

# Full wwPDB X-ray Structure Validation Report (i)

### Feb 10, 2024 – 09:47 AM EST

- PDB ID : 2LGS Title : FEEDBACK INHIBITION OF FULLY UNADENYLYLATED GLUTAMINE SYNTHETASE FROM SALMONELLA TYPHIMURIUM BY GLYCINE, ALANINE, AND SERINE Authors : Liaw, S.-H.; Eisenberg, D. Deposited on : 1994-08-05
- Resolution : 2.80 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| MolProbity                     | : | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as541be (2020)                                 |
| Xtriage (Phenix)               | : | NOT EXECUTED                                                       |
| EDS                            | : | NOT EXECUTED                                                       |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.36                                                               |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $X\text{-}RAY \, DIFFRACTION$ 

The reported resolution of this entry is 2.80 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | $egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$ | ${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$ |
|-----------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|
| Clashscore            | 141614                                                               | 3569 (2.80-2.80)                                                          |
| Ramachandran outliers | 138981                                                               | 3498 (2.80-2.80)                                                          |
| Sidechain outliers    | 138945                                                               | 3500 (2.80-2.80)                                                          |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Note EDS was not executed.

| Mol | Chain | Length | Quality of chain |     |        |
|-----|-------|--------|------------------|-----|--------|
| 1   | А     | 468    | 68%              | 22% | •• 5%  |
| 1   | В     | 468    | 68%              | 22% | • • 5% |
| 1   | С     | 468    | 67%              | 23% | • • 5% |
| 1   | D     | 468    | 68%              | 22% | • • 5% |
| 1   | Е     | 468    | 68%              | 22% | • • 5% |
| 1   | F     | 468    | 68%              | 22% | • • 5% |
| 1   | G     | 468    | 68%              | 22% | • • 5% |
| 1   | Н     | 468    | 67%              | 22% | • • 5% |



| Mol | Chain | Length | Quality of chain |     |        |  |
|-----|-------|--------|------------------|-----|--------|--|
| 1   | Ι     | 468    | 68%              | 22% | • • 5% |  |
| 1   | J     | 468    | 68%              | 22% | • • 5% |  |
| 1   | Κ     | 468    | 67%              | 23% | • • 5% |  |
| 1   | L     | 468    | 68%              | 22% | • • 5% |  |



# 2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 41604 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain | Residues | Atoms |              |     |     |              | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|--------------|-----|-----|--------------|---------|---------|-------|
| 1   | Δ     | 445      | Total | С            | Ν   | 0   | S            | 0       | 0       | 0     |
|     | A     | 440      | 3455  | 2187         | 596 | 652 | 20           | 0       | 0       | 0     |
| 1   | D     | 445      | Total | С            | Ν   | 0   | S            | 0       | 0       | 0     |
|     | D     | 440      | 3455  | 2187         | 596 | 652 | 20           | 0       | 0       | 0     |
| 1   | C     | 445      | Total | С            | Ν   | 0   | S            | 0       | 0       | 0     |
|     |       | 440      | 3455  | 2187         | 596 | 652 | 20           | 0       | 0       | 0     |
| 1   | р     | 445      | Total | С            | Ν   | 0   | S            | 0       | 0       | 0     |
|     | D     | 440      | 3455  | 2187         | 596 | 652 | 20           | 0       | 0       | 0     |
| 1   | F     | 445      | Total | С            | Ν   | 0   | S            | 0       | 0       | 0     |
|     | Ľ     | 440      | 3455  | 2187         | 596 | 652 | 20           | 0       |         |       |
| 1   | Б     | 445      | Total | С            | Ν   | 0   | S            | 0       | 0       | 0     |
|     | Г     | 440      | 3455  | 2187         | 596 | 652 | 20           | 0       | 0       | 0     |
| 1   | С     | 445      | Total | С            | Ν   | 0   | S            | 0       | 0       | 0     |
| 1   | G     | 440      | 3455  | 2187         | 596 | 652 | 20           | 0       | 0       | 0     |
| 1   | Ц     | 445      | Total | С            | Ν   | 0   | S            | 0       | 0       | 0     |
| 1   | 11    | 440      | 3455  | 2187         | 596 | 652 | 20           | 0       | 0       | 0     |
| 1   | т     | 445      | Total | С            | Ν   | 0   | S            | 0       | 0       | 0     |
| 1   | 1     | 440      | 3455  | 2187         | 596 | 652 | 20           | 0       | 0       | 0     |
| 1   | Т     | 445      | Total | $\mathbf{C}$ | Ν   | 0   | $\mathbf{S}$ | 0       | 0       | 0     |
| 1   | 0     | 440      | 3455  | 2187         | 596 | 652 | 20           | 0       | 0       | 0     |
| 1   | K     | 445      | Total | С            | Ν   | 0   | S            | 0       | 0       | 0     |
|     | 17    | 440      | 3455  | 2187         | 596 | 652 | 20           | 0       | 0       | 0     |
| 1   | L     | 445      | Total | С            | Ν   | 0   | S            | 0       | 0       | 0     |
|     |       | 644      | 3455  | 2187         | 596 | 652 | 20           | 0       | 0       | 0     |

• Molecule 1 is a protein called GLUTAMINE SYNTHETASE.

• Molecule 2 is MANGANESE (II) ION (three-letter code: MN) (formula: Mn).

| Mol | Chain | Residues | Atoms           | ZeroOcc | AltConf |
|-----|-------|----------|-----------------|---------|---------|
| 2   | А     | 2        | Total Mn<br>2 2 | 0       | 0       |
| 2   | В     | 2        | Total Mn<br>2 2 | 0       | 0       |



| Mol | Chain | Residues | Atoms           | ZeroOcc | AltConf |
|-----|-------|----------|-----------------|---------|---------|
| 2   | С     | 2        | Total Mn<br>2 2 | 0       | 0       |
| 2   | D     | 2        | Total Mn<br>2 2 | 0       | 0       |
| 2   | Е     | 2        | Total Mn<br>2 2 | 0       | 0       |
| 2   | F     | 2        | Total Mn<br>2 2 | 0       | 0       |
| 2   | G     | 2        | Total Mn<br>2 2 | 0       | 0       |
| 2   | Н     | 2        | Total Mn<br>2 2 | 0       | 0       |
| 2   | Ι     | 2        | Total Mn<br>2 2 | 0       | 0       |
| 2   | J     | 2        | Total Mn<br>2 2 | 0       | 0       |
| 2   | K     | 2        | Total Mn<br>2 2 | 0       | 0       |
| 2   | L     | 2        | Total Mn<br>2 2 | 0       | 0       |

Continued from previous page...

• Molecule 3 is GLUTAMIC ACID (three-letter code: GLU) (formula:  $C_5H_9NO_4$ ).



| Mol | Chain | Residues | A           | ton    | ns     |        | ZeroOcc | AltConf |
|-----|-------|----------|-------------|--------|--------|--------|---------|---------|
| 3   | А     | 1        | Total<br>10 | С<br>5 | N<br>1 | 0<br>4 | 0       | 0       |



| Mol        | Chain | Residues | A     | ton | ns |   | ZeroOcc | AltConf                               |
|------------|-------|----------|-------|-----|----|---|---------|---------------------------------------|
| 3          | В     | 1        | Total | С   | Ν  | 0 | 0       | 0                                     |
| ່ <u>ບ</u> | D     | 1        | 10    | 5   | 1  | 4 | 0       | 0                                     |
| 3          | С     | 1        | Total | С   | Ν  | 0 | 0       | Ο                                     |
| 0          | 0     | 1        | 10    | 5   | 1  | 4 | 0       | 0                                     |
| 3          | Л     | 1        | Total | С   | Ν  | Ο | 0       | 0                                     |
| 0          |       | 1        | 10    | 5   | 1  | 4 | 0       | 0                                     |
| 3          | E     | 1        | Total | С   | Ν  | Ο | 0       | 0                                     |
|            |       | 1        | 10    | 5   | 1  | 4 | 0       | 0                                     |
| 3          | F     | 1        | Total | С   | Ν  | Ο | 0       | 0                                     |
|            | -     | Ĩ        | 10    | 5   | 1  | 4 | Ŭ       | · · · · · · · · · · · · · · · · · · · |
| 3          | G     | 1        | Total | С   | Ν  | Ο | 0       | 0                                     |
|            |       | 1        | 10    | 5   | 1  | 4 | 0       |                                       |
| 3          | Н     | 1        | Total | С   | Ν  | Ο | 0       | 0                                     |
|            |       | -        | 10    | 5   | 1  | 4 | Ŭ       |                                       |
| 3          | T     | 1        | Total | С   | Ν  | Ο | 0       | 0                                     |
|            | -     | -        | 10    | 5   | 1  | 4 | Ŭ       |                                       |
| 3          | J     | 1        | Total | С   | Ν  | Ο | 0       | 0                                     |
|            |       | 1        | 10    | 5   | 1  | 4 | Ŭ       |                                       |
| 3          | K     | 1        | Total | С   | Ν  | Ο | 0       | 0                                     |
|            | 11    | 1        | 10    | 5   | 1  | 4 |         | 0                                     |
| 3          | L     | 1        | Total | С   | Ν  | Ο | 0       | 0                                     |
|            |       |          | 10    | 5   | 1  | 4 |         |                                       |



V468

# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Note EDS was not executed.



• Molecule 1: GLUTAMINE SYNTHETASE



ASN ASN ASN ASP ASP PRO PRO 3LU 3LU 3LU • Molecule 1: GLUTAMINE SYNTHETASE



• Molecule 1: GLUTAMINE SYNTHETASE







V468

• Molecule 1: GLUTAMINE SYNTHETASE



#### V460 L464 V468





• Molecule 1: GLUTAMINE SYNTHETASE

Chain H:







# L464

• Molecule 1: GLUTAMINE SYNTHETASE





# 



• Molecule 1: GLUTAMINE SYNTHETASE



• Molecule 1: GLUTAMINE SYNTHETASE





# 4 Data and refinement statistics (i)

Xtriage (Phenix) and EDS were not executed - this section is therefore incomplete.

| Property                               | Value                                            | Source    |
|----------------------------------------|--------------------------------------------------|-----------|
| Space group                            | C 1 2 1                                          | Depositor |
| Cell constants                         | 235.50Å 134.50Å 200.10Å                          | Deperitor |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$ | $90.00^{\circ}$ $102.80^{\circ}$ $90.00^{\circ}$ | Depositor |
| Resolution (Å)                         | 8.00 - 2.80                                      | Depositor |
| % Data completeness                    | (Not available) $(8.00-2.80)$                    | Depositor |
| (in resolution range)                  | (100 available) (0.00 2.00)                      | Depositor |
| $\mathrm{R}_{merge}$                   | (Not available)                                  | Depositor |
| $R_{sym}$                              | (Not available)                                  | Depositor |
| Refinement program                     | X-PLOR                                           | Depositor |
| $R, R_{free}$                          | 0.235 , (Not available)                          | Depositor |
| Estimated twinning fraction            | No twinning to report.                           | Xtriage   |
| Total number of atoms                  | 41604                                            | wwPDB-VP  |
| Average B, all atoms $(Å^2)$           | 37.0                                             | wwPDB-VP  |



# 5 Model quality (i)

# 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal  | Chain | Bond | lengths  | E    | Bond angles      |  |
|------|-------|------|----------|------|------------------|--|
| MIOI | Unam  | RMSZ | # Z  > 5 | RMSZ | # Z  > 5         |  |
| 1    | А     | 0.72 | 0/3535   | 1.51 | 34/4782~(0.7%)   |  |
| 1    | В     | 0.72 | 0/3535   | 1.51 | 34/4782~(0.7%)   |  |
| 1    | С     | 0.72 | 0/3535   | 1.51 | 34/4782~(0.7%)   |  |
| 1    | D     | 0.72 | 0/3535   | 1.51 | 34/4782~(0.7%)   |  |
| 1    | Е     | 0.72 | 0/3535   | 1.51 | 34/4782~(0.7%)   |  |
| 1    | F     | 0.72 | 0/3535   | 1.50 | 34/4782~(0.7%)   |  |
| 1    | G     | 0.72 | 0/3535   | 1.51 | 34/4782~(0.7%)   |  |
| 1    | Н     | 0.72 | 0/3535   | 1.51 | 34/4782~(0.7%)   |  |
| 1    | Ι     | 0.72 | 0/3535   | 1.51 | 34/4782~(0.7%)   |  |
| 1    | J     | 0.72 | 0/3535   | 1.51 | 34/4782~(0.7%)   |  |
| 1    | Κ     | 0.72 | 0/3535   | 1.51 | 34/4782~(0.7%)   |  |
| 1    | L     | 0.72 | 0/3535   | 1.51 | 34/4782~(0.7%)   |  |
| All  | All   | 0.72 | 0/42420  | 1.51 | 408/57384~(0.7%) |  |

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

| Mol | Chain | #Chirality outliers | <b>#Planarity outliers</b> |
|-----|-------|---------------------|----------------------------|
| 1   | А     | 0                   | 2                          |
| 1   | В     | 0                   | 2                          |
| 1   | С     | 0                   | 2                          |
| 1   | D     | 0                   | 2                          |
| 1   | Е     | 0                   | 2                          |
| 1   | F     | 0                   | 2                          |
| 1   | G     | 0                   | 2                          |
| 1   | Н     | 0                   | 2                          |
| 1   | Ι     | 0                   | 2                          |
| 1   | J     | 0                   | 2                          |
| 1   | Κ     | 0                   | 2                          |



Continued from previous page...

| Mol | Chain | #Chirality outliers | #Planarity outliers |
|-----|-------|---------------------|---------------------|
| 1   | L     | 0                   | 2                   |
| All | All   | 0                   | 24                  |

There are no bond length outliers.

All (408) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms     | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------|-------|------------------|---------------|
| 1   | L     | 359 | ARG  | NE-CZ-NH1 | 10.76 | 125.68           | 120.30        |
| 1   | G     | 359 | ARG  | NE-CZ-NH1 | 10.76 | 125.68           | 120.30        |
| 1   | В     | 359 | ARG  | NE-CZ-NH1 | 10.71 | 125.66           | 120.30        |
| 1   | Ι     | 88  | ARG  | NE-CZ-NH1 | 10.70 | 125.65           | 120.30        |
| 1   | Н     | 88  | ARG  | NE-CZ-NH1 | 10.70 | 125.65           | 120.30        |
| 1   | J     | 88  | ARG  | NE-CZ-NH1 | 10.69 | 125.64           | 120.30        |
| 1   | Ι     | 359 | ARG  | NE-CZ-NH1 | 10.68 | 125.64           | 120.30        |
| 1   | D     | 359 | ARG  | NE-CZ-NH1 | 10.67 | 125.64           | 120.30        |
| 1   | Е     | 359 | ARG  | NE-CZ-NH1 | 10.67 | 125.63           | 120.30        |
| 1   | Н     | 359 | ARG  | NE-CZ-NH1 | 10.66 | 125.63           | 120.30        |
| 1   | G     | 88  | ARG  | NE-CZ-NH1 | 10.66 | 125.63           | 120.30        |
| 1   | K     | 359 | ARG  | NE-CZ-NH1 | 10.65 | 125.62           | 120.30        |
| 1   | А     | 88  | ARG  | NE-CZ-NH1 | 10.65 | 125.62           | 120.30        |
| 1   | А     | 359 | ARG  | NE-CZ-NH1 | 10.65 | 125.62           | 120.30        |
| 1   | L     | 88  | ARG  | NE-CZ-NH1 | 10.64 | 125.62           | 120.30        |
| 1   | J     | 359 | ARG  | NE-CZ-NH1 | 10.62 | 125.61           | 120.30        |
| 1   | С     | 88  | ARG  | NE-CZ-NH1 | 10.62 | 125.61           | 120.30        |
| 1   | D     | 88  | ARG  | NE-CZ-NH1 | 10.62 | 125.61           | 120.30        |
| 1   | Е     | 88  | ARG  | NE-CZ-NH1 | 10.62 | 125.61           | 120.30        |
| 1   | K     | 88  | ARG  | NE-CZ-NH1 | 10.61 | 125.60           | 120.30        |
| 1   | F     | 359 | ARG  | NE-CZ-NH1 | 10.60 | 125.60           | 120.30        |
| 1   | В     | 88  | ARG  | NE-CZ-NH1 | 10.58 | 125.59           | 120.30        |
| 1   | С     | 359 | ARG  | NE-CZ-NH1 | 10.56 | 125.58           | 120.30        |
| 1   | F     | 88  | ARG  | NE-CZ-NH1 | 10.56 | 125.58           | 120.30        |
| 1   | J     | 452 | ARG  | NE-CZ-NH1 | 9.75  | 125.17           | 120.30        |
| 1   | G     | 452 | ARG  | NE-CZ-NH1 | 9.71  | 125.16           | 120.30        |
| 1   | D     | 452 | ARG  | NE-CZ-NH1 | 9.70  | 125.15           | 120.30        |
| 1   | K     | 452 | ARG  | NE-CZ-NH1 | 9.70  | 125.15           | 120.30        |
| 1   | L     | 452 | ARG  | NE-CZ-NH1 | 9.70  | 125.15           | 120.30        |
| 1   | Ι     | 452 | ARG  | NE-CZ-NH1 | 9.67  | 125.14           | 120.30        |
| 1   | А     | 452 | ARG  | NE-CZ-NH1 | 9.66  | 125.13           | 120.30        |
| 1   | С     | 452 | ARG  | NE-CZ-NH1 | 9.63  | 125.12           | 120.30        |
| 1   | Н     | 452 | ARG  | NE-CZ-NH1 | 9.63  | 125.11           | 120.30        |
| 1   | Е     | 452 | ARG  | NE-CZ-NH1 | 9.61  | 125.10           | 120.30        |
| 1   | В     | 452 | ARG  | NE-CZ-NH1 | 9.56  | 125.08           | 120.30        |



| Mol | Chain | Res | Type | Atoms      | Ζ     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|-------|------------------|---------------|
| 1   | F     | 452 | ARG  | NE-CZ-NH1  | 9.56  | 125.08           | 120.30        |
| 1   | G     | 248 | ARG  | NE-CZ-NH1  | 9.50  | 125.05           | 120.30        |
| 1   | D     | 248 | ARG  | NE-CZ-NH1  | 9.48  | 125.04           | 120.30        |
| 1   | Ι     | 248 | ARG  | NE-CZ-NH1  | 9.48  | 125.04           | 120.30        |
| 1   | Н     | 248 | ARG  | NE-CZ-NH1  | 9.43  | 125.02           | 120.30        |
| 1   | А     | 248 | ARG  | NE-CZ-NH1  | 9.42  | 125.01           | 120.30        |
| 1   | L     | 248 | ARG  | NE-CZ-NH1  | 9.41  | 125.00           | 120.30        |
| 1   | В     | 248 | ARG  | NE-CZ-NH1  | 9.40  | 125.00           | 120.30        |
| 1   | К     | 248 | ARG  | NE-CZ-NH1  | 9.37  | 124.99           | 120.30        |
| 1   | J     | 248 | ARG  | NE-CZ-NH1  | 9.37  | 124.99           | 120.30        |
| 1   | Е     | 248 | ARG  | NE-CZ-NH1  | 9.35  | 124.98           | 120.30        |
| 1   | С     | 248 | ARG  | NE-CZ-NH1  | 9.35  | 124.98           | 120.30        |
| 1   | F     | 248 | ARG  | NE-CZ-NH1  | 9.33  | 124.96           | 120.30        |
| 1   | Е     | 88  | ARG  | NE-CZ-NH2  | -7.97 | 116.32           | 120.30        |
| 1   | Ι     | 88  | ARG  | NE-CZ-NH2  | -7.96 | 116.32           | 120.30        |
| 1   | Н     | 88  | ARG  | NE-CZ-NH2  | -7.93 | 116.33           | 120.30        |
| 1   | G     | 179 | TYR  | CA-C-N     | -7.92 | 99.77            | 117.20        |
| 1   | D     | 179 | TYR  | CA-C-N     | -7.91 | 99.80            | 117.20        |
| 1   | J     | 88  | ARG  | NE-CZ-NH2  | -7.91 | 116.35           | 120.30        |
| 1   | F     | 179 | TYR  | CA-C-N     | -7.91 | 99.81            | 117.20        |
| 1   | J     | 179 | TYR  | CA-C-N     | -7.90 | 99.81            | 117.20        |
| 1   | K     | 179 | TYR  | CA-C-N     | -7.90 | 99.81            | 117.20        |
| 1   | А     | 179 | TYR  | CA-C-N     | -7.90 | 99.82            | 117.20        |
| 1   | В     | 179 | TYR  | CA-C-N     | -7.90 | 99.82            | 117.20        |
| 1   | С     | 88  | ARG  | NE-CZ-NH2  | -7.90 | 116.35           | 120.30        |
| 1   | Е     | 179 | TYR  | CA-C-N     | -7.90 | 99.82            | 117.20        |
| 1   | Н     | 179 | TYR  | CA-C-N     | -7.90 | 99.82            | 117.20        |
| 1   | С     | 179 | TYR  | CA-C-N     | -7.90 | 99.83            | 117.20        |
| 1   | Ι     | 179 | TYR  | CA-C-N     | -7.90 | 99.83            | 117.20        |
| 1   | Κ     | 88  | ARG  | NE-CZ-NH2  | -7.89 | 116.35           | 120.30        |
| 1   | A     | 88  | ARG  | NE-CZ-NH2  | -7.88 | 116.36           | 120.30        |
| 1   | L     | 179 | TYR  | CA-C-N     | -7.88 | 99.86            | 117.20        |
| 1   | G     | 88  | ARG  | NE-CZ-NH2  | -7.86 | 116.37           | 120.30        |
| 1   | D     | 88  | ARG  | NE-CZ-NH2  | -7.86 | 116.37           | 120.30        |
| 1   | L     | 88  | ARG  | NE-CZ-NH2  | -7.84 | 116.38           | 120.30        |
| 1   | F     | 88  | ARG  | NE-CZ-NH2  | -7.82 | 116.39           | 120.30        |
| 1   | В     | 88  | ARG  | NE-CZ-NH2  | -7.81 | 116.39           | 120.30        |
| 1   | Κ     | 158 | TRP  | CD1-CG-CD2 | 7.80  | 112.54           | 106.30        |
| 1   | D     | 158 | TRP  | CD1-CG-CD2 | 7.80  | 112.54           | 106.30        |
| 1   | L     | 158 | TRP  | CD1-CG-CD2 | 7.79  | 112.53           | 106.30        |
| 1   | С     | 158 | TRP  | CD1-CG-CD2 | 7.75  | 112.50           | 106.30        |
| 1   | Ι     | 158 | TRP  | CD1-CG-CD2 | 7.74  | 112.49           | 106.30        |



| Mol | Chain | Res | Type | Atoms      | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|-------|------------------|---------------|
| 1   | А     | 158 | TRP  | CD1-CG-CD2 | 7.73  | 112.49           | 106.30        |
| 1   | Е     | 158 | TRP  | CD1-CG-CD2 | 7.73  | 112.49           | 106.30        |
| 1   | F     | 158 | TRP  | CD1-CG-CD2 | 7.73  | 112.48           | 106.30        |
| 1   | G     | 158 | TRP  | CD1-CG-CD2 | 7.72  | 112.47           | 106.30        |
| 1   | J     | 158 | TRP  | CD1-CG-CD2 | 7.70  | 112.46           | 106.30        |
| 1   | Н     | 158 | TRP  | CD1-CG-CD2 | 7.69  | 112.45           | 106.30        |
| 1   | В     | 158 | TRP  | CD1-CG-CD2 | 7.67  | 112.44           | 106.30        |
| 1   | F     | 57  | TRP  | CD1-CG-CD2 | 7.23  | 112.08           | 106.30        |
| 1   | Н     | 57  | TRP  | CD1-CG-CD2 | 7.22  | 112.08           | 106.30        |
| 1   | С     | 57  | TRP  | CD1-CG-CD2 | 7.22  | 112.07           | 106.30        |
| 1   | G     | 57  | TRP  | CD1-CG-CD2 | 7.20  | 112.06           | 106.30        |
| 1   | В     | 57  | TRP  | CD1-CG-CD2 | 7.19  | 112.05           | 106.30        |
| 1   | Е     | 57  | TRP  | CD1-CG-CD2 | 7.19  | 112.05           | 106.30        |
| 1   | А     | 57  | TRP  | CD1-CG-CD2 | 7.18  | 112.04           | 106.30        |
| 1   | L     | 57  | TRP  | CD1-CG-CD2 | 7.18  | 112.04           | 106.30        |
| 1   | K     | 57  | TRP  | CD1-CG-CD2 | 7.17  | 112.04           | 106.30        |
| 1   | D     | 57  | TRP  | CD1-CG-CD2 | 7.17  | 112.04           | 106.30        |
| 1   | Ι     | 57  | TRP  | CD1-CG-CD2 | 7.14  | 112.02           | 106.30        |
| 1   | J     | 57  | TRP  | CD1-CG-CD2 | 7.13  | 112.00           | 106.30        |
| 1   | G     | 110 | ARG  | NE-CZ-NH2  | -6.92 | 116.84           | 120.30        |
| 1   | В     | 110 | ARG  | NE-CZ-NH2  | -6.90 | 116.85           | 120.30        |
| 1   | J     | 110 | ARG  | NE-CZ-NH2  | -6.89 | 116.86           | 120.30        |
| 1   | Ι     | 110 | ARG  | NE-CZ-NH2  | -6.88 | 116.86           | 120.30        |
| 1   | K     | 110 | ARG  | NE-CZ-NH2  | -6.86 | 116.87           | 120.30        |
| 1   | D     | 110 | ARG  | NE-CZ-NH2  | -6.86 | 116.87           | 120.30        |
| 1   | А     | 110 | ARG  | NE-CZ-NH2  | -6.84 | 116.88           | 120.30        |
| 1   | С     | 110 | ARG  | NE-CZ-NH2  | -6.84 | 116.88           | 120.30        |
| 1   | L     | 110 | ARG  | NE-CZ-NH2  | -6.82 | 116.89           | 120.30        |
| 1   | Е     | 110 | ARG  | NE-CZ-NH2  | -6.82 | 116.89           | 120.30        |
| 1   | Н     | 110 | ARG  | NE-CZ-NH2  | -6.81 | 116.90           | 120.30        |
| 1   | F     | 110 | ARG  | NE-CZ-NH2  | -6.77 | 116.92           | 120.30        |
| 1   | Н     | 57  | TRP  | CE2-CD2-CG | -6.76 | 101.89           | 107.30        |
| 1   | С     | 57  | TRP  | CE2-CD2-CG | -6.75 | 101.90           | 107.30        |
| 1   | E     | 57  | TRP  | CE2-CD2-CG | -6.75 | 101.90           | 107.30        |
| 1   | G     | 57  | TRP  | CE2-CD2-CG | -6.75 | 101.90           | 107.30        |
| 1   | J     | 180 | PHE  | N-CA-C     | 6.74  | 129.20           | 111.00        |
| 1   | L     | 180 | PHE  | N-CA-C     | 6.74  | 129.20           | 111.00        |
| 1   | В     | 180 | PHE  | N-CA-C     | 6.74  | 129.19           | 111.00        |
| 1   | K     | 180 | PHE  | N-CA-C     | 6.74  | 129.19           | 111.00        |
| 1   | С     | 180 | PHE  | N-CA-C     | 6.73  | 129.18           | 111.00        |
| 1   | A     | 180 | PHE  | N-CA-C     | 6.73  | 129.18           | 111.00        |
| 1   | D     | 180 | PHE  | N-CA-C     | 6.73  | 129.17           | 111.00        |



| Mol | Chain | Res | Type | Atoms      | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|-------|------------------|---------------|
| 1   | F     | 57  | TRP  | CE2-CD2-CG | -6.73 | 101.92           | 107.30        |
| 1   | F     | 180 | PHE  | N-CA-C     | 6.73  | 129.17           | 111.00        |
| 1   | Ι     | 180 | PHE  | N-CA-C     | 6.73  | 129.18           | 111.00        |
| 1   | Е     | 180 | PHE  | N-CA-C     | 6.73  | 129.16           | 111.00        |
| 1   | L     | 57  | TRP  | CE2-CD2-CG | -6.73 | 101.92           | 107.30        |
| 1   | В     | 57  | TRP  | CE2-CD2-CG | -6.72 | 101.92           | 107.30        |
| 1   | G     | 180 | PHE  | N-CA-C     | 6.72  | 129.15           | 111.00        |
| 1   | Н     | 180 | PHE  | N-CA-C     | 6.72  | 129.14           | 111.00        |
| 1   | D     | 57  | TRP  | CE2-CD2-CG | -6.71 | 101.93           | 107.30        |
| 1   | А     | 57  | TRP  | CE2-CD2-CG | -6.71 | 101.93           | 107.30        |
| 1   | Ι     | 57  | TRP  | CE2-CD2-CG | -6.71 | 101.94           | 107.30        |
| 1   | Κ     | 57  | TRP  | CE2-CD2-CG | -6.70 | 101.94           | 107.30        |
| 1   | J     | 57  | TRP  | CE2-CD2-CG | -6.67 | 101.96           | 107.30        |
| 1   | Ι     | 248 | ARG  | NE-CZ-NH2  | -6.59 | 117.00           | 120.30        |
| 1   | L     | 339 | ARG  | NE-CZ-NH1  | 6.59  | 123.59           | 120.30        |
| 1   | D     | 339 | ARG  | NE-CZ-NH1  | 6.59  | 123.59           | 120.30        |
| 1   | В     | 339 | ARG  | NE-CZ-NH1  | 6.58  | 123.59           | 120.30        |
| 1   | Ι     | 339 | ARG  | NE-CZ-NH1  | 6.58  | 123.59           | 120.30        |
| 1   | А     | 339 | ARG  | NE-CZ-NH1  | 6.55  | 123.57           | 120.30        |
| 1   | С     | 339 | ARG  | NE-CZ-NH1  | 6.54  | 123.57           | 120.30        |
| 1   | K     | 339 | ARG  | NE-CZ-NH1  | 6.54  | 123.57           | 120.30        |
| 1   | J     | 339 | ARG  | NE-CZ-NH1  | 6.53  | 123.56           | 120.30        |
| 1   | В     | 368 | TYR  | CB-CG-CD2  | -6.51 | 117.09           | 121.00        |
| 1   | Н     | 248 | ARG  | NE-CZ-NH2  | -6.51 | 117.04           | 120.30        |
| 1   | В     | 248 | ARG  | NE-CZ-NH2  | -6.50 | 117.05           | 120.30        |
| 1   | D     | 355 | ARG  | NE-CZ-NH1  | 6.49  | 123.55           | 120.30        |
| 1   | Н     | 339 | ARG  | NE-CZ-NH1  | 6.49  | 123.54           | 120.30        |
| 1   | J     | 248 | ARG  | NE-CZ-NH2  | -6.47 | 117.06           | 120.30        |
| 1   | D     | 248 | ARG  | NE-CZ-NH2  | -6.47 | 117.07           | 120.30        |
| 1   | G     | 368 | TYR  | CB-CG-CD2  | -6.46 | 117.12           | 121.00        |
| 1   | Е     | 248 | ARG  | NE-CZ-NH2  | -6.46 | 117.07           | 120.30        |
| 1   | G     | 248 | ARG  | NE-CZ-NH2  | -6.45 | 117.07           | 120.30        |
| 1   | A     | 248 | ARG  | NE-CZ-NH2  | -6.45 | 117.07           | 120.30        |
| 1   | G     | 339 | ARG  | NE-CZ-NH1  | 6.45  | 123.53           | 120.30        |
| 1   | С     | 248 | ARG  | NE-CZ-NH2  | -6.45 | 117.08           | 120.30        |
| 1   | Е     | 339 | ARG  | NE-CZ-NH1  | 6.45  | 123.52           | 120.30        |
| 1   | F     | 248 | ARG  | NE-CZ-NH2  | -6.44 | 117.08           | 120.30        |
| 1   | F     | 339 | ARG  | NE-CZ-NH1  | 6.44  | 123.52           | 120.30        |
| 1   | А     | 368 | TYR  | CB-CG-CD2  | -6.42 | 117.15           | 121.00        |
| 1   | K     | 368 | TYR  | CB-CG-CD2  | -6.42 | 117.15           | 121.00        |
| 1   | С     | 368 | TYR  | CB-CG-CD2  | -6.42 | 117.15           | 121.00        |
| 1   | F     | 368 | TYR  | CB-CG-CD2  | -6.42 | 117.15           | 121.00        |



| Mol | Chain | Res | Type | Atoms      |       | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|-------|------------------|---------------|
| 1   | Н     | 355 | ARG  | NE-CZ-NH1  | 6.42  | 123.51           | 120.30        |
| 1   | F     | 355 | ARG  | NE-CZ-NH1  | 6.41  | 123.51           | 120.30        |
| 1   | J     | 368 | TYR  | CB-CG-CD2  | -6.40 | 117.16           | 121.00        |
| 1   | K     | 248 | ARG  | NE-CZ-NH2  | -6.40 | 117.10           | 120.30        |
| 1   | L     | 248 | ARG  | NE-CZ-NH2  | -6.40 | 117.10           | 120.30        |
| 1   | Н     | 368 | TYR  | CB-CG-CD2  | -6.40 | 117.16           | 121.00        |
| 1   | Е     | 337 | ARG  | NE-CZ-NH1  | 6.39  | 123.50           | 120.30        |
| 1   | J     | 337 | ARG  | NE-CZ-NH1  | 6.38  | 123.49           | 120.30        |
| 1   | Е     | 355 | ARG  | NE-CZ-NH1  | 6.38  | 123.49           | 120.30        |
| 1   | L     | 368 | TYR  | CB-CG-CD2  | -6.38 | 117.17           | 121.00        |
| 1   | L     | 355 | ARG  | NE-CZ-NH1  | 6.38  | 123.49           | 120.30        |
| 1   | А     | 355 | ARG  | NE-CZ-NH1  | 6.38  | 123.49           | 120.30        |
| 1   | G     | 355 | ARG  | NE-CZ-NH1  | 6.37  | 123.49           | 120.30        |
| 1   | D     | 368 | TYR  | CB-CG-CD2  | -6.37 | 117.18           | 121.00        |
| 1   | В     | 355 | ARG  | NE-CZ-NH1  | 6.37  | 123.48           | 120.30        |
| 1   | С     | 355 | ARG  | NE-CZ-NH1  | 6.36  | 123.48           | 120.30        |
| 1   | Е     | 368 | TYR  | CB-CG-CD2  | -6.36 | 117.18           | 121.00        |
| 1   | K     | 355 | ARG  | NE-CZ-NH1  | 6.36  | 123.48           | 120.30        |
| 1   | Ι     | 368 | TYR  | CB-CG-CD2  | -6.35 | 117.19           | 121.00        |
| 1   | Ι     | 355 | ARG  | NE-CZ-NH1  | 6.34  | 123.47           | 120.30        |
| 1   | G     | 337 | ARG  | NE-CZ-NH1  | 6.33  | 123.47           | 120.30        |
| 1   | Ι     | 337 | ARG  | NE-CZ-NH1  | 6.33  | 123.47           | 120.30        |
| 1   | J     | 355 | ARG  | NE-CZ-NH1  | 6.32  | 123.46           | 120.30        |
| 1   | В     | 337 | ARG  | NE-CZ-NH1  | 6.31  | 123.45           | 120.30        |
| 1   | А     | 337 | ARG  | NE-CZ-NH1  | 6.30  | 123.45           | 120.30        |
| 1   | K     | 158 | TRP  | CE2-CD2-CG | -6.29 | 102.27           | 107.30        |
| 1   | F     | 337 | ARG  | NE-CZ-NH1  | 6.29  | 123.44           | 120.30        |
| 1   | L     | 158 | TRP  | CE2-CD2-CG | -6.27 | 102.28           | 107.30        |
| 1   | D     | 158 | TRP  | CE2-CD2-CG | -6.27 | 102.28           | 107.30        |
| 1   | D     | 337 | ARG  | NE-CZ-NH1  | 6.27  | 123.43           | 120.30        |
| 1   | С     | 158 | TRP  | CE2-CD2-CG | -6.26 | 102.30           | 107.30        |
| 1   | L     | 337 | ARG  | NE-CZ-NH1  | 6.26  | 123.43           | 120.30        |
| 1   | G     | 158 | TRP  | CE2-CD2-CG | -6.25 | 102.30           | 107.30        |
| 1   | Н     | 337 | ARG  | NE-CZ-NH1  | 6.25  | 123.42           | 120.30        |
| 1   | Е     | 158 | TRP  | CE2-CD2-CG | -6.25 | 102.30           | 107.30        |
| 1   | Ι     | 158 | TRP  | CE2-CD2-CG | -6.24 | 102.31           | 107.30        |
| 1   | С     | 337 | ARG  | NE-CZ-NH1  | 6.24  | 123.42           | 120.30        |
| 1   | F     | 158 | TRP  | CE2-CD2-CG | -6.24 | 102.31           | 107.30        |
| 1   | А     | 158 | TRP  | CE2-CD2-CG | -6.24 | 102.31           | 107.30        |
| 1   | K     | 337 | ARG  | NE-CZ-NH1  | 6.24  | 123.42           | 120.30        |
| 1   | В     | 158 | TRP  | CE2-CD2-CG | -6.20 | 102.34           | 107.30        |
| 1   | J     | 158 | TRP  | CE2-CD2-CG | -6.20 | 102.34           | 107.30        |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms      | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|-------|------------------|---------------|
| 1   | Н     | 158 | TRP  | CE2-CD2-CG | -6.19 | 102.34           | 107.30        |
| 1   | F     | 124 | VAL  | CB-CA-C    | -6.16 | 99.69            | 111.40        |
| 1   | Н     | 124 | VAL  | CB-CA-C    | -6.16 | 99.69            | 111.40        |
| 1   | D     | 124 | VAL  | CB-CA-C    | -6.16 | 99.70            | 111.40        |
| 1   | Е     | 124 | VAL  | CB-CA-C    | -6.16 | 99.70            | 111.40        |
| 1   | J     | 124 | VAL  | CB-CA-C    | -6.15 | 99.72            | 111.40        |
| 1   | G     | 124 | VAL  | CB-CA-C    | -6.14 | 99.73            | 111.40        |
| 1   | А     | 124 | VAL  | CB-CA-C    | -6.14 | 99.73            | 111.40        |
| 1   | L     | 124 | VAL  | CB-CA-C    | -6.14 | 99.74            | 111.40        |
| 1   | K     | 124 | VAL  | CB-CA-C    | -6.14 | 99.74            | 111.40        |
| 1   | С     | 124 | VAL  | CB-CA-C    | -6.13 | 99.75            | 111.40        |
| 1   | В     | 124 | VAL  | CB-CA-C    | -6.13 | 99.75            | 111.40        |
| 1   | Ι     | 124 | VAL  | CB-CA-C    | -6.13 | 99.76            | 111.40        |
| 1   | G     | 223 | THR  | N-CA-CB    | -5.93 | 99.04            | 110.30        |
| 1   | Е     | 223 | THR  | N-CA-CB    | -5.92 | 99.06            | 110.30        |
| 1   | А     | 223 | THR  | N-CA-CB    | -5.92 | 99.06            | 110.30        |
| 1   | Ι     | 223 | THR  | N-CA-CB    | -5.92 | 99.06            | 110.30        |
| 1   | С     | 223 | THR  | N-CA-CB    | -5.91 | 99.07            | 110.30        |
| 1   | F     | 223 | THR  | N-CA-CB    | -5.91 | 99.08            | 110.30        |
| 1   | K     | 223 | THR  | N-CA-CB    | -5.90 | 99.08            | 110.30        |
| 1   | Н     | 223 | THR  | N-CA-CB    | -5.90 | 99.09            | 110.30        |
| 1   | L     | 223 | THR  | N-CA-CB    | -5.90 | 99.09            | 110.30        |
| 1   | В     | 223 | THR  | N-CA-CB    | -5.89 | 99.10            | 110.30        |
| 1   | D     | 223 | THR  | N-CA-CB    | -5.89 | 99.10            | 110.30        |
| 1   | J     | 223 | THR  | N-CA-CB    | -5.89 | 99.11            | 110.30        |
| 1   | F     | 192 | ARG  | NE-CZ-NH1  | 5.81  | 123.21           | 120.30        |
| 1   | С     | 192 | ARG  | NE-CZ-NH1  | 5.80  | 123.20           | 120.30        |
| 1   | G     | 192 | ARG  | NE-CZ-NH1  | 5.80  | 123.20           | 120.30        |
| 1   | Ι     | 192 | ARG  | NE-CZ-NH1  | 5.80  | 123.20           | 120.30        |
| 1   | J     | 192 | ARG  | NE-CZ-NH1  | 5.78  | 123.19           | 120.30        |
| 1   | L     | 192 | ARG  | NE-CZ-NH1  | 5.77  | 123.19           | 120.30        |
| 1   | Н     | 192 | ARG  | NE-CZ-NH1  | 5.77  | 123.18           | 120.30        |
| 1   | А     | 192 | ARG  | NE-CZ-NH1  | 5.75  | 123.18           | 120.30        |
| 1   | K     | 85  | LEU  | CA-CB-CG   | 5.74  | 128.50           | 115.30        |
| 1   | F     | 85  | LEU  | CA-CB-CG   | 5.74  | 128.50           | 115.30        |
| 1   | D     | 192 | ARG  | NE-CZ-NH1  | 5.73  | 123.17           | 120.30        |
| 1   | А     | 85  | LEU  | CA-CB-CG   | 5.73  | 128.48           | 115.30        |
| 1   | D     | 85  | LEU  | CA-CB-CG   | 5.73  | 128.48           | 115.30        |
| 1   | J     | 85  | LEU  | CA-CB-CG   | 5.73  | 128.47           | 115.30        |
| 1   | В     | 85  | LEU  | CA-CB-CG   | 5.73  | 128.47           | 115.30        |
| 1   | K     | 192 | ARG  | NE-CZ-NH1  | 5.73  | 123.16           | 120.30        |
| 1   | С     | 85  | LEU  | CA-CB-CG   | 5.72  | 128.47           | 115.30        |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms     | Z     | Observed(°) | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------|-------|-------------|---------------|
| 1   | Н     | 85  | LEU  | CA-CB-CG  | 5.72  | 128.47      | 115.30        |
| 1   | В     | 192 | ARG  | NE-CZ-NH1 | 5.72  | 123.16      | 120.30        |
| 1   | Е     | 192 | ARG  | NE-CZ-NH1 | 5.72  | 123.16      | 120.30        |
| 1   | G     | 85  | LEU  | CA-CB-CG  | 5.72  | 128.46      | 115.30        |
| 1   | L     | 85  | LEU  | CA-CB-CG  | 5.72  | 128.45      | 115.30        |
| 1   | Ι     | 85  | LEU  | CA-CB-CG  | 5.72  | 128.45      | 115.30        |
| 1   | Е     | 85  | LEU  | CA-CB-CG  | 5.71  | 128.43      | 115.30        |
| 1   | F     | 139 | ARG  | NE-CZ-NH2 | -5.63 | 117.48      | 120.30        |
| 1   | J     | 139 | ARG  | NE-CZ-NH2 | -5.63 | 117.48      | 120.30        |
| 1   | Е     | 139 | ARG  | NE-CZ-NH2 | -5.58 | 117.51      | 120.30        |
| 1   | Н     | 139 | ARG  | NE-CZ-NH2 | -5.56 | 117.52      | 120.30        |
| 1   | Ι     | 350 | SER  | N-CA-CB   | -5.55 | 102.17      | 110.50        |
| 1   | G     | 350 | SER  | N-CA-CB   | -5.55 | 102.18      | 110.50        |
| 1   | С     | 350 | SER  | N-CA-CB   | -5.54 | 102.20      | 110.50        |
| 1   | J     | 350 | SER  | N-CA-CB   | -5.53 | 102.20      | 110.50        |
| 1   | F     | 350 | SER  | N-CA-CB   | -5.53 | 102.20      | 110.50        |
| 1   | А     | 139 | ARG  | NE-CZ-NH2 | -5.53 | 117.53      | 120.30        |
| 1   | D     | 350 | SER  | N-CA-CB   | -5.53 | 102.21      | 110.50        |
| 1   | А     | 350 | SER  | N-CA-CB   | -5.52 | 102.22      | 110.50        |
| 1   | В     | 139 | ARG  | NE-CZ-NH2 | -5.52 | 117.54      | 120.30        |
| 1   | В     | 350 | SER  | N-CA-CB   | -5.52 | 102.22      | 110.50        |
| 1   | С     | 179 | TYR  | O-C-N     | 5.52  | 131.53      | 122.70        |
| 1   | J     | 179 | TYR  | O-C-N     | 5.52  | 131.53      | 122.70        |
| 1   | Κ     | 139 | ARG  | NE-CZ-NH2 | -5.51 | 117.54      | 120.30        |
| 1   | G     | 179 | TYR  | O-C-N     | 5.51  | 131.52      | 122.70        |
| 1   | Κ     | 350 | SER  | N-CA-CB   | -5.51 | 102.23      | 110.50        |
| 1   | Н     | 350 | SER  | N-CA-CB   | -5.50 | 102.25      | 110.50        |
| 1   | L     | 350 | SER  | N-CA-CB   | -5.50 | 102.25      | 110.50        |
| 1   | Ε     | 350 | SER  | N-CA-CB   | -5.50 | 102.25      | 110.50        |
| 1   | F     | 179 | TYR  | O-C-N     | 5.50  | 131.49      | 122.70        |
| 1   | J     | 452 | ARG  | NE-CZ-NH2 | -5.49 | 117.55      | 120.30        |
| 1   | K     | 179 | TYR  | O-C-N     | 5.49  | 131.48      | 122.70        |
| 1   | K     | 452 | ARG  | NE-CZ-NH2 | -5.49 | 117.56      | 120.30        |
| 1   | А     | 179 | TYR  | O-C-N     | 5.49  | 131.48      | 122.70        |
| 1   | L     | 139 | ARG  | NE-CZ-NH2 | -5.49 | 117.56      | 120.30        |
| 1   | D     | 139 | ARG  | NE-CZ-NH2 | -5.48 | 117.56      | 120.30        |
| 1   | Н     | 179 | TYR  | O-C-N     | 5.48  | 131.46      | 122.70        |
| 1   | Е     | 179 | TYR  | O-C-N     | 5.48  | 131.46      | 122.70        |
| 1   | D     | 179 | TYR  | O-C-N     | 5.47  | 131.46      | 122.70        |
| 1   | С     | 139 | ARG  | NE-CZ-NH2 | -5.47 | 117.56      | 120.30        |
| 1   | Ι     | 179 | TYR  | O-C-N     | 5.47  | 131.45      | 122.70        |
| 1   | В     | 179 | TYR  | O-C-N     | 5.46  | 131.44      | 122.70        |



| Mol | Chain | Res | Type | Atoms     | Z     | Observed(°) | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------|-------|-------------|---------------|
| 1   | G     | 452 | ARG  | NE-CZ-NH2 | -5.45 | 117.58      | 120.30        |
| 1   | L     | 179 | TYR  | O-C-N     | 5.45  | 131.42      | 122.70        |
| 1   | Ε     | 68  | MET  | CG-SD-CE  | -5.45 | 91.49       | 100.20        |
| 1   | Н     | 452 | ARG  | NE-CZ-NH2 | -5.45 | 117.58      | 120.30        |
| 1   | С     | 68  | MET  | CG-SD-CE  | -5.44 | 91.49       | 100.20        |
| 1   | Ι     | 139 | ARG  | NE-CZ-NH2 | -5.44 | 117.58      | 120.30        |
| 1   | J     | 68  | MET  | CG-SD-CE  | -5.44 | 91.49       | 100.20        |
| 1   | L     | 68  | MET  | CG-SD-CE  | -5.44 | 91.50       | 100.20        |
| 1   | А     | 68  | MET  | CG-SD-CE  | -5.44 | 91.50       | 100.20        |
| 1   | В     | 68  | MET  | CG-SD-CE  | -5.44 | 91.50       | 100.20        |
| 1   | Н     | 68  | MET  | CG-SD-CE  | -5.44 | 91.50       | 100.20        |
| 1   | Ι     | 68  | MET  | CG-SD-CE  | -5.43 | 91.51       | 100.20        |
| 1   | G     | 68  | MET  | CG-SD-CE  | -5.43 | 91.51       | 100.20        |
| 1   | G     | 139 | ARG  | NE-CZ-NH2 | -5.43 | 117.58      | 120.30        |
| 1   | F     | 68  | MET  | CG-SD-CE  | -5.43 | 91.51       | 100.20        |
| 1   | Κ     | 68  | MET  | CG-SD-CE  | -5.43 | 91.51       | 100.20        |
| 1   | L     | 452 | ARG  | NE-CZ-NH2 | -5.42 | 117.59      | 120.30        |
| 1   | А     | 452 | ARG  | NE-CZ-NH2 | -5.42 | 117.59      | 120.30        |
| 1   | D     | 68  | MET  | CG-SD-CE  | -5.41 | 91.55       | 100.20        |
| 1   | В     | 20  | ARG  | NE-CZ-NH1 | 5.38  | 122.99      | 120.30        |
| 1   | L     | 20  | ARG  | NE-CZ-NH2 | -5.38 | 117.61      | 120.30        |
| 1   | J     | 20  | ARG  | NE-CZ-NH2 | -5.38 | 117.61      | 120.30        |
| 1   | D     | 452 | ARG  | NE-CZ-NH2 | -5.37 | 117.61      | 120.30        |
| 1   | D     | 20  | ARG  | NE-CZ-NH1 | 5.36  | 122.98      | 120.30        |
| 1   | Ε     | 452 | ARG  | NE-CZ-NH2 | -5.35 | 117.62      | 120.30        |
| 1   | Ι     | 452 | ARG  | NE-CZ-NH2 | -5.35 | 117.63      | 120.30        |
| 1   | С     | 20  | ARG  | NE-CZ-NH1 | 5.35  | 122.97      | 120.30        |
| 1   | G     | 20  | ARG  | NE-CZ-NH2 | -5.35 | 117.63      | 120.30        |
| 1   | В     | 452 | ARG  | NE-CZ-NH2 | -5.34 | 117.63      | 120.30        |
| 1   | Е     | 20  | ARG  | NE-CZ-NH2 | -5.34 | 117.63      | 120.30        |
| 1   | В     | 20  | ARG  | NE-CZ-NH2 | -5.33 | 117.64      | 120.30        |
| 1   | С     | 452 | ARG  | NE-CZ-NH2 | -5.33 | 117.64      | 120.30        |
| 1   | С     | 20  | ARG  | NE-CZ-NH2 | -5.32 | 117.64      | 120.30        |
| 1   | F     | 452 | ARG  | NE-CZ-NH2 | -5.32 | 117.64      | 120.30        |
| 1   | Е     | 20  | ARG  | NE-CZ-NH1 | 5.32  | 122.96      | 120.30        |
| 1   | G     | 20  | ARG  | NE-CZ-NH1 | 5.31  | 122.95      | 120.30        |
| 1   | С     | 175 | VAL  | CA-C-N    | 5.30  | 128.87      | 117.20        |
| 1   | В     | 175 | VAL  | CA-C-N    | 5.30  | 128.85      | 117.20        |
| 1   | E     | 175 | VAL  | CA-C-N    | 5.30  | 128.85      | 117.20        |
| 1   | A     | 175 | VAL  | CA-C-N    | 5.29  | 128.85      | 117.20        |
| 1   | F     | 20  | ARG  | NE-CZ-NH2 | -5.29 | 117.65      | 120.30        |
| 1   | А     | 20  | ARG  | NE-CZ-NH2 | -5.29 | 117.65      | 120.30        |



| Mol | Chain | Res | Type | Atoms     | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------|-------|------------------|---------------|
| 1   | D     | 175 | VAL  | CA-C-N    | 5.29  | 128.85           | 117.20        |
| 1   | Ι     | 175 | VAL  | CA-C-N    | 5.29  | 128.84           | 117.20        |
| 1   | Κ     | 175 | VAL  | CA-C-N    | 5.29  | 128.83           | 117.20        |
| 1   | L     | 20  | ARG  | NE-CZ-NH1 | 5.29  | 122.94           | 120.30        |
| 1   | F     | 175 | VAL  | CA-C-N    | 5.29  | 128.83           | 117.20        |
| 1   | G     | 175 | VAL  | CA-C-N    | 5.29  | 128.83           | 117.20        |
| 1   | J     | 175 | VAL  | CA-C-N    | 5.29  | 128.83           | 117.20        |
| 1   | J     | 20  | ARG  | NE-CZ-NH1 | 5.28  | 122.94           | 120.30        |
| 1   | L     | 175 | VAL  | CA-C-N    | 5.28  | 128.82           | 117.20        |
| 1   | А     | 20  | ARG  | NE-CZ-NH1 | 5.28  | 122.94           | 120.30        |
| 1   | Н     | 175 | VAL  | CA-C-N    | 5.27  | 128.80           | 117.20        |
| 1   | Ι     | 20  | ARG  | NE-CZ-NH2 | -5.27 | 117.66           | 120.30        |
| 1   | Н     | 172 | ARG  | N-CA-CB   | -5.26 | 101.12           | 110.60        |
| 1   | Е     | 172 | ARG  | N-CA-CB   | -5.26 | 101.13           | 110.60        |
| 1   | В     | 172 | ARG  | N-CA-CB   | -5.26 | 101.13           | 110.60        |
| 1   | D     | 20  | ARG  | NE-CZ-NH2 | -5.26 | 117.67           | 120.30        |
| 1   | J     | 172 | ARG  | N-CA-CB   | -5.26 | 101.13           | 110.60        |
| 1   | G     | 164 | TYR  | O-C-N     | -5.26 | 114.29           | 122.70        |
| 1   | Н     | 20  | ARG  | NE-CZ-NH2 | -5.26 | 117.67           | 120.30        |
| 1   | Κ     | 172 | ARG  | N-CA-CB   | -5.25 | 101.14           | 110.60        |
| 1   | F     | 20  | ARG  | NE-CZ-NH1 | 5.25  | 122.92           | 120.30        |
| 1   | Ι     | 20  | ARG  | NE-CZ-NH1 | 5.25  | 122.92           | 120.30        |
| 1   | С     | 172 | ARG  | N-CA-CB   | -5.25 | 101.15           | 110.60        |
| 1   | Н     | 164 | TYR  | O-C-N     | -5.25 | 114.30           | 122.70        |
| 1   | Κ     | 263 | ASP  | CB-CG-OD1 | 5.25  | 123.02           | 118.30        |
| 1   | L     | 164 | TYR  | O-C-N     | -5.25 | 114.30           | 122.70        |
| 1   | А     | 172 | ARG  | N-CA-CB   | -5.24 | 101.16           | 110.60        |
| 1   | В     | 447 | ARG  | NE-CZ-NH2 | -5.24 | 117.68           | 120.30        |
| 1   | D     | 172 | ARG  | N-CA-CB   | -5.24 | 101.16           | 110.60        |
| 1   | D     | 263 | ASP  | CB-CG-OD1 | 5.24  | 123.02           | 118.30        |
| 1   | F     | 172 | ARG  | N-CA-CB   | -5.24 | 101.16           | 110.60        |
| 1   | J     | 164 | TYR  | O-C-N     | -5.24 | 114.31           | 122.70        |
| 1   | К     | 20  | ARG  | NE-CZ-NH1 | 5.24  | 122.92           | 120.30        |
| 1   | Е     | 164 | TYR  | O-C-N     | -5.24 | 114.32           | 122.70        |
| 1   | В     | 164 | TYR  | O-C-N     | -5.24 | 114.32           | 122.70        |
| 1   | Е     | 263 | ASP  | CB-CG-OD1 | 5.23  | 123.01           | 118.30        |
| 1   | G     | 263 | ASP  | CB-CG-OD1 | 5.23  | 123.01           | 118.30        |
| 1   | Ι     | 263 | ASP  | CB-CG-OD1 | 5.23  | 123.01           | 118.30        |
| 1   | А     | 164 | TYR  | O-C-N     | -5.23 | 114.33           | 122.70        |
| 1   | D     | 164 | TYR  | O-C-N     | -5.23 | 114.33           | 122.70        |
| 1   | Κ     | 164 | TYR  | O-C-N     | -5.23 | 114.34           | 122.70        |
| 1   | L     | 172 | ARG  | N-CA-CB   | -5.23 | 101.19           | 110.60        |



| Mol | Chain | Res | Type | Atoms     | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------|-------|------------------|---------------|
| 1   | G     | 172 | ARG  | N-CA-CB   | -5.22 | 101.19           | 110.60        |
| 1   | Ι     | 172 | ARG  | N-CA-CB   | -5.22 | 101.20           | 110.60        |
| 1   | С     | 263 | ASP  | CB-CG-OD1 | 5.22  | 123.00           | 118.30        |
| 1   | G     | 447 | ARG  | NE-CZ-NH2 | -5.22 | 117.69           | 120.30        |
| 1   | J     | 263 | ASP  | CB-CG-OD1 | 5.22  | 123.00           | 118.30        |
| 1   | Е     | 447 | ARG  | NE-CZ-NH2 | -5.22 | 117.69           | 120.30        |
| 1   | F     | 164 | TYR  | O-C-N     | -5.21 | 114.36           | 122.70        |
| 1   | K     | 20  | ARG  | NE-CZ-NH2 | -5.21 | 117.69           | 120.30        |
| 1   | С     | 164 | TYR  | O-C-N     | -5.21 | 114.36           | 122.70        |
| 1   | F     | 263 | ASP  | CB-CG-OD1 | 5.21  | 122.99           | 118.30        |
| 1   | А     | 263 | ASP  | CB-CG-OD1 | 5.21  | 122.98           | 118.30        |
| 1   | Κ     | 447 | ARG  | NE-CZ-NH2 | -5.20 | 117.70           | 120.30        |
| 1   | В     | 263 | ASP  | CB-CG-OD1 | 5.20  | 122.98           | 118.30        |
| 1   | А     | 447 | ARG  | NE-CZ-NH2 | -5.20 | 117.70           | 120.30        |
| 1   | L     | 263 | ASP  | CB-CG-OD1 | 5.19  | 122.97           | 118.30        |
| 1   | Ι     | 164 | TYR  | O-C-N     | -5.19 | 114.39           | 122.70        |
| 1   | С     | 447 | ARG  | NE-CZ-NH2 | -5.19 | 117.71           | 120.30        |
| 1   | D     | 447 | ARG  | NE-CZ-NH2 | -5.18 | 117.71           | 120.30        |
| 1   | L     | 447 | ARG  | NE-CZ-NH2 | -5.17 | 117.71           | 120.30        |
| 1   | Н     | 263 | ASP  | CB-CG-OD1 | 5.17  | 122.95           | 118.30        |
| 1   | Н     | 20  | ARG  | NE-CZ-NH1 | 5.15  | 122.88           | 120.30        |
| 1   | Ι     | 447 | ARG  | NE-CZ-NH2 | -5.15 | 117.73           | 120.30        |
| 1   | Н     | 447 | ARG  | NE-CZ-NH2 | -5.12 | 117.74           | 120.30        |
| 1   | J     | 447 | ARG  | NE-CZ-NH2 | -5.12 | 117.74           | 120.30        |
| 1   | F     | 447 | ARG  | NE-CZ-NH2 | -5.05 | 117.77           | 120.30        |
| 1   | Ι     | 15  | LYS  | CA-CB-CG  | -5.05 | 102.29           | 113.40        |
| 1   | D     | 15  | LYS  | CA-CB-CG  | -5.04 | 102.32           | 113.40        |
| 1   | G     | 15  | LYS  | CA-CB-CG  | -5.04 | 102.32           | 113.40        |
| 1   | В     | 15  | LYS  | CA-CB-CG  | -5.03 | 102.33           | 113.40        |
| 1   | L     | 15  | LYS  | CA-CB-CG  | -5.03 | 102.33           | 113.40        |
| 1   | С     | 15  | LYS  | CA-CB-CG  | -5.03 | 102.34           | 113.40        |
| 1   | К     | 15  | LYS  | CA-CB-CG  | -5.03 | 102.34           | 113.40        |
| 1   | А     | 15  | LYS  | CA-CB-CG  | -5.03 | 102.34           | 113.40        |
| 1   | Е     | 15  | LYS  | CA-CB-CG  | -5.02 | 102.35           | 113.40        |
| 1   | F     | 15  | LYS  | CA-CB-CG  | -5.02 | 102.35           | 113.40        |
| 1   | J     | 15  | LYS  | CA-CB-CG  | -5.02 | 102.36           | 113.40        |
| 1   | Н     | 15  | LYS  | CA-CB-CG  | -5.01 | 102.38           | 113.40        |

There are no chirality outliers.

All (24) planarity outliers are listed below:



| 2LGS |
|------|
|------|

| $\mathbf{Mol}$ | Chain | Res | Type | Group     |
|----------------|-------|-----|------|-----------|
| 1              | А     | 224 | ARG  | Sidechain |
| 1              | А     | 352 | LYS  | Peptide   |
| 1              | В     | 224 | ARG  | Sidechain |
| 1              | В     | 352 | LYS  | Peptide   |
| 1              | С     | 224 | ARG  | Sidechain |
| 1              | С     | 352 | LYS  | Peptide   |
| 1              | D     | 224 | ARG  | Sidechain |
| 1              | D     | 352 | LYS  | Peptide   |
| 1              | Е     | 224 | ARG  | Sidechain |
| 1              | Е     | 352 | LYS  | Peptide   |
| 1              | F     | 224 | ARG  | Sidechain |
| 1              | F     | 352 | LYS  | Peptide   |
| 1              | G     | 224 | ARG  | Sidechain |
| 1              | G     | 352 | LYS  | Peptide   |
| 1              | Н     | 224 | ARG  | Sidechain |
| 1              | Н     | 352 | LYS  | Peptide   |
| 1              | Ι     | 224 | ARG  | Sidechain |
| 1              | Ι     | 352 | LYS  | Peptide   |
| 1              | J     | 224 | ARG  | Sidechain |
| 1              | J     | 352 | LYS  | Peptide   |
| 1              | Κ     | 224 | ARG  | Sidechain |
| 1              | K     | 352 | LYS  | Peptide   |
| 1              | L     | 224 | ARG  | Sidechain |
| 1              | L     | 352 | LYS  | Peptide   |

# 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | А     | 3455  | 0        | 3371     | 53      | 0            |
| 1   | В     | 3455  | 0        | 3371     | 51      | 0            |
| 1   | С     | 3455  | 0        | 3371     | 57      | 2            |
| 1   | D     | 3455  | 0        | 3371     | 54      | 0            |
| 1   | Е     | 3455  | 0        | 3371     | 52      | 0            |
| 1   | F     | 3455  | 0        | 3371     | 53      | 2            |
| 1   | G     | 3455  | 0        | 3371     | 51      | 0            |
| 1   | Н     | 3455  | 0        | 3371     | 56      | 0            |
| 1   | I     | 3455  | 0        | 3371     | 54      | 0            |
| 1   | J     | 3455  | 0        | 3371     | 55      | 0            |



| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | К     | 3455  | 0        | 3371     | 59      | 0            |
| 1   | L     | 3455  | 0        | 3371     | 54      | 0            |
| 2   | А     | 2     | 0        | 0        | 0       | 0            |
| 2   | В     | 2     | 0        | 0        | 0       | 0            |
| 2   | С     | 2     | 0        | 0        | 0       | 0            |
| 2   | D     | 2     | 0        | 0        | 0       | 0            |
| 2   | Е     | 2     | 0        | 0        | 0       | 0            |
| 2   | F     | 2     | 0        | 0        | 0       | 0            |
| 2   | G     | 2     | 0        | 0        | 0       | 0            |
| 2   | Н     | 2     | 0        | 0        | 0       | 0            |
| 2   | Ι     | 2     | 0        | 0        | 0       | 0            |
| 2   | J     | 2     | 0        | 0        | 0       | 0            |
| 2   | Κ     | 2     | 0        | 0        | 0       | 0            |
| 2   | L     | 2     | 0        | 0        | 0       | 0            |
| 3   | А     | 10    | 0        | 5        | 1       | 0            |
| 3   | В     | 10    | 0        | 5        | 1       | 0            |
| 3   | С     | 10    | 0        | 5        | 1       | 0            |
| 3   | D     | 10    | 0        | 5        | 1       | 0            |
| 3   | Е     | 10    | 0        | 5        | 1       | 0            |
| 3   | F     | 10    | 0        | 5        | 1       | 0            |
| 3   | G     | 10    | 0        | 5        | 1       | 0            |
| 3   | Н     | 10    | 0        | 5        | 1       | 0            |
| 3   | Ι     | 10    | 0        | 5        | 1       | 0            |
| 3   | J     | 10    | 0        | 5        | 1       | 0            |
| 3   | K     | 10    | 0        | 5        | 1       | 0            |
| 3   | L     | 10    | 0        | 5        | 1       | 0            |
| All | All   | 41604 | 0        | 40512    | 592     | 2            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 7.

All (592) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom-1          | Atom-2          | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|-----------------|-----------------|-----------------------------|----------------------|
| 1:K:258:LYS:HG2 | 1:K:320:LYS:HB3 | 1.79                        | 0.65                 |
| 1:C:258:LYS:HG2 | 1:C:320:LYS:HB3 | 1.79                        | 0.65                 |
| 1:E:258:LYS:HG2 | 1:E:320:LYS:HB3 | 1.79                        | 0.65                 |
| 1:G:258:LYS:HG2 | 1:G:320:LYS:HB3 | 1.79                        | 0.65                 |
| 1:F:258:LYS:HG2 | 1:F:320:LYS:HB3 | 1.79                        | 0.65                 |
| 1:I:258:LYS:HG2 | 1:I:320:LYS:HB3 | 1.79                        | 0.65                 |
| 1:B:258:LYS:HG2 | 1:B:320:LYS:HB3 | 1.79                        | 0.65                 |



|                 |                  | Interatomic             | Clash       |
|-----------------|------------------|-------------------------|-------------|
| Atom-1          | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |
| 1:L:258:LYS:HG2 | 1:L:320:LYS:HB3  | 1.79                    | 0.64        |
| 1:A:258:LYS:HG2 | 1:A:320:LYS:HB3  | 1.79                    | 0.63        |
| 1:J:258:LYS:HG2 | 1:J:320:LYS:HB3  | 1.79                    | 0.63        |
| 1:H:258:LYS:HG2 | 1:H:320:LYS:HB3  | 1.79                    | 0.63        |
| 1:D:258:LYS:HG2 | 1:D:320:LYS:HB3  | 1.79                    | 0.63        |
| 1:D:192:ARG:HD3 | 1:D:219:ASN:HD22 | 1.64                    | 0.63        |
| 1:C:261:PHE:HB2 | 1:K:457:PRO:HD2  | 1.79                    | 0.63        |
| 1:J:192:ARG:HD3 | 1:J:219:ASN:HD22 | 1.64                    | 0.63        |
| 1:F:192:ARG:HD3 | 1:F:219:ASN:HD22 | 1.64                    | 0.62        |
| 1:G:192:ARG:HD3 | 1:G:219:ASN:HD22 | 1.64                    | 0.62        |
| 1:A:192:ARG:HD3 | 1:A:219:ASN:HD22 | 1.64                    | 0.62        |
| 1:I:192:ARG:HD3 | 1:I:219:ASN:HD22 | 1.64                    | 0.62        |
| 1:H:192:ARG:HD3 | 1:H:219:ASN:HD22 | 1.64                    | 0.62        |
| 1:L:192:ARG:HD3 | 1:L:219:ASN:HD22 | 1.64                    | 0.62        |
| 1:B:192:ARG:HD3 | 1:B:219:ASN:HD22 | 1.64                    | 0.62        |
| 1:E:192:ARG:HD3 | 1:E:219:ASN:HD22 | 1.64                    | 0.61        |
| 1:C:192:ARG:HD3 | 1:C:219:ASN:HD22 | 1.64                    | 0.61        |
| 1:K:192:ARG:HD3 | 1:K:219:ASN:HD22 | 1.64                    | 0.61        |
| 1:C:92:LEU:HA   | 1:C:99:GLY:HA2   | 1.83                    | 0.61        |
| 1:A:92:LEU:HA   | 1:A:99:GLY:HA2   | 1.83                    | 0.61        |
| 1:D:456:THR:O   | 1:J:458:HIS:HE1  | 1.84                    | 0.61        |
| 1:E:92:LEU:HA   | 1:E:99:GLY:HA2   | 1.83                    | 0.61        |
| 1:C:383:LYS:NZ  | 1:C:383:LYS:HB3  | 2.16                    | 0.61        |
| 1:I:92:LEU:HA   | 1:I:99:GLY:HA2   | 1.83                    | 0.61        |
| 1:A:383:LYS:NZ  | 1:A:383:LYS:HB3  | 2.16                    | 0.61        |
| 1:J:92:LEU:HA   | 1:J:99:GLY:HA2   | 1.83                    | 0.60        |
| 1:L:92:LEU:HA   | 1:L:99:GLY:HA2   | 1.83                    | 0.60        |
| 1:D:383:LYS:NZ  | 1:D:383:LYS:HB3  | 2.16                    | 0.60        |
| 1:G:92:LEU:HA   | 1:G:99:GLY:HA2   | 1.83                    | 0.60        |
| 1:H:92:LEU:HA   | 1:H:99:GLY:HA2   | 1.83                    | 0.60        |
| 1:H:383:LYS:NZ  | 1:H:383:LYS:HB3  | 2.16                    | 0.60        |
| 1:K:92:LEU:HA   | 1:K:99:GLY:HA2   | 1.83                    | 0.60        |
| 1:L:383:LYS:NZ  | 1:L:383:LYS:HB3  | 2.16                    | 0.60        |
| 1:D:92:LEU:HA   | 1:D:99:GLY:HA2   | 1.83                    | 0.60        |
| 1:J:383:LYS:HB3 | 1:J:383:LYS:NZ   | 2.16                    | 0.60        |
| 1:E:383:LYS:NZ  | 1:E:383:LYS:HB3  | 2.16                    | 0.60        |
| 1:H:214:ALA:HB3 | 1:H:218:GLN:HB2  | 1.84                    | 0.60        |
| 1:F:214:ALA:HB3 | 1:F:218:GLN:HB2  | 1.84                    | 0.60        |
| 1:F:92:LEU:HA   | 1:F:99:GLY:HA2   | 1.83                    | 0.60        |
| 1:C:214:ALA:HB3 | 1:C:218:GLN:HB2  | 1.84                    | 0.59        |
| 1:B:92:LEU:HA   | 1:B:99:GLY:HA2   | 1.83                    | 0.59        |



|                 |                 | Interatomic  | Clash       |
|-----------------|-----------------|--------------|-------------|
| Atom-1          | Atom-2          | distance (Å) | overlap (Å) |
| 1:B:383:LYS:HB3 | 1:B:383:LYS:NZ  | 2.16         | 0.59        |
| 1:F:383:LYS:NZ  | 1:F:383:LYS:HB3 | 2.16         | 0.59        |
| 1:I:383:LYS:NZ  | 1:I:383:LYS:HB3 | 2.16         | 0.59        |
| 1:J:214:ALA:HB3 | 1:J:218:GLN:HB2 | 1.84         | 0.59        |
| 1:K:383:LYS:NZ  | 1:K:383:LYS:HB3 | 2.16         | 0.59        |
| 1:A:214:ALA:HB3 | 1:A:218:GLN:HB2 | 1.84         | 0.59        |
| 1:C:457:PRO:HD2 | 1:K:261:PHE:HB2 | 1.84         | 0.59        |
| 1:D:214:ALA:HB3 | 1:D:218:GLN:HB2 | 1.84         | 0.59        |
| 1:I:214:ALA:HB3 | 1:I:218:GLN:HB2 | 1.84         | 0.59        |
| 1:K:214:ALA:HB3 | 1:K:218:GLN:HB2 | 1.84         | 0.59        |
| 1:B:457:PRO:HD2 | 1:L:261:PHE:HB2 | 1.84         | 0.59        |
| 1:L:214:ALA:HB3 | 1:L:218:GLN:HB2 | 1.84         | 0.59        |
| 1:E:214:ALA:HB3 | 1:E:218:GLN:HB2 | 1.84         | 0.59        |
| 1:A:269:HIS:HE1 | 1:A:359:ARG:NH1 | 2.01         | 0.59        |
| 1:G:383:LYS:NZ  | 1:G:383:LYS:HB3 | 2.16         | 0.59        |
| 1:F:269:HIS:HE1 | 1:F:359:ARG:NH1 | 2.01         | 0.59        |
| 1:B:214:ALA:HB3 | 1:B:218:GLN:HB2 | 1.84         | 0.59        |
| 1:G:214:ALA:HB3 | 1:G:218:GLN:HB2 | 1.84         | 0.59        |
| 1:G:269:HIS:HE1 | 1:G:359:ARG:NH1 | 2.01         | 0.59        |
| 1:H:425:ARG:HG2 | 1:H:429:LYS:HD2 | 1.85         | 0.59        |
| 1:J:180:PHE:HB3 | 1:K:29:GLN:HB3  | 1.82         | 0.59        |
| 1:J:269:HIS:HE1 | 1:J:359:ARG:NH1 | 2.01         | 0.59        |
| 1:C:269:HIS:HE1 | 1:C:359:ARG:NH1 | 2.01         | 0.58        |
| 1:A:425:ARG:HG2 | 1:A:429:LYS:HD2 | 1.85         | 0.58        |
| 1:D:269:HIS:HE1 | 1:D:359:ARG:NH1 | 2.01         | 0.58        |
| 1:D:180:PHE:HB3 | 1:E:29:GLN:HB3  | 1.84         | 0.58        |
| 1:E:457:PRO:HD2 | 1:I:261:PHE:HB2 | 1.86         | 0.58        |
| 1:B:76:ILE:HD12 | 1:B:85:LEU:HD23 | 1.86         | 0.58        |
| 1:D:458:HIS:HE1 | 1:J:456:THR:O   | 1.86         | 0.58        |
| 1:E:425:ARG:HG2 | 1:E:429:LYS:HD2 | 1.85         | 0.58        |
| 1:G:76:ILE:HD12 | 1:G:85:LEU:HD23 | 1.86         | 0.58        |
| 1:G:425:ARG:HG2 | 1:G:429:LYS:HD2 | 1.85         | 0.58        |
| 1:I:269:HIS:HE1 | 1:I:359:ARG:NH1 | 2.01         | 0.58        |
| 1:K:425:ARG:HG2 | 1:K:429:LYS:HD2 | 1.85         | 0.58        |
| 1:D:425:ARG:HG2 | 1:D:429:LYS:HD2 | 1.85         | 0.58        |
| 1:E:76:ILE:HD12 | 1:E:85:LEU:HD23 | 1.86         | 0.58        |
| 1:J:76:ILE:HD12 | 1:J:85:LEU:HD23 | 1.86         | 0.58        |
| 1:D:76:ILE:HD12 | 1:D:85:LEU:HD23 | 1.86         | 0.58        |
| 1:E:269:HIS:HE1 | 1:E:359:ARG:NH1 | 2.01         | 0.58        |
| 1:F:76:ILE:HD12 | 1:F:85:LEU:HD23 | 1.86         | 0.58        |
| 1:B:19:LEU:HD11 | 1:B:42:PHE:HZ   | 1.69         | 0.58        |



|                 | lo uo pugom     | Interatomic  | Clash       |
|-----------------|-----------------|--------------|-------------|
| Atom-1          | Atom-2          | distance (Å) | overlap (Å) |
| 1:I:76:ILE:HD12 | 1:I:85:LEU:HD23 | 1.86         | 0.58        |
| 1:J:425:ARG:HG2 | 1:J:429:LYS:HD2 | 1.84         | 0.58        |
| 1:L:76:ILE:HD12 | 1:L:85:LEU:HD23 | 1.86         | 0.58        |
| 1:F:456:THR:O   | 1:H:458:HIS:HE1 | 1.85         | 0.58        |
| 1:H:19:LEU:HD11 | 1:H:42:PHE:HZ   | 1.69         | 0.58        |
| 1:B:425:ARG:HG2 | 1:B:429:LYS:HD2 | 1.85         | 0.58        |
| 1:F:19:LEU:HD11 | 1:F:42:PHE:HZ   | 1.69         | 0.58        |
| 1:F:458:HIS:HE1 | 1:H:456:THR:O   | 1.86         | 0.58        |
| 1:J:19:LEU:HD11 | 1:J:42:PHE:HZ   | 1.69         | 0.58        |
| 1:L:269:HIS:HE1 | 1:L:359:ARG:NH1 | 2.01         | 0.58        |
| 1:L:425:ARG:HG2 | 1:L:429:LYS:HD2 | 1.85         | 0.58        |
| 1:A:76:ILE:HD12 | 1:A:85:LEU:HD23 | 1.86         | 0.57        |
| 1:C:76:ILE:HD12 | 1:C:85:LEU:HD23 | 1.86         | 0.57        |
| 1:K:269:HIS:HE1 | 1:K:359:ARG:NH1 | 2.01         | 0.57        |
| 1:H:269:HIS:HE1 | 1:H:359:ARG:NH1 | 2.01         | 0.57        |
| 1:F:425:ARG:HG2 | 1:F:429:LYS:HD2 | 1.85         | 0.57        |
| 1:I:425:ARG:HG2 | 1:I:429:LYS:HD2 | 1.85         | 0.57        |
| 1:C:425:ARG:HG2 | 1:C:429:LYS:HD2 | 1.85         | 0.57        |
| 1:E:456:THR:O   | 1:I:458:HIS:HE1 | 1.87         | 0.57        |
| 1:G:19:LEU:HD11 | 1:G:42:PHE:HZ   | 1.69         | 0.57        |
| 1:L:314:PRO:HB2 | 1:L:446:ARG:NH1 | 2.20         | 0.57        |
| 1:E:19:LEU:HD11 | 1:E:42:PHE:HZ   | 1.69         | 0.57        |
| 1:E:314:PRO:HB2 | 1:E:446:ARG:NH1 | 2.20         | 0.57        |
| 1:K:19:LEU:HD11 | 1:K:42:PHE:HZ   | 1.69         | 0.57        |
| 1:H:66:VAL:HG13 | 1:H:92:LEU:HB2  | 1.87         | 0.57        |
| 1:K:66:VAL:HG13 | 1:K:92:LEU:HB2  | 1.87         | 0.57        |
| 1:B:269:HIS:HE1 | 1:B:359:ARG:NH1 | 2.01         | 0.57        |
| 1:E:66:VAL:HG13 | 1:E:92:LEU:HB2  | 1.87         | 0.57        |
| 1:L:19:LEU:HD11 | 1:L:42:PHE:HZ   | 1.69         | 0.57        |
| 1:L:66:VAL:HG13 | 1:L:92:LEU:HB2  | 1.87         | 0.57        |
| 1:B:261:PHE:HB2 | 1:L:457:PRO:HD2 | 1.86         | 0.57        |
| 1:H:76:ILE:HD12 | 1:H:85:LEU:HD23 | 1.86         | 0.57        |
| 1:I:66:VAL:HG13 | 1:I:92:LEU:HB2  | 1.87         | 0.57        |
| 1:K:76:ILE:HD12 | 1:K:85:LEU:HD23 | 1.86         | 0.57        |
| 1:B:66:VAL:HG13 | 1:B:92:LEU:HB2  | 1.87         | 0.57        |
| 1:A:456:THR:O   | 1:G:458:HIS:HE1 | 1.88         | 0.56        |
| 1:D:19:LEU:HD11 | 1:D:42:PHE:HZ   | 1.69         | 0.56        |
| 1:A:66:VAL:HG13 | 1:A:92:LEU:HB2  | 1.87         | 0.56        |
| 1:A:314:PRO:HB2 | 1:A:446:ARG:NH1 | 2.20         | 0.56        |
| 1:A:457:PRO:HD2 | 1:G:261:PHE:HB2 | 1.87         | 0.56        |
| 1:C:19:LEU:HD11 | 1:C:42:PHE:HZ   | 1.69         | 0.56        |



|                 |                 | Interatomic  | Clash       |
|-----------------|-----------------|--------------|-------------|
| Atom-1          | Atom-2          | distance (Å) | overlap (Å) |
| 1:D:66:VAL:HG13 | 1:D:92:LEU:HB2  | 1.87         | 0.56        |
| 1:D:314:PRO:HB2 | 1:D:446:ARG:NH1 | 2.20         | 0.56        |
| 1:H:314:PRO:HB2 | 1:H:446:ARG:NH1 | 2.20         | 0.56        |
| 1:I:314:PRO:HB2 | 1:I:446:ARG:NH1 | 2.20         | 0.56        |
| 1:J:314:PRO:HB2 | 1:J:446:ARG:NH1 | 2.20         | 0.56        |
| 1:A:19:LEU:HD11 | 1:A:42:PHE:HZ   | 1.69         | 0.56        |
| 1:B:351:PRO:HB2 | 1:B:352:LYS:HG3 | 1.88         | 0.56        |
| 1:C:66:VAL:HG13 | 1:C:92:LEU:HB2  | 1.87         | 0.56        |
| 1:I:19:LEU:HD11 | 1:I:42:PHE:HZ   | 1.69         | 0.56        |
| 1:J:351:PRO:HB2 | 1:J:352:LYS:HG3 | 1.88         | 0.56        |
| 1:K:314:PRO:HB2 | 1:K:446:ARG:NH1 | 2.20         | 0.56        |
| 1:A:261:PHE:HB2 | 1:G:457:PRO:HD2 | 1.88         | 0.56        |
| 1:C:314:PRO:HB2 | 1:C:446:ARG:NH1 | 2.20         | 0.56        |
| 1:F:66:VAL:HG13 | 1:F:92:LEU:HB2  | 1.87         | 0.56        |
| 1:G:314:PRO:HB2 | 1:G:446:ARG:NH1 | 2.20         | 0.56        |
| 1:L:351:PRO:HB2 | 1:L:352:LYS:HG3 | 1.88         | 0.56        |
| 1:C:351:PRO:HB2 | 1:C:352:LYS:HG3 | 1.88         | 0.56        |
| 1:E:351:PRO:HB2 | 1:E:352:LYS:HG3 | 1.88         | 0.56        |
| 1:B:314:PRO:HB2 | 1:B:446:ARG:NH1 | 2.20         | 0.56        |
| 1:E:261:PHE:HB2 | 1:I:457:PRO:HD2 | 1.88         | 0.56        |
| 1:G:66:VAL:HG13 | 1:G:92:LEU:HB2  | 1.87         | 0.56        |
| 1:K:351:PRO:HB2 | 1:K:352:LYS:HG3 | 1.88         | 0.56        |
| 1:F:314:PRO:HB2 | 1:F:446:ARG:NH1 | 2.20         | 0.55        |
| 1:J:66:VAL:HG13 | 1:J:92:LEU:HB2  | 1.87         | 0.55        |
| 1:F:351:PRO:HB2 | 1:F:352:LYS:HG3 | 1.88         | 0.55        |
| 1:G:351:PRO:HB2 | 1:G:352:LYS:HG3 | 1.88         | 0.55        |
| 1:A:93:GLU:HB3  | 1:A:98:GLN:OE1  | 2.07         | 0.55        |
| 1:A:458:HIS:HE1 | 1:G:456:THR:O   | 1.89         | 0.55        |
| 1:C:93:GLU:HB3  | 1:C:98:GLN:OE1  | 2.07         | 0.55        |
| 1:I:351:PRO:HB2 | 1:I:352:LYS:HG3 | 1.88         | 0.55        |
| 1:D:93:GLU:HB3  | 1:D:98:GLN:OE1  | 2.07         | 0.55        |
| 1:H:351:PRO:HB2 | 1:H:352:LYS:HG3 | 1.88         | 0.55        |
| 1:K:93:GLU:HB3  | 1:K:98:GLN:OE1  | 2.07         | 0.55        |
| 1:L:458:HIS:HD2 | 1:L:460:VAL:H   | 1.55         | 0.55        |
| 1:A:458:HIS:HD2 | 1:A:460:VAL:H   | 1.55         | 0.55        |
| 1:B:93:GLU:HB3  | 1:B:98:GLN:OE1  | 2.07         | 0.54        |
| 1:D:351:PRO:HB2 | 1:D:352:LYS:HG3 | 1.88         | 0.54        |
| 1:H:93:GLU:HB3  | 1:H:98:GLN:OE1  | 2.07         | 0.54        |
| 1:J:93:GLU:HB3  | 1:J:98:GLN:OE1  | 2.07         | 0.54        |
| 1:A:351:PRO:HB2 | 1:A:352:LYS:HG3 | 1.88         | 0.54        |
| 1:I:93:GLU:HB3  | 1:I:98:GLN:OE1  | 2.07         | 0.54        |



|                 |                 | Interatomic             | Clash       |
|-----------------|-----------------|-------------------------|-------------|
| Atom-1          | Atom-2          | distance $(\text{\AA})$ | overlap (Å) |
| 1:E:458:HIS:HE1 | 1:I:456:THR:O   | 1.89                    | 0.54        |
| 1:G:93:GLU:HB3  | 1:G:98:GLN:OE1  | 2.07                    | 0.54        |
| 1:I:458:HIS:HD2 | 1:I:460:VAL:H   | 1.55                    | 0.54        |
| 1:E:458:HIS:HD2 | 1:E:460:VAL:H   | 1.55                    | 0.54        |
| 1:F:93:GLU:HB3  | 1:F:98:GLN:OE1  | 2.07                    | 0.54        |
| 1:H:458:HIS:HD2 | 1:H:460:VAL:H   | 1.55                    | 0.54        |
| 1:C:180:PHE:HB3 | 1:D:29:GLN:HB3  | 1.90                    | 0.54        |
| 1:G:458:HIS:HD2 | 1:G:460:VAL:H   | 1.55                    | 0.54        |
| 1:H:180:PHE:HB3 | 1:I:29:GLN:HB3  | 1.89                    | 0.54        |
| 1:J:458:HIS:HD2 | 1:J:460:VAL:H   | 1.55                    | 0.54        |
| 1:L:93:GLU:HB3  | 1:L:98:GLN:OE1  | 2.07                    | 0.54        |
| 1:F:458:HIS:HD2 | 1:F:460:VAL:H   | 1.55                    | 0.54        |
| 1:C:192:ARG:HD3 | 1:C:219:ASN:ND2 | 2.23                    | 0.53        |
| 1:C:458:HIS:HD2 | 1:C:460:VAL:H   | 1.55                    | 0.53        |
| 1:D:458:HIS:HD2 | 1:D:460:VAL:H   | 1.55                    | 0.53        |
| 1:I:192:ARG:HD3 | 1:I:219:ASN:ND2 | 2.23                    | 0.53        |
| 1:B:458:HIS:HE1 | 1:L:456:THR:O   | 1.91                    | 0.53        |
| 1:E:93:GLU:HB3  | 1:E:98:GLN:OE1  | 2.07                    | 0.53        |
| 1:G:192:ARG:HD3 | 1:G:219:ASN:ND2 | 2.23                    | 0.53        |
| 1:A:192:ARG:HD3 | 1:A:219:ASN:ND2 | 2.23                    | 0.53        |
| 1:B:456:THR:O   | 1:L:458:HIS:HE1 | 1.90                    | 0.53        |
| 1:D:457:PRO:HD2 | 1:J:261:PHE:HB2 | 1.89                    | 0.53        |
| 1:H:286:LYS:HB2 | 1:H:290:LEU:O   | 2.09                    | 0.53        |
| 1:L:286:LYS:HB2 | 1:L:290:LEU:O   | 2.09                    | 0.53        |
| 1:K:192:ARG:HD3 | 1:K:219:ASN:ND2 | 2.23                    | 0.53        |
| 1:F:286:LYS:HB2 | 1:F:290:LEU:O   | 2.09                    | 0.53        |
| 1:D:261:PHE:HB2 | 1:J:457:PRO:HD2 | 1.89                    | 0.53        |
| 1:D:286:LYS:HB2 | 1:D:290:LEU:O   | 2.09                    | 0.53        |
| 1:F:192:ARG:HD3 | 1:F:219:ASN:ND2 | 2.23                    | 0.53        |
| 1:G:286:LYS:HB2 | 1:G:290:LEU:O   | 2.09                    | 0.53        |
| 1:J:192:ARG:HD3 | 1:J:219:ASN:ND2 | 2.24                    | 0.53        |
| 1:B:458:HIS:HD2 | 1:B:460:VAL:H   | 1.55                    | 0.53        |
| 1:F:457:PRO:HD2 | 1:H:261:PHE:HB2 | 1.90                    | 0.53        |
| 1:H:192:ARG:HD3 | 1:H:219:ASN:ND2 | 2.23                    | 0.53        |
| 1:E:286:LYS:HB2 | 1:E:290:LEU:O   | 2.09                    | 0.53        |
| 1:B:180:PHE:HB3 | 1:C:29:GLN:HB3  | 1.91                    | 0.53        |
| 1:D:192:ARG:HD3 | 1:D:219:ASN:ND2 | 2.23                    | 0.53        |
| 1:J:286:LYS:HB2 | 1:J:290:LEU:O   | 2.09                    | 0.53        |
| 1:B:286:LYS:HB2 | 1:B:290:LEU:O   | 2.09                    | 0.52        |
| 1:C:286:LYS:HB2 | 1:C:290:LEU:O   | 2.09                    | 0.52        |
| 1:K:458:HIS:HD2 | 1:K:460:VAL:H   | 1.55                    | 0.52        |



|                  |                  | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:E:192:ARG:HD3  | 1:E:219:ASN:ND2  | 2.23         | 0.52        |
| 1:I:286:LYS:HB2  | 1:I:290:LEU:O    | 2.09         | 0.52        |
| 1:D:348:VAL:HG21 | 1:D:353:ALA:HB3  | 1.92         | 0.52        |
| 1:G:348:VAL:HG21 | 1:G:353:ALA:HB3  | 1.92         | 0.52        |
| 1:L:192:ARG:HD3  | 1:L:219:ASN:ND2  | 2.23         | 0.52        |
| 1:A:29:GLN:HB3   | 1:F:180:PHE:HB3  | 1.90         | 0.52        |
| 1:A:286:LYS:HB2  | 1:A:290:LEU:O    | 2.09         | 0.52        |
| 1:B:192:ARG:HD3  | 1:B:219:ASN:ND2  | 2.23         | 0.52        |
| 1:G:5:VAL:HG11   | 1:G:43:PHE:HZ    | 1.75         | 0.52        |
| 1:K:348:VAL:HG21 | 1:K:353:ALA:HB3  | 1.92         | 0.52        |
| 1:I:348:VAL:HG21 | 1:I:353:ALA:HB3  | 1.92         | 0.52        |
| 1:A:348:VAL:HG21 | 1:A:353:ALA:HB3  | 1.92         | 0.52        |
| 1:D:5:VAL:HG11   | 1:D:43:PHE:HZ    | 1.75         | 0.52        |
| 1:F:348:VAL:HG21 | 1:F:353:ALA:HB3  | 1.92         | 0.52        |
| 1:K:286:LYS:HB2  | 1:K:290:LEU:O    | 2.09         | 0.52        |
| 1:A:180:PHE:HB3  | 1:B:29:GLN:HB3   | 1.90         | 0.52        |
| 1:C:5:VAL:HG11   | 1:C:43:PHE:HZ    | 1.75         | 0.52        |
| 1:C:348:VAL:HG21 | 1:C:353:ALA:HB3  | 1.92         | 0.52        |
| 1:K:5:VAL:HG11   | 1:K:43:PHE:HZ    | 1.75         | 0.51        |
| 1:E:5:VAL:HG11   | 1:E:43:PHE:HZ    | 1.75         | 0.51        |
| 1:K:180:PHE:HB3  | 1:L:29:GLN:HB3   | 1.92         | 0.51        |
| 1:L:348:VAL:HG21 | 1:L:353:ALA:HB3  | 1.92         | 0.51        |
| 1:B:5:VAL:HG11   | 1:B:43:PHE:HZ    | 1.75         | 0.51        |
| 1:I:5:VAL:HG11   | 1:I:43:PHE:HZ    | 1.75         | 0.51        |
| 1:K:169:LYS:HA   | 1:L:252:THR:HB   | 1.91         | 0.51        |
| 1:H:5:VAL:HG11   | 1:H:43:PHE:HZ    | 1.75         | 0.51        |
| 1:I:180:PHE:HB3  | 1:J:29:GLN:HB3   | 1.93         | 0.51        |
| 1:B:348:VAL:HG21 | 1:B:353:ALA:HB3  | 1.92         | 0.51        |
| 1:F:5:VAL:HG11   | 1:F:43:PHE:HZ    | 1.75         | 0.51        |
| 1:E:348:VAL:HG21 | 1:E:353:ALA:HB3  | 1.92         | 0.51        |
| 1:E:467:SER:OG   | 1:H:171:HIS:ND1  | 2.35         | 0.51        |
| 1:F:261:PHE:HB2  | 1:H:457:PRO:HD2  | 1.92         | 0.51        |
| 1:B:169:LYS:HA   | 1:C:252:THR:HB   | 1.92         | 0.50        |
| 1:J:348:VAL:HG21 | 1:J:353:ALA:HB3  | 1.92         | 0.50        |
| 1:D:169:LYS:HA   | 1:E:252:THR:HB   | 1.92         | 0.50        |
| 1:E:333:ALA:O    | 1:E:341:ALA:HB1  | 2.12         | 0.50        |
| 1:G:29:GLN:HB3   | 1:L:180:PHE:HB3  | 1.93         | 0.50        |
| 1:K:101:ASP:HB3  | 1:K:110:ARG:HH22 | 1.76         | 0.50        |
| 1:B:334:TYR:CE2  | 1:B:391:PRO:HG3  | 2.47         | 0.50        |
| 1:C:458:HIS:HE1  | 1:K:456:THR:O    | 1.93         | 0.50        |
| 1:J:5:VAL:HG11   | 1:J:43:PHE:HZ    | 1.75         | 0.50        |



|                  |                  | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:K:333:ALA:O    | 1:K:341:ALA:HB1  | 2.12         | 0.50        |
| 1:L:5:VAL:HG11   | 1:L:43:PHE:HZ    | 1.75         | 0.50        |
| 1:L:334:TYR:CE2  | 1:L:391:PRO:HG3  | 2.47         | 0.50        |
| 1:A:334:TYR:CE2  | 1:A:391:PRO:HG3  | 2.47         | 0.50        |
| 1:B:333:ALA:O    | 1:B:341:ALA:HB1  | 2.12         | 0.50        |
| 1:C:101:ASP:HB3  | 1:C:110:ARG:HH22 | 1.77         | 0.50        |
| 1:G:333:ALA:O    | 1:G:341:ALA:HB1  | 2.12         | 0.50        |
| 1:H:348:VAL:HG21 | 1:H:353:ALA:HB3  | 1.92         | 0.50        |
| 1:D:101:ASP:HB3  | 1:D:110:ARG:HH22 | 1.77         | 0.50        |
| 1:D:334:TYR:CE2  | 1:D:391:PRO:HG3  | 2.47         | 0.50        |
| 1:E:101:ASP:HB3  | 1:E:110:ARG:HH22 | 1.76         | 0.50        |
| 1:G:296:TYR:CZ   | 1:G:385:LYS:HG2  | 2.47         | 0.50        |
| 1:H:333:ALA:O    | 1:H:341:ALA:HB1  | 2.12         | 0.50        |
| 1:H:359:ARG:NH1  | 3:H:471:GLU:OE1  | 2.44         | 0.50        |
| 1:E:296:TYR:CZ   | 1:E:385:LYS:HG2  | 2.47         | 0.49        |
| 1:F:101:ASP:HB3  | 1:F:110:ARG:HH22 | 1.77         | 0.49        |
| 1:F:333:ALA:O    | 1:F:341:ALA:HB1  | 2.12         | 0.49        |
| 1:H:101:ASP:HB3  | 1:H:110:ARG:HH22 | 1.77         | 0.49        |
| 1:B:296:TYR:CZ   | 1:B:385:LYS:HG2  | 2.47         | 0.49        |
| 1:I:296:TYR:CZ   | 1:I:385:LYS:HG2  | 2.47         | 0.49        |
| 1:I:333:ALA:O    | 1:I:341:ALA:HB1  | 2.12         | 0.49        |
| 1:K:296:TYR:CZ   | 1:K:385:LYS:HG2  | 2.47         | 0.49        |
| 1:E:334:TYR:CE2  | 1:E:391:PRO:HG3  | 2.47         | 0.49        |
| 1:F:296:TYR:CZ   | 1:F:385:LYS:HG2  | 2.47         | 0.49        |
| 1:H:334:TYR:CE2  | 1:H:391:PRO:HG3  | 2.47         | 0.49        |
| 1:A:5:VAL:HG11   | 1:A:43:PHE:HZ    | 1.75         | 0.49        |
| 1:D:296:TYR:CZ   | 1:D:385:LYS:HG2  | 2.47         | 0.49        |
| 1:C:333:ALA:O    | 1:C:341:ALA:HB1  | 2.12         | 0.49        |
| 1:I:101:ASP:HB3  | 1:I:110:ARG:HH22 | 1.77         | 0.49        |
| 1:I:334:TYR:CE2  | 1:I:391:PRO:HG3  | 2.47         | 0.49        |
| 1:J:101:ASP:HB3  | 1:J:110:ARG:HH22 | 1.77         | 0.49        |
| 1:J:296:TYR:CZ   | 1:J:385:LYS:HG2  | 2.47         | 0.49        |
| 1:J:333:ALA:O    | 1:J:341:ALA:HB1  | 2.12         | 0.49        |
| 1:K:359:ARG:NH1  | 3:K:471:GLU:OE1  | 2.45         | 0.49        |
| 1:B:101:ASP:HB3  | 1:B:110:ARG:HH22 | 1.76         | 0.49        |
| 1:D:333:ALA:O    | 1:D:341:ALA:HB1  | 2.12         | 0.49        |
| 1:E:359:ARG:NH1  | 3:E:471:GLU:OE1  | 2.45         | 0.49        |
| 1:F:334:TYR:CE1  | 1:F:388:PRO:HB2  | 2.48         | 0.49        |
| 1:G:334:TYR:CE1  | 1:G:388:PRO:HB2  | 2.48         | 0.49        |
| 1:L:333:ALA:O    | 1:L:341:ALA:HB1  | 2.12         | 0.49        |
| 1:A:17:VAL:HG21  | 1:A:38:VAL:HG21  | 1.95         | 0.49        |



|                 | i a s pagem      | Interatomic  | Clash       |
|-----------------|------------------|--------------|-------------|
| Atom-1          | Atom-2           | distance (Å) | overlap (Å) |
| 1:A:101:ASP:HB3 | 1:A:110:ARG:HH22 | 1.76         | 0.49        |
| 1:H:334:TYR:CE1 | 1:H:388:PRO:HB2  | 2.48         | 0.49        |
| 1:I:334:TYR:CE1 | 1:I:388:PRO:HB2  | 2.48         | 0.49        |
| 1:G:334:TYR:CE2 | 1:G:391:PRO:HG3  | 2.47         | 0.49        |
| 1:L:296:TYR:CZ  | 1:L:385:LYS:HG2  | 2.47         | 0.49        |
| 1:C:296:TYR:CZ  | 1:C:385:LYS:HG2  | 2.47         | 0.49        |
| 1:C:359:ARG:NH1 | 3:C:471:GLU:OE1  | 2.45         | 0.49        |
| 1:G:101:ASP:HB3 | 1:G:110:ARG:HH22 | 1.76         | 0.49        |
| 1:A:296:TYR:CZ  | 1:A:385:LYS:HG2  | 2.47         | 0.48        |
| 1:B:334:TYR:CE1 | 1:B:388:PRO:HB2  | 2.48         | 0.48        |
| 1:C:334:TYR:CE2 | 1:C:391:PRO:HG3  | 2.47         | 0.48        |
| 1:J:334:TYR:CE1 | 1:J:388:PRO:HB2  | 2.48         | 0.48        |
| 1:D:334:TYR:CE1 | 1:D:388:PRO:HB2  | 2.48         | 0.48        |
| 1:G:180:PHE:HB3 | 1:H:29:GLN:HB3   | 1.94         | 0.48        |
| 1:J:334:TYR:CE2 | 1:J:391:PRO:HG3  | 2.47         | 0.48        |
| 1:K:334:TYR:CE1 | 1:K:388:PRO:HB2  | 2.48         | 0.48        |
| 1:L:101:ASP:HB3 | 1:L:110:ARG:HH22 | 1.76         | 0.48        |
| 1:A:169:LYS:HA  | 1:B:252:THR:HB   | 1.96         | 0.48        |
| 1:I:17:VAL:HG21 | 1:I:38:VAL:HG21  | 1.95         | 0.48        |
| 1:L:17:VAL:HG21 | 1:L:38:VAL:HG21  | 1.95         | 0.48        |
| 1:F:334:TYR:CE2 | 1:F:391:PRO:HG3  | 2.47         | 0.48        |
| 1:C:334:TYR:CE1 | 1:C:388:PRO:HB2  | 2.48         | 0.48        |
| 1:K:334:TYR:CE2 | 1:K:391:PRO:HG3  | 2.47         | 0.48        |
| 1:C:17:VAL:HG21 | 1:C:38:VAL:HG21  | 1.95         | 0.48        |
| 1:C:456:THR:O   | 1:K:458:HIS:HE1  | 1.95         | 0.48        |
| 1:E:334:TYR:CE1 | 1:E:388:PRO:HB2  | 2.48         | 0.48        |
| 1:L:231:LYS:HA  | 1:L:231:LYS:HD2  | 1.66         | 0.48        |
| 1:L:334:TYR:CE1 | 1:L:388:PRO:HB2  | 2.48         | 0.48        |
| 1:E:17:VAL:HG21 | 1:E:38:VAL:HG21  | 1.95         | 0.48        |
| 1:H:17:VAL:HG21 | 1:H:38:VAL:HG21  | 1.95         | 0.48        |
| 1:H:296:TYR:CZ  | 1:H:385:LYS:HG2  | 2.47         | 0.48        |
| 1:J:17:VAL:HG21 | 1:J:38:VAL:HG21  | 1.95         | 0.48        |
| 1:A:334:TYR:CE1 | 1:A:388:PRO:HB2  | 2.48         | 0.48        |
| 1:D:17:VAL:HG21 | 1:D:38:VAL:HG21  | 1.95         | 0.48        |
| 1:D:120:ILE:O   | 1:D:281:LEU:HD21 | 2.14         | 0.48        |
| 1:E:270:CYS:HG  | 1:E:371:PHE:HE1  | 1.62         | 0.48        |
| 1:A:333:ALA:O   | 1:A:341:ALA:HB1  | 2.12         | 0.48        |
| 1:B:17:VAL:HG21 | 1:B:38:VAL:HG21  | 1.95         | 0.48        |
| 1:G:120:ILE:O   | 1:G:281:LEU:HD21 | 2.14         | 0.48        |
| 1:H:120:ILE:O   | 1:H:281:LEU:HD21 | 2.14         | 0.48        |
| 1:B:458:HIS:CD2 | 1:B:460:VAL:H    | 2.32         | 0.48        |



|                 |                  | Interatomic  | Clash       |  |
|-----------------|------------------|--------------|-------------|--|
| Atom-1          | Atom-2           | distance (Å) | overlap (Å) |  |
| 1:C:120:ILE:O   | 1:C:281:LEU:HD21 | 2.14         | 0.48        |  |
| 1:F:120:ILE:O   | 1:F:281:LEU:HD21 | 2.14         | 0.48        |  |
| 1:J:270:CYS:HG  | 1:J:371:PHE:HE1  | 1.62         | 0.48        |  |
| 1:K:120:ILE:O   | 1:K:281:LEU:HD21 | 2.14         | 0.48        |  |
| 1:A:120:ILE:O   | 1:A:281:LEU:HD21 | 2.14         | 0.47        |  |
| 1:B:120:ILE:O   | 1:B:281:LEU:HD21 | 2.14         | 0.47        |  |
| 1:B:359:ARG:NH1 | 3:B:473:GLU:OE1  | 2.45         | 0.47        |  |
| 1:G:231:LYS:HD2 | 1:G:231:LYS:HA   | 1.66         | 0.47        |  |
| 1:J:120:ILE:O   | 1:J:281:LEU:HD21 | 2.14         | 0.47        |  |
| 1:C:169:LYS:HA  | 1:D:252:THR:HB   | 1.96         | 0.47        |  |
| 1:C:270:CYS:HG  | 1:C:371:PHE:HE1  | 1.62         | 0.47        |  |
| 1:E:458:HIS:CD2 | 1:E:460:VAL:H    | 2.32         | 0.47        |  |
| 1:G:17:VAL:HG21 | 1:G:38:VAL:HG21  | 1.95         | 0.47        |  |
| 1:H:169:LYS:HA  | 1:I:252:THR:HB   | 1.96         | 0.47        |  |
| 1:K:458:HIS:CD2 | 1:K:460:VAL:H    | 2.32         | 0.47        |  |
| 1:L:65:MET:HE2  | 1:L:94:PRO:HD3   | 1.96         | 0.47        |  |
| 1:F:339:ARG:CZ  | 1:F:359:ARG:NH2  | 2.78         | 0.47        |  |
| 1:J:458:HIS:CD2 | 1:J:460:VAL:H    | 2.32         | 0.47        |  |
| 1:K:17:VAL:HG21 | 1:K:38:VAL:HG21  | 1.95         | 0.47        |  |
| 1:D:339:ARG:CZ  | 1:D:359:ARG:NH2  | 2.78         | 0.47        |  |
| 1:G:339:ARG:CZ  | 1:G:359:ARG:NH2  | 2.78         | 0.47        |  |
| 1:L:120:ILE:O   | 1:L:281:LEU:HD21 | 2.14         | 0.47        |  |
| 1:A:339:ARG:CZ  | 1:A:359:ARG:NH2  | 2.78         | 0.47        |  |
| 1:B:339:ARG:CZ  | 1:B:359:ARG:NH2  | 2.78         | 0.47        |  |
| 1:D:359:ARG:NH1 | 3:D:471:GLU:OE1  | 2.45         | 0.47        |  |
| 1:E:120:ILE:O   | 1:E:281:LEU:HD21 | 2.14         | 0.47        |  |
| 1:F:17:VAL:HG21 | 1:F:38:VAL:HG21  | 1.95         | 0.47        |  |
| 1:G:458:HIS:CD2 | 1:G:460:VAL:H    | 2.32         | 0.47        |  |
| 1:H:339:ARG:CZ  | 1:H:359:ARG:NH2  | 2.78         | 0.47        |  |
| 1:H:458:HIS:CD2 | 1:H:460:VAL:H    | 2.32         | 0.47        |  |
| 1:I:359:ARG:NH1 | 3:I:471:GLU:OE1  | 2.45         | 0.47        |  |
| 1:E:231:LYS:HD2 | 1:E:231:LYS:HA   | 1.66         | 0.47        |  |
| 1:E:339:ARG:CZ  | 1:E:359:ARG:NH2  | 2.78         | 0.47        |  |
| 1:E:180:PHE:HB3 | 1:F:29:GLN:HB3   | 1.96         | 0.47        |  |
| 1:F:359:ARG:NH1 | 3:F:471:GLU:OE1  | 2.44         | 0.47        |  |
| 1:G:252:THR:HB  | 1:L:169:LYS:HA   | 1.96         | 0.47        |  |
| 1:L:339:ARG:CZ  | 1:L:359:ARG:NH2  | 2.78         | 0.47        |  |
| 1:I:65:MET:HE2  | 1:I:94:PRO:HD3   | 1.98         | 0.47        |  |
| 1:I:169:LYS:HA  | 1:J:252:THR:HB   | 1.96         | 0.47        |  |
| 1:K:339:ARG:CZ  | 1:K:359:ARG:NH2  | 2.78         | 0.46        |  |
| 1:A:458:HIS:CD2 | 1:A:460:VAL:H    | 2.32         | 0.46        |  |



|                 |                  | Interatomic  | Clash       |  |
|-----------------|------------------|--------------|-------------|--|
| Atom-1          | Atom-2           | distance (Å) | overlap (Å) |  |
| 1:F:255:PHE:HB3 | 1:F:363:PRO:HB2  | 1.98         | 0.46        |  |
| 1:I:383:LYS:HB3 | 1:I:383:LYS:HZ3  | 1.79         | 0.46        |  |
| 1:I:458:HIS:CD2 | 1:I:460:VAL:H    | 2.32         | 0.46        |  |
| 1:I:339:ARG:CZ  | 1:I:359:ARG:NH2  | 2.78         | 0.46        |  |
| 1:J:339:ARG:CZ  | 1:J:359:ARG:NH2  | 2.78         | 0.46        |  |
| 1:B:255:PHE:HB3 | 1:B:363:PRO:HB2  | 1.98         | 0.46        |  |
| 1:L:458:HIS:CD2 | 1:L:460:VAL:H    | 2.32         | 0.46        |  |
| 1:A:270:CYS:HG  | 1:A:371:PHE:HE1  | 1.64         | 0.46        |  |
| 1:D:270:CYS:HG  | 1:D:371:PHE:HE1  | 1.63         | 0.46        |  |
| 1:G:255:PHE:HB3 | 1:G:363:PRO:HB2  | 1.98         | 0.46        |  |
| 1:L:359:ARG:NH1 | 3:L:471:GLU:OE1  | 2.45         | 0.46        |  |
| 1:D:458:HIS:CD2 | 1:D:460:VAL:H    | 2.32         | 0.46        |  |
| 1:H:270:CYS:HG  | 1:H:371:PHE:HE1  | 1.63         | 0.46        |  |
| 1:J:255:PHE:HB3 | 1:J:363:PRO:HB2  | 1.98         | 0.46        |  |
| 1:L:255:PHE:HB3 | 1:L:363:PRO:HB2  | 1.98         | 0.46        |  |
| 1:A:359:ARG:NH1 | 3:A:471:GLU:OE1  | 2.45         | 0.46        |  |
| 1:C:339:ARG:CZ  | 1:C:359:ARG:NH2  | 2.78         | 0.46        |  |
| 1:B:270:CYS:HG  | 1:B:371:PHE:HE1  | 1.64         | 0.46        |  |
| 1:D:255:PHE:HB3 | 1:D:363:PRO:HB2  | 1.98         | 0.46        |  |
| 1:E:169:LYS:HA  | 1:F:252:THR:HB   | 1.98         | 0.46        |  |
| 1:H:255:PHE:HB3 | 1:H:363:PRO:HB2  | 1.98         | 0.46        |  |
| 1:C:458:HIS:CD2 | 1:C:460:VAL:H    | 2.32         | 0.46        |  |
| 1:B:231:LYS:HA  | 1:B:231:LYS:HD2  | 1.66         | 0.45        |  |
| 1:H:168:ASN:HB3 | 1:I:138:ILE:O    | 2.16         | 0.45        |  |
| 1:I:255:PHE:HB3 | 1:I:363:PRO:HB2  | 1.98         | 0.45        |  |
| 1:J:359:ARG:NH1 | 3:J:471:GLU:OE1  | 2.45         | 0.45        |  |
| 1:F:458:HIS:CD2 | 1:F:460:VAL:H    | 2.32         | 0.45        |  |
| 1:I:196:CYS:SG  | 1:I:206:VAL:HG11 | 2.57         | 0.45        |  |
| 1:J:169:LYS:HA  | 1:K:252:THR:HB   | 1.98         | 0.45        |  |
| 1:B:196:CYS:SG  | 1:B:206:VAL:HG11 | 2.57         | 0.45        |  |
| 1:F:270:CYS:HG  | 1:F:371:PHE:HE1  | 1.62         | 0.45        |  |
| 1:I:120:ILE:O   | 1:I:281:LEU:HD21 | 2.14         | 0.45        |  |
| 1:J:339:ARG:NH2 | 1:K:50:ASP:CG    | 2.69         | 0.45        |  |
| 1:A:196:CYS:SG  | 1:A:206:VAL:HG11 | 2.57         | 0.45        |  |
| 1:A:255:PHE:HB3 | 1:A:363:PRO:HB2  | 1.98         | 0.45        |  |
| 1:C:255:PHE:HB3 | 1:C:363:PRO:HB2  | 1.98         | 0.45        |  |
| 1:K:255:PHE:HB3 | 1:K:363:PRO:HB2  | 1.98         | 0.45        |  |
| 1:C:196:CYS:SG  | 1:C:206:VAL:HG11 | 2.57         | 0.45        |  |
| 1:E:255:PHE:HB3 | 1:E:363:PRO:HB2  | 1.98         | 0.45        |  |
| 1:D:196:CYS:SG  | 1:D:206:VAL:HG11 | 2.57         | 0.45        |  |
| 1:I:270:CYS:HG  | 1:I:371:PHE:HE1  | 1.63         | 0.45        |  |



| Interstomic Clash |                  |                |             |  |
|-------------------|------------------|----------------|-------------|--|
| Atom-1            | Atom-2           | distance $(Å)$ | overlap (Å) |  |
| 1:L:270:CYS:HG    | 1:L:371:PHE:HE1  | 1.63           | 0.45        |  |
| 1:A:231:LYS:HD2   | 1:A:231:LYS:HA   | 1.66           | 0.45        |  |
| 1:G:196:CYS:SG    | 1:G:206:VAL:HG11 | 2.57           | 0.45        |  |
| 1:G:359:ARG:NH1   | 3:G:471:GLU:OE1  | 2.45           | 0.45        |  |
| 1:J:196:CYS:SG    | 1:J:206:VAL:HG11 | 2.57           | 0.45        |  |
| 1:J:231:LYS:HD2   | 1:J:231:LYS:HA   | 1.66           | 0.45        |  |
| 1:G:269:HIS:HE1   | 1:G:359:ARG:CZ   | 2.31           | 0.45        |  |
| 1:H:196:CYS:SG    | 1:H:206:VAL:HG11 | 2.57           | 0.45        |  |
| 1:E:196:CYS:SG    | 1:E:206:VAL:HG11 | 2.57           | 0.44        |  |
| 1:E:269:HIS:HE1   | 1:E:359:ARG:CZ   | 2.31           | 0.44        |  |
| 1:K:191:ILE:HG12  | 1:K:249:PHE:CD2  | 2.53           | 0.44        |  |
| 1:K:270:CYS:HG    | 1:K:371:PHE:HE1  | 1.63           | 0.44        |  |
| 1:B:191:ILE:HG12  | 1:B:249:PHE:CD2  | 2.53           | 0.44        |  |
| 1:C:269:HIS:HE1   | 1:C:359:ARG:CZ   | 2.31           | 0.44        |  |
| 1:E:191:ILE:HG12  | 1:E:249:PHE:CD2  | 2.53           | 0.44        |  |
| 1:G:270:CYS:HG    | 1:G:371:PHE:HE1  | 1.64           | 0.44        |  |
| 1:L:191:ILE:HG12  | 1:L:249:PHE:CD2  | 2.53           | 0.44        |  |
| 1:D:191:ILE:HG12  | 1:D:249:PHE:CD2  | 2.53           | 0.44        |  |
| 1:J:269:HIS:HE1   | 1:J:359:ARG:CZ   | 2.31           | 0.44        |  |
| 1:K:196:CYS:SG    | 1:K:206:VAL:HG11 | 2.57           | 0.44        |  |
| 1:A:191:ILE:HG12  | 1:A:249:PHE:CD2  | 2.53           | 0.44        |  |
| 1:K:383:LYS:HB3   | 1:K:383:LYS:HZ3  | 1.81           | 0.44        |  |
| 1:F:196:CYS:SG    | 1:F:206:VAL:HG11 | 2.57           | 0.44        |  |
| 1:I:191:ILE:HG12  | 1:I:249:PHE:CD2  | 2.53           | 0.44        |  |
| 1:L:269:HIS:HE1   | 1:L:359:ARG:CZ   | 2.31           | 0.44        |  |
| 1:B:269:HIS:HE1   | 1:B:359:ARG:CZ   | 2.31           | 0.44        |  |
| 1:C:191:ILE:HG12  | 1:C:249:PHE:CD2  | 2.53           | 0.44        |  |
| 1:C:114:TYR:CD1   | 1:C:431:GLY:HA3  | 2.53           | 0.44        |  |
| 1:C:295:LEU:O     | 1:C:388:PRO:HD3  | 2.18           | 0.44        |  |
| 1:H:191:ILE:HG12  | 1:H:249:PHE:CD2  | 2.53           | 0.44        |  |
| 1:I:269:HIS:HE1   | 1:I:359:ARG:CZ   | 2.31           | 0.44        |  |
| 1:J:114:TYR:CD1   | 1:J:431:GLY:HA3  | 2.53           | 0.44        |  |
| 1:L:196:CYS:SG    | 1:L:206:VAL:HG11 | 2.57           | 0.44        |  |
| 1:A:114:TYR:CD1   | 1:A:431:GLY:HA3  | 2.53           | 0.43        |  |
| 1:A:295:LEU:O     | 1:A:388:PRO:HD3  | 2.18           | 0.43        |  |
| 1:D:192:ARG:HH11  | 1:D:219:ASN:ND2  | 2.16           | 0.43        |  |
| 1:G:114:TYR:CD1   | 1:G:431:GLY:HA3  | 2.53           | 0.43        |  |
| 1:E:65:MET:HE1    | 1:E:94:PRO:HD3   | 2.00           | 0.43        |  |
| 1:E:114:TYR:CD1   | 1:E:431:GLY:HA3  | 2.53           | 0.43        |  |
| 1:F:114:TYR:CD1   | 1:F:431:GLY:HA3  | 2.53           | 0.43        |  |
| 1:F:192:ARG:HH11  | 1:F:219:ASN:ND2  | 2.17           | 0.43        |  |



| Interatomic Cla  |                 |              |             |  |
|------------------|-----------------|--------------|-------------|--|
| Atom-1           | Atom-2          | distance (Å) | overlap (Å) |  |
| 1:F:269:HIS:HE1  | 1:F:359:ABG:CZ  | 2.31         | 0.43        |  |
| 1:H:114:TYR:CD1  | 1:H:431:GLY:HA3 | 2.53         | 0.43        |  |
| 1:J:191:ILE:HG12 | 1:J:249:PHE:CD2 | 2.53         | 0.43        |  |
| 1:A:192:ARG:HH11 | 1:A:219:ASN:ND2 | 2.17         | 0.43        |  |
| 1:D:269:HIS:HE1  | 1:D:359:ARG:CZ  | 2.31         | 0.43        |  |
| 1:E:192:ARG:HH11 | 1:E:219:ASN:ND2 | 2.17         | 0.43        |  |
| 1:G:191:ILE:HG12 | 1:G:249:PHE:CD2 | 2.53         | 0.43        |  |
| 1:I:231:LYS:HD2  | 1:I:231:LYS:HA  | 1.66         | 0.43        |  |
| 1:K:231:LYS:HA   | 1:K:231:LYS:HD2 | 1.66         | 0.43        |  |
| 1:B:295:LEU:O    | 1:B:388:PRO:HD3 | 2.18         | 0.43        |  |
| 1:H:269:HIS:HE1  | 1:H:359:ARG:CZ  | 2.31         | 0.43        |  |
| 1:I:114:TYR:CD1  | 1:I:431:GLY:HA3 | 2.53         | 0.43        |  |
| 1:J:295:LEU:O    | 1:J:388:PRO:HD3 | 2.18         | 0.43        |  |
| 1:L:295:LEU:O    | 1:L:388:PRO:HD3 | 2.18         | 0.43        |  |
| 1:B:192:ARG:HH11 | 1:B:219:ASN:ND2 | 2.17         | 0.43        |  |
| 1:B:235:ILE:HD13 | 1:B:235:ILE:HA  | 1.86         | 0.43        |  |
| 1:D:114:TYR:CD1  | 1:D:431:GLY:HA3 | 2.53         | 0.43        |  |
| 1:K:269:HIS:HE1  | 1:K:359:ARG:CZ  | 2.31         | 0.43        |  |
| 1:A:269:HIS:HE1  | 1:A:359:ARG:CZ  | 2.31         | 0.43        |  |
| 1:G:100:TYR:CE2  | 1:G:102:ARG:HB3 | 2.54         | 0.43        |  |
| 1:H:295:LEU:O    | 1:H:388:PRO:HD3 | 2.18         | 0.43        |  |
| 1:L:192:ARG:HH11 | 1:L:219:ASN:ND2 | 2.17         | 0.43        |  |
| 1:A:100:TYR:CE2  | 1:A:102:ARG:HB3 | 2.54         | 0.43        |  |
| 1:B:114:TYR:CD1  | 1:B:431:GLY:HA3 | 2.53         | 0.43        |  |
| 1:L:114:TYR:CD1  | 1:L:431:GLY:HA3 | 2.53         | 0.43        |  |
| 1:C:231:LYS:HD2  | 1:C:231:LYS:HA  | 1.66         | 0.43        |  |
| 1:D:100:TYR:CE2  | 1:D:102:ARG:HB3 | 2.54         | 0.43        |  |
| 1:F:191:ILE:HG12 | 1:F:249:PHE:CD2 | 2.53         | 0.43        |  |
| 1:F:295:LEU:O    | 1:F:388:PRO:HD3 | 2.18         | 0.43        |  |
| 1:I:295:LEU:O    | 1:I:388:PRO:HD3 | 2.18         | 0.43        |  |
| 1:C:100:TYR:CE2  | 1:C:102:ARG:HB3 | 2.54         | 0.43        |  |
| 1:D:231:LYS:HA   | 1:D:231:LYS:HD2 | 1.66         | 0.43        |  |
| 1:J:100:TYR:CE2  | 1:J:102:ARG:HB3 | 2.54         | 0.43        |  |
| 1:K:100:TYR:CE2  | 1:K:102:ARG:HB3 | 2.54         | 0.43        |  |
| 1:K:114:TYR:CD1  | 1:K:431:GLY:HA3 | 2.53         | 0.43        |  |
| 1:L:100:TYR:CE2  | 1:L:102:ARG:HB3 | 2.54         | 0.43        |  |
| 1:G:295:LEU:O    | 1:G:388:PRO:HD3 | 2.18         | 0.42        |  |
| 1:B:100:TYR:CE2  | 1:B:102:ARG:HB3 | 2.54         | 0.42        |  |
| 1:B:191:ILE:O    | 1:B:195:MET:HG3 | 2.19         | 0.42        |  |
| 1:C:149:VAL:HG21 | 1:K:462:PHE:CD1 | 2.54         | 0.42        |  |
| 1:E:100:TYR:CE2  | 1:E:102:ARG:HB3 | 2.54         | 0.42        |  |



|                  | lo uo puge       | Interatomic  | Clash       |  |
|------------------|------------------|--------------|-------------|--|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |  |
| 1:G:192:ARG:HH11 | 1:G:219:ASN:ND2  | 2.17         | 0.42        |  |
| 1:I:100:TYR:CE2  | 1:I:102:ARG:HB3  | 2.54         | 0.42        |  |
| 1:C:192:ARG:HH11 | 1:C:219:ASN:ND2  | 2.17         | 0.42        |  |
| 1:D:295:LEU:O    | 1:D:388:PRO:HD3  | 2.18         | 0.42        |  |
| 1:E:191:ILE:O    | 1:E:195:MET:HG3  | 2.20         | 0.42        |  |
| 1:E:295:LEU:O    | 1:E:388:PRO:HD3  | 2.18         | 0.42        |  |
| 1:H:191:ILE:O    | 1:H:195:MET:HG3  | 2.20         | 0.42        |  |
| 1:H:192:ARG:HH11 | 1:H:219:ASN:ND2  | 2.17         | 0.42        |  |
| 1:K:191:ILE:O    | 1:K:195:MET:HG3  | 2.20         | 0.42        |  |
| 1:C:191:ILE:O    | 1:C:195:MET:HG3  | 2.20         | 0.42        |  |
| 1:C:315:THR:HB   | 1:K:465:TYR:CE2  | 2.53         | 0.42        |  |
| 1:J:191:ILE:O    | 1:J:195:MET:HG3  | 2.20         | 0.42        |  |
| 1:K:192:ARG:HH11 | 1:K:219:ASN:ND2  | 2.17         | 0.42        |  |
| 1:K:295:LEU:O    | 1:K:388:PRO:HD3  | 2.18         | 0.42        |  |
| 1:D:383:LYS:HB3  | 1:D:383:LYS:HZ2  | 1.84         | 0.42        |  |
| 1:G:191:ILE:O    | 1:G:195:MET:HG3  | 2.19         | 0.42        |  |
| 1:I:192:ARG:HH11 | 1:I:219:ASN:ND2  | 2.17         | 0.42        |  |
| 1:J:235:ILE:HD13 | 1:J:235:ILE:HA   | 1.86         | 0.42        |  |
| 1:A:252:THR:HB   | 1:F:169:LYS:HA   | 2.01         | 0.42        |  |
| 1:F:100:TYR:CE2  | 1:F:102:ARG:HB3  | 2.54         | 0.42        |  |
| 1:L:191:ILE:O    | 1:L:195:MET:HG3  | 2.20         | 0.42        |  |
| 1:F:191:ILE:O    | 1:F:195:MET:HG3  | 2.20         | 0.42        |  |
| 1:G:169:LYS:HA   | 1:H:252:THR:HB   | 2.02         | 0.42        |  |
| 1:H:100:TYR:CE2  | 1:H:102:ARG:HB3  | 2.54         | 0.42        |  |
| 1:H:231:LYS:HA   | 1:H:231:LYS:HD2  | 1.66         | 0.42        |  |
| 1:J:192:ARG:HH11 | 1:J:219:ASN:ND2  | 2.17         | 0.42        |  |
| 1:D:466:TYR:CZ   | 1:J:138:ILE:HG21 | 2.55         | 0.42        |  |
| 1:F:296:TYR:O    | 1:F:381:GLY:HA3  | 2.20         | 0.42        |  |
| 1:G:296:TYR:O    | 1:G:381:GLY:HA3  | 2.20         | 0.42        |  |
| 1:H:296:TYR:O    | 1:H:381:GLY:HA3  | 2.20         | 0.42        |  |
| 1:L:383:LYS:HB3  | 1:L:383:LYS:HZ3  | 1.84         | 0.42        |  |
| 1:E:296:TYR:O    | 1:E:381:GLY:HA3  | 2.20         | 0.42        |  |
| 1:F:57:TRP:CH2   | 1:F:91:ILE:HG13  | 2.55         | 0.42        |  |
| 1:I:312:ALA:HB1  | 1:I:361:PRO:HB3  | 2.02         | 0.42        |  |
| 1:J:296:TYR:O    | 1:J:381:GLY:HA3  | 2.20         | 0.42        |  |
| 1:L:57:TRP:CH2   | 1:L:91:ILE:HG13  | 2.55         | 0.42        |  |
| 1:C:138:ILE:HG21 | 1:K:466:TYR:CZ   | 2.55         | 0.41        |  |
| 1:C:312:ALA:HB1  | 1:C:361:PRO:HB3  | 2.02         | 0.41        |  |
| 1:D:296:TYR:O    | 1:D:381:GLY:HA3  | 2.20         | 0.41        |  |
| 1:K:296:TYR:O    | 1:K:381:GLY:HA3  | 2.20         | 0.41        |  |
| 1:E:57:TRP:CH2   | 1:E:91:ILE:HG13  | 2.55         | 0.41        |  |



|                  | , and pagetti    | Interatomic  | Clash<br>overlap (Å) |  |
|------------------|------------------|--------------|----------------------|--|
| Atom-1           | Atom-2           | distance (Å) |                      |  |
| 1:G:312:ALA:HB1  | 1:G:361:PRO:HB3  | 2.02         | 0.41                 |  |
| 1:B:296:TYR:O    | 1:B:381:GLY:HA3  | 2.20         | 0.41                 |  |
| 1:C:296:TYR:O    | 1:C:381:GLY:HA3  | 2.20         | 0.41                 |  |
| 1:G:57:TRP:CH2   | 1:G:91:ILE:HG13  | 2.55         | 0.41                 |  |
| 1:I:191:ILE:O    | 1:I:195:MET:HG3  | 2.20         | 0.41                 |  |
| 1:K:312:ALA:HB1  | 1:K:361:PRO:HB3  | 2.02         | 0.41                 |  |
| 1:L:235:ILE:HD13 | 1:L:235:ILE:HA   | 1.86         | 0.41                 |  |
| 1:D:57:TRP:CH2   | 1:D:91:ILE:HG13  | 2.55         | 0.41                 |  |
| 1:F:418:LEU:HD11 | 1:F:446:ARG:HB3  | 2.02         | 0.41                 |  |
| 1:I:57:TRP:CH2   | 1:I:91:ILE:HG13  | 2.55         | 0.41                 |  |
| 1:A:235:ILE:HD13 | 1:A:235:ILE:HA   | 1.86         | 0.41                 |  |
| 1:A:296:TYR:O    | 1:A:381:GLY:HA3  | 2.20         | 0.41                 |  |
| 1:A:312:ALA:HB1  | 1:A:361:PRO:HB3  | 2.02         | 0.41                 |  |
| 1:C:57:TRP:CH2   | 1:C:91:ILE:HG13  | 2.55         | 0.41                 |  |
| 1:C:418:LEU:HD11 | 1:C:446:ARG:HB3  | 2.02         | 0.41                 |  |
| 1:H:57:TRP:CH2   | 1:H:91:ILE:HG13  | 2.55         | 0.41                 |  |
| 1:E:312:ALA:HB1  | 1:E:361:PRO:HB3  | 2.02         | 0.41                 |  |
| 1:G:418:LEU:HD11 | 1:G:446:ARG:HB3  | 2.02         | 0.41                 |  |
| 1:J:312:ALA:HB1  | 1:J:361:PRO:HB3  | 2.02         | 0.41                 |  |
| 1:K:418:LEU:HD11 | 1:K:446:ARG:HB3  | 2.02         | 0.41                 |  |
| 1:A:191:ILE:O    | 1:A:195:MET:HG3  | 2.20         | 0.41                 |  |
| 1:B:312:ALA:HB1  | 1:B:361:PRO:HB3  | 2.02         | 0.41                 |  |
| 1:F:312:ALA:HB1  | 1:F:361:PRO:HB3  | 2.02         | 0.41                 |  |
| 1:D:191:ILE:O    | 1:D:195:MET:HG3  | 2.19         | 0.41                 |  |
| 1:F:223:THR:HG23 | 1:F:231:LYS:HZ1  | 1.85         | 0.41                 |  |
| 1:F:231:LYS:HA   | 1:F:231:LYS:HD2  | 1.66         | 0.41                 |  |
| 1:J:418:LEU:HD11 | 1:J:446:ARG:HB3  | 2.02         | 0.41                 |  |
| 1:L:296:TYR:O    | 1:L:381:GLY:HA3  | 2.20         | 0.41                 |  |
| 1:L:312:ALA:HB1  | 1:L:361:PRO:HB3  | 2.02         | 0.41                 |  |
| 1:B:57:TRP:CH2   | 1:B:91:ILE:HG13  | 2.55         | 0.41                 |  |
| 1:D:312:ALA:HB1  | 1:D:361:PRO:HB3  | 2.02         | 0.41                 |  |
| 1:F:334:TYR:HA   | 1:F:343:ILE:HB   | 2.04         | 0.41                 |  |
| 1:H:334:TYR:HA   | 1:H:343:ILE:HB   | 2.04         | 0.41                 |  |
| 1:H:418:LEU:HD11 | 1:H:446:ARG:HB3  | 2.02         | 0.41                 |  |
| 1:L:334:TYR:HA   | 1:L:343:ILE:HB   | 2.03         | 0.41                 |  |
| 1:C:466:TYR:CZ   | 1:K:138:ILE:HG21 | 2.56         | 0.40                 |  |
| 1:H:312:ALA:HB1  | 1:H:361:PRO:HB3  | 2.02         | 0.40                 |  |
| 1:J:390:GLU:HA   | 1:J:391:PRO:HD3  | 1.92         | 0.40                 |  |
| 1:C:235:ILE:HD13 | 1:C:235:ILE:HA   | 1.86         | 0.40                 |  |
| 1:C:465:TYR:CE2  | 1:K:315:THR:HB   | 2.56         | 0.40                 |  |
| 1:D:334:TYR:HA   | 1:D:343:ILE:HB   | 2.03         | 0.40                 |  |



| Atom 1           | Atom 2          | Interatomic  | Clash       |
|------------------|-----------------|--------------|-------------|
| Atom-1           | Atom-2          | distance (Å) | overlap (Å) |
| 1:I:418:LEU:HD11 | 1:I:446:ARG:HB3 | 2.02         | 0.40        |
| 1:J:57:TRP:CH2   | 1:J:91:ILE:HG13 | 2.55         | 0.40        |
| 1:K:57:TRP:CH2   | 1:K:91:ILE:HG13 | 2.55         | 0.40        |
| 1:H:68:MET:HA    | 1:H:69:PRO:HD2  | 1.94         | 0.40        |
| 1:H:390:GLU:HA   | 1:H:391:PRO:HD3 | 1.92         | 0.40        |
| 1:D:235:ILE:HD13 | 1:D:235:ILE:HA  | 1.86         | 0.40        |
| 1:A:57:TRP:CH2   | 1:A:91:ILE:HG13 | 2.55         | 0.40        |
| 1:A:223:THR:HG23 | 1:A:231:LYS:HZ1 | 1.87         | 0.40        |
| 1:A:334:TYR:HA   | 1:A:343:ILE:HB  | 2.03         | 0.40        |
| 1:I:296:TYR:O    | 1:I:381:GLY:HA3 | 2.20         | 0.40        |
| 1:K:334:TYR:HA   | 1:K:343:ILE:HB  | 2.04         | 0.40        |

All (2) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

| Atom-1       | Atom-2                  | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|--------------|-------------------------|-----------------------------|----------------------|
| 1:C:1:SER:OG | $1:F:13:GLU:OE2[4_454]$ | 1.12                        | 1.08                 |
| 1:C:1:SER:OG | 1:F:13:GLU:CD[4_454]    | 2.07                        | 0.13                 |

# 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed      | Favoured  | Allowed | Outliers | Perc | entiles |
|-----|-------|---------------|-----------|---------|----------|------|---------|
| 1   | А     | 437/468~(93%) | 394 (90%) | 28 (6%) | 15 (3%)  | 3    | 13      |
| 1   | В     | 437/468~(93%) | 393~(90%) | 29~(7%) | 15 (3%)  | 3    | 13      |
| 1   | С     | 437/468~(93%) | 393 (90%) | 29 (7%) | 15 (3%)  | 3    | 13      |
| 1   | D     | 437/468~(93%) | 394 (90%) | 28 (6%) | 15 (3%)  | 3    | 13      |
| 1   | Е     | 437/468~(93%) | 392 (90%) | 30 (7%) | 15 (3%)  | 3    | 13      |
| 1   | F     | 437/468~(93%) | 394 (90%) | 28 (6%) | 15 (3%)  | 3    | 13      |
| 1   | G     | 437/468~(93%) | 394 (90%) | 28 (6%) | 15 (3%)  | 3    | 13      |



| Mol | Chain | Analysed        | Favoured   | Allowed  | Outliers | Perc | entiles |
|-----|-------|-----------------|------------|----------|----------|------|---------|
| 1   | Н     | 437/468~(93%)   | 394 (90%)  | 28~(6%)  | 15 (3%)  | 3    | 13      |
| 1   | Ι     | 437/468~(93%)   | 394 (90%)  | 28~(6%)  | 15 (3%)  | 3    | 13      |
| 1   | J     | 437/468~(93%)   | 393~(90%)  | 29~(7%)  | 15 (3%)  | 3    | 13      |
| 1   | Κ     | 437/468~(93%)   | 394 (90%)  | 28~(6%)  | 15 (3%)  | 3    | 13      |
| 1   | L     | 437/468~(93%)   | 394~(90%)  | 28~(6%)  | 15 (3%)  | 3    | 13      |
| All | All   | 5244/5616~(93%) | 4723 (90%) | 341~(6%) | 180 (3%) | 3    | 13      |

Continued from previous page...

All (180) Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 180 | PHE  |
| 1   | В     | 180 | PHE  |
| 1   | С     | 180 | PHE  |
| 1   | D     | 180 | PHE  |
| 1   | Е     | 180 | PHE  |
| 1   | F     | 180 | PHE  |
| 1   | G     | 180 | PHE  |
| 1   | Н     | 180 | PHE  |
| 1   | Ι     | 180 | PHE  |
| 1   | J     | 180 | PHE  |
| 1   | Κ     | 180 | PHE  |
| 1   | L     | 180 | PHE  |
| 1   | А     | 40  | ALA  |
| 1   | А     | 286 | LYS  |
| 1   | А     | 338 | ASN  |
| 1   | А     | 340 | SER  |
| 1   | В     | 40  | ALA  |
| 1   | В     | 286 | LYS  |
| 1   | В     | 338 | ASN  |
| 1   | В     | 340 | SER  |
| 1   | С     | 40  | ALA  |
| 1   | С     | 286 | LYS  |
| 1   | С     | 338 | ASN  |
| 1   | С     | 340 | SER  |
| 1   | D     | 40  | ALA  |
| 1   | D     | 286 | LYS  |
| 1   | D     | 338 | ASN  |
| 1   | D     | 340 | SER  |
| 1   | Е     | 40  | ALA  |
| 1   | Е     | 286 | LYS  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | Е     | 338 | ASN  |
| 1   | Е     | 340 | SER  |
| 1   | F     | 40  | ALA  |
| 1   | F     | 286 | LYS  |
| 1   | F     | 338 | ASN  |
| 1   | F     | 340 | SER  |
| 1   | G     | 40  | ALA  |
| 1   | G     | 286 | LYS  |
| 1   | G     | 338 | ASN  |
| 1   | G     | 340 | SER  |
| 1   | Н     | 40  | ALA  |
| 1   | Н     | 286 | LYS  |
| 1   | Н     | 338 | ASN  |
| 1   | Н     | 340 | SER  |
| 1   | Ι     | 40  | ALA  |
| 1   | Ι     | 286 | LYS  |
| 1   | Ι     | 338 | ASN  |
| 1   | Ι     | 340 | SER  |
| 1   | J     | 40  | ALA  |
| 1   | J     | 286 | LYS  |
| 1   | J     | 338 | ASN  |
| 1   | J     | 340 | SER  |
| 1   | К     | 40  | ALA  |
| 1   | K     | 286 | LYS  |
| 1   | К     | 338 | ASN  |
| 1   | K     | 340 | SER  |
| 1   | L     | 40  | ALA  |
| 1   | L     | 286 | LYS  |
| 1   | L     | 338 | ASN  |
| 1   | L     | 340 | SER  |
| 1   | A     | 285 | ASP  |
| 1   | А     | 350 | SER  |
| 1   | В     | 285 | ASP  |
| 1   | В     | 350 | SER  |
| 1   | С     | 285 | ASP  |
| 1   | C     | 350 | SER  |
| 1   | D     | 285 | ASP  |
| 1   | D     | 350 | SER  |
| 1   | E     | 285 | ASP  |
| 1   | Е     | 350 | SER  |
| 1   | F     | 285 | ASP  |
| 1   | F     | 350 | SER  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | G     | 285 | ASP  |
| 1   | G     | 350 | SER  |
| 1   | Н     | 285 | ASP  |
| 1   | Н     | 350 | SER  |
| 1   | Ι     | 285 | ASP  |
| 1   | Ι     | 350 | SER  |
| 1   | J     | 285 | ASP  |
| 1   | J     | 350 | SER  |
| 1   | K     | 285 | ASP  |
| 1   | К     | 350 | SER  |
| 1   | L     | 285 | ASP  |
| 1   | L     | 350 | SER  |
| 1   | А     | 36  | HIS  |
| 1   | А     | 170 | GLY  |
| 1   | А     | 351 | PRO  |
| 1   | А     | 353 | ALA  |
| 1   | В     | 36  | HIS  |
| 1   | В     | 170 | GLY  |
| 1   | В     | 351 | PRO  |
| 1   | В     | 353 | ALA  |
| 1   | С     | 36  | HIS  |
| 1   | С     | 170 | GLY  |
| 1   | С     | 351 | PRO  |
| 1   | С     | 353 | ALA  |
| 1   | D     | 36  | HIS  |
| 1   | D     | 170 | GLY  |
| 1   | D     | 351 | PRO  |
| 1   | D     | 353 | ALA  |
| 1   | Е     | 36  | HIS  |
| 1   | Е     | 170 | GLY  |
| 1   | Е     | 351 | PRO  |
| 1   | Е     | 353 | ALA  |
| 1   | F     | 36  | HIS  |
| 1   | F     | 170 | GLY  |
| 1   | F     | 351 | PRO  |
| 1   | F     | 353 | ALA  |
| 1   | G     | 36  | HIS  |
| 1   | G     | 170 | GLY  |
| 1   | G     | 351 | PRO  |
| 1   | G     | 353 | ALA  |
| 1   | Н     | 36  | HIS  |
| 1   | Н     | 170 | GLY  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | Н     | 351 | PRO  |
| 1   | Н     | 353 | ALA  |
| 1   | Ι     | 36  | HIS  |
| 1   | Ι     | 170 | GLY  |
| 1   | Ι     | 351 | PRO  |
| 1   | Ι     | 353 | ALA  |
| 1   | J     | 36  | HIS  |
| 1   | J     | 170 | GLY  |
| 1   | J     | 351 | PRO  |
| 1   | J     | 353 | ALA  |
| 1   | K     | 36  | HIS  |
| 1   | K     | 170 | GLY  |
| 1   | K     | 351 | PRO  |
| 1   | K     | 353 | ALA  |
| 1   | L     | 36  | HIS  |
| 1   | L     | 170 | GLY  |
| 1   | L     | 351 | PRO  |
| 1   | L     | 353 | ALA  |
| 1   | А     | 228 | MET  |
| 1   | А     | 277 | ASN  |
| 1   | А     | 352 | LYS  |
| 1   | В     | 228 | MET  |
| 1   | В     | 277 | ASN  |
| 1   | В     | 352 | LYS  |
| 1   | С     | 228 | MET  |
| 1   | С     | 277 | ASN  |
| 1   | С     | 352 | LYS  |
| 1   | D     | 228 | MET  |
| 1   | D     | 277 | ASN  |
| 1   | D     | 352 | LYS  |
| 1   | Е     | 228 | MET  |
| 1   | Е     | 277 | ASN  |
| 1   | Е     | 352 | LYS  |
| 1   | F     | 228 | MET  |
| 1   | F     | 277 | ASN  |
| 1   | F     | 352 | LYS  |
| 1   | G     | 228 | MET  |
| 1   | G     | 277 | ASN  |
| 1   | G     | 352 | LYS  |
| 1   | Н     | 228 | MET  |
| 1   | Н     | 277 | ASN  |
| 1   | Н     | 352 | LYS  |
|     | -     | -   |      |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | Ι     | 228 | MET  |
| 1   | Ι     | 277 | ASN  |
| 1   | Ι     | 352 | LYS  |
| 1   | J     | 228 | MET  |
| 1   | J     | 277 | ASN  |
| 1   | J     | 352 | LYS  |
| 1   | К     | 228 | MET  |
| 1   | K     | 277 | ASN  |
| 1   | К     | 352 | LYS  |
| 1   | L     | 228 | MET  |
| 1   | L     | 277 | ASN  |
| 1   | L     | 352 | LYS  |
| 1   | А     | 386 | ILE  |
| 1   | В     | 386 | ILE  |
| 1   | С     | 386 | ILE  |
| 1   | D     | 386 | ILE  |
| 1   | Е     | 386 | ILE  |
| 1   | F     | 386 | ILE  |
| 1   | G     | 386 | ILE  |
| 1   | Н     | 386 | ILE  |
| 1   | Ι     | 386 | ILE  |
| 1   | J     | 386 | ILE  |
| 1   | К     | 386 | ILE  |
| 1   | L     | 386 | ILE  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed      | Rotameric | Outliers | Per | centiles |
|-----|-------|---------------|-----------|----------|-----|----------|
| 1   | А     | 365/384~(95%) | 325~(89%) | 40 (11%) | 6   | 19       |
| 1   | В     | 365/384~(95%) | 325~(89%) | 40 (11%) | 6   | 19       |
| 1   | С     | 365/384~(95%) | 325~(89%) | 40 (11%) | 6   | 19       |
| 1   | D     | 365/384~(95%) | 325~(89%) | 40 (11%) | 6   | 19       |
| 1   | Е     | 365/384~(95%) | 325~(89%) | 40 (11%) | 6   | 19       |



| Mol | Chain | Analysed        | Rotameric  | Outliers  | P | erc | entiles |
|-----|-------|-----------------|------------|-----------|---|-----|---------|
| 1   | F     | 365/384~(95%)   | 325~(89%)  | 40 (11%)  |   | 6   | 19      |
| 1   | G     | 365/384~(95%)   | 325~(89%)  | 40 (11%)  |   | 6   | 19      |
| 1   | Н     | 365/384~(95%)   | 325~(89%)  | 40 (11%)  |   | 6   | 19      |
| 1   | Ι     | 365/384~(95%)   | 325~(89%)  | 40 (11%)  |   | 6   | 19      |
| 1   | J     | 365/384~(95%)   | 325~(89%)  | 40 (11%)  |   | 6   | 19      |
| 1   | Κ     | 365/384~(95%)   | 325~(89%)  | 40 (11%)  |   | 6   | 19      |
| 1   | L     | 365/384~(95%)   | 325~(89%)  | 40 (11%)  |   | 6   | 19      |
| All | All   | 4380/4608~(95%) | 3900 (89%) | 480 (11%) |   | 6   | 19      |

Continued from previous page...

All (480) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 9   | LEU  |
| 1   | А     | 11  | GLU  |
| 1   | А     | 19  | LEU  |
| 1   | А     | 33  | ILE  |
| 1   | А     | 36  | HIS  |
| 1   | А     | 39  | ASN  |
| 1   | А     | 45  | GLU  |
| 1   | А     | 75  | VAL  |
| 1   | А     | 76  | ILE  |
| 1   | А     | 85  | LEU  |
| 1   | А     | 88  | ARG  |
| 1   | А     | 101 | ASP  |
| 1   | А     | 105 | ARG  |
| 1   | А     | 115 | LEU  |
| 1   | А     | 122 | ASP  |
| 1   | А     | 124 | VAL  |
| 1   | А     | 143 | SER  |
| 1   | А     | 165 | GLU  |
| 1   | А     | 183 | PRO  |
| 1   | А     | 194 | GLU  |
| 1   | А     | 223 | THR  |
| 1   | А     | 226 | ASN  |
| 1   | А     | 286 | LYS  |
| 1   | А     | 314 | PRO  |
| 1   | А     | 324 | PRO  |
| 1   | А     | 331 | MET  |
| 1   | А     | 332 | LEU  |
| 1   | А     | 337 | ARG  |



| 1       A       339       ARG         1       A       340       SER         1       A       350       SER         1       A       352       LYS         1       A       374       LEU         1       A       375       LEU         1       A       383       LYS         1       A       383       LYS         1       A       428       LEU         1       A       446       ARG         1       A       446       KEU         1       A       464       LEU         1       A       464       LEU         1       A       464       LEU         1       B       1       GLU         1       B       1       GLU         1       B       1       GLU         1       B       33       ILE         1       B       36       HIS         1       B       37       VAL         1       B       75       VAL         1       B       101       ASP         1       B                                                        | Mol | Chain | Res | Type |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-----|------|
| 1       A       340       SER         1       A       350       SER         1       A       352       LYS         1       A       374       LEU         1       A       375       LEU         1       A       383       LYS         1       A       428       LEU         1       A       446       ARG         1       A       446       ARG         1       A       464       LEU         1       A       464       LEU         1       A       464       LEU         1       A       464       LEU         1       B       9       LEU         1       B       11       GLU         1       B       13       ILE         1       B       33       ILE         1       B       36       HIS         1       B       75       VAL         1       B       75       VAL         1       B       101       ASP         1       B       105       ARG         1       B <th>1</th> <th>А</th> <th>339</th> <th>ARG</th>      | 1   | А     | 339 | ARG  |
| 1       A       350       SER         1       A       352       LYS         1       A       374       LEU         1       A       375       LEU         1       A       383       LYS         1       A       428       LEU         1       A       428       LEU         1       A       446       ARG         1       A       464       LEU         1       A       464       LEU         1       A       468       VAL         1       B       9       LEU         1       A       468       VAL         1       B       11       GLU         1       B       11       GLU         1       B       13       ILE         1       B       33       ILE         1       B       36       HIS         1       B       37       VAL         1       B       75       VAL         1       B       165       GLU         1       B       101       ASP         1       B <td>1</td> <td>А</td> <td>340</td> <td>SER</td>       | 1   | А     | 340 | SER  |
| 1       A $352$ LYS         1       A $374$ LEU         1       A $375$ LEU         1       A $383$ LYS         1       A $428$ LEU         1       A $446$ ARG         1       A $446$ ARG         1       A $464$ LEU         1       A $464$ LEU         1       A $468$ VAL         1       B $9$ LEU         1       A $463$ VAL         1       B $19$ LEU         1       B $19$ LEU         1       B $33$ ILE         1       B $36$ HIS         1       B $39$ ASN         1       B $75$ VAL         1       B $75$ VAL         1       B $101$ ASP         1       B $105$ ARG         1       B $105$ ARG </td <td>1</td> <td>А</td> <td>350</td> <td>SER</td>                                                                                                                                                                                                                                                | 1   | А     | 350 | SER  |
| 1       A $374$ LEU         1       A $375$ LEU         1       A $383$ LYS         1       A $428$ LEU         1       A $446$ ARG         1       A $446$ ARG         1       A $446$ LEU         1       A $464$ LEU         1       A $464$ LEU         1       A $463$ VAL         1       B       9       LEU         1       B       10       GLU         1       B       11       GLU         1       B       33       ILE         1       B       36       HIS         1       B       36       HIS         1       B       75       VAL         1       B       75       VAL         1       B       101       ASP         1       B       105       ARG         1       B       105       ARG         1       B       122       ASP         1                                                                                                                                                                   | 1   | А     | 352 | LYS  |
| 1       A $375$ LEU         1       A $383$ LYS         1       A $428$ LEU         1       A $446$ ARG         1       A $446$ ARG         1       A $464$ LEU         1       A $464$ LEU         1       A $468$ VAL         1       B       9       LEU         1       B       11       GLU         1       B       19       LEU         1       B       33       ILE         1       B       36       HIS         1       B       36       HIS         1       B       36       GLU         1       B       75       VAL         1       B       75       VAL         1       B       101       ASP         1       B       105       ARG         1       B       105       ARG         1       B       122       ASP         1       B       143       SER         1                                                                                                                                                | 1   | А     | 374 | LEU  |
| 1       A       383       LYS         1       A       428       LEU         1       A       446       ARG         1       A       447       ARG         1       A       464       LEU         1       A       468       VAL         1       B       9       LEU         1       B       11       GLU         1       B       11       GLU         1       B       11       GLU         1       B       33       ILE         1       B       36       HIS         1       B       36       HIS         1       B       36       ILE         1       B       75       VAL         1       B       75       VAL         1       B       76       ILE         1       B       101       ASP         1       B       105       ARG         1       B       105       ARG         1       B       122       ASP         1       B       143       SER         1       B                                                          | 1   | А     | 375 | LEU  |
| 1       A       428       LEU         1       A       446       ARG         1       A       464       LEU         1       A       464       LEU         1       A       468       VAL         1       B       9       LEU         1       B       9       LEU         1       B       11       GLU         1       B       19       LEU         1       B       33       ILE         1       B       36       HIS         1       B       36       HIS         1       B       37       VAL         1       B       75       VAL         1       B       76       ILE         1       B       76       ILE         1       B       105       ARG         1       B       105       ARG         1       B       122       ASP         1       B       124       VAL         1       B       143       SER         1       B       165       GLU         1       B                                                           | 1   | А     | 383 | LYS  |
| 1       A       446       ARG         1       A       447       ARG         1       A       464       LEU         1       A       468       VAL         1       B       9       LEU         1       B       11       GLU         1       B       11       GLU         1       B       19       LEU         1       B       33       ILE         1       B       36       HIS         1       B       36       HIS         1       B       36       GLU         1       B       75       VAL         1       B       76       ILE         1       B       76       ILE         1       B       105       ARG         1       B       105       ARG         1       B       122       ASP         1       B       124       VAL         1       B       143       SER         1       B       165       GLU         1       B       183       PRO         1       B                                                          | 1   | А     | 428 | LEU  |
| 1       A       447       ARG         1       A       464       LEU         1       A       468       VAL         1       B       9       LEU         1       B       11       GLU         1       B       11       GLU         1       B       19       LEU         1       B       33       ILE         1       B       36       HIS         1       B       36       HIS         1       B       36       GLU         1       B       75       VAL         1       B       75       VAL         1       B       76       ILE         1       B       85       LEU         1       B       101       ASP         1       B       105       ARG         1       B       105       ARG         1       B       122       ASP         1       B       124       VAL         1       B       143       SER         1       B       165       GLU         1       B                                                           | 1   | А     | 446 | ARG  |
| 1       A       464       LEU         1       A       468       VAL         1       B       9       LEU         1       B       11       GLU         1       B       19       LEU         1       B       33       ILE         1       B       33       ILE         1       B       36       HIS         1       B       36       HIS         1       B       37       VAL         1       B       75       VAL         1       B       76       ILE         1       B       76       ILE         1       B       88       ARG         1       B       101       ASP         1       B       105       ARG         1       B       115       LEU         1       B       122       ASP         1       B       124       VAL         1       B       143       SER         1       B       165       GLU         1       B       183       PRO         1       B                                                           | 1   | А     | 447 | ARG  |
| 1       A       468       VAL         1       B       9       LEU         1       B       11       GLU         1       B       19       LEU         1       B       33       ILE         1       B       33       ILE         1       B       36       HIS         1       B       36       HIS         1       B       37       VAL         1       B       75       VAL         1       B       76       ILE         1       B       76       ILE         1       B       85       LEU         1       B       101       ASP         1       B       105       ARG         1       B       105       ARG         1       B       122       ASP         1       B       124       VAL         1       B       143       SER         1       B       143       SER         1       B       143       SER         1       B       143       PRO         1       B                                                           | 1   | А     | 464 | LEU  |
| 1       B       9       LEU         1       B       11       GLU         1       B       33       ILE         1       B       36       HIS         1       B       36       HIS         1       B       36       HIS         1       B       37       ASN         1       B       75       VAL         1       B       76       ILE         1       B       76       ILE         1       B       85       LEU         1       B       88       ARG         1       B       101       ASP         1       B       105       ARG         1       B       122       ASP         1       B       124       VAL         1       B       143       SER         1       B       143       SER         1       B       143       SER         1       B       183       PRO         1       B       226       ASN         1       B       226       ASN         1       B                                                           | 1   | А     | 468 | VAL  |
| 1       B       11       GLU         1       B       19       LEU         1       B       33       ILE         1       B       36       HIS         1       B       39       ASN         1       B       39       ASN         1       B       75       VAL         1       B       75       VAL         1       B       76       ILE         1       B       85       LEU         1       B       88       ARG         1       B       101       ASP         1       B       105       ARG         1       B       105       ARG         1       B       122       ASP         1       B       124       VAL         1       B       143       SER         1       B       183       PRO         1       B       183       PRO         1       B       226       ASN         1       B       226       ASN         1       B       314       PRO         1       B                                                         | 1   | В     | 9   | LEU  |
| 1       B       19       LEU         1       B       33       ILE         1       B       36       HIS         1       B       39       ASN         1       B       39       ASN         1       B       75       VAL         1       B       75       VAL         1       B       76       ILE         1       B       85       LEU         1       B       88       ARG         1       B       101       ASP         1       B       105       ARG         1       B       105       ARG         1       B       122       ASP         1       B       122       ASP         1       B       124       VAL         1       B       143       SER         1       B       165       GLU         1       B       183       PRO         1       B       184       PRO         1       B       226       ASN         1       B       314       PRO         1       B                                                        | 1   | В     | 11  | GLU  |
| 1       B       33       ILE         1       B       36       HIS         1       B       39       ASN         1       B       45       GLU         1       B       75       VAL         1       B       76       ILE         1       B       85       LEU         1       B       88       ARG         1       B       101       ASP         1       B       105       ARG         1       B       105       ARG         1       B       122       ASP         1       B       122       ASP         1       B       124       VAL         1       B       143       SER         1       B       165       GLU         1       B       183       PRO         1       B       183       PRO         1       B       226       ASN         1       B       226       ASN         1       B       314       PRO         1       B       331       MET         1       B <td>1</td> <td>В</td> <td>19</td> <td>LEU</td>       | 1   | В     | 19  | LEU  |
| 1       B       36       HIS         1       B       39       ASN         1       B       45       GLU         1       B       75       VAL         1       B       76       ILE         1       B       85       LEU         1       B       88       ARG         1       B       101       ASP         1       B       105       ARG         1       B       105       ARG         1       B       122       ASP         1       B       122       ASP         1       B       122       ASP         1       B       124       VAL         1       B       143       SER         1       B       143       SER         1       B       183       PRO         1       B       183       PRO         1       B       226       ASN         1       B       314       PRO         1       B       324       PRO         1       B       331       MET         1       B </td <td>1</td> <td>В</td> <td>33</td> <td>ILE</td> | 1   | В     | 33  | ILE  |
| 1       B       39       ASN         1       B       45       GLU         1       B       75       VAL         1       B       76       ILE         1       B       85       LEU         1       B       85       LEU         1       B       88       ARG         1       B       101       ASP         1       B       105       ARG         1       B       105       ARG         1       B       122       ASP         1       B       122       ASP         1       B       124       VAL         1       B       124       VAL         1       B       143       SER         1       B       165       GLU         1       B       183       PRO         1       B       226       ASN         1       B       226       ASN         1       B       314       PRO         1       B       331       MET         1       B       332       LEU         1       B </td <td>1</td> <td>В</td> <td>36</td> <td>HIS</td> | 1   | В     | 36  | HIS  |
| 1       B       45       GLU         1       B       75       VAL         1       B       76       ILE         1       B       85       LEU         1       B       85       LEU         1       B       88       ARG         1       B       101       ASP         1       B       105       ARG         1       B       122       ASP         1       B       122       ASP         1       B       124       VAL         1       B       143       SER         1       B       143       SER         1       B       165       GLU         1       B       183       PRO         1       B       183       PRO         1       B       226       ASN         1       B       314       PRO         1       B       331       MET         1       B       331       MET         1       B       337       ARG         1       B       339       ARG         1       B<                                                   | 1   | В     | 39  | ASN  |
| 1       B       75       VAL         1       B       76       ILE         1       B       85       LEU         1       B       88       ARG         1       B       101       ASP         1       B       105       ARG         1       B       105       ARG         1       B       122       ASP         1       B       122       ASP         1       B       124       VAL         1       B       124       VAL         1       B       143       SER         1       B       143       SER         1       B       165       GLU         1       B       183       PRO         1       B       223       THR         1       B       226       ASN         1       B       314       PRO         1       B       324       PRO         1       B       331       MET         1       B       337       ARG         1       B       339       ARG         1                                                          | 1   | В     | 45  | GLU  |
| 1       B       76       ILE         1       B       85       LEU         1       B       88       ARG         1       B       101       ASP         1       B       105       ARG         1       B       105       ARG         1       B       115       LEU         1       B       122       ASP         1       B       124       VAL         1       B       143       SER         1       B       165       GLU         1       B       183       PRO         1       B       183       PRO         1       B       226       ASN         1       B       286       LYS         1       B       314       PRO         1       B       331       MET         1       B       332       LEU         1       B       337       ARG         1       B       339       ARG         1       B       339       ARG                                                                                                         | 1   | В     | 75  | VAL  |
| 1       B       85       LEU         1       B       88       ARG         1       B       101       ASP         1       B       105       ARG         1       B       105       ARG         1       B       122       ASP         1       B       122       ASP         1       B       124       VAL         1       B       143       SER         1       B       165       GLU         1       B       183       PRO         1       B       183       PRO         1       B       226       ASN         1       B       226       ASN         1       B       226       ASN         1       B       314       PRO         1       B       324       PRO         1       B       331       MET         1       B       332       LEU         1       B       337       ARG         1       B       339       ARG                                                                                                        | 1   | В     | 76  | ILE  |
| 1       B       88       ARG         1       B       101       ASP         1       B       105       ARG         1       B       115       LEU         1       B       122       ASP         1       B       124       VAL         1       B       124       VAL         1       B       143       SER         1       B       165       GLU         1       B       183       PRO         1       B       223       THR         1       B       226       ASN         1       B       226       ASN         1       B       226       ASN         1       B       226       ASN         1       B       314       PRO         1       B       331       MET         1       B       332       LEU         1       B       337       ARG         1       B       339       ARG                                                                                                                                             | 1   | В     | 85  | LEU  |
| 1       B       101       ASP         1       B       105       ARG         1       B       115       LEU         1       B       122       ASP         1       B       122       ASP         1       B       124       VAL         1       B       143       SER         1       B       165       GLU         1       B       183       PRO         1       B       194       GLU         1       B       223       THR         1       B       226       ASN         1       B       226       ASN         1       B       226       ASN         1       B       226       ASN         1       B       314       PRO         1       B       324       PRO         1       B       331       MET         1       B       332       LEU         1       B       337       ARG         1       B       339       ARG                                                                                                      | 1   | В     | 88  | ARG  |
| 1       B       105       ARG         1       B       115       LEU         1       B       122       ASP         1       B       124       VAL         1       B       124       VAL         1       B       143       SER         1       B       165       GLU         1       B       183       PRO         1       B       194       GLU         1       B       223       THR         1       B       226       ASN         1       B       286       LYS         1       B       314       PRO         1       B       324       PRO         1       B       331       MET         1       B       332       LEU         1       B       337       ARG         1       B       339       ARG                                                                                                                                                                                                                        | 1   | В     | 101 | ASP  |
| 1       B       115       LEU         1       B       122       ASP         1       B       124       VAL         1       B       143       SER         1       B       143       SER         1       B       165       GLU         1       B       183       PRO         1       B       194       GLU         1       B       223       THR         1       B       226       ASN         1       B       286       LYS         1       B       314       PRO         1       B       331       MET         1       B       332       LEU         1       B       337       ARG         1       B       339       ARG                                                                                                                                                                                                                                                                                                    | 1   | В     | 105 | ARG  |
| 1       B       122       ASP         1       B       124       VAL         1       B       143       SER         1       B       165       GLU         1       B       165       GLU         1       B       183       PRO         1       B       194       GLU         1       B       223       THR         1       B       226       ASN         1       B       286       LYS         1       B       314       PRO         1       B       324       PRO         1       B       331       MET         1       B       332       LEU         1       B       337       ARG         1       B       339       ARG                                                                                                                                                                                                                                                                                                    | 1   | В     | 115 | LEU  |
| 1       B       124       VAL         1       B       143       SER         1       B       165       GLU         1       B       183       PRO         1       B       194       GLU         1       B       223       THR         1       B       226       ASN         1       B       286       LYS         1       B       314       PRO         1       B       331       MET         1       B       332       LEU         1       B       337       ARG         1       B       339       ARG                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   | В     | 122 | ASP  |
| 1       B       143       SER         1       B       165       GLU         1       B       183       PRO         1       B       194       GLU         1       B       223       THR         1       B       226       ASN         1       B       286       LYS         1       B       314       PRO         1       B       324       PRO         1       B       331       MET         1       B       332       LEU         1       B       337       ARG         1       B       339       ARG                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   | В     | 124 | VAL  |
| 1       B       165       GLU         1       B       183       PRO         1       B       194       GLU         1       B       223       THR         1       B       226       ASN         1       B       286       LYS         1       B       314       PRO         1       B       331       MET         1       B       332       LEU         1       B       337       ARG         1       B       339       ARG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1   | В     | 143 | SER  |
| 1       B       183       PRO         1       B       194       GLU         1       B       223       THR         1       B       226       ASN         1       B       226       ASN         1       B       286       LYS         1       B       314       PRO         1       B       324       PRO         1       B       331       MET         1       B       332       LEU         1       B       337       ARG         1       B       339       ARG                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1   | В     | 165 | GLU  |
| 1       B       194       GLU         1       B       223       THR         1       B       226       ASN         1       B       286       LYS         1       B       314       PRO         1       B       324       PRO         1       B       331       MET         1       B       332       LEU         1       B       337       ARG         1       B       339       ARG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1   | В     | 183 | PRO  |
| 1       B       223       THR         1       B       226       ASN         1       B       286       LYS         1       B       314       PRO         1       B       324       PRO         1       B       331       MET         1       B       332       LEU         1       B       337       ARG         1       B       339       ARG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | В     | 194 | GLU  |
| 1       B       226       ASN         1       B       286       LYS         1       B       314       PRO         1       B       324       PRO         1       B       331       MET         1       B       332       LEU         1       B       337       ARG         1       B       339       ARG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1   | В     | 223 | THR  |
| 1     B     286     LYS       1     B     314     PRO       1     B     324     PRO       1     B     331     MET       1     B     332     LEU       1     B     337     ARG       1     B     339     ARG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   | В     | 226 | ASN  |
| 1     B     314     PRO       1     B     324     PRO       1     B     331     MET       1     B     332     LEU       1     B     337     ARG       1     B     339     ARG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | В     | 286 | LYS  |
| 1         B         324         PRO           1         B         331         MET           1         B         332         LEU           1         B         337         ARG           1         B         339         ARG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   | В     | 314 | PRO  |
| 1         B         331         MET           1         B         332         LEU           1         B         337         ARG           1         B         339         ARG           1         B         340         SEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   | В     | 324 | PRO  |
| 1         B         332         LEU           1         B         337         ARG           1         B         339         ARG           1         B         340         SEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | В     | 331 | MET  |
| 1         B         337         ARG           1         B         339         ARG           1         B         340         SED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1   | В     | 332 | LEU  |
| 1 B 339 ARG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   | В     | 337 | ARG  |
| 1 D 240 CED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   | В     | 339 | ARG  |
| $I \mid B \mid 340 \mid SER \mid$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | В     | 340 | SER  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | В     | 350 | SER  |
| 1   | В     | 352 | LYS  |
| 1   | В     | 374 | LEU  |
| 1   | В     | 375 | LEU  |
| 1   | В     | 383 | LYS  |
| 1   | В     | 428 | LEU  |
| 1   | В     | 446 | ARG  |
| 1   | В     | 447 | ARG  |
| 1   | В     | 464 | LEU  |
| 1   | В     | 468 | VAL  |
| 1   | С     | 9   | LEU  |
| 1   | С     | 11  | GLU  |
| 1   | С     | 19  | LEU  |
| 1   | С     | 33  | ILE  |
| 1   | С     | 36  | HIS  |
| 1   | С     | 39  | ASN  |
| 1   | С     | 45  | GLU  |
| 1   | С     | 75  | VAL  |
| 1   | С     | 76  | ILE  |
| 1   | С     | 85  | LEU  |
| 1   | С     | 88  | ARG  |
| 1   | С     | 101 | ASP  |
| 1   | С     | 105 | ARG  |
| 1   | С     | 115 | LEU  |
| 1   | С     | 122 | ASP  |
| 1   | С     | 124 | VAL  |
| 1   | С     | 143 | SER  |
| 1   | С     | 165 | GLU  |
| 1   | С     | 183 | PRO  |
| 1   | С     | 194 | GLU  |
| 1   | С     | 223 | THR  |
| 1   | С     | 226 | ASN  |
| 1   | С     | 286 | LYS  |
| 1   | С     | 314 | PRO  |
| 1   | С     | 324 | PRO  |
| 1   | C     | 331 | MET  |
| 1   | С     | 332 | LEU  |
| 1   | С     | 337 | ARG  |
| 1   | С     | 339 | ARG  |
| 1   | С     | 340 | SER  |
| 1   | C     | 350 | SER  |
| 1   | С     | 352 | LYS  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | С     | 374 | LEU  |
| 1   | С     | 375 | LEU  |
| 1   | С     | 383 | LYS  |
| 1   | С     | 428 | LEU  |
| 1   | С     | 446 | ARG  |
| 1   | С     | 447 | ARG  |
| 1   | С     | 464 | LEU  |
| 1   | С     | 468 | VAL  |
| 1   | D     | 9   | LEU  |
| 1   | D     | 11  | GLU  |
| 1   | D     | 19  | LEU  |
| 1   | D     | 33  | ILE  |
| 1   | D     | 36  | HIS  |
| 1   | D     | 39  | ASN  |
| 1   | D     | 45  | GLU  |
| 1   | D     | 75  | VAL  |
| 1   | D     | 76  | ILE  |
| 1   | D     | 85  | LEU  |
| 1   | D     | 88  | ARG  |
| 1   | D     | 101 | ASP  |
| 1   | D     | 105 | ARG  |
| 1   | D     | 115 | LEU  |
| 1   | D     | 122 | ASP  |
| 1   | D     | 124 | VAL  |
| 1   | D     | 143 | SER  |
| 1   | D     | 165 | GLU  |
| 1   | D     | 183 | PRO  |
| 1   | D     | 194 | GLU  |
| 1   | D     | 223 | THR  |
| 1   | D     | 226 | ASN  |
| 1   | D     | 286 | LYS  |
| 1   | D     | 314 | PRO  |
| 1   | D     | 324 | PRO  |
| 1   | D     | 331 | MET  |
| 1   | D     | 332 | LEU  |
| 1   | D     | 337 | ARG  |
| 1   | D     | 339 | ARG  |
| 1   | D     | 340 | SER  |
| 1   | D     | 350 | SER  |
| 1   | D     | 352 | LYS  |
| 1   | D     | 374 | LEU  |
| 1   | D     | 375 | LEU  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | D     | 383 | LYS  |
| 1   | D     | 428 | LEU  |
| 1   | D     | 446 | ARG  |
| 1   | D     | 447 | ARG  |
| 1   | D     | 464 | LEU  |
| 1   | D     | 468 | VAL  |
| 1   | Е     | 9   | LEU  |
| 1   | Е     | 11  | GLU  |
| 1   | Е     | 19  | LEU  |
| 1   | Е     | 33  | ILE  |
| 1   | Е     | 36  | HIS  |
| 1   | Е     | 39  | ASN  |
| 1   | Е     | 45  | GLU  |
| 1   | Е     | 75  | VAL  |
| 1   | Е     | 76  | ILE  |
| 1   | Е     | 85  | LEU  |
| 1   | Е     | 88  | ARG  |
| 1   | Е     | 101 | ASP  |
| 1   | Е     | 105 | ARG  |
| 1   | Е     | 115 | LEU  |
| 1   | Е     | 122 | ASP  |
| 1   | Е     | 124 | VAL  |
| 1   | Е     | 143 | SER  |
| 1   | Е     | 165 | GLU  |
| 1   | Е     | 183 | PRO  |
| 1   | Е     | 194 | GLU  |
| 1   | Е     | 223 | THR  |
| 1   | Е     | 226 | ASN  |
| 1   | Е     | 286 | LYS  |
| 1   | Е     | 314 | PRO  |
| 1   | Е     | 324 | PRO  |
| 1   | Е     | 331 | MET  |
| 1   | Е     | 332 | LEU  |
| 1   | E     | 337 | ARG  |
| 1   | Е     | 339 | ARG  |
| 1   | Е     | 340 | SER  |
| 1   | E     | 350 | SER  |
| 1   | Е     | 352 | LYS  |
| 1   | Е     | 374 | LEU  |
| 1   | Ε     | 375 | LEU  |
| 1   | Е     | 383 | LYS  |
| 1   | Е     | 428 | LEU  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | Е     | 446 | ARG  |
| 1   | Е     | 447 | ARG  |
| 1   | Е     | 464 | LEU  |
| 1   | Е     | 468 | VAL  |
| 1   | F     | 9   | LEU  |
| 1   | F     | 11  | GLU  |
| 1   | F     | 19  | LEU  |
| 1   | F     | 33  | ILE  |
| 1   | F     | 36  | HIS  |
| 1   | F     | 39  | ASN  |
| 1   | F     | 45  | GLU  |
| 1   | F     | 75  | VAL  |
| 1   | F     | 76  | ILE  |
| 1   | F     | 85  | LEU  |
| 1   | F     | 88  | ARG  |
| 1   | F     | 101 | ASP  |
| 1   | F     | 105 | ARG  |
| 1   | F     | 115 | LEU  |
| 1   | F     | 122 | ASP  |
| 1   | F     | 124 | VAL  |
| 1   | F     | 143 | SER  |
| 1   | F     | 165 | GLU  |
| 1   | F     | 183 | PRO  |
| 1   | F     | 194 | GLU  |
| 1   | F     | 223 | THR  |
| 1   | F     | 226 | ASN  |
| 1   | F     | 286 | LYS  |
| 1   | F     | 314 | PRO  |
| 1   | F     | 324 | PRO  |
| 1   | F     | 331 | MET  |
| 1   | F     | 332 | LEU  |
| 1   | F     | 337 | ARG  |
| 1   | F     | 339 | ARG  |
| 1   | F     | 340 | SER  |
| 1   | F     | 350 | SER  |
| 1   | F     | 352 | LYS  |
| 1   | F     | 374 | LEU  |
| 1   | F     | 375 | LEU  |
| 1   | F     | 383 | LYS  |
| 1   | F     | 428 | LEU  |
| 1   | F     | 446 | ARG  |
| 1   | F     | 447 | ARG  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | F     | 464 | LEU  |
| 1   | F     | 468 | VAL  |
| 1   | G     | 9   | LEU  |
| 1   | G     | 11  | GLU  |
| 1   | G     | 19  | LEU  |
| 1   | G     | 33  | ILE  |
| 1   | G     | 36  | HIS  |
| 1   | G     | 39  | ASN  |
| 1   | G     | 45  | GLU  |
| 1   | G     | 75  | VAL  |
| 1   | G     | 76  | ILE  |
| 1   | G     | 85  | LEU  |
| 1   | G     | 88  | ARG  |
| 1   | G     | 101 | ASP  |
| 1   | G     | 105 | ARG  |
| 1   | G     | 115 | LEU  |
| 1   | G     | 122 | ASP  |
| 1   | G     | 124 | VAL  |
| 1   | G     | 143 | SER  |
| 1   | G     | 165 | GLU  |
| 1   | G     | 183 | PRO  |
| 1   | G     | 194 | GLU  |
| 1   | G     | 223 | THR  |
| 1   | G     | 226 | ASN  |
| 1   | G     | 286 | LYS  |
| 1   | G     | 314 | PRO  |
| 1   | G     | 324 | PRO  |
| 1   | G     | 331 | MET  |
| 1   | G     | 332 | LEU  |
| 1   | G     | 337 | ARG  |
| 1   | G     | 339 | ARG  |
| 1   | G     | 340 | SER  |
| 1   | G     | 350 | SER  |
| 1   | G     | 352 |      |
| 1   | G     | 374 |      |
| 1   | G     | 375 | LEU  |
| 1   | G     | 383 |      |
| 1   | G     | 428 |      |
| 1   | G     | 446 | ARG  |
| 1   | G     | 447 | ARG  |
| 1   | G     | 464 |      |
| 1   | G     | 468 | VAL  |



| Mol | Chain | Res | Type |  |
|-----|-------|-----|------|--|
| 1   | Н     | 9   | LEU  |  |
| 1   | Н     | 11  | GLU  |  |
| 1   | Н     | 19  | LEU  |  |
| 1   | Н     | 33  | ILE  |  |
| 1   | Н     | 36  | HIS  |  |
| 1   | Н     | 39  | ASN  |  |
| 1   | Н     | 45  | GLU  |  |
| 1   | Н     | 75  | VAL  |  |
| 1   | Н     | 76  | ILE  |  |
| 1   | Н     | 85  | LEU  |  |
| 1   | Н     | 88  | ARG  |  |
| 1   | Н     | 101 | ASP  |  |
| 1   | Н     | 105 | ARG  |  |
| 1   | Н     | 115 | LEU  |  |
| 1   | Н     | 122 | ASP  |  |
| 1   | Н     | 124 | VAL  |  |
| 1   | Н     | 143 | SER  |  |
| 1   | Н     | 165 | GLU  |  |
| 1   | Н     | 183 | PRO  |  |
| 1   | Н     | 194 | GLU  |  |
| 1   | Н     | 223 | THR  |  |
| 1   | Н     | 226 | ASN  |  |
| 1   | Н     | 286 | LYS  |  |
| 1   | Н     | 314 | PRO  |  |
| 1   | Н     | 324 | PRO  |  |
| 1   | Н     | 331 | MET  |  |
| 1   | Н     | 332 | LEU  |  |
| 1   | Н     | 337 | ARG  |  |
| 1   | H     | 339 | ARG  |  |
| 1   | Н     | 340 | SER  |  |
| 1   | Н     | 350 | SER  |  |
| 1   | Н     | 352 | LYS  |  |
| 1   | Н     | 374 | LEU  |  |
| 1   | Н     | 375 | LEU  |  |
| 1   | Н     | 383 | LYS  |  |
| 1   | Н     | 428 | LEU  |  |
| 1   | Н     | 446 | ARG  |  |
| 1   | Н     | 447 | ARG  |  |
| 1   | Н     | 464 | LEU  |  |
| 1   | Н     | 468 | VAL  |  |
| 1   | Ι     | 9   | LEU  |  |
| 1   | Ι     | 11  | GLU  |  |



| Mol | Chain | Res | Type |  |
|-----|-------|-----|------|--|
| 1   | Ι     | 19  | LEU  |  |
| 1   | Ι     | 33  | ILE  |  |
| 1   | Ι     | 36  | HIS  |  |
| 1   | Ι     | 39  | ASN  |  |
| 1   | Ι     | 45  | GLU  |  |
| 1   | Ι     | 75  | VAL  |  |
| 1   | Ι     | 76  | ILE  |  |
| 1   | Ι     | 85  | LEU  |  |
| 1   | Ι     | 88  | ARG  |  |
| 1   | Ι     | 101 | ASP  |  |
| 1   | Ι     | 105 | ARG  |  |
| 1   | Ι     | 115 | LEU  |  |
| 1   | Ι     | 122 | ASP  |  |
| 1   | Ι     | 124 | VAL  |  |
| 1   | Ι     | 143 | SER  |  |
| 1   | Ι     | 165 | GLU  |  |
| 1   | Ι     | 183 | PRO  |  |
| 1   | Ι     | 194 | GLU  |  |
| 1   | Ι     | 223 | THR  |  |
| 1   | Ι     | 226 | ASN  |  |
| 1   | Ι     | 286 | LYS  |  |
| 1   | Ι     | 314 | PRO  |  |
| 1   | Ι     | 324 | PRO  |  |
| 1   | Ι     | 331 | MET  |  |
| 1   | Ι     | 332 | LEU  |  |
| 1   | Ι     | 337 | ARG  |  |
| 1   | Ι     | 339 | ARG  |  |
| 1   | Ι     | 340 | SER  |  |
| 1   | Ι     | 350 | SER  |  |
| 1   | Ι     | 352 | LYS  |  |
| 1   | Ι     | 374 | LEU  |  |
| 1   | Ι     | 375 | LEU  |  |
| 1   | Ι     | 383 | LYS  |  |
| 1   | Ι     | 428 | LEU  |  |
| 1   | Ι     | 446 | ARG  |  |
| 1   | Ι     | 447 | ARG  |  |
| 1   | Ι     | 464 | LEU  |  |
| 1   | Ι     | 468 | VAL  |  |
| 1   | J     | 9   | LEU  |  |
| 1   | J     | 11  | GLU  |  |
| 1   | J     | 19  | LEU  |  |
| 1   | J     | 33  | ILE  |  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | J     | 36  | HIS  |
| 1   | J     | 39  | ASN  |
| 1   | J     | 45  | GLU  |
| 1   | J     | 75  | VAL  |
| 1   | J     | 76  | ILE  |
| 1   | J     | 85  | LEU  |
| 1   | J     | 88  | ARG  |
| 1   | J     | 101 | ASP  |
| 1   | J     | 105 | ARG  |
| 1   | J     | 115 | LEU  |
| 1   | J     | 122 | ASP  |
| 1   | J     | 124 | VAL  |
| 1   | J     | 143 | SER  |
| 1   | J     | 165 | GLU  |
| 1   | J     | 183 | PRO  |
| 1   | J     | 194 | GLU  |
| 1   | J     | 223 | THR  |
| 1   | J     | 226 | ASN  |
| 1   | J     | 286 | LYS  |
| 1   | J     | 314 | PRO  |
| 1   | J     | 324 | PRO  |
| 1   | J     | 331 | MET  |
| 1   | J     | 332 | LEU  |
| 1   | J     | 337 | ARG  |
| 1   | J     | 339 | ARG  |
| 1   | J     | 340 | SER  |
| 1   | J     | 350 | SER  |
| 1   | J     | 352 | LYS  |
| 1   | J     | 374 | LEU  |
| 1   | J     | 375 | LEU  |
| 1   | J     | 383 | LYS  |
| 1   | J     | 428 | LEU  |
| 1   | J     | 446 | ARG  |
| 1   | J     | 447 | ARG  |
| 1   | J     | 464 | LEU  |
| 1   | J     | 468 | VAL  |
| 1   | K     | 9   | LEU  |
| 1   | Κ     | 11  | GLU  |
| 1   | K     | 19  | LEU  |
| 1   | Κ     | 33  | ILE  |
| 1   | Κ     | 36  | HIS  |
| 1   | Κ     | 39  | ASN  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | K     | 45  | GLU  |
| 1   | K     | 75  | VAL  |
| 1   | К     | 76  | ILE  |
| 1   | K     | 85  | LEU  |
| 1   | К     | 88  | ARG  |
| 1   | K     | 101 | ASP  |
| 1   | K     | 105 | ARG  |
| 1   | K     | 115 | LEU  |
| 1   | К     | 122 | ASP  |
| 1   | K     | 124 | VAL  |
| 1   | K     | 143 | SER  |
| 1   | K     | 165 | GLU  |
| 1   | K     | 183 | PRO  |
| 1   | K     | 194 | GLU  |
| 1   | K     | 223 | THR  |
| 1   | K     | 226 | ASN  |
| 1   | K     | 286 | LYS  |
| 1   | K     | 314 | PRO  |
| 1   | K     | 324 | PRO  |
| 1   | K     | 331 | MET  |
| 1   | K     | 332 | LEU  |
| 1   | K     | 337 | ARG  |
| 1   | K     | 339 | ARG  |
| 1   | K     | 340 | SER  |
| 1   | K     | 350 | SER  |
| 1   | K     | 352 | LYS  |
| 1   | K     | 374 | LEU  |
| 1   | K     | 375 | LEU  |
| 1   | K     | 383 | LYS  |
| 1   | K     | 428 | LEU  |
| 1   | K     | 446 | ARG  |
| 1   | К     | 447 | ARG  |
| 1   | K     | 464 | LEU  |
| 1   | Κ     | 468 | VAL  |
| 1   | L     | 9   | LEU  |
| 1   | L     | 11  | GLU  |
| 1   | L     | 19  | LEU  |
| 1   | L     | 33  | ILE  |
| 1   | L     | 36  | HIS  |
| 1   | L     | 39  | ASN  |
| 1   | L     | 45  | GLU  |
| 1   | L     | 75  | VAL  |



| Mol | Chain | Res Type |     |
|-----|-------|----------|-----|
| 1   | L     | 76       | ILE |
| 1   | L     | 85       | LEU |
| 1   | L     | 88       | ARG |
| 1   | L     | 101      | ASP |
| 1   | L     | 105      | ARG |
| 1   | L     | 115      | LEU |
| 1   | L     | 122      | ASP |
| 1   | L     | 124      | VAL |
| 1   | L     | 143      | SER |
| 1   | L     | 165      | GLU |
| 1   | L     | 183      | PRO |
| 1   | L     | 194      | GLU |
| 1   | L     | 223      | THR |
| 1   | L     | 226      | ASN |
| 1   | L     | 286      | LYS |
| 1   | L     | 314      | PRO |
| 1   | L     | 324      | PRO |
| 1   | L     | 331      | MET |
| 1   | L     | 332      | LEU |
| 1   | L     | 337      | ARG |
| 1   | L     | 339      | ARG |
| 1   | L     | 340      | SER |
| 1   | L     | 350      | SER |
| 1   | L     | 352      | LYS |
| 1   | L     | 374      | LEU |
| 1   | L     | 375      | LEU |
| 1   | L     | 383      | LYS |
| 1   | L     | 428      | LEU |
| 1   | L     | 446      | ARG |
| 1   | L     | 447      | ARG |
| 1   | L     | 464      | LEU |
| 1   | L     | 468      | VAL |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (72) such sidechains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 30  | HIS  |
| 1   | А     | 159 | ASN  |
| 1   | А     | 189 | GLN  |
| 1   | А     | 219 | ASN  |
| 1   | А     | 269 | HIS  |
| 1   | А     | 458 | HIS  |



| Mol | Chain | Chain Res |     |
|-----|-------|-----------|-----|
| 1   | В     | 30        | HIS |
| 1   | В     | 159       | ASN |
| 1   | В     | 189       | GLN |
| 1   | В     | 219       | ASN |
| 1   | В     | 269       | HIS |
| 1   | В     | 458       | HIS |
| 1   | С     | 30        | HIS |
| 1   | С     | 159       | ASN |
| 1   | С     | 189       | GLN |
| 1   | С     | 219       | ASN |
| 1   | С     | 269       | HIS |
| 1   | С     | 458       | HIS |
| 1   | D     | 30        | HIS |
| 1   | D     | 159       | ASN |
| 1   | D     | 189       | GLN |
| 1   | D     | 219       | ASN |
| 1   | D     | 269       | HIS |
| 1   | D     | 458       | HIS |
| 1   | Е     | 30        | HIS |
| 1   | Е     | 159       | ASN |
| 1   | Е     | 189       | GLN |
| 1   | Е     | 219       | ASN |
| 1   | Е     | 269       | HIS |
| 1   | Е     | 458       | HIS |
| 1   | F     | 30        | HIS |
| 1   | F     | 159       | ASN |
| 1   | F     | 189       | GLN |
| 1   | F     | 219       | ASN |
| 1   | F     | 269       | HIS |
| 1   | F     | 458       | HIS |
| 1   | G     | 30        | HIS |
| 1   | G     | 159       | ASN |
| 1   | G     | 189       | GLN |
| 1   | G     | 219       | ASN |
| 1   | G     | 269       | HIS |
| 1   | G     | 458       | HIS |
| 1   | H     | 30        | HIS |
| 1   | Н     | 159       | ASN |
| 1   | H     | 189       | GLN |
| 1   | Η     | 219       | ASN |
| 1   | Н     | 269       | HIS |
| 1   | Н     | 458       | HIS |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | Ι     | 30  | HIS  |
| 1   | Ι     | 159 | ASN  |
| 1   | Ι     | 189 | GLN  |
| 1   | Ι     | 219 | ASN  |
| 1   | Ι     | 269 | HIS  |
| 1   | Ι     | 458 | HIS  |
| 1   | J     | 30  | HIS  |
| 1   | J     | 159 | ASN  |
| 1   | J     | 189 | GLN  |
| 1   | J     | 219 | ASN  |
| 1   | J     | 269 | HIS  |
| 1   | J     | 458 | HIS  |
| 1   | Κ     | 30  | HIS  |
| 1   | Κ     | 159 | ASN  |
| 1   | Κ     | 189 | GLN  |
| 1   | Κ     | 219 | ASN  |
| 1   | K     | 269 | HIS  |
| 1   | Κ     | 458 | HIS  |
| 1   | L     | 30  | HIS  |
| 1   | L     | 159 | ASN  |
| 1   | L     | 189 | GLN  |
| 1   | L     | 219 | ASN  |
| 1   | L     | 269 | HIS  |
| 1   | L     | 458 | HIS  |

## 5.3.3 RNA (i)

There are no RNA molecules in this entry.

# 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

## 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

# 5.6 Ligand geometry (i)

Of 36 ligands modelled in this entry, 24 are monoatomic - leaving 12 for Mogul analysis.



2LGS

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol  | Type | Chain   | Bos | Link | B      | Bond lengths |         | B        | ond ang | les     |
|------|------|---------|-----|------|--------|--------------|---------|----------|---------|---------|
| WIOI | туре | Ullalli | nes |      | Counts | RMSZ         | # Z >2  | Counts   | RMSZ    | # Z >2  |
| 3    | GLU  | G       | 471 | -    | 8,9,9  | 1.25         | 1 (12%) | 10,11,11 | 1.27    | 1 (10%) |
| 3    | GLU  | Ι       | 471 | -    | 8,9,9  | 1.26         | 2 (25%) | 10,11,11 | 1.28    | 1 (10%) |
| 3    | GLU  | Е       | 471 | -    | 8,9,9  | 1.26         | 2 (25%) | 10,11,11 | 1.28    | 1 (10%) |
| 3    | GLU  | J       | 471 | -    | 8,9,9  | 1.25         | 1 (12%) | 10,11,11 | 1.28    | 1 (10%) |
| 3    | GLU  | А       | 471 | -    | 8,9,9  | 1.25         | 1 (12%) | 10,11,11 | 1.27    | 1 (10%) |
| 3    | GLU  | D       | 471 | -    | 8,9,9  | 1.25         | 2 (25%) | 10,11,11 | 1.27    | 1 (10%) |
| 3    | GLU  | С       | 471 | -    | 8,9,9  | 1.24         | 1 (12%) | 10,11,11 | 1.28    | 1 (10%) |
| 3    | GLU  | К       | 471 | -    | 8,9,9  | 1.25         | 1 (12%) | 10,11,11 | 1.28    | 1 (10%) |
| 3    | GLU  | В       | 473 | -    | 8,9,9  | 1.25         | 2 (25%) | 10,11,11 | 1.28    | 1 (10%) |
| 3    | GLU  | Н       | 471 | -    | 8,9,9  | 1.25         | 1 (12%) | 10,11,11 | 1.27    | 1 (10%) |
| 3    | GLU  | L       | 471 | -    | 8,9,9  | 1.25         | 1 (12%) | 10,11,11 | 1.27    | 1 (10%) |
| 3    | GLU  | F       | 471 | -    | 8,9,9  | 1.25         | 2(25%)  | 10,11,11 | 1.28    | 1 (10%) |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res | Link | Chirals | Torsions | Rings |
|-----|------|-------|-----|------|---------|----------|-------|
| 3   | GLU  | G     | 471 | -    | -       | 6/9/9/9  | -     |
| 3   | GLU  | Ι     | 471 | -    | -       | 6/9/9/9  | -     |
| 3   | GLU  | Е     | 471 | -    | -       | 6/9/9/9  | -     |
| 3   | GLU  | J     | 471 | -    | -       | 6/9/9/9  | -     |
| 3   | GLU  | А     | 471 | -    | -       | 6/9/9/9  | -     |
| 3   | GLU  | D     | 471 | -    | -       | 6/9/9/9  | -     |
| 3   | GLU  | С     | 471 | -    | -       | 6/9/9/9  | -     |
| 3   | GLU  | К     | 471 | -    | -       | 6/9/9/9  | -     |
| 3   | GLU  | В     | 473 | -    | -       | 6/9/9/9  | -     |
| 3   | GLU  | Н     | 471 | -    | -       | 6/9/9/9  | -     |
| 3   | GLU  | L     | 471 | -    | -       | 6/9/9/9  | -     |



Continued from previous page...

| Mol | Type | Chain | Res | Link | Chirals | Torsions | Rings |
|-----|------|-------|-----|------|---------|----------|-------|
| 3   | GLU  | F     | 471 | -    | -       | 6/9/9/9  | -     |

All (17) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms  | Z     | $\operatorname{Observed}(\operatorname{\AA})$ | Ideal(Å) |
|-----|-------|-----|------|--------|-------|-----------------------------------------------|----------|
| 3   | G     | 471 | GLU  | OE2-CD | -2.23 | 1.23                                          | 1.30     |
| 3   | Ι     | 471 | GLU  | OE2-CD | -2.22 | 1.23                                          | 1.30     |
| 3   | J     | 471 | GLU  | OE2-CD | -2.21 | 1.23                                          | 1.30     |
| 3   | Е     | 471 | GLU  | OE2-CD | -2.21 | 1.23                                          | 1.30     |
| 3   | А     | 471 | GLU  | OE2-CD | -2.21 | 1.23                                          | 1.30     |
| 3   | F     | 471 | GLU  | OE2-CD | -2.21 | 1.23                                          | 1.30     |
| 3   | Κ     | 471 | GLU  | OE2-CD | -2.21 | 1.23                                          | 1.30     |
| 3   | Н     | 471 | GLU  | OE2-CD | -2.21 | 1.23                                          | 1.30     |
| 3   | С     | 471 | GLU  | OE2-CD | -2.21 | 1.23                                          | 1.30     |
| 3   | D     | 471 | GLU  | OE2-CD | -2.20 | 1.23                                          | 1.30     |
| 3   | L     | 471 | GLU  | OE2-CD | -2.20 | 1.23                                          | 1.30     |
| 3   | В     | 473 | GLU  | OE2-CD | -2.18 | 1.23                                          | 1.30     |
| 3   | Ι     | 471 | GLU  | OXT-C  | -2.02 | 1.23                                          | 1.30     |
| 3   | Е     | 471 | GLU  | OXT-C  | -2.02 | 1.23                                          | 1.30     |
| 3   | В     | 473 | GLU  | OXT-C  | -2.01 | 1.24                                          | 1.30     |
| 3   | F     | 471 | GLU  | OXT-C  | -2.00 | 1.24                                          | 1.30     |
| 3   | D     | 471 | GLU  | OXT-C  | -2.00 | 1.24                                          | 1.30     |

All (12) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms    | Ζ    | $\mathbf{Observed}(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|----------|------|---------------------------|---------------|
| 3   | В     | 473 | GLU  | OXT-C-CA | 2.07 | 120.42                    | 113.38        |
| 3   | J     | 471 | GLU  | OXT-C-CA | 2.07 | 120.42                    | 113.38        |
| 3   | Ι     | 471 | GLU  | OXT-C-CA | 2.07 | 120.42                    | 113.38        |
| 3   | Κ     | 471 | GLU  | OXT-C-CA | 2.06 | 120.42                    | 113.38        |
| 3   | Е     | 471 | GLU  | OXT-C-CA | 2.06 | 120.40                    | 113.38        |
| 3   | А     | 471 | GLU  | OXT-C-CA | 2.06 | 120.39                    | 113.38        |
| 3   | С     | 471 | GLU  | OXT-C-CA | 2.06 | 120.39                    | 113.38        |
| 3   | D     | 471 | GLU  | OXT-C-CA | 2.06 | 120.39                    | 113.38        |
| 3   | F     | 471 | GLU  | OXT-C-CA | 2.06 | 120.38                    | 113.38        |
| 3   | Н     | 471 | GLU  | OXT-C-CA | 2.05 | 120.38                    | 113.38        |
| 3   | G     | 471 | GLU  | OXT-C-CA | 2.05 | 120.37                    | 113.38        |
| 3   | L     | 471 | GLU  | OXT-C-CA | 2.05 | 120.35                    | 113.38        |

There are no chirality outliers.

All (72) torsion outliers are listed below:



| Mol | Chain | Res | Type | Atoms       |  |
|-----|-------|-----|------|-------------|--|
| 3   | А     | 471 | GLU  | OXT-C-CA-CB |  |
| 3   | В     | 473 | GLU  | OXT-C-CA-CB |  |
| 3   | С     | 471 | GLU  | OXT-C-CA-CB |  |
| 3   | D     | 471 | GLU  | OXT-C-CA-CB |  |
| 3   | Е     | 471 | GLU  | OXT-C-CA-CB |  |
| 3   | F     | 471 | GLU  | OXT-C-CA-CB |  |
| 3   | G     | 471 | GLU  | OXT-C-CA-CB |  |
| 3   | Н     | 471 | GLU  | OXT-C-CA-CB |  |
| 3   | Ι     | 471 | GLU  | OXT-C-CA-CB |  |
| 3   | J     | 471 | GLU  | OXT-C-CA-CB |  |
| 3   | K     | 471 | GLU  | OXT-C-CA-CB |  |
| 3   | L     | 471 | GLU  | OXT-C-CA-CB |  |
| 3   | А     | 471 | GLU  | O-C-CA-CB   |  |
| 3   | В     | 473 | GLU  | O-C-CA-CB   |  |
| 3   | С     | 471 | GLU  | O-C-CA-CB   |  |
| 3   | D     | 471 | GLU  | O-C-CA-CB   |  |
| 3   | Е     | 471 | GLU  | O-C-CA-CB   |  |
| 3   | F     | 471 | GLU  | O-C-CA-CB   |  |
| 3   | G     | 471 | GLU  | O-C-CA-CB   |  |
| 3   | Н     | 471 | GLU  | O-C-CA-CB   |  |
| 3   | Ι     | 471 | GLU  | O-C-CA-CB   |  |
| 3   | J     | 471 | GLU  | O-C-CA-CB   |  |
| 3   | K     | 471 | GLU  | O-C-CA-CB   |  |
| 3   | L     | 471 | GLU  | O-C-CA-CB   |  |
| 3   | А     | 471 | GLU  | OXT-C-CA-N  |  |
| 3   | В     | 473 | GLU  | OXT-C-CA-N  |  |
| 3   | С     | 471 | GLU  | OXT-C-CA-N  |  |
| 3   | D     | 471 | GLU  | OXT-C-CA-N  |  |
| 3   | Е     | 471 | GLU  | OXT-C-CA-N  |  |
| 3   | F     | 471 | GLU  | OXT-C-CA-N  |  |
| 3   | G     | 471 | GLU  | OXT-C-CA-N  |  |
| 3   | Н     | 471 | GLU  | OXT-C-CA-N  |  |
| 3   | Ι     | 471 | GLU  | OXT-C-CA-N  |  |
| 3   | J     | 471 | GLU  | OXT-C-CA-N  |  |
| 3   | Κ     | 471 | GLU  | OXT-C-CA-N  |  |
| 3   | L     | 471 | GLU  | OXT-C-CA-N  |  |
| 3   | A     | 471 | GLU  | O-C-CA-N    |  |
| 3   | В     | 473 | GLU  | O-C-CA-N    |  |
| 3   | C     | 471 | GLU  | O-C-CA-N    |  |
| 3   | D     | 471 | GLU  | O-C-CA-N    |  |
| 3   | Е     | 471 | GLU  | O-C-CA-N    |  |
| 3   | F     | 471 | GLU  | O-C-CA-N    |  |
| 3   | G     | 471 | GLU  | O-C-CA-N    |  |



| Mol | Chain | Res | Type | Atoms        |
|-----|-------|-----|------|--------------|
| 3   | Н     | 471 | GLU  | O-C-CA-N     |
| 3   | Ι     | 471 | GLU  | O-C-CA-N     |
| 3   | J     | 471 | GLU  | O-C-CA-N     |
| 3   | K     | 471 | GLU  | O-C-CA-N     |
| 3   | L     | 471 | GLU  | O-C-CA-N     |
| 3   | С     | 471 | GLU  | OE2-CD-CG-CB |
| 3   | Е     | 471 | GLU  | OE2-CD-CG-CB |
| 3   | F     | 471 | GLU  | OE2-CD-CG-CB |
| 3   | G     | 471 | GLU  | OE2-CD-CG-CB |
| 3   | Н     | 471 | GLU  | OE2-CD-CG-CB |
| 3   | L     | 471 | GLU  | OE2-CD-CG-CB |
| 3   | А     | 471 | GLU  | OE2-CD-CG-CB |
| 3   | В     | 473 | GLU  | OE2-CD-CG-CB |
| 3   | D     | 471 | GLU  | OE2-CD-CG-CB |
| 3   | Ι     | 471 | GLU  | OE2-CD-CG-CB |
| 3   | J     | 471 | GLU  | OE2-CD-CG-CB |
| 3   | K     | 471 | GLU  | OE2-CD-CG-CB |
| 3   | J     | 471 | GLU  | OE1-CD-CG-CB |
| 3   | А     | 471 | GLU  | OE1-CD-CG-CB |
| 3   | В     | 473 | GLU  | OE1-CD-CG-CB |
| 3   | С     | 471 | GLU  | OE1-CD-CG-CB |
| 3   | D     | 471 | GLU  | OE1-CD-CG-CB |
| 3   | Е     | 471 | GLU  | OE1-CD-CG-CB |
| 3   | F     | 471 | GLU  | OE1-CD-CG-CB |
| 3   | G     | 471 | GLU  | OE1-CD-CG-CB |
| 3   | Н     | 471 | GLU  | OE1-CD-CG-CB |
| 3   | Ι     | 471 | GLU  | OE1-CD-CG-CB |
| 3   | K     | 471 | GLU  | OE1-CD-CG-CB |
| 3   | L     | 471 | GLU  | OE1-CD-CG-CB |

Continued from previous page...

There are no ring outliers.

| 12 monomers are invo | ved in $12$ | 2 short contacts | : |
|----------------------|-------------|------------------|---|
|----------------------|-------------|------------------|---|

| Mol | Chain | Res | Type | Clashes | Symm-Clashes |
|-----|-------|-----|------|---------|--------------|
| 3   | G     | 471 | GLU  | 1       | 0            |
| 3   | Ι     | 471 | GLU  | 1       | 0            |
| 3   | Е     | 471 | GLU  | 1       | 0            |
| 3   | J     | 471 | GLU  | 1       | 0            |
| 3   | А     | 471 | GLU  | 1       | 0            |
| 3   | D     | 471 | GLU  | 1       | 0            |
| 3   | С     | 471 | GLU  | 1       | 0            |
| 3   | K     | 471 | GLU  | 1       | 0            |



| v <u>1</u> 1 |     |       |     |      |         |              |  |  |
|--------------|-----|-------|-----|------|---------|--------------|--|--|
|              | Mol | Chain | Res | Type | Clashes | Symm-Clashes |  |  |
|              | 3   | В     | 473 | GLU  | 1       | 0            |  |  |
|              | 3   | Н     | 471 | GLU  | 1       | 0            |  |  |
|              | 3   | L     | 471 | GLU  | 1       | 0            |  |  |
|              | 3   | F     | 471 | GLU  | 1       | 0            |  |  |

Continued from previous page...

# 5.7 Other polymers (i)

There are no such residues in this entry.

# 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Fit of model and data (i)

# 6.1 Protein, DNA and RNA chains (i)

EDS was not executed - this section is therefore empty.

# 6.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS was not executed - this section is therefore empty.

## 6.3 Carbohydrates (i)

EDS was not executed - this section is therefore empty.

# 6.4 Ligands (i)

EDS was not executed - this section is therefore empty.

## 6.5 Other polymers (i)

EDS was not executed - this section is therefore empty.

