

Full wwPDB X-ray Structure Validation Report (i)

May 17, 2020 - 02:57 pm BST

PDB ID	:	1L5J
Title	:	CRYSTAL STRUCTURE OF E. COLI ACONITASE B.
Authors	:	Williams, C.H.; Stillman, T.J.; Barynin, V.V.; Sedelnikova, S.E.; Tang, Y.;
		Green, J.; Guest, J.R.; Artymiuk, P.J.
Deposited on	:	2002-03-07
Resolution	:	2.40 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as 541 be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.11
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
$\operatorname{CCP4}$:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.11

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 2.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$		
R _{free}	130704	3907 (2.40-2.40)		
Clashscore	141614	4398 (2.40-2.40)		
Ramachandran outliers	138981	4318 (2.40-2.40)		
Sidechain outliers	138945	4319 (2.40-2.40)		
RSRZ outliers	127900	3811 (2.40-2.40)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	865	^{2%} 7 9%	18%	•
1	В	865	% 7 9%	18%	•

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 13712 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Aconitate hydratase 2.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
1	А	862	Total 6552	C 4152	N 1122	O 1245	S 33	0	0	0
1	В	862	$\begin{array}{c} {\rm Total} \\ 6552 \end{array}$	C 4152	N 1122	O 1245	S 33	0	0	0

• Molecule 2 is ACONITATE ION (three-letter code: TRA) (formula: $C_6H_3O_6$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	1	Total C O 12 6 6	0	0
2	В	1	Total C O 12 6 6	0	0

• Molecule 3 is FE3-S4 CLUSTER (three-letter code: F3S) (formula: Fe₃S₄).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	A	1	TotalFeS734	0	0
3	В	1	Total Fe S 7 3 4	0	0

• Molecule 4 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	294	Total O 294 294	0	0
4	В	276	Total O 276 276	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Aconitate hydratase 2

1677 1677 1614 122 16682 1654 123 16685 1636 123 16685 1636 123 16685 1525 1249 16690 1533 1249 16690 1533 1249 15694 1543 1249 15694 1543 1249 1569 1553 1249 1713 1553 1249 1714 1553 1249 1713 1553 1249 1714 1553 1249 1714 1553 1249 1714 1553 1249 1714 1553 1249 1714 1553 1249 1724 1553 1260 1724 1553 1280 1723 1553 1281 1723 1553 134 1773 1573 141 1773 1574 171 1733 1564 171 1733 1574 171 1733 1574 171 1733 1574 171 1733 1574 171 1773

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 2	Depositor
Cell constants	138.97Å 169.63Å 113.38Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
$\mathbf{Bosolution} \left(\overset{\wedge}{\mathbf{A}} \right)$	20.00 - 2.40	Depositor
Resolution (A)	20.10 - 2.40	EDS
% Data completeness	96.0 (20.00-2.40)	Depositor
(in resolution range)	96.0 (20.10-2.40)	EDS
R_{merge}	0.07	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$2.56 (at 2.41 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.0	Depositor
D D.	0.151 , 0.203	Depositor
Π, Π_{free}	0.155 , 0.202	DCC
R_{free} test set	5019 reflections $(4.98%)$	wwPDB-VP
Wilson B-factor (Å ²)	30.6	Xtriage
Anisotropy	0.185	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.28 , 40.6	EDS
L-test for twinning ²	$ \langle L \rangle = 0.50, \langle L^2 \rangle = 0.33$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.96	EDS
Total number of atoms	13712	wwPDB-VP
Average B, all atoms $(Å^2)$	37.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.73% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: TRA, F3S $\,$

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond angles		
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.34	0/6686	0.75	26/9076~(0.3%)	
1	В	0.35	0/6686	0.77	36/9076~(0.4%)	
All	All	0.35	0/13372	0.76	62/18152~(0.3%)	

There are no bond length outliers.

All (62) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	288	ASP	CB-CG-OD2	6.52	124.16	118.30
1	В	637	ASP	CB-CG-OD2	6.48	124.13	118.30
1	В	104	ASP	CB-CG-OD2	6.27	123.94	118.30
1	А	676	ASP	CB-CG-OD2	6.25	123.92	118.30
1	В	476	ASP	CB-CG-OD2	5.97	123.68	118.30
1	А	297	ASP	CB-CG-OD2	5.88	123.59	118.30
1	А	744	ASP	CB-CG-OD2	5.79	123.51	118.30
1	А	527	ASP	CB-CG-OD2	5.71	123.44	118.30
1	В	181	ASP	CB-CG-OD2	5.69	123.42	118.30
1	В	23	ASP	CB-CG-OD2	5.66	123.39	118.30
1	В	663	ASP	CB-CG-OD2	5.66	123.39	118.30
1	В	131	ASP	CB-CG-OD2	5.64	123.37	118.30
1	А	333	ASP	CB-CG-OD2	5.63	123.37	118.30
1	В	423	ASP	CB-CG-OD2	5.62	123.36	118.30
1	А	673	ASP	CB-CG-OD2	5.62	123.36	118.30
1	А	857	ASP	CB-CG-OD2	5.60	123.34	118.30
1	В	527	ASP	CB-CG-OD2	5.60	123.34	118.30
1	В	288	ASP	CB-CG-OD2	5.60	123.34	118.30
1	В	690	ASP	CB-CG-OD2	5.58	123.33	118.30
1	А	423	ASP	CB-CG-OD2	5.56	123.31	118.30
1	А	637	ASP	CB-CG-OD2	5.54	123.29	118.30
1	В	708	GLY	N-CA-C	5.49	126.83	113.10

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	781	ASP	CB-CG-OD2	5.49	123.24	118.30
1	В	127	ASP	CB-CG-OD2	5.48	123.23	118.30
1	А	131	ASP	CB-CG-OD2	5.48	123.23	118.30
1	А	839	ASP	CB-CG-OD2	5.47	123.22	118.30
1	А	725	ASP	CB-CG-OD2	5.44	123.19	118.30
1	В	23	ASP	CB-CA-C	-5.43	99.53	110.40
1	В	305	ASP	CB-CG-OD2	5.42	123.17	118.30
1	В	462	ASP	CB-CG-OD2	5.41	123.17	118.30
1	В	180	ASP	CB-CG-OD2	5.39	123.15	118.30
1	В	108	ASP	CB-CG-OD2	5.39	123.15	118.30
1	А	259	ASP	CB-CG-OD2	5.38	123.14	118.30
1	В	857	ASP	CB-CG-OD2	5.38	123.14	118.30
1	В	676	ASP	CB-CG-OD2	5.36	123.12	118.30
1	В	839	ASP	CB-CG-OD2	5.34	123.11	118.30
1	В	427	ASP	CB-CG-OD2	5.33	123.10	118.30
1	В	47	ASP	CB-CG-OD2	5.33	123.10	118.30
1	В	689	ASP	CB-CG-OD2	5.32	123.09	118.30
1	В	834	ASP	CB-CG-OD2	5.30	123.07	118.30
1	В	490	ASP	CB-CG-OD2	5.27	123.04	118.30
1	В	367	ASP	CB-CG-OD2	5.26	123.04	118.30
1	А	690	ASP	CB-CG-OD2	5.23	123.00	118.30
1	А	238	ASP	CB-CG-OD2	5.22	123.00	118.30
1	В	260	ASP	CB-CG-OD2	5.22	123.00	118.30
1	А	47	ASP	CB-CG-OD2	5.20	122.98	118.30
1	A	180	ASP	CB-CG-OD2	5.20	122.98	118.30
1	A	374	ASP	CB-CG-OD2	5.19	122.97	118.30
1	А	367	ASP	CB-CG-OD2	5.18	122.96	118.30
1	A	337	ASP	CB-CG-OD2	5.17	122.96	118.30
1	A	490	ASP	CB-CG-OD2	5.16	122.94	118.30
1	В	297	ASP	CB-CG-OD2	5.16	122.94	118.30
1	A	661	ASP	CB-CG-OD2	5.15	122.93	118.30
1	В	58	ASP	CB-CG-OD2	5.13	122.92	118.30
1	A	671	ASP	CB-CG-OD2	5.12	122.91	118.30
1	В	661	ASP	CB-CG-OD2	5.10	122.89	118.30
1	A	834	ASP	CB-CG-OD2	5.08	122.87	118.30
1	В	187	ASP	CB-CG-OD2	5.08	122.87	118.30
1	A	586	ASP	CB-CG-OD2	5.06	122.85	118.30
1	В	152	ASP	CB-CG-OD2	5.05	122.84	118.30
1	В	374	ASP	CB-CG-OD2	5.03	122.83	118.30
1	В	673	ASP	CB-CG-OD2	5.02	122.82	118.30

Continued from previous page...

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	6552	0	6569	129	0
1	В	6552	0	6569	122	0
2	А	12	0	3	2	0
2	В	12	0	3	2	0
3	А	7	0	0	0	0
3	В	7	0	0	0	0
4	А	294	0	0	15	0
4	В	276	0	0	11	0
All	All	13712	0	13144	251	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 10.

All (251) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:530:GLU:OE2	1:B:577:ARG:NH1	1.79	1.15
1:A:439:MET:HE2	4:A:1105:HOH:O	1.56	1.06
1:B:465:MET:SD	1:B:636:GLY:HA3	1.98	1.03
1:B:178:ASN:ND2	1:B:180:ASP:H	1.55	1.03
1:A:439:MET:HB3	4:A:1105:HOH:O	1.60	1.00
1:A:321:THR:CG2	1:A:323:GLU:HG3	1.91	0.99
1:A:301:LEU:HD22	1:A:307:ILE:HD11	1.45	0.99
1:A:296:VAL:HG12	1:A:328:PHE:HB3	1.44	0.98
1:B:590:GLU:HG3	4:B:931:HOH:O	1.64	0.97
1:B:686:ASN:HA	1:B:792:ASN:O	1.65	0.96
1:B:178:ASN:HD22	1:B:180:ASP:H	1.13	0.96
1:B:847:ASN:HD22	1:B:847:ASN:H	1.13	0.96
1:A:590:GLU:HG2	4:A:888:HOH:O	1.66	0.95
1:A:564:THR:HG22	1:A:571:LYS:H	1.30	0.94
1:B:708:GLY:O	4:B:1117:HOH:O	1.87	0.93
1:A:296:VAL:CG1	1:A:328:PHE:HB3	2.00	0.90

	t a c	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:686:ASN:HA	1:A:792:ASN:O	1.70	0.90
1:A:847:ASN:HD22	1:A:847:ASN:H	1.19	0.89
1:A:286:MET:HG3	1:A:291:ALA:HB3	1.53	0.88
1:A:321:THR:HG22	1:A:323:GLU:HG3	1.55	0.88
1:A:775:ASN:HD22	1:A:775:ASN:H	1.23	0.87
1:B:52:ARG:HD3	4:B:878:HOH:O	1.72	0.87
1:A:301:LEU:HD22	1:A:307:ILE:CD1	2.08	0.83
1:B:410:SER:OG	1:B:644:ARG:NH2	2.12	0.83
1:B:778:ARG:CZ	4:B:1052:HOH:O	2.25	0.83
1:A:89:LEU:O	1:A:92:THR:HG22	1.80	0.82
1:B:478:VAL:HG11	1:B:710:CYS:HB3	1.63	0.81
1:A:52:ARG:HD3	4:A:957:HOH:O	1.80	0.80
1:A:331:LYS:HG3	1:A:332:THR:HG23	1.62	0.80
1:A:288:ASP:OD1	1:A:344:ARG:HD2	1.80	0.80
1:A:564:THR:CG2	1:A:571:LYS:H	1.95	0.80
1:B:178:ASN:HD22	1:B:180:ASP:N	1.79	0.79
1:B:775:ASN:HD22	1:B:775:ASN:H	1.30	0.79
1:B:465:MET:SD	1:B:636:GLY:CA	2.73	0.77
1:B:100:HIS:HB3	4:B:1130:HOH:O	1.84	0.77
1:A:321:THR:HG21	1:A:323:GLU:HG3	1.67	0.75
1:A:488:LEU:O	1:A:491:THR:HG22	1.85	0.75
1:A:773:MET:HG2	1:A:775:ASN:ND2	2.02	0.75
1:B:817:ILE:HG22	1:B:819:LYS:HG2	1.69	0.74
1:A:259:ASP:O	1:A:268:ARG:HG3	1.86	0.74
1:A:267:LYS:HE2	4:A:1090:HOH:O	1.87	0.74
1:A:713:ASN:H	1:A:716:HIS:CD2	2.08	0.72
1:A:12:ARG:NH2	1:A:193:ASP:OD2	2.18	0.72
1:A:358:ARG:HH11	1:A:358:ARG:HG2	1.53	0.71
1:B:259:ASP:O	1:B:268:ARG:HG3	1.89	0.71
1:A:713:ASN:H	1:A:716:HIS:HD2	1.38	0.71
1:A:410:SER:OG	1:A:644:ARG:NH2	2.23	0.71
1:B:554:PRO:HG3	1:B:602:ARG:CZ	2.22	0.70
1:A:465:MET:SD	1:A:636:GLY:HA2	2.31	0.70
1:B:822:THR:H	1:B:825:GLU:HG3	1.57	0.70
1:B:817:ILE:CG2	1:B:819:LYS:HG2	2.23	0.69
1:B:415:ASP:OD2	1:B:445:THR:HG22	1.93	0.69
1:A:71:ILE:HG21	1:A:81:LEU:HD13	1.73	0.68
1:B:178:ASN:ND2	1:B:180:ASP:N	2.37	0.67
1:A:636:GLY:N	4:A:905:HOH:O	2.22	0.67
1:B:234:ALA:HB1	1:B:272:LEU:CD1	2.24	0.67
1:B:704:GLU:CD	1:B:779:VAL:HG22	2.15	0.66

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:173:VAL:HG22	1:A:209:ILE:HD11	1.77	0.66
1:A:704:GLU:CD	1:A:779:VAL:HG22	2.16	0.66
1:A:590:GLU:CG	4:A:888:HOH:O	2.35	0.65
1:B:201:MET:HE1	1:B:253:VAL:HB	1.79	0.65
1:B:234:ALA:HB2	1:B:272:LEU:HD11	1.78	0.65
1:B:280:PRO:HG3	1:B:576:GLY:HA2	1.79	0.65
1:A:259:ASP:C	1:A:268:ARG:HG3	2.16	0.65
1:B:234:ALA:CB	1:B:272:LEU:HD11	2.27	0.64
1:B:182:LEU:HD22	1:B:201:MET:HE2	1.78	0.64
1:A:638:ARG:HD3	1:A:642:GLU:OE1	1.97	0.63
1:B:234:ALA:CB	1:B:272:LEU:CD1	2.76	0.63
1:B:833:VAL:O	1:B:833:VAL:HG12	1.99	0.62
1:B:713:ASN:H	1:B:716:HIS:HD2	1.46	0.61
1:A:847:ASN:HD22	1:A:847:ASN:N	1.95	0.61
1:B:321:THR:HG21	1:B:323:GLU:HG3	1.83	0.60
1:B:514:LEU:HD11	1:B:525:PRO:HD2	1.82	0.60
1:B:683:CYS:HB2	1:B:805:LEU:HB2	1.82	0.60
1:A:775:ASN:N	1:A:775:ASN:HD22	1.94	0.60
1:B:445:THR:HG23	1:B:457:HIS:NE2	2.17	0.60
1:A:244:SER:HB2	2:A:866:TRA:OG1	2.02	0.60
1:B:713:ASN:H	1:B:716:HIS:CD2	2.20	0.60
1:B:847:ASN:ND2	1:B:847:ASN:H	1.92	0.60
1:B:685:PRO:HD3	1:B:804:PHE:CE2	2.36	0.60
1:B:847:ASN:N	1:B:847:ASN:HD22	1.92	0.59
1:A:383:SER:H	1:A:386:GLN:NE2	2.01	0.59
1:A:296:VAL:CG1	1:A:328:PHE:CB	2.78	0.59
1:A:847:ASN:ND2	1:A:847:ASN:H	1.97	0.59
1:A:395:VAL:HG12	1:A:397:GLY:H	1.68	0.59
1:A:406:PRO:HD2	1:A:524:MET:O	2.02	0.59
1:A:593:PHE:HA	1:A:596:THR:HG22	1.84	0.58
1:A:478:VAL:HG11	1:A:710:CYS:HB3	1.85	0.58
1:B:833:VAL:CG1	1:B:833:VAL:O	2.51	0.58
1:B:67:PHE:CZ	1:B:71:ILE:HD11	2.39	0.58
1:A:459:THR:HG23	4:A:971:HOH:O	2.02	0.58
1:B:778:ARG:NE	4:B:1052:HOH:O	2.34	0.58
1:B:822:THR:OG1	1:B:825:GLU:HG2	2.05	0.57
1:A:185:ALA:HB3	1:A:186:PRO:HD3	1.86	0.57
1:A:395:VAL:HG12	1:A:396:LYS:N	2.18	0.57
1:B:614:GLU:HB2	1:B:615:PRO:HD3	1.86	0.57
1:B:259:ASP:C	1:B:268:ARG:HG3	2.25	0.56
1:B:20:LYS:HE2	1:B:193:ASP:OD2	2.06	0.56

	1	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:112:ALA:HB3	1:A:113:PRO:HD3	1.87	0.56
1:A:237:GLY:O	1:A:275:GLY:HA2	2.05	0.56
1:A:321:THR:HG21	1:A:323:GLU:CG	2.34	0.56
1:B:182:LEU:HD22	1:B:201:MET:CE	2.35	0.56
1:A:554:PRO:HG3	1:A:602:ARG:CZ	2.37	0.55
1:A:358:ARG:HH11	1:A:358:ARG:CG	2.20	0.55
1:A:602:ARG:O	1:A:603:SER:HB2	2.06	0.55
1:B:704:GLU:HG2	1:B:734:ARG:HB3	1.87	0.55
1:B:553:ILE:HB	1:B:554:PRO:HD3	1.89	0.54
1:B:682:LEU:N	1:B:682:LEU:HD23	2.22	0.54
1:A:170:VAL:HG21	1:A:307:ILE:HD12	1.89	0.54
1:A:389:VAL:HG12	1:A:398:ILE:HD12	1.88	0.54
1:B:12:ARG:HD2	1:B:19:PRO:HA	1.90	0.54
1:A:12:ARG:HD3	1:A:17:ILE:HG13	1.89	0.54
1:A:712:THR:HA	1:A:716:HIS:CD2	2.43	0.54
1:B:817:ILE:HD11	1:B:829:TYR:OH	2.07	0.54
1:B:704:GLU:OE2	1:B:779:VAL:HG22	2.08	0.53
1:A:773:MET:O	1:A:773:MET:HG3	2.08	0.53
1:B:613:LYS:HD3	4:B:961:HOH:O	2.09	0.53
1:A:395:VAL:CG1	1:A:396:LYS:N	2.72	0.53
1:B:344:ARG:O	1:B:348:ILE:HG12	2.08	0.53
1:A:100:HIS:HB2	1:A:101:PRO:HD3	1.90	0.53
1:B:112:ALA:HB3	1:B:113:PRO:HD3	1.91	0.53
1:B:685:PRO:HD3	1:B:804:PHE:CD2	2.44	0.53
1:A:705:VAL:HG22	1:A:786:VAL:CG1	2.39	0.52
1:A:465:MET:SD	1:A:636:GLY:CA	2.96	0.52
1:A:553:ILE:HB	1:A:554:PRO:HD3	1.91	0.52
1:B:212:ASP:OD1	1:B:221:LYS:HD3	2.10	0.52
1:A:705:VAL:HG22	1:A:786:VAL:HG13	1.92	0.52
1:A:358:ARG:HG3	1:A:363:LEU:HB2	1.92	0.52
1:A:683:CYS:HB2	1:A:805:LEU:HB2	1.93	0.51
1:A:92:THR:HG21	4:A:877:HOH:O	2.11	0.51
1:B:551:HIS:O	1:B:554:PRO:HD2	2.10	0.51
1:A:199:LEU:HD22	1:A:220:ILE:CD1	2.40	0.51
1:A:345:ILE:HB	1:A:346:PRO:HD3	1.93	0.51
1:A:422:ARG:HD3	1:A:426:LYS:HE2	1.92	0.51
1:B:792:ASN:HB3	1:B:805:LEU:HD13	1.93	0.50
1:B:445:THR:CG2	1:B:457:HIS:NE2	2.74	0.50
1:A:286:MET:HG3	1:A:291:ALA:CB	2.35	0.50
1:B:176:GLU:HB2	1:B:567:LYS:HG2	1.93	0.50
1:B:845:ASN:ND2	4:B:976:HOH:O	2.44	0.50

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:851:GLN:H	1:B:851:GLN:CD	2.12	0.50
1:A:445:THR:OG1	1:A:457:HIS:HE1	1.94	0.49
1:B:727:HIS:NE2	1:B:829:TYR:HE2	2.09	0.49
1:B:778:ARG:NH2	4:B:1052:HOH:O	2.39	0.49
1:A:734:ARG:HD3	1:A:736:TRP:HE1	1.78	0.49
1:B:234:ALA:HB1	1:B:272:LEU:HD12	1.93	0.49
1:A:178:ASN:OD1	1:A:180:ASP:HB2	2.12	0.48
1:B:712:THR:HA	1:B:716:HIS:CD2	2.48	0.48
1:A:470:VAL:HA	1:A:636:GLY:O	2.14	0.48
1:B:82:THR:HB	1:B:84:GLU:OE2	2.14	0.48
1:A:508:PHE:HB2	1:A:524:MET:CE	2.44	0.48
1:A:534:VAL:CG2	1:A:579:LEU:HD11	2.44	0.48
1:A:551:HIS:O	1:A:554:PRO:HD2	2.12	0.48
1:B:602:ARG:NH1	1:B:689:ASP:OD2	2.47	0.48
1:A:712:THR:HA	1:A:716:HIS:HD2	1.79	0.47
1:A:709:SER:HB2	1:A:789:SER:HA	1.95	0.47
1:B:244:SER:HB2	2:B:867:TRA:OG1	2.15	0.47
1:A:398:ILE:HD13	1:A:404:CYS:SG	2.55	0.47
1:B:712:THR:HA	1:B:716:HIS:HD2	1.80	0.47
1:B:234:ALA:CB	1:B:272:LEU:HD12	2.44	0.47
1:B:851:GLN:N	1:B:851:GLN:OE1	2.32	0.47
1:A:358:ARG:NH1	1:A:358:ARG:CG	2.78	0.47
1:B:795:ASN:HA	1:B:798:GLY:O	2.15	0.47
1:B:296:VAL:HG22	1:B:297:ASP:N	2.29	0.46
1:B:564:THR:HG22	1:B:571:LYS:H	1.80	0.46
1:A:775:ASN:ND2	1:A:775:ASN:H	2.02	0.46
1:A:439:MET:CE	4:A:1105:HOH:O	2.35	0.46
1:A:460:LEU:N	1:A:461:PRO:CD	2.79	0.46
1:A:713:ASN:N	1:A:716:HIS:HD2	2.09	0.46
1:B:12:ARG:HD3	1:B:18:ALA:O	2.15	0.46
1:B:185:ALA:N	1:B:186:PRO:CD	2.78	0.46
1:B:727:HIS:NE2	1:B:829:TYR:CE2	2.83	0.46
1:B:332:THR:HG23	1:B:335:LEU:H	1.81	0.46
1:B:564:THR:HG22	1:B:570:LYS:HG2	1.96	0.46
1:A:822:THR:CG2	1:A:825:GLU:H	2.29	0.45
1:B:775:ASN:ND2	1:B:775:ASN:H	2.06	0.45
1:A:564:THR:HG22	1:A:571:LYS:N	2.14	0.45
1:B:178:ASN:HD22	1:B:178:ASN:C	2.20	0.45
1:B:682:LEU:CD2	1:B:682:LEU:N	2.79	0.45
1:B:103:ILE:O	1:B:106:LEU:HB2	2.16	0.45
1:B:616:ILE:HD12	1:B:657:LEU:HD11	1.97	0.45

			Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:B:638:ARG:NH2	1:B:860:ILE:O	2.50	0.45	
1:A:288:ASP:OD1	1:A:344:ARG:CD	2.60	0.44	
1:A:773:MET:CE	2:A:866:TRA:HG2	2.48	0.44	
1:B:272:LEU:HD12	1:B:272:LEU:O	2.17	0.44	
1:B:602:ARG:HD3	1:B:602:ARG:HA	1.83	0.44	
1:B:93:MET:O	1:B:95:GLY:N	2.49	0.44	
1:B:498:SER:OG	1:B:791:ARG:NH2	2.45	0.44	
1:A:364:PRO:HB2	1:A:365:HIS:H	1.55	0.44	
1:B:551:HIS:C	1:B:554:PRO:HD2	2.38	0.44	
1:A:602:ARG:NH2	4:A:1018:HOH:O	2.21	0.44	
1:A:102:LEU:HA	1:A:102:LEU:HD12	1.86	0.43	
1:A:112:ALA:HB1	1:A:142:TYR:CD2	2.53	0.43	
1:A:254:LEU:HD21	1:A:286:MET:HE1	2.00	0.43	
1:A:467:ARG:NH1	4:A:1007:HOH:O	2.51	0.43	
1:B:234:ALA:HB2	1:B:272:LEU:CD1	2.46	0.43	
1:B:602:ARG:O	1:B:603:SER:HB2	2.17	0.43	
1:B:847:ASN:ND2	1:B:847:ASN:N	2.60	0.43	
1:B:796:ARG:NH1	2:B:867:TRA:OG2	2.46	0.43	
1:A:734:ARG:HD3	1:A:736:TRP:NE1	2.33	0.43	
1:A:785:VAL:HG23	1:A:786:VAL:N	2.33	0.43	
1:A:199:LEU:HD22	1:A:220:ILE:HD11	2.01	0.43	
1:A:439:MET:CB	4:A:1105:HOH:O	2.40	0.43	
1:A:775:ASN:N	1:A:775:ASN:ND2	2.65	0.43	
1:A:363:LEU:HB3	1:A:364:PRO:CD	2.49	0.43	
1:A:822:THR:OG1	1:A:823:PRO:HD2	2.19	0.43	
1:B:156:PHE:CE2	1:B:340:ARG:HG2	2.54	0.43	
1:A:602:ARG:HA	1:A:602:ARG:HD3	1.87	0.42	
1:B:608:THR:HG23	4:B:898:HOH:O	2.18	0.42	
1:B:178:ASN:HB3	1:B:181:ASP:OD2	2.19	0.42	
1:B:2:LEU:HA	1:B:2:LEU:HD12	1.79	0.42	
1:B:534:VAL:CG2	1:B:579:LEU:HD11	2.49	0.42	
1:B:822:THR:N	1:B:825:GLU:HG3	2.29	0.42	
1:B:309:VAL:O	1:B:311:PRO:HD3	2.19	0.42	
1:A:839:ASP:O	1:A:842:ARG:HD3	2.19	0.42	
1:A:704:GLU:OE2	1:A:779:VAL:HG22	2.19	0.42	
1:B:498:SER:O	1:B:501:ARG:HD3	2.20	0.42	
1:A:564:THR:HG21	4:A:919:HOH:O	2.20	0.42	
1:B:602:ARG:NH2	4:B:990:HOH:O	2.46	0.42	
1:A:12:ARG:HD2	1:A:19:PRO:HA	2.01	0.42	
1:A:431:LEU:HD12	1:A:431:LEU:HA	1.91	0.42	
1:A:176:GLU:HB2	1:A:567:LYS:HD2	2.02	0.42	

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:820:LEU:HD23	1:A:820:LEU:HA	1.85	0.42
1:A:100:HIS:N	1:A:101:PRO:CD	2.83	0.41
1:A:37:PRO:HA	1:A:38:PRO:HD3	1.91	0.41
1:B:534:VAL:HG21	1:B:579:LEU:HD11	2.02	0.41
1:B:731:LEU:HA	1:B:732:PRO:HD3	1.82	0.41
1:B:723:LEU:HG	1:B:833:VAL:HG21	2.02	0.41
1:A:809:GLU:H	1:A:809:GLU:CD	2.21	0.41
1:B:321:THR:CG2	1:B:323:GLU:HG3	2.50	0.41
1:B:41:GLU:O	1:B:45:LEU:HG	2.20	0.41
1:B:56:GLY:HA2	1:B:95:GLY:O	2.20	0.41
1:A:453:ASP:O	1:A:456:THR:HB	2.20	0.41
1:B:237:GLY:O	1:B:275:GLY:HA2	2.20	0.41
1:B:182:LEU:CD2	1:B:201:MET:HE2	2.49	0.41
1:A:363:LEU:HB3	1:A:364:PRO:HD2	2.02	0.41
1:A:550:VAL:HG22	1:A:595:LEU:HD23	2.02	0.41
1:A:415:ASP:OD1	1:A:415:ASP:N	2.52	0.41
1:A:502:PHE:HB3	1:A:504:ILE:O	2.21	0.41
1:B:460:LEU:N	1:B:461:PRO:CD	2.84	0.41
1:B:524:MET:HA	1:B:525:PRO:HD3	1.98	0.41
1:A:23:ASP:C	1:A:23:ASP:OD1	2.59	0.40
1:A:287:GLU:OE2	1:A:338:GLU:OE1	2.40	0.40
1:A:321:THR:HG21	1:A:323:GLU:CD	2.41	0.40
1:A:534:VAL:HG23	1:A:579:LEU:HD11	2.03	0.40
1:A:82:THR:HG22	4:A:1033:HOH:O	2.21	0.40
1:B:93:MET:C	1:B:95:GLY:H	2.23	0.40
1:A:528:MET:HA	1:A:529:PRO:HD3	1.77	0.40
1:A:614:GLU:N	1:A:615:PRO:HD2	2.37	0.40
1:B:108:ASP:OD1	1:B:108:ASP:C	2.60	0.40
1:B:42:GLU:HG2	1:B:42:GLU:H	1.26	0.40
1:B:727:HIS:CE1	1:B:829:TYR:HE2	2.39	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	860/865~(99%)	831~(97%)	26 (3%)	3~(0%)	41 55
1	В	860/865~(99%)	828~(96%)	31 (4%)	1 (0%)	51 68
All	All	1720/1730~(99%)	1659~(96%)	57(3%)	4 (0%)	47 62

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

All (4) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	364	PRO
1	А	94	GLN
1	А	708	GLY
1	В	708	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	690/692~(100%)	654~(95%)	36~(5%)	23 38
1	В	690/692~(100%)	646~(94%)	44~(6%)	17 28
All	All	1380/1384~(100%)	1300~(94%)	80~(6%)	20 32

All (80) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	6	ARG
1	А	46	LEU
1	А	59	GLU
1	А	81	LEU
1	А	82	THR
1	А	94	GLN
1	А	102	LEU
1	А	133	GLU
1	А	172	LYS

1 A 180 ASP 1 A 196 LEU 1 A 221 LYS 1 A 268 ARG 1 A 277 LYS 1 A 307 ILE 1 A 327 THR 1 A 327 THR 1 A 344 ARG 1 A 344 ARG 1 A 391 ARG 1 A 414 GLN 1 A 467 ARG 1 A 546 LEU 1 A 590 GLU 1 A 590 GLU 1 A 602 ARG 1 A 773 MET 1 A 779 VAL 1 A 785 VAL 1 A 786<	Mol	Chain	Res	Type
1 A 196 LEU 1 A 221 LYS 1 A 268 ARG 1 A 277 LYS 1 A 307 ILE 1 A 327 THR 1 A 327 THR 1 A 327 THR 1 A 344 ARG 1 A 391 ARG 1 A 414 GLN 1 A 431 LEU 1 A 467 ARG 1 A 588 LYS 1 A 590 GLU 1 A 590 GLU 1 A 601 GLU 1 A 602 ARG 1 A 773 MET 1 A 775 ASN 1 A 785 VAL 1 A 786 VAL 1	1	А	180	ASP
1 A 221 LYS 1 A 268 ARG 1 A 277 LYS 1 A 307 ILE 1 A 327 THR 1 A 327 THR 1 A 327 THR 1 A 327 THR 1 A 344 ARG 1 A 358 ARG 1 A 414 GLN 1 A 414 GLN 1 A 467 ARG 1 A 546 LEU 1 A 590 GLU 1 A 590 GLU 1 A 602 ARG 1 A 602 ARG 1 A 773 MET 1 A 775 ASN 1 A 785 VAL 1 A 786 VAL 1	1	А	196	LEU
1 A 268 ARG 1 A 277 LYS 1 A 307 ILE 1 A 327 THR 1 A 327 THR 1 A 327 THR 1 A 327 THR 1 A 344 ARG 1 A 391 ARG 1 A 414 GLN 1 A 431 LEU 1 A 467 ARG 1 A 546 LEU 1 A 590 GLU 1 A 590 GLU 1 A 601 GLU 1 A 602 ARG 1 A 602 ARG 1 A 775 ASN 1 A 779 VAL 1 A 785 VAL 1 A 786 VAL 1	1	А	221	LYS
1 A 277 LYS 1 A 307 ILE 1 A 327 THR 1 A 344 ARG 1 A 358 ARG 1 A 391 ARG 1 A 391 ARG 1 A 414 GLN 1 A 431 LEU 1 A 467 ARG 1 A 546 LEU 1 A 560 GLU 1 A 590 GLU 1 A 601 GLU 1 A 602 ARG 1 A 602 ARG 1 A 773 MET 1 A 775 ASN 1 A 779 VAL 1 A 786 VAL 1 A 786 VAL 1 A 847 ASN 1	1	А	268	ARG
1 A 307 ILE 1 A 327 THR 1 A 344 ARG 1 A 358 ARG 1 A 391 ARG 1 A 391 ARG 1 A 414 GLN 1 A 431 LEU 1 A 467 ARG 1 A 546 LEU 1 A 590 GLU 1 A 590 GLU 1 A 602 ARG 1 A 602 ARG 1 A 602 ARG 1 A 773 MET 1 A 779 VAL 1 A 786 VAL 1 A 786 VAL 1 A 847 ASN 1 B 12 ARG 1 B 12 ARG	1	А	277	LYS
1 A 327 THR 1 A 344 ARG 1 A 358 ARG 1 A 391 ARG 1 A 391 ARG 1 A 414 GLN 1 A 414 GLN 1 A 467 ARG 1 A 546 LEU 1 A 566 LEU 1 A 590 GLU 1 A 590 GLU 1 A 602 ARG 1 A 602 ARG 1 A 602 ARG 1 A 773 MET 1 A 779 VAL 1 A 785 VAL 1 A 786 VAL 1 A 797 LEU 1 A 834 ASP 1 B 12 ARG <th>1</th> <th>А</th> <th>307</th> <th>ILE</th>	1	А	307	ILE
1 A 344 ARG 1 A 358 ARG 1 A 391 ARG 1 A 414 GLN 1 A 431 LEU 1 A 467 ARG 1 A 467 ARG 1 A 546 LEU 1 A 590 GLU 1 A 590 GLU 1 A 601 GLU 1 A 602 ARG 1 A 602 ARG 1 A 675 ASN 1 A 775 ASN 1 A 779 VAL 1 A 786 VAL 1 A 797 LEU 1 A 847 ASN 1 B 12 ARG 1 B 12 ARG 1 B 46 LEU	1	А	327	THR
1 A 358 ARG 1 A 391 ARG 1 A 414 GLN 1 A 431 LEU 1 A 467 ARG 1 A 467 ARG 1 A 546 LEU 1 A 590 GLU 1 A 590 GLU 1 A 601 GLU 1 A 602 ARG 1 A 644 ARG 1 A 773 MET 1 A 775 ASN 1 A 779 VAL 1 A 786 VAL 1 A 797 LEU 1 A 834 ASP 1 A 847 ASN 1 B 12 ARG 1 B 12 ARG 1 B 46 LEU	1	А	344	ARG
1 A 391 ARG 1 A 414 GLN 1 A 431 LEU 1 A 467 ARG 1 A 546 LEU 1 A 546 LEU 1 A 590 GLU 1 A 601 GLU 1 A 602 ARG 1 A 602 ARG 1 A 644 ARG 1 A 773 MET 1 A 775 ASN 1 A 779 VAL 1 A 785 VAL 1 A 797 LEU 1 A 834 ASP 1 A 847 ASN 1 B 12 ARG 1 B 12 ARG 1 B 12 ARG 1 B 46 LEU	1	А	358	ARG
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	391	ARG
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	414	GLN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	431	LEU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	467	ARG
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	546	LEU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	588	LYS
1 A 601 GLU 1 A 602 ARG 1 A 644 ARG 1 A 773 MET 1 A 775 ASN 1 A 775 ASN 1 A 779 VAL 1 A 785 VAL 1 A 786 VAL 1 A 797 LEU 1 A 797 LEU 1 A 834 ASP 1 A 847 ASN 1 B 12 ARG 1 B 42 GLU 1 B 46 LEU 1 B 52 ARG 1 B 106 LEU 1 B 106 LEU 1 B 133 GLU 1 B 157 LEU 1 B 178 ASN	1	А	590	GLU
1 A 602 ARG 1 A 644 ARG 1 A 773 MET 1 A 775 ASN 1 A 775 ASN 1 A 775 ASN 1 A 779 VAL 1 A 785 VAL 1 A 786 VAL 1 A 786 VAL 1 A 786 VAL 1 A 786 VAL 1 A 787 LEU 1 A 834 ASP 1 B 2 LEU 1 B 12 ARG 1 B 42 GLU 1 B 46 LEU 1 B 133 GLU 1 B 133 GLU 1 B 157 LEU 1 B 178 ASN	1	А	601	GLU
1 A 644 ARG 1 A 773 MET 1 A 775 ASN 1 A 779 VAL 1 A 779 VAL 1 A 785 VAL 1 A 786 VAL 1 A 786 VAL 1 A 787 LEU 1 A 797 LEU 1 A 834 ASP 1 A 847 ASN 1 B 12 ARG 1 B 12 ARG 1 B 42 GLU 1 B 46 LEU 1 B 52 ARG 1 B 106 LEU 1 B 133 GLU 1 B 157 LEU 1 B 178 ASN	1	А	602	ARG
1 A 773 MET 1 A 775 ASN 1 A 775 ASN 1 A 779 VAL 1 A 785 VAL 1 A 786 VAL 1 A 787 LEU 1 A 834 ASP 1 A 847 ASN 1 B 2 LEU 1 B 12 ARG 1 B 42 GLU 1 B 52 ARG 1 B 106 LEU 1 B 133 GLU 1 B 157 LEU 1 B 178 ASN	1	А	644	ARG
1 A 775 ASN 1 A 779 VAL 1 A 785 VAL 1 A 786 VAL 1 A 786 VAL 1 A 786 VAL 1 A 786 VAL 1 A 787 LEU 1 A 834 ASP 1 A 847 ASN 1 B 2 LEU 1 B 12 ARG 1 B 42 GLU 1 B 46 LEU 1 B 52 ARG 1 B 106 LEU 1 B 106 LEU 1 B 157 LEU 1 B 178 ASN	1	А	773	MET
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	775	ASN
1 A 785 VAL 1 A 786 VAL 1 A 786 VAL 1 A 786 VAL 1 A 786 VAL 1 A 797 LEU 1 A 834 ASP 1 A 847 ASN 1 B 2 LEU 1 B 12 ARG 1 B 42 GLU 1 B 46 LEU 1 B 52 ARG 1 B 89 LEU 1 B 106 LEU 1 B 133 GLU 1 B 157 LEU 1 B 178 ASN	1	А	779	VAL
1 A 786 VAL 1 A 797 LEU 1 A 834 ASP 1 A 847 ASN 1 B 2 LEU 1 B 12 ARG 1 B 42 GLU 1 B 46 LEU 1 B 52 ARG 1 B 89 LEU 1 B 106 LEU 1 B 133 GLU 1 B 157 LEU 1 B 178 ASN	1	А	785	VAL
1 A 797 LEU 1 A 834 ASP 1 A 847 ASN 1 B 2 LEU 1 B 12 ARG 1 B 42 GLU 1 B 46 LEU 1 B 52 ARG 1 B 89 LEU 1 B 106 LEU 1 B 133 GLU 1 B 157 LEU 1 B 178 ASN	1	А	786	VAL
1 A 834 ASP 1 A 847 ASN 1 B 2 LEU 1 B 12 ARG 1 B 42 GLU 1 B 46 LEU 1 B 52 ARG 1 B 89 LEU 1 B 106 LEU 1 B 133 GLU 1 B 157 LEU 1 B 178 ASN	1	А	797	LEU
1 A 847 ASN 1 B 2 LEU 1 B 12 ARG 1 B 42 GLU 1 B 46 LEU 1 B 52 ARG 1 B 89 LEU 1 B 106 LEU 1 B 133 GLU 1 B 157 LEU 1 B 178 ASN	1	А	834	ASP
1 B 2 LEU 1 B 12 ARG 1 B 42 GLU 1 B 46 LEU 1 B 52 ARG 1 B 89 LEU 1 B 106 LEU 1 B 133 GLU 1 B 157 LEU 1 B 178 ASN	1	А	847	ASN
1 B 12 ARG 1 B 42 GLU 1 B 46 LEU 1 B 52 ARG 1 B 89 LEU 1 B 106 LEU 1 B 133 GLU 1 B 157 LEU 1 B 178 ASN	1	В	2	LEU
1 B 42 GLU 1 B 46 LEU 1 B 52 ARG 1 B 89 LEU 1 B 106 LEU 1 B 133 GLU 1 B 157 LEU 1 B 178 ASN	1	В	12	ARG
1 B 46 LEU 1 B 52 ARG 1 B 89 LEU 1 B 106 LEU 1 B 133 GLU 1 B 157 LEU 1 B 178 ASN	1	B	42	GLU
1 B 52 ARG 1 B 89 LEU 1 B 106 LEU 1 B 133 GLU 1 B 157 LEU 1 B 178 ASN	1	В	46	LEU
1 B 89 LEU 1 B 106 LEU 1 B 133 GLU 1 B 157 LEU 1 B 178 ASN	1	В	52	ARG
1 B 106 LEU 1 B 133 GLU 1 B 157 LEU 1 B 178 ASN	1	В	89	LEU
1 B 133 GLU 1 B 157 LEU 1 B 178 ASN	1	В	106	LEU
1 B 157 LEU 1 B 178 ASN	1	В	133	GLU
1 B 178 ASN	1	B	157	LEU
	1	В	178	ASN
1 B 196 LEU	1	B	196	LEU
1 B 221 LYS	1	В	221	LYS
1 B 253 VAL	1	В	253	VAL
1 B 272 LEU	1	В	272	LEU
$1 \qquad B \qquad \overline{277} \qquad LYS$	1	B	277	LYS

Mol	Chain	Res	Type
1	В	292	LEU
1	В	340	ARG
1	В	391	ARG
1	В	399	ARG
1	В	414	GLN
1	В	431	LEU
1	В	533	LEU
1	В	549	LEU
1	В	555	LEU
1	В	563	LEU
1	В	564	THR
1	В	602	ARG
1	В	603	SER
1	В	644	ARG
1	В	677	ILE
1	В	682	LEU
1	В	694	LEU
1	В	724	LEU
1	В	748	LEU
1	В	763	ARG
1	В	775	ASN
1	В	779	VAL
1	В	797	LEU
1	В	805	LEU
1	В	817	ILE
1	В	825	GLU
1	В	847	ASN
1	В	849	LEU
1	В	850	SER

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (28) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	36	ASN
1	А	213	GLN
1	А	228	GLN
1	А	386	GLN
1	А	457	HIS
1	А	466	ASN
1	А	623	ASN
1	А	646	GLN
1	А	716	HIS

Mol	Chain	Res	Type
1	А	775	ASN
1	А	832	GLN
1	А	845	ASN
1	А	847	ASN
1	А	848	GLN
1	В	148	GLN
1	В	178	ASN
1	В	365	HIS
1	В	371	GLN
1	В	466	ASN
1	В	623	ASN
1	В	646	GLN
1	В	654	ASN
1	В	698	GLN
1	В	716	HIS
1	В	775	ASN
1	В	832	GLN
1	В	845	ASN
1	В	847	ASN

Continued from previous page...

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no carbohydrates in this entry.

5.6 Ligand geometry (i)

4 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the

Mal	Mol Type Chain			Dec	Dec Link	B	Bond lengths			Bond angles		
	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2		
2	TRA	В	867	-	2,11,11	1.03	0	2,14,14	3.15	2 (100%)		
3	F3S	А	868	1	0,9,9	0.00	-	-				
3	F3S	В	869	1	0,9,9	0.00	-	-				
2	TRA	А	866	-	2,11,11	0.92	0	2,14,14	4.04	2 (100%)		

expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	\mathbf{Link}	Chirals	Torsions	Rings
2	TRA	В	867	-	-	0/4/12/12	-
3	F3S	А	868	1	-	-	0/3/3/3
3	F3S	В	869	1	-	-	0/3/3/3
2	TRA	А	866	-	-	0/4/12/12	-

There are no bond length outliers.

All (4) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
2	А	866	TRA	CAC-CA-CB	-4.98	116.68	127.06
2	В	867	TRA	CAC-CA-CB	-3.75	119.23	127.06
2	А	866	TRA	CGC-CG-CB	-2.79	107.06	113.67
2	В	867	TRA	CGC-CG-CB	-2.40	108.00	113.67

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

2 monomers are involved in 4 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	В	867	TRA	2	0
2	А	866	TRA	2	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RSI	RZ>	$\cdot 2$	$OWAB(Å^2)$	Q<0.9
1	А	862/865~(99%)	-0.72	14 (1%)	72	70	17, 32, 71, 97	0
1	В	862/865~(99%)	-0.77	11 (1%)	77	75	18, 32, 66, 96	0
All	All	1724/1730 (99%)	-0.75	25(1%)	73	72	17, 32, 68, 97	0

All (25) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	В	377	GLU	7.5
1	А	377	GLU	6.9
1	В	376	ALA	6.1
1	В	375	VAL	4.5
1	А	138	ALA	4.3
1	В	374	ASP	4.1
1	В	378	SER	4.0
1	В	379	ASP	3.8
1	А	376	ALA	3.7
1	А	374	ASP	3.7
1	В	728	LYS	3.6
1	А	373	LYS	3.6
1	А	365	HIS	3.0
1	А	375	VAL	2.8
1	В	373	LYS	2.8
1	В	371	GLN	2.7
1	А	728	LYS	2.6
1	А	379	ASP	2.6
1	В	1	MET	2.6
1	А	378	SER	2.5
1	A	75	GLU	2.4
1	A	137	LYS	2.3
1	A	367	ASP	2.3
1	A	862	GLN	2.2

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type	RSRZ
1	В	365	HIS	2.1

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no carbohydrates in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	${f B} ext{-factors}({ m \AA}^2)$	Q<0.9
2	TRA	В	867	12/12	0.97	0.11	$25,\!31,\!40,\!65$	0
2	TRA	А	866	12/12	0.97	0.12	$18,\!26,\!31,\!37$	0
3	F3S	В	869	7/7	0.98	0.04	$21,\!26,\!30,\!30$	0
3	F3S	А	868	7/7	0.98	0.06	$19,\!26,\!30,\!30$	0

6.5 Other polymers (i)

There are no such residues in this entry.

