

Full wwPDB X-ray Structure Validation Report (i)

Oct 10, 2023 – 01:32 AM EDT

PDB ID	:	7M0I
Title	:	Crystal structure of a human metapneumovirus subtype B2 trimeric fusion
		protein
Authors	:	Huang, J.; Mousa, J.J.
Deposited on	:	2021-03-11
Resolution	:	2.81 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35.1
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.81 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	130704	3617 (2.84-2.80)
Clashscore	141614	4060 (2.84-2.80)
Ramachandran outliers	138981	3978 (2.84-2.80)
Sidechain outliers	138945	3980 (2.84-2.80)
RSRZ outliers	127900	3552 (2.84-2.80)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain						
1	А	89	% • 54%	25%	21%				
			2%	2370	2170				
1	C	89	47%	31%	21%				
1	Е	89	56%	21% •	21%				
1	G	89	.% 55 %	20% •	21%				
	-								
1	I	89	58%	20%	21%				

Contre								
Mol	Chain	Length	Quality of chain					
1	K	89	57%	21%	21%			
2	В	431	<u>6%</u> 54%	26%	• 19%			
2	D	431	5%	28%	• 18%			
2	F	431	4% 53%	27%	• 19%			
2	Н	431	53%	27%	• 18%			
2	J	431	3% 58%	23%	• 18%			
2	L	431	% • 57%	25%	18%			

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
3	NAG	G	201	-	-	-	Х

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 19556 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	C	70	Total	С	Ν	0	S	0	0	0
	G	10	544	341	84	117	2	0	0	0
1	т	70	Total	С	Ν	0	S	0	0	0
	1	10	544	341	84	117	2	0	0	0
1	K	70	Total	С	Ν	0	S	0	0	0
	Γ	10	536	335	82	117	2	0	0	0
1	Δ	70	Total	С	Ν	0	S	0	0	0
	A	10	540	338	83	117	2	0	0	0
1	C	70	Total	С	Ν	0	S	0	0	0
	C	10	544	341	84	117	2	0	0	0
1	F	70	Total	С	Ν	0	S	0	0	0
	Ľ	10	544	341	84	117	2	U	U	U

• Molecule 1 is a protein called Fusion glycoprotein F2.

There are 60 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
G	19	LEU	-	expression tag	UNP C6F474
G	20	LYS	-	expression tag	UNP $C6F474$
G	21	GLU	-	expression tag	UNP $C6F474$
G	22	SER	-	expression tag	UNP C6F474
G	102	LYS	-	expression tag	UNP $C6F474$
G	103	LYS	-	expression tag	UNP C6F474
G	104	ARG	-	expression tag	UNP $C6F474$
G	105	LYS	-	expression tag	UNP C6F474
G	106	ARG	-	expression tag	UNP C6F474
G	107	ARG	-	expression tag	UNP $C6F474$
Ι	19	LEU	-	expression tag	UNP $C6F474$
Ι	20	LYS	-	expression tag	UNP $C6F474$
Ι	21	GLU	-	expression tag	UNP C6F474
Ι	22	SER	-	expression tag	UNP C6F474
Ι	102	LYS	-	expression tag	UNP C6F474
Ι	103	LYS	-	expression tag	UNP C6F474
Ι	104	ARG	-	expression tag	UNP C6F474
				Continued	on next page

001000	nucu jrom pre	ero de page			-
Chai	n Residue	Modelled	Actual	Comment	Reference
Ι	105	LYS	-	expression tag	UNP $C6F474$
Ι	106	ARG	-	expression tag	UNP C6F474
Ι	107	ARG	-	expression tag	UNP C6F474
K	19	LEU	-	expression tag	UNP C6F474
K	20	LYS	-	expression tag	UNP C6F474
K	21	GLU	-	expression tag	UNP C6F474
K	22	SER	-	expression tag	UNP C6F474
K	102	LYS	-	expression tag	UNP C6F474
K	103	LYS	-	expression tag	UNP C6F474
K	104	ARG	-	expression tag	UNP C6F474
K	105	LYS	_	expression tag	UNP C6F474
K	106	ARG	-	expression tag	UNP C6F474
K	107	ARG	-	expression tag	UNP C6F474
A	19	LEU	-	expression tag	UNP C6F474
A	20	LYS	-	expression tag	UNP C6F474
A	21	GLU	-	expression tag	UNP C6F474
A	22	SER	-	expression tag	UNP C6F474
A	102	LYS	-	expression tag	UNP C6F474
A	103	LYS	-	expression tag	UNP C6F474
A	104	ARG	-	expression tag	UNP C6F474
A	105	LYS	-	expression tag	UNP C6F474
A	106	ARG	_	expression tag	UNP C6F474
A	107	ARG	_	expression tag	UNP C6F474
C	19	LEU	_	expression tag	UNP C6F474
C	20	LYS	_	expression tag	UNP C6F474
C	21	GLU	_	expression tag	UNP C6F474
C	22	SER	_	expression tag	UNP C6F474
C	102	LYS	_	expression tag	UNP C6F474
С	103	LYS	-	expression tag	UNP C6F474
C	104	ARG	_	expression tag	UNP C6F474
C	105	LYS	_	expression tag	UNP C6F474
C	106	ARG	_	expression tag	UNP C6F474
C	107	ARG	_	expression tag	UNP C6F474
E	19	LEU	_	expression tag	UNP C6F474
Е	20	LYS	_	expression tag	UNP C6F474
Е	21	GLU	_	expression tag	UNP C6F474
E	22	SER	_	expression tag	UNP C6F474
E	102	LYS	_	expression tag	UNP C6F474
E	103	LYS	_	expression tag	UNP C6F474
E	104	ARG	_	expression tag	UNP C6F474
E	105	LYS	_	expression tag	UNP C6F474
E	106	ARG	_	expression tag	UNP C6F474
	1	1	1	· · 0	1

Chain	Residue	Modelled	Actual	Comment	Reference
Ε	107	ARG	-	expression tag	UNP $C6F474$

• Molecule 2 is a protein called Fusion glycoprotein F1.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
0	п	250	Total	С	Ν	0	S	0	0	0
	11	332	2677	1674	462	522	19	0	0	0
0	т	250	Total	С	Ν	0	S	0	0	0
	1	332	2663	1664	458	522	19	0	0	0
0	т	250	Total	С	Ν	0	S	0	0	0
		552	2677	1674	462	522	19	0	0	0
9	В	351	Total	С	Ν	0	\mathbf{S}	0	0	0
	D		2666	1667	460	520	19	0	0	0
2	п	359	Total	\mathbf{C}	Ν	0	\mathbf{S}	0	0	0
2	D	552	2668	1664	463	522	19	0	0	0
2	F	351	Total	Ċ	Ν	0	S	0	0	0
	I,	551	2676	1673	464	520	19	0	0	0

There are 318 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Н	490	SER	-	expression tag	UNP C6F474
Н	491	GLY	-	expression tag	UNP C6F474
Н	492	ARG	-	expression tag	UNP $C6F474$
Н	493	GLU	-	expression tag	UNP C6F474
Н	494	ASN	-	expression tag	UNP C6F474
Н	495	LEU	-	expression tag	UNP C6F474
Н	496	TYR	-	expression tag	UNP C6F474
Н	497	PHE	-	expression tag	UNP C6F474
Н	498	GLN	-	expression tag	UNP C6F474
Н	499	GLY	-	expression tag	UNP C6F474
Н	500	GLY	-	expression tag	UNP C6F474
Н	501	GLY	-	expression tag	UNP C6F474
Н	502	GLY	-	expression tag	UNP C6F474
Н	503	GLY	-	expression tag	UNP C6F474
Н	504	SER	-	expression tag	UNP C6F474
Н	505	GLY	-	expression tag	UNP C6F474
Н	506	TYR	-	expression tag	UNP C6F474
Н	507	ILE	-	expression tag	UNP C6F474
Н	508	PRO	-	expression tag	UNP C6F474
Н	509	GLU	-	expression tag	UNP C6F474
Н	510	ALA	-	expression tag	UNP C6F474

Chain	Rosiduo	Modelled	Actual	Commont	Reference
	F11		Actual		IND CCE474
	510	ADC	-	expression tag	$\frac{\text{UNP C0F474}}{\text{UND C6F474}}$
	512	ANG	-	expression tag	UNP COF474
	513	ASP	-	expression tag	UNP C0F474
H	514	GLN	-	expression tag	UNP C6F474
H	515	ALA	-	expression tag	UNP C6F474
H	516	TYR	-	expression tag	UNP C6F474
H	517	VAL	-	expression tag	UNP C6F474
H	518	ARG	-	expression tag	UNP C6F474
H	519	LYS	-	expression tag	UNP C6F474
Н	520	ASP	-	expression tag	UNP C6F474
Н	521	GLY	-	expression tag	UNP $C6F474$
Н	522	GLU	-	expression tag	UNP $C6F474$
Н	523	TRP	-	expression tag	UNP C6F474
Н	524	VAL	-	expression tag	UNP C6F474
Н	525	LEU	-	expression tag	UNP C6F474
Н	526	LEU	-	expression tag	UNP C6F474
Н	527	SER	_	expression tag	UNP C6F474
Н	528	THR	-	expression tag	UNP C6F474
Н	529	PHE	-	expression tag	UNP C6F474
Н	530	LEU	-	expression tag	UNP C6F474
Н	531	GLY	-	expression tag	UNP C6F474
Н	532	GLY	-	expression tag	UNP C6F474
Н	533	THR	-	expression tag	UNP C6F474
Н	534	GLU	-	expression tag	UNP C6F474
Н	535	GLY	-	expression tag	UNP C6F474
Н	536	ARG	-	expression tag	UNP C6F474
Н	537	HIS	-	expression tag	UNP C6F474
Н	538	HIS	-	expression tag	UNP C6F474
Н	539	HIS	-	expression tag	UNP C6F474
Н	540	HIS	-	expression tag	UNP C6F474
Н	541	HIS	_	expression tag	UNP C6F474
Н	542	HIS	-	expression tag	UNP C6F474
J	490	SER	_	expression tag	UNP C6F474
J	491	GLY	-	expression tag	UNP C6F474
J	492	ARG	_	expression tag	UNP C6F474
J	493	GLU	-	expression tag	UNP C6F474
J	494	ASN	_	expression tag	UNP C6F474
J	495	LEU	_	expression tag	UNP C6F474
J	496	TYR	-	expression tag	UNP C6F474
J	497	PHE	_	expression tag	UNP C6F474
J	498	GLN	_	expression tag	UNP C6F474
J	499	GLY	-	expression tag	UNP C6F474
1		1	1	· · · · · · · · · · · · · · · · · · ·	. –

Chain		Modelled	Actual	Comment	Reference
J	500	GLY		expression tag	UNP C6F474
J	501	GLY	_	expression tag	UNP $C6F474$
J	502	GLY	- expression tag		UNP $C6F474$
J	503	GLY	_	expression tag	UNP C6F474
J	504	SER	_	expression tag	UNP C6F474
J	505	GLY	_	expression tag	UNP C6F474
J	506	TYR	_	expression tag	UNP C6F474
J	507	ILE	_	expression tag	UNP C6F474
J	508	PRO	_	expression tag	UNP C6F474
J	509	GLU	_	expression tag	UNP C6F474
J	510	ALA	-	expression tag	UNP C6F474
J	511	PRO	-	expression tag	UNP C6F474
J	512	ARG	_	expression tag	UNP C6F474
J	513	ASP	-	expression tag	UNP C6F474
J	514	GLN	_	expression tag	UNP C6F474
J	515	ALA	_	expression tag	UNP C6F474
J	516	TYR	_	expression tag	UNP C6F474
J	517	VAL	_	expression tag	UNP C6F474
J	518	518 ARG		expression tag	UNP C6F474
J	519	LYS	-	expression tag	UNP C6F474
J	520	ASP	-	expression tag	UNP C6F474
J	521	GLY	-	expression tag	UNP C6F474
J	522	GLU	-	expression tag	UNP C6F474
J	523	TRP	-	expression tag	UNP C6F474
J	524	VAL	-	expression tag	UNP C6F474
J	525	LEU	-	expression tag	UNP C6F474
J	526	LEU	-	expression tag	UNP C6F474
J	527	SER	-	expression tag	UNP C6F474
J	528	THR	-	expression tag	UNP C6F474
J	529	PHE	-	expression tag	UNP C6F474
J	530	LEU	-	expression tag	UNP C6F474
J	531	GLY	-	expression tag	UNP $C6F474$
J	532	GLY	-	expression tag	UNP C6F474
J	533	THR	-	expression tag	UNP C6F474
J	534	GLU	-	expression tag	UNP C6F474
J	535	GLY	-	expression tag	UNP C6F474
J	536	ARG	-	expression tag	UNP $C6F474$
J	537	HIS	-	expression tag	UNP C6F474
J	538	HIS	-	expression tag	UNP C6F474
J	539	HIS	-	expression tag	UNP C6F474
J	540	HIS	-	expression tag	UNP C6F474
J	541	HIS	-	expression tag	UNP $C6F474$

Continued from previous page...

Chain	Besidue	Modelled	Actual	Comment	Reference
I	5/12	HIS	-	expression tag	UNP C6F474
J L	400	SEB	B ovpression tag		UNP C6F474
L L	490	GLY	_	expression tag	$\frac{0000}{1000} \frac{0000}{1000} \frac{1000}{1000} $
	402	ARG	_	expression tag	UNP C6F474
L	492	GLU	_	expression tag	$\frac{0000}{1000} \frac{0000}{1000} \frac{1000}{1000} $
L L	490	ASN	_	expression tag	UNP C6F474
L	405	LEU	_	expression tag	UNP C6F474
L	495	TVB	_	expression tag	$\frac{0000}{1000} \frac{0000}{1000} \frac{1000}{1000} $
	490	PHF	-	expression tag	UNP C6F474
	497	GLN	-	expression tag	UNP C6F474
	490		-	expression tag	UNP C6F474
	4 <i>99</i> 500	CIV	-	expression tag	UNP C6F474
	500	CIV	-	expression tag	UNI COF474
	501	CLV	-	expression tag	$\frac{\text{UNF C0F474}}{\text{UND C6F474}}$
	502	GLI	-	expression tag	$\frac{\text{UNP C0F474}}{\text{UND C6F474}}$
	505	GLI	-	expression tag	$\frac{\text{UNP C0F474}}{\text{UND C6F474}}$
	504	SER	-	expression tag	$\frac{\text{UNP C0F474}}{\text{UND C6F474}}$
	505	GLY	-	expression tag	UNP C0F474
	500	TYR	-	expression tag	UNP C6F474
	507	ILE	-	expression tag	UNP C6F474
	508	PRO	-	expression tag	UNP C6F474
L	509	GLU	-	expression tag	UNP C6F474
	510	ALA	-	expression tag	UNP C6F474
L	511	PRO	-	expression tag	UNP C6F474
	512	ARG	-	expression tag	UNP C6F474
	513	ASP	-	expression tag	UNP C6F474
	514	GLN	-	expression tag	UNP C6F474
	515	ALA	-	expression tag	UNP C6F474
L	516	TYR	-	expression tag	UNP C6F474
L	517	VAL	-	expression tag	UNP C6F474
L	518	ARG	-	expression tag	UNP C6F474
L	519	LYS	-	expression tag	UNP C6F474
L	520	ASP	-	expression tag	UNP C6F474
L	521	GLY	-	expression tag	UNP C6F474
L	522	GLU	-	expression tag	UNP C6F474
L	523	TRP	-	expression tag	UNP C6F474
L	524	VAL	-	expression tag	UNP C6F474
L	525	LEU	-	expression tag	UNP $C6F474$
L	526	LEU	-	expression tag	UNP $C6F474$
L	527	SER	-	expression tag	UNP $C6F474$
L	528	THR	-	expression tag	UNP $C6F474$
L	529	PHE	-	expression tag	UNP C6F474
L	530	LEU	-	expression tag	UNP $C6F474$

	ica ji cili pi c	ete de pagem			
Chain	Residue	Modelled	Actual	Comment	Reference
L	531	GLY	-	expression tag	UNP C6F474
L	532	GLY	-	expression tag	UNP C6F474
L	533	THR	-	expression tag	UNP C6F474
L	534	GLU	-	expression tag	UNP C6F474
L	535	GLY	-	expression tag	UNP C6F474
L	536	ARG	-	expression tag	UNP C6F474
L	537	HIS	-	expression tag	UNP C6F474
L	538	HIS	-	expression tag	UNP C6F474
L	539	HIS	-	expression tag	UNP C6F474
L	540	HIS	-	expression tag	UNP C6F474
L	541	HIS	-	expression tag	UNP C6F474
L	542	HIS	-	expression tag	UNP C6F474
В	490	SER	-	expression tag	UNP C6F474
В	491	GLY	-	expression tag	UNP C6F474
В	492	ARG	-	expression tag	UNP C6F474
В	493	GLU	-	expression tag	UNP C6F474
В	494	ASN	-	expression tag	UNP C6F474
В	495	LEU	-	expression tag	UNP C6F474
В	496	TYR	_	expression tag	UNP C6F474
В	497	PHE	-	expression tag	UNP C6F474
В	498	GLN	_	expression tag	UNP C6F474
В	499	GLY	-	expression tag	UNP C6F474
В	500	GLY	_	expression tag	UNP C6F474
В	501	GLY	-	expression tag	UNP C6F474
В	502	GLY	_	expression tag	UNP C6F474
В	503	GLY	-	expression tag	UNP C6F474
В	504	SER	_	expression tag	UNP C6F474
В	505	GLY	-	expression tag	UNP C6F474
В	506	TYR	_	expression tag	UNP C6F474
В	507	ILE	-	expression tag	UNP C6F474
В	508	PRO	-	expression tag	UNP C6F474
В	509	GLU	_	expression tag	UNP C6F474
В	510	ALA	-	expression tag	UNP C6F474
В	511	PRO	_	expression tag	UNP C6F474
В	512	ARG	-	expression tag	UNP C6F474
В	513	ASP	-	expression tag	UNP C6F474
В	514	GLN	_	expression tag	UNP C6F474
B	515	ALA	_	expression tag	UNP C6F474
B	516	TYR	-	expression tag	UNP C6F474
B	517	VAL	-	expression tag	UNP C6F474
B	518	ARG	_	expression tag	UNP C6F474
B	519	LYS	-	expression tag	UNP C6F474
	0-0	·~	1		

Continued from previous page...

Contentia		ere ae page			
Chain	Residue	Modelled	Actual	Comment	Reference
В	520	ASP	-	expression tag	UNP C6F474
В	521	GLY	-	expression tag	UNP C6F474
В	522	GLU	-	expression tag	UNP C6F474
В	523	TRP	-	expression tag	UNP C6F474
В	524	VAL	-	expression tag	UNP C6F474
В	525	LEU	-	expression tag	UNP C6F474
В	526	LEU	-	expression tag	UNP C6F474
В	527	SER	-	expression tag	UNP C6F474
В	528	THR	-	expression tag	UNP C6F474
В	529	PHE	-	expression tag	UNP C6F474
В	530	LEU	-	expression tag	UNP C6F474
В	531	GLY	-	expression tag	UNP C6F474
В	532	GLY	-	expression tag	UNP C6F474
В	533	THR	-	expression tag	UNP C6F474
В	534	GLU	-	expression tag	UNP C6F474
В	535	GLY	-	expression tag	UNP C6F474
В	536	ARG	-	expression tag	UNP C6F474
В	537	HIS	-	expression tag	UNP C6F474
В	538	HIS	-	expression tag	UNP C6F474
В	539	HIS	-	expression tag	UNP C6F474
В	540	HIS	-	expression tag	UNP C6F474
В	541	HIS	-	expression tag	UNP C6F474
В	542	HIS	-	expression tag	UNP C6F474
D	490	SER	-	expression tag	UNP C6F474
D	491	GLY	-	expression tag	UNP C6F474
D	492	ARG	-	expression tag	UNP C6F474
D	493	GLU	-	expression tag	UNP C6F474
D	494	ASN	-	expression tag	UNP C6F474
D	495	LEU	-	expression tag	UNP C6F474
D	496	TYR	-	expression tag	UNP C6F474
D	497	PHE	-	expression tag	UNP C6F474
D	498	GLN	-	expression tag	UNP C6F474
D	499	GLY	-	expression tag	UNP C6F474
D	500	GLY	-	expression tag	UNP C6F474
D	501	GLY	-	expression tag	UNP C6F474
D	502	GLY	-	expression tag	UNP C6F474
D	503	GLY	-	expression tag	UNP C6F474
D	504	SER	-	expression tag	UNP C6F474
D	505	GLY	-	expression tag	UNP C6F474
D	506	TYR	-	expression tag	UNP C6F474
D	507	ILE	-	expression tag	UNP C6F474
D	508	PRO	-	expression tag	UNP C6F474

Contentio	ica ji oni pic	erous page			
Chain	Residue	Modelled	Actual	Comment	Reference
D	509	GLU	-	expression tag	UNP C6F474
D	510	ALA	-	expression tag	UNP C6F474
D	511	PRO	-	expression tag	UNP C6F474
D	512	ARG	-	expression tag	UNP C6F474
D	513	ASP	-	expression tag	UNP C6F474
D	514	GLN	-	expression tag	UNP C6F474
D	515	ALA	-	expression tag	UNP C6F474
D	516	TYR	-	expression tag	UNP C6F474
D	517	VAL	-	expression tag	UNP C6F474
D	518	ARG	-	expression tag	UNP C6F474
D	519	LYS	-	expression tag	UNP C6F474
D	520	ASP	-	expression tag	UNP C6F474
D	521	GLY	-	expression tag	UNP C6F474
D	522	GLU	-	expression tag	UNP C6F474
D	523	TRP	-	expression tag	UNP C6F474
D	524	VAL	-	expression tag	UNP C6F474
D	525	LEU	-	expression tag	UNP C6F474
D	526	LEU	-	expression tag	UNP C6F474
D	527	SER	-	expression tag	UNP C6F474
D	528	THR	-	expression tag	UNP C6F474
D	529	PHE	_	expression tag	UNP C6F474
D	530	LEU	-	expression tag	UNP C6F474
D	531	GLY	_	expression tag	UNP C6F474
D	532	GLY	-	expression tag	UNP C6F474
D	533	THR	_	expression tag	UNP C6F474
D	534	GLU	_	expression tag	UNP C6F474
D	535	GLY	_	expression tag	UNP C6F474
D	536	ARG	-	expression tag	UNP C6F474
D	537	HIS	-	expression tag	UNP C6F474
D	538	HIS	-	expression tag	UNP C6F474
D	539	HIS	-	expression tag	UNP C6F474
D	540	HIS	-	expression tag	UNP C6F474
D	541	HIS	_	expression tag	UNP C6F474
D	542	HIS	-	expression tag	UNP C6F474
F	490	SER	_	expression tag	UNP C6F474
F	491	GLY	-	expression tag	UNP C6F474
F	492	ARG	-	expression tag	UNP C6F474
F	493	GLU	-	expression tag	UNP C6F474
F	494	ASN	-	expression tag	UNP $C6F474$
F	495	LEU	-	expression tag	UNP $C6F474$
F	496	TYR	-	expression tag	UNP $C6F474$
F	497	PHE	-	expression tag	UNP C6F474

Continu	ica jioni pre	vious puge			
Chain	Residue	Modelled	Actual	Comment	Reference
F	498	GLN	LN - expression tag		UNP C6F474
F	499	GLY	GLY - expression tag		UNP C6F474
F	500	GLY	-	expression tag	UNP C6F474
F	501	GLY	-	expression tag	UNP C6F474
F	502	GLY	-	expression tag	UNP C6F474
F	503	GLY	-	expression tag	UNP C6F474
F	504	SER	-	expression tag	UNP C6F474
F	505	GLY	-	expression tag	UNP C6F474
F	506	TYR	-	expression tag	UNP C6F474
F	507	ILE	-	expression tag	UNP C6F474
F	508	PRO	-	expression tag	UNP C6F474
F	509	GLU	-	expression tag	UNP C6F474
F	510	ALA	-	expression tag	UNP C6F474
F	511	PRO	-	expression tag	UNP C6F474
F	512	ARG	-	expression tag	UNP C6F474
F	513	ASP	-	expression tag	UNP C6F474
F	514	GLN	-	expression tag	UNP C6F474
F	515	ALA	-	expression tag	UNP C6F474
F	516	TYR	-	expression tag	UNP C6F474
F	517	VAL	-	expression tag	UNP C6F474
F	518	ARG	-	expression tag	UNP C6F474
F	519	LYS	-	expression tag	UNP C6F474
F	520	ASP	-	expression tag	UNP C6F474
F	521	GLY	-	expression tag	UNP C6F474
F	522	GLU	-	expression tag	UNP C6F474
F	523	TRP	-	expression tag	UNP C6F474
F	524	VAL	-	expression tag	UNP C6F474
F	525	LEU	-	expression tag	UNP C6F474
F	526	LEU	-	expression tag	UNP C6F474
F	527	SER	-	expression tag	UNP C6F474
F	528	THR	-	expression tag	UNP C6F474
F	529	PHE	-	expression tag	UNP C6F474
F	530	LEU	-	expression tag	UNP C6F474
F	531	GLY	-	expression tag	UNP C6F474
F	532	GLY	-	expression tag	UNP C6F474
F	533	THR	-	expression tag	UNP C6F474
F	534	GLU	-	expression tag	UNP C6F474
F	535	GLY	-	expression tag	UNP $C6F474$
F	536	ARG	-	expression tag	UNP C6F474
F	537	HIS	-	expression tag	UNP C6F474
F	538	HIS	-	expression tag	UNP C6F474
F	539	HIS	-	expression tag	UNP C6F474

α \cdot \cdot \cdot	ſ		
Continued	from	previous	page
		1	1 0

Chain	Residue	Modelled	Actual	Comment	Reference
F	540	HIS	-	expression tag	UNP C6F474
F	541	HIS	-	expression tag	UNP C6F474
F	542	HIS	-	expression tag	UNP C6F474

• Molecule 3 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	G	1	Total C N O 14 8 1 5	0	0
3	Н	1	Total C N O 14 8 1 5	0	0
3	Н	1	Total C N O 14 8 1 5	0	0
3	Ι	1	Total C N O 14 8 1 5	0	0
3	J	1	Total C N O 14 8 1 5	0	0
3	J	1	Total C N O 14 8 1 5	0	0
3	K	1	Total C N O 14 8 1 5	0	0
3	L	1	Total C N O 14 8 1 5	0	0
3	L	1	Total C N O 14 8 1 5	0	0

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf										
3	Δ	1	Total C N	V O	0	0										
5	А	A	o A	L	14 8 1	5	0	0								
3	В	1	Total C N	I O	0	0										
5	D	T	14 8 1	5	0	0										
3	В	1	Total C N	I O	0	0										
5	D	T	14 8 1	5	0	0										
3	С	1	Total C N	I O	0	0										
5	U	T	14 8 1	5	0	0										
3	D	1	Total C N	I O	0	0										
5				14 8 1	5	0	0									
3	Л	1	Total C N	I O	0	0										
5	D		D	D					D		D	I	14 8 1	5	0	0
3	E	1	Total C N	I O	0	0										
0	Ц	1	14 8 1	5	0	0										
3	F	1	Total C N	V O	0	0										
່ <u>ວ</u>	T	1	14 8 1	5	0	U										
3	F	1	Total C N	I O	0	0										
0	F	1	14 8 1	5	0											

• Molecule 4 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	Н	1	Total O 1 1	0	0
4	Ι	2	Total O 2 2	0	0
4	J	4	Total O 4 4	0	0
4	L	6	Total O 6 6	0	0
4	В	5	Total O 5 5	0	0
4	С	2	Total O 2 2	0	0
4	D	4	Total O 4 4	0	0
4	F	1	Total O 1 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Fusion glycoprotein F2

• Molecule 2: Fusion glycoprotein F1

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 2 21	Depositor
Cell constants	114.53Å 128.10Å 431.32Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Bosolution(Å)	49.69 - 2.81	Depositor
Resolution (A)	49.69 - 2.81	EDS
% Data completeness	75.5 (49.69-2.81)	Depositor
(in resolution range)	75.6(49.69-2.81)	EDS
R _{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.76 (at 2.81 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.17.1_3660	Depositor
P. P.	0.254 , 0.291	Depositor
n, n_{free}	0.254 , 0.290	DCC
R_{free} test set	5880 reflections (5.01%)	wwPDB-VP
Wilson B-factor $(Å^2)$	34.5	Xtriage
Anisotropy	0.023	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.31 , 40.5	EDS
L-test for $twinning^2$	$ < L >=0.39, < L^2>=0.22$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.81	EDS
Total number of atoms	19556	wwPDB-VP
Average B, all atoms $(Å^2)$	39.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.99% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bo	nd lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.61	0/546	0.90	0/743	
1	С	0.63	0/550	0.94	1/747~(0.1%)	
1	Ε	0.62	0/550	0.87	1/747~(0.1%)	
1	G	0.75	0/550	0.96	1/747~(0.1%)	
1	Ι	0.61	0/550	0.94	0/747	
1	Κ	0.56	0/542	0.89	2/739~(0.3%)	
2	В	0.64	1/2708~(0.0%)	0.92	5/3672~(0.1%)	
2	D	0.57	1/2709~(0.0%)	0.85	3/3674~(0.1%)	
2	F	0.61	0/2718	0.96	8/3683~(0.2%)	
2	Н	0.69	3/2719~(0.1%)	0.97	8/3687~(0.2%)	
2	J	0.62	0/2705	0.89	3/3671~(0.1%)	
2	L	0.64	2/2719~(0.1%)	0.87	2/3687~(0.1%)	
All	All	0.63	7/19566~(0.0%)	0.91	34/26544~(0.1%)	

All (7) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	В	384	CYS	CB-SG	-7.99	1.68	1.82
2	Н	273	LEU	C-N	7.12	1.47	1.34
2	L	384	CYS	CB-SG	-6.41	1.71	1.82
2	L	397	VAL	C-O	-5.79	1.12	1.23
2	Н	390	CYS	CB-SG	-5.73	1.72	1.81
2	Н	384	CYS	CB-SG	-5.58	1.72	1.81
2	D	233	TYR	C-N	-5.04	1.22	1.34

All (34) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	Н	350	CYS	CA-CB-SG	-11.83	92.71	114.00
2	Н	361	CYS	CA-CB-SG	-10.86	94.46	114.00

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	L	384	CYS	CA-CB-SG	-9.47	96.95	114.00
2	J	350	CYS	CA-CB-SG	-9.30	97.25	114.00
2	J	361	CYS	CA-CB-SG	-8.51	98.69	114.00
2	Н	384	CYS	CA-CB-SG	-7.81	99.94	114.00
2	В	153	ASN	CB-CA-C	6.23	122.85	110.40
2	В	473	LEU	CA-CB-CG	6.22	129.61	115.30
2	Н	221	LEU	CA-CB-CG	6.17	129.50	115.30
1	K	24	LEU	CA-CB-CG	6.06	129.25	115.30
2	D	151	LEU	CB-CG-CD1	-5.92	100.94	111.00
2	Н	413	GLN	CA-CB-CG	5.78	126.11	113.40
2	Н	375	LEU	CB-CG-CD2	-5.77	101.20	111.00
2	В	384	CYS	CA-CB-SG	-5.73	103.68	114.00
1	С	28	CYS	CA-CB-SG	-5.71	103.72	114.00
2	В	245	LEU	CA-CB-CG	-5.59	102.44	115.30
2	Н	227	LEU	CA-CB-CG	-5.54	102.56	115.30
2	F	475	ASP	CB-CG-OD1	5.52	123.27	118.30
2	D	273	LEU	CB-CG-CD2	-5.51	101.62	111.00
1	Е	50	LEU	CA-CB-CG	5.49	127.92	115.30
2	Н	392	ILE	CG1-CB-CG2	5.46	123.40	111.40
2	L	280	ASP	C-N-CA	-5.41	108.17	121.70
1	K	28	CYS	CA-CB-SG	5.41	123.74	114.00
2	J	198	ARG	CA-CB-CG	-5.35	101.62	113.40
2	F	475	ASP	CB-CG-OD2	-5.31	113.52	118.30
2	F	171	LYS	CA-CB-CG	-5.28	101.79	113.40
1	G	50	LEU	CA-CB-CG	-5.24	103.25	115.30
2	В	229	ARG	NE-CZ-NH1	-5.21	117.69	120.30
2	F	427	LEU	CB-CG-CD1	-5.21	102.15	111.00
2	F	153	ASN	CB-CA-C	5.12	120.65	110.40
2	F	471	GLN	CA-CB-CG	-5.03	102.33	113.40
2	D	336	ASP	CB-CG-OD1	5.02	122.82	118.30
2	F	151	LEU	CA-CB-CG	5.00	126.80	115.30
2	F	458	VAL	CG1-CB-CG2	-5.00	102.90	110.90

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

7M0I

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	540	0	525	25	0
1	С	544	0	536	28	0
1	Е	544	0	536	24	0
1	G	544	0	536	23	0
1	Ι	544	0	536	20	0
1	K	536	0	514	22	0
2	В	2666	0	2638	130	0
2	D	2668	0	2636	134	0
2	F	2676	0	2660	131	0
2	Н	2677	0	2649	128	0
2	J	2663	0	2616	109	0
2	L	2677	0	2649	103	0
3	А	14	0	13	0	0
3	В	28	0	26	0	0
3	С	14	0	13	0	0
3	D	28	0	26	0	0
3	Е	14	0	13	0	0
3	F	28	0	26	0	0
3	G	14	0	13	2	0
3	Н	28	0	26	0	0
3	Ι	14	0	13	0	0
3	J	28	0	26	0	0
3	K	14	0	13	0	0
3	L	28	0	26	1	0
4	В	5	0	0	0	0
4	С	2	0	0	0	0
4	D	4	0	0	0	0
4	F	1	0	0	0	0
4	Н	1	0	0	4	0
4	Ι	2	0	0	0	0
4	J	4	0	0	0	0
4	L	6	0	0	0	0
All	All	19556	0	19265	656	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 17.

All (656) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
2:H:350:CYS:SG	4:H:701:HOH:O	2.00	1.16
2:H:361:CYS:SG	4:H:701:HOH:O	2.08	1.09

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:F:393:GLY:C	2:F:417:THR:HG22	1.80	1.02
2:J:138:LYS:HE3	2:L:481:LEU:HB3	1.45	0.98
2:H:350:CYS:O	2:H:354:ILE:HD12	1.66	0.95
2:H:222:MET:HE2	2:H:273:LEU:HD21	1.49	0.93
1:G:30:THR:HG23	2:H:381:LEU:HD11	1.50	0.93
2:B:133:GLU:C	2:B:135:ASN:OD1	2.09	0.92
2:F:247:ASN:HD22	2:F:334:PHE:HZ	1.16	0.90
1:G:85:SER:HB3	2:H:261:GLY:HA2	1.54	0.88
2:H:463:VAL:HG21	2:J:158:LEU:HD13	1.58	0.85
2:J:243:LEU:HB3	2:J:279:ILE:HD13	1.58	0.84
2:B:158:LEU:HD13	2:F:463:VAL:HG11	1.60	0.84
2:D:139:GLY:O	2:D:143:THR:HG23	1.78	0.84
1:A:39:LEU:HB2	2:B:278:VAL:HB	1.59	0.83
2:H:350:CYS:O	2:H:354:ILE:CD1	2.26	0.83
2:H:361:CYS:CB	4:H:701:HOH:O	2.22	0.82
2:B:155:VAL:HG22	2:D:155:VAL:HG21	1.62	0.81
2:H:145:ASN:HB2	2:J:478:ASN:HD21	1.45	0.81
1:I:85:SER:HB3	2:J:261:GLY:HA2	1.62	0.81
2:J:453:GLU:HG2	2:J:457:ASN:OD1	1.80	0.81
2:H:361:CYS:HB2	4:H:701:HOH:O	1.79	0.80
2:H:145:ASN:HB2	2:J:478:ASN:ND2	1.97	0.79
2:F:153:ASN:HA	2:F:156:ARG:HG2	1.65	0.78
2:H:145:ASN:HA	2:H:148:VAL:HG22	1.66	0.78
2:H:184:ILE:HD11	2:L:184:ILE:HG13	1.66	0.77
2:B:250:MET:HG2	2:B:334:PHE:CD2	2.19	0.77
2:H:155:VAL:HG21	2:L:155:VAL:HG22	1.65	0.76
2:F:174:THR:HA	2:F:177:ILE:HG22	1.68	0.75
2:B:135:ASN:OD1	2:B:135:ASN:N	2.20	0.75
2:D:481:LEU:HD13	2:D:481:LEU:O	1.86	0.74
2:H:137:ILE:HA	2:L:481:LEU:HD21	1.70	0.74
2:B:144:THR:CG2	2:D:145:ASN:OD1	2.35	0.74
2:B:248:ARG:HA	2:B:251:VAL:HG22	1.69	0.74
2:D:166:LYS:HE3	2:D:167:GLU:HG3	1.67	0.73
1:A:40:ARG:NH1	2:B:337:THR:OG1	2.22	0.73
1:C:61:THR:HG21	1:C:65:SER:HB2	1.69	0.73
2:B:250:MET:HG2	2:B:334:PHE:CE2	2.23	0.73
2:J:481:LEU:N	2:J:481:LEU:HD23	2.03	0.72
2:B:144:THR:HG21	2:D:145:ASN:OD1	1.89	0.72
1:I:49:THR:HB	2:L:436:VAL:HG22	1.71	0.72
2:D:394:SER:OG	2:D:416:ASP:OD2	2.07	0.72
2:B:411:THR:HG22	2:B:413:GLN:H	1.56	0.71

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:B:149:SER:HA	2:D:471:GLN:HE22	1.56	0.70
2:L:418:VAL:HG23	2:L:427:LEU:HD11	1.73	0.69
2:J:245:LEU:HD22	2:J:248:ARG:HH21	1.57	0.69
2:D:460:LEU:HA	2:D:463:VAL:HG22	1.73	0.69
2:B:199:ARG:O	2:B:203:VAL:HG12	1.93	0.69
2:B:477:SER:OG	2:D:140:ALA:O	2.11	0.69
1:A:85:SER:HB3	2:B:261:GLY:HA2	1.72	0.69
1:E:50:LEU:HD23	2:F:269:TYR:HE1	1.58	0.69
2:F:462:GLN:HA	2:F:465:GLU:HG2	1.76	0.68
2:H:152:GLY:HA2	2:L:151:LEU:HD11	1.76	0.68
2:L:221:LEU:HD23	2:L:271:VAL:HG12	1.74	0.68
2:H:134:VAL:O	2:H:137:ILE:HG22	1.94	0.68
2:H:392:ILE:HG23	2:H:415:ALA:CB	2.24	0.67
2:B:438:LYS:HG3	1:E:51:GLU:HB3	1.74	0.67
2:H:229:ARG:HD2	2:J:433:GLU:OE1	1.95	0.67
1:K:49:THR:HG23	2:L:268:ILE:HG12	1.76	0.67
2:D:309:TRP:HB2	2:D:320:TYR:HB2	1.76	0.67
2:H:222:MET:CE	2:H:273:LEU:HD21	2.23	0.67
2:H:474:VAL:HG13	2:L:145:ASN:HB3	1.77	0.67
2:D:392:ILE:HD12	2:D:410:ILE:HD13	1.76	0.67
2:B:133:GLU:O	2:B:135:ASN:OD1	2.12	0.67
2:L:422:ASN:OD1	2:D:401:LYS:HD3	1.95	0.66
2:J:453:GLU:CG	2:J:457:ASN:OD1	2.43	0.66
1:A:50:LEU:HD12	2:B:203:VAL:HG11	1.78	0.66
1:G:31:ILE:HD12	2:H:351:ASN:HD22	1.60	0.66
2:H:480:ILE:HG23	2:H:481:LEU:HD12	1.77	0.66
2:L:134:VAL:O	2:L:137:ILE:HG13	1.96	0.66
2:F:170:SER:O	2:F:174:THR:OG1	2.12	0.66
2:H:260:ILE:HD11	2:H:270:MET:HB2	1.76	0.65
2:D:170:SER:O	2:D:174:THR:OG1	2.14	0.65
2:H:287:LYS:HA	2:H:307:GLN:HG2	1.79	0.65
2:H:477:SER:OG	2:L:145:ASN:ND2	2.29	0.65
2:H:221:LEU:HD21	2:H:257:GLY:HA3	1.78	0.64
2:L:392:ILE:HG21	2:L:410:ILE:HD13	1.78	0.64
2:B:137:ILE:HD12	2:B:137:ILE:O	1.97	0.64
2:B:477:SER:OG	2:D:140:ALA:CA	2.45	0.64
2:J:221:LEU:HG	2:J:269:TYR:CE1	2.33	0.64
2:L:256:PHE:HE1	2:L:258:ILE:HD11	1.64	0.63
1:K:51:GLU:HG2	2:L:266:SER:OG	1.97	0.63
2:B:137:ILE:HD12	2:B:137:ILE:C	2.17	0.63
2:D:433:GLU:HG2	2:D:434:GLN:H	1.63	0.63

			Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:D:234:MET:HE1	2:D:244:MET:SD	2.38	0.63
2:H:240:GLN:HG2	2:H:279:ILE:HG12	1.81	0.63
2:D:393:GLY:HA2	2:D:400:ILE:HG13	1.79	0.63
2:H:386:LYS:O	2:H:405:LYS:NZ	2.31	0.63
2:B:134:VAL:HA	2:B:137:ILE:CG2	2.29	0.63
2:J:138:LYS:CE	2:L:481:LEU:HB3	2.27	0.62
2:B:392:ILE:HD11	2:B:403:LEU:HD11	1.79	0.62
2:J:139:GLY:O	2:J:143:THR:HG23	1.99	0.62
2:J:358:ASN:OD1	2:L:367:ARG:NH2	2.32	0.62
2:H:145:ASN:CG	2:J:478:ASN:OD1	2.38	0.62
2:J:240:GLN:O	2:J:244:MET:HG3	1.98	0.62
2:B:134:VAL:HG11	2:D:134:VAL:HG11	1.82	0.62
2:H:245:LEU:O	2:H:248:ARG:HG3	1.99	0.62
2:D:390:CYS:HA	2:D:419:THR:O	1.99	0.62
2:H:450:ARG:HG2	2:H:451:PHE:H	1.64	0.61
2:H:163:ARG:HB2	2:J:460:LEU:HD11	1.80	0.61
2:H:392:ILE:HG23	2:H:415:ALA:HB2	1.82	0.61
2:B:454:ASP:O	2:B:458:VAL:HG23	2.00	0.61
2:F:346:GLN:O	2:F:349:GLU:HB2	2.00	0.61
1:K:36:LEU:HD23	2:L:280:ASP:OD1	2.00	0.61
2:D:411:THR:HG22	2:D:413:GLN:H	1.64	0.61
2:D:481:LEU:HD13	2:D:481:LEU:C	2.21	0.61
2:D:222:MET:HE1	2:D:227:LEU:HD13	1.83	0.60
2:D:256:PHE:HE1	2:D:258:ILE:HD11	1.66	0.60
1:C:44:TYR:CD2	2:D:234:MET:HG2	2.36	0.60
1:I:37:SER:HB3	2:J:283:CYS:SG	2.41	0.60
2:B:206:GLN:NE2	2:F:209:ASP:OD1	2.35	0.60
2:H:399:ILE:H	2:H:399:ILE:HD12	1.67	0.60
2:H:256:PHE:HE1	2:H:258:ILE:HD11	1.67	0.60
2:H:459:ALA:O	2:H:463:VAL:HG13	2.01	0.60
2:H:371:SER:HA	2:H:383:ALA:O	2.03	0.59
2:J:167:GLU:HA	2:J:170:SER:OG	2.01	0.59
2:B:213:ILE:HG13	2:B:258:ILE:HD13	1.83	0.59
2:B:476:GLN:O	2:B:480:ILE:HG13	2.02	0.59
2:L:134:VAL:HA	2:L:137:ILE:HG12	1.84	0.59
2:B:167:GLU:HB3	2:B:171:LYS:HE2	1.82	0.59
2:H:429:LYS:HG2	1:K:43:TRP:HB2	1.82	0.59
2:F:181:LYS:O	2:F:184:ILE:HG13	2.03	0.59
2:H:198:ARG:NH2	1:K:73:LEU:HD22	2.18	0.59
2:J:480:ILE:HG22	2:J:481:LEU:HD23	1.84	0.59
2:L:221:LEU:HD21	2:L:257:GLY:HA3	1.83	0.59

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:70:GLU:OE2	2:D:198:ARG:NH2	2.36	0.59
2:B:133:GLU:CA	2:B:135:ASN:OD1	2.50	0.59
2:B:141:LEU:HB2	2:D:141:LEU:HD11	1.84	0.59
1:I:38:VAL:HG23	2:J:334:PHE:HA	1.85	0.59
2:L:130:LEU:HD12	2:L:130:LEU:O	2.03	0.58
2:L:392:ILE:HD12	2:L:415:ALA:HB2	1.85	0.58
1:G:55:VAL:HG12	2:J:442:VAL:HB	1.85	0.58
2:B:474:VAL:HG11	2:F:148:VAL:HG21	1.84	0.58
2:B:433:GLU:OE2	2:F:229:ARG:NH1	2.36	0.58
2:B:477:SER:OG	2:D:140:ALA:HA	2.02	0.58
1:G:21:GLU:OE1	2:H:376:SER:HB3	2.03	0.58
2:B:151:LEU:HD11	2:D:152:GLY:HA2	1.84	0.58
1:G:70:GLU:OE2	2:J:198:ARG:NH2	2.37	0.58
2:J:232:SER:O	2:D:396:ARG:NH2	2.37	0.58
2:B:467:ILE:HG12	2:F:156:ARG:HB3	1.86	0.58
2:F:200:PHE:O	2:F:204:VAL:HG23	2.04	0.58
2:H:465:GLU:OE2	2:H:468:GLU:HG2	2.04	0.58
2:J:243:LEU:HD11	2:D:413:GLN:OE1	2.04	0.58
1:E:39:LEU:HB2	2:F:278:VAL:HB	1.86	0.58
2:D:476:GLN:O	2:D:480:ILE:HG12	2.03	0.58
1:I:21:GLU:HB2	1:I:32:THR:HG23	1.86	0.57
2:J:166:LYS:CE	2:L:456:PHE:HB3	2.34	0.57
2:F:393:GLY:O	2:F:417:THR:HG22	2.03	0.57
1:I:27:SER:HB3	2:J:354:ILE:HG13	1.86	0.57
2:J:309:TRP:CD1	2:J:326:CYS:HB2	2.39	0.57
2:B:304:ARG:HA	2:B:363:VAL:HG12	1.84	0.57
2:D:174:THR:HA	2:D:177:ILE:HG22	1.87	0.57
2:B:144:THR:HG23	2:D:145:ASN:OD1	2.04	0.57
2:B:180:ASN:OD1	2:D:181:LYS:HG3	2.04	0.57
2:H:188:LYS:O	2:H:192:SER:OG	2.19	0.56
2:H:208:SER:HA	2:J:219:LEU:HD23	1.86	0.56
2:B:301:CYS:C	2:B:302:LEU:HD23	2.24	0.56
2:H:221:LEU:CD2	2:H:271:VAL:HG12	2.35	0.56
1:A:45:THR:HG22	2:B:272:GLN:HG3	1.87	0.56
2:D:132:SER:O	2:D:132:SER:OG	2.14	0.56
1:G:55:VAL:HG21	1:G:71:LEU:HD11	1.86	0.56
2:J:245:LEU:HD22	2:J:248:ARG:NH2	2.20	0.56
2:J:256:PHE:CE1	2:J:258:ILE:HD11	2.40	0.56
1:G:80:GLU:HG3	2:J:219:LEU:HD12	1.87	0.56
2:J:473:LEU:HB3	2:L:147:ALA:HB2	1.86	0.56
2:D:299:TYR:CE2	2:D:369:PRO:HB3	2.41	0.56

	A A A	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:F:356:THR:HG22	2:F:358:ASN:H	1.71	0.56
1:E:43:TRP:CE3	2:F:272:GLN:HG2	2.40	0.56
2:B:156:ARG:HB2	2:D:467:ILE:HG21	1.87	0.56
2:B:157:VAL:HG23	2:F:463:VAL:HG23	1.88	0.56
1:K:86:ALA:HB3	2:L:260:ILE:HA	1.86	0.56
2:B:147:ALA:HB2	2:F:473:LEU:HB3	1.88	0.56
2:H:309:TRP:CD1	2:H:326:CYS:HB2	2.41	0.56
1:E:19:LEU:HD11	2:F:331:ASP:OD1	2.06	0.56
2:H:145:ASN:ND2	2:J:478:ASN:OD1	2.39	0.56
2:F:464:PHE:HA	2:F:467:ILE:HG12	1.87	0.55
1:K:30:THR:HG23	2:L:381:LEU:HD21	1.87	0.55
2:B:477:SER:OG	2:D:140:ALA:C	2.45	0.55
2:B:169:VAL:HG23	2:B:173:LEU:HD23	1.89	0.55
1:K:30:THR:CG2	2:L:381:LEU:HD11	2.37	0.55
2:J:239:GLY:O	2:J:243:LEU:HG	2.07	0.55
2:J:294:GLU:HG2	2:J:298:ASN:O	2.07	0.55
2:F:231:VAL:HA	2:F:234:MET:HG3	1.88	0.55
2:F:240:GLN:OE1	2:F:240:GLN:N	2.40	0.55
1:I:50:LEU:HD12	2:J:269:TYR:HE2	1.72	0.55
2:H:221:LEU:HD23	2:H:271:VAL:HG12	1.88	0.55
2:J:138:LYS:HG3	2:L:481:LEU:HD13	1.88	0.55
2:D:309:TRP:CD1	2:D:326:CYS:HB2	2.42	0.55
2:B:134:VAL:HA	2:B:137:ILE:HG23	1.87	0.55
2:B:221:LEU:HD21	2:B:257:GLY:HA3	1.88	0.55
2:B:388:VAL:O	2:B:405:LYS:NZ	2.40	0.55
2:H:158:LEU:HD13	2:L:463:VAL:HG11	1.89	0.55
1:G:21:GLU:HB3	2:H:378:LEU:HD12	1.89	0.54
2:B:147:ALA:O	2:B:150:THR:HG22	2.07	0.54
1:K:85:SER:CB	2:L:261:GLY:HA2	2.37	0.54
2:B:134:VAL:CG1	2:D:134:VAL:HG11	2.37	0.54
2:F:286:ILE:HD12	2:F:310:TYR:CD1	2.41	0.54
2:F:470:SER:O	2:F:474:VAL:HG13	2.08	0.54
2:L:309:TRP:HB2	2:L:320:TYR:HB2	1.90	0.54
2:B:473:LEU:HD23	2:D:147:ALA:N	2.23	0.54
1:C:85:SER:HB2	2:D:261:GLY:HA2	1.88	0.54
2:H:460:LEU:O	2:H:463:VAL:HG22	2.07	0.54
2:H:477:SER:HB2	2:J:143:THR:OG1	2.08	0.54
2:B:181:LYS:O	2:B:184:ILE:HG13	2.08	0.54
2:B:187:LEU:HD11	2:D:188:LYS:HG2	1.90	0.54
2:L:464:PHE:HA	2:L:467:ILE:HG22	1.90	0.54
2:H:147:ALA:O	2:H:150:THR:HG22	2.08	0.53

	A L O	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:B:133:GLU:HA	2:B:135:ASN:OD1	2.08	0.53
2:L:134:VAL:O	2:L:137:ILE:CG1	2.55	0.53
2:F:234:MET:CE	2:F:275:ILE:HG12	2.38	0.53
2:F:418:VAL:HG23	2:F:427:LEU:HD11	1.89	0.53
2:F:371:SER:HA	2:F:383:ALA:O	2.08	0.53
1:G:31:ILE:HD12	2:H:351:ASN:ND2	2.24	0.53
2:D:217:ILE:HG21	2:D:222:MET:HE2	1.91	0.53
2:H:392:ILE:HD11	2:H:403:LEU:HD21	1.91	0.53
2:L:318:VAL:HG23	2:L:320:TYR:CE1	2.44	0.53
2:H:286:ILE:HD11	2:H:351:ASN:ND2	2.24	0.53
2:B:463:VAL:HG23	2:D:157:VAL:HG12	1.91	0.53
2:F:237:SER:HB2	2:F:240:GLN:OE1	2.09	0.53
2:F:240:GLN:O	2:F:244:MET:HG3	2.09	0.53
2:J:145:ASN:HA	2:J:148:VAL:HG12	1.90	0.53
2:B:433:GLU:HG2	2:B:434:GLN:H	1.72	0.53
2:D:156:ARG:HB2	2:F:467:ILE:HD13	1.90	0.53
2:D:454:ASP:O	2:D:458:VAL:HG13	2.09	0.53
1:E:58:LEU:HD22	2:F:189:MET:HE1	1.91	0.53
2:B:473:LEU:HD21	2:D:146:GLU:HG2	1.91	0.52
2:F:286:ILE:CD1	2:F:310:TYR:CD1	2.92	0.52
2:H:145:ASN:HB2	2:J:478:ASN:CG	2.29	0.52
2:L:145:ASN:HA	2:L:148:VAL:HG22	1.91	0.52
2:H:228:ALA:HB2	2:H:248:ARG:HH21	1.74	0.52
2:F:247:ASN:ND2	2:F:334:PHE:HZ	1.95	0.52
1:C:51:GLU:HG3	2:F:438:LYS:HG3	1.90	0.52
1:A:81:LEU:HD22	2:B:204:VAL:HG13	1.91	0.52
2:D:456:PHE:HE2	2:F:165:LEU:HB2	1.74	0.52
2:J:394:SER:OG	2:J:395:ASN:N	2.41	0.52
2:B:302:LEU:HD23	2:B:302:LEU:N	2.24	0.52
2:B:392:ILE:CD1	2:B:418:VAL:HG22	2.39	0.52
2:D:137:ILE:HG23	2:D:137:ILE:O	2.09	0.52
1:I:70:GLU:OE1	2:L:198:ARG:NH2	2.43	0.52
2:F:210:ASN:HB2	2:F:213:ILE:O	2.10	0.52
1:I:51:GLU:HB2	2:L:438:LYS:HG3	1.92	0.51
2:B:248:ARG:O	2:B:251:VAL:HG22	2.10	0.51
2:L:170:SER:O	2:L:174:THR:OG1	2.20	0.51
2:F:453:GLU:HG2	2:F:457:ASN:OD1	2.11	0.51
1:G:55:VAL:CG2	1:G:71:LEU:HD11	2.41	0.51
2:H:438:LYS:HG3	1:K:51:GLU:HB2	1.92	0.51
2:D:456:PHE:CE2	2:F:165:LEU:HD13	2.46	0.51
2:J:472:ALA:HA	2:J:475:ASP:OD2	2.11	0.51

	i agem	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:B:213:ILE:HG13	2:B:258:ILE:CD1	2.41	0.51
2:D:253:ARG:HH21	2:D:329:ARG:HH21	1.58	0.51
2:J:221:LEU:HD21	2:J:257:GLY:HA3	1.92	0.51
2:B:151:LEU:HB2	2:F:470:SER:CB	2.40	0.51
2:F:395:ASN:OD1	2:F:426:GLN:NE2	2.36	0.51
1:I:38:VAL:HG21	2:J:334:PHE:CD2	2.45	0.51
2:L:346:GLN:OE1	2:L:346:GLN:N	2.43	0.51
1:A:21:GLU:CD	2:B:376:SER:HG	2.13	0.51
1:C:49:THR:HB	2:F:436:VAL:HG22	1.91	0.51
2:H:156:ARG:HA	2:J:467:ILE:HD13	1.93	0.51
2:H:350:CYS:O	2:H:354:ILE:HD11	2.10	0.51
2:J:166:LYS:HZ2	2:L:460:LEU:HD12	1.75	0.51
2:J:459:ALA:O	2:J:463:VAL:HG23	2.11	0.51
1:C:38:VAL:HG11	2:D:334:PHE:CE2	2.46	0.51
2:J:258:ILE:O	2:J:269:TYR:HB2	2.11	0.50
2:D:152:GLY:O	2:D:155:VAL:HG12	2.11	0.50
2:D:299:TYR:CD2	2:D:369:PRO:HB3	2.45	0.50
2:J:475:ASP:OD1	2:J:475:ASP:N	2.44	0.50
2:B:155:VAL:HG12	2:D:467:ILE:HD11	1.94	0.50
2:F:473:LEU:O	2:F:476:GLN:HB3	2.12	0.50
1:G:68:LYS:NZ	3:G:201:NAG:H83	2.27	0.50
1:G:80:GLU:O	1:G:83:THR:HG23	2.12	0.50
2:B:210:ASN:HB2	2:B:213:ILE:O	2.11	0.50
2:H:191:VAL:HG11	1:K:66:LEU:HD13	1.93	0.50
2:B:473:LEU:HB3	2:D:147:ALA:HB2	1.94	0.50
2:D:151:LEU:HD11	2:F:152:GLY:CA	2.41	0.50
2:F:396:ARG:HG2	2:F:397:VAL:N	2.26	0.50
2:F:417:THR:N	2:F:427:LEU:CD1	2.74	0.50
2:H:234:MET:HE1	2:H:275:ILE:HG12	1.93	0.50
2:F:213:ILE:HD12	2:F:258:ILE:CD1	2.42	0.50
2:H:137:ILE:HG13	2:L:481:LEU:HD11	1.94	0.50
2:H:164:GLU:HB3	2:L:456:PHE:CZ	2.46	0.50
2:H:309:TRP:HB2	2:H:320:TYR:HB2	1.94	0.50
2:H:145:ASN:OD1	2:L:144:THR:OG1	2.12	0.49
2:J:133:GLU:O	2:J:137:ILE:HG12	2.12	0.49
2:H:285:ILE:HB	2:H:309:TRP:CZ3	2.47	0.49
1:A:44:TYR:HB2	2:B:275:ILE:HD11	1.93	0.49
1:C:21:GLU:HB2	1:C:32:THR:HG23	1.93	0.49
2:D:481:LEU:HD23	2:F:140:ALA:CB	2.42	0.49
2:H:198:ARG:CZ	1:K:73:LEU:HD22	2.42	0.49
2:J:250:MET:HG3	2:J:334:PHE:CZ	2.46	0.49

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:J:390:CYS:HA	2:J:419:THR:O	2.12	0.49
2:H:419:THR:HG23	2:H:424:VAL:HG22	1.94	0.49
2:B:392:ILE:CG2	2:B:415:ALA:HB2	2.43	0.49
1:C:67:ILE:HD13	2:D:189:MET:C	2.33	0.49
1:K:85:SER:HB3	2:L:261:GLY:HA2	1.95	0.49
2:B:392:ILE:HG12	2:B:403:LEU:HG	1.95	0.49
1:E:49:THR:HG23	2:F:268:ILE:HG12	1.93	0.49
2:F:413:GLN:N	2:F:413:GLN:OE1	2.45	0.49
2:H:222:MET:HE3	2:H:227:LEU:HA	1.95	0.49
2:H:285:ILE:HB	2:H:309:TRP:CE3	2.48	0.49
1:A:39:LEU:HD12	2:B:278:VAL:HG11	1.95	0.49
2:F:256:PHE:CE1	2:F:258:ILE:HD11	2.47	0.49
1:A:70:GLU:O	1:A:74:THR:HG23	2.13	0.49
1:C:44:TYR:CG	2:D:234:MET:HG2	2.47	0.49
1:C:61:THR:OG1	1:C:62:ASP:N	2.46	0.49
1:C:87:ASP:OD1	2:D:263:TYR:OH	2.30	0.49
2:H:382:VAL:CG2	2:H:418:VAL:HG11	2.44	0.48
2:J:250:MET:HG3	2:J:334:PHE:CE1	2.48	0.48
1:A:43:TRP:HB2	2:D:429:LYS:HG2	1.96	0.48
2:B:284:TRP:NE1	2:B:310:TYR:HB2	2.27	0.48
2:D:136:ALA:C	2:D:138:LYS:H	2.17	0.48
2:J:165:LEU:HD11	2:L:169:VAL:HG21	1.95	0.48
2:J:292:CYS:HB2	2:J:385:TYR:CZ	2.49	0.48
2:L:390:CYS:HA	2:L:419:THR:O	2.13	0.48
1:C:19:LEU:HD11	2:D:331:ASP:OD1	2.13	0.48
2:D:166:LYS:HG2	2:F:456:PHE:CE1	2.48	0.48
2:L:411:THR:HG22	2:L:413:GLN:H	1.78	0.48
1:A:55:VAL:HG11	1:A:71:LEU:HD11	1.95	0.48
2:H:202:ASN:O	2:H:206:GLN:HG3	2.14	0.48
1:I:37:SER:HB2	1:I:39:LEU:CD1	2.43	0.48
2:J:479:LYS:N	2:J:479:LYS:HD3	2.28	0.48
2:D:230:ALA:O	2:D:234:MET:HG3	2.14	0.48
2:L:392:ILE:CG2	2:L:410:ILE:HD13	2.44	0.48
1:A:87:ASP:OD2	2:B:263:TYR:OH	2.31	0.48
2:B:133:GLU:C	2:B:135:ASN:H	2.15	0.48
2:B:474:VAL:HG11	2:F:148:VAL:CG2	2.43	0.48
2:D:463:VAL:HG11	2:F:158:LEU:HD13	1.95	0.48
1:E:35:TYR:HB2	2:F:283:CYS:HB2	1.96	0.48
2:L:179:LYS:HE2	2:L:183:ASP:OD2	2.13	0.48
1:C:56:GLU:OE1	2:F:444:SER:N	2.41	0.48
2:F:222:MET:HE1	2:F:273:LEU:HD11	1.94	0.48

	ti a	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:H:287:LYS:NZ	2:H:323:GLU:OE2	2.40	0.48
2:H:392:ILE:CG2	2:H:415:ALA:HB2	2.43	0.48
2:H:248:ARG:O	2:H:252:ARG:HG3	2.14	0.48
2:J:187:LEU:CD2	2:L:187:LEU:HB3	2.44	0.48
2:J:240:GLN:HE22	2:J:279:ILE:HG22	1.78	0.48
2:J:378:LEU:HA	2:J:412:ASN:ND2	2.29	0.48
2:L:319:TYR:CZ	2:L:321:PRO:HA	2.49	0.48
2:B:152:GLY:HA2	2:F:151:LEU:HD21	1.95	0.48
2:B:306:ASP:O	2:B:310:TYR:OH	2.22	0.48
2:F:303:LEU:C	2:F:363:VAL:HG23	2.34	0.48
2:H:156:ARG:HB2	2:J:467:ILE:HG21	1.96	0.48
2:H:320:TYR:CE2	2:H:335:CYS:HB3	2.49	0.48
2:B:141:LEU:HB2	2:D:141:LEU:CD1	2.44	0.48
2:F:212:GLY:O	2:F:213:ILE:HD13	2.14	0.48
2:H:286:ILE:HD11	2:H:351:ASN:HD21	1.78	0.47
2:H:383:ALA:HB1	2:H:385:TYR:CE2	2.49	0.47
2:H:433:GLU:HG2	2:H:434:GLN:H	1.77	0.47
2:H:166:LYS:HD2	2:J:451:PHE:CE2	2.48	0.47
2:J:243:LEU:HD12	2:J:279:ILE:HG21	1.95	0.47
2:F:460:LEU:HD23	2:F:460:LEU:HA	1.62	0.47
2:J:166:LYS:HZ3	2:L:457:ASN:HA	1.79	0.47
2:B:161:ALA:HB1	2:F:456:PHE:CE2	2.49	0.47
1:C:85:SER:CB	2:D:261:GLY:HA2	2.44	0.47
2:D:469:ASN:O	2:D:473:LEU:HG	2.13	0.47
2:L:371:SER:HA	2:L:383:ALA:O	2.14	0.47
2:B:390:CYS:HA	2:B:419:THR:O	2.15	0.47
2:F:309:TRP:CZ3	2:F:333:VAL:HG11	2.48	0.47
2:J:371:SER:HA	2:J:383:ALA:O	2.14	0.47
2:L:221:LEU:CD2	2:L:257:GLY:HA3	2.44	0.47
1:C:52:VAL:HG23	2:D:265:SER:O	2.14	0.47
2:F:286:ILE:CD1	2:F:310:TYR:CE1	2.98	0.47
2:F:417:THR:N	2:F:427:LEU:HD13	2.30	0.47
2:H:292:CYS:HB2	2:H:385:TYR:CZ	2.50	0.47
2:H:304:ARG:NH2	2:H:351:ASN:OD1	2.44	0.47
2:H:309:TRP:NE1	2:H:326:CYS:HB2	2.30	0.47
2:H:362:LYS:HE2	2:H:362:LYS:HA	1.96	0.47
1:I:80:GLU:O	1:I:83:THR:HG23	2.14	0.47
1:E:19:LEU:N	1:E:19:LEU:HD12	2.30	0.47
2:F:393:GLY:CA	2:F:417:THR:HG22	2.43	0.47
2:H:166:LYS:HD3	2:J:456:PHE:CE1	2.50	0.47
2:J:187:LEU:HD21	2:L:187:LEU:HB3	1.96	0.47

	i agem	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:J:456:PHE:HD1	2:J:457:ASN:ND2	2.13	0.47
2:H:137:ILE:CA	2:L:481:LEU:HD21	2.43	0.47
1:K:58:LEU:HD12	1:K:58:LEU:HA	1.73	0.47
2:B:148:VAL:HG11	2:F:148:VAL:HG12	1.95	0.47
2:L:455:GLN:O	2:L:458:VAL:HB	2.15	0.47
2:B:248:ARG:O	2:B:252:ARG:HG3	2.15	0.47
2:L:221:LEU:HG	2:L:269:TYR:CE1	2.50	0.46
1:A:47:VAL:HB	2:D:434:GLN:HG2	1.97	0.46
1:E:60:CYS:O	2:F:182:CYS:SG	2.73	0.46
2:F:393:GLY:HA2	2:F:400:ILE:HG23	1.97	0.46
2:F:450:ARG:HG2	2:F:451:PHE:N	2.30	0.46
2:H:194:SER:O	2:H:198:ARG:HG3	2.16	0.46
1:C:62:ASP:N	1:C:62:ASP:OD1	2.49	0.46
2:D:137:ILE:HD11	2:F:138:LYS:HG2	1.97	0.46
2:B:240:GLN:HB3	2:B:276:PHE:O	2.16	0.46
2:D:166:LYS:HA	2:D:169:VAL:HG22	1.96	0.46
2:H:145:ASN:CB	2:J:478:ASN:OD1	2.63	0.46
2:B:188:LYS:HG2	1:E:66:LEU:HD11	1.98	0.46
1:I:63:GLY:HA3	1:I:64:PRO:HD3	1.71	0.46
2:J:260:ILE:HB	2:J:268:ILE:HG22	1.96	0.46
1:I:30:THR:HG23	2:J:381:LEU:HD11	1.98	0.46
2:J:347:SER:HB3	2:J:359:TYR:CE2	2.50	0.46
2:J:470:SER:O	2:J:474:VAL:HG13	2.15	0.46
2:D:285:ILE:HB	2:D:309:TRP:CE3	2.51	0.46
1:K:37:SER:HB3	2:L:283:CYS:SG	2.56	0.46
2:D:156:ARG:O	2:D:160:THR:HG23	2.15	0.46
1:E:85:SER:HB2	2:F:261:GLY:HA2	1.97	0.46
2:F:417:THR:HA	2:F:427:LEU:HD12	1.97	0.46
2:J:245:LEU:HD23	2:J:245:LEU:HA	1.60	0.46
2:L:171:LYS:N	2:L:171:LYS:HD3	2.31	0.46
2:B:208:SER:HA	2:D:219:LEU:HD23	1.98	0.46
1:C:63:GLY:HA3	1:C:64:PRO:HD3	1.61	0.46
2:F:173:LEU:HD12	2:F:173:LEU:HA	1.83	0.46
2:F:309:TRP:HB2	2:F:320:TYR:HB2	1.98	0.46
2:F:317:THR:O	2:F:343:VAL:HG22	2.16	0.46
2:H:469:ASN:O	2:H:473:LEU:HG	2.16	0.46
1:K:30:THR:HG23	2:L:381:LEU:HD11	1.97	0.46
2:B:169:VAL:HG21	2:F:169:VAL:HG22	1.97	0.46
1:C:67:ILE:HD12	2:D:190:ALA:HA	1.97	0.46
2:F:231:VAL:HA	2:F:234:MET:SD	2.55	0.46
2:D:210:ASN:HB2	2:D:213:ILE:O	2.15	0.46

	• • • • • •	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:D:217:ILE:O	2:D:252:ARG:HD3	2.16	0.46
2:D:320:TYR:CE2	2:D:335:CYS:HB3	2.51	0.46
2:F:473:LEU:O	2:F:476:GLN:N	2.49	0.46
2:H:145:ASN:HB2	2:J:478:ASN:OD1	2.16	0.45
2:J:309:TRP:HB2	2:J:320:TYR:HB2	1.97	0.45
2:J:392:ILE:HG21	2:J:410:ILE:HD13	1.98	0.45
2:J:166:LYS:HD3	2:J:167:GLU:OE1	2.15	0.45
1:K:44:TYR:HB2	2:L:275:ILE:HD11	1.99	0.45
2:B:309:TRP:HB2	2:B:320:TYR:HB2	1.98	0.45
2:D:169:VAL:HG12	2:F:169:VAL:HG11	1.98	0.45
2:F:440:ARG:HA	2:F:441:PRO:HD3	1.85	0.45
2:B:221:LEU:O	2:B:269:TYR:OH	2.18	0.45
1:C:19:LEU:HD12	1:C:19:LEU:N	2.31	0.45
2:D:202:ASN:O	2:D:206:GLN:HG3	2.17	0.45
2:D:395:ASN:O	2:D:396:ARG:HG3	2.15	0.45
2:H:373:VAL:HG23	2:H:420:ILE:HD11	1.98	0.45
2:J:244:MET:HE1	2:J:275:ILE:HA	1.99	0.45
2:L:260:ILE:HB	2:L:268:ILE:O	2.16	0.45
2:D:194:SER:OG	2:D:198:ARG:NH1	2.49	0.45
2:F:158:LEU:O	2:F:162:VAL:HG13	2.16	0.45
2:H:392:ILE:O	2:H:400:ILE:HG12	2.16	0.45
2:B:383:ALA:HB1	2:B:385:TYR:CE2	2.52	0.45
2:B:442:VAL:HB	1:E:55:VAL:HG13	1.98	0.45
2:D:136:ALA:C	2:D:138:LYS:N	2.70	0.45
2:F:245:LEU:HD23	2:F:245:LEU:HA	1.50	0.45
1:G:57:ASN:HB2	3:G:201:NAG:O5	2.16	0.45
2:J:320:TYR:CE2	2:J:335:CYS:HB3	2.52	0.45
2:B:349:GLU:HB3	2:B:356:THR:HG21	1.98	0.45
1:E:23:TYR:HE1	2:F:381:LEU:HD21	1.81	0.45
1:E:32:THR:HG21	2:F:377:PRO:HG2	1.98	0.45
2:F:241:ILE:O	2:F:245:LEU:HB2	2.17	0.45
3:L:601:NAG:H3	3:L:601:NAG:H83	1.99	0.45
2:J:380:ALA:HB2	2:J:427:LEU:HD21	1.99	0.45
2:L:373:VAL:HG23	2:L:420:ILE:HD11	1.99	0.45
2:L:250:MET:HE2	2:L:334:PHE:CD2	2.52	0.45
2:B:295:LYS:O	2:B:298:ASN:HB2	2.17	0.45
1:C:78:LEU:HD21	2:D:200:PHE:CZ	2.52	0.45
2:D:221:LEU:HG	2:D:269:TYR:CE1	2.52	0.45
2:D:250:MET:HE1	2:D:254:LYS:HE2	2.00	0.45
1:G:21:GLU:HB2	1:G:32:THR:HG23	1.97	0.44
2:B:382:VAL:O	2:B:407:CYS:HA	2.17	0.44

	A L O	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:H:187:LEU:HD23	2:J:191:VAL:HG21	1.99	0.44
1:A:21:GLU:HB2	1:A:32:THR:HG23	1.99	0.44
2:F:194:SER:O	2:F:198:ARG:NH1	2.50	0.44
2:F:467:ILE:HG13	2:F:468:GLU:N	2.31	0.44
2:H:145:ASN:HA	2:H:148:VAL:CG2	2.44	0.44
1:K:65:SER:O	1:K:69:THR:HG23	2.17	0.44
2:J:229:ARG:O	2:J:232:SER:HB2	2.18	0.44
2:F:373:VAL:HG23	2:F:420:ILE:HD11	2.00	0.44
2:F:480:ILE:O	2:F:480:ILE:HG23	2.17	0.44
1:G:46:ASN:ND2	2:J:435:HIS:NE2	2.66	0.44
2:H:320:TYR:CD1	2:H:320:TYR:N	2.86	0.44
1:K:85:SER:HB2	2:L:261:GLY:HA2	1.99	0.44
2:D:326:CYS:HB3	2:D:333:VAL:CG1	2.48	0.44
2:D:393:GLY:HA2	2:D:400:ILE:CG1	2.47	0.44
1:E:73:LEU:HD23	1:E:73:LEU:HA	1.75	0.44
2:F:255:GLY:O	2:F:256:PHE:HB3	2.18	0.44
2:D:481:LEU:C	2:D:481:LEU:CD1	2.84	0.44
1:G:21:GLU:CB	2:H:378:LEU:HD12	2.47	0.44
2:L:240:GLN:HG2	2:L:279:ILE:HG12	1.99	0.44
1:A:78:LEU:HD11	2:B:200:PHE:HZ	1.83	0.44
1:C:37:SER:HB3	2:D:283:CYS:SG	2.57	0.44
2:F:180:ASN:O	2:F:184:ILE:HG23	2.18	0.44
2:F:245:LEU:O	2:F:248:ARG:HG3	2.18	0.44
2:F:417:THR:CA	2:F:427:LEU:CD1	2.95	0.44
2:H:260:ILE:HB	2:H:268:ILE:HG22	2.00	0.44
2:J:221:LEU:CD2	2:J:257:GLY:HA3	2.47	0.44
2:J:427:LEU:HA	2:J:427:LEU:HD23	1.60	0.44
2:B:474:VAL:HG13	2:D:147:ALA:CB	2.47	0.44
2:D:392:ILE:O	2:D:400:ILE:N	2.41	0.44
2:H:187:LEU:O	2:H:191:VAL:HG12	2.18	0.43
2:J:286:ILE:HD13	2:J:286:ILE:HA	1.81	0.43
2:L:227:LEU:HD23	2:L:248:ARG:HB3	2.00	0.43
2:L:227:LEU:O	2:L:231:VAL:HG23	2.17	0.43
1:C:84:VAL:HG12	2:F:249:ALA:HA	2.00	0.43
2:D:250:MET:HE3	2:D:254:LYS:HG3	2.00	0.43
2:H:152:GLY:O	2:H:155:VAL:HG12	2.17	0.43
2:J:187:LEU:HD11	2:L:188:LYS:HG3	2.00	0.43
2:J:296:ASP:OD1	2:J:296:ASP:N	2.49	0.43
2:L:219:LEU:HD13	2:L:219:LEU:HA	1.69	0.43
2:B:371:SER:HA	2:B:383:ALA:O	2.17	0.43
2:D:371:SER:HA	2:D:383:ALA:O	2.17	0.43

	loue page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:D:372:MET:HE3	2:D:372:MET:HB2	1.94	0.43
2:F:189:MET:HB2	2:F:189:MET:HE2	1.75	0.43
2:H:435:HIS:CD2	2:H:435:HIS:N	2.86	0.43
2:J:400:ILE:HD13	2:J:400:ILE:HG21	1.73	0.43
2:L:202:ASN:O	2:L:206:GLN:HG3	2.18	0.43
2:B:463:VAL:HG11	2:D:158:LEU:HD13	1.99	0.43
2:H:245:LEU:HD23	2:H:245:LEU:HA	1.83	0.43
2:L:398:GLY:HA3	2:D:399:ILE:N	2.33	0.43
2:D:244:MET:HB3	2:D:251:VAL:HG21	2.01	0.43
1:E:21:GLU:HB3	2:F:378:LEU:HD12	2.00	0.43
1:E:58:LEU:HB2	2:F:189:MET:CE	2.49	0.43
1:G:23:TYR:CZ	1:G:25:GLU:HA	2.54	0.43
2:H:147:ALA:HB2	2:L:473:LEU:CB	2.49	0.43
2:L:409:TYR:C	2:L:410:ILE:HG13	2.38	0.43
1:A:44:TYR:O	2:B:273:LEU:HB2	2.19	0.43
2:D:248:ARG:H	2:D:248:ARG:HG3	1.54	0.43
2:D:384:CYS:O	2:D:405:LYS:HA	2.18	0.43
2:D:456:PHE:CE2	2:F:165:LEU:HB2	2.53	0.43
2:F:234:MET:HE3	2:F:275:ILE:HG12	2.00	0.43
1:G:50:LEU:HA	1:G:50:LEU:HD23	1.55	0.43
2:B:149:SER:OG	2:D:471:GLN:OE1	2.15	0.43
1:E:78:LEU:HD11	2:F:200:PHE:HZ	1.82	0.43
2:F:221:LEU:HG	2:F:269:TYR:CE2	2.54	0.43
2:D:169:VAL:CG1	2:F:169:VAL:HG11	2.48	0.43
2:F:356:THR:HG22	2:F:358:ASN:N	2.32	0.43
2:J:243:LEU:HD23	2:J:243:LEU:N	2.34	0.43
1:A:21:GLU:HB3	2:B:378:LEU:HD12	2.01	0.43
1:C:32:THR:HG21	2:D:377:PRO:HB2	2.01	0.43
2:F:349:GLU:OE1	2:F:358:ASN:HB3	2.18	0.43
2:H:234:MET:CE	2:H:275:ILE:HG12	2.49	0.43
2:H:476:GLN:O	2:H:479:LYS:HB3	2.19	0.43
2:J:294:GLU:OE1	2:J:297:GLY:N	2.51	0.43
1:C:23:TYR:CE2	1:C:25:GLU:HG2	2.54	0.43
2:D:166:LYS:HG2	2:F:456:PHE:HE1	1.84	0.43
2:D:200:PHE:O	2:D:203:VAL:HG22	2.18	0.43
2:D:481:LEU:HD21	2:F:137:ILE:HG12	2.01	0.43
2:H:236:THR:HB	2:H:240:GLN:OE1	2.19	0.42
1:A:50:LEU:CD2	2:D:437:ILE:HB	2.49	0.42
1:A:66:LEU:HD21	2:D:191:VAL:HG11	2.00	0.42
2:B:199:ARG:NH2	2:B:226:GLU:OE1	2.44	0.42
2:B:249:ALA:HB2	1:E:84:VAL:HA	2.01	0.42

	loub page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:D:194:SER:O	2:D:198:ARG:HG2	2.19	0.42
2:F:169:VAL:O	2:F:174:THR:HG23	2.19	0.42
2:D:317:THR:HB	2:D:343:VAL:HG23	2.01	0.42
2:F:213:ILE:HD12	2:F:258:ILE:HD13	2.00	0.42
1:G:66:LEU:HD22	2:J:191:VAL:HG12	2.01	0.42
2:J:221:LEU:HD23	2:J:271:VAL:HG12	2.00	0.42
2:B:253:ARG:NH1	2:F:213:ILE:HG12	2.34	0.42
2:B:471:GLN:O	2:B:474:VAL:HG23	2.19	0.42
2:F:174:THR:CA	2:F:177:ILE:HG22	2.42	0.42
2:H:382:VAL:HG22	2:H:418:VAL:HG11	2.01	0.42
2:J:417:THR:HA	2:J:425:TYR:O	2.20	0.42
2:L:219:LEU:HD13	2:L:252:ARG:CZ	2.49	0.42
1:I:37:SER:O	2:J:279:ILE:HG13	2.20	0.42
2:J:312:LYS:HG3	2:J:317:THR:HG22	2.02	0.42
1:K:61:THR:HG21	1:K:65:SER:HB3	2.01	0.42
2:B:219:LEU:HA	2:B:219:LEU:HD13	1.67	0.42
2:B:309:TRP:CD1	2:B:326:CYS:HB2	2.55	0.42
2:B:446:PHE:CE1	2:F:181:LYS:HB3	2.55	0.42
2:B:473:LEU:HD23	2:D:147:ALA:CA	2.49	0.42
2:F:471:GLN:O	2:F:471:GLN:HG2	2.19	0.42
2:H:166:LYS:NZ	2:H:167:GLU:OE2	2.52	0.42
1:K:40:ARG:HH21	2:L:337:THR:HB	1.84	0.42
2:H:169:VAL:HG11	2:L:169:VAL:HG12	2.01	0.42
2:H:260:ILE:H	2:H:269:TYR:HA	1.84	0.42
2:L:169:VAL:O	2:L:174:THR:HG23	2.19	0.42
2:B:157:VAL:HG23	2:F:463:VAL:CG2	2.49	0.42
1:C:36:LEU:HB2	2:D:332:HIS:ND1	2.34	0.42
1:A:24:LEU:HD13	1:A:29:SER:OG	2.20	0.42
2:D:169:VAL:O	2:D:174:THR:HG23	2.20	0.42
1:A:23:TYR:CD1	2:B:409:TYR:HB2	2.54	0.42
1:C:67:ILE:CD1	2:D:190:ALA:HA	2.50	0.42
2:F:417:THR:CA	2:F:427:LEU:HD12	2.50	0.42
1:I:70:GLU:O	1:I:74:THR:HG23	2.20	0.42
2:L:285:ILE:HB	2:L:309:TRP:CE3	2.55	0.42
2:D:263:TYR:HD2	2:D:268:ILE:HD13	1.84	0.42
1:G:78:LEU:HD21	2:H:204:VAL:HG21	2.02	0.41
2:H:481:LEU:HD22	2:L:142:LYS:HD3	2.02	0.41
2:L:199:ARG:NH2	2:L:226:GLU:OE1	2.51	0.41
2:B:265:SER:O	2:B:265:SER:OG	2.37	0.41
2:B:392:ILE:HD12	2:B:418:VAL:HG22	2.01	0.41
2:J:166:LYS:HE2	2:L:456:PHE:HB3	1.99	0.41

	A de la construction de la const	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:L:236:THR:HB	2:L:240:GLN:OE1	2.20	0.41
2:B:250:MET:HE3	2:B:253:ARG:NH2	2.35	0.41
2:F:187:LEU:O	2:F:191:VAL:HG23	2.21	0.41
2:H:289:ALA:HA	2:H:372:MET:HE1	2.02	0.41
2:D:483:SER:HB3	2:F:133:GLU:OE2	2.21	0.41
2:H:146:GLU:O	2:H:146:GLU:HG2	2.20	0.41
2:L:224:ASP:OD1	2:L:248:ARG:HD3	2.20	0.41
2:L:235:PRO:O	2:L:236:THR:HG23	2.19	0.41
2:D:294:GLU:OE1	2:D:296:ASP:N	2.54	0.41
2:H:347:SER:HB3	2:H:359:TYR:CE2	2.55	0.41
1:I:85:SER:CB	2:J:261:GLY:HA2	2.43	0.41
2:J:243:LEU:HD12	2:J:279:ILE:CG2	2.50	0.41
2:J:244:MET:CE	2:J:276:PHE:H	2.32	0.41
2:J:449:ILE:HD12	2:J:449:ILE:HA	1.77	0.41
2:J:451:PHE:HA	2:J:452:PRO:HD3	1.97	0.41
2:J:472:ALA:HA	2:J:475:ASP:CG	2.40	0.41
2:B:309:TRP:NE1	2:B:326:CYS:HB2	2.35	0.41
2:D:313:ASN:O	2:D:316:SER:O	2.39	0.41
2:H:243:LEU:HA	2:H:243:LEU:HD12	1.76	0.41
1:I:36:LEU:HD23	1:I:36:LEU:HA	1.89	0.41
2:L:322:ASN:O	2:L:325:ASP:HB2	2.20	0.41
2:L:453:GLU:O	2:L:457:ASN:HB2	2.21	0.41
2:B:235:PRO:O	2:B:236:THR:HG23	2.21	0.41
2:D:301:CYS:O	2:D:365:THR:HA	2.21	0.41
1:G:30:THR:HG23	2:H:381:LEU:CD1	2.37	0.41
1:G:58:LEU:O	1:G:61:THR:HG23	2.21	0.41
2:H:194:SER:O	2:H:198:ARG:CG	2.68	0.41
1:I:83:THR:HG23	1:I:83:THR:H	1.58	0.41
2:J:141:LEU:HD13	2:L:141:LEU:HD12	2.03	0.41
2:L:187:LEU:O	2:L:191:VAL:HG13	2.21	0.41
2:L:460:LEU:HD23	2:L:460:LEU:HA	1.77	0.41
2:B:217:ILE:O	2:B:252:ARG:HD3	2.19	0.41
2:B:219:LEU:HD23	2:F:208:SER:HA	2.03	0.41
2:B:399:ILE:HG12	2:B:400:ILE:N	2.36	0.41
2:B:470:SER:HB2	2:D:147:ALA:O	2.21	0.41
1:C:50:LEU:HD23	1:C:50:LEU:HA	1.74	0.41
2:F:416:ASP:C	2:F:427:LEU:HD13	2.41	0.41
2:F:462:GLN:O	2:F:465:GLU:HG2	2.20	0.41
1:I:51:GLU:HG2	2:J:266:SER:OG	2.21	0.41
2:L:354:ILE:C	2:L:356:THR:H	2.24	0.41
2:D:240:GLN:HG2	2:D:279:ILE:HG12	2.03	0.41

	, and page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:D:381:LEU:HD12	2:D:381:LEU:HA	1.93	0.41
2:D:392:ILE:CD1	2:D:410:ILE:HD13	2.46	0.41
2:D:456:PHE:O	2:D:459:ALA:N	2.53	0.41
1:E:37:SER:HB3	2:F:283:CYS:SG	2.61	0.41
2:H:147:ALA:HB2	2:L:473:LEU:HB2	2.02	0.40
2:J:391:SER:HB2	2:J:399:ILE:HG13	2.02	0.40
2:B:433:GLU:CD	2:F:229:ARG:HH11	2.23	0.40
1:E:50:LEU:CD2	2:F:269:TYR:HE1	2.30	0.40
1:E:58:LEU:HB2	2:F:189:MET:HE1	2.02	0.40
2:F:287:LYS:HA	2:F:307:GLN:HG3	2.02	0.40
2:H:392:ILE:HG23	2:H:415:ALA:HB1	1.98	0.40
2:J:457:ASN:HD22	2:J:457:ASN:HA	1.67	0.40
1:K:81:LEU:HD11	2:L:207:PHE:HB3	2.03	0.40
1:A:55:VAL:CG1	1:A:71:LEU:HD11	2.51	0.40
2:B:392:ILE:HG23	2:B:415:ALA:CB	2.51	0.40
2:B:473:LEU:HD23	2:D:147:ALA:HA	2.02	0.40
2:B:474:VAL:HG13	2:D:147:ALA:HB3	2.02	0.40
1:C:58:LEU:HA	1:C:58:LEU:HD12	1.72	0.40
2:H:234:MET:HE1	2:H:275:ILE:HA	2.03	0.40
2:H:262:VAL:O	2:H:263:TYR:CG	2.75	0.40
2:L:156:ARG:O	2:L:160:THR:HG22	2.21	0.40
2:L:179:LYS:O	2:L:182:CYS:HB3	2.22	0.40
2:L:214:THR:O	2:L:256:PHE:HB2	2.20	0.40
2:L:318:VAL:HG23	2:L:320:TYR:HE1	1.84	0.40
2:B:173:LEU:HD11	2:D:174:THR:HG22	2.02	0.40
2:H:286:ILE:O	2:H:307:GLN:HA	2.22	0.40
2:H:451:PHE:O	2:H:453:GLU:N	2.53	0.40
2:L:130:LEU:O	2:L:130:LEU:CG	2.70	0.40
1:A:86:ALA:HB3	2:B:260:ILE:HA	2.04	0.40
2:B:376:SER:HB3	2:B:379:GLY:C	2.40	0.40
2:B:403:LEU:HA	2:B:403:LEU:HD23	1.80	0.40
2:D:460:LEU:O	2:D:463:VAL:HG22	2.21	0.40
1:E:23:TYR:CE1	2:F:381:LEU:HD21	2.57	0.40
2:H:143:THR:HB	2:L:476:GLN:HE21	1.87	0.40
2:L:138:LYS:HB3	2:L:138:LYS:HE3	1.63	0.40
2:L:247:ASN:ND2	2:L:334:PHE:HZ	2.20	0.40
2:B:446:PHE:HE1	2:F:181:LYS:HB3	1.86	0.40
2:F:286:ILE:HD13	2:F:310:TYR:CE1	2.56	0.40
2:F:464:PHE:O	2:F:467:ILE:HG13	2.22	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	68/89~(76%)	67~(98%)	1 (2%)	0	100	100
1	С	68/89~(76%)	66~(97%)	2(3%)	0	100	100
1	Е	68/89~(76%)	66~(97%)	2(3%)	0	100	100
1	G	68/89~(76%)	66~(97%)	0	2(3%)	4	15
1	Ι	68/89~(76%)	66 (97%)	2(3%)	0	100	100
1	Κ	68/89~(76%)	68 (100%)	0	0	100	100
2	В	349/431~(81%)	336 (96%)	13 (4%)	0	100	100
2	D	350/431~(81%)	334 (95%)	16~(5%)	0	100	100
2	F	349/431~(81%)	342 (98%)	7(2%)	0	100	100
2	Н	350/431~(81%)	338~(97%)	12 (3%)	0	100	100
2	J	350/431~(81%)	338~(97%)	12 (3%)	0	100	100
2	L	350/431~(81%)	339~(97%)	11 (3%)	0	100	100
All	All	2506/3120 (80%)	2426 (97%)	78 (3%)	2(0%)	51	80

All (2) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	G	61	THR
1	G	62	ASP

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percer	ntiles
1	А	63/82~(77%)	63~(100%)	0	100	100
1	С	64/82~(78%)	62~(97%)	2(3%)	40	72
1	Ε	64/82~(78%)	63~(98%)	1 (2%)	62	87
1	G	64/82~(78%)	63~(98%)	1 (2%)	62	87
1	Ι	64/82~(78%)	64 (100%)	0	100	100
1	Κ	62/82~(76%)	62~(100%)	0	100	100
2	В	297/357~(83%)	288~(97%)	9~(3%)	41	73
2	D	297/357~(83%)	289~(97%)	8 (3%)	44	77
2	F	299/357~(84%)	288~(96%)	11 (4%)	34	66
2	Н	298/357~(84%)	292~(98%)	6 (2%)	55	83
2	J	295/357~(83%)	286~(97%)	9(3%)	40	72
2	L	298/357~(84%)	293~(98%)	5 (2%)	60	86
All	All	2165/2634 (82%)	2113 (98%)	52 (2%)	49	80

All (52) residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
1	G	68	LYS
2	Н	179	LYS
2	Н	293	SER
2	Н	302	LEU
2	Н	329	ARG
2	Н	455	GLN
2	Н	477	SER
2	J	156	ARG
2	J	163	ARG
2	J	394	SER
2	J	396	ARG
2	J	444	SER
2	J	460	LEU
2	J	475	ASP
2	J	479	LYS
2	J	480	ILE
2	L	132	SER
2	L	192	SER
2	L	348	ARG
2	L	394	SER
2	L	456	PHE
2	В	135	ASN

Mol	Chain	Res	Type
2	В	137	ILE
2	В	138	LYS
2	В	163	ARG
2	В	295	LYS
2	В	435	HIS
2	В	470	SER
2	В	471	GLN
2	В	477	SER
1	С	71	LEU
1	С	75	LYS
2	D	137	ILE
2	D	141	LEU
2	D	156	ARG
2	D	166	LYS
2	D	192	SER
2	D	291	SER
2	D	389	SER
2	D	434	GLN
1	Е	25	GLU
2	F	156	ARG
2	F	166	LYS
2	F	192	SER
2	F	265	SER
2	F	291	SER
2	F	293	SER
2	F	359	TYR
2	F	396	ARG
2	F	473	LEU
2	F	474	VAL
2	F	480	ILE

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

18 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	$_{\rm sths}$	Bond angles		
IVIOI	туре	Unain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
3	NAG	J	602	2	14,14,15	0.50	0	17,19,21	0.75	1 (5%)
3	NAG	L	602	2	14,14,15	1.14	1 (7%)	17,19,21	1.36	1 (5%)
3	NAG	В	602	2	14,14,15	0.68	1 (7%)	17,19,21	1.17	1 (5%)
3	NAG	L	601	2	14,14,15	0.48	0	17,19,21	1.52	3 (17%)
3	NAG	K	201	1	14,14,15	0.72	0	17,19,21	0.59	0
3	NAG	J	601	2	14,14,15	1.07	1 (7%)	17,19,21	0.99	1 (5%)
3	NAG	Е	201	1	14,14,15	1.47	2 (14%)	17,19,21	0.77	0
3	NAG	С	201	1	14,14,15	0.82	1 (7%)	17,19,21	0.80	1 (5%)
3	NAG	F	602	2	14,14,15	0.89	1 (7%)	17,19,21	0.72	1 (5%)
3	NAG	В	601	2	14,14,15	1.04	1 (7%)	17,19,21	0.71	1 (5%)
3	NAG	D	602	2	14,14,15	1.82	1 (7%)	17,19,21	1.68	1 (5%)
3	NAG	F	601	2	14,14,15	0.79	1 (7%)	17,19,21	0.85	1 (5%)
3	NAG	А	201	1	14,14,15	0.97	1 (7%)	17,19,21	1.29	2 (11%)
3	NAG	G	201	1	14,14,15	1.44	2 (14%)	17,19,21	0.86	0
3	NAG	Н	602	2	14,14,15	1.38	2 (14%)	17,19,21	0.62	0
3	NAG	Ι	201	1	14,14,15	1.47	1 (7%)	17,19,21	0.84	1 (5%)
3	NAG	D	601	2	14,14,15	0.73	1 (7%)	17,19,21	0.50	0
3	NAG	Н	601	2	14,14,15	0.55	0	17,19,21	1.03	2 (11%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	NAG	J	602	2	-	2/6/23/26	0/1/1/1
3	NAG	L	602	2	-	1/6/23/26	0/1/1/1
3	NAG	В	602	2	-	2/6/23/26	0/1/1/1
3	NAG	L	601	2	-	4/6/23/26	0/1/1/1
3	NAG	К	201	1	-	1/6/23/26	0/1/1/1
3	NAG	J	601	2	-	2/6/23/26	0/1/1/1
3	NAG	Е	201	1	-	1/6/23/26	0/1/1/1
3	NAG	С	201	1	-	0/6/23/26	0/1/1/1
3	NAG	F	602	2	-	2/6/23/26	0/1/1/1
3	NAG	В	601	2	-	1/6/23/26	0/1/1/1
3	NAG	D	602	2	-	1/6/23/26	0/1/1/1
3	NAG	F	601	2	-	1/6/23/26	0/1/1/1
3	NAG	А	201	1	-	2/6/23/26	0/1/1/1
3	NAG	G	201	1	-	2/6/23/26	0/1/1/1
3	NAG	Н	602	2	-	1/6/23/26	0/1/1/1
3	NAG	Ι	201	1	-	2/6/23/26	0/1/1/1
3	NAG	D	601	2	-	2/6/23/26	0/1/1/1
3	NAG	Н	601	2	-	3/6/23/26	0/1/1/1

All (17) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	D	602	NAG	O5-C1	6.64	1.54	1.43
3	Ι	201	NAG	O5-C1	5.34	1.52	1.43
3	Е	201	NAG	O5-C1	4.96	1.51	1.43
3	G	201	NAG	O5-C1	4.52	1.50	1.43
3	Н	602	NAG	O5-C1	4.09	1.50	1.43
3	L	602	NAG	O5-C1	4.06	1.50	1.43
3	В	601	NAG	O5-C1	3.72	1.49	1.43
3	J	601	NAG	C1-C2	3.64	1.57	1.52
3	F	602	NAG	O5-C1	3.03	1.48	1.43
3	Н	602	NAG	C1-C2	2.94	1.56	1.52
3	А	201	NAG	O5-C1	-2.54	1.39	1.43
3	С	201	NAG	C1-C2	2.32	1.55	1.52
3	G	201	NAG	C1-C2	2.23	1.55	1.52
3	D	601	NAG	C1-C2	2.21	1.55	1.52
3	В	602	NAG	O5-C1	2.19	1.47	1.43
3	F	601	NAG	O5-C1	2.19	1.47	1.43
3	Ε	201	NAG	C1-C2	2.12	1.55	1.52

All (17) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	D	602	NAG	C1-O5-C5	6.47	120.96	112.19
3	L	602	NAG	C1-O5-C5	4.89	118.82	112.19
3	L	601	NAG	C2-N2-C7	4.40	129.17	122.90
3	В	602	NAG	C1-O5-C5	4.02	117.64	112.19
3	А	201	NAG	C1-O5-C5	-3.70	107.17	112.19
3	L	601	NAG	C1-O5-C5	2.88	116.09	112.19
3	А	201	NAG	C4-C3-C2	2.62	114.85	111.02
3	Н	601	NAG	C1-O5-C5	2.59	115.71	112.19
3	J	602	NAG	C1-O5-C5	2.58	115.69	112.19
3	С	201	NAG	C1-O5-C5	2.57	115.67	112.19
3	J	601	NAG	C1-O5-C5	2.49	115.57	112.19
3	L	601	NAG	C1-C2-N2	2.45	114.68	110.49
3	F	602	NAG	C1-O5-C5	2.24	115.22	112.19
3	Н	601	NAG	C2-N2-C7	2.12	125.93	122.90
3	В	601	NAG	C1-O5-C5	2.11	115.05	112.19
3	F	601	NAG	O5-C1-C2	-2.10	107.98	111.29
3	Ι	201	NAG	C1-O5-C5	2.03	114.94	112.19

There are no chirality outliers.

All (30) torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
3	Ι	201	NAG	O5-C5-C6-O6
3	В	602	NAG	O5-C5-C6-O6
3	А	201	NAG	O5-C5-C6-O6
3	F	602	NAG	O5-C5-C6-O6
3	В	602	NAG	C4-C5-C6-O6
3	F	602	NAG	C4-C5-C6-O6
3	Ι	201	NAG	C4-C5-C6-O6
3	D	601	NAG	O5-C5-C6-O6
3	А	201	NAG	C4-C5-C6-O6
3	J	602	NAG	O5-C5-C6-O6
3	D	601	NAG	C4-C5-C6-O6
3	G	201	NAG	C8-C7-N2-C2
3	G	201	NAG	O7-C7-N2-C2
3	L	601	NAG	C8-C7-N2-C2
3	L	601	NAG	O7-C7-N2-C2
3	Н	601	NAG	O5-C5-C6-O6
3	J	602	NAG	C4-C5-C6-O6
3	K	201	NAG	O5-C5-C6-O6
3	В	601	NAG	O5-C5-C6-O6
3	Е	201	NAG	O5-C5-C6-O6
3	D	602	NAG	O5-C5-C6-O6

Mol	Chain	Res	Type	Atoms
3	Н	602	NAG	O5-C5-C6-O6
3	Н	601	NAG	C4-C5-C6-O6
3	J	601	NAG	C1-C2-N2-C7
3	L	602	NAG	C4-C5-C6-O6
3	Н	601	NAG	C3-C2-N2-C7
3	J	601	NAG	C3-C2-N2-C7
3	L	601	NAG	C3-C2-N2-C7
3	F	601	NAG	C3-C2-N2-C7
3	L	601	NAG	C1-C2-N2-C7

There are no ring outliers.

2 monomers are involved in 3 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	L	601	NAG	1	0
3	G	201	NAG	2	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$\mathbf{OWAB}(\mathbf{\AA}^2)$	Q < 0.9
1	А	70/89~(78%)	-0.06	1 (1%) 75 69	12, 27, 67, 96	0
1	С	70/89~(78%)	-0.06	2 (2%) 51 41	8, 31, 63, 75	0
1	Е	70/89~(78%)	-0.12	1 (1%) 75 69	9, 28, 61, 75	0
1	G	70/89~(78%)	-0.17	1 (1%) 75 69	5, 25, 50, 62	0
1	Ι	70/89~(78%)	-0.22	0 100 100	7, 23, 47, 61	0
1	K	70/89~(78%)	-0.23	0 100 100	7, 22, 49, 65	0
2	В	351/431~(81%)	0.28	28 (7%) 12 7	10, 28, 109, 128	0
2	D	352/431~(81%)	0.18	22 (6%) 20 12	7, 29, 105, 126	0
2	F	351/431~(81%)	0.20	17 (4%) 30 21	8, 28, 106, 123	0
2	Н	352/431~(81%)	0.10	14 (3%) 38 28	5, 26, 99, 114	0
2	J	352/431~(81%)	0.11	12 (3%) 45 35	6, 27, 101, 115	0
2	L	352/431~(81%)	0.03	3 (0%) 84 80	5, 30, 98, 111	0
All	All	2530/3120~(81%)	0.10	101 (3%) 38 28	5, 28, 102, 128	0

All (101) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
2	D	136	ALA	5.5
2	В	140	ALA	4.9
2	В	136	ALA	4.9
2	F	480	ILE	4.6
2	J	478	ASN	4.4
2	В	133	GLU	4.3
2	F	479	LYS	4.2
2	В	476	GLN	4.1
2	D	456	PHE	4.0
2	В	473	LEU	4.0
2	F	475	ASP	3.9

Mol	Chain	Res	Type	RSRZ
2	В	474	VAL	3.9
2	J	296	ASP	3.8
2	D	145	ASN	3.8
2	F	476	GLN	3.8
2	F	482	ASN	3.7
2	В	460	LEU	3.7
2	F	462	GLN	3.7
2	Н	456	PHE	3.6
2	D	480	ILE	3.6
2	В	458	VAL	3.5
1	А	62	ASP	3.5
2	J	133	GLU	3.5
2	J	132	SER	3.4
2	L	141	LEU	3.3
2	D	141	LEU	3.3
2	В	464	PHE	3.3
2	В	480	ILE	3.3
2	В	481	LEU	3.3
2	В	477	SER	3.2
2	D	138	LYS	3.2
1	С	88	GLN	3.2
2	F	478	ASN	3.2
2	F	155	VAL	3.0
2	J	474	VAL	3.0
2	В	470	SER	3.0
2	В	462	GLN	3.0
2	J	458	VAL	3.0
2	В	459	ALA	3.0
2^{-}	D	358	ASN	3.0
2	F	481	LEU	2.9
2	J	136	ALA	2.9
2	В	145	ASN	2.9
2	В	137	ILE	2.9
2	Н	471	GLN	2.9
2	D	479	LYS	2.8
2	F	473	LEU	2.8
2	В	468	GLU	2.8
2	F	138	LYS	2.8
2	В	139	GLY	2.8
2	D	133	GLU	2.8
2	D	135	ASN	2.8
2	Н	464	PHE	2.8

Mol	Chain	Res	Type	RSRZ
2	Н	296	ASP	2.8
2	F	146	GLU	2.7
2	Н	462	GLN	2.7
2	L	455	GLN	2.7
2	D	137	ILE	2.7
2	D	298	ASN	2.7
2	Н	460	LEU	2.7
2	В	453	GLU	2.6
2	Н	475	ASP	2.6
2	J	138	LYS	2.6
2	J	456	PHE	2.5
2	В	482	ASN	2.5
2	F	456	PHE	2.5
2	J	452	PRO	2.5
2	D	151	LEU	2.5
2	F	148	VAL	2.5
1	С	59	THR	2.5
2	J	144	THR	2.5
1	G	59	THR	2.4
2	В	450	ARG	2.4
2	D	452	PRO	2.4
1	Е	86	ALA	2.4
2	Н	476	GLN	2.4
2	В	141	LEU	2.4
2	В	472	ALA	2.3
2	В	456	PHE	2.3
2	D	147	ALA	2.3
2	J	454	ASP	2.3
2	Н	479	LYS	2.3
2	D	465	GLU	2.3
2	D	139	GLY	2.3
2	D	148	VAL	2.2
2	В	142	LYS	2.2
2	Н	472	ALA	2.2
2	D	464	PHE	2.2
2	Н	473	LEU	2.2
2	Н	480	ILE	2.2
2	D	296	ASP	2.2
2	Н	468	GLU	2.2
2	Н	134	VAL	2.2
2	F	161	ALA	2.1
2	L	479	LYS	2.1

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
3	NAG	Н	602	14/15	0.64	0.33	55,77,85,88	0
3	NAG	G	201	14/15	0.67	0.45	64,85,94,103	0
3	NAG	А	201	14/15	0.68	0.34	46,81,94,96	0
3	NAG	В	602	14/15	0.72	0.26	43,63,74,75	0
3	NAG	J	601	14/15	0.73	0.37	73,84,89,89	0
3	NAG	С	201	14/15	0.75	0.29	57,75,87,89	0
3	NAG	Н	601	14/15	0.78	0.24	52,74,81,86	0
3	NAG	F	602	14/15	0.78	0.24	35,64,83,85	0
3	NAG	L	602	14/15	0.79	0.30	$39,\!58,\!62,\!65$	0
3	NAG	D	602	14/15	0.82	0.24	35,61,76,80	0
3	NAG	Е	201	14/15	0.84	0.28	48,61,68,69	0
3	NAG	Ι	201	14/15	0.85	0.18	37,59,63,63	0
3	NAG	L	601	14/15	0.85	0.24	56,74,89,103	0
3	NAG	D	601	14/15	0.85	0.16	69,82,89,91	0
3	NAG	J	602	14/15	0.86	0.22	52,59,67,69	0
3	NAG	K	201	14/15	0.89	0.27	48,62,69,72	0
3	NAG	В	601	14/15	0.90	0.16	66,73,75,76	0

Chain RSRZ Mol \mathbf{Res} Type $\mathbf{2}$ VAL D 1622.12 В ASP 2.0461LEU 2F 1512.02 В 479LYS 2.02F 474 VAL 2.02D 455GLN 2.0

Continued from previous page...

Continued from previous page...

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q < 0.9
3	NAG	F	601	14/15	0.91	0.21	63,71,75,78	0

6.5 Other polymers (i)

There are no such residues in this entry.

