

Full wwPDB X-ray Structure Validation Report (i)

Sep 23, 2023 – 10:41 PM EDT

PDB ID	:	5KZC
Title	:	Crystal structure of an HIV-1 gp120 engineered outer domain with a Man9
		glycan at position N276, in complex with broadly neutralizing antibody VRC01
Authors	:	Julien, JP.; Jardine, J.G.; Diwanji, D.; Schief, W.R.; Wilson, I.A.
Deposited on	:	2016-07-24
Resolution	:	3.25 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35.1
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.25 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$\begin{array}{c} {\rm Whole \ archive} \\ (\#{\rm Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	1191 (3.30-3.22)
Clashscore	141614	1251 (3.30-3.22)
Ramachandran outliers	138981	1229 (3.30-3.22)
Sidechain outliers	138945	1228 (3.30-3.22)
RSRZ outliers	127900	1154 (3.30-3.22)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	В	224	18%	30%	.
			3%		
1	E	224	72%	21%	• •
1	Н	224	76%	17%	• •
2	А	182	9%	25%	- 7%
		102	%	2370	• / 70
2	С	182	- 76%	16%	• 7%

Mol	Chain	Length		Quality of	chain		
2	F	182	10%	%	24%	·	14%
3	D	210	24%	75%		24%	
3	G	210	3%	75%		22%	••
3	L	210	5%	76%		21%	••
4	Ι	9	33%		67%		
4	J	9	22%		78%		
5	К	7	43%		57%		

2 Entry composition (i)

There are 6 unique types of molecules in this entry. The entry contains 13849 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
1	II 014		Total	С	Ν	0	\mathbf{S}	0	0	0
	п	214	1644	1041	285	308	10	0	0	0
1	D	914	Total	С	Ν	0	S	0	0	0
	D	214	1644	1041	285	308	10	0		
1	Б	914	Total	С	Ν	0	S	0	0	0
	E	214	1644	1041	285	308	10	0	0	

• Molecule 1 is a protein called VRC01 Fab heavy chain.

• Molecule 2 is a protein called Engineered outer domain of gp120.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
9	Λ	170	Total	С	Ν	0	S	0	0	0
	A	170	1277	799	225	244	9	0	0	0
0	C	170	Total	С	Ν	0	S	0	0	0
	C	170	1277	799	224	245	9	0	0	0
0	F	156	Total	С	Ν	0	S	0	0	0
	Г	100	1185	747	205	225	8	0	0	0

• Molecule 3 is a protein called VRC01 Fab light chain.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
2	т	206	Total	С	Ν	0	S	0	0	0
5		200	1603	1007	275	317	4	0		
2	П	200	Total	С	Ν	0	S	0	0	0
5	D	209	1623	1017	278	323	5	0	0	U
2	C	206	Total	С	Ν	0	S	0	0	0
0	G	200	1603	1007	275	317	4	0	0	U

• Molecule 4 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyran ose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deox y-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
4	Ι	9	Total 105	C 58	N 2	O 45	0	0	0
4	J	9	Total 105	C 58	N 2	O 45	0	0	0

• Molecule 5 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyran ose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyran ose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	ŀ	Aton	ns		ZeroOcc	AltConf	Trace
5	К	7	Total 83	C 46	N 2	O 35	0	0	0

• Molecule 6 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	А	1	Total C N O 14 8 1 5	0	0
6	А	1	Total C N O 14 8 1 5	0	0
6	С	1	Total C N O 14 8 1 5	0	0
6	С	1	Total C N O 14 8 1 5	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: VRC01 Fab heavy chain

• Molecule 2: Engineered outer domain of gp120

• Molecule 3: VRC01 Fab light chain

• Molecule 4: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyran ose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2 -deoxy-beta-D-glucopyranose

Chain I:	33%	67%
NAG 1 NAG 2 BMA 3 MAN 4 MAN 5 MAN 6 MAN 7 MAN 8 MAN 9		

• Molecule 4: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyran ose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2 -deoxy-beta-D-glucopyranose

Chain J:	22%	78%
NAG1 NAG2 BMA3 MAN4 MAN5 MAN5 MAN7 MAN8 MAN8		

• Molecule 5: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyran ose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain K: 43% 57%

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 41 21 2	Depositor
Cell constants	113.51Å 113.51Å 412.52Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Bosolution(Å)	39.94 - 3.25	Depositor
Resolution (A)	39.94 - 3.25	EDS
% Data completeness	99.9 (39.94-3.25)	Depositor
(in resolution range)	100.0 (39.94 - 3.25)	EDS
R _{merge}	0.16	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.69 (at 3.25 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.9_1692	Depositor
D D .	0.223 , 0.274	Depositor
n, n_{free}	0.224 , 0.277	DCC
R_{free} test set	2181 reflections (4.99%)	wwPDB-VP
Wilson B-factor $(Å^2)$	99.7	Xtriage
Anisotropy	0.054	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.33 , 79.7	EDS
L-test for $twinning^2$	$ L > = 0.47, < L^2 > = 0.30$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.92	EDS
Total number of atoms	13849	wwPDB-VP
Average B, all atoms $(Å^2)$	120.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.45% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: BMA, MAN, NAG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond	angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	В	0.29	0/1688	0.51	0/2299
1	Ε	0.28	0/1688	0.48	0/2299
1	Н	0.26	0/1688	0.48	0/2299
2	А	0.26	0/1303	0.43	0/1767
2	С	0.28	0/1302	0.46	0/1764
2	F	0.25	0/1209	0.45	0/1639
3	D	0.28	0/1660	0.45	0/2253
3	G	0.27	0/1640	0.42	0/2228
3	L	0.27	0/1640	0.46	0/2228
All	All	0.27	0/13818	0.46	0/18776

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	Н	0	1

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	Н	99	ASP	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	В	1644	0	1611	45	0
1	Е	1644	0	1611	34	0
1	Н	1644	0	1611	34	0
2	А	1277	0	1239	29	0
2	С	1277	0	1239	15	0
2	F	1185	0	1151	27	0
3	D	1623	0	1566	32	0
3	G	1603	0	1552	23	0
3	L	1603	0	1552	27	0
4	Ι	105	0	88	0	0
4	J	105	0	88	0	0
5	K	83	0	70	0	0
6	А	28	0	26	1	0
6	С	28	0	26	1	0
All	All	13849	0	13430	252	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 9.

All (252) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:E:52(A):PRO:O	1:E:71:ARG:NH2	2.04	0.90
3:L:110:ARG:HD2	3:L:173:SER:HB2	1.56	0.87
3:L:188:TYR:O	3:L:194:TYR:OH	1.96	0.83
3:D:47:VAL:HG12	3:D:48:ILE:HG12	1.63	0.81
1:E:32:CYS:HB3	1:E:98:CYS:HB3	1.68	0.75
1:E:87:THR:HG22	1:E:111:VAL:H	1.53	0.73
3:D:157:GLN:HB3	3:D:160:ASN:HD21	1.56	0.70
1:B:181:VAL:HG21	3:D:137:LEU:HD11	1.71	0.70
3:G:47:VAL:HG12	3:G:48:ILE:HG12	1.75	0.69
3:L:47:VAL:HG12	3:L:48:ILE:HG12	1.74	0.69
1:B:12:LYS:HZ3	1:B:18:MET:HA	1.57	0.69
3:D:120:PHE:HB2	3:D:135:VAL:HG22	1.76	0.68
1:H:51:LEU:HD23	1:H:57:VAL:HG23	1.75	0.68

	i a s	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:A:22:LEU:HD12	2:A:89:VAL:HB	1.74	0.68
2:A:95:VAL:HG12	2:A:107:ILE:HD11	1.76	0.68
2:A:52:GLN:HE22	2:C:137:GLN:H	1.40	0.68
2:F:20:THR:HG21	2:F:66:GLY:H	1.59	0.68
3:L:24:ARG:NH1	3:L:70:ASP:OD1	2.27	0.67
2:F:107:ILE:HD12	2:F:108:SER:H	1.59	0.67
1:H:59:TYR:HE1	1:H:69:MET:HG2	1.60	0.67
1:H:68:THR:OG1	1:H:82(A):ARG:NH2	2.29	0.66
1:H:66:ARG:NH2	1:H:86:ASP:OD2	2.28	0.66
3:G:188:TYR:O	3:G:194:TYR:OH	2.14	0.66
2:C:20:THR:HG21	2:C:66:GLY:H	1.60	0.65
1:B:144:ASP:HB3	1:B:175:LEU:HD13	1.77	0.65
1:B:51:LEU:HD23	1:B:57:VAL:HG22	1.77	0.65
3:L:6:GLN:O	3:L:100:GLN:NE2	2.30	0.64
2:F:19:ILE:HB	2:F:95:VAL:HG23	1.79	0.64
1:H:101:GLU:HG2	3:L:46:LEU:HD23	1.78	0.64
3:G:18:THR:HB	3:G:76:SER:HA	1.80	0.63
1:H:52(A):PRO:O	1:H:71:ARG:NH1	2.32	0.62
1:E:145:TYR:OH	1:E:148:GLU:OE1	2.16	0.62
1:E:30:ILE:HA	1:E:52(A):PRO:HB2	1.82	0.62
1:B:61:ARG:HA	1:B:64:GLN:HG2	1.82	0.61
3:G:122:PRO:HD3	3:G:134:VAL:HG22	1.81	0.61
1:B:142:VAL:HB	1:B:178:LEU:HG	1.82	0.61
3:D:61:ARG:NH1	3:D:82:ASP:OD2	2.35	0.60
1:H:51:LEU:HD11	1:H:71:ARG:HB3	1.84	0.60
2:A:80:PHE:HB3	2:A:127:PHE:HE1	1.67	0.60
3:D:4:LEU:HD22	3:D:25:THR:HG22	1.84	0.59
2:A:97:ILE:HA	2:A:107:ILE:HD13	1.85	0.59
3:D:122:PRO:HD3	3:D:134:VAL:HG22	1.83	0.59
3:D:168:GLN:HE21	3:D:173:SER:HB3	1.68	0.59
2:C:3:ILE:HG13	2:C:109:ARG:HB2	1.85	0.59
1:E:85:ASP:OD1	1:E:85:ASP:N	2.27	0.58
1:H:87:THR:HG22	1:H:111:VAL:H	1.68	0.58
2:A:22:LEU:CD1	2:A:89:VAL:HB	2.33	0.58
1:B:48:MET:HG2	1:B:63:LEU:HD21	1.85	0.58
1:B:90:TYR:HE1	1:B:109:VAL:HG22	1.69	0.58
1:B:51:LEU:HD11	1:B:71:ARG:HG2	1.86	0.57
3:D:60:ASP:OD1	3:D:60:ASP:N	2.31	0.57
3:L:103:LYS:NZ	3:L:105:GLN:OE1	2.36	0.57
3:L:107:ASP:OD1	3:L:168:GLN:NE2	2.37	0.57
3:D:139:ASN:O	3:D:176:SER:OG	2.23	0.57

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
3:L:61:ARG:NH1	3:L:77:ASN:O	2.38	0.57	
1:B:166:PHE:HD2	1:B:179:SER:HB2	1.69	0.56	
1:B:57:VAL:HG11	1:B:59:TYR:CZ	2.40	0.56	
2:F:3:ILE:HG13	2:F:109:ARG:HB2	1.86	0.56	
2:F:112:TRP:CZ3	2:F:116:LEU:HD22	2.40	0.56	
3:L:122:PRO:HD3	3:L:134:VAL:HG22	1.87	0.56	
1:B:152:VAL:HG12	1:B:198:VAL:HG22	1.88	0.56	
2:A:80:PHE:HB3	2:A:127:PHE:CE1	2.40	0.56	
1:E:28:GLU:HB3	1:E:31:ASP:HB2	1.88	0.56	
1:B:186:SER:HA	1:B:189:LEU:HD13	1.88	0.55	
1:H:168:ALA:HA	1:H:178:LEU:HB3	1.88	0.55	
1:H:71:ARG:NH2	2:A:142:ASP:OD1	2.40	0.55	
3:D:83:PHE:HA	3:D:104:VAL:HG23	1.88	0.55	
3:D:141:PHE:HB2	3:D:200:HIS:CE1	2.40	0.55	
3:G:108:ILE:HB	3:G:168:GLN:HE22	1.71	0.55	
2:A:148:HIS:HD2	2:A:159:CYS:HB2	1.72	0.55	
1:H:164:HIS:HD2	3:L:139:ASN:HD21	1.55	0.54	
1:H:12:LYS:O	1:H:111:VAL:HA	2.07	0.54	
2:F:129:ASN:OD1	2:F:129:ASN:N	2.40	0.54	
1:B:155:ASN:HB2	1:B:158:ALA:HB3	1.89	0.54	
3:D:17:GLU:OE1	3:D:109:LYS:NZ	2.39	0.54	
1:H:4:LEU:HD23	1:H:24:ALA:HB2	1.90	0.53	
1:H:51:LEU:HD22	1:H:52:LYS:N	2.23	0.53	
1:B:12:LYS:O	1:B:111:VAL:HA	2.08	0.53	
3:G:38:GLN:HB3	3:G:85:VAL:HG13	1.91	0.53	
3:G:110:ARG:NH1	3:G:111:THR:O	2.41	0.53	
2:A:149:TRP:HE1	2:A:156:PHE:HB3	1.74	0.53	
2:F:18:ASN:HB3	2:F:94:SER:HB3	1.91	0.53	
3:L:191:HIS:O	3:L:193:VAL:N	2.40	0.52	
1:H:164:HIS:CD2	3:L:139:ASN:HD21	2.27	0.52	
2:C:75:ILE:HG22	2:C:89:VAL:HG22	1.90	0.52	
2:A:112:TRP:CZ2	2:A:164:LEU:HG	2.43	0.52	
1:B:145:TYR:CZ	1:B:150:VAL:HG23	2.45	0.52	
3:D:8:PRO:HD2	3:D:11:LEU:HD11	1.92	0.52	
1:H:167:PRO:HG2	3:L:164:SER:HB2	1.92	0.51	
2:F:61:GLN:NE2	2:F:145:ILE:O	2.33	0.51	
2:A:61:GLN:NE2	2:A:146:VAL:O	2.41	0.51	
2:F:26:ARG:HD3	2:F:127:PHE:HE2	1.76	0.51	
1:B:151:THR:HB	1:B:199:ASN:HB2	1.93	0.51	
2:C:70:GLU:H	2:C:70:GLU:CD	2.13	0.51	
1:E:18:MET:SD	1:E:109:VAL:HG11	2.50	0.51	

	A the O	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:G:4:LEU:HD22	3:G:25:THR:HG22	1.93	0.51
1:B:119:PRO:HD2	1:B:205:THR:HB	1.93	0.51
3:D:130:GLY:O	3:D:185:LYS:N	2.44	0.51
1:B:84:VAL:HA	1:B:111:VAL:HG22	1.93	0.50
3:G:189:GLU:HA	3:G:213:ARG:HD3	1.92	0.50
1:E:59:TYR:HE1	1:E:69:MET:HG2	1.77	0.50
2:A:5:LEU:HB2	2:A:105:CYS:HB2	1.94	0.50
2:F:97:ILE:HG22	2:F:107:ILE:HB	1.94	0.50
2:C:22:LEU:HD12	2:C:89:VAL:HB	1.93	0.49
2:A:73:VAL:HG11	2:A:118:GLN:HB3	1.94	0.49
3:L:146:ALA:HB2	3:L:200:HIS:HD2	1.76	0.49
1:H:188:SER:OG	1:H:194:TYR:OH	2.16	0.49
1:E:124:LEU:HB2	1:E:139:GLY:C	2.32	0.49
1:B:52(A):PRO:O	1:B:71:ARG:NH2	2.45	0.49
1:B:150:VAL:HG11	1:B:152:VAL:HG13	1.95	0.49
1:E:71:ARG:HG3	1:E:71:ARG:HH21	1.77	0.49
3:G:2:ILE:HB	3:G:26:SER:HB2	1.95	0.49
3:D:204:ARG:O	3:D:204:ARG:NH1	2.46	0.48
2:F:69:ALA:HB3	2:F:92:ALA:HB2	1.95	0.48
1:H:185:PRO:HG2	1:H:188:SER:HB2	1.94	0.48
3:G:33:LEU:HD13	3:G:71:TYR:CD1	2.48	0.48
1:H:84:VAL:HA	1:H:111:VAL:HG23	1.95	0.48
2:A:30:ASN:HB3	3:L:97:PHE:CZ	2.48	0.48
2:C:37:ILE:HD13	2:C:134:ILE:HB	1.96	0.48
2:A:17:SER:OG	2:A:65:ASN:OD1	2.32	0.48
3:D:108:ILE:HB	3:D:168:GLN:HE22	1.79	0.48
1:B:184:VAL:HG22	1:B:185:PRO:HD2	1.95	0.47
1:E:59:TYR:CE1	1:E:69:MET:HG2	2.49	0.47
1:E:116:THR:HG22	1:E:147:PRO:HD3	1.96	0.47
1:E:66:ARG:HD2	1:E:82:LEU:HD11	1.97	0.47
1:B:30:ILE:HA	1:B:52(A):PRO:HB2	1.97	0.47
1:B:195:ILE:HG22	1:B:210:LYS:HA	1.97	0.47
1:E:58:ASN:ND2	2:F:26:ARG:O	2.40	0.47
2:A:32:ASN:O	2:A:34:GLU:N	2.40	0.47
2:A:124:ARG:HG3	2:A:133:ILE:HD11	1.97	0.47
2:C:40:PRO:HG3	2:C:165:PHE:CD2	2.50	0.46
1:B:23:ARG:HA	1:B:77:THR:HA	1.97	0.46
3:D:61:ARG:HH12	3:D:82:ASP:CG	2.19	0.46
3:D:35:TRP:CZ3	3:D:88:CYS:HB3	2.51	0.46
1:B:39:LEU:HD22	1:B:45:PRO:HB3	1.98	0.46
2:A:29:GLY:HA3	2:A:30:ASN:HA	1.72	0.46

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:10:GLN:NE2	1:B:20:ILE:HG22	2.30	0.46
1:E:47:TRP:CZ2	1:E:49:GLY:HA2	2.50	0.46
3:G:136:CYS:HB2	3:G:150:TRP:CH2	2.50	0.46
1:E:35:ASN:ND2	1:E:100(A):ASN:OD1	2.45	0.46
1:E:66:ARG:NH1	1:E:86:ASP:OD2	2.48	0.46
2:F:120:ALA:HA	2:F:133:ILE:HD12	1.97	0.46
1:H:51:LEU:HD22	1:H:51:LEU:C	2.36	0.46
2:A:30:ASN:HD22	2:A:30:ASN:H	1.62	0.46
3:L:150:TRP:CE2	3:L:181:LEU:HB2	2.51	0.46
2:A:17:SER:HA	6:A:210:NAG:H83	1.97	0.46
1:E:168:ALA:HA	1:E:178:LEU:HB3	1.97	0.46
2:F:57:VAL:HG11	2:F:64:LEU:HB2	1.98	0.46
1:E:139:GLY:HA2	1:E:154:TRP:CH2	2.51	0.45
1:E:194:TYR:H	1:E:210:LYS:HZ3	1.64	0.45
2:F:73:VAL:HG11	2:F:118:GLN:HB3	1.97	0.45
1:B:40:ALA:HB2	1:B:88:ALA:HB2	1.99	0.45
3:G:39:ARG:HH12	3:G:45:ARG:HH11	1.64	0.45
2:A:48:ILE:HG23	2:A:63:PHE:HE1	1.82	0.45
3:D:6:GLN:O	3:D:100:GLN:NE2	2.50	0.45
3:D:141:PHE:HB2	3:D:200:HIS:HE1	1.82	0.45
3:L:136:CYS:HB2	3:L:150:TRP:CZ2	2.52	0.45
1:B:205:THR:HG22	1:B:207:VAL:HG23	1.98	0.45
2:F:39:ARG:NH2	2:F:136:LYS:HD3	2.31	0.45
3:G:24:ARG:NE	3:G:70:ASP:OD1	2.49	0.45
3:G:89:GLN:HG2	3:G:90:GLN:N	2.31	0.45
1:B:146:PHE:HA	1:B:147:PRO:HA	1.72	0.45
2:C:17:SER:OG	6:C:211:NAG:O7	2.28	0.45
3:D:121:PRO:HB3	3:D:211:PHE:CE2	2.52	0.45
1:E:197:ASN:ND2	1:E:208:ASP:OD1	2.48	0.45
3:L:10:THR:OG1	3:L:144:ARG:NH1	2.50	0.44
2:F:126:GLN:HG3	2:F:127:PHE:CD1	2.53	0.44
3:G:146:ALA:HB2	3:G:200:HIS:HD2	1.82	0.44
2:A:39:ARG:NH2	2:A:136:LYS:HD3	2.33	0.44
1:B:40:ALA:HB3	1:B:43:LYS:HE3	1.99	0.44
1:E:33:THR:HG23	1:E:52:LYS:HG2	2.00	0.44
1:H:30:ILE:HA	1:H:52(A):PRO:HB2	1.97	0.44
3:L:169:ASP:O	3:L:173:SER:N	2.40	0.44
1:E:171:GLN:H	1:E:171:GLN:HG2	1.62	0.44
2:F:120:ALA:O	2:F:124:ARG:HB2	2.17	0.44
3:G:126:GLN:HE22	3:G:133:SER:HB2	1.82	0.44
3:G:138:LEU:HB2	3:G:177:LEU:HB3	1.99	0.44

	1	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:C:16:SER:OG	2:C:98:ALA:HA	2.17	0.44
2:A:17:SER:OG	2:A:18:ASN:N	2.50	0.44
1:E:147:PRO:HD2	1:E:202:PRO:HB2	2.00	0.44
1:H:146:PHE:HB2	1:H:175:LEU:HD22	2.00	0.44
3:D:11:LEU:HB2	3:D:104:VAL:HG12	2.00	0.44
1:E:57:VAL:O	2:F:139:SER:OG	2.28	0.44
2:F:24:LEU:HD23	2:F:40:PRO:HA	2.00	0.43
3:G:61:ARG:HH12	3:G:79:GLU:HB2	1.83	0.43
3:G:127:LEU:O	3:G:185:LYS:HD2	2.17	0.43
3:D:117:VAL:HG21	3:D:198:VAL:HG21	2.01	0.43
3:D:168:GLN:HE21	3:D:173:SER:CB	2.31	0.43
3:G:186:ALA:O	3:G:190:LYS:HG3	2.18	0.43
3:L:20:ILE:HG12	3:L:74:THR:HG22	2.00	0.43
3:L:157:GLN:HB3	3:L:160:ASN:HD21	1.84	0.43
1:B:3:GLN:O	1:B:4:LEU:HD23	2.18	0.43
1:H:30:ILE:HD12	1:H:53:ARG:HE	1.84	0.43
1:E:87:THR:CG2	1:E:111:VAL:H	2.28	0.43
1:E:188:SER:HB2	1:E:191:THR:HB	1.99	0.43
2:F:18:ASN:HA	2:F:96:GLU:HA	2.00	0.43
1:H:200:HIS:CD2	1:H:202:PRO:HD2	2.53	0.43
3:D:115:PRO:HA	3:D:140:ASN:O	2.19	0.43
1:E:13:LYS:O	1:E:16:GLU:HG2	2.19	0.43
1:E:136:ALA:HA	3:G:118:PHE:HE2	1.83	0.43
3:G:15:PRO:HD3	3:G:106:VAL:HG23	2.01	0.43
3:L:20:ILE:HG23	3:L:74:THR:HG22	2.01	0.43
3:L:136:CYS:HB3	3:L:179:SER:HB3	2.00	0.43
1:B:30:ILE:HG22	1:B:73:VAL:HG13	2.00	0.43
1:B:119:PRO:HD3	1:B:200:HIS:CD2	2.53	0.43
1:H:75:SER:HB3	1:E:76:ASP:OD2	2.19	0.42
1:H:117:LYS:HD2	1:H:144:ASP:O	2.18	0.42
2:F:5:LEU:HA	2:F:6:PRO:HD2	1.85	0.42
2:F:10:ALA:HA	2:F:11:PRO:HD3	1.72	0.42
2:A:5:LEU:O	2:A:104:HIS:HA	2.19	0.42
1:B:156:SER:N	1:B:197:ASN:OD1	2.52	0.42
1:H:170:LEU:HD13	1:H:176:TYR:CE1	2.54	0.42
1:B:71:ARG:NH1	2:C:142:ASP:OD1	2.53	0.42
1:H:57:VAL:HG11	1:H:59:TYR:CZ	2.54	0.42
2:F:96:GLU:O	2:F:107:ILE:HD13	2.18	0.42
1:H:57:VAL:HG12	2:A:139:SER:HB2	2.01	0.42
1:H:52:LYS:HA	1:H:52(A):PRO:HD3	1.84	0.42
1:B:8:GLY:HA2	1:B:105:ARG:NH2	2.35	0.42

	A 4 0	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
3:D:7:SER:HA	3:D:8:PRO:HA	1.79	0.42	
3:D:16:GLY:O	3:D:77:ASN:HA	2.19	0.42	
3:D:114:ALA:HA	3:D:115:PRO:HD3	1.88	0.42	
3:D:140:ASN:ND2	3:D:174:THR:OG1	2.34	0.42	
2:F:30:ASN:O	2:F:31:SER:HB2	2.19	0.42	
1:E:210:LYS:HE3	1:E:212:GLU:HG3	2.02	0.41	
2:C:60:SER:O	2:C:62:LEU:N	2.46	0.41	
2:F:16:SER:HB3	2:F:97:ILE:O	2.19	0.41	
1:B:37:ILE:HG23	1:B:46:GLU:O	2.20	0.41	
2:A:8:ARG:HA	2:A:9:PRO:HA	1.83	0.41	
2:A:44:ASP:OD1	2:A:45:MET:N	2.49	0.41	
1:B:52:LYS:HA	1:B:52(A):PRO:HD3	1.73	0.41	
1:B:123:PRO:HB3	1:B:210:LYS:O	2.21	0.41	
1:B:150:VAL:HG12	1:B:151:THR:N	2.36	0.41	
2:C:19:ILE:HD13	2:C:62:LEU:HD13	2.02	0.41	
3:L:8:PRO:HG2	3:L:11:LEU:HB2	2.03	0.41	
3:L:13:LEU:HB2	3:L:17:GLU:OE2	2.20	0.41	
1:B:146:PHE:HB2	1:B:175:LEU:CD2	2.51	0.41	
3:D:58:ILE:HD13	3:D:58:ILE:HA	1.91	0.41	
3:D:204:ARG:HA	3:D:204:ARG:HD2	1.95	0.41	
2:F:80:PHE:HB3	2:F:127:PHE:CE1	2.56	0.41	
1:H:43:LYS:HE3	1:H:43:LYS:HB2	1.93	0.41	
1:E:65:GLY:O	1:E:82(A):ARG:NH2	2.54	0.41	
1:H:87:THR:HG22	1:H:111:VAL:N	2.35	0.40	
1:H:12:LYS:HB2	1:H:111:VAL:HG12	2.02	0.40	
1:H:31:ASP:HB3	1:H:98:CYS:SG	2.61	0.40	
1:B:6:GLN:NE2	1:B:90:TYR:O	2.49	0.40	
1:B:12:LYS:NZ	1:B:18:MET:HA	2.30	0.40	
2:C:5:LEU:HA	2:C:6:PRO:HD3	1.90	0.40	
2:A:10:ALA:HA	2:A:11:PRO:HD3	1.83	0.40	
1:B:57:VAL:HG11	1:B:59:TYR:CE1	2.55	0.40	
3:L:127:LEU:HA	3:L:127:LEU:HD23	1.84	0.40	
2:C:26:ARG:HD2	2:C:36:GLU:OE1	2.22	0.40	
1:E:194:TYR:H	1:E:210:LYS:NZ	2.18	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	В	210/224~(94%)	195~(93%)	13 (6%)	2(1%)	15	47
1	Ε	210/224~(94%)	199~(95%)	11 (5%)	0	100	100
1	Н	210/224~(94%)	199~(95%)	10 (5%)	1 (0%)	29	62
2	А	168/182~(92%)	154 (92%)	12 (7%)	2(1%)	13	43
2	С	166/182~(91%)	158 (95%)	7 (4%)	1 (1%)	25	59
2	F	150/182~(82%)	137~(91%)	11 (7%)	2(1%)	12	41
3	D	207/210~(99%)	197~(95%)	8 (4%)	2(1%)	15	47
3	G	204/210~(97%)	194 (95%)	10 (5%)	0	100	100
3	L	204/210~(97%)	193 (95%)	10 (5%)	1 (0%)	29	62
All	All	1729/1848~(94%)	1626 (94%)	92~(5%)	11 (1%)	25	59

All (11) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	В	172	SER
2	F	30	ASN
2	А	70	GLU
1	В	100(D)	PHE
2	А	33	ALA
1	Н	100(D)	PHE
2	С	61	GLN
3	D	40	PRO
2	F	31	SER
3	L	206	PRO
3	D	206	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	В	183/193~(95%)	169~(92%)	14 (8%)	13	38
1	Ε	183/193~(95%)	175~(96%)	8 (4%)	28	58
1	Н	183/193~(95%)	174~(95%)	9~(5%)	25	55
2	А	138/149~(93%)	133 (96%)	5 (4%)	35	63
2	С	138/149~(93%)	129~(94%)	9~(6%)	17	46
2	F	131/149~(88%)	123~(94%)	8 (6%)	18	49
3	D	181/182~(100%)	177~(98%)	4 (2%)	52	74
3	G	179/182~(98%)	173~(97%)	6 (3%)	37	64
3	L	179/182~(98%)	172 (96%)	7 (4%)	32	61
All	All	1495/1572~(95%)	1425 (95%)	70 (5%)	26	57

All (70) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	Н	34	LEU
1	Н	51	LEU
1	Н	57	VAL
1	Н	66	ARG
1	Н	71	ARG
1	Н	98	CYS
1	Н	101	GLU
1	Н	135	THR
1	Н	159	LEU
2	А	22	LEU
2	А	27	ASP
2	А	30	ASN
2	А	53	ILE
2	А	68	LEU
3	L	11	LEU
3	L	13	LEU
3	L	24	ARG
3	L	26	SER

Mol	Chain	Bes	
3	L	106	VAL
3	L	179	ASP
3 3	L	172 174	THR
	B	16	CLU
1	B	28	GLU
1	D	20	UF
1	D	<u> </u>	
1	D	40 52	
1	D	- 00 - 62	IFU
1	D	05 66	
1	D	71	ANG
1	D	11	ANG
1	D	97	ASN
1	B	101	
1	B	152	VAL
1	В	109	VAL
	B	170	LEU
1	B	184	VAL
2	C	8	ARG
2	C	22	LEU
2	C	44	ASP
2	C	71	GLU
2	C	73	VAL
2	C	96	GLU
2	С	137	GLN
2	С	139	SER
2	С	155	GLU
3	D	14	SER
3	D	60	ASP
3	D	76	SER
3	D	103	LYS
1	Ε	33	THR
1	Ε	39	LEU
1	Е	71	ARG
1	Е	85	ASP
1	Е	101	GLU
1	Е	109	VAL
1	Е	124	LEU
1	Е	179	SER
2	F	22	LEU
2	F	27	ASP
2	F	53	ILE
2	F	95	VAL
L	1		1

Mol	Chain	Res	Type
2	F	129	ASN
2	F	149	TRP
2	F	161	SER
2	F	167	SER
3	G	2	ILE
3	G	3	VAL
3	G	18	THR
3	G	73	LEU
3	G	74	THR
3	G	124	ASP

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (11) such sidechains are listed below:

Mol	Chain	Res	Type
1	Н	102	HIS
1	Н	164	HIS
2	А	30	ASN
2	А	52	GLN
2	А	83	ASN
2	А	148	HIS
3	D	157	GLN
3	D	160	ASN
2	F	90	GLN
2	F	163	GLN
3	G	126	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

25 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and

the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bond lengths		Bond angles			
	Type	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
4	NAG	Ι	1	2,4	14,14,15	0.43	0	17,19,21	0.48	0
4	NAG	Ι	2	4	14,14,15	0.49	0	17,19,21	0.48	0
4	BMA	Ι	3	4	11,11,12	0.84	1 (9%)	$15,\!15,\!17$	1.16	1 (6%)
4	MAN	Ι	4	4	11,11,12	0.71	0	$15,\!15,\!17$	1.14	2 (13%)
4	MAN	Ι	5	4	11,11,12	0.77	1 (9%)	15,15,17	1.11	1 (6%)
4	MAN	Ι	6	4	11,11,12	0.92	0	15,15,17	0.97	0
4	MAN	Ι	7	4	11,11,12	1.14	1 (9%)	15,15,17	1.02	1 (6%)
4	MAN	Ι	8	4	11,11,12	0.69	0	15,15,17	1.09	2 (13%)
4	MAN	Ι	9	4	11,11,12	1.02	1 (9%)	15,15,17	0.88	1 (6%)
4	NAG	J	1	2,4	14,14,15	0.16	0	17,19,21	0.56	0
4	NAG	J	2	4	14,14,15	0.50	0	17,19,21	0.40	0
4	BMA	J	3	4	11,11,12	0.72	1 (9%)	15,15,17	1.07	1 (6%)
4	MAN	J	4	4	11,11,12	1.03	1 (9%)	15,15,17	1.22	1 (6%)
4	MAN	J	5	4	11,11,12	0.91	1 (9%)	15,15,17	0.99	2 (13%)
4	MAN	J	6	4	11,11,12	0.98	1 (9%)	15,15,17	0.97	1 (6%)
4	MAN	J	7	4	11,11,12	0.63	0	15,15,17	1.21	2 (13%)
4	MAN	J	8	4	11,11,12	1.01	1 (9%)	15,15,17	1.09	1 (6%)
4	MAN	J	9	4	11,11,12	0.96	1 (9%)	15,15,17	1.21	3 (20%)
5	NAG	К	1	5,2	14,14,15	0.23	0	17,19,21	0.51	0
5	NAG	K	2	5	14,14,15	0.25	0	17,19,21	0.50	0
5	BMA	K	3	5	11,11,12	0.93	1 (9%)	$15,\!15,\!17$	1.01	0
5	MAN	К	4	5	11,11,12	0.66	0	15,15,17	1.23	2 (13%)
5	MAN	К	5	5	11,11,12	0.71	0	$15,\!15,\!17$	1.01	2 (13%)
5	MAN	K	6	5	11,11,12	0.89	0	15,15,17	1.12	1 (6%)
5	MAN	K	7	5	11,11,12	0.90	0	15,15,17	0.88	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	\mathbf{Rings}
4	NAG	Ι	1	2,4	-	0/6/23/26	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	NAG	Ι	2	4	-	2/6/23/26	0/1/1/1
4	BMA	Ι	3	4	-	0/2/19/22	0/1/1/1
4	MAN	Ι	4	4	-	1/2/19/22	0/1/1/1
4	MAN	Ι	5	4	-	2/2/19/22	0/1/1/1
4	MAN	Ι	6	4	-	0/2/19/22	0/1/1/1
4	MAN	Ι	7	4	-	2/2/19/22	0/1/1/1
4	MAN	Ι	8	4	-	0/2/19/22	0/1/1/1
4	MAN	Ι	9	4	-	2/2/19/22	0/1/1/1
4	NAG	J	1	2,4	-	2/6/23/26	0/1/1/1
4	NAG	J	2	4	-	2/6/23/26	0/1/1/1
4	BMA	J	3	4	-	0/2/19/22	0/1/1/1
4	MAN	J	4	4	-	0/2/19/22	0/1/1/1
4	MAN	J	5	4	-	1/2/19/22	0/1/1/1
4	MAN	J	6	4	-	1/2/19/22	0/1/1/1
4	MAN	J	7	4	-	2/2/19/22	0/1/1/1
4	MAN	J	8	4	-	0/2/19/22	0/1/1/1
4	MAN	J	9	4	-	2/2/19/22	0/1/1/1
5	NAG	K	1	5,2	-	2/6/23/26	0/1/1/1
5	NAG	K	2	5	-	2/6/23/26	0/1/1/1
5	BMA	K	3	5	-	0/2/19/22	0/1/1/1
5	MAN	K	4	5	-	2/2/19/22	0/1/1/1
5	MAN	K	5	5	-	2/2/19/22	0/1/1/1
5	MAN	K	6	5	-	2/2/19/22	0/1/1/1
5	MAN	K	7	5	-	0/2/19/22	0/1/1/1

All (11) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
4	Ι	7	MAN	O5-C1	-3.01	1.38	1.43
4	J	4	MAN	O5-C1	-2.87	1.39	1.43
4	Ι	9	MAN	O5-C1	-2.57	1.39	1.43
4	J	5	MAN	O5-C1	-2.48	1.39	1.43
4	J	6	MAN	O5-C1	-2.41	1.39	1.43
4	Ι	3	BMA	O5-C1	-2.39	1.39	1.43
5	Κ	3	BMA	O5-C1	-2.34	1.40	1.43
4	J	9	MAN	O5-C1	-2.09	1.40	1.43
4	J	8	MAN	O5-C1	-2.06	1.40	1.43
4	Ι	5	MAN	O5-C1	-2.04	1.40	1.43
4	J	3	BMA	O5-C1	-2.00	1.40	1.43

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	Κ	4	MAN	C1-O5-C5	2.95	116.19	112.19
4	Ι	4	MAN	C1-O5-C5	2.86	116.07	112.19
4	J	7	MAN	C1-O5-C5	2.85	116.05	112.19
4	J	8	MAN	C1-O5-C5	2.78	115.95	112.19
4	J	4	MAN	O2-C2-C3	-2.75	104.62	110.14
4	J	9	MAN	C1-O5-C5	2.75	115.91	112.19
4	Ι	4	MAN	O2-C2-C3	-2.65	104.82	110.14
4	Ι	8	MAN	C1-O5-C5	2.61	115.72	112.19
4	J	5	MAN	O2-C2-C3	-2.59	104.95	110.14
5	Κ	4	MAN	O2-C2-C3	-2.57	104.99	110.14
4	Ι	3	BMA	C1-O5-C5	2.43	115.49	112.19
4	Ι	5	MAN	O2-C2-C3	-2.43	105.27	110.14
4	J	9	MAN	C1-C2-C3	-2.30	106.84	109.67
4	J	7	MAN	O2-C2-C3	-2.30	105.54	110.14
5	Κ	6	MAN	C1-O5-C5	2.29	115.30	112.19
4	J	9	MAN	O2-C2-C3	-2.23	105.67	110.14
5	Κ	5	MAN	O2-C2-C3	-2.20	105.73	110.14
4	J	6	MAN	O2-C2-C3	-2.16	105.81	110.14
4	J	3	BMA	C1-O5-C5	2.16	115.12	112.19
5	Κ	5	MAN	C1-O5-C5	2.15	115.11	112.19
4	Ι	7	MAN	C1-C2-C3	-2.08	107.10	109.67
4	Ι	9	MAN	O2-C2-C3	-2.07	105.99	110.14
4	Ι	8	MAN	O2-C2-C3	-2.07	106.00	110.14
4	J	5	MAN	C1-O5-C5	2.05	114.97	112.19

All (24) bond angle outliers are listed below:

There are no chirality outliers.

All (29) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	J	1	NAG	O5-C5-C6-O6
5	Κ	6	MAN	O5-C5-C6-O6
4	Ι	7	MAN	O5-C5-C6-O6
4	J	1	NAG	C4-C5-C6-O6
5	Κ	1	NAG	O5-C5-C6-O6
5	Κ	5	MAN	O5-C5-C6-O6
4	Ι	7	MAN	C4-C5-C6-O6
5	Κ	6	MAN	C4-C5-C6-O6
4	Ι	5	MAN	O5-C5-C6-O6
5	Κ	1	NAG	C4-C5-C6-O6
4	Ι	5	MAN	C4-C5-C6-O6
4	J	7	MAN	O5-C5-C6-O6

\mathbf{Mol}	Chain	Res	Type	Atoms
5	Κ	4	MAN	O5-C5-C6-O6
4	Ι	9	MAN	O5-C5-C6-O6
5	Κ	5	MAN	C4-C5-C6-O6
4	J	2	NAG	O5-C5-C6-O6
4	J	5	MAN	O5-C5-C6-O6
4	J	9	MAN	O5-C5-C6-O6
4	J	7	MAN	C4-C5-C6-O6
4	Ι	2	NAG	O5-C5-C6-O6
4	J	2	NAG	C4-C5-C6-O6
5	Κ	4	MAN	C4-C5-C6-O6
4	Ι	2	NAG	C4-C5-C6-O6
4	Ι	9	MAN	C4-C5-C6-O6
5	Κ	2	NAG	O5-C5-C6-O6
5	Κ	2	NAG	C4-C5-C6-O6
4	J	9	MAN	C4-C5-C6-O6
4	J	6	MAN	C4-C5-C6-O6
4	Ι	4	MAN	O5-C5-C6-O6

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

4 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Type Chain Bes		Tiple	Bond lengths			Bond angles		
WIOI	туре	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
	-				-					
Mal	Type	Chain	Bos	Link	Bo	ond leng	$_{\rm ths}$	В	ond ang	les
	Type	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
6	NAG	С	211	2	$14,\!14,\!15$	0.25	0	17,19,21	0.68	0
6	NAG	С	201	2	14,14,15	0.48	0	17,19,21	0.57	0
6	NAG	А	211	2	$14,\!14,\!15$	0.33	0	17,19,21	0.61	0
6	NAG	А	210	2	$14,\!14,\!15$	0.23	0	17,19,21	0.61	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
6	NAG	С	211	2	-	3/6/23/26	0/1/1/1
6	NAG	С	201	2	-	3/6/23/26	0/1/1/1
6	NAG	А	211	2	-	3/6/23/26	0/1/1/1
6	NAG	А	210	2	-	3/6/23/26	0/1/1/1

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (12) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
6	А	211	NAG	O5-C5-C6-O6
6	А	211	NAG	C4-C5-C6-O6
6	А	210	NAG	O5-C5-C6-O6
6	С	211	NAG	O5-C5-C6-O6
6	А	210	NAG	C4-C5-C6-O6
6	С	211	NAG	C4-C5-C6-O6
6	С	201	NAG	O5-C5-C6-O6
6	С	201	NAG	C4-C5-C6-O6
6	А	211	NAG	C3-C2-N2-C7
6	С	201	NAG	C3-C2-N2-C7
6	А	210	NAG	C3-C2-N2-C7
6	С	211	NAG	C3-C2-N2-C7

There are no ring outliers.

2 monomers are involved in 2 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
6	С	211	NAG	1	0
6	А	210	NAG	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ > 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	В	214/224~(95%)	1.03	41 (19%) 1 1	51, 99, 238, 258	0
1	Е	214/224~(95%)	0.32	7 (3%) 46 43	73, 116, 153, 166	0
1	Н	214/224~(95%)	0.34	11 (5%) 28 26	69, 116, 155, 168	0
2	А	170/182~(93%)	0.65	16 (9%) 8 9	76, 131, 172, 213	0
2	С	170/182~(93%)	0.21	2 (1%) 79 77	54, 91, 135, 186	0
2	F	156/182~(85%)	0.81	18 (11%) 4 4	109, 162, 198, 207	0
3	D	209/210~(99%)	1.00	50 (23%) 0 0	46, 110, 243, 263	0
3	G	206/210~(98%)	0.17	7 (3%) 45 42	55, 95, 157, 188	0
3	L	206/210~(98%)	0.29	10 (4%) 29 27	58, 103, 167, 185	0
All	All	1759/1848~(95%)	0.53	162 (9%) 9 10	46, 115, 207, 263	0

All (162) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	В	138	LEU	13.4
1	В	126	PRO	11.6
3	D	195	ALA	11.4
1	В	159	LEU	9.0
1	В	158	ALA	8.0
1	В	193	THR	7.5
1	В	125	ALA	7.1
3	D	135	VAL	6.4
1	В	194	TYR	6.3
3	D	134	VAL	6.0
3	D	196	CYS	5.9
3	D	148	VAL	5.8
1	В	157	GLY	5.7
3	D	147	LYS	5.6
3	D	136	CYS	5.5

	1		1	
1	В	180	SER	5.2
3	D	153	ASP	5.2
3	D	157	GLN	5.1
1	В	192	GLN	4.9
3	D	146	ALA	4.7
1	В	191	THR	4.7
1	В	202	PRO	4.6
3	D	183	LEU	4.4
3	D	207	VAL	4.4
3	D	154	ASN	4.4
3	L	194	TYR	4.3
3	D	133	SER	4.3
1	В	187	SER	4.3
1	В	185	PRO	4.2
3	D	181	LEU	4.1
2	А	99	CYS	4.1
3	D	203	LEU	4.0
2	F	159	CYS	3.9
3	D	208	THR	3.8
2	F	19	ILE	3.8
3	D	214	GLY	3.8
3	D	198	VAL	3.8
2	А	102	ALA	3.7
3	D	186	ALA	3.7
1	Е	18	MET	3.7
1	В	141	LEU	3.6
3	D	216	CYS	3.6
3	D	194	TYR	3.6
1	В	208	ASP	3.6
1	В	186	SER	3.6
3	D	205	SER	3.6
2	F	160	ALA	3.6
1	В	137	ALA	3.5
3	L	195	ALA	3.5
3	D	180	THR	3.5
1	В	178	LEU	3.4
1	Н	212	GLU	3.4
3	D	150	TRP	3.4
1	В	188	SER	3.3
2	F	152	CYS	3.3
3	G	210	SER	3.2

Continued from previous page...MolChainResTypeRSRZ

ALA Continued on next page...

3.2

113

3

L

Mol	Chain	Res	Type	RSRZ
1	Н	189	LEU	3.2
3	D	188	TYR	3.2
1	Н	18	MET	3.1
1	В	117	LYS	3.1
2	А	43	GLY	3.1
1	В	183	THR	3.0
3	D	117	VAL	3.0
2	А	47	ASP	3.0
1	В	120	SER	3.0
3	D	160	ASN	3.0
2	А	100	THR	3.0
1	В	206	LYS	3.0
1	Е	191	THR	3.0
3	G	194	TYR	2.9
3	L	151	LYS	2.9
1	Н	82(C)	LEU	2.9
3	D	200	HIS	2.9
3	G	211	PHE	2.9
3	D	210	SER	2.9
1	В	124	LEU	2.9
1	В	210	LYS	2.9
2	F	15	CYS	2.9
1	В	155	ASN	2.9
2	F	118	GLN	2.8
3	L	152	VAL	2.8
1	Ε	175	LEU	2.8
1	В	156	SER	2.8
3	D	179	SER	2.8
3	D	151	LYS	2.8
1	В	197	ASN	2.8
3	L	155	ALA	2.8
1	В	184	VAL	2.7
3	L	188	TYR	2.7
2	А	86	SER	2.7
2	F	150	PHE	2.7
1	В	123	PRO	2.7
1	В	139	GLY	2.7
3	D	149	GLN	2.7
2	A	50	ARG	2.7
3	G	133	SER	2.7
2	A	71	GLU	2.7
3	D	209	LYS	2.6

Mol

3

1

1

3

2

2

1

3

1

 $\frac{2}{3}$

3

2

 $\mathbf{2}$

1

 $\frac{1}{3}$

3

 $\frac{3}{2}$

2

 $\frac{3}{2}$

 $\frac{1}{3}$

3

 $\frac{1}{2}$

2

2

2

3

3

2

3

1

3

1

2

2

1

F

F

А

D

D

F

G

Η

D

В

F

103

153

103

158

191

99

193

210

132

205

16

GLY

GLY

GLY

SER

HIS

CYS

VAL

LYS

ALA

THR

SER

2.2

2.2

2.2

2.2

2.2

2.2

2.2

2.2

2.1

2.1

2.1

RSRZ

2.6

2.6

2.6

2.6

2.6

2.5

2.5

2.5

 $\frac{2.5}{2.5}$

F	170	PHE	2.5
G	132	ALA	2.5
D	197	GLU	2.5
А	98	ALA	2.4
А	11	PRO	2.4
В	118	GLY	2.4
Н	82	LEU	2.4
D	119	ILE	2.4
G	192	LYS	2.4
D	193	VAL	2.4
А	101	GLY	2.4
F	2	THR	2.4
D	122	PRO	2.3
F	155	GLU	2.3
В	201	LYS	2.3
D	199	THR	2.3
D	212	ASN	2.3
Е	111	VAL	2.3
F	102	ALA	2.3

Continued from previous page...

Res

118

140

154

184

133

31

159

116

155

110

Type PHE

CYS

TRP

SER

ILE

SER

LEU

THR

ALA

ILE

Chain

D

В

В

D

F

F

Η

В

D

Е

 F
 94
 SER
 2.1

 B
 190
 GLY
 2.1

 Continued on next page...

5KZC
01120

Mol	Chain	Res	Type	RSRZ
3	L	153	ASP	2.1
2	А	51	CYS	2.1
2	А	14	HIS	2.1
3	L	206	PRO	2.1
1	Е	31	ASP	2.1
2	С	129	ASN	2.1
3	D	137	LEU	2.1
3	D	123	SER	2.1
1	Н	191	THR	2.1
2	А	105	CYS	2.1
2	А	10	ALA	2.1
2	С	70	GLU	2.1
1	Н	190	GLY	2.1
3	L	183	LEU	2.1
1	В	142	VAL	2.1
1	В	151	THR	2.0
1	Н	39	LEU	2.0
1	Н	107	THR	2.0
3	D	202	GLY	2.0
3	D	204	ARG	2.0
1	Е	109	VAL	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathbf{A}^2)$	Q<0.9
5	MAN	Κ	7	11/12	0.76	0.28	125,131,136,139	0
4	MAN	Ι	9	11/12	0.81	0.17	102,132,137,138	0
5	MAN	Κ	6	11/12	0.81	0.23	117,121,142,147	0
4	MAN	Ι	6	11/12	0.81	0.30	126,136,147,151	0
4	MAN	J	9	11/12	0.84	0.27	141,147,160,161	0
5	BMA	K	3	11/12	0.88	0.20	110,116,126,133	0
4	MAN	Ι	8	11/12	0.89	0.27	97,108,121,128	0

$\frac{1}{1} = \frac{1}{1} = \frac{1}$								
Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors(A^2)	Q < 0.9
4	MAN	Ι	5	11/12	0.90	0.20	109,122,127,138	0
5	MAN	K	5	11/12	0.91	0.13	121,127,139,143	0
4	MAN	J	7	11/12	0.91	0.20	65,69,88,91	0
4	MAN	J	8	11/12	0.91	0.18	94,119,127,128	0
4	MAN	J	6	11/12	0.92	0.18	83,111,119,120	0
4	MAN	Ι	7	11/12	0.93	0.15	82,97,107,109	0
4	NAG	J	1	14/15	0.93	0.20	59,67,108,108	0
4	BMA	Ι	3	11/12	0.93	0.17	74,89,102,110	0
5	NAG	K	1	14/15	0.93	0.16	90,100,134,138	0
5	MAN	K	4	11/12	0.94	0.12	96,104,110,111	0
4	BMA	J	3	11/12	0.94	0.16	73,88,95,113	0
5	NAG	K	2	14/15	0.95	0.21	93,109,116,117	0
4	MAN	J	5	11/12	0.95	0.15	75,86,105,110	0
4	NAG	Ι	1	14/15	0.95	0.17	50,68,88,99	0
4	MAN	Ι	4	11/12	0.96	0.18	77,93,104,106	0
4	NAG	J	2	14/15	0.96	0.17	69,75,88,93	0
4	NAG	Ι	2	14/15	0.96	0.17	78,83,86,90	0
4	MAN	J	4	11/12	0.96	0.14	58,60,68,71	0

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
6	NAG	C	201	14/15	0.67	0.25	102,113,121,121	0
6	NAG	А	211	14/15	0.79	0.22	113,124,128,132	0
6	NAG	А	210	14/15	0.81	0.39	122,143,163,167	0
6	NAG	С	211	14/15	0.84	0.27	86,115,119,125	0

6.5 Other polymers (i)

There are no such residues in this entry.

