

Full wwPDB X-ray Structure Validation Report (i)

Nov 16, 2023 – 10:57 AM JST

:	6LKQ
:	The Structural Basis for Inhibition of Ribosomal Translocation by Viomycin
:	Zhang, L.; Wang, Y.H.; Lancaster, L.; Zhou, J.; Noller, H.F.
:	2019-12-20
:	3.10 Å(reported)
	::

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	130704	1094 (3.10-3.10)
Ramachandran outliers	138981	1141 (3.10-3.10)
Sidechain outliers	138945	1141 (3.10-3.10)
RSRZ outliers	127900	1067 (3.10-3.10)
RNA backbone	3102	1116 (3.40-2.80)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
			26%		
1	A	218	74%	22%	•
			7%		
2	В	206	80%	18%	•
			22%		
3	C	205	68%	29%	•
			2%		
4	D	150	79%	20%	•
			14%		
5	E	100	74%	21%	5%
			42%		
6	F	151	85%	15%	%

Continued from previous page...

Chain Length Mol Quality of chain 6% 7G 129 91% 9% 29% Η 8 127• 76% 22% 13% 9 Ι 98. 73% 24% 7% J 11710 79% 18% • 4% 11 Κ 12378% 19% • 55% 12L 11480% 20% 39% 13М 10014% 79% • • 8% Ν 1488 82% 18% 24% Ο 82 1573% 26% . 34% Р 1680 69% 29% • 11% Q 175580% 18% • 65% \mathbf{R} 79. 1881% 18% 8% 19 \mathbf{S} 85 85% 14% 39% Т 205178% 22% 3% U 2127180% 19% 22V 20978% 19% • 3% W 2320182% 16% • 23% Х 2417779% 20% • 2% Υ 25176• 74% 23% 70% Ζ 2614182% 18% . 4% 270 14275% 23% • .% 281221 80% 19% 6% 29214375% 25% .% 3 30 13679% 21% 2% 4 31 12081% 18%

 $Continued \ from \ previous \ page...$ Chain Length Quality of chain Mol 31% 32511686% 13% . 3% 33611476% 22% • 3% 348 11781% 18% . 3% 93510388% 10% . .% 36 110 \mathbf{a} 82% 17% • 14% 37 \mathbf{b} 9375% 22% . 21% 38102 \mathbf{c} 74% 25% . 9% 39 \mathbf{d} 9484% 16% 6% 7940е 58% 35% 6% 4% f 41 7782% 16% • 5% 4263 g 76% 22% • 17% • 5843h 74% 22% 5% 4456i 79% 21% 70% 45j 5090% 10% 4% 46k 46 83% 17% 471 6488% 12% 3% 38 48m 74% 26% 69% 49163n 77% 20% • 17% 5030 0 70% 27% • 27% 5030 р 83% 17% 57% 5030 93% q 7% 37% 5030 r 80% 20% 6% 153251 \mathbf{S} 79% 19% • 3% 522903 \mathbf{t} 73% 21% . . . 53118u 84% 16%

Mol	Chain	Length	pagerri	Quality of chain	
54	V	525	11%	78%	18% •
55	W	6	67%	83%	33%
56	7	6	33%	67%	
56	AA	6	33%	67%	
56	BA	6	17%	50%	
56	У	6	50%	50%	
56	Z	6	33%	67%	

Continued from previous page...

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
56	UAL	7	5	-	-	-	Х
56	5OH	7	6	-	-	-	Х
56	KBE	AA	1	-	-	-	Х
56	DPP	AA	2	-	-	-	Х
56	5OH	AA	6	-	-	-	Х
56	KBE	BA	1	-	-	-	Х
56	DPP	BA	2	-	-	-	Х
56	UAL	BA	5	-	-	-	Х
56	KBE	у	1	-	-	-	Х
56	KBE	Z	1	-	-	-	Х
56	5OH	Z	6	-	-	-	Х

6LKQ

2 Entry composition (i)

There are 56 unique types of molecules in this entry. The entry contains 146817 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 30S ribosomal protein S2.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
1	А	218	Total 1702	C 1079	N 305	O 312	S 6	0	0	0

• Molecule 2 is a protein called 30S ribosomal protein S3.

Mol	Chain	Residues		Ate	oms		ZeroOcc	AltConf	Trace	
2	В	206	Total 1625	C 1028	N 305	O 289	${ m S} { m 3}$	0	0	0

• Molecule 3 is a protein called 30S ribosomal protein S4.

Mol	Chain	Residues		Ate	oms		ZeroOcc	AltConf	Trace	
3	С	205	Total 1643	C 1026	N 315	0 298	$\begin{array}{c} \mathrm{S} \\ \mathrm{4} \end{array}$	0	0	0

• Molecule 4 is a protein called 30S ribosomal protein S5.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
4	D	150	Total 1106	C 687	N 211	O 202	S 6	0	0	0

• Molecule 5 is a protein called 30S ribosomal protein S6.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
5	Е	100	Total 818	C 515	N 148	0 149	S 6	0	0	0

• Molecule 6 is a protein called 30S ribosomal protein S7.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
6	F	151	Total 1182	С 735	N 227	0 216	$\frac{S}{4}$	0	0	0

• Molecule 7 is a protein called 30S ribosomal protein S8.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
7	G	129	Total 979	C 616	N 173	0 184	S 6	0	0	0

• Molecule 8 is a protein called 30S ribosomal protein S9.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
8	Н	127	Total 1022	C 634	N 206	0 179	${ m S} { m 3}$	0	0	0

• Molecule 9 is a protein called 30S ribosomal protein S10.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
9	Ι	98	Total 787	C 493	N 150	0 143	S 1	0	0	0

• Molecule 10 is a protein called 30S ribosomal protein S11.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
10	J	117	Total 877	C 540	N 174	O 160	${ m S} { m 3}$	0	0	0

• Molecule 11 is a protein called 30S ribosomal protein S12.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
11	K	123	Total 955	$\begin{array}{c} \mathrm{C} \\ 590 \end{array}$	N 196	0 165	${s \atop 4}$	0	0	0

• Molecule 12 is a protein called 30S ribosomal protein S13.

Mol	Chain	Residues		At	\mathbf{oms}			ZeroOcc	AltConf	Trace
12	L	114	Total 884	C 546	N 178	0 157	${ m S} { m 3}$	0	0	0

• Molecule 13 is a protein called 30S ribosomal protein S14.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
13	М	96	Total 774	C 483	N 160	0 128	${ m S} { m 3}$	0	0	0

• Molecule 14 is a protein called 30S ribosomal protein S15.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
14	Ν	88	Total 714	C 439	N 144	O 130	S 1	0	0	0

• Molecule 15 is a protein called 30S ribosomal protein S16.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
15	0	82	Total 649	C 406	N 128	0 114	S 1	0	0	0

• Molecule 16 is a protein called 30S ribosomal protein S17.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
16	Р	80	Total 649	C 411	N 121	0 114	${ m S} { m 3}$	0	0	0

• Molecule 17 is a protein called 30S ribosomal protein S18.

Mol	Chain	Residues		Aton	ns		ZeroOcc	AltConf	Trace
17	Q	55	Total 456	C 288	N 86	O 82	0	0	0

• Molecule 18 is a protein called 30S ribosomal protein S19.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
18	R	79	Total 638	C 408	N 120	O 108	${ m S} { m 2}$	0	0	0

• Molecule 19 is a protein called 30S ribosomal protein S20.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
19	S	85	Total 665	C 411	N 137	0 114	${ m S} { m 3}$	0	0	0

• Molecule 20 is a protein called 30S ribosomal protein S21.

Mol	Chain	Residues		Atc	\mathbf{ms}			ZeroOcc	AltConf	Trace
20	Т	51	Total 426	C 265	N 86	0 74	S 1	0	0	0

• Molecule 21 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
21	U	271	Total 2083	C 1288	N 423	O 365	S 7	0	0	0

• Molecule 22 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
22	V	209	Total 1565	C 979	N 288	0 294	$\frac{S}{4}$	0	0	0

• Molecule 23 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
23	W	201	Total 1552	C 974	N 283	O 290	${S \over 5}$	0	0	0

• Molecule 24 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
24	Х	177	Total 1411	C 899	N 249	O 257	S 6	0	0	0

• Molecule 25 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
25	Y	176	Total 1323	C 832	N 243	O 246	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0	0

• Molecule 26 is a protein called 50S ribosomal protein L11.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
26	Z	141	Total 1032	C 651	N 179	O 196	S 6	0	0	0

• Molecule 27 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
27	0	142	Total 1129	C 714	N 212	0 199	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0	0

• Molecule 28 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
28	1	122	Total 939	C 587	N 180	0 166	S 6	0	0	0

• Molecule 29 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
29	2	143	Total 1045	C 649	N 206	0 189	S 1	0	0	0

• Molecule 30 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
30	3	136	Total 1074	C 686	N 205	O 177	S 6	0	0	0

• Molecule 31 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
31	4	120	Total 961	C 593	N 196	0 167	${ m S}{ m 5}$	0	0	0

• Molecule 32 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		Ato	ms		ZeroOcc	AltConf	Trace
32	5	116	Total 892	C 552	N 178	O 162	0	0	0

• Molecule 33 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
33	6	114	Total 917	$\begin{array}{c} \mathrm{C} \\ 574 \end{array}$	N 179	O 163	S 1	0	0	0

• Molecule 34 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		Ato	ms		ZeroOcc	AltConf	Trace
34	8	117	Total 947	C 604	N 192	O 151	0	0	0

• Molecule 35 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
35	9	103	Total 816	C 516	N 153	0 145	${ m S} { m 2}$	0	0	0

• Molecule 36 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
36	a	110	Total 857	C 532	N 166	0 156	${ m S} { m 3}$	0	0	0

• Molecule 37 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
37	b	93	Total 739	C 466	N 139	O 132	${ m S} { m 2}$	0	0	0

• Molecule 38 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		Ato	ms		ZeroOcc	AltConf	Trace
38	С	102	Total 780	C 492	N 146	O 142	0	0	0

• Molecule 39 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
39	d	94	Total 753	$\begin{array}{c} \mathrm{C} \\ 479 \end{array}$	N 137	0 134	${ m S} { m 3}$	0	0	0

• Molecule 40 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
40	е	79	Total 596	C 367	N 120	0 108	S 1	0	0	0

• Molecule 41 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
41	f	77	Total 625	C 388	N 129	O 106	${ m S} { m 2}$	0	0	0

• Molecule 42 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		Atc	\mathbf{ms}			ZeroOcc	AltConf	Trace
42	g	63	Total 509	C 313	N 99	O 95	${ m S} { m 2}$	0	0	0

• Molecule 43 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues		Ato	\mathbf{ms}			ZeroOcc	AltConf	Trace
43	h	58	Total 449	C 281	N 87	O 79	${ m S} { m 2}$	0	0	0

• Molecule 44 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues		Atc	\mathbf{ms}			ZeroOcc	AltConf	Trace
44	i	56	Total 444	C 269	N 94	O 80	S 1	0	0	0

• Molecule 45 is a protein called 50S ribosomal protein L33.

Mol	Chain	Residues		Aton	ns		ZeroOcc	AltConf	Trace
45	j	50	Total 410	C 263	N 75	O 72	0	0	0

• Molecule 46 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues		Ato	\mathbf{ms}			ZeroOcc	AltConf	Trace
46	k	46	Total 377	C 228	N 90	O 57	${ m S} { m 2}$	0	0	0

• Molecule 47 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
47	1	64	Total 504	C 323	N 105	0 74	${ m S} { m 2}$	0	0	0

• Molecule 48 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
48	m	38	Total 302	C 185	N 65	0 48	${S \atop 4}$	0	0	0

• Molecule 49 is a protein called 50S ribosomal protein L10.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
49	n	163	Total 1234	C 779	N 219	O 229	${ m S} 7$	0	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
n	85	LEU	SER	conflict	UNP A0A1X3LA41
n	160	GLU	ASP	conflict	UNP A0A1X3LA41

• Molecule 50 is a protein called 50S ribosomal protein L7/L12.

Mol	Chain	Residues		Ato	\mathbf{ms}			ZeroOcc	AltConf	Trace
50	0	20	Total	С	Ν	Ο	\mathbf{S}	0	0	0
50	0	- 50	228	144	33	48	3	0	0	0
50	n	20	Total	С	Ν	Ο	S	0	0	0
50	р	- 50	228	144	33	48	3	0	0	0
50	a	20	Total	С	Ν	0	S	0	0	0
50	q	- 50	228	144	33	48	3	0	0	0
50	r	30	Total	С	Ν	Ο	S	0	0	0
- 50	1	- 50	228	144	33	48	3	0	U	0

• Molecule 51 is a RNA chain called 16S ribosomal RNA.

Mol	Chain	Residues		1	Atoms			ZeroOcc	AltConf	Trace
51	s	1532	Total 32870	C 14661	N 6031	O 10647	Р 1531	0	0	0

• Molecule 52 is a RNA chain called 23S ribosomal RNA.

Mol	Chain	Residues		-	Atoms			ZeroOcc	AltConf	Trace
52	t	2850	Total 61183	C 27295	N 11261	O 19778	Р 2849	0	0	0

• Molecule 53 is a RNA chain called 5S ribosomal RNA.

Mol	Chain	Residues		AtomsTotalCNOP					AltConf	Trace
53	u	118	Total 2526	C 1126	N 464	0 819	Р 117	0	0	0

• Molecule 54 is a protein called Peptide chain release factor 3.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
54	V	525	Total 4144	C 2617	N 722	O 783	S 22	0	0	0

 $\bullet\,$ Molecule 55 is a RNA chain called messenger RNA.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
55	W	6	Total 126	C 58	N 24	O 39	Р 5	0	0	0

• Molecule 56 is a protein called Viomycin.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
56	У	6	Total C N O 48 25 13 10	0	0	0
56	Z	6	Total C N O 48 25 13 10	0	0	0
56	7	6	Total C N O 48 25 13 10	0	0	0
56	АА	6	Total C N O 48 25 13 10	0	0	0
56	BA	6	Total C N O 48 25 13 10	0	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 30S ribosomal protein S2

• Molecule 3: 30S ribosomal protein S4

 \bullet Molecule 9: 30S ribosomal protein S10

• Molecule 26: 50S ribosomal protein L11

• Molecule 43: 50S ribosomal protein L30

U12

<u>4330</u>

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	257.60Å 312.90 Å 328.60 Å	Deperitor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
$\mathbf{P}_{\text{oscolution}}(\hat{\mathbf{A}})$	100.00 - 3.10	Depositor
Resolution (A)	59.36 - 3.00	EDS
% Data completeness	100.0 (100.00-3.10)	Depositor
(in resolution range)	99.9(59.36-3.00)	EDS
R_{merge}	0.20	Depositor
R _{sym}	0.10	Depositor
$< I/\sigma(I) > 1$	$1.34 (at 3.01 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.6	Depositor
D D.	0.210 , 0.240	Depositor
Π, Π_{free}	0.236 , 0.241	DCC
R_{free} test set	26311 reflections $(5.02%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	64.1	Xtriage
Anisotropy	0.241	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.32 , 86.0	EDS
L-test for twinning ²	$< L > = 0.45, < L^2 > = 0.27$	Xtriage
Estimated twinning fraction	0.020 for -h,l,k	Xtriage
F_o, F_c correlation	0.91	EDS
Total number of atoms	146817	wwPDB-VP
Average B, all atoms $(Å^2)$	100.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 1.42% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: UAL, DPP, KBE, 5OH

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bo	ond lengths	Bond angles		
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.33	0/1732	0.59	0/2333	
2	В	0.34	0/1652	0.61	0/2225	
3	С	0.34	0/1665	0.61	0/2227	
4	D	0.38	0/1119	0.70	0/1504	
5	Ε	0.34	0/836	0.57	0/1128	
6	F	0.27	0/1196	0.54	0/1602	
7	G	0.34	0/989	0.61	0/1326	
8	Н	0.31	0/1034	0.59	0/1375	
9	Ι	0.33	0/797	0.63	0/1077	
10	J	0.34	0/893	0.61	0/1205	
11	Κ	0.44	0/969	0.79	0/1300	
12	L	0.24	0/893	0.54	0/1193	
13	М	0.32	0/785	0.56	0/1043	
14	Ν	0.32	0/722	0.60	0/964	
15	0	0.39	0/659	0.63	0/884	
16	Р	0.35	0/658	0.65	0/881	
17	Q	0.39	0/463	0.59	0/621	
18	R	0.28	0/653	0.54	0/877	
19	S	0.37	0/671	0.58	0/888	
20	Т	0.38	0/431	0.58	0/570	
21	U	0.47	0/2122	0.83	1/2852~(0.0%)	
22	V	0.52	0/1586	0.82	1/2134~(0.0%)	
23	W	0.41	0/1571	0.70	0/2113	
24	Х	0.32	0/1435	0.57	0/1926	
25	Y	0.42	0/1343	0.71	0/1816	
26	Ζ	0.26	0/1046	0.52	0/1410	
27	0	0.47	0/1152	0.78	1/1551~(0.1%)	
28	1	0.53	0/948	0.81	0/1268	
29	2	0.39	0/1054	0.76	0/1403	
30	3	0.46	0/1093	0.72	$0/1\overline{460}$	
31	4	0.45	0/974	0.76	$0/1\overline{301}$	
32	5	0.32	0/902	0.60	0/1209	

6LKQ

Mol Chain		Bo	ond lengths	Bond angles		
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
33	6	0.46	0/929	0.79	1/1242~(0.1%)	
34	8	0.45	0/960	0.68	0/1278	
35	9	0.39	0/829	0.71	0/1107	
36	a	0.48	0/864	0.75	0/1156	
37	b	0.43	0/745	0.76	0/994	
38	с	0.41	0/788	0.73	0/1051	
39	d	0.36	0/766	0.57	0/1025	
40	е	0.49	0/603	0.79	1/797~(0.1%)	
41	f	0.39	0/635	0.74	1/848~(0.1%)	
42	g	0.36	0/510	0.71	0/677	
43	h	0.37	0/453	0.67	0/605	
44	i	0.47	0/450	0.78	0/599	
45	j	0.33	0/417	0.55	0/554	
46	k	0.50	0/380	0.79	0/498	
47	1	0.41	0/513	0.70	0/676	
48	m	0.46	0/303	0.83	1/397~(0.3%)	
49	n	0.30	0/1248	0.60	0/1679	
50	0	0.34	0/228	0.66	0/304	
50	р	0.29	0/228	0.49	0/304	
50	q	0.31	0/228	0.58	0/304	
50	r	0.31	0/228	0.58	0/304	
51	\mathbf{S}	0.40	0/36806	0.74	26/57419~(0.0%)	
52	t	0.53	0/68523	0.83	141/106893~(0.1%)	
53	u	0.36	0/2825	0.69	0/4406	
54	V	0.47	2/4221~(0.0%)	0.73	5/5702~(0.1%)	
55	W	0.27	0/141	0.70	0/218	
56	7	1.41	0/11	1.06	0/13	
56	AA	1.56	0/11	0.97	0/13	
56	BA	1.40	0/11	0.64	0/13	
56	У	1.33	0/11	0.91	0/13	
56	Z	1.48	0/11	1.40	0/13	
All	All	0.46	2/158919~(0.0%)	0.76	179/236768~(0.1%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
51	s	0	29
52	t	0	109
53	u	0	1

Continued from previous page...

Mol	Chain	#Chirality outliers	#Planarity outliers
54	V	0	2
All	All	0	141

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
54	V	72	THR	C-O	6.02	1.34	1.23
54	V	73	SER	CB-OG	5.44	1.49	1.42

All (179) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
52	t	1340	U	N1-C1'-C2'	10.45	127.59	114.00
52	t	974	G	N9-C1'-C2'	9.82	126.77	114.00
52	t	70	G	N9-C1'-C2'	9.73	126.65	114.00
52	t	2447	G	N9-C1'-C2'	9.40	126.22	114.00
52	t	2732	G	N9-C1'-C2'	9.32	126.12	114.00
52	t	686	U	N1-C1'-C2'	9.19	125.95	114.00
52	t	728	G	N9-C1'-C2'	9.03	125.74	114.00
52	t	1025	G	N9-C1'-C2'	8.91	125.59	114.00
52	t	249	С	N1-C1'-C2'	8.86	125.52	114.00
52	t	2030	А	N9-C1'-C2'	8.83	125.48	114.00
52	t	1250	G	N9-C1'-C2'	8.80	125.44	114.00
52	t	1237	А	N9-C1'-C2'	8.79	125.43	114.00
52	t	792	А	N9-C1'-C2'	8.56	125.12	114.00
52	t	2566	А	N9-C1'-C2'	8.33	124.83	114.00
52	t	1828	G	N9-C1'-C2'	8.32	124.81	114.00
52	t	746	U	N1-C1'-C2'	8.26	124.74	114.00
52	t	1820	U	N1-C1'-C2'	8.12	124.56	114.00
52	t	1252	G	N9-C1'-C2'	8.11	124.55	114.00
52	t	1955	U	N1-C1'-C2'	8.09	124.52	114.00
52	t	1210	G	N9-C1'-C2'	7.88	124.25	114.00
52	t	1311	G	N9-C1'-C2'	7.86	124.21	114.00
51	S	872	А	N9-C1'-C2'	7.69	124.00	114.00
52	t	1781	U	N1-C1'-C2'	7.64	123.93	114.00
52	t	1937	А	N9-C1'-C2'	7.61	123.89	114.00
52	t	1966	А	N9-C1'-C2'	7.57	123.84	114.00
52	t	2384	U	N1-C1'-C2'	7.49	123.73	114.00
51	S	1085	U	N1-C1'-C2'	7.47	123.71	114.00
52	t	332	А	N9-C1'-C2'	7.36	123.57	114.00
51	S	818	G	N9-C1'-C2'	7.28	123.47	114.00
52	t	1490	А	N9-C1'-C2'	7.25	123.43	114.00

52

52

782

1300

 \mathbf{t}

 \mathbf{t}

А

G

N9-C1'-C2'

O4'-C1'-N9

Conti	nued fron	ı previc	ous page.				
\mathbf{Mol}	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
52	t	1131	G	N9-C1'-C2'	7.22	123.39	114.00
52	t	2490	G	N9-C1'-C2'	7.15	123.30	114.00
51	s	1504	G	N9-C1'-C2'	7.13	123.26	114.00
52	t	1970	A	N9-C1'-C2'	7.11	123.24	114.00
52	t	1332	G	N9-C1'-C2'	7.07	123.19	114.00
52	t	506	G	N9-C1'-C2'	7.05	123.16	114.00
52	t	1428	С	N1-C1'-C2'	7.03	123.14	114.00
52	t	1653	G	N9-C1'-C2'	7.02	123.12	114.00
52	t	72	U	N1-C1'-C2'	6.99	123.09	114.00
52	t	2654	A	N9-C1'-C2'	6.99	123.08	114.00
52	t	2346	A	N9-C1'-C2'	6.87	122.93	114.00
52	t	119	A	N9-C1'-C2'	6.83	122.88	114.00
51	S	1065	U	N1-C1'-C2'	6.83	122.88	114.00
48	m	15	LYS	N-CA-C	6.80	129.37	111.00
51	s	266	G	N9-C1'-C2'	6.77	122.80	114.00
52	t	1634	A	N9-C1'-C2'	6.75	122.77	114.00
52	t	196	A	N9-C1'-C2'	6.74	122.77	114.00
52	t	1134	A	N9-C1'-C2'	6.71	122.72	114.00
52	t	1940	U	N1-C1'-C2'	6.67	122.68	114.00
51	s	328	С	N1-C1'-C2'	6.67	122.67	114.00
52	t	2249	U	N1-C1'-C2'	6.65	122.64	114.00
52	t	199	A	N9-C1'-C2'	6.63	122.62	114.00
52	t	995	С	N1-C1'-C2'	6.63	122.62	114.00
52	t	1128	G	N9-C1'-C2'	6.59	122.57	114.00
52	t	1253	A	N9-C1'-C2'	6.56	122.52	114.00
52	t	2491	U	N1-C1'-C2'	6.50	122.45	114.00
52	t	670	А	N9-C1'-C2'	6.44	122.37	114.00
51	s	47	С	N1-C1'-C2'	6.42	122.34	114.00
52	t	479	A	N9-C1'-C2'	6.42	122.34	114.00
52	t	323	С	N1-C1'-C2'	6.40	122.33	114.00
52	t	1938	A	N9-C1'-C2'	6.40	122.33	114.00
52	t	1247	A	N9-C1'-C2'	6.40	122.32	114.00
52	t	2022	U	C5'-C4'-C3'	-6.40	105.77	116.00
52	t	2751	G	N9-C1'-C2'	6.37	122.28	114.00
52	t	1786	A	N9-C1'-C2'	6.35	122.26	114.00
52	t	2689	U	N1-C1'-C2'	6.33	122.22	114.00
52	t	2654	A	C2'-C3'-O3'	6.31	123.79	113.70
51	S	1126	U	N1-C1'-C2'	6.30	122.19	114.00
52	t	774	G	N9-C1'-C2'	6.29	122.18	114.00
52	t	1758	U	N1-C1'-C2'	6.29	122.17	114.00

Continued on next page...

114.00

108.20

122.15

113.16

6.27

6.20

6L	KQ
01	

Mol	Chain	Res	Type	Atoms	Z	Observed(^o)	Ideal(°)
52	t	2282	G	N9-C1'-C2'	6.17	122.03	114.00
54	V	2202	LYS	CA-C-N	-6.17	103.63	117.20
52	t	685	A	N9-C1'-C2'	6.16	122.01	114.00
52	t	1301	A	N9-C1'-C2'	6.10	121.93	114.00
52	t	2035	G	N9-C1'-C2'	6.09	121.91	114.00
52	t	2713	U	N1-C1'-C2'	6.06	121.88	114.00
52	t	531	С	N1-C1'-C2'	6.04	121.86	114.00
51	S	367	U	N1-C1'-C2'	6.01	121.81	114.00
51	S	344	А	N9-C1'-C2'	5.98	121.78	114.00
52	t	1567	G	N9-C1'-C2'	5.96	121.74	114.00
51	S	870	U	N1-C1'-C2'	5.94	121.72	114.00
52	t	645	С	N1-C1'-C2'	5.92	121.69	114.00
51	S	109	А	N9-C1'-C2'	5.91	121.68	114.00
52	t	2051	A	N9-C1'-C2'	5.89	121.65	114.00
40	е	21	GLY	N-CA-C	-5.87	98.42	113.10
54	V	522	GLN	C-N-CA	5.87	136.37	121.70
52	t	829	А	N9-C1'-C2'	5.86	121.62	114.00
52	t	2198	А	N9-C1'-C2'	5.85	121.61	114.00
52	t	1667	G	N9-C1'-C2'	5.83	121.58	114.00
52	t	2021	С	OP1-P-O3'	5.83	118.02	105.20
51	s	1139	G	N9-C1'-C2'	5.81	121.56	114.00
51	S	244	U	N1-C1'-C2'	5.79	121.53	114.00
52	t	783	А	N9-C1'-C2'	-5.79	105.63	112.00
52	t	1324	G	N9-C1'-C2'	5.78	121.52	114.00
52	t	2572	A	N9-C1'-C2'	5.76	121.49	114.00
52	t	527	С	N1-C1'-C2'	5.75	121.48	114.00
52	t	331	С	N1-C1'-C2'	5.75	121.48	114.00
52	\mathbf{t}	2572	A	OP1-P-O3'	5.72	117.79	105.20
52	t	458	G	N9-C1'-C2'	5.72	121.44	114.00
52	t	1329	U	N1-C1'-C2'	5.71	121.43	114.00
54	V	26	LYS	O-C-N	5.71	131.84	122.70
52	\mathbf{t}	2629	U	N1-C1'-C2'	5.71	121.42	114.00
21	U	251	THR	N-CA-C	-5.70	95.62	111.00
52	t	776	G	N9-C1'-C2'	5.67	121.38	114.00
51	S	575	G	N9-C1'-C2'	5.65	121.34	114.00
52	t	512	G	N9-C1'-C2'	5.64	121.33	114.00
52	t	1522	A	N9-C1'-C2'	5.64	121.33	114.00
52	t	2266	A	N9-C1'-C2'	$5.6\overline{2}$	121.31	114.00
52	t	512	G	O4'-C1'-N9	5.61	112.69	108.20
51	S	717	U	N1-C1'-C2	5.56	121.23	114.00
54	V	25	GLY	O-C-N	-5.55	113.82	122.70
52	t	457	A	N9-C1'-C2'	5.54	121.20	114.00

Continued from previous page

Mol	Chain	Res	Type	Atoms	Ζ	Observed(°)	Ideal(°)
52	t	830	G	N9-C1'-C2'	5.54	121.20	114.00
52	t	1325	U	N1-C1'-C2'	5.54	121.20	114.00
52	t	119	A	C2'-C3'-O3'	5.52	122.53	113.70
52	t	301	G	N9-C1'-C2'	5.50	121.15	114.00
51	s	559	А	N9-C1'-C2'	5.50	121.14	114.00
52	t	2391	G	N9-C1'-C2'	5.49	121.14	114.00
52	t	1694	С	N1-C1'-C2'	5.46	121.10	114.00
52	t	1344	U	N1-C1'-C2'	5.46	121.09	114.00
52	t	1681	G	N9-C1'-C2'	5.44	121.07	114.00
52	t	2655	G	N9-C1'-C2'	5.43	121.06	114.00
51	S	1502	А	N9-C1'-C2'	5.43	121.06	114.00
52	t	125	А	N9-C1'-C2'	5.40	121.02	114.00
52	t	2503	А	N9-C1'-C2'	5.40	121.02	114.00
52	t	242	G	N9-C1'-C2'	5.39	121.01	114.00
52	t	1668	A	C2'-C3'-O3'	-5.39	97.65	109.50
51	s	1064	G	N9-C1'-C2'	5.37	120.98	114.00
52	t	2542	А	N9-C1'-C2'	5.37	120.98	114.00
22	V	191	GLY	N-CA-C	5.36	126.51	113.10
52	t	669	G	N9-C1'-C2'	5.36	120.97	114.00
52	t	1130	U	N1-C1'-C2'	5.33	120.93	114.00
51	s	518	С	O4'-C1'-N1	5.32	112.45	108.20
52	t	1022	G	N9-C1'-C2'	5.31	120.90	114.00
52	t	2502	G	N9-C1'-C2'	5.31	120.90	114.00
52	t	789	А	OP2-P-O3'	5.30	116.85	105.20
52	t	205	G	OP2-P-O3'	5.29	116.84	105.20
52	t	1565	С	N1-C1'-C2'	5.29	120.88	114.00
51	s	566	G	N9-C1'-C2'	5.29	120.88	114.00
41	f	29	LEU	CA-CB-CG	5.28	127.45	115.30
52	t	2725	А	N9-C1'-C2'	5.28	120.86	114.00
52	t	2032	G	N9-C1'-C2'	5.27	120.85	114.00
54	V	69	SER	N-CA-C	5.26	125.21	111.00
52	t	2238	G	N9-C1'-C2'	5.25	120.82	114.00
51	s	315	A	N9-C1'-C2'	5.24	120.81	114.00
51	S	13	U	N1-C1'-C2'	5.23	120.81	114.00
52	t	1236	G	N9-C1'-C2'	5.23	120.80	114.00
52	t	945	А	OP2-P-O3'	5.21	116.67	105.20
52	t	2287	A	N9-C1'-C2'	5.19	120.74	114.00
52	t	1250	G	O4'-C1'-N9	-5.18	104.06	108.20
51	s	792	А	O4'-C1'-N9	5.18	112.34	108.20
52	t	1012	U	N1-C1'-C2'	5.17	120.72	114.00
52	t	2024	G	OP2-P-O3'	5.17	116.57	105.20
52	t	1706	С	C2'-C3'-O3'	-5.16	98.15	109.50

Continued from previous page...

 -5.16
 98.15
 109.50

 Continued on next page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
52	t	395	U	N1-C1'-C2'	5.14	120.69	114.00
51	s	1101	А	N9-C1'-C2'	5.14	120.69	114.00
52	t	242	G	OP2-P-O3'	5.14	116.51	105.20
52	t	513	А	OP2-P-O3'	5.13	116.49	105.20
52	t	1954	G	N9-C1'-C2'	5.12	120.65	114.00
52	t	1780	А	N9-C1'-C2'	5.11	120.65	114.00
52	t	74	А	N9-C1'-C2'	5.11	120.64	114.00
52	t	311	А	N9-C1'-C2'	5.11	120.64	114.00
52	t	1342	А	N9-C1'-C2'	5.08	120.61	114.00
52	t	448	U	C5'-C4'-C3'	-5.08	107.87	116.00
52	t	793	А	N9-C1'-C2'	5.08	120.60	114.00
52	t	1247	А	C2'-C3'-O3'	5.08	121.82	113.70
52	t	859	G	N9-C1'-C2'	5.06	120.58	114.00
52	t	686	U	C1'-O4'-C4'	-5.05	105.86	109.90
52	t	571	U	N1-C1'-C2'	5.05	120.56	114.00
52	t	1962	С	C5'-C4'-O4'	-5.05	103.04	109.10
52	t	490	С	N1-C1'-C2'	5.04	120.55	114.00
27	0	82	GLY	N-CA-C	-5.02	100.55	113.10
33	6	6	GLN	N-CA-C	-5.02	97.44	111.00
52	t	2779	U	N1-C1'-C2'	5.02	120.53	114.00
52	t	2713	U	C1'-O4'-C4'	-5.01	105.89	109.90
52	t	222	А	N9-C1'-C2'	5.01	120.51	114.00
52	t	858	G	O4'-C1'-N9	5.01	112.21	108.20

Continued from previous page...

There are no chirality outliers.

All (141) planarity outliers are listed below	ty outliers are listed below:
---	-------------------------------

Mol	Chain	\mathbf{Res}	Type	Group
51	s	1064	G	Sidechain
51	s	1065	U	Sidechain
51	s	1067	А	Sidechain
51	s	1077	G	Sidechain
51	s	1085	U	Sidechain
51	s	1139	G	Sidechain
51	s	1181	G	Sidechain
51	s	1184	G	Sidechain
51	s	1200	С	Sidechain
51	s	1345	U	Sidechain
51	s	1391	U	Sidechain
51	s	1502	А	Sidechain
51	s	1527	U	Sidechain
51	s	266	G	Sidechain

Mol	Chain	Res	Type	Group
51	S	362	G	Sidechain
51	S	388	G	Sidechain
51	S	428	G	Sidechain
51	S	51	А	Sidechain
51	S	527	G	Sidechain
51	S	533	А	Sidechain
51	S	566	G	Sidechain
51	S	7	А	Sidechain
51	S	717	U	Sidechain
51	s	760	G	Sidechain
51	s	780	A	Sidechain
51	s	863	U	Sidechain
51	s	870	U	Sidechain
51	S	883	С	Sidechain
51	s	968	А	Sidechain
52	t	100	U	Sidechain
52	t	1025	G	Sidechain
52	t	1125	G	Sidechain
52	t	1131	G	Sidechain
52	t	1134	А	Sidechain
52	t	1142	А	Sidechain
52	t	1156	А	Sidechain
52	t	1162	G	Sidechain
52	t	1203	U	Sidechain
52	t	1210	G	Sidechain
52	t	1247	А	Sidechain
52	t	1250	G	Sidechain
52	t	1266	G	Sidechain
52	t	1267	U	Sidechain
52	t	1270	С	Sidechain
52	t	1272	A	Sidechain
52	t	1280	G	Sidechain
52	t	1287	A	Sidechain
52	t	1306	C	Sidechain
52	t	1311	G	Sidechain
52	t	1325	U	Sidechain
52	t	1340	U	Sidechain
52	t	1383	A	Sidechain
52	t	1434	A	Sidechain
52	t	1567	G	Sidechain
52	t	1608	А	Sidechain
52	t	1613	G	Sidechain

Continued from previous page...

Mol	Chain	Res	Type	Group
52	t	1626	A	Sidechain
52	t	1632	A	Sidechain
52	t	1772	A	Sidechain
52	t	1775	U	Sidechain
52	t	1781	U	Sidechain
52	t	1818	U	Sidechain
52	t	1820	U	Sidechain
$\frac{52}{52}$	t	1828	G	Sidechain
52	t	1955	U	Sidechain
$\frac{52}{52}$	t	1966	A	Sidechain
$\frac{52}{52}$	t	1900	G	Sidechain
$\frac{52}{52}$	t	1006	C	Sidechain
52	t t	2000		Sidochain
52	t	2009		Sidechain
52	ե 1	2012	G	Sidechain
52	L L	2027	G	Sidechain
52	t	2030	A	Sidechain
52	t	2041	U	Sidechain
52	t	2074	U	Sidechain
52	t	2220	U	Sidechain
52	t	2243	0	Sidechain
52	t	2244	0	Sidechain
52	t	2267	A	Sidechain
52	t	2324	U	Sidechain
52	t	2384	U	Sidechain
52	t	2426	A	Sidechain
52	\mathbf{t}	2449	U	Sidechain
52	\mathbf{t}	2477	U	Sidechain
52	\mathbf{t}	2481	G	Sidechain
52	t	2491	U	Sidechain
52	t	2495	G	Sidechain
52	t	2554	U	Sidechain
52	t	2572	А	Sidechain
52	t	2581	G	Sidechain
52	t	2587	А	Sidechain
52	t	2597	G	Sidechain
52	t	2609	U	Sidechain
52	t	2629	U	Sidechain
52	t	2645	G	Sidechain
52	t	2654	A	Sidechain
52	t	2659	G	Sidechain
52	t	2661	G	Sidechain
52	t	2690	Ū	Sidechain

Continued from previous page...

		. r. 0000	pago:	
Mol	Chain	Res	Type	Group
52	t	2732	G	Sidechain
52	t	2777	G	Sidechain
52	t	2832	U	Sidechain
52	t	2834	G	Sidechain
52	t	2878	U	Sidechain
52	t	311	A	Sidechain
52	t	33	С	Sidechain
52	t	381	G	Sidechain
52	t	454	А	Sidechain
52	t	458	G	Sidechain
52	t	463	G	Sidechain
52	t	498	G	Sidechain
52	t	512	G	Sidechain
52	t	536	G	Sidechain
52	t	554	U	Sidechain
52	t	603	A	Sidechain
52	t	670	A	Sidechain
52	t	675	A	Sidechain
52	t	690	G	Sidechain
52	t	70	G	Sidechain
52	t	726	G	Sidechain
52	t	728	G	Sidechain
52	t	74	A	Sidechain
52	t	742	A	Sidechain
52	t	749	A	Sidechain
52	t	755	U	Sidechain
52	t	760	G	Sidechain
52	t	761	A	Sidechain
52	t	763	G	Sidechain
52	t	770	G	Sidechain
52	t	792	А	Sidechain
52	t	796	С	Sidechain
52	t	802	A	Sidechain
52	t	830	G	Sidechain
52	t	859	G	Sidechain
52	t	910	A	Sidechain
52	t	945	A	Sidechain
52	t	979	A	Sidechain
52	t	983	A	Sidechain
52	t	995	C	Sidechain
53	u	80	U	Sidechain
54	V	410	LYS	Peptide

Continued from previous page...

Continued from previous page...

Mol	Chain	Res	Type	Group
54	V	411	GLN	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	216/218~(99%)	122 (56%)	56~(26%)	38 (18%)	0 0
2	В	204/206~(99%)	140 (69%)	36~(18%)	28 (14%)	0 1
3	С	203/205~(99%)	108 (53%)	46 (23%)	49 (24%)	0 0
4	D	148/150~(99%)	90 (61%)	36 (24%)	22 (15%)	0 0
5	E	98/100~(98%)	52 (53%)	26~(26%)	20 (20%)	0 0
6	F	149/151~(99%)	95 (64%)	41 (28%)	13 (9%)	1 4
7	G	127/129~(98%)	92 (72%)	29~(23%)	6 (5%)	2 14
8	Н	125/127~(98%)	81 (65%)	26 (21%)	18 (14%)	0 1
9	Ι	96/98~(98%)	64 (67%)	17~(18%)	15 (16%)	0 0
10	J	115/117~(98%)	82 (71%)	21~(18%)	12 (10%)	0 3
11	K	121/123~(98%)	80 (66%)	20~(16%)	21 (17%)	0 0
12	L	112/114~(98%)	62~(55%)	33~(30%)	17 (15%)	0 0
13	М	92/100~(92%)	51 (55%)	27~(29%)	14 (15%)	0 0
14	Ν	86/88~(98%)	52 (60%)	28~(33%)	6 (7%)	1 7
15	Ο	80/82~(98%)	48 (60%)	18 (22%)	14 (18%)	0 0
16	Р	$7\overline{8/80}~(98\%)$	55 (70%)	10 (13%)	13 (17%)	0 0
17	Q	53/55~(96%)	30 (57%)	17 (32%)	6 (11%)	0 2

a 1	e		
Continued	trom	premous	naae
contraca	J. 0110	proceed ac	pagem

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
18	R	77/79~(98%)	45 (58%)	21~(27%)	11 (14%)	0	1
19	S	83/85~(98%)	51 (61%)	24 (29%)	8 (10%)	0	3
20	Т	49/51~(96%)	25~(51%)	17 (35%)	7 (14%)	0	1
21	U	269/271~(99%)	204 (76%)	39 (14%)	26 (10%)	0	3
22	V	207/209~(99%)	138 (67%)	37~(18%)	32 (16%)	0	0
23	W	199/201~(99%)	135 (68%)	40 (20%)	24 (12%)	0	1
24	Х	175/177~(99%)	114 (65%)	34 (19%)	27 (15%)	0	0
25	Y	174/176~(99%)	108 (62%)	36 (21%)	30 (17%)	0	0
26	Z	139/141 (99%)	66 (48%)	51 (37%)	22 (16%)	0	0
27	0	140/142~(99%)	94 (67%)	27 (19%)	19 (14%)	0	1
28	1	120/122~(98%)	82 (68%)	24 (20%)	14 (12%)	0	1
29	2	141/143~(99%)	94 (67%)	23 (16%)	24 (17%)	0	0
30	3	134/136~(98%)	95 (71%)	23 (17%)	16 (12%)	0	1
31	4	118/120~(98%)	83 (70%)	20 (17%)	15 (13%)	0	1
32	5	114/116 (98%)	79 (69%)	25 (22%)	10 (9%)	1	4
33	6	112/114~(98%)	71 (63%)	23~(20%)	18 (16%)	0	0
34	8	115/117~(98%)	73 (64%)	31~(27%)	11 (10%)	0	3
35	9	101/103~(98%)	73 (72%)	20 (20%)	8 (8%)	1	5
36	a	108/110~(98%)	80 (74%)	18 (17%)	10 (9%)	0	3
37	b	91/93~(98%)	54 (59%)	18 (20%)	19 (21%)	0	0
38	с	100/102~(98%)	63~(63%)	17~(17%)	20 (20%)	0	0
39	d	92/94~(98%)	62 (67%)	19 (21%)	11 (12%)	0	1
40	е	77/79~(98%)	29 (38%)	21 (27%)	27 (35%)	0	0
41	f	75/77~(97%)	54 (72%)	16 (21%)	5 (7%)	1	7
42	g	61/63~(97%)	34~(56%)	15 (25%)	12 (20%)	0	0
43	h	56/58~(97%)	39 (70%)	12 (21%)	5 (9%)	1	4
44	i	54/56~(96%)	44 (82%)	5 (9%)	5(9%)	0	3
45	j	48/50 (96%)	32~(67%)	14 (29%)	2(4%)	3	16
46	k	44/46~(96%)	36 (82%)	4 (9%)	4 (9%)	1	4
47	1	62/64~(97%)	45 (73%)	11 (18%)	6 (10%)	0	3
48	m	36/38~(95%)	30 (83%)	2(6%)	4 (11%)	0	2

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
49	n	161/163~(99%)	77 (48%)	53 (33%)	31 (19%)	0	0
50	О	28/30~(93%)	12 (43%)	9(32%)	7 (25%)	0	0
50	р	28/30~(93%)	16 (57%)	8 (29%)	4 (14%)	0	1
50	q	28/30~(93%)	14 (50%)	12 (43%)	2(7%)	1	6
50	r	28/30~(93%)	19 (68%)	6 (21%)	3 (11%)	0	2
54	v	523/525~(100%)	381 (73%)	82 (16%)	60 (12%)	0	2
56	7	2/6~(33%)	1 (50%)	0	1 (50%)	0	0
56	AA	2/6~(33%)	1 (50%)	0	1 (50%)	0	0
56	BA	2/6~(33%)	1 (50%)	1 (50%)	0	100	100
56	У	2/6~(33%)	1 (50%)	1 (50%)	0	100	100
56	Z	2/6~(33%)	1 (50%)	0	1 (50%)	0	0
All	All	6280/6414~(98%)	4060 (65%)	1346 (21%)	874 (14%)	0	1

All (874) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	33	ALA
1	А	67	LEU
1	А	75	ALA
1	А	94	ARG
1	А	120	SER
1	А	163	ILE
1	А	165	ALA
1	А	169	HIS
1	А	219	THR
2	В	14	VAL
2	В	112	ALA
2	В	186	SER
3	С	22	SER
3	С	24	VAL
3	С	28	ASP
3	С	31	CYS
3	С	33	ILE
3	С	34	GLU
3	С	36	ALA
3	С	52	VAL
3	С	108	ALA
3	С	143	SER

Mol	Chain	Res	Type
3	С	147	LYS
3	С	150	LYS
3	С	152	SER
3	С	191	SER
3	С	192	ALA
4	D	100	GLU
4	D	122	VAL
4	D	144	GLU
4	D	153	ALA
5	Е	7	VAL
5	Е	56	LYS
5	Е	61	LEU
5	Е	69	GLU
5	Е	91	ARG
6	F	95	ARG
6	F	110	ARG
6	F	129	ASN
7	G	3	GLN
8	Н	22	PRO
8	Н	34	LEU
8	Н	44	ARG
8	Н	71	ILE
9	Ι	36	VAL
9	Ι	57	VAL
9	Ι	62	ARG
9	Ι	88	MET
9	Ι	92	LEU
9	Ι	101	SER
10	J	26	PHE
10	J	76	TYR
10	J	107	THR
10	J	125	LYS
11	K	8	ARG
11	K	23	LEU
11	Κ	24	GLU
11	K	75	GLU
11	K	87	LYS
11	К	88	ASP
12	L	3	ILE
12	L	65	GLU
12	L	97	ARG
$1\overline{2}$	L	105	ALA

Mol	Chain	Res	Type
13	М	44	VAL
13	М	45	LEU
13	М	51	PRO
13	М	52	ARG
13	М	87	ALA
13	М	91	GLU
14	N	3	SER
15	0	16	PHE
15	0	24	SER
15	0	45	GLU
16	Р	11	VAL
16	Р	12	VAL
16	Р	16	MET
16	Р	52	CYS
17	Q	54	LEU
18	R	62	THR
18	R	64	GLU
18	R	69	LYS
19	S	3	ILE
19	S	5	SER
19	S	67	HIS
20	Т	8	ASN
20	Т	23	GLU
20	Т	25	ALA
20	Т	34	ARG
21	U	9	SER
21	U	70	LYS
21	U	77	VAL
21	U	232	GLY
21	U	234	GLY
22	V	43	ASP
22	V	70	LYS
22	V	71	ALA
22	V	73	VAL
22	V	92	VAL
22	V	94	GLN
22	V	106	LYS
22	V	118	PHE
22	V	119	ALA
22	V	169	ARG
22	V	174	SER
22	V	175	LEU

Mol	Chain	Res	Type
22	V	191	GLY
23	W	46	GLN
23	W	61	ARG
23	W	69	ARG
23	W	80	SER
23	W	165	HIS
23	W	166	LYS
23	W	175	ILE
24	Х	160	LYS
24	Х	175	PRO
25	Y	28	LYS
25	Y	31	GLU
25	Y	79	THR
25	Y	84	LYS
25	Y	118	ALA
25	Y	164	ALA
25	Y	167	VAL
25	Y	168	VAL
26	Ζ	3	LYS
26	Ζ	6	ALA
26	Ζ	22	PRO
26	Ζ	30	GLN
26	Ζ	85	ILE
26	Ζ	89	SER
26	Ζ	92	PRO
26	Ζ	97	VAL
27	0	13	ARG
27	0	25	LEU
27	0	41	LYS
27	0	44	TYR
27	0	73	VAL
27	0	81	ILE
28	1	3	GLN
28	1	16	ALA
28	1	75	SER
$\overline{28}$	1	108	ARG
29	2	29	LYS
29	2	36	LYS
29	2	41	ARG
29	2	66	PHE
29	2	82	LEU
29	2	98	ALA

Mol	Chain	Res	Type
29	2	111	ILE
29	2	116	VAL
30	3	2	LEU
30	3	60	GLN
30	3	69	PRO
30	3	77	PRO
30	3	134	THR
30	3	135	VAL
31	4	14	SER
31	4	80	PHE
31	4	93	GLY
31	4	101	GLY
31	4	117	ASP
33	6	19	PHE
33	6	33	GLU
33	6	37	LYS
33	6	50	ARG
33	6	83	ILE
33	6	103	THR
33	6	104	GLY
33	6	105	LYS
34	8	86	SER
34	8	91	ARG
34	8	114	ALA
35	9	40	MET
35	9	101	ILE
36	a	14	ALA
37	b	11	LEU
37	b	18	GLU
37	b	29	THR
37	b	73	ARG
37	b	74	ILE
37	b	86	THR
37	b	88	LYS
38	с	6	ARG
38	с	20	LYS
38	с	63	ALA
38	с	88	ASP
38	с	98	ASN
39	d	60	VAL
39	d	69	GLU
40	е	9	THR

Mol	Chain	Res	Type
40	е	14	ASP
40	е	18	LYS
40	е	29	SER
40	е	30	VAL
40	е	36	ILE
40	е	47	GLY
40	е	50	VAL
40	е	70	VAL
40	е	82	GLU
42	g	24	GLU
42	g	25	GLN
42	g	46	VAL
43	h	13	ILE
44	i	23	ALA
45	j	51	ALA
47	1	22	LYS
48	m	37	GLN
49	n	11	ILE
49	n	47	GLU
49	n	48	ALA
49	n	55	VAL
49	n	60	LEU
49	n	70	GLU
49	n	94	ARG
49	n	95	LEU
49	n	108	VAL
49	n	118	ILE
49	n	124	ASP
49	n	145	GLU
49	n	147	SER
49	n	148	ALA
50	0	4	LYS
50	0	5	ASP
50	0	15	SER
50	0	26	MET
50	0	27	GLU
50	q	12	ALA
50	q	13	ALA
54	V	52	ASN
54	v	61	GLU
54	V	69	SER
54	V	98	ASP

Mol	Chain	Res	Type
54	v	301	PHE
54	v	305	ALA
54	V	309	PRO
54	v	313	ASP
54	V	315	VAL
54	v	390	ILE
54	v	398	PHE
54	V	399	ARG
54	V	406	PRO
54	V	434	ASN
54	v	440	ALA
54	V	441	VAL
54	v	521	VAL
54	v	522	GLN
56	Z	4	SER
56	AA	4	SER
1	А	9	LEU
1	А	15	PHE
1	А	21	TYR
1	А	32	GLY
1	А	37	VAL
1	А	38	HIS
1	А	86	CYS
1	А	100	LEU
1	А	123	GLY
1	А	136	ARG
1	А	150	ILE
1	А	170	ILE
1	А	206	ILE
2	В	8	GLY
2	В	36	PHE
2	В	60	ALA
2	В	88	LYS
2	В	113	LYS
2	В	155	ARG
3	С	6	PRO
3	С	29	THR
3	С	32	LYS
3	С	69	ARG
3	C	101	VAL
3	С	115	GLN
3	С	120	LYS

Mol	Chain	Res	Type
3	С	125	ASN
3	С	127	ARG
3	С	148	ALA
3	С	165	GLU
3	С	197	HIS
4	D	23	THR
4	D	44	ARG
4	D	97	PRO
4	D	121	ASN
4	D	145	ASN
4	D	154	ALA
5	Е	12	PRO
5	Е	14	GLN
5	Е	17	GLN
5	Е	86	ARG
6	F	6	ILE
6	F	55	LYS
6	F	57	GLU
6	F	75	LYS
6	F	78	ARG
6	F	84	TYR
8	Н	32	ARG
8	Н	33	SER
8	Н	40	ARG
8	Н	53	LEU
8	Н	119	LYS
8	Н	127	SER
9	Ι	60	ASP
10	J	94	SER
10	J	102	ALA
11	K	117	GLY
12	L	13	HIS
12	L	18	LEU
12	L	44	ILE
12	L	46	GLU
12	L	98	GLY
13	М	61	ASN
15	0	44	SER
16	Р	17	GLU
16	Р	50	ASN
16	Р	56	ASP
16	Р	79	GLU

Mol	Chain	Res	Type
17	Q	45	GLY
17	Q	48	ALA
18	R	5	LYS
18	R	44	ILE
18	R	46	LEU
19	S	6	ALA
19	S	68	LYS
20	Т	12	ASP
21	U	140	VAL
21	U	142	ASN
21	U	185	ALA
21	U	239	PHE
21	U	260	LYS
21	U	264	LYS
22	V	72	GLY
22	V	91	THR
22	V	95	SER
22	V	121	THR
22	V	144	GLY
22	V	190	LYS
23	W	6	LYS
24	Х	20	ASN
24	Х	61	GLY
24	Х	72	SER
24	Х	95	MET
24	Х	96	TRP
24	Х	110	ILE
24	Х	111	ARG
24	Х	113	PHE
24	Х	118	ALA
24	Х	148	VAL
24	Х	176	PHE
25	Y	9	VAL
25	Y	14	VAL
25	Y	30	GLY
25	Y	33	THR
25	Y	38	ASP
25	Y	44	HIS
25	Y	53	PRO
25	Y	60	GLY
$\overline{25}$	Y	166	GLU
$\overline{26}$	Z	62	ALA

Mol	Chain	Res	Type
26	Ζ	83	ALA
26	Ζ	90	GLY
26	Ζ	96	LYS
27	0	4	PHE
27	0	12	LYS
27	0	45	THR
27	0	111	LYS
28	1	6	THR
28	1	50	GLY
28	1	93	GLN
29	2	3	LEU
29	2	10	GLU
29	2	15	ALA
29	2	30	THR
29	2	88	GLY
29	2	115	GLU
30	3	110	GLU
31	4	24	MET
31	4	32	GLU
31	4	86	ARG
32	5	22	GLY
32	5	57	ALA
32	5	67	ASN
32	5	100	HIS
32	5	101	GLY
32	5	106	LEU
33	6	65	ASN
33	6	79	VAL
33	6	100	ARG
34	8	5	ARG
35	9	55	ASP
35	9	79	ARG
35	9	100	GLY
36	a	13	SER
36	a	64	ALA
36	a	65	ASP
36	a	71	VAL
37	b	27	SER
37	b	38	ALA
37	b	39	THR
37	b	55	VAL
37	b	57	VAL

Mol	Chain	Res	Type
37	b	65	GLY
38	с	50	ALA
38	с	75	ALA
38	с	92	VAL
38	с	97	SER
38	с	100	GLU
39	d	66	ASP
39	d	93	ARG
40	е	23	LYS
40	е	24	ARG
40	е	26	GLY
40	е	27	GLY
40	е	42	THR
41	f	34	SER
42	g	57	LEU
43	h	31	ILE
43	h	49	ALA
46	k	7	PRO
46	k	23	ALA
47	1	28	LEU
47	1	46	LYS
48	m	8	LYS
48	m	20	ASP
49	n	3	LEU
49	n	22	ALA
49	n	58	THR
49	n	80	THR
49	n	107	GLU
50	р	10	ALA
50	р	11	VAL
50	r	28	GLU
54	V	60	MET
54	V	68	ILE
54	V	96	SER
54	V	300	VAL
$5\overline{4}$	V	356	VAL
54	V	410	LYS
54	V	413	LEU
54	V	424	ALA
54	V	433	ASN
54	V	500	ASN
54	v	504	ILE

Mol	Chain	Res	Type
54	V	524	HIS
54	V	526	THR
1	А	12	GLY
1	А	62	ARG
1	А	85	SER
1	А	115	ASP
1	А	132	GLU
1	А	158	ASP
2	В	26	LYS
2	В	72	PRO
2	В	81	GLU
2	В	145	ALA
3	С	35	GLN
3	С	84	ASN
3	С	106	PHE
3	С	132	ALA
3	С	161	ALA
3	С	167	PRO
3	С	172	VAL
3	С	174	ALA
3	С	177	MET
3	С	178	GLU
3	С	196	GLU
4	D	149	PRO
5	Ε	53	LYS
5	Ε	62	MET
6	F	16	LYS
7	G	87	ARG
7	G	116	ARG
8	Н	56	MET
9	Ι	35	GLN
9	Ι	75	ASP
9	Ι	89	ARG
10	J	14	GLN
10	J	16	SER
10	J	88	PRO
11	K	27	PRO
11	K	42	LYS
11	K	77	SER
11	K	84	GLY
11	K	101	LEU
11	K	102	ASP

Mol	Chain	Res	Type
11	K	122	LYS
12	L	4	ALA
12	L	104	ASN
13	М	75	LYS
13	М	88	MET
14	N	8	ALA
14	N	25	GLU
14	N	83	ARG
14	N	86	LEU
15	0	17	TYR
15	0	49	GLY
16	Р	68	LYS
16	Р	70	LYS
17	Q	55	ALA
18	R	4	LEU
21	U	11	GLY
21	U	23	LEU
21	U	34	GLU
21	U	58	LYS
21	U	109	LEU
21	U	184	GLU
21	U	196	ASN
21	U	256	THR
22	V	55	LYS
22	V	69	ALA
22	V	107	VAL
22	V	170	VAL
23	W	153	LEU
23	W	157	LEU
24	Х	77	LYS
24	Х	93	GLU
24	Х	134	GLN
25	Y	45	ALA
25	Y	83	THR
25	Y	169	ARG
26	Z	49	GLU
26	Z	64	ARG
26	Z	129	GLU
27	0	94	ALA
28	1	35	VAL
28	1	46	ALA
28	1	71	ARG

Mol	Chain	Res	Type
28	1	89	ASN
28	1	92	GLU
29	2	40	SER
29	2	65	GLY
29	2	81	ASP
29	2	83	ALA
30	3	58	LYS
30	3	121	ALA
31	4	2	ARG
31	4	3	HIS
31	4	60	VAL
31	4	88	ALA
32	5	32	PRO
32	5	61	GLN
33	6	20	ARG
33	6	42	PHE
33	6	110	LYS
34	8	87	VAL
35	9	48	LYS
37	b	10	VAL
37	b	40	LYS
37	b	54	GLU
37	b	69	ARG
38	с	7	ASP
38	с	77	GLY
38	с	81	ARG
39	d	54	ALA
39	d	74	ALA
40	е	41	GLY
41	f	43	LYS
42	g	22	LEU
43	h	34	THR
44	i	17	SER
44	i	32	THR
48	m	16	ILE
49	n	78	GLY
49	n	135	ALA
54	V	18	ILE
$5\overline{4}$	v	49	ARG
54	V	53	GLN
$5\overline{4}$	V	54	HIS
54	v	62	MET

Mol	Chain	Res	Type
54	V	92	HIS
54	V	391	PRO
54	V	404	LYS
54	V	405	ASP
54	V	435	ASP
54	V	477	ALA
54	V	492	GLN
54	V	523	PHE
1	А	76	SER
1	А	159	ALA
1	А	177	ASN
2	В	7	ASN
2	В	135	ARG
2	В	136	ALA
2	В	205	GLU
3	С	27	ILE
3	С	166	LYS
3	С	190	LEU
4	D	42	ASN
4	D	102	THR
4	D	146	MET
5	Е	54	LEU
5	Е	55	HIS
6	F	83	THR
7	G	109	VAL
8	Н	38	PHE
8	Н	41	GLU
8	Н	72	SER
8	Н	120	ALA
9	Ι	91	ASP
11	K	49	ARG
11	Κ	116	TYR
12	L	113	LYS
13	М	3	GLN
13	М	47	LEU
13	М	58	ARG
13	М	69	PRO
13	М	80	ARG
14	N	45	HIS
15	0	31	ARG
15	Ο	64	GLY
16	Р	5	ARG

Mol	Chain	Res	Type
16	Р	51	GLU
17	Q	66	LEU
18	R	61	VAL
19	S	27	MET
19	S	69	ASN
21	U	64	VAL
21	U	204	LEU
21	U	231	HIS
21	U	258	SER
22	V	86	GLU
22	V	109	VAL
22	V	179	ARG
22	V	194	PRO
23	W	123	LYS
23	W	124	PHE
23	W	148	ILE
24	Х	86	CYS
24	Х	94	ARG
24	Х	103	ILE
24	Х	151	LEU
25	Y	75	VAL
25	Y	113	ASP
26	Ζ	9	LYS
27	0	14	ASP
27	0	21	THR
27	0	133	ALA
30	3	43	ALA
30	3	59	ARG
30	3	73	ILE
30	3	100	LYS
31	4	91	ALA
31	4	92	GLY
32	5	6	ALA
33	6	86	LYS
33	6	93	LYS
34	8	73	ILE
34	8	76	SER
34	8	88	GLU
35	9	28	ALA
36	a	3	THR
36	a	66	ILE
36	a	96	ILE

Mol	Chain	Res	Type
37	b	36	LYS
38	с	49	PRO
38	с	51	LEU
38	с	54	PRO
38	с	101	THR
39	d	13	GLY
39	d	37	PRO
39	d	71	LYS
40	е	10	ARG
40	е	15	SER
40	е	16	GLU
40	е	52	CYS
40	е	56	HIS
41	f	17	ARG
41	f	42	GLU
41	f	71	ARG
42	g	6	LEU
42	g	9	LYS
42	g	36	GLN
43	h	3	THR
46	k	17	GLY
49	n	56	ARG
49	n	88	HIS
49	n	106	PHE
49	n	125	ARG
49	n	144	LYS
49	n	154	THR
50	r	11	VAL
50	r	12	ALA
54	V	20	SER
54	v	295	LYS
54	V	403	LEU
54	V	412	LEU
54	V	480	LYS
56	7	4	SER
1	A	11	ALA
1	A	18	GLN
1	A	81	ASP
2	В	13	ILE
2	В	52	SER
2	В	65	VAL
2	В	167	TYR

Mol	Chain	Res	Type
3	С	58	GLN
3	С	105	GLY
3	С	142	VAL
3	С	153	ARG
3	С	154	VAL
4	D	10	LEU
4	D	24	VAL
4	D	41	GLY
4	D	53	ARG
4	D	69	ASN
5	Е	8	PHE
5	Е	92	THR
6	F	130	LYS
7	G	20	ASN
9	Ι	93	ALA
10	J	46	ALA
10	J	73	VAL
11	K	56	LEU
11	K	73	LEU
11	K	78	VAL
12	L	78	ARG
15	0	11	ALA
15	0	12	LYS
15	0	23	ASP
15	0	26	ASN
16	Р	31	PRO
17	Q	44	THR
19	S	39	GLU
20	Т	22	CYS
21	U	21	PRO
21	U	37	SER
21	U	110	LYS
22	V	122	VAL
22	V	133	THR
22	V	173	GLN
23	W	9	GLN
23	W	13	THR
23	W	45	ALA
23	W	49	ARG
23	W	73	ILE
23	W	79	ARG
23	W	83	VAL

Mol	Chain	Res	Type
23	W	96	VAL
23	W	151	GLY
24	Х	8	LYS
24	Х	108	PRO
24	Х	132	ARG
24	Х	133	GLU
25	Y	68	ARG
25	Y	85	LYS
25	Y	117	PRO
25	Y	170	THR
26	Ζ	131	THR
27	0	33	ALA
27	0	74	TYR
27	0	125	TYR
29	2	19	LEU
29	2	87	GLY
29	2	133	ALA
30	3	28	PHE
30	3	46	ILE
33	6	63	ILE
36	a	95	ARG
37	b	70	HIS
40	е	11	ASN
40	е	68	PHE
40	е	73	PRO
40	е	76	ARG
42	g	7	ARG
42	g	37	LEU
42	g	41	HIS
44	i	55	ALA
45	j	43	ARG
46	k	45	SER
47	1	59	ALA
49	n	2	ALA
49	n	72	LEU
49	n	127	ALA
50	0	16	VAL
54	v	93	GLU
54	V	304	GLN
54	v	467	ASN
54	V	473	TRP
1	А	43	GLU

Mol	Chain	Res	Type
1	А	209	VAL
2	В	48	LYS
2	В	92	ASP
4	D	101	GLY
4	D	104	ILE
5	Е	16	GLU
5	Е	50	PRO
8	Н	9	GLY
8	Н	39	GLY
8	Н	54	VAL
9	Ι	74	VAL
10	J	79	LYS
12	L	14	ALA
12	L	103	THR
22	V	145	SER
23	W	70	SER
23	W	163	ASN
24	Х	125	GLY
25	Y	11	PRO
25	Y	16	VAL
25	Y	97	VAL
26	Ζ	119	ALA
29	2	103	ILE
30	3	3	GLN
31	4	84	GLY
32	5	56	LYS
33	6	5	LYS
34	8	100	PHE
35	9	98	ILE
39	d	84	PRO
40	е	74	LYS
47	1	31	ILE
47	1	58	ILE
50	p	29	LYS
54	V	320	VAL
54	V	407	LEU
54	V	411	GLN
2	В	97	PRO
2	В	107	LYS
3	C	63	ILE
3	C	124	VAL
$\overline{7}$	G	56	PRO

Mol	Chain	Res	Type
11	K	15	VAL
15	0	15	PRO
18	R	41	PRO
18	R	74	ALA
24	Х	135	ILE
26	Ζ	18	ASN
34	8	6	GLY
36	a	29	VAL
38	с	53	GLN
44	i	54	ILE
50	0	2	ILE
4	D	113	VAL
5	Е	60	VAL
20	Т	9	GLU
25	Y	155	PRO
27	0	110	PRO
28	1	72	PRO
40	е	37	VAL
50	р	8	ILE
54	V	518	TYR
1	А	223	GLY
2	В	74	ILE
2	В	90	VAL
2	В	105	VAL
3	С	23	GLY
5	Е	96	VAL
9	Ι	42	LEU
15	0	42	ILE
18	R	25	GLY
22	V	151	THR
24	Х	136	ILE
26	Ζ	88	GLY
27	0	124	VAL
42	g	62	GLY
5	Е	29	ILE
6	F	13	PRO
9	Ι	8	ILE
11	K	21	PRO
12	L	16	ILE
12	L	96	VAL
26	Ζ	8	VAL
$\overline{26}$	Ζ	25	PRO

Mol	Chain	\mathbf{Res}	Type
29	2	34	GLY
29	2	140	GLY
34	8	97	ILE
38	с	38	ILE
38	с	69	VAL
54	V	78	PRO
54	V	382	GLY
1	А	200	PRO
28	1	48	PRO
39	d	72	VAL
49	n	149	GLY
54	V	519	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	179/180~(99%)	152~(85%)	27~(15%)	3	12
2	В	170/170~(100%)	153~(90%)	17 (10%)	7	28
3	С	172/172~(100%)	150 (87%)	22~(13%)	4	18
4	D	113/113~(100%)	101 (89%)	12 (11%)	6	26
5	Ε	87/87~(100%)	76~(87%)	11 (13%)	4	18
6	F	124/124~(100%)	114 (92%)	10 (8%)	11	39
7	G	104/104~(100%)	98~(94%)	6~(6%)	20	51
8	Н	105/105~(100%)	91~(87%)	14 (13%)	4	16
9	Ι	86/86~(100%)	73~(85%)	13~(15%)	3	12
10	J	90/90~(100%)	75~(83%)	15~(17%)	2	9
11	Κ	103/103~(100%)	93~(90%)	10 (10%)	8	30
12	L	92/92~(100%)	86 (94%)	6~(6%)	17	47
13	М	79/83~(95%)	73~(92%)	6 (8%)	13	41
14	Ν	76/76~(100%)	66 (87%)	10 (13%)	4	17

ULING	6]	LK	Q
-------	----	----	---

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
15	Ο	65/65~(100%)	56~(86%)	9~(14%)	3	16
16	Р	74/74~(100%)	60 (81%)	14 (19%)	1	6
17	Q	48/48~(100%)	42 (88%)	6~(12%)	4	18
18	R	70/70~(100%)	65~(93%)	5 (7%)	14	44
19	S	65/65~(100%)	59 (91%)	6 (9%)	9	33
20	Т	44/44 (100%)	40 (91%)	4 (9%)	9	33
21	U	216/216~(100%)	188 (87%)	28 (13%)	4	18
22	V	164/164~(100%)	144 (88%)	20 (12%)	5	19
23	W	165/165~(100%)	148 (90%)	17 (10%)	7	27
24	Х	148/148~(100%)	135 (91%)	13 (9%)	10	36
25	Y	137/137~(100%)	116 (85%)	21 (15%)	2	12
26	Z	109/109~(100%)	104 (95%)	5 (5%)	27	59
27	0	116/116~(100%)	97 (84%)	19 (16%)	2	10
28	1	103/103~(100%)	90 (87%)	13 (13%)	4	18
29	2	102/102~(100%)	90 (88%)	12 (12%)	5	21
30	3	109/109~(100%)	95 (87%)	14 (13%)	4	18
31	4	100/100~(100%)	91 (91%)	9 (9%)	9	34
32	5	86/86 (100%)	79 (92%)	7 (8%)	11	39
33	6	99/99~(100%)	89 (90%)	10 (10%)	7	28
34	8	89/89~(100%)	77 (86%)	12 (14%)	4	16
35	9	84/84 (100%)	78 (93%)	6 (7%)	14	44
36	a	93/93~(100%)	82 (88%)	11 (12%)	5	21
37	b	80/80 (100%)	73 (91%)	7 (9%)	10	36
38	с	83/83~(100%)	75 (90%)	8 (10%)	8	31
39	d	78/78~(100%)	74 (95%)	4(5%)	24	56
40	е	59/59~(100%)	49 (83%)	10 (17%)	2	9
41	f	67/67~(100%)	57~(85%)	10 (15%)	3	13
42	g	55/55~(100%)	51 (93%)	4 (7%)	14	43
43	h	48/48 (100%)	36 (75%)	12 (25%)	0	2
44	i	47/47 (100%)	40 (85%)	7 (15%)	3	13
45	j	45/45 (100%)	42 (93%)	3 (7%)	16	46

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
46	k	38/38~(100%)	34~(90%)	4 (10%)	7	26
47	1	51/51~(100%)	49~(96%)	2 (4%)	32	65
48	m	34/34~(100%)	29~(85%)	5~(15%)	3	13
49	n	123/123~(100%)	112 (91%)	11 (9%)	9	34
50	О	26/26~(100%)	23~(88%)	3~(12%)	5	22
50	р	26/26~(100%)	25~(96%)	1 (4%)	33	66
50	q	26/26~(100%)	26~(100%)	0	100	100
50	r	26/26~(100%)	23~(88%)	3~(12%)	5	22
54	v	447/449~(100%)	381~(85%)	66~(15%)	3	13
56	7	2/2~(100%)	2~(100%)	0	100	100
56	AA	2/2~(100%)	2~(100%)	0	100	100
56	BA	2/2~(100%)	2~(100%)	0	100	100
56	У	2/2~(100%)	2~(100%)	0	100	100
56	Z	2/2~(100%)	2~(100%)	0	100	100
All	All	5235/5242~(100%)	4635 (88%)	600 (12%)	5	22

All (600) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	14	HIS
1	А	15	PHE
1	А	20	ARG
1	А	21	TYR
1	А	26	MET
1	А	29	PHE
1	А	31	PHE
1	А	49	PHE
1	А	90	PHE
1	А	100	LEU
1	А	108	GLN
1	А	115	ASP
1	А	119	GLN
1	А	122	ASP
1	А	125	PHE
1	А	129	THR
1	А	135	MET
1	А	136	ARG

Mol	Chain	Res	Type
1	А	143	LEU
1	А	158	ASP
1	А	170	ILE
1	А	174	GLU
1	А	183	PHE
1	А	189	ASN
1	А	206	ILE
1	А	212	TYR
1	А	221	ARG
2	В	13	ILE
2	В	15	LYS
2	В	19	SER
2	В	20	THR
2	В	27	GLU
2	В	36	PHE
2	В	54	ILE
2	В	106	ARG
2	В	120	THR
2	В	135	ARG
2	В	143	LEU
2	В	148	ILE
2	В	149	LYS
2	В	166	TRP
2	В	167	TYR
2	В	184	ASN
2	В	192	TYR
3	С	10	LEU
3	С	19	PHE
3	С	25	ARG
3	С	32	LYS
3	С	33	ILE
3	С	54	LEU
3	С	55	ARG
3	С	63	ILE
3	С	69	ARG
3	С	71	PHE
3	С	75	TYR
3	С	93	LEU
3	С	109	THR
3	С	110	ARG
3	С	119	HIS
3	С	127	ARG

Mol	Chain	Res	Type
3	С	131	ILE
3	С	140	ASP
3	С	160	LEU
3	С	162	GLU
3	С	190	LEU
3	С	198	LEU
4	D	10	LEU
4	D	14	LEU
4	D	29	ILE
4	D	45	VAL
4	D	68	ARG
4	D	77	ASN
4	D	94	PHE
4	D	95	MET
4	D	100	GLU
4	D	120	HIS
4	D	155	LYS
4	D	156	ARG
5	Е	4	TYR
5	Е	14	GLN
5	Е	17	GLN
5	Е	24	ARG
5	Е	36	ILE
5	Е	51	ILE
5	Е	54	LEU
5	Е	55	HIS
5	Е	85	ILE
5	Е	86	ARG
5	Е	93	LYS
6	F	3	ARG
6	F	4	ARG
6	F	11	ILE
6	F	12	LEU
6	F	25	PHE
6	F	49	LEU
6	F	62	GLU
6	F	69	ARG
6	F	108	ARG
6	F	150	PHE
7	G	15	ASN
7	G	72	GLU
7	G	74	ILE

Mol	Chain	Res	Type
7	G	75	GLN
7	G	93	LYS
7	G	120	LEU
8	Н	21	LYS
8	Н	32	ARG
8	Н	35	GLU
8	Н	45	MET
8	Н	48	ARG
8	Н	61	ASP
8	Н	62	LEU
8	Н	67	LYS
8	Н	84	ARG
8	Н	87	MET
8	Н	89	TYR
8	Н	105	ARG
8	Н	119	LYS
8	Н	126	PHE
9	Ι	14	ASP
9	Ι	18	ILE
9	Ι	44	THR
9	Ι	46	LYS
9	Ι	63	ASP
9	Ι	67	ILE
9	Ι	73	LEU
9	Ι	78	GLU
9	Ι	81	GLU
9	Ι	83	THR
9	Ι	89	ARG
9	Ι	92	LEU
9	Ι	100	ILE
10	J	14	GLN
10	J	17	ASP
10	J	22	ILE
10	J	30	ILE
10	J	45	THR
10	J	51	PHE
10	J	55	ARG
10	J	76	TYR
10	J	79	LYS
10	J	81	LEU
10	J	82	GLU
10	J	85	VAL

Mol	Chain	Res	Type
10	J	108	ASN
10	J	117	HIS
10	J	128	VAL
11	K	14	LYS
11	К	27	PRO
11	K	28	GLN
11	K	49	ARG
11	K	51	VAL
11	K	57	THR
11	K	71	HIS
11	K	75	GLU
11	K	96	THR
11	K	102	ASP
12	L	10	ASP
12	L	28	ARG
12	L	81	ASP
12	L	100	ARG
12	L	101	THR
12	L	112	ARG
13	М	3	GLN
13	М	19	TYR
13	М	27	LYS
13	М	51	PRO
13	М	64	ARG
13	М	88	MET
14	Ν	5	GLU
14	Ν	14	PHE
14	N	16	ARG
14	N	23	SER
14	Ν	28	VAL
14	N	34	GLN
14	Ν	65	LEU
14	N	67	ASP
14	Ν	82	GLU
14	Ν	84	LEU
15	Ο	2	VAL
15	0	6	LEU
15	0	12	LYS
15	0	18	GLN
15	0	46	LYS
15	Ο	53	ASP
15	Ο	55	ASP

Mol	Chain	Res	Type
15	0	63	GLN
15	0	77	GLU
16	Р	3	LYS
16	Р	15	LYS
16	Р	16	MET
16	Р	21	VAL
16	Р	29	LYS
16	Р	32	ILE
16	Р	42	LYS
16	Р	47	ASP
16	Р	51	GLU
16	Р	54	ILE
16	Р	61	ARG
16	Р	64	ARG
16	Р	74	LEU
16	Р	78	VAL
17	Q	25	ILE
17	Q	27	THR
17	Q	54	LEU
17	Q	56	ARG
17	Q	60	ARG
17	Q	71	ASP
18	R	13	HIS
18	R	40	PHE
18	R	60	PHE
18	R	64	GLU
18	R	79	TYR
19	S	30	PHE
19	S	35	TYR
19	S	42	ASP
19	S	53	MET
19	S	65	LEU
19	S	68	LYS
20	Т	4	LYS
20	Т	18	PHE
20	Т	33	ARG
20	Т	37	TYR
21	U	12	ARG
21	U	23	LEU
21	U	51	ARG
21	U	52	HIS
21	U	68	ARG

Mol	Chain	Res	Type
21	U	73	ILE
21	U	76	VAL
21	U	79	ARG
21	U	93	VAL
21	U	114	GLN
21	U	123	ILE
21	U	128	THR
21	U	132	ARG
21	U	142	ASN
21	U	155	ARG
21	U	160	TYR
21	U	173	LEU
21	U	176	ARG
21	U	188	ARG
21	U	191	LEU
21	U	212	TRP
21	U	224	MET
21	U	226	PRO
21	U	228	ASP
21	U	254	LYS
21	U	265	PHE
21	U	269	ARG
21	U	270	ARG
22	V	4	LEU
22	V	17	GLU
22	V	40	LEU
22	V	50	VAL
22	V	91	THR
22	V	92	VAL
22	V	114	LYS
22	V	118	PHE
22	V	124	ARG
22	V	128	ARG
22	V	129	THR
22	V	150	GLN
22	V	151	THR
22	V	159	LYS
22	V	165	MET
22	V	170	VAL
22	V	175	LEU
22	V	177	VAL
22	V	201	LEU

Mol	Chain	Res	Type
22	V	203	VAL
23	W	12	LEU
23	W	28	VAL
23	W	51	GLU
23	W	70	SER
23	W	73	ILE
23	W	78	TRP
23	W	102	ARG
23	W	108	ILE
23	W	109	LEU
23	W	118	LEU
23	W	119	ILE
23	W	123	LYS
23	W	127	GLU
23	W	150	THR
23	W	153	LEU
23	W	170	ARG
23	W	176	ASP
24	Х	16	MET
24	Х	34	THR
24	Х	35	LEU
24	Х	46	LYS
24	Х	76	PHE
24	Х	82	TYR
24	Х	109	ARG
24	Х	114	ARG
24	Х	129	MET
24	Х	132	ARG
24	Х	146	ASP
24	X	151	LEU
24	X	157	THR
$\overline{25}$	Y	8	VAL
25	Y	15	ASP
25	Y	18	ILE
25	Y	34	ARG
25	Y	55	ASP
25	Y	59	ASP
25	Y	68	ARG
25	Y	72	ASN
25	Y	76	ILE
25	Y	83	THR
25	Y	84	LYS

Mol	Chain	Res	Type
25	Y	110	HIS
25	Y	120	ILE
25	Y	131	VAL
25	Y	132	LEU
25	Y	138	GLN
25	Y	140	ILE
25	Y	151	ARG
25	Y	162	ARG
25	Y	166	GLU
25	Y	167	VAL
26	Ζ	7	TYR
26	Ζ	68	PHE
26	Ζ	71	LYS
26	Ζ	131	THR
26	Ζ	135	MET
27	0	1	MET
27	0	2	LYS
27	0	18	VAL
27	0	23	LYS
27	0	25	LEU
27	0	30	THR
27	0	31	GLU
27	0	34	ARG
27	0	39	LYS
27	0	44	TYR
27	0	54	ILE
27	0	55	ILE
27	0	57	LEU
27	0	65	THR
27	0	103	ILE
27	0	111	LYS
27	0	131	ASN
27	0	135	GLN
27	0	140	LEU
28	1	8	LEU
28	1	18	ARG
28	1	32	TYR
28	1	41	ILE
28	1	47	ILE
28	1	51	LYS
28	1	58	LEU
28	1	73	ASP

Mol	Chain	Res	Type
28	1	82	ASN
28	1	92	GLU
28	1	93	GLN
28	1	105	ARG
28	1	107	LEU
29	2	6	LEU
29	2	21	ARG
29	2	25	SER
29	2	47	ARG
29	2	50	PHE
29	2	55	MET
29	2	61	LEU
29	2	64	PHE
29	2	74	THR
29	2	121	THR
29	2	126	ARG
29	2	144	GLU
30	3	7	THR
30	3	24	THR
30	3	26	VAL
30	3	33	LEU
30	3	47	GLU
30	3	51	ARG
30	3	69	PRO
30	3	70	ASP
30	3	93	VAL
30	3	95	LEU
30	3	96	ILE
30	3	114	ARG
30	3	115	GLU
30	3	126	ILE
31	4	1	MET
31	4	3	HIS
31	4	27	SER
31	4	31	HIS
31	4	33	ILE
31	4	63	ARG
31	4	69	ARG
31	4	71	ARG
31	4	95	THR
32	5	9	ARG
32	5	20	GLU

Mol	Chain	Res	Type
32	5	31	THR
32	5	35	ILE
32	5	102	ARG
32	5	103	VAL
32	5	106	LEU
33	6	3	ILE
33	6	14	GLN
33	6	25	VAL
33	6	28	LYS
33	6	37	LYS
33	6	38	ARG
33	6	39	LEU
33	6	58	PHE
33	6	83	ILE
33	6	108	ARG
34	8	8	ILE
34	8	29	ARG
34	8	43	GLN
34	8	50	ARG
34	8	59	LEU
34	8	63	ARG
34	8	65	ASN
34	8	69	ARG
34	8	88	GLU
34	8	93	ILE
34	8	94	LEU
34	8	96	ASP
35	9	22	LEU
35	9	39	LEU
35	9	46	GLU
35	9	48	LYS
35	9	55	ASP
35	9	87	GLN
36	a	4	ILE
36	a	7	HIS
36	a	15	GLN
36	a	33	LEU
36	a	40	ASN
36	a	69	LEU
36	a	78	GLU
36	a	81	SER
36	a	96	ILE

Mol	Chain	Res	Type
36	a	99	ARG
36	a	101	SER
37	b	18	GLU
37	b	30	ILE
37	b	31	VAL
37	b	43	ILE
37	b	64	LYS
37	b	70	HIS
37	b	86	THR
38	с	6	ARG
38	с	8	ASP
38	с	10	VAL
38	с	18	LYS
38	с	43	LYS
38	с	61	GLU
38	с	67	SER
38	с	102	ILE
39	d	4	ILE
39	d	12	GLN
39	d	81	PRO
39	d	90	ASP
40	е	10	ARG
40	е	14	ASP
40	е	16	GLU
40	е	22	VAL
40	е	23	LYS
40	е	24	ARG
40	е	25	PHE
40	е	45	HIS
40	е	49	ASN
40	е	71	LYS
41	f	6	VAL
41	f	7	THR
41	f	10	ARG
41	f	17	ARG
41	f	26	ARG
41	f	29	LEU
41	f	47	THR
41	f	56	ARG
41	f	75	GLU
41	f	77	TYR
42	g	15	ASN

Mol	Chain	Res	Type
42	g	39	GLN
42	g	41	HIS
42	g	58	ASN
43	h	2	LYS
43	h	4	ILE
43	h	6	ILE
43	h	8	GLN
43	h	15	ARG
43	h	17	PRO
43	h	30	ARG
43	h	31	ILE
43	h	34	THR
43	h	37	ARG
43	h	40	THR
43	h	51	SER
44	i	2	VAL
44	i	9	ARG
44	i	14	MET
44	i	21	LEU
44	i	26	SER
44	i	27	LEU
44	i	37	HIS
45	j	4	ILE
45	j	9	LYS
45	j	35	LEU
46	k	3	ARG
46	k	24	THR
46	k	34	ARG
46	k	39	ARG
47	1	7	ARG
47	1	56	LEU
48	m	2	LYS
48	m	3	VAL
48	m	12	ARG
48	m	13	ASN
48	m	17	VAL
49	n	3	LEU
49	n	7	ASP
49	n	29	ASP
49	n	36	ASP
49	n	61	ARG
49	n	70	GLU

Mol	Chain	Res	Type
49	n	106	PHE
49	n	123	ILE
49	n	143	MET
49	n	145	GLU
49	n	154	THR
50	0	27	GLU
50	0	29	LYS
50	0	30	PHE
50	р	5	ASP
50	r	2	ILE
50	r	5	ASP
50	r	22	LEU
54	V	3	LEU
54	V	14	ARG
54	V	31	GLU
54	V	35	LEU
54	V	42	THR
54	V	45	THR
54	V	46	VAL
54	V	49	ARG
54	V	51	SER
54	V	59	TRP
54	v	60	MET
54	V	70	ILE
54	V	72	THR
54	V	73	SER
54	V	94	ASP
54	V	97	GLU
54	V	108	CYS
54	V	110	LEU
54	V	117	LYS
54	V	127	MET
54	V	145	ASP
54	V	155	LEU
54	V	178	LEU
$5\overline{4}$	V	202	GLN
54	V	204	VAL
54	V	216	ASP
54	v	231	LEU
54	V	238	SER
54	v	258	THR
54	v	268	MET

Mol	Chain	Res	Type
54	V	304	GLN
54	V	307	MET
54	V	310	LYS
54	V	311	HIS
54	V	332	ARG
54	V	343	SER
54	V	344	ASP
54	V	353	ARG
54	v	355	HIS
54	v	356	VAL
54	v	358	GLU
54	V	369	ASN
54	V	390	ILE
54	V	397	LEU
54	V	398	PHE
54	V	400	ARG
54	v	401	ILE
54	v	403	LEU
54	V	404	LYS
54	V	410	LYS
54	v	411	GLN
54	V	412	LEU
54	v	433	ASN
54	V	441	VAL
54	V	447	ASP
54	V	452	ARG
54	V	453	LEU
54	v	454	LYS
54	V	458	ASN
54	v	459	VAL
54	v	462	VAL
54	v	499	ASP
54	v	501	LEU
54	v	518	TYR
54	v	521	VAL
54	V	525	GLN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (83) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	17	HIS
1	А	35	ASN

Mol	Chain	Res	Type
1	А	189	ASN
2	В	101	ASN
3	С	35	GLN
3	С	39	GLN
3	С	73	ASN
3	С	84	ASN
3	С	130	ASN
3	С	135	GLN
4	D	11	GLN
4	D	81	GLN
5	Е	37	HIS
6	F	67	ASN
6	F	141	HIS
7	G	15	ASN
8	Н	24	ASN
8	Н	49	GLN
10	J	14	GLN
10	J	39	ASN
10	J	108	ASN
12	L	7	ASN
13	М	3	GLN
13	М	59	GLN
13	М	65	GLN
14	Ν	61	GLN
16	Р	46	HIS
18	R	52	ASN
19	S	20	ASN
19	S	47	GLN
19	S	81	GLN
21	U	24	HIS
21	U	85	ASN
21	U	114	GLN
21	U	152	GLN
21	U	199	HIS
21	U	259	ASN
$\overline{22}$	V	136	ASN
22	V	140	HIS
$\overline{22}$	V	150	GLN
$\overline{22}$	V	173	GLN
$\overline{23}$	W	41	GLN
23	W	136	GLN
24	X	26	GLN

Mol	Chain	Res	Type
25	Y	114	HIS
26	Ζ	18	ASN
27	0	128	ASN
28	1	5	GLN
29	2	4	ASN
29	2	99	ASN
31	4	9	GLN
31	4	107	ASN
32	5	61	GLN
33	6	11	GLN
34	8	65	ASN
35	9	18	GLN
36	a	40	ASN
36	a	57	ASN
36	a	61	ASN
37	b	70	HIS
38	с	68	ASN
39	d	12	GLN
39	d	78	GLN
39	d	80	HIS
39	d	87	GLN
40	е	39	GLN
41	f	15	ASN
41	f	16	ASN
42	g	36	GLN
42	g	41	HIS
43	h	8	GLN
43	h	33	HIS
44	i	3	GLN
44	i	18	HIS
48	m	35	GLN
49	n	4	ASN
49	n	9	GLN
49	n	57	ASN
54	V	21	HIS
54	V	76	GLN
54	V	306	ASN
54	V	369	ASN
54	V	525	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
51	s	1531/1532~(99%)	298 (19%)	0
52	t	2845/2903~(98%)	660~(23%)	0
53	u	117/118~(99%)	18 (15%)	0
55	W	5/6~(83%)	2(40%)	0
All	All	4498/4559~(98%)	978 (21%)	0

All (978) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
51	s	5	U
51	s	9	G
51	s	13	U
51	s	14	U
51	s	22	G
51	s	31	G
51	S	32	А
51	s	39	G
51	S	48	С
51	S	49	U
51	s	50	А
51	s	51	А
51	s	52	С
51	s	61	G
51	s	65	А
51	S	66	А
51	s	70	U
51	s	71	А
51	s	73	С
51	s	75	G
51	s	76	G
51	s	80	А
51	s	82	G
51	s	83	С
51	s	85	U
51	s	86	G
51	S	92	U
51	s	95	С
51	s	109	А
51	s	110	С
51	s	116	А
51	s	120	A
51	s	121	U
51	S	122	G

Mol	Chain	Res	Type
51	s	141	G
51	s	144	G
51	S	151	А
51	S	159	G
51	S	163	С
51	S	182	А
51	s	183	С
51	s	197	А
51	S	198	G
51	S	204	G
51	S	205	А
51	S	209	U
51	S	210	С
51	S	212	G
51	S	219	U
51	s	240	G
51	S	244	U
51	S	245	U
51	S	247	G
51	S	250	А
51	S	251	G
51	S	252	U
51	S	266	G
51	S	267	С
51	S	273	U
51	S	275	G
51	S	281	G
51	S	289	G
51	S	306	A
51	S	328	С
51	S	329	A
51	S	330	С
51	S	332	G
51	S	344	A
51	S	345	С
51	s	346	G
51	S	352	С
51	S	354	G
51	S	367	U
51	S	368	U
51	s	373	A
51	S	389	A

Mol	Chain	Res	Type
51	s	406	G
51	s	413	G
51	s	421	U
51	s	422	С
51	s	423	G
51	s	428	G
51	s	429	U
51	s	430	А
51	s	435	A
51	S	448	А
51	s	452	A
51	S	454	G
51	s	459	A
51	s	461	A
51	s	462	G
51	s	463	U
51	S	467	U
51	S	468	А
51	S	481	G
51	S	484	G
51	s	485	U
51	S	486	U
51	S	495	А
51	S	496	А
51	S	500	G
51	S	505	G
51	S	508	U
51	S	509	А
51	s	511	С
51	s	518	С
51	S	519	С
51	s	524	G
51	s	531	U
51	s	532	A
51	s	533	A
51	s	534	U
51	s	536	С
51	s	548	G
51	s	559	А
51	s	560	A
51	s	561	U
51	S	562	U

Mol	Chain	Res	Type
51	S	563	А
51	s	564	С
51	S	566	G
51	s	567	G
51	S	572	А
51	S	573	А
51	s	575	G
51	S	576	С
51	S	577	G
51	S	596	А
51	S	633	G
51	S	642	А
51	S	665	A
51	S	687	A
51	S	688	G
51	S	701	U
51	S	702	А
51	S	703	G
51	S	704	А
51	S	721	G
51	S	722	G
51	S	723	U
51	S	724	G
51	S	725	G
51	S	733	G
51	S	747	A
51	S	748	G
51	S	752	G
51	S	753	А
51	S	754	С
51	S	777	A
51	s	792	A
51	S	793	U
51	S	794	А
51	S	799	G
51	s	813	U
51	s	815	A
51	S	817	С
51	S	818	G
51	S	819	A
51	s	820	U
51	S	821	G

Mol	Chain	Res	Type
51	s	828	U
51	s	832	G
51	s	841	С
51	s	843	U
51	S	845	А
51	S	859	G
51	S	871	U
51	s	872	А
51	s	874	G
51	s	876	С
51	s	885	G
51	s	889	A
51	s	890	G
51	s	891	U
51	S	914	A
51	s	927	G
51	s	934	С
51	s	935	А
51	s	960	U
51	s	961	U
51	s	966	G
51	s	968	А
51	s	969	А
51	s	971	G
51	s	972	С
51	s	974	А
51	s	975	А
51	s	976	G
51	s	977	А
51	S	982	U
51	s	983	A
51	S	992	U
51	s	1004	A
51	S	1008	U
51	S	1022	A
51	S	1025	U
51	S	1030	U
51	s	1032	G
51	S	1033	G
51	S	1034	G
51	S	1037	С
51	S	1044	A

Mol	Chain	Res	Type
51	S	1050	G
51	S	1053	G
51	S	1054	С
51	s	1064	G
51	S	1065	U
51	S	1067	А
51	S	1068	G
51	S	1085	U
51	S	1086	U
51	S	1094	G
51	S	1101	А
51	S	1102	А
51	S	1127	G
51	S	1130	A
51	S	1133	G
51	S	1136	C
51	S	1137	С
51	S	1138	G
51	S	1139	G
51	S	1140	С
51	S	1146	А
51	S	1157	А
51	s	1158	С
51	s	1159	U
51	S	1160	G
51	s	1167	А
51	S	1182	G
51	s	1183	U
51	s	1184	G
51	s	1196	А
51	s	1200	С
51	S	1201	A
51	s	1202	U
51	S	1212	U
51	s	1213	A
51	S	1224	U
51	S	1225	A
51	s	1226	С
51	S	1227	A
51	s	1238	A
51	S	1240	U
51	S	1241	G

Mol	Chain	Res	Type
51	S	1257	А
51	s	1258	G
51	S	1260	G
51	S	1261	А
51	S	1262	С
51	S	1278	G
51	S	1280	А
51	S	1281	С
51	s	1285	А
51	s	1286	U
51	s	1287	А
51	s	1297	G
51	S	1299	A
51	S	1300	G
51	s	1301	U
51	S	1305	G
51	s	1319	А
51	s	1320	С
51	s	1322	С
51	S	1323	G
51	s	1346	А
51	S	1347	G
51	S	1348	U
51	S	1353	G
51	S	1360	А
51	s	1365	G
51	S	1380	U
51	S	1381	U
51	S	1394	А
51	S	1395	С
51	S	1396	A
51	S	1397	C
51	S	1400	С
51	S	1401	G
51	S	1413	A
51	S	1419	G
51	S	1441	А
51	S	1446	A
51	s	1448	С
51	s	1452	C
51	s	1453	G
51	S	1487	G

Mol	Chain	Res	Type
51	s	1492	А
51	s	1494	G
51	s	1497	G
51	s	1498	U
51	s	1499	А
51	s	1502	А
51	s	1503	А
51	S	1504	G
51	S	1506	U
51	S	1517	G
51	S	1529	G
51	S	1530	G
52	t	10	A
52	t	12	U
52	t	13	A
52	t	14	A
52	t	33	С
52	t	34	U
52	t	35	G
52	t	42	А
52	t	46	G
52	t	50	U
52	t	51	G
52	t	52	А
52	t	61	С
52	t	63	А
52	t	70	G
52	t	71	А
52	t	72	U
52	t	73	А
52	t	74	A
52	t	75	G
52	t	85	G
52	t	91	A
52	t	92	U
52	t	101	A
52	t	102	U
52	t	103	A
52	t	118	А
52	t	119	A
52	t	120	U
52	t	121	G

Mol	Chain	Res	Type
52	t	125	А
52	t	126	A
52	t	135	U
52	t	137	U
52	t	138	U
52	t	139	U
52	t	140	С
52	t	141	G
52	t	142	A
52	t	162	U
52	t	163	С
52	t	181	А
52	t	196	A
52	t	197	A
52	t	199	A
52	t	200	U
52	t	204	А
52	t	205	G
52	t	206	U
52	t	216	А
52	t	222	А
52	t	223	А
52	t	228	С
52	t	229	С
52	t	233	А
52	t	241	A
52	t	242	G
52	t	243	U
52	t	248	G
52	t	249	С
52	t	250	G
52	t	255	A
52	t	265	A
52	t	266	G
52	t	271	G
52	t	272	A
52	t	276	U
52	t	285	G
52	t	294	А
52	t	301	G
52	t	302	С
52	t	311	А

Mol	Chain	Res	Type
52	t	312	G
52	t	322	А
52	t	323	С
52	t	324	А
52	t	329	G
52	t	330	А
52	t	331	С
52	t	332	А
52	t	335	С
52	t	345	А
52	t	346	А
52	t	353	С
52	t	359	G
52	t	361	G
52	t	362	A
52	t	371	А
52	t	372	G
52	t	373	U
52	t	383	С
52	t	386	G
52	t	387	U
52	t	388	G
52	t	390	U
52	t	391	А
52	t	395	U
52	t	396	G
52	t	405	U
52	\mathbf{t}	411	G
52	t	412	A
52	t	422	А
52	t	424	G
52	t	435	С
52	t	443	A
52	t	447	A
52	t	448	U
52	t	449	A
52	t	455	С
52	t	457	A
52	t	458	G
52	t	459	U
52	t	475	C
52	t	479	A

Mol	Chain	Res	Type
52	t	480	A
52	t	481	G
52	t	489	G
52	t	490	С
52	t	491	G
52	t	504	А
52	t	505	А
52	t	506	G
52	t	507	А
52	t	508	А
52	t	509	С
52	t	510	С
52	t	528	A
52	t	530	G
52	t	533	G
52	t	546	U
52	t	547	А
52	t	548	G
52	t	549	G
52	t	550	С
52	t	563	А
52	t	571	U
52	t	572	А
52	t	573	U
52	t	574	А
52	t	575	А
52	t	586	А
52	t	587	С
52	t	588	U
52	t	604	G
52	t	613	A
52	t	614	A
52	t	615	U
52	t	616	A
52	t	620	G
52	t	621	A
52	t	627	A
52	t	628	G
52	t	634	C
52	t	638	G
$\overline{52}$	t	645	C
52	t	646	U

Mol	Chain	Res	Type
52	t	647	G
52	t	654	А
52	t	655	А
52	t	656	G
52	t	668	A
52	t	669	G
52	t	670	A
52	t	671	С
52	t	686	U
52	t	687	С
52	t	705	А
52	t	717	С
52	t	727	A
52	t	728	G
52	t	729	G
52	t	730	A
52	t	747	U
52	t	762	U
52	t	763	G
52	t	764	А
52	t	775	G
52	t	776	G
52	t	777	G
52	t	782	А
52	t	784	G
52	t	785	G
52	t	789	А
52	t	790	U
52	t	791	С
52	t	792	А
52	t	793	А
52	t	794	A
52	t	800	А
52	t	801	G
52	t	802	A
52	t	805	G
52	t	806	C
52	t	811	U
52	t	812	C
52	t	819	A
52	t	827	U
52	t	828	U

Mol	Chain	Res	Type
52	t	829	A
52	t	830	G
52	t	831	G
52	t	845	A
52	t	846	U
52	t	847	U
52	t	859	G
52	t	860	U
52	t	865	С
52	t	866	А
52	t	876	С
52	t	877	А
52	t	879	G
52	t	881	G
52	t	893	С
52	t	896	A
52	t	897	С
52	t	900	А
52	t	901	С
52	t	902	С
52	t	910	А
52	t	914	G
52	t	932	U
52	t	933	А
52	t	941	А
52	t	945	А
52	t	946	С
52	t	958	U
52	t	961	С
52	t	962	G
52	t	973	А
52	t	974	G
52	t	975	А
52	t	983	A
52	t	990	А
52	t	995	С
52	t	996	A
52	t	1008	A
52	t	1009	A
52	t	1011	G
52	t	1012	U
52	t	1013	С

Mol	Chain	Res	Type
52	t	1021	А
52	t	1022	G
52	t	1023	U
52	t	1025	G
52	t	1026	G
52	t	1033	U
52	t	1034	G
52	t	1046	A
52	t	1060	U
52	t	1061	U
52	t	1062	G
52	t	1066	U
52	t	1067	A
52	t	1068	G
52	t	1070	A
52	t	1074	G
52	t	1083	U
52	t	1088	А
52	t	1098	А
52	t	1112	G
52	t	1126	А
52	t	1129	А
52	t	1130	U
52	t	1131	G
52	t	1132	U
52	t	1133	А
52	t	1134	А
52	t	1135	С
52	t	1136	G
52	t	1139	G
52	t	1141	U
52	t	1142	А
52	t	1143	A
52	t	1144	A
52	t	1151	A
52	t	1157	G
52	t	1168	G
52	t	1169	А
52	t	1175	A
52	t	1176	U
52	t	1180	U
52	t	1186	G

Mol	Chain	Res	Type
52	t	1204	А
52	t	1205	А
52	t	1206	G
52	t	1210	G
52	t	1211	С
52	t	1212	G
52	t	1236	G
52	t	1238	G
52	t	1248	G
52	t	1249	U
52	t	1250	G
52	t	1251	С
52	t	1252	G
52	t	1253	A
52	t	1256	G
52	t	1266	G
52	t	1267	U
52	t	1271	G
52	t	1272	А
52	t	1273	U
52	t	1275	А
52	t	1276	А
52	t	1287	А
52	t	1288	G
52	t	1289	С
52	t	1300	G
52	t	1301	А
52	t	1302	А
52	t	1303	G
52	t	1306	С
$5\overline{2}$	t	1311	G
52	t	1312	U
52	t	1313	U
52	t	1320	C
52	t	1321	А
$5\overline{2}$	t	1324	G
52	t	1325	U
52	t	1329	U
52	t	1330	C
52	t	1332	G
$5\overline{2}$	t	1333	G
52	t	1341	G

Mol	Chain	Res	Type
52	t	1342	A
52	t	1343	G
52	t	1344	U
52	t	1345	С
52	t	1352	U
52	t	1365	A
52	t	1378	A
52	t	1379	U
52	t	1383	A
52	t	1385	A
52	t	1386	С
52	t	1397	U
52	t	1416	G
52	t	1419	A
52	t	1420	A
52	t	1427	A
52	t	1428	С
52	t	1435	G
52	t	1451	С
52	t	1453	А
52	t	1454	С
52	t	1459	G
52	t	1461	С
52	t	1476	U
52	t	1482	G
52	t	1490	А
52	t	1491	G
52	t	1493	С
52	t	1497	U
52	t	1504	A
52	t	1507	С
52	t	1515	A
52	t	1522	A
52	t	1523	U
52	t	1524	G
$5\overline{2}$	t	1533	C
52	t	1534	U
52	t	1535	A
52	t	1536	C
52	t	1537	G
$5\overline{2}$	t	1555	G
52	t	1558	C

Mol	Chain	Res	Type
52	t	1559	U
52	t	1560	G
52	t	1565	С
52	t	1568	G
52	t	1569	А
52	t	1578	U
52	t	1581	G
52	t	1583	А
52	t	1584	U
52	t	1585	С
52	t	1602	U
52	t	1603	A
52	t	1608	A
52	t	1610	A
52	t	1611	С
52	t	1616	A
52	t	1617	С
52	t	1618	А
52	t	1619	G
52	t	1622	G
52	t	1647	U
52	t	1648	U
52	t	1649	G
52	t	1653	G
52	t	1674	G
52	t	1675	С
52	t	1681	G
52	t	1682	G
52	t	1694	С
52	t	1695	G
52	t	1698	A
52	t	1699	G
52	t	1700	A
52	t	1706	C
52	t	1707	G
$5\overline{2}$	t	1713	A
52	t	1714	U
52	t	1715	G
52	t	1729	U
52	t	1730	C
52	t	1733	G
52	t	1738	G

Mol	Chain	Res	Type
52	t	1758	U
52	t	1764	С
52	t	1773	A
52	t	1780	A
52	t	1781	U
52	t	1782	U
52	t	1784	А
52	t	1785	А
52	t	1799	G
52	t	1800	С
52	t	1801	А
52	t	1802	А
52	t	1808	А
52	t	1815	A
52	t	1816	С
52	t	1819	A
52	t	1820	U
52	t	1821	А
52	t	1829	А
52	t	1838	С
52	t	1839	G
52	t	1847	А
52	t	1848	А
52	t	1858	А
52	\mathbf{t}	1869	G
52	\mathbf{t}	1884	G
52	t	1900	А
52	\mathbf{t}	1901	A
52	t	1906	G
52	t	1912	А
52	t	1913	A
52	t	1914	С
52	t	1918	A
52	t	1919	A
52	t	1927	A
52	t	1930	G
52	t	1937	A
52	t	1938	A
52	t	1939	U
52	t	1940	U
52	t	1941	С
52	\mathbf{t}	1943	U

Mol	Chain	Res	Type
52	t	1944	U
52	t	1945	G
52	t	1954	G
52	t	1955	U
52	t	1956	U
52	t	1961	С
52	t	1962	С
52	t	1963	U
52	t	1965	С
52	t	1966	А
52	t	1967	С
52	t	1970	А
52	t	1971	U
52	t	1972	G
52	t	1975	G
52	t	1981	А
52	t	1991	U
52	t	1992	G
52	t	1993	U
52	t	1996	С
52	t	1997	С
52	t	2017	U
52	t	2018	G
52	t	2021	С
52	t	2022	U
52	t	2023	С
52	t	2030	А
52	t	2031	А
52	t	2032	G
52	t	2033	А
52	t	2034	U
52	t	2035	G
52	t	2036	С
52	t	2043	С
52	t	2049	G
52	t	2051	A
52	t	2052	А
52	t	2055	C
52	t	2056	G
52	t	2060	A
52	t	2061	G
52	t	2062	А

Mol	Chain	Res	Type
52	t	2068	U
52	t	2069	G
52	t	2072	С
52	t	2092	U
52	t	2093	G
52	t	2104	С
52	t	2134	А
52	t	2138	G
52	t	2139	U
52	t	2143	С
52	t	2144	G
52	t	2145	С
52	t	2147	A
52	t	2150	С
52	t	2155	U
52	t	2156	G
52	t	2180	U
52	t	2182	U
52	t	2183	А
52	t	2198	А
52	t	2199	А
52	t	2204	G
52	t	2210	U
52	t	2211	А
52	t	2213	U
52	t	2225	А
52	t	2226	С
52	t	2238	G
52	t	2239	G
52	t	2249	U
52	t	2250	G
$5\overline{2}$	t	2251	G
52	t	2258	C
$5\overline{2}$	t	2259	U
52	t	2266	A
$5\overline{2}$	t	2267	A
52	t	2273	A
52	t	2275	C
52	t	2276	G
52	t	2278	A
52	t	2282	G
52	t	2283	C

Mol	Chain	Res	Type
52	t	2286	G
52	t	2289	G
52	t	2297	А
52	t	2305	U
52	t	2307	G
52	t	2309	А
52	t	2311	А
52	t	2319	G
52	t	2320	U
52	t	2321	U
52	t	2322	А
52	t	2325	G
52	t	2327	A
52	t	2333	A
52	t	2334	U
52	t	2335	A
52	t	2337	G
52	t	2345	G
52	t	2346	А
52	t	2347	С
52	t	2361	G
52	t	2382	G
52	t	2383	G
52	t	2384	U
52	t	2385	С
52	t	2402	U
52	t	2403	С
52	t	2407	А
52	t	2423	U
52	t	2424	С
$5\overline{2}$	t	2425	A
52	t	2426	A
52	t	2427	C
52	t	2428	G
52	t	2429	G
$5\overline{2}$	t	2430	A
52	t	2435	A
52	t	2439	A
52	t	2440	C
52	t	2441	U
52	t	2447	G
52	t	2448	A

Mol	Chain	Res	Type
52	t	2449	U
52	t	2450	A
52	t	2458	G
52	t	2459	A
52	t	2476	А
52	t	2490	G
52	t	2491	U
52	t	2497	А
52	t	2502	G
52	t	2503	А
52	t	2504	U
52	t	2505	G
52	t	2506	U
52	t	2517	С
52	t	2518	A
52	t	2519	U
52	t	2520	С
52	t	2529	G
52	t	2554	U
52	t	2566	А
52	t	2567	G
52	t	2573	С
52	\mathbf{t}	2582	G
52	t	2585	U
52	t	2586	U
52	t	2603	G
52	t	2609	U
52	t	2610	С
52	t	2613	U
52	t	2614	A
52	t	2615	U
52	t	2629	U
52	t	2630	G
52	t	2640	G
52	t	2645	G
52	t	2654	A
52	t	2655	G
52	t	2656	U
52	t	2663	G
52	t	2682	A
52	t	2689	U
52	t	2690	U

Mol	Chain	Res	Type
52	t	2691	C
52	t	2712	С
52	t	2713	U
52	t	2714	G
52	t	2716	С
52	t	2726	А
52	t	2727	А
52	t	2732	G
52	t	2733	А
52	t	2744	G
52	t	2748	А
52	t	2750	А
52	t	2751	G
52	t	2752	С
52	t	2756	U
52	t	2757	A
52	t	2765	А
52	t	2776	А
52	t	2777	G
52	t	2778	А
52	t	2779	U
52	t	2780	G
52	t	2781	А
52	t	2791	G
52	t	2792	А
52	t	2799	A
52	t	2800	А
52	t	2818	U
52	t	2820	A
52	t	2833	U
52	t	2834	G
52	t	2835	A
52	t	2836	U
52	t	2849	U
52	t	2866	U
52	t	2867	G
52	t	2868	A
52	t	2879	A
52	t	2880	С
52	t	2883	A
52	t	2884	U
52	t	2894	G

Mol	Chain	Res	Type
53	u	13	G
53	u	15	А
53	u	16	G
53	u	25	U
53	u	30	С
53	u	35	С
53	u	41	G
53	u	44	G
53	u	u 45	
53	u	53	А
53	u	57	A
53	u	67	G
53	u	87	U
53	u	88	С
53	u	89	U
53	u	90	С
53	u	99	A
53	u	109	A
55	W	19	U
55	W	20	A

There are no RNA pucker outliers to report.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

20 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	True	Chain	Dec	Tinle	B	ond leng	gths	E	Bond ang	gles
INIOI	Type	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
56	UAL	7	5	56	7,8,9	2.72	1 (14%)	5,9,11	1.18	0
56	KBE	7	1	56	8,8,9	0.73	0	7,8,10	1.22	1 (14%)
56	5OH	BA	6	56	8,12,13	1.17	0	3,16,18	2.21	2(66%)
56	DPP	Z	2	56	3,5,6	0.78	0	1,5,7	0.36	0
56	UAL	Z	5	56	7,8,9	1.82	3 (42%)	5,9,11	2.61	1 (20%)

Mol	Type	Chain	Bos	Link	B	ond leng	gths	E	ond ang	gles
WIOI	Type	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
56	DPP	У	2	56	$3,\!5,\!6$	0.39	0	1,5,7	0.30	0
56	UAL	BA	5	56	$7,\!8,\!9$	2.69	1 (14%)	5,9,11	1.62	1 (20%)
56	KBE	BA	1	56	8,8,9	1.21	1 (12%)	7,8,10	1.32	1 (14%)
56	KBE	Z	1	56	8,8,9	1.22	1 (12%)	7,8,10	2.16	1 (14%)
56	KBE	У	1	56	8,8,9	1.36	1 (12%)	7,8,10	2.04	1 (14%)
56	5OH	AA	6	56	8,12,13	1.33	1 (12%)	3,16,18	1.68	1 (33%)
56	5OH	Z	6	56	8,12,13	1.13	1 (12%)	3,16,18	1.13	0
56	DPP	AA	2	56	3,5,6	1.13	0	1,5,7	1.21	0
56	DPP	BA	2	56	3,5,6	1.30	0	1,5,7	0.08	0
56	UAL	AA	5	56	7,8,9	2.53	1 (14%)	5,9,11	1.33	1 (20%)
56	5OH	У	6	56	8,12,13	0.92	0	3,16,18	2.40	2 (66%)
56	KBE	AA	1	56	8,8,9	1.66	2 (25%)	7,8,10	<mark>3.54</mark>	1 (14%)
56	5OH	7	6	56	8,12,13	1.77	2 (25%)	3,16,18	2.93	1 (33%)
56	DPP	7	2	56	3,5,6	0.50	0	1,5,7	0.90	0
56	UAL	У	5	56	7,8,9	2.26	2 (28%)	5,9,11	1.39	1 (20%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
56	UAL	7	5	56	-	0/3/7/9	-
56	KBE	7	1	56	-	3/7/7/8	-
56	5OH	BA	6	56	-	2/2/18/20	0/1/1/1
56	DPP	Z	2	56	-	0/2/4/6	-
56	UAL	Z	5	56	-	0/3/7/9	-
56	DPP	У	2	56	-	0/2/4/6	-
56	UAL	BA	5	56	-	0/3/7/9	-
56	KBE	BA	1	56	-	4/7/7/8	-
56	KBE	Z	1	56	-	2/7/7/8	-
56	KBE	У	1	56	-	2/7/7/8	-
56	5OH	AA	6	56	-	0/2/18/20	0/1/1/1
56	5OH	Z	6	56	-	1/2/18/20	0/1/1/1
56	DPP	AA	2	56	-	0/2/4/6	-
56	DPP	BA	2	56	-	0/2/4/6	-
56	UAL	AA	5	56	-	0/3/7/9	-
56	5OH	у	6	56	-	0/2/18/20	0/1/1/1
56	KBE	AA	1	56	-	0/7/7/8	-

0011111										
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings			
56	5OH	7	6	56	-	0/2/18/20	0/1/1/1			
56	DPP	7	2	56	-	0/2/4/6	-			
56	UAL	У	5	56	-	0/3/7/9	-			

All (17) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
56	7	5	UAL	C-CA	6.99	1.56	1.45
56	BA	5	UAL	C-CA	6.80	1.56	1.45
56	AA	5	UAL	C-CA	6.04	1.54	1.45
56	У	5	UAL	C-CA	5.10	1.53	1.45
56	AA	1	KBE	CA-CB	3.46	1.57	1.53
56	7	6	5OH	CA-CB	3.20	1.58	1.54
56	У	1	KBE	CA-CB	3.06	1.57	1.53
56	7	6	5OH	CR-CB	2.77	1.57	1.53
56	AA	1	KBE	CA-C	2.70	1.56	1.49
56	Z	5	UAL	C-CA	2.68	1.49	1.45
56	Z	1	KBE	CA-CB	2.68	1.56	1.53
56	Z	5	UAL	C1-N1	-2.67	1.36	1.40
56	У	5	UAL	C1-N1	-2.44	1.36	1.40
56	Z	5	UAL	CB-N1	-2.40	1.29	1.35
56	AA	6	5OH	CB-NP	2.27	1.51	1.47
56	BA	1	KBE	CA-CB	2.16	1.56	1.53
56	Z	6	5OH	CB-NP	2.10	1.51	1.47

All (15) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
56	AA	1	KBE	CB-CA-C	9.12	125.67	112.25
56	Z	5	UAL	O-C-CA	-5.34	118.61	125.39
56	Z	1	KBE	CB-CA-C	5.23	119.95	112.25
56	У	1	KBE	CB-CA-C	5.05	119.68	112.25
56	7	6	5OH	CR-CB-CA	4.99	117.99	112.61
56	У	6	5OH	CR-CB-CA	3.63	116.52	112.61
56	BA	5	UAL	O-C-CA	-3.24	121.27	125.39
56	BA	6	5OH	CR-CB-CA	3.23	116.09	112.61
56	AA	6	5OH	CR-CB-CA	2.80	115.63	112.61
56	BA	1	KBE	CB-CA-C	2.60	116.08	112.25
56	AA	5	UAL	O-C-CA	-2.57	122.12	125.39
56	7	1	KBE	CB-CA-C	2.55	116.00	112.25
56	У	5	UAL	O-C-CA	-2.48	122.24	125.39
56	BA	6	5OH	O-C-CA	-2.04	119.44	124.78

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
56	У	6	5OH	O-C-CA	-2.03	119.46	124.78

There are no chirality outliers.

All (14) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
56	у	1	KBE	CA-CB-CG-CD
56	Z	1	KBE	C-CA-CB-N
56	Z	1	KBE	C-CA-CB-CG
56	7	1	KBE	C-CA-CB-N
56	7	1	KBE	C-CA-CB-CG
56	7	1	KBE	CA-CB-CG-CD
56	BA	1	KBE	C-CA-CB-CG
56	BA	1	KBE	CA-CB-CG-CD
56	Z	6	5OH	C-CA-CB-CR
56	BA	6	5OH	O-C-CA-CB
56	BA	6	5OH	C-CA-CB-CR
56	BA	1	KBE	C-CA-CB-N
56	у	1	KBE	N-CB-CG-CD
56	BA	1	KBE	N-CB-CG-CD

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(Å^2)$	Q < 0.9
1	А	218/218~(100%)	1.26	57~(26%) 0 0	96, 133, 180, 198	0
2	В	206/206~(100%)	0.40	15 (7%) 15 6	73, 120, 145, 151	0
3	С	205/205~(100%)	1.14	46 (22%) 0 0	88, 115, 150, 205	0
4	D	150/150~(100%)	0.02	3 (2%) 65 44	73, 94, 139, 171	0
5	Е	100/100~(100%)	0.78	14 (14%) 2 1	101, 135, 155, 159	0
6	F	151/151~(100%)	2.06	63 (41%) 0 0	111, 187, 225, 236	0
7	G	129/129~(100%)	0.51	8 (6%) 20 9	77, 101, 133, 142	0
8	Н	127/127~(100%)	1.45	37 (29%) 0 0	82, 134, 190, 220	0
9	Ι	98/98~(100%)	0.91	13 (13%) 3 1	90, 110, 193, 210	0
10	J	117/117~(100%)	0.52	8 (6%) 17 7	76, 111, 147, 165	0
11	Κ	123/123~(100%)	0.53	5 (4%) 37 18	53, 76, 115, 156	0
12	L	114/114~(100%)	2.96	63~(55%) 0 0	166, 207, 253, 272	0
13	М	96/100~(96%)	2.11	39 (40%) 0 0	79, 143, 196, 206	0
14	N	88/88~(100%)	0.49	7 (7%) 12 5	76, 104, 140, 149	0
15	Ο	82/82~(100%)	1.45	20 (24%) 0 0	78, 101, 164, 212	0
16	Р	80/80~(100%)	1.59	27 (33%) 0 0	79, 119, 168, 183	0
17	Q	55/55~(100%)	1.06	6 (10%) 5 2	80, 100, 133, 190	0
18	R	79/79~(100%)	3.64	51 (64%) 0 0	156, 207, 226, 233	0
19	S	85/85~(100%)	0.70	7 (8%) 11 4	82, 111, 136, 153	0
20	Т	51/51~(100%)	1.88	20 (39%) 0 0	119, 147, 188, 197	0
21	U	271/271~(100%)	0.17	9 (3%) 46 24	37, 65, 82, 107	0
22	V	$\overline{209/209}~(100\%)$	-0.06	1 (0%) 91 81	31, 58, 94, 119	0
23	W	$\overline{201/201}\ (100\%)$	0.09	6 (2%) 50 27	38, 76, 115, 160	0
24	X	177/177~(100%)	1.10	40 (22%) 0 0	113, 142, 190, 256	0

Continued from previous page...

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2	$OWAB(Å^2)$	Q < 0.9
25	Y	176/176~(100%)	0.30	4 (2%) 60 39	58, 82, 124, 141	0
26	Ζ	141/141~(100%)	3.49	98 (69%) 0 0	185, 260, 305, 346	0
27	0	142/142~(100%)	0.42	6 (4%) 36 18	49, 64, 94, 128	0
28	1	122/122~(100%)	0.18	1 (0%) 86 72	46, 61, 88, 115	0
29	2	143/143~(100%)	0.54	9 (6%) 20 8	45, 85, 123, 154	0
30	3	136/136~(100%)	0.36	2 (1%) 73 54	44, 70, 103, 137	0
31	4	120/120~(100%)	0.21	2 (1%) 70 49	41, 57, 70, 171	0
32	5	116/116~(100%)	1.37	36 (31%) 0 0	85, 106, 130, 136	0
33	6	114/114~(100%)	0.19	3 (2%) 56 33	48, 72, 115, 141	0
34	8	117/117~(100%)	0.08	3 (2%) 56 33	34, 60, 98, 119	0
35	9	103/103~(100%)	0.26	3 (2%) 51 28	46, 88, 128, 139	0
36	a	110/110~(100%)	-0.12	1 (0%) 84 69	41, 55, 86, 138	0
37	b	93/93~(100%)	0.88	13 (13%) 2 1	49, 81, 143, 167	0
38	с	102/102~(100%)	1.14	21 (20%) 1 0	65, 84, 153, 167	0
39	d	94/94~(100%)	0.64	8 (8%) 10 4	69, 98, 120, 143	0
40	е	79/79~(100%)	0.77	5 (6%) 20 8	66, 90, 125, 136	0
41	f	77/77~(100%)	0.46	3 (3%) 39 20	57, 72, 124, 133	0
42	g	63/63~(100%)	-0.00	3 (4%) 30 14	73, 99, 138, 170	0
43	h	58/58~(100%)	0.73	10 (17%) 1 0	63, 76, 133, 144	0
44	i	56/56~(100%)	0.19	3 (5%) 25 12	38, 61, 105, 136	0
45	j	50/50~(100%)	2.98	35~(70%) 0 0	128, 148, 161, 206	0
46	k	46/46~(100%)	0.22	2 (4%) 35 17	43, 55, 74, 119	0
47	1	64/64~(100%)	0.31	0 100 100	55, 67, 82, 89	0
48	m	38/38~(100%)	0.50	1 (2%) 56 33	62, 77, 89, 107	0
49	n	163/163~(100%)	4.42	112 (68%) 0 0	136, 200, 265, 312	1 (0%)
50	О	30/30~(100%)	1.02	5 (16%) 1 1	148, 184, 209, 215	0
50	р	30/30~(100%)	1.39	8 (26%) 0 0	170, 194, 226, 233	0
50	q	30/30~(100%)	3.14	17 (56%) 0 0	160, 205, 254, 264	0
50	r	30/30~(100%)	2.33	11 (36%) 0 0	148, 191, 224, 232	0
51	S	1532/1532~(100%)	0.35	85 (5%) 25 11	50, 102, 211, 316	0
52	t	2850/2903~(98%)	0.18	100 (3%) 44 23	36, 66, 212, 419	0

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$\mathbf{OWAB}(\mathbf{\AA}^2)$	Q<0.9
53	u	118/118~(100%)	-0.04	0 100 100	60, 110, 147, 189	0
54	v	525/525~(100%)	0.70	60 (11%) 5 2	47, 99, 188, 267	0
55	W	6/6~(100%)	3.84	5 (83%) 0 0	186, 194, 202, 203	0
56	7	2/6~(33%)	2.01	1 (50%) 0 0	103, 103, 103, 112	0
56	AA	2/6~(33%)	3.05	2(100%) 0 0	103, 103, 103, 108	0
56	BA	2/6~(33%)	2.80	1 (50%) 0 0	100, 100, 100, 101	0
56	У	2/6~(33%)	-0.21	0 100 100	99, 99, 99, 102	0
56	Z	2/6~(33%)	1.90	1 (50%) 0 0	93, 93, 93, 103	0
All	All	10896/10973~(99%)	0.65	1245 (11%) 5 2	31, 90, 212, 419	1 (0%)

Continued from previous page...

All (1245) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
49	n	50	VAL	24.7
49	n	88	HIS	20.5
18	R	55	GLN	19.4
49	n	112	ALA	19.4
49	n	89	PRO	19.1
49	n	113	PHE	18.1
26	Ζ	66	PHE	15.8
13	М	51	PRO	15.8
49	n	49	GLY	14.9
12	L	36	ALA	13.6
12	L	39	ALA	13.4
49	n	84	TYR	13.2
6	F	79	VAL	13.1
26	Ζ	12	VAL	12.9
3	С	24	VAL	12.6
50	r	1	SER	12.2
18	R	32	THR	12.2
52	t	2151	U	11.8
52	t	2108	А	11.6
6	F	84	TYR	11.6
52	t	2152	G	11.4
49	n	114	GLU	11.4
12	L	34	ALA	11.3
49	n	31	ARG	11.2
18	R	49	ALA	11.2
52	t	2180	U	10.6

Mol	Chain	Res	Type	RSRZ
52	t	2109	U	10.6
49	n	85	LEU	10.5
52	t	2133	G	10.4
52	t	2903	U	10.3
49	n	58	THR	10.2
52	t	881	G	10.2
13	М	56	PRO	10.2
49	n	56	ARG	10.1
18	R	54	ARG	10.1
52	t	1508	А	9.8
52	t	2179	С	9.8
12	L	37	GLY	9.8
49	n	43	LYS	9.7
13	М	53	ASP	9.7
26	Ζ	79	LEU	9.6
52	t	2107	G	9.6
39	d	94	ALA	9.6
18	R	31	ARG	9.5
17	Q	19	GLU	9.4
49	n	17	GLU	9.4
49	n	116	GLU	9.2
26	Ζ	111	THR	9.2
49	n	30	SER	9.1
12	L	113	LYS	9.0
45	j	52	LYS	9.0
49	n	115	GLY	9.0
49	n	57	ASN	8.9
26	Ζ	94	LYS	8.9
6	F	4	ARG	8.8
26	Ζ	4	VAL	8.8
18	R	12	LEU	8.8
50	q	16	VAL	8.8
52	t	880	G	8.7
50	q	23	ILE	8.6
49	n	99	PHE	8.6
1	А	51	GLU	8.6
26	Ζ	77	VAL	8.6
26	Ζ	67	THR	8.6
13	М	52	ARG	8.5
50	q	22	LEU	8.5
26	Ζ	86	LYS	8.5
26	Ζ	87	SER	8.4

6LKQ

Mol	Chain	Res	Type	RSRZ
49	n	54	VAL	8.4
51	s	995	С	8.3
16	Р	82	VAL	8.3
52	t	1174	U	8.3
13	М	11	LYS	8.3
45	j	8	ILE	8.3
52	t	2148	G	8.2
26	Ζ	58	ILE	8.2
49	n	69	PHE	8.2
18	R	75	PRO	8.1
12	L	33	LEU	8.0
52	t	2156	G	8.0
49	n	39	THR	8.0
49	n	26	VAL	8.0
26	Ζ	91	LYS	8.0
10	J	12	ARG	7.9
26	Ζ	137	LEU	7.9
52	t	2149	U	7.9
49	n	117	LEU	7.8
15	0	82	ALA	7.8
49	n	86	MET	7.8
26	Ζ	11	GLN	7.8
32	5	50	ALA	7.7
49	n	25	ALA	7.7
49	n	52	MET	7.6
50	r	9	GLU	7.6
12	L	62	PHE	7.6
49	n	20	LYS	7.6
52	t	2144	G	7.5
49	n	158	VAL	7.5
3	С	23	GLY	7.4
26	Ζ	7	TYR	7.4
12	L	107	THR	7.4
55	W	18	G	7.3
26	Ζ	65	SER	7.3
8	Н	129	ARG	7.2
12	L	38	ILE	7.2
12	L	114	PRO	7.2
$\overline{50}$	q	6	GLN	7.1
49	n	111	ALA	7.1
45	j	51	ALA	7.1
13	М	19	TYR	7.0

Mol	Chain	Res	Type	RSRZ
11	K	123	ALA	7.0
49	n	37	LYS	7.0
49	n	14	GLU	6.9
26	Ζ	93	ASN	6.9
52	t	2153	С	6.9
54	V	54	HIS	6.9
26	Ζ	60	VAL	6.9
49	n	68	PRO	6.9
52	t	2150	С	6.8
45	j	22	THR	6.8
6	F	77	ARG	6.8
12	L	6	ILE	6.8
8	Н	39	GLY	6.8
44	i	26	SER	6.7
49	n	62	ARG	6.7
12	L	35	ALA	6.7
52	t	1870	С	6.7
49	n	103	ASN	6.6
51	S	1032	G	6.6
49	n	10	ALA	6.6
12	L	4	ALA	6.6
49	n	95	LEU	6.6
54	V	305	ALA	6.5
52	t	899	А	6.5
8	Н	9	GLY	6.4
6	F	5	VAL	6.4
52	t	1509	A	6.4
13	М	7	ALA	6.4
49	n	160	GLU	6.3
1	А	124	THR	6.2
18	R	36	ARG	6.2
18	R	56	HIS	6.2
49	n	4	ASN	6.2
32	5	80	GLU	6.2
51	s	1031	С	6.2
49	n	9	GLN	6.1
6	F	7	GLY	6.1
40	е	24	ARG	6.1
49	n	27	VAL	6.1
1	А	55	GLU	6.1
12	L	3	ILE	6.0
1	А	64	GLY	6.0

6LKQ

Mol	Chain	Res	Type	RSRZ
26	Ζ	132	ALA	6.0
54	V	509	VAL	6.0
50	r	8	ILE	6.0
49	n	98	GLU	6.0
38	с	1	ALA	5.9
6	F	86	VAL	5.9
54	V	493	LEU	5.9
12	L	112	ARG	5.9
50	q	11	VAL	5.8
26	Ζ	20	SER	5.8
52	t	1729	U	5.8
18	R	59	VAL	5.8
49	n	18	VAL	5.8
51	S	1033	G	5.8
51	S	996	А	5.8
50	р	9	GLU	5.7
54	V	519	PRO	5.7
18	R	40	PHE	5.7
26	Ζ	85	ILE	5.7
12	L	98	GLY	5.7
26	Z	95	ASP	5.6
52	t	1175	А	5.6
6	F	87	PRO	5.6
35	9	50	GLY	5.6
26	Ζ	136	GLY	5.5
55	W	20	А	5.5
12	L	32	ILE	5.5
12	L	31	ALA	5.5
45	j	21	THR	5.5
26	Ζ	78	LEU	5.5
1	А	43	GLU	5.5
12	L	15	VAL	5.5
49	n	45	GLY	5.5
6	F	83	THR	5.5
49	n	51	TYR	5.5
20	Т	41	THR	5.5
6	F	82	SER	5.4
49	n	107	GLU	5.4
51	S	994	A	5.4
6	F	1	PRO	5.4
49	n	36	ASP	5.4
26	Z	116	MET	5.4

Mol	Chain	Res	Type	RSRZ
20	Т	37	TYR	5.4
26	Ζ	98	GLY	5.4
52	t	892	А	5.4
20	Т	34	ARG	5.4
49	n	44	ALA	5.3
15	0	51	ARG	5.3
52	t	2134	А	5.3
12	L	84	CYS	5.3
45	j	25	ASN	5.3
13	М	28	ALA	5.3
18	R	24	SER	5.3
15	0	22	ALA	5.3
46	k	46	LYS	5.3
24	Х	79	ARG	5.2
51	S	1038	С	5.2
18	R	50	VAL	5.2
52	t	1065	U	5.2
50	r	30	PHE	5.2
51	s	1030	U	5.2
18	R	65	MET	5.2
18	R	73	PHE	5.2
7	G	67	GLY	5.2
12	L	105	ALA	5.2
20	Т	35	GLU	5.2
49	n	21	GLY	5.1
45	j	42	VAL	5.1
49	n	106	PHE	5.1
49	n	61	ARG	5.1
52	t	139	U	5.1
32	5	48	LEU	5.1
50	r	2	ILE	5.1
12	L	42	VAL	5.1
26	Ζ	53	PRO	5.1
13	М	1	ALA	5.1
26	Ζ	13	ALA	5.1
12	L	104	ASN	5.0
52	t	2154	A	5.0
6	F	51	GLN	5.0
6	F	72	VAL	5.0
52	t	1067	А	5.0
18	R	14	LEU	5.0
45	j	15	GLY	5.0

6LKQ

Mol	Chain	Res	Type	RSRZ
52	t	884	U	5.0
27	0	142	ILE	5.0
6	F	78	ARG	5.0
16	Р	73	THR	4.9
20	Т	42	THR	4.9
52	t	2145	С	4.9
1	А	8	MET	4.9
51	s	1016	A	4.9
54	V	456	GLU	4.9
24	Х	44	ALA	4.9
49	n	90	GLY	4.9
49	n	46	ARG	4.9
18	R	9	PHE	4.9
26	Z	2	LYS	4.9
18	R	79	TYR	4.9
18	R	77	ARG	4.9
8	Н	57	VAL	4.9
26	Z	3	LYS	4.8
52	t	883	G	4.8
51	s	461	A	4.8
49	n	55	VAL	4.8
18	R	23	GLU	4.8
18	R	60	PHE	4.8
43	h	58	GLU	4.8
2	В	74	ILE	4.8
26	Z	54	ILE	4.8
13	М	6	LYS	4.8
11	K	24	GLU	4.8
49	n	24	SER	4.7
12	L	100	ARG	4.7
51	s	1267	С	4.7
3	С	18	LEU	4.7
54	V	423	GLY	4.7
1	А	50	ASN	4.7
54	V	455	SER	4.7
52	t	2135	A	4.7
26	Z	37	PHE	4.7
20	Т	36	PHE	4.7
26	Z	38	CYS	4.6
32	5	55	GLU	4.6
13	М	8	ARG	4.6
12	L	63	VAL	4.6

6LKQ

Mol	Chain	Res	Type	RSRZ
34	8	87	VAL	4.6
26	Ζ	10	LEU	4.6
49	n	82	ILE	4.6
45	j	40	PRO	4.6
12	L	58	GLU	4.6
24	Х	163	GLU	4.6
35	9	57	GLY	4.6
9	Ι	35	GLN	4.6
50	0	24	SER	4.6
6	F	61	PHE	4.6
49	n	53	ARG	4.6
38	с	51	LEU	4.6
52	t	897	С	4.5
49	n	122	GLN	4.5
51	s	841	С	4.5
1	А	185	ILE	4.5
18	R	10	ILE	4.5
6	F	88	VAL	4.5
6	F	76	SER	4.5
6	F	6	ILE	4.5
34	8	86	SER	4.5
8	Н	33	SER	4.5
1	А	48	MET	4.5
5	Е	37	HIS	4.5
3	С	177	MET	4.5
6	F	149	ALA	4.5
26	Ζ	83	ALA	4.5
12	L	30	LYS	4.5
52	t	1172	С	4.5
32	5	114	GLY	4.4
49	n	11	ILE	4.4
50	q	21	GLU	4.4
26	Ζ	21	PRO	4.4
12	L	57	ASP	4.4
11	K	122	LYS	4.4
49	n	91	ALA	4.4
49	n	130	PRO	4.4
18	R	11	ASP	4.4
45	j	16	THR	4.4
13	М	14	ALA	4.4
49	n	154	THR	4.4
49	n	163	GLU	4.4

6 LKQ

Mol	Chain	Res	Type	RSRZ
24	Х	78	ILE	4.4
51	s	1214	С	4.4
52	t	879	G	4.3
50	r	5	ASP	4.3
18	R	17	LYS	4.3
12	L	108	ARG	4.3
13	М	55	SER	4.3
26	Ζ	119	ALA	4.3
13	М	13	VAL	4.3
51	s	1215	G	4.3
16	Р	43	LEU	4.3
26	Ζ	105	LEU	4.3
1	А	199	ILE	4.3
8	Н	89	TYR	4.3
1	А	200	PRO	4.3
26	Ζ	90	GLY	4.3
9	Ι	30	LYS	4.3
13	М	9	GLU	4.3
54	V	304	GLN	4.3
52	t	2147	А	4.2
13	М	30	ILE	4.2
32	5	62	LEU	4.2
12	L	1	ALA	4.2
54	v	527	ARG	4.2
12	L	46	GLU	4.2
12	L	91	ARG	4.2
50	q	20	VAL	4.2
12	L	14	ALA	4.2
13	М	22	LYS	4.2
49	n	41	LEU	4.2
26	Ζ	81	LYS	4.2
52	t	2143	С	4.2
12	L	44	ILE	4.2
26	Ζ	40	ALA	4.1
6	F	48	THR	4.1
51	s	993	G	4.1
18	R	2	ARG	4.1
26	Z	24	GLY	4.1
52	t	898	С	4.1
37	b	24	MET	4.1
1	А	158	ASP	4.1
13	М	10	VAL	4.1

6LKQ

Mol	Chain	Res	Type	RSRZ
19	S	52	GLU	4.1
42	g	63	ALA	4.1
50	q	26	MET	4.1
1	А	62	ARG	4.1
32	5	115	LEU	4.1
52	t	1869	G	4.1
18	R	22	VAL	4.1
20	Т	40	PRO	4.0
43	h	1	ALA	4.0
18	R	76	THR	4.0
54	V	307	MET	4.0
1	А	128	LEU	4.0
13	М	29	ILE	4.0
1	А	198	VAL	4.0
51	S	82	G	4.0
51	S	205	А	4.0
33	6	114	ASN	4.0
26	Ζ	68	PHE	4.0
51	S	412	А	4.0
26	Ζ	32	VAL	4.0
43	h	57	GLU	4.0
5	Е	66	ALA	4.0
13	М	20	PHE	4.0
49	n	97	LYS	4.0
45	j	6	GLU	4.0
51	S	998	С	4.0
24	Х	43	ILE	4.0
8	Н	127	SER	4.0
29	2	142	ILE	4.0
10	J	125	LYS	4.0
49	n	161	ALA	4.0
18	R	7	GLY	4.0
56	BA	4	SER	4.0
26	Ζ	122	GLU	3.9
37	b	74	ILE	3.9
18	R	51	HIS	3.9
12	L	97	ARG	3.9
54	V	515	GLN	3.9
54	V	508	MET	3.9
45	j	28	THR	3.9
51	s	987	G	3.9
31	4	120	GLU	3.9

6LKQ

Mol	Chain	Res	Type	RSRZ
51	s	1004	A	3.9
50	q	3	THR	3.9
56	AA	4	SER	3.9
18	R	30	LEU	3.9
49	n	70	GLU	3.9
12	L	110	GLY	3.9
26	Ζ	27	LEU	3.9
8	Н	128	LYS	3.9
26	Z	92	PRO	3.9
45	j	30	PRO	3.9
16	Р	19	SER	3.9
9	Ι	102	LEU	3.9
3	С	150	LYS	3.9
26	Ζ	130	GLY	3.9
26	Ζ	131	THR	3.9
49	n	63	ALA	3.9
49	n	145	GLU	3.9
22	V	209	ALA	3.9
52	t	2106	U	3.9
49	n	152	VAL	3.9
51	S	1006	G	3.9
51	S	1045	С	3.8
12	L	94	LEU	3.8
17	Q	73	HIS	3.8
40	е	45	HIS	3.8
18	R	33	TRP	3.8
1	А	59	ILE	3.8
16	Р	42	LYS	3.8
52	t	882	G	3.8
12	L	41	ASP	3.8
50	r	7	ILE	3.8
24	Х	16	MET	3.8
50	0	21	GLU	3.8
16	Р	39	ARG	3.8
26	Z	6	ALA	3.8
54	V	482	PHE	3.8
36	a	110	ARG	3.8
52	t	2139	U	3.8
3	С	28	ASP	3.8
54	V	514	ALA	3.8
6	F	81	GLY	3.8
26	Ζ	97	VAL	3.8

6LKQ

Mol	Chain	Res	Type	RSRZ
52	t	280	U	3.7
8	Н	125	GLN	3.7
51	S	1216	А	3.7
49	n	108	VAL	3.7
12	L	93	GLY	3.7
16	Р	6	THR	3.7
49	n	42	ARG	3.7
26	Z	96	LYS	3.7
52	t	138	U	3.7
54	v	221	GLU	3.7
1	А	212	TYR	3.7
51	s	94	G	3.7
51	s	990	С	3.7
45	j	50	GLU	3.7
9	Ι	75	ASP	3.7
50	р	11	VAL	3.7
18	R	13	HIS	3.7
26	Z	104	GLN	3.7
8	Н	20	ILE	3.7
51	s	1212	U	3.7
52	t	1171	G	3.7
26	Z	52	LEU	3.7
26	Z	107	GLU	3.7
45	j	23	THR	3.7
1	А	87	ASP	3.7
26	Z	123	ALA	3.7
12	L	7	ASN	3.7
49	n	59	LEU	3.7
26	Z	63	ASP	3.7
3	С	19	PHE	3.7
18	R	71	GLY	3.6
54	V	52	ASN	3.7
13	М	50	LEU	3.6
26	Ζ	39	LYS	3.6
12	L	79	LEU	3.6
52	t	2181	U	3.6
38	с	70	ALA	3.6
54	V	424	ALA	3.6
13	М	4	SER	3.6
18	R	3	SER	3.6
50	r	3	THR	3.6
1	А	47	PRO	3.6

6LKQ

Mol	Chain	Res	Type	RSRZ
6	F	2	ARG	3.6
26	Ζ	74	PRO	3.6
21	U	271	SER	3.6
8	Н	91	GLU	3.6
52	t	2142	А	3.6
1	А	63	LYS	3.6
39	d	34	LYS	3.6
6	F	3	ARG	3.6
49	n	47	GLU	3.6
16	Р	81	ALA	3.6
49	n	75	ALA	3.6
13	М	35	ALA	3.6
49	n	121	SER	3.6
27	0	9	GLU	3.6
49	n	105	LYS	3.6
18	R	21	ALA	3.5
54	V	435	ASP	3.5
30	3	1	MET	3.5
54	V	50	GLY	3.5
54	V	16	PHE	3.5
1	А	224	ARG	3.5
8	Н	32	ARG	3.5
18	R	34	SER	3.5
20	Т	46	ARG	3.5
13	М	15	LEU	3.5
49	n	3	LEU	3.5
49	n	8	LYS	3.5
49	n	129	LEU	3.5
51	S	1037	С	3.5
15	0	81	ALA	3.5
13	М	12	ARG	3.5
1	А	42	LEU	3.5
52	t	2103	С	3.5
8	Н	58	GLU	3.5
7	G	2	MET	3.5
10	J	52	ARG	3.5
18	R	72	GLU	3.5
52	t	1075	С	3.5
49	n	72	LEU	3.5
6	F	8	GLN	3.5
24	Х	21	TYR	3.5
24	Х	1	ALA	3.4

6LKQ

Mol	Chain	Res	Type	RSRZ
5	Е	96	VAL	3.4
18	R	26	ASP	3.4
1	А	163	ILE	3.4
6	F	80	GLY	3.4
14	Ν	61	GLN	3.4
1	А	29	PHE	3.4
25	Y	31	GLU	3.4
26	Ζ	75	ALA	3.4
1	А	138	ARG	3.4
40	е	40	ARG	3.4
18	R	41	PRO	3.4
26	Ζ	46	ASP	3.4
1	А	183	PHE	3.4
26	Ζ	128	ILE	3.4
52	t	900	А	3.4
45	j	26	LYS	3.4
3	С	35	GLN	3.4
52	t	2184	А	3.4
43	h	5	LYS	3.4
49	n	66	GLY	3.4
18	R	48	ILE	3.4
54	V	472	ARG	3.3
52	t	1507	С	3.3
9	Ι	76	ILE	3.3
37	b	88	LYS	3.3
29	2	95	LEU	3.3
26	Ζ	82	ALA	3.3
12	L	56	ARG	3.3
49	n	5	LEU	3.3
12	L	102	LYS	3.3
6	F	71	THR	3.3
32	5	112	GLU	3.3
39	d	71	LYS	3.3
41	f	43	LYS	3.3
49	n	109	LYS	3.3
52	t	1871	А	3.3
26	Ζ	80	LYS	3.3
16	Р	13	SER	3.3
54	V	57	SER	3.3
18	R	28	LYS	3.3
52	t	1179	G	3.3
18	R	70	LEU	3.3

6LKQ

Mol	Chain	Res	Type	RSRZ
6	F	90	VAL	3.3
56	Z	4	SER	3.3
38	с	82	VAL	3.3
13	М	18	LYS	3.3
8	Н	40	ARG	3.3
13	М	21	ALA	3.3
1	А	130	LYS	3.3
1	А	131	LYS	3.3
5	Е	9	MET	3.2
7	G	1	SER	3.2
9	Ι	85	ASP	3.2
49	n	40	GLU	3.2
32	5	79	ALA	3.2
50	q	24	SER	3.2
54	V	478	ASP	3.2
52	t	367	G	3.2
13	М	2	LYS	3.2
24	Х	168	LEU	3.2
52	t	2402	U	3.2
1	А	30	ILE	3.2
8	Н	3	ASN	3.2
12	L	106	ARG	3.2
49	n	29	ASP	3.2
50	р	10	ALA	3.2
51	S	1019	А	3.2
18	R	57	VAL	3.2
51	S	1226	С	3.2
2	В	133	MET	3.2
50	р	8	ILE	3.2
51	S	1000	А	3.2
1	А	56	LEU	3.2
29	2	92	LEU	3.2
26	Ζ	76	ALA	3.2
17	Q	63	TYR	3.2
51	S	988	G	3.2
26	Ζ	139	VAL	3.2
33	6	111	GLU	3.2
45	j	19	PHE	3.2
25	Y	14	VAL	3.2
20	Т	10	PRO	3.2
6	F	109	LYS	3.2
15	Ο	74	LEU	3.2

Mol	Chain	Res	Type	RSRZ
26	Ζ	135	MET	3.2
6	F	46	LEU	3.1
18	R	63	ASP	3.1
24	Х	67	THR	3.1
54	V	42	THR	3.1
54	V	496	ASP	3.1
26	Ζ	138	VAL	3.1
15	0	80	LYS	3.1
29	2	115	GLU	3.1
54	V	51	SER	3.1
52	t	646	U	3.1
20	Т	3	ILE	3.1
6	F	75	LYS	3.1
26	Ζ	16	MET	3.1
50	r	21	GLU	3.1
49	n	128	THR	3.1
49	n	159	ARG	3.1
51	S	842	U	3.1
54	V	70	ILE	3.1
51	S	1042	А	3.1
8	Н	28	VAL	3.1
9	Ι	74	VAL	3.1
5	Е	14	GLN	3.1
26	Ζ	121	ILE	3.1
5	Е	63	ASN	3.1
52	t	366	С	3.1
45	j	33	LEU	3.1
8	Н	38	PHE	3.1
38	с	52	ASN	3.1
26	Ζ	120	ASP	3.1
13	М	58	ARG	3.1
16	Р	60	ILE	3.1
26	Ζ	34	ILE	3.1
6	F	60	ALA	3.1
24	Х	80	GLN	3.1
1	A	46	VAL	3.1
45	j	31	GLU	3.1
12	L	95	PRO	3.1
39	d	93	ARG	3.1
54	V	476	CYS	3.1
3	С	193	ASP	3.0
14	N	1	SER	3.0

Mol	Chain	Res	Type	RSRZ
26	Z	115	ASP	3.0
54	V	376	GLY	3.0
52	t	1066	U	3.0
54	V	452	ARG	3.0
54	V	327	LYS	3.0
54	v	399	ARG	3.0
18	R	15	LEU	3.0
3	С	174	ALA	3.0
1	А	35	ASN	3.0
13	М	23	ARG	3.0
45	j	27	ARG	3.0
18	R	58	PRO	3.0
12	L	47	LEU	3.0
18	R	74	ALA	3.0
49	n	28	ALA	3.0
52	t	895	U	3.0
3	С	63	ILE	3.0
12	L	40	GLU	3.0
49	n	155	LEU	3.0
3	С	114	ARG	3.0
8	Н	16	ALA	3.0
54	V	475	GLU	3.0
24	Х	116	LEU	3.0
50	q	15	SER	3.0
1	А	54	ALA	3.0
15	0	47	GLU	3.0
20	Т	38	GLU	3.0
32	5	58	ILE	3.0
6	F	42	VAL	3.0
52	t	288	U	3.0
52	t	2211	А	3.0
54	v	473	TRP	3.0
8	Н	27	ILE	3.0
19	S	82	ILE	3.0
1	А	14	HIS	3.0
24	Х	65	LEU	3.0
51	s	1020	G	3.0
26	Ζ	42	ASN	3.0
24	Х	68	LYS	3.0
6	F	47	GLU	3.0
49	n	120	ALA	3.0
9	Ι	89	ARG	3.0

Mol	Chain	Res	Type	RSRZ
26	Ζ	57	VAL	3.0
50	q	27	GLU	3.0
9	Ι	93	ALA	3.0
12	L	82	LEU	3.0
45	j	5	ARG	2.9
24	Х	124	ARG	2.9
54	V	355	HIS	2.9
51	S	203	G	2.9
29	2	104	GLN	2.9
54	V	489	ASN	2.9
50	р	5	ASP	2.9
1	А	31	PHE	2.9
20	Т	11	PHE	2.9
5	Е	89	VAL	2.9
12	L	18	LEU	2.9
27	0	54	ILE	2.9
26	Ζ	41	PHE	2.9
10	J	18	GLY	2.9
32	5	49	VAL	2.9
49	n	64	VAL	2.9
51	S	1015	G	2.9
6	F	93	VAL	2.9
10	J	76	TYR	2.9
51	S	1005	А	2.9
13	М	42	ASN	2.9
55	W	17	U	2.9
8	Н	8	THR	2.9
50	r	17	MET	2.9
29	2	141	LYS	2.9
37	b	83	ALA	2.9
52	t	275	С	2.9
51	S	1036	А	2.9
51	S	1362	А	2.9
54	V	421	GLU	2.9
49	n	83	ALA	2.9
51	S	1209	С	2.9
17	Q	46	THR	2.9
20	Т	45	LYS	2.9
51	S	4	U	2.9
51	S	1268	G	2.9
8	Н	64	ILE	2.9
49	n	77	VAL	2.9

Mol	Chain	Res	Type	RSRZ
51	S	702	А	2.9
51	S	1213	А	2.9
24	Х	172	PHE	2.9
51	S	1007	U	2.9
3	С	153	ARG	2.9
7	G	60	LEU	2.9
13	М	26	LEU	2.9
24	Х	75	GLY	2.9
38	с	71	ILE	2.8
13	М	45	LEU	2.8
52	t	1848	А	2.8
3	С	2	ARG	2.8
6	F	58	LEU	2.8
15	0	20	VAL	2.8
45	j	7	LYS	2.8
55	W	15	А	2.8
6	F	53	SER	2.8
15	0	67	ILE	2.8
38	с	72	PHE	2.8
38	с	86	PHE	2.8
49	n	1	MET	2.8
4	D	9	GLU	2.8
12	L	83	GLY	2.8
54	V	45	THR	2.8
50	0	2	ILE	2.8
54	V	488	LYS	2.8
6	F	150	PHE	2.8
13	М	17	ASP	2.8
51	S	1266	G	2.8
49	n	35	VAL	2.8
32	5	56	LYS	2.8
38	с	50	ALA	2.8
51	S	1380	U	2.8
52	t	1173	U	2.8
1	A	201	GLY	2.8
43	h	6	ILE	2.8
37	b	1	MET	2.8
21	U	165	ALA	2.8
54	V	471	ALA	2.8
50	q	8	ILE	2.8
20	Т	8	ASN	2.8
45	j	34	GLU	2.8

6L	K	Q

Mol	Chain	Res	Type	RSRZ
51	S	1043	G	2.8
6	F	119	LEU	2.8
38	с	2	ALA	2.8
42	g	62	GLY	2.8
32	5	35	ILE	2.8
32	5	92	PHE	2.8
45	j	43	ARG	2.8
6	F	151	ALA	2.8
24	Х	15	LEU	2.8
26	Ζ	26	ALA	2.8
51	S	1217	С	2.8
51	S	1317	С	2.8
8	Н	122	ARG	2.8
23	W	96	VAL	2.8
52	t	279	А	2.8
6	F	49	LEU	2.8
26	Ζ	117	THR	2.8
3	С	27	ILE	2.7
41	f	75	GLU	2.7
52	t	2183	А	2.7
26	Ζ	22	PRO	2.7
49	n	87	GLU	2.7
51	S	93	U	2.7
9	Ι	34	ALA	2.7
50	r	20	VAL	2.7
3	С	106	PHE	2.7
8	Н	63	TYR	2.7
26	Ζ	8	VAL	2.7
51	S	1211	U	2.7
52	t	2155	U	2.7
3	С	34	GLU	2.7
39	d	70	ILE	2.7
18	R	29	PRO	2.7
43	h	38	GLU	2.7
49	n	79	PRO	2.7
2	В	78	LYS	2.7
32	5	93	ASP	2.7
45	j	4	ILE	2.7
51	S	207	C	2.7
6	F	130	LYS	2.7
54	V	480	LYS	2.7
24	Х	76	PHE	2.7

Mol	Chain	Res	Type	RSRZ
20	Т	22	CYS	2.7
24	Х	167	ALA	2.7
20	Т	44	ARG	2.7
45	j	13	SER	2.7
51	S	209	U	2.7
6	F	104	VAL	2.7
45	j	41	VAL	2.7
1	А	38	HIS	2.7
49	n	162	LYS	2.7
54	V	58	ASP	2.7
2	В	109	GLU	2.7
26	Ζ	134	SER	2.7
32	5	52	SER	2.7
51	S	723	U	2.7
52	t	363	G	2.7
46	k	1	MET	2.7
38	с	87	GLU	2.7
18	R	52	ASN	2.7
55	W	19	U	2.7
3	С	20	LEU	2.7
44	i	56	LYS	2.7
51	S	1003	G	2.7
8	Н	45	MET	2.7
5	Е	6	ILE	2.7
6	F	73	GLU	2.7
16	Р	58	VAL	2.7
51	S	1026	G	2.7
5	Е	35	LYS	2.6
20	Т	14	ALA	2.7
50	р	3	THR	2.6
1	А	135	MET	2.6
3	С	155	LYS	2.6
3	С	108	ALA	2.6
8	Н	121	ARG	2.6
37	b	73	ARG	2.6
3	С	118	SER	2.6
51	S	1002	G	2.6
19	S	42	ASP	2.6
6	F	15	PRO	2.6
52	t	1420	А	2.6
54	V	503	TYR	2.6
18	R	35	ARG	2.6

6LKQ

Mol	Chain	Res	Type	RSRZ
38	с	45	GLN	2.6
3	С	131	ILE	2.6
21	U	268	ARG	2.6
38	с	65	GLN	2.6
17	Q	20	ILE	2.6
3	С	43	ARG	2.6
13	М	54	SER	2.6
52	t	1872	А	2.6
3	С	98	ASP	2.6
16	Р	25	GLU	2.6
18	R	25	GLY	2.6
5	Е	62	MET	2.6
1	А	195	VAL	2.6
3	С	52	VAL	2.6
51	s	1451	U	2.6
8	Н	42	THR	2.6
12	L	27	THR	2.6
49	n	12	VAL	2.6
6	F	100	MET	2.6
51	S	989	U	2.6
50	q	1	SER	2.6
19	S	66	ILE	2.6
50	р	30	PHE	2.6
12	L	109	LYS	2.6
32	5	54	VAL	2.6
49	n	73	LYS	2.6
15	0	40	ASN	2.6
2	В	123	LEU	2.6
7	G	9	MET	2.6
16	Р	20	ILE	2.6
51	S	1022	А	2.6
24	Х	159	ALA	2.6
52	t	2105	U	2.6
7	G	129	ALA	2.5
52	t	1073	А	2.5
40	е	29	SER	2.5
3	С	21	LYS	2.5
6	F	85	GLN	2.5
38	с	49	PRO	2.5
51	S	999	С	2.5
5	Е	58	HIS	2.5
15	0	66	THR	2.5

Mol	Chain	Res	Type	RSRZ
38	с	13	LEU	2.5
54	V	344	ASP	2.5
21	U	75	ALA	2.5
32	5	47	VAL	2.5
16	Р	38	LYS	2.5
50	q	17	MET	2.5
51	S	843	U	2.5
12	L	61	LYS	2.5
24	Х	46	LYS	2.5
26	Z	69	VAL	2.5
37	b	84	TYR	2.5
49	n	19	ALA	2.5
9	Ι	25	ILE	2.5
16	Р	5	ARG	2.5
12	L	48	SER	2.5
54	V	53	GLN	2.5
13	М	5	MET	2.5
27	0	12	LYS	2.5
6	F	142	ARG	2.5
10	J	124	LYS	2.5
2	В	160	GLU	2.5
13	М	62	ARG	2.5
32	5	113	ALA	2.5
38	с	12	VAL	2.5
16	Р	24	ILE	2.5
54	V	470	THR	2.5
51	S	1034	G	2.5
23	W	7	ASP	2.5
33	6	110	LYS	2.5
29	2	103	ILE	2.5
15	0	60	TRP	2.5
35	9	34	GLU	2.5
45	j	17	GLY	2.5
1	А	28	PRO	2.5
8	Н	92	SER	2.5
14	Ν	53	ARG	2.5
50	р	7	ILE	2.5
51	S	1013	G	2.5
24	Х	77	LYS	2.4
45	j	9	LYS	2.4
51	s	1027	С	2.4
51	S	1231	G	2.4

Mol	Chain	Res	Type	RSRZ
2	В	142	ARG	2.4
8	Н	84	ARG	2.4
54	V	434	ASN	2.4
49	n	7	ASP	2.4
1	А	52	ALA	2.4
23	W	9	GLN	2.4
51	s	84	U	2.4
3	С	128	VAL	2.4
1	А	39	ILE	2.4
24	Х	13	LYS	2.4
12	L	103	THR	2.4
2	В	128	MET	2.4
3	С	167	PRO	2.4
14	Ν	57	ARG	2.4
1	А	17	HIS	2.4
56	7	4	SER	2.4
43	h	4	ILE	2.4
14	N	87	ARG	2.4
34	8	116	LEU	2.4
45	j	39	ASP	2.4
13	М	43	ALA	2.4
28	1	45	GLU	2.4
45	j	47	ILE	2.4
6	F	74	VAL	2.4
12	L	96	VAL	2.4
43	h	3	THR	2.4
3	С	181	PHE	2.4
49	n	76	PHE	2.4
21	U	60	ALA	2.4
51	s	997	U	2.4
51	s	1023	U	2.4
8	Н	21	LYS	2.4
25	Y	176	LYS	2.4
52	t	1493	С	2.4
27	0	95	ARG	2.4
49	n	110	ALA	2.4
3	С	97	LEU	2.4
16	Р	3	LYS	2.4
2	В	36	PHE	2.4
8	Н	109	GLN	2.4
16	Р	12	VAL	2.4
32	5	84	GLU	2.4

6LKQ

Mol	Chain	Res	Type	RSRZ
38	с	76	THR	2.4
37	b	15	HIS	2.4
3	С	116	LEU	2.4
6	F	91	ARG	2.4
15	0	34	GLU	2.4
2	В	136	ALA	2.4
32	5	51	ALA	2.4
2	В	203	LYS	2.3
32	5	87	ILE	2.3
38	с	4	ILE	2.3
52	t	274	С	2.3
3	С	146	GLU	2.3
8	Н	36	GLN	2.3
51	s	1021	A	2.3
5	Е	91	ARG	2.3
5	Е	8	PHE	2.3
45	j	38	PHE	2.3
52	t	277	G	2.3
6	F	105	GLU	2.3
52	t	2146	С	2.3
23	W	10	SER	2.3
52	t	362	A	2.3
8	Н	19	PHE	2.3
38	с	69	VAL	2.3
54	V	481	LYS	2.3
15	0	45	GLU	2.3
24	Х	20	ASN	2.3
43	h	7	THR	2.3
1	А	36	LYS	2.3
15	0	2	VAL	2.3
3	С	175	GLY	2.3
52	t	1180	U	2.3
26	Ζ	45	THR	2.3
52	t	2902	С	2.3
51	s	733	G	2.3
3	С	61	ARG	2.3
54	v	484	GLU	2.3
54	v	41	GLN	2.3
1	А	123	GLY	2.3
15	0	41	PRO	2.3
8	Н	4	GLN	2.3
37	b	72	GLN	2.3

6LKQ

Mol	Chain	Res	Type	RSRZ
52	t	846	U	2.3
24	Х	19	PHE	2.3
42	g	59	GLU	2.3
6	F	44	SER	2.3
52	t	1727	С	2.3
8	Н	65	THR	2.3
15	0	48	GLU	2.3
1	А	211	LEU	2.3
8	Н	34	LEU	2.3
21	U	114	GLN	2.3
39	d	63	ILE	2.3
24	Х	121	PHE	2.3
16	Р	40	THR	2.3
43	h	2	LYS	2.3
27	0	25	LEU	2.3
52	t	613	А	2.3
26	Ζ	5	GLN	2.3
3	С	1	ALA	2.3
45	j	32	LYS	2.3
6	F	111	GLY	2.3
24	Х	31	GLU	2.3
54	V	499	ASP	2.3
6	F	21	LEU	2.3
26	Ζ	25	PRO	2.3
12	L	85	TYR	2.3
32	5	105	ALA	2.3
38	с	93	ARG	2.2
50	q	14	MET	2.2
52	t	1105	U	2.2
16	Р	4	ILE	2.2
54	V	289	VAL	2.2
19	S	67	HIS	2.2
12	L	54	THR	2.2
52	t	1584	U	2.2
3	С	132	ALA	2.2
5	Е	4	TYR	2.2
6	F	102	TRP	2.2
20	Т	12	ASP	2.2
51	S	1274	А	2.2
3	С	31	CYS	2.2
37	b	16	VAL	2.2
39	d	92	VAL	2.2

Mol	Chain	Res	Type	RSRZ
54	V	467	ASN	2.2
15	0	7	ALA	2.2
32	5	36	TYR	2.2
51	S	986	U	2.2
51	S	1048	G	2.2
2	В	107	LYS	2.2
16	Р	66	LEU	2.2
39	d	4	ILE	2.2
49	n	118	ILE	2.2
24	Х	45	ASP	2.2
6	F	106	ALA	2.2
26	Ζ	1	ALA	2.2
32	5	53	THR	2.2
45	j	48	TYR	2.2
3	С	22	SER	2.2
16	Р	72	TRP	2.2
54	V	485	PHE	2.2
16	Р	75	VAL	2.2
3	С	147	LYS	2.2
12	L	49	GLU	2.2
49	n	151	LEU	2.2
52	t	896	А	2.2
1	А	220	VAL	2.2
6	F	41	ILE	2.2
56	AA	3	SER	2.2
1	А	141	GLU	2.2
38	с	80	ASP	2.2
51	S	727	G	2.2
51	S	1228	С	2.2
44	i	25	THR	2.2
24	Х	160	LYS	2.2
26	Z	124	MET	2.2
1	А	68	PHE	2.2
1	А	129	THR	2.2
6	F	132	THR	2.2
8	Н	96	GLU	2.2
24	Х	30	VAL	2.2
49	n	140	MET	2.2
54	V	483	GLU	2.2
40	е	51	GLY	2.2
52	t	1098	А	2.2
2	В	110	LEU	2.2

6LKQ	

Mol	Chain	Res	Type	RSRZ
11	K	90	PRO	2.2
50	0	18	ASP	2.2
4	D	30	PHE	2.2
6	F	40	SER	2.2
26	Ζ	29	GLN	2.2
3	С	129	VAL	2.2
3	С	46	ARG	2.2
24	Х	7	TYR	2.2
11	Κ	106	VAL	2.2
20	Т	43	GLU	2.2
48	m	22	VAL	2.2
8	Н	24	ASN	2.2
14	Ν	45	HIS	2.2
26	Ζ	84	GLY	2.2
30	3	6	ARG	2.2
24	Х	74	ALA	2.1
52	t	353	С	2.1
52	t	365	U	2.1
52	t	894	U	2.1
9	Ι	19	ASP	2.1
10	J	97	ARG	2.1
31	4	72	ASP	2.1
32	5	63	LYS	2.1
10	J	99	LEU	2.1
7	G	106	SER	2.1
21	U	93	VAL	2.1
24	Х	72	SER	2.1
29	2	116	VAL	2.1
32	5	74	VAL	2.1
50	q	2	ILE	2.1
21	U	32	LEU	2.1
1	А	159	ALA	2.1
26	Ζ	61	TYR	2.1
32	5	37	ALA	2.1
6	F	148	LYS	2.1
20	Т	33	ARG	2.1
4	D	104	ILE	2.1
51	s	206	С	2.1
32	5	78	VAL	2.1
37	b	91	GLN	2.1
12	L	50	GLY	2.1
51	S	1039	G	2.1

6LKQ	
------	--

Mol	Chain	Res	Type	RSRZ
1	А	45	THR	2.1
3	С	122	ILE	2.1
26	Ζ	118	GLY	2.1
3	С	205	LYS	2.1
6	F	101	ARG	2.1
32	5	81	ARG	2.1
37	b	3	ARG	2.1
49	n	16	SER	2.1
12	L	60	ALA	2.1
52	t	278	А	2.1
7	G	51	GLU	2.1
32	5	34	HIS	2.1
51	S	1224	U	2.1
3	С	176	LYS	2.1
17	Q	50	TYR	2.1
21	U	29	PHE	2.1
2	В	132	ALA	2.1
6	F	89	GLU	2.1
52	t	2182	U	2.1
16	Р	74	LEU	2.1
23	W	97	ASN	2.1
54	V	215	LEU	2.1
54	V	487	ARG	2.1
16	Р	77	VAL	2.1
2	В	130	ARG	2.1
14	Ν	41	HIS	2.1
24	Х	14	LYS	2.1
45	j	11	VAL	2.1
3	С	89	LEU	2.1
52	t	1103	А	2.1
24	Х	24	VAL	2.1
1	А	134	LEU	2.1
26	Ζ	106	GLN	2.1
1	А	197	PHE	2.1
32	5	73	ALA	2.1
41	f	73	ARG	2.1
49	n	156	ALA	2.1
51	s	631	С	2.1
9	Ι	10	LEU	2.1
52	t	1723	G	2.1
54	v	409	GLN	2.1
24	Х	91	ARG	2.1

6LKQ

Mol	Chain	Res	Type	RSRZ	
51	s	1441	А	2.1	
26	Ζ	127	SER	2.1	
24	Х	162	ASP	2.1	
24	Х	173	ASP	2.1	
1	А	44	LYS	2.0	
1	А	65	LYS	2.0	
49	n	94	ARG	2.0	
26	Ζ	31	GLY	2.0	
1	А	26	MET	2.0	
26	Ζ	9	LYS	2.0	
19	S	60	GLN	2.0	
32	5	102	ARG	2.0	
6	F	39	GLU	2.0	
52	t	1104	С	2.0	
3	С	75	TYR	2.0	
23	W	201	ALA	2.0	
50	0	12	ALA	2.0	
26	Ζ	55	PRO	2.0	
49	n	60	LEU	2.0	
6	F	16	LYS	2.0	
12	L	81	ASP	2.0	
26	Ζ	140	GLU	2.0	
52	t	1744	А	2.0	
54	V	394	ALA	2.0	
13	М	46	LYS	2.0	
25	Y	98	LYS	2.0	
12	L	2	ARG	2.0	
16	Р	63	CYS	2.0	
51	s	971	G	2.0	
16	Р	7	LEU	2.0	
32	5	3	LYS	2.0	
32	5	76	LYS	2.0	
26	Ζ	35	MET	2.0	
15	0	19	VAL	2.0	
24	Х	96	TRP	2.0	
29	2	85	VAL	2.0	
15	0	52	LEU	2.0	
19	S	85	LEU	2.0	
51	S	983	A	2.0	
52	t	1745	A	2.0	
37	b	82	LYS	2.0	
52	t	1726	С	2.0	

Mol	Chain	\mathbf{Res}	Type	RSRZ
32	5	99	TYR	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
56	DPP	BA	2	6/7	0.28	0.42	97,99,99,100	0
56	KBE	BA	1	9/10	0.37	0.52	73,86,98,100	0
56	UAL	7	5	9/10	0.50	0.87	117,119,122,122	0
56	KBE	AA	1	9/10	0.51	0.57	74,80,92,93	0
56	5OH	7	6	12/13	0.55	0.58	107,109,112,116	0
56	KBE	У	1	9/10	0.64	0.53	105,106,108,108	0
56	5OH	Z	6	12/13	0.67	0.84	100,106,109,110	0
56	KBE	Z	1	9/10	0.72	0.45	86,90,94,94	0
56	DPP	AA	2	6/7	0.74	0.51	95,100,101,102	0
56	5OH	AA	6	12/13	0.76	0.54	101,103,104,105	0
56	UAL	BA	5	9/10	0.79	0.61	96,100,100,101	0
56	DPP	Z	2	6/7	0.80	0.38	94,95,98,101	0
56	KBE	7	1	9/10	0.83	0.60	86,89,93,95	0
56	UAL	AA	5	9/10	0.85	0.65	103,105,106,106	0
56	5OH	BA	6	12/13	0.85	0.38	$99,\!102,\!103,\!103$	0
56	UAL	У	5	9/10	0.87	0.21	102,103,109,109	0
56	UAL	Z	5	9/10	0.87	0.39	99,100,101,102	0
56	DPP	7	2	6/7	0.87	0.42	98,103,106,109	0
56	DPP	У	2	6/7	0.92	0.23	98,99,100,104	0
56	5OH	У	6	12/13	0.94	0.32	$99,\!102,\!105,\!109$	0

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

