

Full wwPDB X-ray Structure Validation Report (i)

Feb 20, 2024 – 06:47 AM EST

:	4MEY
:	Crystal structure of Escherichia coli RNA polymerase holoenzyme
:	Feng, Y.; Zhang, Y.; Arnold, E.; Ebright, R.H.
:	2013-08-27
:	3.95 Å(reported)
	:

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 3.95 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	1036 (4.20-3.68)
Clashscore	141614	1009 (4.18-3.70)
Ramachandran outliers	138981	1057 (4.20-3.68)
Sidechain outliers	138945	1049 (4.20-3.68)
RSRZ outliers	127900	1007 (4.24-3.64)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain									
1	А	335	69%	17% · 11%								
1	В	335	65%	17% • 14%								
1	G	335	3% 52% 11% •	36%								
1	Н	335	10% 49% 13% •	36%								
2	С	1342	7% 82%	17% •								

Mol	Chain	Length	Quality of chain	
2	T	1342	11%	17%
	1	1012	2%	1770 •
3	D	1407	6 6% 14% •	18%
3	J	1407	^{2%} 66% 13% •	19%
4	Е	91	78%	16% ••
4	К	91	% 68% 12% •	18%
5	F	613	7% 61% 14% •	24%
5	L	613	6% 60% 14% •	24%

2 Entry composition (i)

There are 7 unique types of molecules in this entry. The entry contains 49826 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
1	1 Λ	208	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	A	290	2236	1405	391	432	8	0	0	0
1	р	287	Total	С	Ν	0	S	0	0	0
	I D	201	2160	1359	374	419	8	0		0
1	C	916	Total	С	Ν	0	S	0	0	0
	G	210	1618	1013	282	317	6	0		0
1	ц	915	Total	С	Ν	Ο	S	0	0	0
	11	215	1605	1005	278	316	6	0		0

• Molecule 1 is a protein called DNA-directed RNA polymerase subunit alpha.

There are 24 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	-4	HIS	-	expression tag	UNP P0A7Z4
А	-3	HIS	-	expression tag	UNP P0A7Z4
А	-2	HIS	-	expression tag	UNP P0A7Z4
А	-1	HIS	-	expression tag	UNP P0A7Z4
А	0	HIS	-	expression tag	UNP P0A7Z4
А	1	HIS	-	expression tag	UNP P0A7Z4
В	-4	HIS	-	expression tag	UNP P0A7Z4
В	-3	HIS	-	expression tag	UNP P0A7Z4
В	-2	HIS	-	expression tag	UNP P0A7Z4
В	-1	HIS	-	expression tag	UNP P0A7Z4
В	0	HIS	-	expression tag	UNP P0A7Z4
В	1	HIS	-	expression tag	UNP P0A7Z4
G	-4	HIS	-	expression tag	UNP P0A7Z4
G	-3	HIS	-	expression tag	UNP P0A7Z4
G	-2	HIS	-	expression tag	UNP P0A7Z4
G	-1	HIS	-	expression tag	UNP P0A7Z4
G	0	HIS	-	expression tag	UNP P0A7Z4
G	1	HIS	-	expression tag	UNP P0A7Z4
Н	-4	HIS	-	expression tag	UNP P0A7Z4
Н	-3	HIS	-	expression tag	UNP P0A7Z4
Н	-2	HIS	-	expression tag	UNP P0A7Z4

Continued from previous page...

Chain	Residue	Modelled	Actual	Comment	Reference
Н	-1	HIS	-	expression tag	UNP P0A7Z4
Н	0	HIS	-	expression tag	UNP P0A7Z4
Н	1	HIS	-	expression tag	UNP P0A7Z4

• Molecule 2 is a protein called DNA-directed RNA polymerase subunit beta.

Mol	Chain	Residues		Α	toms			ZeroOcc	AltConf	Trace
2	С	1340	Total 9522	C 5999	N 1675	O 1829	S 19	3	0	0
2	Ι	1340	Total 9544	C 6013	N 1676	0 1835	S 20	3	0	0

• Molecule 3 is a protein called DNA-directed RNA polymerase subunit beta'.

Mol	Chain	Residues		Α	toms		ZeroOcc	AltConf	Trace	
3	D	1147	Total 7549	C 4756	N 1355	0 1411	S 27	0	0	0
3	J	1140	Total 7512	C 4733	N 1348	O 1404	S 27	0	0	0

• Molecule 4 is a protein called DNA-directed RNA polymerase subunit omega.

Mol	Chain	Residues		Aton	ns		ZeroOcc	AltConf	Trace
4	Е	89	Total 482	C 299	N 93	O 90	0	0	0
4	K	75	Total 408	C 253	N 79	O 76	0	0	0

• Molecule 5 is a protein called RNA polymerase sigma factor RpoD.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
5	5 5	464	Total	С	Ν	0	\mathbf{S}	0	0	0
5 F	404	3592	2253	643	682	14	0	0	0	
5	г I	464	Total	С	Ν	0	\mathbf{S}	0	0	0
5 L	404	3592	2253	643	682	14	0	0		

• Molecule 6 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	D	1	Total Mg 1 1	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	J	1	Total Mg 1 1	0	0

• Molecule 7 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	D	2	Total Zn 2 2	0	0
7	J	2	Total Zn 2 2	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: DNA-directed RNA polymerase subunit alpha

• Molecule 3: DNA-directed RNA polymerase subunit beta'

• Molecule 4: DNA-directed RNA polymerase subunit omega

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	186.39Å 207.24Å 308.30Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Bosolution(A)	49.92 - 3.95	Depositor
Resolution (A)	49.92 - 3.95	EDS
% Data completeness	96.6 (49.92-3.95)	Depositor
(in resolution range)	$96.2 \ (49.92 - 3.95)$	EDS
R_{merge}	0.12	Depositor
R_{sym}	0.12	Depositor
$< I/\sigma(I) > 1$	$2.45 (at 4.00 \text{\AA})$	Xtriage
Refinement program	PHENIX (phenix.refine: 1.8_1069)	Depositor
P. P.	0.276 , 0.325	Depositor
n, n_{free}	0.277 , 0.325	DCC
R_{free} test set	2079 reflections $(2.00%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	142.5	Xtriage
Anisotropy	0.187	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.25, 153.4	EDS
L-test for $twinning^2$	$< L >=0.44, < L^2>=0.27$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.88	EDS
Total number of atoms	49826	wwPDB-VP
Average B, all atoms $(Å^2)$	148.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 1.67% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
MIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.25	0/2263	0.49	0/3073	
1	В	0.25	0/2185	0.49	0/2967	
1	G	0.24	0/1636	0.47	0/2221	
1	Н	0.23	0/1623	0.46	0/2205	
2	С	0.26	0/9653	0.47	1/13062~(0.0%)	
2	Ι	0.25	0/9676	0.45	1/13089~(0.0%)	
3	D	0.28	0/7644	0.50	0/10385	
3	J	0.25	0/7607	0.47	0/10334	
4	Е	0.33	0/482	0.63	1/662~(0.2%)	
4	K	0.24	0/407	0.48	0/558	
5	F	0.25	0/3636	0.47	2/4892~(0.0%)	
5	L	0.25	0/3636	0.47	2/4892~(0.0%)	
All	All	0.26	0/50448	0.48	7/68340~(0.0%)	

There are no bond length outliers.

Δ11 ((7)	bond	anglo	outlierg	oro	listod	bolow
AII (()	Dona	angle	outners	are	nsteu	Delow.

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	Е	39	VAL	C-N-CA	7.62	153.99	122.00
2	Ι	936	ARG	NE-CZ-NH2	6.31	123.45	120.30
2	С	936	ARG	NE-CZ-NH2	5.72	123.16	120.30
5	F	149	ASP	CB-CG-OD2	5.23	123.00	118.30
5	L	149	ASP	CB-CG-OD2	5.17	122.96	118.30
5	F	218	ARG	NE-CZ-NH1	5.07	122.83	120.30
5	L	551	LEU	CA-CB-CG	5.03	126.88	115.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2236	0	2254	31	0
1	В	2160	0	2184	30	0
1	G	1618	0	1622	22	0
1	Н	1605	0	1599	28	0
2	С	9522	0	8569	113	0
2	Ι	9544	0	8601	125	0
3	D	7549	0	6266	88	0
3	J	7512	0	6245	87	0
4	Е	482	0	301	7	0
4	K	408	0	255	9	0
5	F	3592	0	3433	40	0
5	L	3592	0	3433	46	0
6	D	1	0	0	0	0
6	J	1	0	0	0	0
7	D	2	0	0	0	0
7	J	2	0	0	0	0
All	All	49826	0	44762	558	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

All (558) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance $(Å)$	Clash
3:J:910:ASN:CG	4:K:15:ASN:HB2	1.65	1.17
2:I:936:ARG:HH21	2:I:936:ARG:HG3	1.29	0.98
2:C:936:ARG:HH21	2:C:936:ARG:HG3	1.33	0.92
2:C:808:ASN:H	3:D:633:ALA:HB2	1.44	0.82
1:G:11:PRO:HA	1:G:30:PRO:HD2	1.65	0.79
2:I:185:ASP:HB2	2:I:197:ARG:HB2	1.65	0.76
5:L:218:ARG:HH11	5:L:218:ARG:HG2	1.51	0.76
5:F:218:ARG:HG2	5:F:218:ARG:HH11	1.50	0.75
3:J:288:PRO:HA	5:L:377:LYS:HE3	1.69	0.74
1:A:228:LEU:O	1:A:230:ALA:N	2.20	0.73
2:I:345:PRO:O	2:I:347:ILE:N	2.21	0.72

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:I:26:TYR:HB2	2:I:29:SER:HB3	1.70	0.72
3:J:317:THR:HA	3:J:323:PRO:HA	1.71	0.72
1:G:44:ARG:NH1	2:I:1087:TYR:OH	2.23	0.71
2:I:1101:LEU:HB3	3:J:731:ARG:HG3	1.73	0.70
3:D:452:LEU:HG	3:D:625:MET:HE3	1.74	0.70
2:C:345:PRO:O	2:C:347:ILE:N	2.23	0.70
1:H:71:LYS:NZ	1:H:139:SER:O	2.24	0.70
2:I:931:VAL:HB	2:I:944:ARG:HH22	1.57	0.69
4:E:26:ARG:NH1	4:E:29:GLN:OE1	2.26	0.69
2:C:185:ASP:HB2	2:C:197:ARG:HB2	1.75	0.68
3:J:910:ASN:HB2	4:K:15:ASN:HA	1.76	0.68
2:C:931:VAL:HB	2:C:944:ARG:HH22	1.58	0.67
3:J:367:GLY:HA3	3:J:448:GLN:HB2	1.77	0.67
2:C:832:HIS:HE1	2:C:1058:ARG:HB2	1.59	0.67
3:D:1346:GLY:O	3:D:1350:ASN:ND2	2.27	0.67
1:G:230:ALA:O	1:G:232:VAL:N	2.28	0.67
5:F:276:MET:SD	5:F:279:ARG:NH2	2.69	0.66
3:J:910:ASN:CG	4:K:15:ASN:CB	2.56	0.66
2:C:408:SER:O	2:C:431:LYS:NZ	2.28	0.66
5:F:397:ARG:HG2	5:F:443:ILE:HD12	1.77	0.65
2:I:147:SER:HB2	2:I:530:ILE:HG22	1.78	0.65
5:L:399:LEU:HD13	5:L:446:GLN:HG2	1.79	0.65
2:C:404:LYS:HE2	2:C:586:PHE:HZ	1.62	0.65
3:J:114:ILE:HD11	3:J:307:LEU:HB2	1.79	0.65
1:G:66:HIS:HB3	2:I:874:GLY:HA2	1.78	0.65
3:D:102:MET:HG2	3:D:246:PRO:HD3	1.79	0.64
3:J:245:LEU:O	3:J:250:ARG:NH1	2.30	0.64
1:A:208:ASN:OD1	1:A:210:THR:OG1	2.13	0.64
1:H:11:PRO:HA	1:H:30:PRO:HD2	1.80	0.64
1:H:78:ILE:HD13	1:H:81:ILE:HD12	1.79	0.64
5:F:587:ILE:HD12	5:F:590:ILE:HD11	1.79	0.64
5:L:428:SER:O	5:L:432:THR:OG1	2.14	0.63
1:B:102:LEU:HG	1:B:115:ILE:HG12	1.81	0.63
2:C:979:LEU:HD21	2:C:1000:LEU:HD23	1.81	0.63
3:J:901:ARG:O	3:J:1251:LYS:NZ	2.32	0.63
5:L:151:VAL:HG11	5:L:158:LEU:HG	1.81	0.62
1:B:110:VAL:HG21	1:B:140:ILE:HD11	1.80	0.62
2:C:890:LYS:HG2	2:C:914:LYS:HB2	1.79	0.62
2:C:548:ARG:NH2	2:C:567:PRO:O	2.33	0.62
5:L:587:ILE:HD12	5:L:590:ILE:HD11	1.82	0.62
2:C:148:GLN:NE2	2:C:533:LEU:O	2.29	0.61

	A L	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:110:VAL:HG21	1:A:140:ILE:HD11	1.82	0.61
2:C:56:VAL:HG21	2:C:468:LEU:HB3	1.81	0.61
2:C:1276:TRP:CE2	3:D:801:VAL:HG11	2.35	0.61
2:I:898:GLU:HG2	5:L:541:ARG:HA	1.83	0.61
2:C:222:ASP:OD1	2:C:227:LYS:NZ	2.28	0.61
2:I:176:ILE:HD12	2:I:184:LEU:HD23	1.82	0.61
2:I:74:ARG:NE	2:I:121:GLU:OE2	2.32	0.61
1:B:100:LEU:HD21	1:B:121:VAL:HG21	1.83	0.60
3:J:821:MET:HA	3:J:881:LYS:HA	1.82	0.60
5:L:551:LEU:HD11	5:L:555:GLU:HG3	1.84	0.60
1:B:59:VAL:HG21	1:B:85:LEU:HD13	1.84	0.60
1:A:150:ARG:HE	1:B:6:THR:HA	1.65	0.60
2:C:189:ASP:OD1	2:C:193:ASN:N	2.34	0.60
1:G:102:LEU:HG	1:G:115:ILE:HG12	1.84	0.60
5:F:590:ILE:HA	5:F:593:LYS:HG2	1.82	0.60
2:I:915:ASP:OD2	2:I:919:ARG:NH2	2.34	0.60
2:C:363:LEU:HB3	2:C:381:ALA:HB1	1.85	0.59
3:D:693:VAL:HG21	3:D:743:MET:HG3	1.84	0.59
1:H:100:LEU:HD21	1:H:121:VAL:HG21	1.85	0.59
3:D:491:LEU:HA	3:D:499:ILE:H	1.68	0.58
2:C:703:GLY:N	2:C:705:GLU:OE2	2.37	0.58
3:D:506:VAL:HG13	3:D:628:GLY:HA3	1.85	0.58
2:C:152:SER:OG	2:C:452:ARG:HG2	2.04	0.58
3:D:288:PRO:HA	5:F:377:LYS:HE3	1.84	0.58
2:I:548:ARG:NH2	2:I:567:PRO:O	2.37	0.58
2:I:808:ASN:H	3:J:633:ALA:HB2	1.68	0.58
2:C:1209:GLN:HA	2:C:1226:THR:HA	1.85	0.58
5:F:213:ASP:OD1	5:F:213:ASP:N	2.33	0.58
3:D:271:ARG:NH1	5:F:400:GLN:OE1	2.38	0.57
1:H:102:LEU:HG	1:H:115:ILE:HG12	1.84	0.57
5:L:590:ILE:HA	5:L:593:LYS:HG2	1.85	0.57
1:H:59:VAL:HG21	1:H:85:LEU:HD13	1.85	0.57
2:I:1209:GLN:HA	2:I:1226:THR:HA	1.86	0.57
1:G:110:VAL:HG21	1:G:140:ILE:HD11	1.85	0.57
3:D:746:LEU:HD22	3:D:758:PRO:HB3	1.86	0.57
2:C:21:VAL:HG21	2:C:592:ARG:HD3	1.85	0.57
1:G:71:LYS:NZ	1:G:139:SER:O	2.37	0.57
2:C:150:HIS:CE1	2:C:454:ARG:HD2	2.40	0.57
2:I:463:GLN:HG3	2:I:505:PHE:HB2	1.87	0.57
3:J:118:LYS:HE3	3:J:312:ARG:HG2	1.87	0.57
2:C:1099:ASN:ND2	3:D:505:ASP:OD2	2.36	0.56

A 4 1	A + 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:37:HIS:CE1	1:B:187:VAL:HG21	2.39	0.56
2:C:915:ASP:OD2	2:C:919:ARG:NH2	2.37	0.56
2:C:1289:GLU:HB3	2:C:1294:LYS:HD2	1.87	0.56
2:I:222:ASP:OD1	2:I:227:LYS:NZ	2.39	0.56
3:D:367:GLY:HA3	3:D:448:GLN:HB2	1.87	0.55
1:A:285:THR:HG23	1:A:288:GLU:H	1.71	0.55
2:C:1246:ARG:CZ	2:C:1258:PRO:HB3	2.36	0.55
3:D:108:ALA:HB3	3:D:279:LEU:HD23	1.88	0.55
3:D:210:SER:O	3:D:214:ARG:NH2	2.40	0.55
2:I:887:VAL:HB	2:I:913:VAL:HB	1.88	0.55
2:I:936:ARG:HG3	2:I:936:ARG:NH2	2.05	0.55
2:C:1254:VAL:O	3:D:99:ARG:NH1	2.40	0.55
2:I:21:VAL:HG21	2:I:592:ARG:HD3	1.89	0.55
2:C:314:ASN:O	2:C:352:ARG:NH2	2.41	0.54
5:F:120:ALA:HB1	5:F:421:TYR:HB2	1.88	0.54
3:D:268:LEU:HD13	3:D:306:LEU:HA	1.88	0.54
3:J:452:LEU:HG	3:J:625:MET:HE3	1.89	0.54
3:J:481:ARG:HA	3:J:485:MET:HG2	1.89	0.54
3:J:527:LEU:O	3:J:529:GLY:N	2.39	0.54
2:C:812:PHE:CE2	3:D:451:PRO:HB3	2.42	0.54
1:B:182:ARG:HD3	3:D:531:LYS:HA	1.90	0.54
2:C:302:ILE:HG22	2:C:309:LEU:HA	1.89	0.54
2:C:1101:LEU:HB3	3:D:731:ARG:HG3	1.90	0.54
2:C:1153:ALA:O	2:C:1155:VAL:N	2.41	0.54
1:G:78:ILE:HD13	1:G:81:ILE:HD12	1.88	0.54
2:I:960:LEU:HD22	2:I:1029:LEU:HD12	1.89	0.54
1:A:102:LEU:HG	1:A:115:ILE:HG12	1.89	0.54
2:C:86:GLN:HA	2:C:140:GLY:HA2	1.87	0.54
5:L:551:LEU:HD22	5:L:552:THR:H	1.73	0.54
1:H:91:ARG:NH2	1:H:210:THR:O	2.40	0.54
1:A:75:GLN:HE21	2:C:727:VAL:HG11	1.71	0.53
2:C:960:LEU:HD22	2:C:1029:LEU:HG	1.90	0.53
3:D:813:ASP:OD1	3:D:883:ARG:NH2	2.37	0.53
5:F:151:VAL:HG11	5:F:158:LEU:HG	1.90	0.53
5:L:101:TYR:CE2	5:L:405:ILE:HD13	2.43	0.53
2:C:316:GLU:HG3	2:C:352:ARG:NH2	2.23	0.53
3:D:609:TYR:HA	3:D:617:THR:OG1	2.09	0.53
3:D:232:ASN:N	3:D:232:ASN:OD1	2.40	0.53
2:C:246:LEU:HB3	2:C:269:ILE:HD13	1.90	0.53
2:C:936:ARG:HG3	2:C:936:ARG:NH2	2.10	0.53
5:F:97:PRO:HB2	5:F:402:LEU:HD21	1.91	0.53

	A h o	Interatomic	Clash		
Atom-1	Atom-2	distance (\AA)	overlap (Å)		
3:J:232:ASN:OD1	3:J:232:ASN:N	2.39	0.53		
3:D:245:LEU:O	3:D:250:ARG:NH1	2.41	0.53		
2:I:150:HIS:CE1	2:I:454:ARG:HD2	2.44	0.53		
2:I:228:VAL:HG23	2:I:337:PHE:HB2	1.90	0.53		
1:A:100:LEU:HD21	1:A:121:VAL:HG21	1.89	0.53		
2:I:86:GLN:HA	2:I:140:GLY:HA2	1.89	0.53		
1:A:78:ILE:HD13	1:A:81:ILE:HD12	1.90	0.53		
2:I:1075:VAL:HG21	3:J:354:VAL:HG11	1.90	0.53		
5:L:573:LEU:HD13	5:L:584:ARG:HE	1.73	0.53		
1:B:184:ALA:HB3	1:B:204:GLU:HB3	1.90	0.52		
2:C:237:LEU:HD13	2:C:292:ILE:HD12	1.91	0.52		
2:I:237:LEU:HD13	2:I:292:ILE:HD12	1.91	0.52		
2:I:798:GLN:OE1	2:I:828:PHE:N	2.35	0.52		
3:J:353:SER:HB3	3:J:447:ILE:HG13	1.91	0.52		
2:I:979:LEU:HD21	2:I:1000:LEU:HD23	1.91	0.52		
2:I:1276:TRP:CE2	3:J:801:VAL:HG11	2.44	0.52		
3:J:1318:SER:OG	3:J:1342:ASP:OD2	2.20	0.52		
1:B:12:ARG:HG3	1:B:30:PRO:HG3	1.91	0.52		
1:B:16:ILE:HG12	1:B:26:VAL:HG22	1.92	0.52		
3:D:128:LEU:HD21	3:D:189:LEU:HD23	1.92	0.52		
3:D:1168:GLU:O	3:D:1170:LYS:N	2.42	0.52		
1:G:91:ARG:NH2	1:G:209:GLY:O	2.43	0.52		
2:I:1244:HIS:HB2	2:I:1265:PHE:CG	2.45	0.52		
3:D:179:LYS:O	3:D:184:ALA:HB2	2.10	0.52		
3:D:471:PRO:O	3:D:477:GLN:NE2	2.43	0.52		
1:H:110:VAL:HG21	1:H:140:ILE:HD11	1.91	0.52		
2:I:933:VAL:HG13	2:I:1050:VAL:HG22	1.92	0.52		
2:C:1154:ASP:O	2:C:1156:ARG:N	2.43	0.52		
2:I:836:LEU:HB3	2:I:918:LEU:HD21	1.92	0.52		
2:I:811:ASN:HB2	2:I:1099:ASN:HB2	1.90	0.52		
3:D:1169:THR:HA	3:D:1174:ARG:HA	1.91	0.51		
5:F:278:ASP:OD1	5:F:281:ARG:NH2	2.43	0.51		
1:A:282:VAL:HB	1:A:316:MET:HB2	1.92	0.51		
1:B:212:ASP:HB2	1:B:215:GLU:HG2	1.92	0.51		
2:C:785:ASP:OD2	2:C:791:LEU:N	2.42	0.51		
1:G:182:ARG:NH1	2:I:1092:THR:OG1	2.42	0.51		
3:J:48:THR:HG22	3:J:50:LYS:HG2	1.92	0.51		
4:K:13:ILE:HG22	4:K:14:GLY:N	2.25	0.51		
3:D:690:ASN:ND2	3:D:743:MET:SD	2.83	0.51		
3:J:274:ASN:ND2	5:L:446:GLN:OE1	2.43	0.51		
4:E:15:ASN:O	4:E:17:PHE:N	2.43	0.51		

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:H:180:VAL:HG11	1:H:183:ILE:HD11	1.92	0.51	
1:H:184:ALA:HB3	1:H:204:GLU:HB3	1.91	0.51	
2:I:344:GLY:H	2:I:437:ASN:HD21	1.59	0.51	
1:H:179:PRO:HB3	1:H:211:ILE:HG23	1.92	0.51	
2:C:463:GLN:HG3	2:C:505:PHE:HB2	1.93	0.51	
2:C:1070:HIS:NE2	2:C:1114:GLU:OE2	2.44	0.51	
5:F:95:THR:OG1	5:F:96:ASP:N	2.38	0.51	
1:H:37:HIS:CE1	1:H:187:VAL:HG21	2.45	0.51	
2:C:1065:LYS:HE2	2:C:1235:LEU:HD12	1.92	0.51	
2:I:796:LEU:N	2:I:1231:TYR:OH	2.44	0.51	
3:J:128:LEU:HD21	3:J:189:LEU:HD23	1.93	0.51	
5:L:218:ARG:HH11	5:L:218:ARG:CG	2.22	0.51	
1:B:41:ASN:HD21	2:C:1217:THR:HG22	1.75	0.51	
3:D:1257:VAL:HA	3:D:1260:MET:HE3	1.93	0.50	
3:J:46:TYR:CZ	3:J:47:ARG:HG3	2.45	0.50	
2:C:548:ARG:O	3:D:780:ARG:NH1	2.45	0.50	
2:C:802:VAL:HG12	2:C:1228:GLY:O	2.11	0.50	
2:I:227:LYS:NZ	2:I:334:GLU:OE2	2.35	0.50	
1:A:52:PRO:HG3	1:A:150:ARG:NH1	2.26	0.50	
3:D:294:ASN:HD22	5:F:406:GLN:HE21	1.59	0.50	
3:D:865:HIS:HB3	3:D:868:TRP:HD1	1.76	0.50	
1:B:29:GLU:HB3	1:B:30:PRO:HD3	1.94	0.50	
4:K:13:ILE:CG1	4:K:19:LEU:HD13	2.41	0.50	
2:C:1101:LEU:HD22	3:D:731:ARG:HB2	1.93	0.50	
2:I:890:LYS:HG2	2:I:914:LYS:HE3	1.94	0.50	
1:A:71:LYS:NZ	1:A:139:SER:O	2.45	0.50	
2:C:300:ASP:OD1	2:C:313:ALA:N	2.43	0.50	
1:B:71:LYS:NZ	1:B:139:SER:O	2.45	0.49	
2:C:796:LEU:N	2:C:1231:TYR:OH	2.45	0.49	
4:E:79:GLU:O	4:E:81:GLN:N	2.44	0.49	
3:D:140:TYR:HD1	3:D:297:ARG:HD3	1.77	0.49	
2:I:338:THR:HB	2:I:345:PRO:HD3	1.93	0.49	
2:I:785:ASP:OD2	2:I:791:LEU:N	2.44	0.49	
2:I:1268:GLN:NE2	3:J:352:ARG:HB3	2.27	0.49	
3:D:370:LYS:HB3	3:D:409:TRP:CZ3	2.47	0.49	
2:C:1226:THR:HG23	3:D:638:SER:OG	2.13	0.49	
5:F:218:ARG:HH11	5:F:218:ARG:CG	2.22	0.49	
2:I:404:LYS:HE2	2:I:586:PHE:HZ	1.77	0.49	
5:L:122:ARG:HG2	5:L:371:LYS:HE2	1.94	0.49	
3:D:57:PHE:O	3:D:98:ARG:NH2	2.46	0.49	
1:H:66:HIS:HD2	1:H:68:TYR:HB3	1.77	0.49	

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
3:D:46:TYR:CZ	3:D:47:ARG:HG3	2.48	0.49
1:H:42:ALA:O	1:H:46:ILE:HG12	2.13	0.49
2:I:338:THR:HG21	2:I:345:PRO:HB3	1.95	0.49
2:I:1192:GLU:OE2	3:J:764:ARG:HD3	2.13	0.49
2:C:404:LYS:HE2	2:C:586:PHE:CZ	2.47	0.49
2:C:562:GLU:OE1	2:C:662:SER:OG	2.24	0.49
1:A:44:ARG:HG3	1:A:183:ILE:HB	1.95	0.48
3:J:102:MET:HG2	3:J:246:PRO:HD3	1.94	0.48
2:C:344:GLY:H	2:C:437:ASN:HD21	1.61	0.48
3:J:865:HIS:H	3:J:868:TRP:HB2	1.78	0.48
1:H:29:GLU:HB3	1:H:30:PRO:HD3	1.96	0.48
2:I:1243:MET:SD	3:J:445:LYS:HB3	2.53	0.48
2:C:176:ILE:HD11	2:C:428:VAL:HG21	1.96	0.48
3:D:1318:SER:HB2	3:D:1342:ASP:OD2	2.13	0.48
1:G:182:ARG:HD2	2:I:1092:THR:HA	1.94	0.48
5:L:277:MET:HE2	5:L:281:ARG:HG3	1.95	0.48
2:C:903:ARG:O	2:C:907:GLY:N	2.46	0.48
2:I:530:ILE:HG12	2:I:573:ASN:O	2.14	0.48
1:B:196:THR:OG1	1:B:197:ASP:OD1	2.31	0.48
2:C:26:TYR:HB2	2:C:29:SER:HB3	1.95	0.48
3:D:294:ASN:HD22	5:F:406:GLN:NE2	2.11	0.48
2:I:629:PHE:CE2	2:I:634:VAL:HG12	2.49	0.48
1:B:285:THR:HG23	1:B:288:GLU:H	1.79	0.48
5:F:303:ILE:O	5:F:307:THR:OG1	2.21	0.48
3:J:108:ALA:HB3	3:J:279:LEU:HD23	1.96	0.48
1:B:91:ARG:NH2	1:B:210:THR:O	2.46	0.48
2:C:67:GLU:O	2:C:102:LEU:HD12	2.14	0.48
2:C:227:LYS:NZ	2:C:334:GLU:OE2	2.28	0.48
2:C:832:HIS:CE1	2:C:1058:ARG:HB2	2.45	0.48
2:I:180:ARG:NH2	2:I:392:GLU:O	2.46	0.48
2:I:717:VAL:HG12	2:I:782:VAL:HA	1.95	0.48
2:I:1255:THR:HB	2:I:1257:GLN:HG3	1.94	0.48
2:I:701:GLY:O	2:I:1184:THR:N	2.33	0.48
1:B:37:HIS:CD2	2:C:1216:ARG:HG2	2.49	0.47
4:E:16:ARG:O	4:E:19:LEU:HB3	2.14	0.47
3:D:733:SER:O	3:D:737:ILE:HG12	2.14	0.47
3:J:210:SER:O	3:J:214:ARG:NH2	2.46	0.47
5:L:439:ILE:O	5:L:443:ILE:HG13	2.15	0.47
3:D:1295:ASN:O	3:J:1225:GLY:HA3	2.13	0.47
2:I:703:GLY:N	2:I:705:GLU:OE2	2.46	0.47
2:I:1294:LYS:O	3:J:348:ASP:N	2.33	0.47

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:134:THR:HG21	2:C:727:VAL:O	2.15	0.47
2:C:1284:ALA:N	3:D:479:GLU:OE1	2.47	0.47
1:A:321:TRP:HA	1:A:322:PRO:HA	1.74	0.47
1:B:37:HIS:CG	2:C:1216:ARG:HG2	2.49	0.47
3:J:739:GLN:HE21	3:J:744:ARG:HG3	1.79	0.47
1:A:133:LEU:HD21	1:A:140:ILE:HG12	1.97	0.47
3:J:690:ASN:ND2	3:J:743:MET:SD	2.88	0.47
5:F:399:LEU:HD23	5:F:443:ILE:HG22	1.97	0.47
1:B:180:VAL:HA	1:B:207:THR:HA	1.97	0.47
3:D:650:LYS:NZ	3:D:765:GLU:OE2	2.39	0.47
3:D:1360:GLY:HA2	4:E:17:PHE:CE2	2.50	0.47
1:G:29:GLU:HB3	1:G:30:PRO:HD3	1.96	0.47
2:C:48:GLY:C	2:C:50:GLU:H	2.18	0.46
2:C:151:ARG:HH21	2:C:445:ILE:HG21	1.80	0.46
2:C:344:GLY:H	2:C:437:ASN:ND2	2.12	0.46
3:D:550:VAL:O	3:D:569:LEU:HA	2.15	0.46
3:J:260:PHE:HB3	5:L:504:PRO:HB3	1.98	0.46
3:D:317:THR:HA	3:D:323:PRO:HA	1.96	0.46
3:J:647:PRO:HG3	3:J:697:MET:HA	1.96	0.46
5:L:463:LEU:HD13	5:L:487:MET:SD	2.55	0.46
3:J:127:LEU:HD23	3:J:127:LEU:HA	1.71	0.46
3:J:556:GLU:O	3:J:558:ASP:N	2.48	0.46
1:B:78:ILE:HD13	1:B:81:ILE:HD12	1.98	0.46
5:F:520:GLY:HA2	5:F:523:ILE:HD12	1.97	0.46
1:G:59:VAL:HG21	1:G:85:LEU:HD13	1.97	0.46
1:A:22:THR:HB	1:A:207:THR:O	2.16	0.46
1:H:82:LEU:O	1:H:86:LYS:HG3	2.15	0.46
5:L:555:GLU:HB2	5:L:594:ALA:HB2	1.97	0.46
1:A:224:LEU:O	1:A:228:LEU:HG	2.16	0.46
2:I:367:TYR:CD1	2:I:376:PRO:HB3	2.51	0.46
2:I:1101:LEU:HD22	3:J:731:ARG:HB2	1.98	0.46
2:C:985:GLU:HB3	2:C:988:LYS:HB2	1.97	0.46
1:H:180:VAL:HA	1:H:207:THR:HA	1.97	0.46
2:I:1186:VAL:HG13	2:I:1187:PHE:HD2	1.81	0.46
3:J:419:HIS:O	3:J:439:PRO:HD2	2.15	0.46
2:C:848:GLU:HG2	2:C:888:THR:HA	1.98	0.46
2:I:300:ASP:OD1	2:I:313:ALA:N	2.43	0.46
2:I:1099:ASN:ND2	3:J:505:ASP:OD2	2.49	0.46
3:J:615:LYS:H	4:K:7:GLN:CG	2.29	0.46
1:A:27:THR:HG22	1:A:202:VAL:HG13	1.97	0.46
1:B:195:ARG:O	1:B:197:ASP:N	2.43	0.46

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
2:C:48:GLY:O	2:C:50:GLU:N	2.39	0.46	
2:I:144:VAL:HG23	2:I:515:MET:HG2	1.97	0.46	
3:J:269:TYR:O	3:J:273:ILE:HG13	2.16	0.46	
3:J:738:ARG:O	3:J:742:GLY:N	2.48	0.46	
5:L:157:ARG:HG3	5:L:159:SER:H	1.80	0.46	
2:C:1192:GLU:O	2:C:1196:LYS:HG2	2.16	0.45	
3:D:842:ARG:HD2	3:D:842:ARG:HA	1.61	0.45	
1:G:37:HIS:CE1	1:G:187:VAL:HG21	2.51	0.45	
3:J:425:ARG:HB2	3:J:466:MET:HG2	1.98	0.45	
5:L:407:GLU:HG3	5:L:442:SER:OG	2.16	0.45	
5:L:562:ARG:HG2	5:L:576:VAL:HG21	1.99	0.45	
3:D:603:LYS:O	3:D:607:THR:OG1	2.34	0.45	
2:I:225:PHE:CE1	2:I:345:PRO:HA	2.51	0.45	
3:J:262:THR:HG22	5:L:504:PRO:HB2	1.98	0.45	
1:A:42:ALA:O	1:A:46:ILE:HG12	2.15	0.45	
3:D:461:PHE:C	3:D:463:GLY:H	2.20	0.45	
2:I:344:GLY:HA3	2:I:346:TYR:CZ	2.51	0.45	
2:C:812:PHE:HB3	3:D:357:VAL:HG21	1.98	0.45	
3:J:35:PHE:CD2	3:J:101:ARG:HD3	2.52	0.45	
3:J:1160:SER:O	3:J:1162:ILE:N	2.50	0.45	
3:D:425:ARG:HB2	3:D:466:MET:HG2	1.97	0.45	
5:L:487:MET:HA	5:L:487:MET:HE2	1.99	0.45	
2:C:728:ASP:HB3	2:C:731:ARG:H	1.82	0.45	
3:D:739:GLN:HG3	3:D:744:ARG:HG3	1.97	0.45	
1:H:56:VAL:HG12	1:H:173:VAL:HG11	1.99	0.45	
3:D:262:THR:HG22	5:F:504:PRO:HB2	1.98	0.45	
5:F:343:LYS:O	5:F:347:ILE:HG13	2.17	0.45	
2:I:206:ALA:O	2:I:209:ILE:HG22	2.16	0.45	
2:I:663:VAL:O	2:I:666:SER:HB2	2.17	0.45	
3:D:678:ARG:NH2	3:D:756:GLU:OE1	2.48	0.45	
2:I:985:GLU:HB3	2:I:988:LYS:HB2	1.99	0.45	
1:A:37:HIS:CE1	1:A:187:VAL:HG21	2.51	0.45	
1:A:59:VAL:HG21	1:A:85:LEU:HD13	1.98	0.45	
2:C:92:TYR:CE2	2:C:129:LEU:HB2	2.51	0.45	
2:I:225:PHE:HE1	2:I:345:PRO:HA	1.81	0.45	
3:J:1257:VAL:HA	3:J:1260:MET:HE3	1.99	0.45	
2:C:1221:PHE:HD1	3:D:634:ARG:HA	1.82	0.44	
3:D:422:LEU:HD22	3:D:484:MET:HE2	1.98	0.44	
2:I:1087:TYR:CZ	2:I:1213:TYR:HB2	2.52	0.44	
2:I:1246:ARG:CZ	2:I:1258:PRO:HB3	2.48	0.44	
3:J:842:ARG:HD2	3:J:842:ARG:HA	1.57	0.44	

	A h o	Interatomic Clash			
Atom-1	Atom-2	distance (\AA)	overlap (Å)		
2:I:127:ILE:HA	2:I:128:PRO:HD3	1.86	0.44		
5:L:250:LEU:O	5:L:254:GLU:HG2	2.18	0.44		
5:L:379:MET:O	5:L:383:ASN:ND2	2.50	0.44		
2:I:682:GLY:O	2:I:686:GLN:HG3	2.17	0.44		
3:J:847:ASP:HA	3:J:860:ARG:HB2	1.99	0.44		
1:B:66:HIS:HD2	1:B:68:TYR:H	1.66	0.44		
2:C:217:THR:HG23	2:C:351:LEU:HD13	1.98	0.44		
1:H:51:MET:HA	1:H:52:PRO:HD3	1.76	0.44		
2:I:1333:LEU:HD13	3:J:115:TRP:CZ3	2.52	0.44		
3:J:376:LEU:HB3	3:J:470:VAL:HG21	2.00	0.44		
2:C:228:VAL:HG23	2:C:337:PHE:HB2	2.00	0.44		
4:E:26:ARG:HH21	4:E:37:PRO:CB	2.30	0.44		
1:G:134:THR:HG21	2:I:727:VAL:O	2.18	0.44		
1:H:41:ASN:ND2	2:I:1217:THR:HG22	2.32	0.44		
2:I:1226:THR:HG23	3:J:638:SER:OG	2.18	0.44		
5:L:290:LEU:HB3	5:L:333:VAL:HG21	2.00	0.44		
1:B:273:GLU:OE2	1:B:293:PRO:HD2	2.17	0.44		
2:C:645:PHE:CG	2:C:649:GLN:HB2	2.52	0.44		
2:I:1192:GLU:O	2:I:1196:LYS:HG2	2.17	0.44		
5:L:344:LEU:HD12	5:L:347:ILE:HD12	1.98	0.44		
2:I:533:LEU:HD21	2:I:571:LEU:HD13	1.99	0.44		
3:J:746:LEU:HD22	3:J:758:PRO:HB3	1.99	0.44		
3:D:496:GLY:HA3	3:D:903:LEU:HD22	2.00	0.44		
2:I:344:GLY:H	2:I:437:ASN:ND2	2.16	0.44		
2:I:1336:ASN:HA	3:J:33:TRP:HH2	1.83	0.44		
3:J:114:ILE:H	3:J:114:ILE:HG13	1.41	0.44		
3:J:857:LEU:HA	3:J:858:VAL:HA	1.57	0.44		
2:C:241:LEU:HD22	2:C:285:ILE:HD13	2.00	0.44		
1:G:100:LEU:HD21	1:G:121:VAL:HG21	1.99	0.44		
2:I:61:SER:OG	2:I:62:TYR:N	2.51	0.44		
2:I:152:SER:OG	2:I:452:ARG:HG2	2.18	0.44		
2:I:363:LEU:HB3	2:I:381:ALA:HB1	2.00	0.44		
2:I:685:MET:SD	2:I:1073:LYS:HD3	2.57	0.44		
3:J:893:GLY:O	3:J:1258:ARG:NH2	2.45	0.44		
2:I:716:ALA:HB3	2:I:784:ALA:HB3	1.99	0.43		
5:L:101:TYR:OH	5:L:409:ASN:ND2	2.48	0.43		
3:J:38:VAL:HG11	3:J:56:LEU:HD23	2.00	0.43		
1:B:107:ILE:HG13	1:B:136:GLU:HG3	2.00	0.43		
5:F:354:THR:HG22	5:F:357:GLN:HE21	1.83	0.43		
1:A:91:ARG:NH2	1:A:209:GLY:O	2.51	0.43		
3:D:1146:GLU:CD	3:D:1310:THR:HG1	2.20	0.43		

	A construction of the second sec	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:H:86:LYS:HG2	1:H:173:VAL:HG23	2.00	0.43
2:I:575:LEU:HG	2:I:579:ALA:HB3	2.00	0.43
3:J:118:LYS:HD2	3:J:118:LYS:HA	1.62	0.43
3:J:298:MET:HG2	5:L:402:LEU:HD23	2.00	0.43
2:C:626:GLU:HA	2:C:627:GLY:C	2.39	0.43
3:D:24:LEU:HD23	3:D:24:LEU:HA	1.91	0.43
5:F:270:VAL:HA	5:F:273:MET:HG3	2.00	0.43
1:G:17:GLU:HB3	1:G:25:LYS:HB2	2.00	0.43
3:J:493:PRO:HG3	3:J:904:ALA:HB2	2.00	0.43
1:B:95:LYS:NZ	1:B:96:ASP:H	2.16	0.43
2:I:637:ARG:HG3	2:I:641:GLU:O	2.19	0.43
3:J:264:ASP:HB3	3:J:324:LEU:HB3	2.01	0.43
2:C:1177:ARG:C	2:C:1179:GLY:H	2.22	0.43
3:D:127:LEU:HD11	3:D:227:PHE:CZ	2.54	0.43
1:G:41:ASN:HD22	1:G:44:ARG:CZ	2.32	0.43
2:I:1070:HIS:NE2	2:I:1114:GLU:OE2	2.42	0.43
2:I:1297:ASP:OD1	2:I:1299:ASN:N	2.52	0.43
3:D:38:VAL:HG11	3:D:56:LEU:HD23	2.00	0.43
5:F:555:GLU:HB2	5:F:594:ALA:HB2	2.01	0.43
2:I:189:ASP:OD1	2:I:193:ASN:N	2.51	0.43
2:I:264:GLU:HB2	2:I:267:ARG:HG3	2.01	0.43
3:J:361:LEU:HD13	3:J:366:CYS:HA	2.01	0.43
5:L:95:THR:OG1	5:L:96:ASP:N	2.52	0.43
2:I:975:ILE:HD11	2:I:997:TRP:HE3	1.84	0.43
1:B:56:VAL:HG12	1:B:173:VAL:HG11	2.00	0.42
3:D:113:HIS:CD2	3:D:115:TRP:HB2	2.54	0.42
5:F:409:ASN:O	5:F:413:MET:HG3	2.18	0.42
2:I:15:PHE:HD1	2:I:15:PHE:HA	1.69	0.42
3:J:1332:LEU:HD23	3:J:1332:LEU:HA	1.89	0.42
5:L:551:LEU:CD1	5:L:555:GLU:HG3	2.47	0.42
1:A:178:SER:HA	1:A:179:PRO:HD3	1.73	0.42
3:D:353:SER:HB3	3:D:447:ILE:HG13	2.01	0.42
3:D:686:TRP:CD2	3:D:758:PRO:HG3	2.53	0.42
5:F:277:MET:HE1	5:F:359:LYS:HG2	2.01	0.42
2:I:56:VAL:HG21	2:I:468:LEU:HB3	2.00	0.42
2:C:810:TYR:CE1	2:C:1078:LYS:HD3	2.54	0.42
5:F:132:CYS:O	5:F:136:GLU:HG3	2.20	0.42
2:I:160:ASP:C	2:I:162:GLY:H	2.23	0.42
5:L:306:PHE:O	5:L:308:GLY:N	2.52	0.42
2:C:155:VAL:HG12	2:C:405:PHE:HA	2.01	0.42
2:C:255:ILE:HB	2:C:263:VAL:HB	2.01	0.42

	t i c	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
3:D:101:ARG:O	3:D:246:PRO:HG3	2.19	0.42	
2:I:150:HIS:CE1	2:I:152:SER:HA	2.54	0.42	
2:I:944:ARG:HH21	2:I:1050:VAL:HG13	1.83	0.42	
4:K:13:ILE:CG2	4:K:14:GLY:N	2.83	0.42	
3:D:246:PRO:HA	3:D:247:PRO:HD3	1.75	0.42	
2:I:40:GLU:O	2:I:73:TYR:OH	2.34	0.42	
2:I:246:LEU:HB3	2:I:269:ILE:HD13	2.01	0.42	
5:L:300:LYS:HB3	5:L:300:LYS:HE3	1.81	0.42	
3:D:865:HIS:H	3:D:868:TRP:HB2	1.84	0.42	
1:H:76:GLU:HB2	1:H:80:GLU:HB2	2.01	0.42	
3:J:212:THR:O	3:J:216:LYS:HG2	2.20	0.42	
5:L:554:ARG:O	5:L:558:VAL:HG23	2.19	0.42	
2:C:338:THR:HG21	2:C:345:PRO:HB3	2.01	0.42	
3:D:298:MET:HG2	5:F:402:LEU:HD23	2.02	0.42	
2:I:302:ILE:HG22	2:I:309:LEU:HA	2.02	0.42	
2:I:890:LYS:HE2	2:I:914:LYS:HG3	2.01	0.42	
3:J:646:ILE:HA	3:J:647:PRO:HD3	1.81	0.42	
1:A:29:GLU:HB3	1:A:30:PRO:HD3	2.02	0.42	
3:D:250:ARG:O	3:D:266:ASN:ND2	2.39	0.42	
3:D:1221:LEU:HD22	3:D:1306:LEU:HB2	2.02	0.42	
3:D:1225:GLY:HA3	3:J:1295:ASN:O	2.20	0.42	
2:I:797:GLY:N	2:I:1231:TYR:OH	2.50	0.42	
2:I:905:ILE:HD11	5:L:598:LEU:HD13	2.02	0.42	
2:I:1257:GLN:HG2	2:I:1296:ASP:HB3	2.02	0.42	
1:B:321:TRP:HA	1:B:322:PRO:HA	1.68	0.42	
2:C:38:PHE:HA	2:C:48:GLY:HA2	2.02	0.42	
3:D:632:ALA:O	3:D:635:SER:OG	2.38	0.42	
5:F:306:PHE:O	5:F:308:GLY:N	2.53	0.42	
1:H:51:MET:HB3	1:H:179:PRO:HD2	2.00	0.42	
5:L:430:TYR:O	5:L:434:TRP:HD1	2.02	0.42	
2:C:1253:LEU:HA	5:F:525:ASP:HB2	2.01	0.42	
1:G:14:VAL:HB	1:G:29:GLU:HB2	2.02	0.42	
1:H:118:ASP:HB3	1:H:121:VAL:HB	2.02	0.42	
2:I:1289:GLU:HB3	2:I:1294:LYS:HD2	2.02	0.42	
3:J:686:TRP:CD2	3:J:758:PRO:HG3	2.55	0.42	
5:L:132:CYS:O	5:L:136:GLU:HG3	2.20	0.42	
1:A:14:VAL:HB	1:A:29:GLU:HB2	2.01	0.41	
3:D:779:ALA:O	3:D:783:LEU:HD22	2.20	0.41	
2:I:1192:GLU:OE1	3:J:764:ARG:NH1	2.53	0.41	
2:I:1251:TYR:HE1	2:I:1258:PRO:HG3	1.85	0.41	
2:C:524:ILE:O	2:C:528:ARG:HG3	2.20	0.41	

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
2:C:1121:ALA:HB1	2:C:1180:MET:HB3	2.02	0.41	
5:F:300:LYS:HB3	5:F:300:LYS:HE3	1.81	0.41	
2:I:1334:GLY:O	3:J:25:ALA:HB3	2.20	0.41	
1:A:88:LEU:HD23	1:A:88:LEU:HA	1.88	0.41	
2:C:1083:GLU:HG2	2:C:1084:ASP:OD1	2.20	0.41	
1:G:76:GLU:CD	1:G:76:GLU:H	2.24	0.41	
2:I:906:PHE:HB3	2:I:907:GLY:H	1.54	0.41	
2:I:1282:GLY:O	3:J:1361:THR:HG23	2.20	0.41	
2:C:962:GLU:O	2:C:966:ILE:HG13	2.20	0.41	
2:C:1191:LYS:HB2	2:C:1191:LYS:NZ	2.36	0.41	
2:I:1212:LEU:HB3	2:I:1221:PHE:HD2	1.85	0.41	
5:L:437:GLN:HG3	5:L:438:ALA:N	2.34	0.41	
1:A:150:ARG:HH21	1:B:6:THR:CB	2.34	0.41	
2:C:1022:LYS:O	2:C:1026:GLU:HG3	2.20	0.41	
2:C:1191:LYS:HB2	2:C:1191:LYS:HZ3	1.85	0.41	
5:F:324:LYS:HB3	5:F:325:PRO:HD2	2.02	0.41	
5:F:355:ILE:H	5:F:355:ILE:HG13	1.52	0.41	
1:H:52:PRO:HG3	1:H:150:ARG:NH1	2.35	0.41	
3:J:35:PHE:HD2	3:J:101:ARG:HD3	1.84	0.41	
1:A:51:MET:HA	1:A:52:PRO:HD3	1.69	0.41	
2:C:218:GLU:HG2	2:C:299:LYS:HA	2.01	0.41	
2:C:1199:LEU:O	2:C:1204:LEU:N	2.44	0.41	
2:C:1336:ASN:N	3:D:23:ALA:O	2.54	0.41	
2:I:1022:LYS:O	2:I:1026:GLU:HG3	2.21	0.41	
2:I:1118:GLY:HA3	2:I:1229:TYR:O	2.20	0.41	
3:J:69:GLU:HG3	3:J:76:LYS:HG2	2.02	0.41	
3:J:187:ALA:O	3:J:191:SER:HB2	2.21	0.41	
5:L:477:GLU:HA	5:L:478:PRO:HD3	1.81	0.41	
1:A:282:VAL:O	1:A:316:MET:N	2.45	0.41	
2:C:697:LYS:O	2:C:799:ASN:ND2	2.49	0.41	
3:D:278:ARG:HD3	5:F:406:GLN:HB3	2.02	0.41	
3:D:1360:GLY:HA2	4:E:17:PHE:CD2	2.55	0.41	
5:F:216:LEU:O	5:F:219:GLU:HB3	2.21	0.41	
1:G:42:ALA:O	1:G:46:ILE:HG12	2.21	0.41	
2:I:521:LEU:HD22	2:I:667:LEU:HD12	2.02	0.41	
2:I:976:ARG:HG3	2:I:989:LEU:HD23	2.03	0.41	
4:K:13:ILE:HG21	4:K:19:LEU:HB2	2.02	0.41	
5:L:324:LYS:HB3	5:L:325:PRO:HD2	2.03	0.41	
5:L:402:LEU:HD12	5:L:402:LEU:HA	1.76	0.41	
2:C:590:PRO:HD3	2:C:605:TYR:CE2	2.56	0.41	
2:I:176:ILE:HD11	2:I:428:VAL:HG21	2.03	0.41	

	A L O	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
3:J:118:LYS:HB3	3:J:311:ARG:HD2	2.03	0.41	
2:C:342:ASP:HA	2:C:437:ASN:HB3	2.03	0.41	
2:C:468:LEU:HD12	2:C:468:LEU:HA	1.94	0.41	
2:C:939:VAL:O	2:C:941:LYS:N	2.53	0.41	
3:D:513:MET:O	3:D:575:GLY:HA3	2.20	0.41	
3:D:573:THR:O	3:D:577:ALA:N	2.43	0.41	
3:D:842:ARG:NH2	3:D:1254:GLU:OE1	2.54	0.41	
5:F:344:LEU:HD12	5:F:344:LEU:HA	1.82	0.41	
1:H:37:HIS:HB3	2:I:1216:ARG:HB3	2.02	0.41	
2:I:524:ILE:O	2:I:528:ARG:HG3	2.21	0.41	
2:I:726:TYR:HB2	2:I:733:VAL:HB	2.02	0.41	
2:I:754:THR:N	2:I:767:GLN:OE1	2.45	0.41	
2:I:848:GLU:OE2	2:I:888:THR:OG1	2.39	0.41	
3:J:267:ASP:O	3:J:271:ARG:HG3	2.21	0.41	
3:J:312:ARG:HD3	3:J:312:ARG:HA	1.77	0.41	
3:J:450:HIS:HA	3:J:451:PRO:HD3	1.88	0.41	
3:J:612:LEU:HD12	3:J:612:LEU:HA	1.96	0.41	
4:K:36:ASP:O	4:K:38:LEU:N	2.54	0.41	
2:C:548:ARG:NE	2:C:569:ILE:O	2.51	0.41	
5:F:608:ARG:C	5:F:610:PHE:H	2.23	0.41	
2:I:678:ARG:HD2	2:I:678:ARG:HA	1.86	0.41	
2:I:870:ILE:HG21	2:I:944:ARG:CZ	2.51	0.41	
2:C:27:LEU:HD23	2:C:27:LEU:HA	1.86	0.40	
2:C:623:LEU:HD12	2:C:629:PHE:HA	2.03	0.40	
2:C:1020:GLU:O	2:C:1024:GLU:HG2	2.21	0.40	
3:D:233:LYS:HA	3:D:234:PRO:HD3	1.89	0.40	
5:F:590:ILE:HG22	5:F:593:LYS:HE2	2.03	0.40	
2:I:404:LYS:HE2	2:I:586:PHE:CZ	2.55	0.40	
2:I:666:SER:HA	2:I:1186:VAL:HG21	2.03	0.40	
2:C:559:CYS:HB2	2:C:662:SER:HB3	2.03	0.40	
3:D:452:LEU:HG	3:D:625:MET:CE	2.48	0.40	
3:D:514:THR:O	3:D:595:ALA:HA	2.21	0.40	
3:D:686:TRP:CE3	3:D:758:PRO:HG3	2.56	0.40	
3:D:899:TYR:O	3:D:1251:LYS:HD3	2.21	0.40	
1:H:102:LEU:O	1:H:141:SER:HA	2.21	0.40	
3:J:1225:GLY:O	3:J:1229:VAL:HG23	2.20	0.40	
5:L:277:MET:HE1	5:L:359:LYS:HG2	2.04	0.40	
1:B:125:LYS:HA	1:B:126:PRO:HD2	1.94	0.40	
2:C:1199:LEU:O	2:C:1203:ASP:N	2.54	0.40	
2:C:1328:LYS:HA	2:C:1328:LYS:HD3	1.86	0.40	
5:F:251:LYS:O	5:F:255:VAL:HG23	2.20	0.40	

Atom 1	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:G:22:THR:HB	1:G:207:THR:O	2.21	0.40	
1:H:47:LEU:HA	1:H:51:MET:HG2	2.03	0.40	
2:I:1030:GLU:O	2:I:1034:ARG:HG3	2.21	0.40	
3:J:246:PRO:HA	3:J:247:PRO:HD3	1.83	0.40	
1:A:32:GLU:HB2	1:A:35:PHE:CD2	2.56	0.40	
2:C:151:ARG:HE	2:C:151:ARG:HB3	1.81	0.40	
2:C:233:ARG:O	2:C:236:LYS:HG2	2.22	0.40	
2:C:905:ILE:HD11	5:F:598:LEU:HD13	2.04	0.40	
2:C:920:VAL:HA	2:C:921:PRO:HD3	1.90	0.40	
3:D:114:ILE:HD11	3:D:311:ARG:HB3	2.02	0.40	
3:J:232:ASN:ND2	3:J:1337:VAL:O	2.55	0.40	
3:J:242:LEU:HA	3:J:243:PRO:HD3	1.92	0.40	
5:L:415:ALA:HB2	5:L:434:TRP:HB2	2.03	0.40	
5:L:509:THR:HA	5:L:510:PRO:HD3	1.90	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	P	erc	entiles
1	А	292/335~(87%)	268~(92%)	14 (5%)	10 (3%)		3	30
1	В	281/335~(84%)	257~(92%)	12 (4%)	12 (4%)		2	25
1	G	212/335~(63%)	193 (91%)	14 (7%)	5 (2%)		6	36
1	Н	211/335~(63%)	195 (92%)	12 (6%)	4 (2%)		8	40
2	С	1338/1342~(100%)	1259 (94%)	60 (4%)	19 (1%)		11	45
2	Ι	1338/1342~(100%)	1257 (94%)	65~(5%)	16 (1%)		13	49
3	D	1141/1407~(81%)	1030 (90%)	75 (7%)	36 (3%)		4	31
3	J	1134/1407~(81%)	1026 (90%)	71 (6%)	37 (3%)		4	30
4	Е	87/91 (96%)	72 (83%)	6 (7%)	9 (10%)		0	9

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perc	entiles
4	Κ	73/91~(80%)	61 (84%)	5(7%)	7 (10%)	0	10
5	F	456/613~(74%)	437~(96%)	14(3%)	5 (1%)	14	50
5	L	456/613~(74%)	436 (96%)	14 (3%)	6 (1%)	12	47
All	All	7019/8246~(85%)	6491 (92%)	362 (5%)	166 (2%)	6	36

Continued from previous page...

All (166) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	93	GLN
1	А	188	GLU
1	А	229	GLU
1	А	319	GLU
1	А	320	ASN
1	В	93	GLN
1	В	188	GLU
1	В	192	VAL
1	В	195	ARG
1	В	319	GLU
1	В	320	ASN
2	С	110	PRO
2	С	214	ASN
2	С	346	TYR
2	С	748	ILE
2	С	1040	ASP
3	D	151	MET
3	D	407	VAL
3	D	539	SER
3	D	588	PRO
3	D	833	GLU
3	D	851	PRO
3	D	859	PRO
3	D	880	VAL
3	D	1153	PRO
3	D	1168	GLU
3	D	1169	THR
3	D	1185	PRO
3	D	1190	ILE
3	D	1191	PRO
3	D	1214	PRO
4	Е	16	ARG
4	Е	36	ASP

Mol	Chain	Res	Type
4	Е	37	PRO
4	Е	40	PRO
4	Е	80	LEU
5	F	488	LEU
5	F	490	PRO
1	G	93	GLN
1	G	188	GLU
1	G	231	PHE
1	Н	93	GLN
1	Н	188	GLU
2	Ι	9	LYS
2	Ι	110	PRO
2	Ι	214	ASN
2	Ι	346	TYR
2	Ι	748	ILE
3	J	151	MET
3	J	407	VAL
3	J	528	THR
3	J	539	SER
3	J	587	LEU
3	J	588	PRO
3	J	833	GLU
3	J	851	PRO
3	J	859	PRO
3	J	880	VAL
3	J	1153	PRO
3	J	1168	GLU
3	J	1185	PRO
3	J	1190	ILE
3	J	1191	PRO
3	J	1214	PRO
4	Κ	36	ASP
4	K	37	PRO
4	Κ	40	PRO
5	L	488	LEU
5	L	490	PRO
1	A	191	ARG
1	А	323	PRO
1	В	7	GLU
1	В	191	ARG
2	С	909	LYS
2	С	940	GLU

Mol	Chain	Res	Type
2	С	1154	ASP
2	С	1155	VAL
3	D	555	TYR
3	D	825	VAL
3	D	906	GLY
3	D	1155	ILE
2	Ι	114	VAL
3	J	420	PRO
3	J	557	LYS
3	J	596	LEU
3	J	906	GLY
3	J	1149	ARG
3	J	1160	SER
3	J	1161	GLY
3	J	1169	THR
3	J	1176	VAL
3	J	1209	VAL
1	А	192	VAL
1	В	13	LEU
1	В	157	THR
2	С	114	VAL
2	С	746	ALA
3	D	420	PRO
3	D	462	ASP
3	D	1150	PRO
4	Е	45	LYS
4	Е	60	ASN
4	Ε	79	GLU
5	F	307	THR
2	Ι	169	LYS
2	Ι	746	ALA
2	I	941	LYS
3	J	522	GLY
3	J	560	ASN
3	J	1215	GLU
4	K	45	LYS
4	K	60	ASN
5	L	307	THR
1	А	30	PRO
1	В	30	PRO
2	C	40	GLU
2	С	892	GLU

Mol	Chain	Res	Type
3	D	179	LYS
3	D	564	VAL
3	D	595	ALA
3	D	858	VAL
3	D	1160	SER
3	D	1176	VAL
3	D	1177	ILE
3	D	1208	ASP
2	Ι	40	GLU
2	Ι	891	GLY
3	J	462	ASP
3	J	1150	PRO
4	K	15	ASN
4	K	59	ILE
5	L	212	ILE
1	А	230	ALA
1	В	193	GLU
2	С	49	LEU
2	С	61	SER
2	С	741	MET
2	С	1204	LEU
3	D	148	GLU
3	D	834	PRO
3	D	1149	ARG
1	G	29	GLU
1	Н	29	GLU
2	Ι	1203	ASP
2	Ι	1204	LEU
3	J	593	ASN
3	J	718	SER
2	С	9	LYS
3	D	718	SER
1	Н	30	PRO
2	Ι	741	MET
3	J	1177	ILE
2	С	1181	PRO
3	D	582	ILE
5	F	606	VAL
1	G	30	PRO
3	J	564	VAL
3	J	582	ILE
3	D	828	GLY

Continued from previous page...

Mol	Chain	Res	Type
5	F	500	ILE
4	Е	59	ILE
2	Ι	1155	VAL
2	Ι	1181	PRO
3	J	834	PRO
5	L	500	ILE
5	L	606	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Per	centiles
1	А	239/292~(82%)	220 (92%)	19 (8%)	12	2 40
1	В	233/292~(80%)	215 (92%)	18 (8%)	13	3 41
1	G	173/292~(59%)	163 (94%)	10 (6%)	20) 48
1	Н	171/292~(59%)	159 (93%)	12 (7%)	1	5 43
2	С	822/1157~(71%)	763~(93%)	59~(7%)	14	4 42
2	Ι	828/1157 (72%)	770~(93%)	58 (7%)	1	5 43
3	D	517/1168 (44%)	451 (87%)	66 (13%)	4	22
3	J	515/1168 (44%)	447 (87%)	68 (13%)	4	22
4	Е	10/75~(13%)	8 (80%)	2 (20%)	-	8
4	Κ	9/75~(12%)	8 (89%)	1 (11%)	6	26
5	F	348/540~(64%)	312 (90%)	36 (10%)	7	28
5	L	348/540~(64%)	317 (91%)	31 (9%)	9	35
All	All	4213/7048 (60%)	3833 (91%)	380 (9%)	9	34

All (380) residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	12	ARG
1	А	14	VAL
1	А	29	GLU

Mol	Chain	Res	Type
1	А	67	GLU
1	А	88	LEU
1	А	95	LYS
1	А	102	LEU
1	А	117	HIS
1	А	131	CYS
1	А	140	ILE
1	А	143	ARG
1	А	171	LEU
1	А	173	VAL
1	А	178	SER
1	А	210	THR
1	А	254	LEU
1	А	318	LEU
1	А	319	GLU
1	А	321	TRP
1	В	12	ARG
1	В	29	GLU
1	В	88	LEU
1	В	95	LYS
1	В	102	LEU
1	В	117	HIS
1	В	131	CYS
1	В	140	ILE
1	В	143	ARG
1	В	171	LEU
1	В	173	VAL
1	В	178	SER
1	В	196	THR
1	В	205	MET
1	В	254	LEU
1	В	318	LEU
1	В	319	GLU
1	В	321	TRP
2	С	15	PHE
2	С	24	VAL
2	С	71	VAL
2	С	90	VAL
2	С	117	ILE
2	С	135	THR
2	С	150	HIS
2	С	151	ARG

Mol	Chain	Res	Type
2	С	378	ARG
2	С	451	ARG
2	С	478	ARG
2	С	486	THR
2	С	525	THR
2	С	529	ARG
2	С	538	LEU
2	С	542	ARG
2	С	547	VAL
2	С	554	HIS
2	С	574	SER
2	С	581	THR
2	С	595	THR
2	С	600	THR
2	С	602	GLU
2	С	610	GLU
2	С	634	VAL
2	С	635	THR
2	С	657	THR
2	С	666	SER
2	С	678	ARG
2	С	692	THR
2	С	694	ARG
2	С	731	ARG
2	С	754	THR
2	С	761	GLN
2	С	776	PRO
2	С	818	VAL
2	С	823	VAL
2	С	830	THR
2	С	878	THR
2	С	896	THR
2	С	902	LEU
2	С	917	SER
2	С	936	ARG
2	C	1029	LEU
2	С	1042	LEU
2	С	1056	VAL
2	С	1057	LYS
2	С	1075	VAL
2	C	1186	VAL
2	С	1191	LYS

Mol	Chain	Res	Type
2	С	1197	GLU
2	С	1216	ARG
2	С	1226	THR
2	С	1239	VAL
2	С	1250	SER
2	С	1293	VAL
2	С	1298	VAL
2	С	1302	THR
2	С	1341	ASP
3	D	42	GLU
3	D	58	CYS
3	D	92	VAL
3	D	93	THR
3	D	118	LYS
3	D	167	ASP
3	D	191	SER
3	D	193	ASP
3	D	208	THR
3	D	218	THR
3	D	232	ASN
3	D	240	THR
3	D	250	ARG
3	D	254	PRO
3	D	272	VAL
3	D	301	GLU
3	D	311	ARG
3	D	312	ARG
3	D	352	ARG
3	D	374	LEU
3	D	392	THR
3	D	401	VAL
3	D	419	HIS
3	D	420	PRO
3	D	430	HIS
3	D	491	LEU
3	D	505	ASP
3	D	514	THR
3	D	607	THR
3	D	612	LEU
3	D	616	PRO
3	D	635	SER
3	D	638	SER

Mol	Chain	Res	Type
3	D	646	ILE
3	D	661	VAL
3	D	674	THR
3	D	690	ASN
3	D	721	SER
3	D	738	ARG
3	D	739	GLN
3	D	743	MET
3	D	753	SER
3	D	764	ARG
3	D	767	LEU
3	D	769	VAL
3	D	781	LYS
3	D	783	LEU
3	D	785	ASP
3	D	786	THR
3	D	790	THR
3	D	810	THR
3	D	816	THR
3	D	842	ARG
3	D	844	THR
3	D	862	THR
3	D	869	CYS
3	D	877	VAL
3	D	880	VAL
3	D	886	VAL
3	D	894	VAL
3	D	913	GLU
3	D	1226	VAL
3	D	1265	THR
3	D	1282	TYR
3	D	1316	THR
3	D	1355	ARG
4	Е	4	VAL
4	Е	10	VAL
5	F	107	THR
5	F	137	TYR
5	F	154	GLU
5	F	158	LEU
5	F	159	SER
5	F	218	ARG
5	F	235	ILE

Mol	Chain	Res	Type
5	F	262	VAL
5	F	264	LYS
5	F	266	PHE
5	F	273	MET
5	F	309	ASN
5	F	333	VAL
5	F	336	GLU
5	F	354	THR
5	F	360	ASP
5	F	374	ARG
5	F	397	ARG
5	F	400	GLN
5	F	401	PHE
5	F	420	GLU
5	F	421	TYR
5	F	425	TYR
5	F	437	GLN
5	F	479	THR
5	F	480	PRO
5	F	513	ASP
5	F	526	THR
5	F	527	THR
5	F	537	THR
5	F	544	THR
5	F	551	LEU
5	F	552	THR
5	F	554	ARG
5	F	569	THR
5	F	584	ARG
1	G	14	VAL
1	G	88	LEU
1	G	95	LYS
1	G	102	LEU
1	G	117	HIS
1	G	131	CYS
1	G	140	ILE
1	G	171	LEU
1	G	173	VAL
1	G	182	ARG
1	Н	14	VAL
1	Н	88	LEU
1	Н	95	LYS

Mol	Chain	Res	Type
1	Н	102	LEU
1	Н	117	HIS
1	Н	131	CYS
1	Н	140	ILE
1	Н	171	LEU
1	Н	173	VAL
1	Н	182	ARG
1	Н	210	THR
1	Н	211	ILE
2	Ι	15	PHE
2	Ι	24	VAL
2	Ι	79	VAL
2	Ι	150	HIS
2	Ι	151	ARG
2	Ι	378	ARG
2	Ι	451	ARG
2	Ι	456	VAL
2	Ι	478	ARG
2	Ι	529	ARG
2	Ι	530	ILE
2	Ι	538	LEU
2	Ι	542	ARG
2	Ι	547	VAL
2	Ι	554	HIS
2	Ι	574	SER
2	Ι	595	THR
2	Ι	600	THR
2	Ι	602	GLU
2	Ι	610	GLU
2	Ι	634	VAL
2	Ι	635	THR
2	Ι	657	THR
2	Ι	666	SER
2	I	678	ARG
2	Ι	692	THR
2	I	694	ARG
2	Ι	717	VAL
2	Ι	731	ARG
2	I	761	GLN
2	Ι	776	PRO
2	Ι	789	THR
2	Ι	818	VAL

A.B.A Orbital Ress Fype 2 I 823 VAL 2 I 857 VAL 2 I 893 THR 2 I 893 THR 2 I 902 LEU 2 I 903 ARG 2 I 914 LYS 2 I 914 LYS 2 I 914 LYS 2 I 917 SER 2 I 936 ARG 2 I 1029 LEU 2 I 1042 LEU 2 I 1042 LEU 2 I 1191 LYS 2 I 1192 KAL 2 I 1226 THR 2 I 1239 VAL 2 I 1293 VAL 2 I <th>Mol</th> <th>Chain</th> <th>Res</th> <th></th>	Mol	Chain	Res	
2 1 323 VAL 2 I 857 VAL 2 I 893 THR 2 I 893 THR 2 I 896 THR 2 I 902 LEU 2 I 903 ARG 2 I 914 LYS 2 I 917 SER 2 I 936 ARG 2 I 1029 LEU 2 I 1042 LEU 2 I 1075 VAL 2 I 1075 VAL 2 I 1197 GLU 2 I 1226 THR 2 I 1239 VAL 2 I 1262 LYS 2 I 1298 VAL 2 I 1298 VAL	9	I	823	VAL
2 1 337 VRB 2 I 893 THR 2 I 893 THR 2 I 902 LEU 2 I 903 ARG 2 I 914 LYS 2 I 917 SER 2 I 936 ARG 2 I 917 SER 2 I 936 ARG 2 I 1029 LEU 2 I 1075 VAL 2 I 1191 LYS 2 I 1197 GLU 2 I 1266 THR 2 I 1239 VAL 2 I 1262 LYS 2 I 1293 VAL 2 I 1294 ASP 3 J 42 GLU 3 J <	2	I	857	VAL
2 I 893 THR 2 I 896 THR 2 I 902 LEU 2 I 903 ARG 2 I 914 LYS 2 I 917 SER 2 I 936 ARG 2 I 1029 LEU 2 I 1075 VAL 2 I 1075 VAL 2 I 1191 LYS 2 I 1197 GLU 2 I 1197 GLU 2 I 1226 THR 2 I 1239 VAL 2 I 1262 LYS 2 I 1293 VAL 2 I 1298 VAL 2 I 1298 VAL 2 I 1298 VAL 2 I	$\frac{2}{2}$	I	888	THR
2 I 333 I HR 2 I 902 LEU 2 I 902 LEU 2 I 903 ARG 2 I 914 LYS 2 I 917 SER 2 I 936 ARG 2 I 1029 LEU 2 I 1042 LEU 2 I 1075 VAL 2 I 1197 GLU 2 I 1197 GLU 2 I 1226 THR 2 I 1226 THR 2 I 1262 LYS 2 I 1293 VAL 2 I 1298 VAL 2 I 1298 VAL 2 I 1298 VAL 2 I 1298 VAL 3 J 93 THR 3 J 93	2	I	803	THR
2 I 902 LEU 2 I 903 ARG 2 I 914 LYS 2 I 917 SER 2 I 936 ARG 2 I 936 ARG 2 I 1029 LEU 2 I 1075 VAL 2 I 1075 VAL 2 I 1191 LYS 2 I 1197 GLU 2 I 1266 THR 2 I 1239 VAL 2 I 1260 SER 2 I 1262 LYS 2 I 1293 VAL 2 I 1296 ASP 2 I 1298 VAL 2 I 1298 VAL 2 I 1298 VAL 3 J 58 CYS 3 J 93 THR 3	$\frac{2}{2}$	I	895	THR
2 I 302 LLC 2 I 903 ARG 2 I 914 LYS 2 I 917 SER 2 I 936 ARG 2 I 1029 LEU 2 I 1042 LEU 2 I 1075 VAL 2 I 1191 LYS 2 I 1197 GLU 2 I 1197 GLU 2 I 1226 THR 2 I 1239 VAL 2 I 1262 LYS 2 I 1293 VAL 2 I 1298 VAL 2 I 1298 VAL 2 I 1298 VAL 2 I 1298 VAL 3 J 93 THR 3 J 93 THR 3 J 93	2	I	002	LEU
2 I 914 LYS 2 I 917 SER 2 I 936 ARG 2 I 1029 LEU 2 I 1042 LEU 2 I 1075 VAL 2 I 1075 VAL 2 I 1197 GLU 2 I 1197 GLU 2 I 1266 THR 2 I 1239 VAL 2 I 1262 LYS 2 I 1262 LYS 2 I 1298 VAL 2 I 1296 ASP 2 I 1298 VAL 3 J 93 THR 3 J 93 THR <	2	I	902	ARC
2 1 314 $B15$ 2 I 917 SER 2 I 936 ARG 2 I 1029 LEU 2 I 1042 LEU 2 I 1075 VAL 2 I 1184 THR 2 I 1197 GLU 2 I 1197 GLU 2 I 1197 GLU 2 I 1226 THR 2 I 1239 VAL 2 I 1262 LYS 2 I 1293 VAL 2 I 1298 VAL 3 J 93 THR 3 J 93 THR 3 J 93	2	I	903 014	LVS
2 1 311 311 2 I 936 ARG 2 I 1029 LEU 2 I 1042 LEU 2 I 1075 VAL 2 I 1184 THR 2 I 1191 LYS 2 I 1197 GLU 2 I 1226 THR 2 I 1226 THR 2 I 1226 SER 2 I 1262 LYS 2 I 1262 LYS 2 I 1293 VAL 2 I 1293 VAL 2 I 1293 VAL 2 I 1293 VAL 2 I 1298 VAL 2 I 1298 VAL 3 J 93 THR 3 J 93 THR 3 J 142 GLU <t< td=""><td>2</td><td>I</td><td>017</td><td>SEB</td></t<>	2	I	017	SEB
2 I 350 ARG 2 I 1029 LEU 2 I 1042 LEU 2 I 1075 VAL 2 I 1184 THR 2 I 1191 LYS 2 I 1197 GLU 2 I 126 ARG 2 I 1226 THR 2 I 1239 VAL 2 I 1262 LYS 2 I 1262 LYS 2 I 1293 VAL 2 I 1296 ASP 2 I 1296 ASP 2 I 1298 VAL 2 I 1341 ASP 3 J 42 GLU 3 J 93 THR 3 J 93 THR 3 J 114 ILE 3 J 118 LYS 3	2	I	036	ABC
2 I 1023 1120 2 I 1042 LEU 2 I 1075 VAL 2 I 1184 THR 2 I 1191 LYS 2 I 1197 GLU 2 I 1216 ARG 2 I 1226 THR 2 I 1239 VAL 2 I 1239 VAL 2 I 1262 LYS 2 I 1262 LYS 2 I 1293 VAL 2 I 1298 VAL 3 J 92 VAL 3 J 93 THR 3 J 114 ILE 3 <td>2</td> <td>I</td> <td>950</td> <td>IFU</td>	2	I	950	IFU
2 I 1042 LEC 2 I 1075 VAL 2 I 1191 LYS 2 I 1191 LYS 2 I 1197 GLU 2 I 1216 ARG 2 I 1226 THR 2 I 1239 VAL 2 I 1239 VAL 2 I 1262 LYS 2 I 1262 LYS 2 I 1293 VAL 2 I 1298 VAL 2 I 1298 VAL 2 I 1298 VAL 2 I 1341 ASP 3 J 92 VAL 3 J 93 THR 3 J 93 THR 3 J 114 ILE 3 J 193 ASP 3 J 250	2	I	1029	LEU
2 I 1073 VAL 2 I 1184 THR 2 I 1191 LYS 2 I 1197 GLU 2 I 1216 ARG 2 I 1226 THR 2 I 1239 VAL 2 I 1262 LYS 2 I 1262 LYS 2 I 1293 VAL 2 I 1293 VAL 2 I 1293 VAL 2 I 1298 VAL 2 I 1298 VAL 2 I 1298 VAL 2 I 1298 VAL 3 J 42 GLU 3 J 93 THR 3 J 93 THR 3 J 114 ILE 3 J 191 SER 3 J 193 ASP	2	I	1042	
2 1 1184 11R 2 I 1191 LYS 2 I 126 ARG 2 I 1226 THR 2 I 1239 VAL 2 I 1239 VAL 2 I 1250 SER 2 I 1262 LYS 2 I 1293 VAL 2 I 1293 VAL 2 I 1293 VAL 2 I 1296 ASP 2 I 1298 VAL 2 I 1341 ASP 3 J 42 GLU 3 J 93 THR 3 J 93 THR 3 J 114 ILE 3 J 118 LYS 3 J 191 SER 3 J 193 ASP 3 J 250 ARG 3<	2	I T	1073	VAL TUD
2 I 1191 LYS 2 I 1197 GLU 2 I 1216 ARG 2 I 1226 THR 2 I 1239 VAL 2 I 1239 VAL 2 I 1262 LYS 2 I 1262 LYS 2 I 1293 VAL 2 I 1298 VAL 2 I 1298 VAL 2 I 1341 ASP 2 I 1341 ASP 3 J 42 GLU 3 J 93 THR 3 J 93 THR 3 J 114 ILE 3 J 118 LYS 3 J 193 ASP 3 J 193 ASP 3 J 250 ARG 3 J 254 PRO 3<	2	I T	1184	
2 I 1197 GL0 2 I 1216 ARG 2 I 1226 THR 2 I 1239 VAL 2 I 1250 SER 2 I 1262 LYS 2 I 1262 LYS 2 I 1296 ASP 2 I 1296 ASP 2 I 1298 VAL 2 I 1298 VAL 2 I 1341 ASP 3 J 42 GLU 3 J 93 THR 3 J 93 THR 3 J 93 THR 3 J 114 ILE 3 J 118 LYS 3 J 191 SER 3 J 193 ASP 3 J 250 ARG 3 J 254 PRO 3 <td>2</td> <td>I</td> <td>1191</td> <td></td>	2	I	1191	
2 I 1216 ARG 2 I 1226 THR 2 I 1239 VAL 2 I 1250 SER 2 I 1262 LYS 2 I 1262 LYS 2 I 1293 VAL 2 I 1293 VAL 2 I 1293 VAL 2 I 1298 VAL 2 I 1298 VAL 2 I 1341 ASP 3 J 42 GLU 3 J 93 THR 3 J 93 THR 3 J 93 THR 3 J 114 ILE 3 J 117 ASP 3 J 193 ASP 3 J 193 ASP 3 J 250 ARG 3 J 254 PRO 3 <td>2</td> <td>I</td> <td>1197</td> <td>GLU</td>	2	I	1197	GLU
2 I 1226 I HR 2 I 1239 VAL 2 I 1250 SER 2 I 1262 LYS 2 I 1262 LYS 2 I 1293 VAL 2 I 1293 VAL 2 I 1298 VAL 2 I 1298 VAL 2 I 1341 ASP 3 J 42 GLU 3 J 58 CYS 3 J 92 VAL 3 J 93 THR 3 J 93 THR 3 J 114 ILE 3 J 118 LYS 3 J 167 ASP 3 J 193 ASP 3 J 250 ARG 3 J 250 ARG 3 J 301 GLU 3	2	I T	1210	AKG
2 1 1239 VAL 2 I 1250 SER 2 I 1262 LYS 2 I 1293 VAL 2 I 1293 VAL 2 I 1293 VAL 2 I 1296 ASP 2 I 1298 VAL 2 I 1341 ASP 3 J 42 GLU 3 J 58 CYS 3 J 92 VAL 3 J 93 THR 3 J 114 ILE 3 J 118 LYS 3 J 191 SER 3 J 193 ASP 3 J 250 ARG 3 J 254 PRO 3 J 301 GLU 3 J 311 ARG 3 J 312 ARG 3	2	l	1226	THR
2 1 1250 SER 2 I 1262 LYS 2 I 1293 VAL 2 I 1293 VAL 2 I 1296 ASP 2 I 1298 VAL 2 I 1341 ASP 3 J 42 GLU 3 J 58 CYS 3 J 92 VAL 3 J 93 THR 3 J 93 THR 3 J 114 ILE 3 J 118 LYS 3 J 167 ASP 3 J 193 ASP 3 J 193 ASP 3 J 250 ARG 3 J 254 PRO 3 J 301 GLU 3 J 311 ARG 3 J 312 ARG 3	2	l	1239	VAL
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	l	1250	SER
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	l	1262	LYS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	l	1293	VAL
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	I	1296	ASP
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	I	1298	VAL
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	I	1341	ASP
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	J	42	GLU
3 J 92 VAL 3 J 93 THR 3 J 114 ILE 3 J 118 LYS 3 J 167 ASP 3 J 191 SER 3 J 193 ASP 3 J 232 ASN 3 J 250 ARG 3 J 254 PRO 3 J 301 GLU 3 J 311 ARG 3 J 312 ARG 3 J 352 ARG 3 J 352 ARG	3	J	58	CYS
3 J 93 THR 3 J 114 ILE 3 J 118 LYS 3 J 167 ASP 3 J 191 SER 3 J 193 ASP 3 J 232 ASN 3 J 250 ARG 3 J 254 PRO 3 J 301 GLU 3 J 311 ARG 3 J 312 ARG 3 J 352 ARG 3 J 352 ARG 3 J 352 ARG	3	J	92	VAL
3 J 114 ILE 3 J 118 LYS 3 J 167 ASP 3 J 191 SER 3 J 193 ASP 3 J 232 ASN 3 J 250 ARG 3 J 254 PRO 3 J 301 GLU 3 J 311 ARG 3 J 312 ARG 3 J 352 ARG 3 J 352 ARG 3 J 352 ARG	3	J	93	THR
3 J 118 LYS 3 J 167 ASP 3 J 191 SER 3 J 193 ASP 3 J 232 ASN 3 J 250 ARG 3 J 254 PRO 3 J 301 GLU 3 J 311 ARG 3 J 352 ARG 3 J 352 ARG 3 J 352 ARG	3	J	114	ILE
3 J 167 ASP 3 J 191 SER 3 J 193 ASP 3 J 232 ASN 3 J 250 ARG 3 J 254 PRO 3 J 301 GLU 3 J 311 ARG 3 J 312 ARG 3 J 352 ARG 3 J 352 ARG	3	J	118	LYS
3 J 191 SER 3 J 193 ASP 3 J 232 ASN 3 J 250 ARG 3 J 254 PRO 3 J 301 GLU 3 J 311 ARG 3 J 352 ARG 3 J 352 ARG 3 J 352 ARG	3	J	167	ASP
3 J 193 ASP 3 J 232 ASN 3 J 250 ARG 3 J 254 PRO 3 J 301 GLU 3 J 311 ARG 3 J 312 ARG 3 J 352 ARG 3 J 352 ARG 3 J 352 ARG	3	J	191	SER
3 J 232 ASN 3 J 250 ARG 3 J 254 PRO 3 J 301 GLU 3 J 311 ARG 3 J 312 ARG 3 J 352 ARG 3 J 352 ARG	3	J	193	ASP
3 J 250 ARG 3 J 254 PRO 3 J 301 GLU 3 J 311 ARG 3 J 312 ARG 3 J 352 ARG 3 J 352 ARG	3	J	232	ASN
3 J 254 PRO 3 J 301 GLU 3 J 311 ARG 3 J 312 ARG 3 J 352 ARG 3 J 352 ARG	3	J	250	ARG
3 J 301 GLU 3 J 311 ARG 3 J 312 ARG 3 J 352 ARG 3 J 352 ARG 3 J 374 LEU	3	J	254	PRO
3 J 311 ARG 3 J 312 ARG 3 J 352 ARG 3 J 374 LEU	3	J	301	GLU
3 J 312 ARG 3 J 352 ARG 3 J 374 LEU	3	J	311	ARG
3 J 352 ARG 3 J 374 LEU	3	J	312	ARG
3 I 374 IFU	3	J	352	ARG
	3	J	374	LEU

Mol	Chain	Res	Type
3	J	419	HIS
3	J	430	HIS
3	J	491	LEU
3	J	501	VAL
3	J	505	ASP
3	J	514	THR
3	J	612	LEU
3	J	616	PRO
3	J	635	SER
3	J	638	SER
3	J	673	VAL
3	J	674	THR
3	J	690	ASN
3	J	721	SER
3	J	738	ARG
3	J	739	GLN
3	J	740	LEU
3	J	743	MET
3	J	753	SER
3	J	760	THR
3	J	764	ARG
3	J	767	LEU
3	J	769	VAL
3	J	776	THR
3	J	777	HIS
3	J	781	LYS
3	J	783	LEU
3	J	785	ASP
3	J	786	THR
3	J	790	THR
3	J	802	ASP
3	J	810	THR
3	J	816	THR
3	J	842	ARG
3	J	862	THR
3	J	864	LEU
3	J	868	TRP
3	J	869	CYS
3	J	877	VAL
3	J	880	VAL
3	J	885	VAL
3	J	894	VAL

Mol	Chain	Res	Type
3	J	903	LEU
3	J	913	GLU
3	J	1226	VAL
3	J	1265	THR
3	J	1280	VAL
3	J	1282	TYR
3	J	1316	THR
3	J	1353	VAL
3	J	1355	ARG
4	K	4	VAL
5	L	107	THR
5	L	137	TYR
5	L	154	GLU
5	L	158	LEU
5	L	159	SER
5	L	218	ARG
5	L	264	LYS
5	L	266	PHE
5	L	273	MET
5	L	309	ASN
5	L	333	VAL
5	L	336	GLU
5	L	354	THR
5	L	360	ASP
5	L	374	ARG
5	L	397	ARG
5	L	401	PHE
5	L	420	GLU
5	L	421	TYR
5	L	425	TYR
5	L	437	GLN
5	L	446	GLN
5	L	479	THR
5	L	480	PRO
5	L	497	VAL
5	L	513	ASP
5	L	552	THR
5	L	554	ARG
5	L	569	THR
5	L	584	ARG
5	L	586	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (65)

such sidechains are listed below:

Mol	Chain	Res	Type
1	А	37	HIS
1	А	41	ASN
1	А	75	GLN
1	А	128	HIS
1	А	147	GLN
1	А	283	GLN
1	А	320	ASN
1	В	37	HIS
1	В	41	ASN
1	В	66	HIS
1	В	128	HIS
1	В	147	GLN
1	В	227	GLN
1	В	283	GLN
1	В	320	ASN
2	С	150	HIS
2	С	437	ASN
2	С	832	HIS
2	С	955	GLN
2	С	1013	GLN
2	С	1023	HIS
2	С	1257	GLN
3	D	113	HIS
3	D	294	ASN
3	D	424	ASN
3	D	690	ASN
3	D	777	HIS
3	D	1218	HIS
3	D	1326	GLN
5	F	128	ASN
5	F	129	GLN
5	F	131	GLN
5	F	309	ASN
5	F	357	GLN
5	F	383	ASN
5	F	437	GLN
5	F	$47\overline{2}$	GLN
1	G	37	HIS
1	G	41	ASN
1	G	128	HIS
1	G	147	GLN
1	G	227	GLN

	0	-	10
Mol	Chain	Res	Type
1	Н	37	HIS
1	Н	41	ASN
1	Н	66	HIS
1	Н	128	HIS
1	Н	147	GLN
2	Ι	150	HIS
2	Ι	437	ASN
2	Ι	955	GLN
2	Ι	1013	GLN
2	Ι	1023	HIS
2	Ι	1061	GLN
3	J	274	ASN
3	J	477	GLN
3	J	690	ASN
3	J	777	HIS
3	J	897	HIS
3	J	1326	GLN
5	L	128	ASN
5	L	129	GLN
5	L	131	GLN
5	L	309	ASN
5	L	357	GLN
5	L	437	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 6 ligands modelled in this entry, 6 are monoatomic - leaving 0 for Mogul analysis. There are no bond length outliers.

There are no bond angle outliers. There are no chirality outliers. There are no torsion outliers. There are no ring outliers. No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ > 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	298/335~(88%)	0.24	24 (8%) 12 11	27, 114, 296, 459	0
1	В	287/335~(85%)	0.64	41 (14%) 2 3	36, 191, 420, 550	0
1	G	216/335~(64%)	0.30	10 (4%) 32 27	33, 168, 289, 370	0
1	Η	215/335~(64%)	0.62	32 (14%) 2 3	68, 188, 341, 524	0
2	С	1340/1342~(99%)	0.14	89 (6%) 18 14	2, 102, 402, 550	1 (0%)
2	Ι	1340/1342~(99%)	0.38	147 (10%) 5 5	3, 144, 388, 550	1 (0%)
3	D	1147/1407~(81%)	-0.21	23 (2%) 65 56	3, 72, 236, 550	0
3	J	1140/1407~(81%)	-0.11	32 (2%) 53 42	3, 96, 268, 550	0
4	Ε	89/91~(97%)	-0.69	0 100 100	6, 76, 206, 285	0
4	Κ	75/91~(82%)	0.05	1 (1%) 77 68	47, 171, 393, 535	0
5	F	464/613~(75%)	0.33	45 (9%) 7 7	21, 149, 369, 550	0
5	L	464/613~(75%)	0.32	39 (8%) 11 10	31, 169, 397, 550	0
All	All	7075/8246~(85%)	0.14	483 (6%) 17 14	2, 121, 352, 550	2(0%)

All (483) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
2	Ι	1000	LEU	17.7
5	L	315	TRP	15.5
2	С	311	CYS	14.6
2	С	305	SER	12.4
2	Ι	1001	GLY	12.3
2	Ι	999	GLU	12.2
2	С	288	PRO	11.0
2	С	287	VAL	9.6
2	Ι	998	LEU	9.4
2	С	291	TYR	8.9
2	Ι	981	ALA	8.5

4	М	E	Y

Mol	Chain	Res	Type	RSRZ
5	L	316	PHE	8.3
1	В	318	LEU	8.2
5	F	315	TRP	8.0
2	Ι	982	GLY	7.8
1	Н	193	GLU	7.6
5	F	319	ALA	7.6
2	С	252	SER	7.6
2	Ι	985	GLU	7.5
2	Ι	234	ASP	7.2
2	Ι	1005	GLU	6.9
2	С	318	SER	6.8
5	L	337	VAL	6.5
2	Ι	979	LEU	6.4
2	С	65	ASN	6.4
5	F	316	PHE	6.3
2	С	332	ARG	6.3
2	С	265	LYS	6.1
2	Ι	334	GLU	6.0
2	Ι	203	LYS	6.0
1	Н	55	ALA	5.9
5	L	305	LEU	5.9
2	С	331	LYS	5.9
5	F	317	ASN	5.8
2	С	322	LEU	5.7
1	В	260	LEU	5.7
2	С	304	GLU	5.7
1	Н	146	VAL	5.7
1	А	262	LEU	5.6
2	С	333	ILE	5.6
2	Ι	333	ILE	5.5
5	F	305	LEU	5.5
5	F	336	GLU	5.5
2	C	230	PHE	5.5
2	С	253	PHE	5.5
5	L	490	PRO	5.4
2	С	270	THR	5.4
5	L	336	GLU	5.4
2	Ι	771	VAL	5.4
2	С	325	LEU	5.3
2	Ι	1021	LEU	5.3
1	А	270	LEU	5.2
2	Ι	108	GLU	5.2

Mol	Chain	Res	Type	RSRZ
3	D	1173	ARG	5.2
3	J	1203	ARG	5.2
1	Н	172	LEU	5.2
2	Ι	263	VAL	5.2
5	L	306	PHE	5.2
1	В	262	LEU	5.2
2	Ι	494	ASN	5.1
2	С	330	HIS	5.0
2	Ι	262	TYR	5.0
2	С	166	SER	4.9
5	F	355	ILE	4.9
2	С	292	ILE	4.9
2	С	336	LEU	4.9
2	С	264	GLU	4.8
5	F	318	ALA	4.8
2	Ι	389	PHE	4.8
2	С	298	ALA	4.7
5	L	487	MET	4.7
2	Ι	980	VAL	4.7
2	Ι	1004	ASP	4.6
2	С	205	PRO	4.6
5	L	340	ALA	4.6
1	В	317	ARG	4.6
2	Ι	1006	GLU	4.5
1	В	55	ALA	4.5
2	Ι	231	GLU	4.5
2	С	286	GLU	4.5
2	Ι	232	ILE	4.4
1	А	269	CYS	4.4
3	D	69	GLU	4.4
2	C	251	ALA	4.4
2	Ι	974	ARG	4.4
1	H	100	LEU	4.4
1	В	259	ASP	4.3
1	Н	194	GLN	4.3
2	Ι	252	SER	4.3
5	F	337	VAL	4.3
1	В	283	GLN	4.2
2	C	257	ALA	4.2
5	L	307	THR	4.2
2	C	321	LEU	4.2
2	Ι	204	LEU	4.2

Mol	Chain	Res	Type	RSRZ
1	G	90	VAL	4.2
2	Ι	1017	GLN	4.2
5	F	155	GLU	4.2
5	F	423	ARG	4.2
5	F	158	LEU	4.2
1	В	98	VAL	4.2
5	L	234	THR	4.2
2	С	285	ILE	4.2
2	Ι	1020	GLU	4.1
2	Ι	976	ARG	4.1
2	Ι	489	PRO	4.1
2	Ι	305	SER	4.1
2	Ι	116	ASP	4.1
5	F	323	ASN	4.1
2	Ι	235	ASN	4.1
1	В	295	LEU	4.1
1	Н	90	VAL	4.0
2	Ι	450	ASN	4.0
2	Ι	243	PRO	4.0
2	С	113	THR	4.0
2	С	290	GLU	4.0
1	В	146	VAL	4.0
1	G	91	ARG	4.0
2	Ι	983	GLY	4.0
5	F	331	HIS	4.0
2	С	338	THR	4.0
2	Ι	151	ARG	3.9
3	J	1161	GLY	3.9
5	L	318	ALA	3.9
1	Н	92	VAL	3.9
2	Ι	915	ASP	3.9
2	I	482	GLY	3.9
2	Ι	265	LYS	3.8
2	С	232	ILE	3.8
2	С	207	THR	3.8
2	Ι	978	VAL	3.8
2	Ι	246	LEU	3.8
2	Ι	254	ASP	3.8
1	В	303	ILE	3.8
2	С	239	MET	3.8
2	Ι	1007	LYS	3.8
2	С	165	HIS	3.8

Mol	Chain	Res	Type	RSRZ
2	С	235	ASN	3.8
5	F	478	PRO	3.8
1	В	69	SER	3.8
2	С	314	ASN	3.8
2	С	269	ILE	3.7
5	L	489	MET	3.7
2	Ι	205	PRO	3.7
5	L	341	LEU	3.7
2	Ι	493	ILE	3.7
2	С	301	TYR	3.6
3	J	69	GLU	3.6
2	Ι	994	ARG	3.6
1	Н	56	VAL	3.6
2	С	350	THR	3.6
1	В	281	LEU	3.6
1	А	29	GLU	3.5
1	В	296	GLY	3.5
2	Ι	937	ASP	3.5
3	D	562	GLU	3.5
1	А	266	SER	3.5
2	С	259	GLY	3.5
5	L	330	LEU	3.5
1	В	144	ILE	3.4
5	L	304	THR	3.4
1	Н	121	VAL	3.4
2	Ι	15	PHE	3.4
2	Ι	647	ARG	3.4
2	С	256	GLU	3.4
2	Ι	301	TYR	3.4
2	Ι	987	GLU	3.4
2	Ι	442	VAL	3.4
1	В	314	LEU	3.4
2	С	317	LEU	3.4
2	I	882	ILE	3.4
1	Н	95	LYS	3.3
2	C	337	PHE	3.3
1	В	78	ILE	3.3
5	L	321	ALA	3.3
2	I	995	ASP	3.3
5	L	310	GLU	3.3
5	L	420	GLU	3.3
5	L	322	MET	3.3

Mol	Chain	Res	Type	RSRZ
5	F	314	THR	3.3
1	Н	176	CYS	3.3
2	Ι	269	ILE	3.3
1	А	281	LEU	3.3
2	С	258	ASN	3.2
1	В	172	LEU	3.2
3	J	1195	GLN	3.2
2	Ι	390	PHE	3.2
2	Ι	1009	ASN	3.2
1	Н	123	ILE	3.2
2	С	208	ILE	3.2
5	F	287	ILE	3.2
1	В	201	LEU	3.2
2	Ι	944	ARG	3.2
2	Ι	492	MET	3.2
2	Ι	166	SER	3.2
2	С	1000	LEU	3.1
2	Ι	227	LYS	3.1
1	А	271	LYS	3.1
2	С	246	LEU	3.1
2	С	985	GLU	3.1
2	Ι	59	ILE	3.1
2	Ι	975	ILE	3.1
2	Ι	1025	PHE	3.1
1	В	313	SER	3.1
1	G	148	ARG	3.1
2	С	196	VAL	3.1
2	Ι	1012	GLU	3.1
2	Ι	115	LYS	3.1
2	С	1002	LEU	3.1
5	F	487	MET	3.1
5	L	325	PRO	3.0
3	J	1204	VAL	3.0
2	I	111	GLU	3.0
1	Н	98	VAL	3.0
3	J	1162	ILE	3.0
3	J	543	SER	3.0
2	Ι	420	LEU	3.0
2	C	56	VAL	3.0
2	Ι	1018	TYR	3.0
1	A	204	GLU	3.0
2	С	263	VAL	3.0

Mol	Chain	Res	Type	RSRZ
5	F	280	VAL	3.0
5	L	344	LEU	3.0
2	Ι	268	ARG	3.0
2	Ι	988	LYS	3.0
1	А	275	ILE	3.0
2	Ι	388	LEU	2.9
2	С	289	VAL	2.9
5	F	344	LEU	2.9
5	F	320	ILE	2.9
5	F	234	THR	2.9
1	В	131	CYS	2.9
3	D	1204	VAL	2.9
1	В	309	SER	2.9
2	С	255	ILE	2.9
2	С	224	PHE	2.9
5	\mathbf{F}	259	PHE	2.9
2	Ι	225	PHE	2.9
2	С	594	VAL	2.9
3	J	529	GLY	2.9
5	F	261	LEU	2.9
3	J	1214	PRO	2.9
2	Ι	1008	GLN	2.9
2	Ι	233	ARG	2.8
3	D	1174	ARG	2.8
2	Ι	336	LEU	2.8
1	А	272	ALA	2.8
3	J	670	SER	2.8
3	J	659	ALA	2.8
1	G	54	CYS	2.8
2	Ι	251	ALA	2.8
2	Ι	984	VAL	2.8
2	Ι	1003	THR	2.8
1	A	205	MET	2.8
2	Ι	198	ILE	2.8
2	Ι	986	ALA	2.8
2	Ι	276	GLN	2.8
1	Н	96	ASP	2.8
2	С	299	LYS	2.8
2	С	1001	GLY	2.8
2	Ι	443	ASP	2.8
1	В	319	GLU	2.8
2	С	172	TYR	2.8

Mol	Chain	Res	Type	RSRZ
2	Ι	274	ILE	2.8
5	L	425	TYR	2.8
2	Ι	239	MET	2.8
2	Ι	862	LEU	2.7
3	J	68	TYR	2.7
2	С	273	HIS	2.7
2	Ι	787	PRO	2.7
1	G	19	VAL	2.7
5	F	310	GLU	2.7
2	Ι	972	PHE	2.7
5	F	301	ASN	2.7
5	F	284	GLU	2.7
2	С	373	GLY	2.7
2	С	206	ALA	2.7
1	В	302	GLU	2.7
2	Ι	311	CYS	2.7
5	F	326	TRP	2.7
5	F	293	GLU	2.7
3	D	1299	GLY	2.7
2	Ι	102	LEU	2.7
3	D	312	ARG	2.7
3	D	62	PHE	2.7
2	С	306	THR	2.6
2	С	634	VAL	2.6
1	В	266	SER	2.6
2	Ι	58	PRO	2.6
5	F	313	ASP	2.6
2	Ι	273	HIS	2.6
3	J	91	GLU	2.6
5	L	338	HIS	2.6
1	Н	67	GLU	2.6
1	Н	13	LEU	2.6
3	D	1175	LEU	2.6
2	С	234	ASP	2.6
5	L	331	HIS	2.6
3	J	528	THR	2.6
1	В	97	GLU	2.6
5	L	319	ALA	2.6
5	F	325	PRO	2.5
3	D	567	THR	2.5
5	F	321	ALA	2.5
1	G	121	VAL	2.5

4MEY

Mol	Chain	Res	Type	RSRZ
2	Ι	332	ARG	2.5
3	J	217	LEU	2.5
2	С	353	VAL	2.5
2	Ι	597	GLY	2.5
2	С	310	ILE	2.5
2	Ι	304	GLU	2.5
1	Н	205	MET	2.5
2	С	979	LEU	2.5
2	Ι	255	ILE	2.5
2	С	194	LEU	2.5
3	J	512	TYR	2.5
2	Ι	722	GLY	2.5
3	D	220	ARG	2.5
2	Ι	230	PHE	2.5
1	В	171	LEU	2.5
2	С	153	PRO	2.5
3	D	204	GLU	2.5
1	А	253	LEU	2.5
5	F	153	ALA	2.5
5	L	416	VAL	2.5
3	J	220	ARG	2.5
2	Ι	241	LEU	2.5
1	Н	91	ARG	2.5
2	С	326	SER	2.5
2	Ι	374	GLU	2.5
5	L	284	GLU	2.5
1	А	300	LEU	2.5
1	Н	149	GLY	2.5
3	J	1212	ASP	2.5
2	Ι	1190	ALA	2.5
2	С	324	LYS	2.4
3	J	82	GLY	2.4
2	C	376	PRO	2.4
2	Ι	989	LEU	2.4
2	Ι	1016	GLU	2.4
2	Ι	224	PHE	2.4
2	С	260	LYS	2.4
5	L	314	THR	2.4
2	Ι	1072	ASN	2.4
2	Ι	282	VAL	2.4
1	Н	209	GLY	2.4
5	F	277	MET	2.4

Mol	Chain	Res	Type	RSRZ
2	С	645	PHE	2.4
1	А	295	LEU	2.4
2	Ι	734	ILE	2.4
3	J	520	ALA	2.4
2	Ι	721	GLY	2.4
1	Н	94	GLY	2.4
1	В	59	VAL	2.4
1	В	100	LEU	2.4
2	Ι	153	PRO	2.4
1	G	193	GLU	2.4
2	Ι	373	GLY	2.4
5	F	322	MET	2.4
3	J	1208	ASP	2.4
1	Н	144	ILE	2.4
2	Ι	441	GLU	2.4
2	Ι	867	GLU	2.4
1	А	267	ALA	2.4
2	Ι	206	ALA	2.3
2	Ι	302	ILE	2.3
2	Ι	14	ASP	2.3
2	С	312	ALA	2.3
2	Ι	1024	GLU	2.3
5	F	330	LEU	2.3
2	С	164	THR	2.3
1	А	278	ILE	2.3
1	Н	54	CYS	2.3
1	G	192	VAL	2.3
2	Ι	451	ARG	2.3
3	D	75	TYR	2.3
3	D	1171	GLY	2.3
2	С	236	LYS	2.3
1	Н	52	PRO	2.3
5	F	466	ILE	2.3
5	F	340	ALA	2.3
2	Ι	725	GLN	2.3
5	F	235	ILE	2.3
1	А	294	ASN	2.3
1	В	293	PRO	2.3
5	F	306	PHE	2.3
5	L	237	ALA	2.3
1	А	273	GLU	2.3
3	D	1157	ALA	2.3

 $4 \mathrm{MEY}$

Mol	Chain	Res	Type	RSRZ	
2	Ι	340 ASP		2.3	
3	D	825	VAL	2.3	
2	С	355	PRO 2.2		
3	D	1225	GLY	2.2	
2	Ι	1067	ALA	2.2	
2	С	354	ASP	2.2	
1	G	17	GLU	2.2	
1	А	9	LEU	2.2	
3	J	678	ARG	2.2	
1	В	316	MET	2.2	
4	Κ	37	PRO	2.2	
2	Ι	883	LEU	2.2	
3	D	1169	THR	2.2	
5	L	333	VAL	2.2	
2	Ι	68	LEU	2.2	
1	В	66	HIS	2.2	
1	В	280	ASP	2.2	
2	Ι	21	VAL	2.2	
2	Ι	892	GLU	2.2	
3	D	90	VAL	2.2	
2	Ι	1010	GLN	2.2	
1	В	263	THR	2.2	
1	В	312	LEU	2.2	
2	С	347	ILE	2.2	
2	Ι	971	LEU	2.2	
5	F	416	VAL	2.2	
1	В	68	TYR	2.2	
5	L	309	ASN	2.2	
5	L	580	PHE	2.2	
1	Н	171	LEU	2.2	
1	А	268	ASN	2.2	
1	В	310	ARG	2.2	
1	Н	88	LEU	2.2	
3	D	68	TYR	2.2	
1	G	211	ILE	2.2	
3	J	218	THR	2.2	
5	F	283	GLN	2.2	
2	Ι	555	TYR	2.1	
5	L	423	ARG	2.1	
1	В	147	GLN	2.1	
2	С	650	VAL	2.1	
3	J	645	VAL	2.1	

Continued from previous page...

Mol	Chain	Res	Type	RSRZ	
1	Н	57 THR		2.1	
1	Н	210	THR	2.1	
3	J	319	SER	2.1	
5	L	235	ILE	2.1	
1	А	54	CYS	2.1	
2	С	313	ALA	2.1	
2	Ι	428	VAL	2.1	
3	J	76	LYS	2.1	
2	Ι	641	GLU	2.1	
2	Ι	46	GLN	2.1	
5	L	311	THR	2.1	
5	L	312	SER	2.1	
1	А	260	LEU	2.1	
2	Ι	190	PRO	2.1	
2	Ι	264	GLU	2.1	
3	J	673	VAL	2.1	
2	Ι	183	TRP	2.1	
2	Ι	172	TYR	2.1	
3	J	227	PHE	2.1	
1	Н	208	ASN	2.1	
2	Ι	850	ILE	2.1	
5	F	154	GLU	2.1	
1	В	52	PRO	2.1	
1	А	289	LEU	2.1	
1	В	58	GLU	2.1	
3	J	481	ARG	2.1	
2	Ι	291	TYR	2.1	
2	С	997	TRP	2.1	
1	Н	122	GLU	2.1	
2	Ι	107	ARG	2.1	
2	С	272	ARG	2.1	
3	J	320	ASN	2.1	
2	С	249	GLU	2.1	
2	Ι	973	SER	2.0	
5	F	328	GLU	2.0	
5	L	421	TYR	2.0	
2	Ι	733	VAL	2.0	
2	Ι	1002	LEU	2.0	
1	Н	147	GLN	2.0	
2	Ι	977	ALA	2.0	
1	B	282	VAL	2.0	
2	Ι	322	LEU	2.0	

Mol	Chain	Res	Type	RSRZ
2	Ι	996	ARG	2.0
3	J	518	VAL	2.0
5	F	421	TYR	2.0
3	D	210	SER	2.0
2	Ι	1029	LEU	2.0
3	D	76	LYS	2.0
1	А	11	PRO	2.0
5	L	409	ASN	2.0
3	D	1296	GLY	2.0
3	J	1152	GLU	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathbf{A}^2)$	Q<0.9
6	MG	J	2000	1/1	0.37	0.36	396,396,396,396	0
6	MG	D	2000	1/1	0.74	0.35	320,320,320,320	0
7	ZN	D	2001	1/1	0.99	0.07	83,83,83,83	0
7	ZN	D	2002	1/1	0.99	0.20	68,68,68,68	0
7	ZN	J	2001	1/1	0.99	0.09	104,104,104,104	0
7	ZN	J	2002	1/1	0.99	0.19	63,63,63,63	0

6.5 Other polymers (i)

There are no such residues in this entry.

