

Full wwPDB X-ray Structure Validation Report (i)

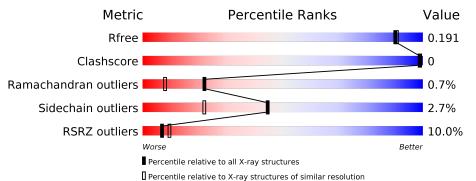
May 29, 2020 – 05:19 am BST

PDB ID	:	4LAN
Title	:	Crystal structure of Cordyceps militaris IDCase H195A mutant
Authors	:	Xu, S.; Li, W.; Zhu, J.; Ding, J.
Deposited on		
Resolution	:	1.75 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:


MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.13
EDS	:	2.11
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
$\operatorname{CCP4}$:	$7.0.044 (\mathrm{Gargrove})$
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.11

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 1.75 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{llllllllllllllllllllllllllllllllllll$	${f Similar\ resolution}\ (\#{ m Entries},{ m resolution\ range}({ m \AA}))$
R_{free}	130704	2340(1.76-1.76)
Clashscore	141614	2466 (1.76-1.76)
Ramachandran outliers	138981	2437 (1.76-1.76)
Sidechain outliers	138945	2437 (1.76-1.76)
RSRZ outliers	127900	2298 (1.76-1.76)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	376	94%	•••
1	В	376	95%	•••

4LAN

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 6234 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Uracil-5-carboxylate decarboxylase.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
1	А	370	Total 2826	C 1820	1,	O 510	S 15	0	1	0
1	В	369	Total 2817	C 1813		O 511	S 14	0	1	0

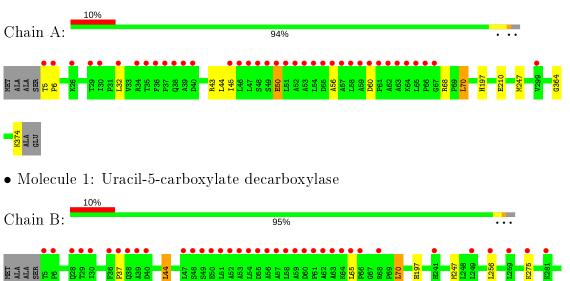
There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	195	ALA	HIS	ENGINEERED MUTATION	UNP G3J531
В	195	ALA	HIS	ENGINEERED MUTATION	UNP G3J531

• Molecule 2 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	В	1	Total Zn 1 1	0	0
2	А	1	Total Zn 1 1	0	0

• Molecule 3 is water.


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	A	320	Total O 320 320	0	0
3	В	269	Total O 269 269	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Uracil-5-carboxylate decarboxylase

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 1 2 1	Depositor
Cell constants	144.92Å 56.44 Å 105.70 Å	Depositor
a, b, c, α , β , γ	90.00° 105.41° 90.00°	Depositor
Resolution (Å)	36.32 - 1.75	Depositor
Resolution (A)	36.29 - 1.75	EDS
% Data completeness	98.7 (36.32-1.75)	Depositor
(in resolution range)	98.6 (36.29-1.75)	EDS
R _{merge}	0.06	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	4.46 (at 1.75Å)	Xtriage
Refinement program	REFMAC 5.7.0029	Depositor
D D.	0.156 , 0.179	Depositor
R, R_{free}	0.168 , 0.191	DCC
R_{free} test set	4098 reflections $(4.98%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	21.0	Xtriage
Anisotropy	0.717	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.37, 54.1	EDS
L-test for twinning ²	$ \langle L \rangle = 0.50, \langle L^2 \rangle = 0.33$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.96	EDS
Total number of atoms	6234	wwPDB-VP
Average B, all atoms $(Å^2)$	31.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 5.01% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

 $^{^1 {\}rm Intensities}$ estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond angles		
	Cham	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.27	0/2900	0.49	0/3950	
1	В	0.27	0/2891	0.48	0/3940	
All	All	0.27	0/5791	0.49	0/7890	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2826	0	2851	4	0
1	В	2817	0	2833	1	0
2	А	1	0	0	0	0
2	В	1	0	0	0	0
3	А	320	0	0	0	0
3	В	269	0	0	0	0
All	All	6234	0	5684	5	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 0.

All (5) close contacts within the same asymmetric unit are listed below, sorted by their clash

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:45:ILE:HD11	1:A:50:GLU:HB2	1.62	0.79
1:B:44:LEU:HB2	1:B:70:LEU:HD23	1.92	0.52
1:A:56:ALA:O	1:A:60:ASP:N	2.44	0.47
1:A:44:LEU:HB2	1:A:70:LEU:HD23	1.97	0.45
1:A:32:LEU:HD23	1:A:45:ILE:HG23	2.04	0.40

magnitude.

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	369/376~(98%)	360~(98%)	6(2%)	3 (1%)	19 6
1	В	368/376~(98%)	$358 \ (97\%)$	8 (2%)	2(0%)	29 12
All	All	737/752~(98%)	718 (97%)	14 (2%)	5(1%)	22 8

All (5) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	197	HIS
1	В	197	HIS
1	А	364	GLY
1	А	6	PRO
1	В	364	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	300/302~(99%)	291~(97%)	9(3%)	41 18
1	В	299/302~(99%)	291~(97%)	8 (3%)	44 22
All	All	599/604~(99%)	582 (97%)	17(3%)	44 20

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

All (17) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	5	THR
1	А	43	ARG
1	А	50	GLU
1	А	68	ARG
1	А	70	LEU
1	А	210	GLU
1	А	247[A]	MET
1	А	247[B]	MET
1	А	374	LYS
1	В	37	PRO
1	В	44	LEU
1	В	65	LEU
1	В	70	LEU
1	В	247	MET
1	В	256	LEU
1	В	275	LYS
1	В	286	ILE

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no carbohydrates in this entry.

5.6 Ligand geometry (i)

Of 2 ligands modelled in this entry, 2 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$<$ RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	370/376~(98%)	0.44	37 (10%) 7 9	11, 21, 81, 123	0
1	В	369/376~(98%)	0.50	37 (10%) 7 9	12, 26, 72, 100	0
All	All	739/752~(98%)	0.47	74 (10%) 7 9	11, 24, 79, 123	0

All (74) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	А	61	PRO	19.1
1	А	58	LEU	18.1
1	А	59	ALA	13.5
1	В	51	LEU	11.2
1	А	63	ALA	10.3
1	А	51	LEU	10.2
1	А	52	ALA	9.6
1	А	60	ASP	9.4
1	В	65	LEU	9.3
1	В	63	ALA	8.9
1	А	57	ALA	8.8
1	В	58	LEU	8.7
1	В	62	ALA	8.4
1	А	54	LEU	8.3
1	А	62	ALA	8.2
1	В	57	ALA	8.2
1	А	5	THR	7.8
1	А	64	LYS	7.5
1	В	54	LEU	7.2
1	В	52	ALA	7.0
1	А	55	ASP	6.8
1	В	61	PRO	6.7
1	В	5	THR	6.4
1	В	53	ALA	6.4

Continued on next page...

4I	Ŀ	11	V

Chain B A B A B A A A A A A B A B A B A B B B	Res 64 37 56 56 65 30 6 50 45 40	Type LYS PRO ALA ALA LEU ILE PRO GLU ILE	RSRZ 6.4 6.3 5.9 5.7 5.5 5.4 5.3 5.3
A A B A B A A A A B	$ \begin{array}{r} 37 \\ 56 \\ 56 \\ 56 \\ 30 \\ 6 \\ 50 \\ 45 \\ \end{array} $	PRO ALA ALA LEU ILE PRO GLU	$\begin{array}{r} 6.3 \\ 5.9 \\ 5.7 \\ 5.5 \\ 5.4 \\ 5.3 \\ 5.3 \end{array}$
A B A A A A A B	56 56 56 30 6 50 45	ALA ALA LEU ILE PRO GLU	$ 5.9 \\ 5.7 \\ 5.5 \\ 5.4 \\ 5.3 \\ 5.3 $
B A B A A A A B	$56 \\ 65 \\ 30 \\ 6 \\ 50 \\ 45$	ALA LEU ILE PRO GLU	5.7 5.5 5.4 5.3 5.3
A B A A A A B		LEU ILE PRO GLU	5.5 5.4 5.3 5.3
B A A A A B	$ \begin{array}{r} 30 \\ 6 \\ 50 \\ 45 \end{array} $	ILE PRO GLU	5.4 5.3 5.3
A A A A B	$\begin{array}{c} 6 \\ 50 \\ 45 \end{array}$	PRO GLU	5.3 5.3
A A A B	$\frac{50}{45}$	GLU	5.3
A A B	45		
A B		ILE	
В	40		5.2
	-	ASP	5.1
	60	ASP	5.1
В	47	LEU	5.0
А	53	ALA	4.9
В	39	ALA	4.9
В	55	ASP	4.9
А	36	PHE	4.8
В	59	ALA	4.8
В	48	SER	4.7
А	35	THR	4.7
В	36	PHE	4.6
А	47		4.6
В	40		4.2
A	39		4.2
В	29		4.1
А	32		3.9
		SER	3.7
			3.6
			3.6
			3.4
			3.4
			3.3
			3.3
			3.2
			3.1
			3.1
			3.0
			2.9
			2.9
			$\frac{2.9}{2.9}$
			$\frac{2.9}{2.8}$
			2.8
			2.8
	B B A B A B A B A A	B 39 B 55 A 36 B 59 B 48 A 35 B 36 A 47 B 40 A 39 B 29 A 32 A 49 B 50 A 38 B 66 B 28 A 30 A 48 B 49 A 66 B 68 A 34 B 68 A 34 B 281 A 67 A 46	B 39 ALA B 55 ASP A 36 PHE B 59 ALA B 48 SER A 35 THR B 36 PHE A 35 THR B 36 PHE A 35 THR B 36 PHE A 47 LEU B 40 ASP A 39 ALA B 29 THR A 32 LEU A 49 SER B 50 GLU A 38 GLN B 66 PRO B 28 GLN A 30 ILE A 48 SER B 49 SER A 66 PRO B 68 ARG

Continued on next page...

Mol	Chain	\mathbf{Res}	Type	RSRZ
1	А	29	THR	2.5
1	В	275	LYS	2.5
1	В	241	HIS	2.4
1	А	299	VAL	2.3
1	В	259	LEU	2.1
1	В	249	LEU	2.1
1	А	26	LYS	2.0
1	В	256	LEU	2.0

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no carbohydrates in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	$Q{<}0.9$
2	ZN	А	401	1/1	0.45	0.29	$46,\!46,\!46,\!46$	1
2	ZN	В	401	1/1	0.82	0.19	$46,\!46,\!46,\!46$	1

6.5 Other polymers (i)

There are no such residues in this entry.

