 | -     | 3,3,3        | 0.94 | 0        | 3,3,3       | 0.81 | 0       |
| 2     | DMS   | 26-A  | 402 | -     | 3,3,3        | 0.87 | 0        | 3,3,3       | 1.12 | 0       |
| 2     | DMS   | 36-A  | 401 | -     | 3,3,3        | 0.77 | 0        | 3,3,3       | 1.11 | 0       |
| 2     | DMS   | 13-A  | 402 | -     | 3,3,3        | 0.78 | 0        | 3,3,3       | 0.88 | 0       |
| 2     | DMS   | 30-A  | 401 | -     | 3,3,3        | 0.61 | 0        | $3,\!3,\!3$ | 0.69 | 0       |
| 2     | DMS   | 11-A  | 402 | -     | 3,3,3        | 0.77 | 0        | $3,\!3,\!3$ | 1.26 | 0       |
| 2     | DMS   | 18-A  | 402 | -     | 3,3,3        | 0.82 | 0        | $3,\!3,\!3$ | 1.16 | 0       |
| 2     | DMS   | 14-A  | 401 | -     | 3, 3, 3      | 0.79 | 0        | $3,\!3,\!3$ | 1.12 | 0       |
| 2     | DMS   | 17-A  | 401 | -     | 3, 3, 3      | 0.74 | 0        | $3,\!3,\!3$ | 1.55 | 1 (33%) |
| 2     | DMS   | 2-A   | 401 | -     | 3,3,3        | 0.63 | 0        | 3,3,3       | 0.29 | 0       |
| 2     | DMS   | 40-A  | 402 | -     | 3,3,3        | 0.79 | 0        | 3,3,3       | 0.65 | 0       |
| 2     | DMS   | 9-A   | 401 | -     | 3,3,3        | 0.57 | 0        | $3,\!3,\!3$ | 1.85 | 1 (33%) |
| 2     | DMS   | 16-A  | 402 | -     | 3,3,3        | 0.75 | 0        | 3, 3, 3     | 0.92 | 0       |
| 2     | DMS   | 22-A  | 402 | -     | 3,3,3        | 0.80 | 0        | $3,\!3,\!3$ | 1.76 | 1 (33%) |
| 2     | DMS   | 11-A  | 401 | -     | 3,3,3        | 0.61 | 0        | 3,3,3       | 1.06 | 0       |
| 2     | DMS   | 19-A  | 401 | -     | 3,3,3        | 1.13 | 0        | $3,\!3,\!3$ | 0.81 | 0       |
| 2     | DMS   | 31-A  | 402 | -     | 3,3,3        | 0.74 | 0        | $3,\!3,\!3$ | 0.98 | 0       |
| 2     | DMS   | 5-A   | 401 | _     | 3,3,3        | 0.52 | 0        | 3,3,3       | 1.94 | 2 (66%) |
| 2     | DMS   | 42-A  | 401 | -     | 3,3,3        | 0.83 | 0        | 3, 3, 3     | 1.23 | 0       |
| 2     | DMS   | 29-A  | 401 | -     | 3,3,3        | 0.83 | 0        | 3,3,3       | 1.28 | 0       |

There are no bond length outliers.

The worst 5 of 29 bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms  | Z    | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|--------|------|------------------|---------------|
| 2   | 10-A  | 401 | DMS  | O-S-C2 | 4.55 | 129.76           | 106.54        |
| 2   | 25-A  | 401 | DMS  | O-S-C1 | 3.40 | 123.89           | 106.54        |
| 2   | 30-A  | 402 | DMS  | O-S-C1 | 3.24 | 123.08           | 106.54        |



Continued from previous page...

| Mol | Chain | Res | Type | Atoms   | Z    | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|---------|------|------------------|---------------|
| 2   | 20-A  | 401 | DMS  | C2-S-C1 | 3.23 | 115.07           | 98.44         |
| 2   | 10-A  | 401 | DMS  | C2-S-C1 | 3.09 | 114.36           | 98.44         |

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

### 5.7 Other polymers (i)

There are no such residues in this entry.

### 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



### 6 Fit of model and data (i)

### 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

| Mol | Chain | Analysed       | $\langle RSRZ \rangle$ | #RSRZ>2    |   | $OWAB(Å^2)$    | $Q{<}0.9$  |
|-----|-------|----------------|------------------------|------------|---|----------------|------------|
| 1   | 1-A   | 306/306~(100%) | 1.37                   | 53~(17%) 1 | 1 | 31, 34, 40, 41 | 306~(100%) |
| 1   | 2-A   | 306/306~(100%) | 1.37                   | 53~(17%) 1 | 1 | 31, 34, 40, 41 | 306~(100%) |
| 1   | 3-A   | 306/306~(100%) | 1.37                   | 53~(17%) 1 | 1 | 31, 34, 40, 41 | 306 (100%) |
| 1   | 4-A   | 306/306~(100%) | 1.37                   | 53~(17%) 1 | 1 | 31, 34, 40, 41 | 306 (100%) |
| 1   | 5-A   | 306/306~(100%) | 1.37                   | 53~(17%) 1 | 1 | 31, 34, 40, 41 | 306 (100%) |
| 1   | 6-A   | 306/306~(100%) | 1.37                   | 53~(17%) 1 | 1 | 31, 34, 40, 41 | 306 (100%) |
| 1   | 7-A   | 306/306~(100%) | 1.37                   | 53~(17%) 1 | 1 | 31, 34, 40, 41 | 306 (100%) |
| 1   | 8-A   | 306/306~(100%) | 1.37                   | 53~(17%) 1 | 1 | 31, 34, 40, 41 | 306 (100%) |
| 1   | 9-A   | 306/306~(100%) | 1.37                   | 53 (17%) 1 | 1 | 31, 34, 40, 41 | 306 (100%) |
| 1   | 10-A  | 306/306~(100%) | 1.37                   | 53 (17%) 1 | 1 | 31, 34, 40, 41 | 306 (100%) |
| 1   | 11-A  | 306/306~(100%) | 1.37                   | 53 (17%) 1 | 1 | 31, 34, 40, 41 | 306 (100%) |
| 1   | 12-A  | 306/306~(100%) | 1.37                   | 53 (17%) 1 | 1 | 31, 34, 40, 41 | 306 (100%) |
| 1   | 13-A  | 306/306~(100%) | 1.37                   | 53 (17%) 1 | 1 | 31, 34, 40, 41 | 306 (100%) |
| 1   | 14-A  | 306/306~(100%) | 1.37                   | 53~(17%) 1 | 1 | 31, 34, 40, 41 | 306 (100%) |
| 1   | 15-A  | 306/306~(100%) | 1.37                   | 53 (17%) 1 | 1 | 31, 34, 40, 41 | 306 (100%) |
| 1   | 16-A  | 306/306~(100%) | 1.37                   | 53~(17%) 1 | 1 | 31, 34, 40, 41 | 306 (100%) |
| 1   | 17-A  | 306/306~(100%) | 1.37                   | 53 (17%) 1 | 1 | 31, 34, 40, 41 | 306 (100%) |
| 1   | 18-A  | 306/306~(100%) | 1.37                   | 53 (17%) 1 | 1 | 31, 34, 40, 41 | 306 (100%) |
| 1   | 19-A  | 306/306~(100%) | 1.37                   | 53 (17%) 1 | 1 | 31, 34, 40, 41 | 306 (100%) |
| 1   | 20-A  | 306/306~(100%) | 1.37                   | 53~(17%) 1 | 1 | 31, 34, 40, 41 | 306 (100%) |
| 1   | 21-A  | 306/306~(100%) | 1.37                   | 53 (17%) 1 | 1 | 31, 34, 40, 41 | 306 (100%) |
| 1   | 22-A  | 306/306~(100%) | 1.37                   | 53~(17%) 1 | 1 | 31, 34, 40, 41 | 306 (100%) |
| 1   | 23-A  | 306/306~(100%) | 1.37                   | 53~(17%) 1 | 1 | 31, 34, 40, 41 | 306 (100%) |
| 1   | 24-A  | 306/306~(100%) | 1.37                   | 53~(17%) 1 | 1 | 31, 34, 40, 41 | 306 (100%) |



| Mol | Chain | Analysed           | $\langle RSRZ \rangle$ | #RSR       | Z> | 2 | $OWAB(Å^2)$    | $\mathbf{Q}{<}0.9$ |
|-----|-------|--------------------|------------------------|------------|----|---|----------------|--------------------|
| 1   | 25-A  | 306/306~(100%)     | 1.37                   | 53 (17%)   | 1  | 1 | 31, 34, 40, 41 | 306 (100%)         |
| 1   | 26-A  | 306/306~(100%)     | 1.37                   | 53 (17%)   | 1  | 1 | 31, 34, 40, 41 | 306 (100%)         |
| 1   | 27-A  | 306/306~(100%)     | 1.37                   | 53 (17%)   | 1  | 1 | 31, 34, 40, 41 | 306 (100%)         |
| 1   | 28-A  | 306/306~(100%)     | 1.37                   | 53 (17%)   | 1  | 1 | 31, 34, 40, 41 | 306 (100%)         |
| 1   | 29-A  | 306/306~(100%)     | 1.37                   | 53~(17%)   | 1  | 1 | 31, 34, 40, 41 | 306 (100%)         |
| 1   | 30-A  | 306/306~(100%)     | 1.37                   | 53 (17%)   | 1  | 1 | 31, 34, 40, 41 | 306 (100%)         |
| 1   | 31-A  | 306/306~(100%)     | 1.37                   | 53 (17%)   | 1  | 1 | 31, 34, 40, 41 | 306 (100%)         |
| 1   | 32-A  | 306/306~(100%)     | 1.37                   | 53 (17%)   | 1  | 1 | 31, 34, 40, 41 | 306 (100%)         |
| 1   | 33-A  | 306/306~(100%)     | 1.37                   | 53 (17%)   | 1  | 1 | 31, 34, 40, 41 | 306 (100%)         |
| 1   | 34-A  | 306/306~(100%)     | 1.37                   | 53 (17%)   | 1  | 1 | 31, 34, 40, 41 | 306 (100%)         |
| 1   | 35-A  | 306/306~(100%)     | 1.37                   | 53 (17%)   | 1  | 1 | 31, 34, 40, 41 | 306 (100%)         |
| 1   | 36-A  | 306/306~(100%)     | 1.37                   | 53 (17%)   | 1  | 1 | 31, 34, 40, 41 | 306 (100%)         |
| 1   | 37-A  | 306/306~(100%)     | 1.37                   | 53 (17%)   | 1  | 1 | 31, 34, 40, 41 | 306 (100%)         |
| 1   | 38-A  | 306/306~(100%)     | 1.37                   | 53 (17%)   | 1  | 1 | 31, 34, 40, 41 | 306 (100%)         |
| 1   | 39-A  | 306/306~(100%)     | 1.37                   | 53 (17%)   | 1  | 1 | 31, 34, 40, 41 | 306 (100%)         |
| 1   | 40-A  | 306/306~(100%)     | 1.37                   | 53 (17%)   | 1  | 1 | 31, 34, 40, 41 | 306 (100%)         |
| 1   | 41-A  | 306/306~(100%)     | 1.37                   | 53 (17%)   | 1  | 1 | 31, 34, 40, 41 | 306 (100%)         |
| 1   | 42-A  | 306/306~(100%)     | 1.37                   | 53 (17%)   | 1  | 1 | 31, 34, 40, 41 | 306 (100%)         |
| 1   | 43-A  | 306/306~(100%)     | 1.37                   | 53 (17%)   | 1  | 1 | 31, 34, 40, 41 | 306 (100%)         |
| 1   | 44-A  | 306/306~(100%)     | 1.37                   | 53 (17%)   | 1  | 1 | 31, 34, 40, 41 | 306 (100%)         |
| 1   | 45-A  | 306/306~(100%)     | 1.37                   | 53 (17%)   | 1  | 1 | 31, 34, 40, 41 | 306 (100%)         |
| All | All   | 13770/13770 (100%) | 1.37                   | 2385 (17%) | 1  | 1 | 31, 34, 40, 41 | 13770 (100%)       |

The worst 5 of 2385 RSRZ outliers are listed below:

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | 1-A   | 304 | THR  | 18.0 |
| 1   | 2-A   | 304 | THR  | 18.0 |
| 1   | 3-A   | 304 | THR  | 18.0 |
| 1   | 4-A   | 304 | THR  | 18.0 |
| 1   | 5-A   | 304 | THR  | 18.0 |



#### 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

#### 6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

| Mol | Type | Chain | Res | Atoms | RSCC | RSR  | $B-factors(Å^2)$ | Q<0.9 |
|-----|------|-------|-----|-------|------|------|------------------|-------|
| 2   | DMS  | 1-A   | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |
| 2   | DMS  | 2-A   | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |
| 2   | DMS  | 3-A   | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |
| 2   | DMS  | 4-A   | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |
| 2   | DMS  | 5-A   | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |
| 2   | DMS  | 6-A   | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |
| 2   | DMS  | 7-A   | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |
| 2   | DMS  | 8-A   | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |
| 2   | DMS  | 9-A   | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |
| 2   | DMS  | 10-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |
| 2   | DMS  | 11-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |
| 2   | DMS  | 12-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |
| 2   | DMS  | 13-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |
| 2   | DMS  | 14-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |
| 2   | DMS  | 15-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |
| 2   | DMS  | 16-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |
| 2   | DMS  | 17-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |
| 2   | DMS  | 18-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |
| 2   | DMS  | 19-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |
| 2   | DMS  | 20-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |
| 2   | DMS  | 21-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |
| 2   | DMS  | 22-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |
| 2   | DMS  | 23-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |
| 2   | DMS  | 24-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |
| 2   | DMS  | 25-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |
| 2   | DMS  | 26-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |



| Continueu from previous page |      |       |     |       |      |      |                  |       |  |  |
|------------------------------|------|-------|-----|-------|------|------|------------------|-------|--|--|
| Mol                          | Type | Chain | Res | Atoms | RSCC | RSR  | $B-factors(A^2)$ | Q<0.9 |  |  |
| 2                            | DMS  | 27-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |  |  |
| 2                            | DMS  | 28-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |  |  |
| 2                            | DMS  | 29-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |  |  |
| 2                            | DMS  | 30-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |  |  |
| 2                            | DMS  | 31-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |  |  |
| 2                            | DMS  | 32-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |  |  |
| 2                            | DMS  | 33-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |  |  |
| 2                            | DMS  | 34-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |  |  |
| 2                            | DMS  | 35-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |  |  |
| 2                            | DMS  | 36-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |  |  |
| 2                            | DMS  | 37-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |  |  |
| 2                            | DMS  | 38-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |  |  |
| 2                            | DMS  | 39-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |  |  |
| 2                            | DMS  | 40-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |  |  |
| 2                            | DMS  | 41-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |  |  |
| 2                            | DMS  | 42-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |  |  |
| 2                            | DMS  | 43-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |  |  |
| 2                            | DMS  | 44-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |  |  |
| 2                            | DMS  | 45-A  | 402 | 4/4   | 0.42 | 0.82 | 32,33,33,33      | 10    |  |  |
| 2                            | DMS  | 1-A   | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31      | 10    |  |  |
| 2                            | DMS  | 2-A   | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31      | 10    |  |  |
| 2                            | DMS  | 3-A   | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31      | 10    |  |  |
| 2                            | DMS  | 4-A   | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31      | 10    |  |  |
| 2                            | DMS  | 5-A   | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31      | 10    |  |  |
| 2                            | DMS  | 6-A   | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31      | 10    |  |  |
| 2                            | DMS  | 7-A   | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31      | 10    |  |  |
| 2                            | DMS  | 8-A   | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31      | 10    |  |  |
| 2                            | DMS  | 9-A   | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31      | 10    |  |  |
| 2                            | DMS  | 10-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31      | 10    |  |  |
| 2                            | DMS  | 11-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31      | 10    |  |  |
| 2                            | DMS  | 12-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31      | 10    |  |  |
| 2                            | DMS  | 13-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31      | 10    |  |  |
| 2                            | DMS  | 14-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31      | 10    |  |  |
| 2                            | DMS  | 15-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31      | 10    |  |  |
| 2                            | DMS  | 16-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31      | 10    |  |  |
| 2                            | DMS  | 17-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31      | 10    |  |  |
| $\frac{2}{2}$                | DMS  | 18-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31      | 10    |  |  |
| 2                            | DMS  | 19-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31      | 10    |  |  |
|                              | DMS  | 20-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31      | 10    |  |  |
| 2                            | DMS  | 21-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31      | 10    |  |  |
| 2                            | DMS  | 22-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31      | 10    |  |  |



| Mol | Type | Chain | Res | Atoms | RSCC | RSR  | $B-factors(A^2)$    | Q<0.9 |
|-----|------|-------|-----|-------|------|------|---------------------|-------|
| 2   | DMS  | 23-A  | 401 | 4/4   | 0.85 | 0.27 | 31.31.31.31         | 10    |
| 2   | DMS  | 24-A  | 401 | 4/4   | 0.85 | 0.27 | 31.31.31.31         | 10    |
| 2   | DMS  | 25-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31         | 10    |
| 2   | DMS  | 26-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31         | 10    |
| 2   | DMS  | 27-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31         | 10    |
| 2   | DMS  | 28-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31         | 10    |
| 2   | DMS  | 29-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31         | 10    |
| 2   | DMS  | 30-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31         | 10    |
| 2   | DMS  | 31-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31         | 10    |
| 2   | DMS  | 32-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31         | 10    |
| 2   | DMS  | 33-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31         | 10    |
| 2   | DMS  | 34-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31         | 10    |
| 2   | DMS  | 35-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31         | 10    |
| 2   | DMS  | 36-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31         | 10    |
| 2   | DMS  | 37-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31         | 10    |
| 2   | DMS  | 38-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31         | 10    |
| 2   | DMS  | 39-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31         | 10    |
| 2   | DMS  | 40-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31         | 10    |
| 2   | DMS  | 41-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31         | 10    |
| 2   | DMS  | 42-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31         | 10    |
| 2   | DMS  | 43-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31         | 10    |
| 2   | DMS  | 44-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31         | 10    |
| 2   | DMS  | 45-A  | 401 | 4/4   | 0.85 | 0.27 | 31,31,31,31         | 10    |
| 3   | ZN   | 1-A   | 403 | 1/1   | 0.89 | 0.34 | $33,\!33,\!33,\!33$ | 1     |
| 3   | ZN   | 2-A   | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33         | 1     |
| 3   | ZN   | 3-A   | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33         | 1     |
| 3   | ZN   | 4-A   | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33         | 1     |
| 3   | ZN   | 5-A   | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33         | 1     |
| 3   | ZN   | 6-A   | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33         | 1     |
| 3   | ZN   | 7-A   | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33         | 1     |
| 3   | ZN   | 8-A   | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33         | 1     |
| 3   | ZN   | 9-A   | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33         | 1     |
| 3   | ZN   | 10-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33         | 1     |
| 3   | ZN   | 11-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33         | 1     |
| 3   | ZN   | 12-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33         | 1     |
| 3   | ZN   | 13-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33         | 1     |
| 3   | ZN   | 14-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33         | 1     |
| 3   | ZN   | 15-A  | 403 |       | 0.89 | 0.34 | 33,33,33,33         | 1     |
| 3   | ZN   | 16-A  | 403 |       | 0.89 | 0.34 | 33,33,33,33         |       |
| 3   | ZN   | 17-A  | 403 |       | 0.89 | 0.34 | 33,33,33,33         | 1     |
| 3   | ZN   | 18-A  | 403 |       | 0.89 | 0.34 | 33,33,33,33         | 1     |
| 3   | ZN   | 19-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33         | 1     |



| Mol | Type | Chain | Res | Atoms | RSCC | RSR  | $B$ -factors( $Å^2$ ) | Q<0.9 |
|-----|------|-------|-----|-------|------|------|-----------------------|-------|
| 3   | ZN   | 20-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33           | 1     |
| 3   | ZN   | 21-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33           | 1     |
| 3   | ZN   | 22-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33           | 1     |
| 3   | ZN   | 23-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33           | 1     |
| 3   | ZN   | 24-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33           | 1     |
| 3   | ZN   | 25-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33           | 1     |
| 3   | ZN   | 26-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33           | 1     |
| 3   | ZN   | 27-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33           | 1     |
| 3   | ZN   | 28-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33           | 1     |
| 3   | ZN   | 29-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33           | 1     |
| 3   | ZN   | 30-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33           | 1     |
| 3   | ZN   | 31-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33           | 1     |
| 3   | ZN   | 32-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33           | 1     |
| 3   | ZN   | 33-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33           | 1     |
| 3   | ZN   | 34-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33           | 1     |
| 3   | ZN   | 35-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33           | 1     |
| 3   | ZN   | 36-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33           | 1     |
| 3   | ZN   | 37-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33           | 1     |
| 3   | ZN   | 38-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33           | 1     |
| 3   | ZN   | 39-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33           | 1     |
| 3   | ZN   | 40-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33           | 1     |
| 3   | ZN   | 41-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33           | 1     |
| 3   | ZN   | 42-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33           | 1     |
| 3   | ZN   | 43-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33           | 1     |
| 3   | ZN   | 44-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33           | 1     |
| 3   | ZN   | 45-A  | 403 | 1/1   | 0.89 | 0.34 | 33,33,33,33           | 1     |

### 6.5 Other polymers (i)

There are no such residues in this entry.

