

Full wwPDB X-ray Structure Validation Report (i)

Sep 23, 2023 - 03:36 PM EDT

 Title : Insulin receptor ectodomain construct comprising domains L1,CR,L2, FnIII-1 and alphaCT peptide in complex with bovine insulin and FAB 83-14 (RE- VISED STRUCTURE) Authors : Lawrence, M.C.; Smith, B.J.; Croll, T.I. Deposited on : 2016-07-06 Resolution : 4.40 Å(reported) 	PDB ID	:	5KQV
and alphaCT peptide in complex with bovine insulin and FAB 83-14 (RE- VISED STRUCTURE) Authors : Lawrence, M.C.; Smith, B.J.; Croll, T.I. Deposited on : 2016-07-06 Resolution : 4.40 Å(reported)	Title	:	Insulin receptor ectodomain construct comprising domains L1,CR,L2, FnIII-1
VISED STRUCTURE) Authors : Lawrence, M.C.; Smith, B.J.; Croll, T.I. Deposited on : 2016-07-06 Resolution : 4.40 Å(reported)			and alphaCT peptide in complex with bovine insulin and FAB 83-14 (RE-
Authors:Lawrence, M.C.; Smith, B.J.; Croll, T.I.Deposited on:2016-07-06Resolution:4.40 Å(reported)			VISED STRUCTURE)
Deposited on : 2016-07-06 Resolution : 4.40 Å(reported)	Authors	:	Lawrence, M.C.; Smith, B.J.; Croll, T.I.
Resolution : $4.40 \text{ Å}(\text{reported})$	Deposited on	:	2016-07-06
	Resolution	:	4.40 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35.1
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 4.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motric	Whole archive	Similar resolution
IVIEUIIC	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R _{free}	130704	1043 (5.00-3.80)
Clashscore	141614	1111 (5.00-3.80)
Ramachandran outliers	138981	1059 (5.00-3.80)
Sidechain outliers	138945	1041 (5.00-3.80)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length		Qua	lity of ch	nain			
1	А	21	48%			43%		10)%
1	Ι	21	48%			33%		19%	
2	В	30	43%		13%		43%		-
2	J	30	27%	23%	7%		43%		
3	С	220		75%			18%	•	•
3	Р	220		75%			21%		·
4	D	214		86%	%			12%	•

Mol	Chain	Length	Quality	of chain	
4	Q	214	86%		12% •
5	Е	609	78%		17% ••
5	F	609	78%		17% • •
6	G	2	50%	50%	
6	Н	2	50%	50%	
7	K	3	33%	67%	

2 Entry composition (i)

There are 7 unique types of molecules in this entry. The entry contains 16735 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
1	Λ	21	Total	С	Ν	Ο	S	0	0	0
	I A	21	159	97	25	33	4	0	0	0
1	Т	91	Total	С	Ν	Ο	S	0	0	0
		21	159	97	25	33	4	0	U	U

• Molecule 1 is a protein called Insulin.

• Molecule 2 is a protein called Insulin.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
0	Р	17	Total	С	Ν	0	S	0	0	0
	2 B	11	127	81	21	23	2	0	0	0
0	т	17	Total	С	Ν	0	S	0	0	0
	J	11	127	81	21	23	2			U

• Molecule 3 is a protein called MONOCLONAL ANTIBODY FAB 83-14 - HEAVY CHAIN.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
3	С	911	Total	С	Ν	0	S	0	0	0
0		211	1589	1014	260	309	6	0	0	0
3	D	220	Total	С	Ν	0	S	0	0	0
5	1	220	1662	1060	273	322	7		U	U

• Molecule 4 is a protein called MONOCLONAL ANTIBODY FAB 83-14 - LIGHT CHAIN.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
4	Л	914	Total	С	Ν	0	\mathbf{S}	0	0	0
4	D	214	1650	1022	277	344	7	0	0	0
4	0	914	Total	С	Ν	0	S	0	0	0
4	Q	214	1650	1022	277	344	7	0	0	0

• Molecule 5 is a protein called Insulin receptor, Insulin receptor.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
5	F	503	Total	С	Ν	0	\mathbf{S}	0	Ο	0
5		090	4760	3015	824	879	42	0	0	0
5	F	502	Total	С	Ν	0	\mathbf{S}	0	0	0
0	I.	592	4766	3023	821	880	42	0	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Е	144	HIS	TYR	variant	UNP P06213
F	144	HIS	TYR	variant	UNP P06213

• Molecule 6 is an oligosaccharide called alpha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-bet a-D-glucopyranose.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
6	G	2	Total 24	C 14	N 1	O 9	0	0	0
6	Н	2	Total 24	C 14	N 1	O 9	0	0	0

• Molecule 7 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[al pha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
7	K	3	Total 38	C 22	N 2	0 14	0	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Chain A: 48% 43% 10% • Molecule 1: Insulin Chain I: 48% 33% 19% • Molecule 2: Insulin Chain B: 43% 13% 43% ARG GLY PHE PHE TYR THR PRO LYS PHE VAL ASN GLN • Molecule 2: Insulin Chain J: 43% 27% 23% 7% ARG 3LY PHE PHE TYR THR PRO PRO PHE VAL ASN GLN C7 C7 C7 • Molecule 3: MONOCLONAL ANTIBODY FAB 83-14 - HEAVY CHAIN Chain C: 75% 18%
- Molecule 1: Insulin

• Molecule 3: MONOCLONAL ANTIBODY FAB 83-14 - HEAVY CHAIN

Chain P:	75%	21% •
q1 q5 q6 q6 q6 q6 q6 q1 117 120 117 120 123 123 123 123 123 123 133 133 133 133 133 134 135	K38 47 148 149 649 853 881 888 888 888 899 899 899 8100 8100 8	P119 P119 V121 V121 V122 P123 P125 P123 F125 R125 S134 S134 S134
C1 40 C1 41 V1 42 V1 42 V1 43 V1 44 V1 44 V1 63 V1 75 V1 75	8302 8003 8003 7204 7210 7210 7219 7219 7219 7219 7220	
• Molecule 4: MONOCLONAL	ANTIBODY FAB 83-14 - LIG	HT CHAIN
Chain D:	86%	12% •
• Molecule 4: MONOCLONAL	ANTIBODY FAB 83-14 - LIC	HT CHAIN
Chain Q:	86%	12% ·
01 73 31 2 31 2 31 2 14 4 14 4 14 4 14 2 14 4 14 2 14 4 14 4	884 11.04 11.04 11.04 11.04 11.04 11.1 11.1	1193 1193 1194 1195 1195 1195 1195 1195 1195 1195
• Molecule 5: Insulin receptor,I	nsulin receptor	
Chain E:	78%	17% ••
HLS LEU TAR F4 F4 E23 E24 E24 E24 E24 F24 F24 F24 F24 F24 F24 F24 F24 F24 F	115 196 1100 1110 11119 111119 11119 11119 11119 11119 111119 111119 111119 111119 111119 111119 111119 111119 111119 111119 111119 111119 111119 111119 111119 111119 111119 111111	416 116 716 716 716 716 718 818 818 818 818 818 818 818 818 818
N267 N268 8269 R271 R271 R271 C274 R275 C273 C273 C273 R276 C273 R276 R276 R276 R276 R278 R278 R278 R278 R278 R278 R278 R278	H313 N337 C346 C346 N348 N348 N348 N348 N348 N348 N348 L419 L419 L419 L419 L419 L419	144.29 144.29 144.30 144.46 144.44 144.49 144.9
9465 9465 85469 85469 85469 8546 8471 1472 1472 1473 1473 1473 1473 1473 1473 1473 1473	Y512 Q513 C516 E516 E516 E516 D519 Q520 Q521 C520 V532 V532 V532 D533 D533 D533 D533 D533 D533 D533 D	W551 L652 L652 L652 W559 T560 T661 T664 T663 L564 T664 L569 T664 THR
PHE SER ASP ARG ARG ARG ARG ARG ARG AS92 T593 T593 T593 T593 T593 T593 T593 T593	F604 PRO ARG PRO SER	
• Molecule 5: Insulin receptor,I	nsulin receptor	
Chain F:	78%	17% • •
H1 12 13 13 13 13 14 13 14 14 14 14 14 14 14 14 14 14 14 14 14	Y 190 Y 193 Y 193 Y 194 Y 107 Y 106 Y 115 Y 11	414 4164 4165 0166 0168 0168 01169 01169 01180 0126 0225 0235
H264 H264 K265 K266 K266 K266 K266 R274 R273 C274 C274 C274 C274 C274 C274 C274 C274	L299 V311 C312 H313 H313 H313 H313 H313 H313 H313 H	Y430 Y430 S446 C447 THR THR THR LIYS GLV GLV ASP ASP ASP ASP

• Molecule 6: alpha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain G:	50%	50%	
NAG1 FUC2			
• Molecule 6: a	lpha-L-fucopyranose-(1-6)	-2-acetamido-2-deoxy-beta-D-glucopyranose	
Chain H:	50%	50%	
NAG1 FUC2			
• Molecule 7: 2 tamido-2-deoxy	-acetamido-2-deoxy-beta- -beta-D-glucopyranose	D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-a	ıce

Chain K: 33% 67%

4 Data and refinement statistics (i)

Property	Value	Source
Space group	I 1 2 1	Depositor
Cell constants	118.15Å 140.10Å 190.02Å	Depositor
a, b, c, α , β , γ	90.00° 95.04° 90.00°	Depositor
Bosolution(A)	42.49 - 4.40	Depositor
Resolution (A)	39.95 - 4.40	EDS
% Data completeness	88.1 (42.49-4.40)	Depositor
(in resolution range)	88.1 (39.95-4.40)	EDS
R_{merge}	0.21	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.23 (at 4.44 \text{\AA})$	Xtriage
Refinement program	BUSTER 2.10.2	Depositor
B B.	0.229 , 0.266	Depositor
n, n_{free}	0.255 , 0.292	DCC
R_{free} test set	886 reflections (5.11%)	wwPDB-VP
Wilson B-factor $(Å^2)$	172.2	Xtriage
Anisotropy	0.161	Xtriage
Bulk solvent $k_{sol}(e/A^3)$, $B_{sol}(A^2)$	0.23, 220.4	EDS
L-test for $twinning^2$	$ < L >=0.39, < L^2>=0.22$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.88	EDS
Total number of atoms	16735	wwPDB-VP
Average B, all atoms $(Å^2)$	247.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 7.37% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAG, FUC

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles		
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.72	0/160	1.03	0/216	
1	Ι	0.83	0/160	1.12	0/216	
2	В	0.72	0/129	0.98	0/174	
2	J	0.54	0/129	1.00	0/174	
3	С	0.54	0/1631	0.93	1/2227~(0.0%)	
3	Р	0.58	0/1709	0.95	0/2336	
4	D	0.43	0/1685	0.73	1/2284~(0.0%)	
4	Q	0.44	0/1685	0.73	2/2284~(0.1%)	
5	Е	0.50	0/4874	0.82	10/6605~(0.2%)	
5	F	0.50	0/4884	0.80	5/6623~(0.1%)	
All	All	0.51	0/17046	0.83	19/23139~(0.1%)	

There are no bond length outliers.

All	(19)	bond	angle	outliers	are	listed	below:
-----	------	------	-------	----------	-----	--------	--------

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	Е	264	HIS	C-N-CA	7.59	140.68	121.70
5	F	264	HIS	C-N-CA	7.06	139.36	121.70
5	F	264	HIS	CA-C-N	-5.95	104.10	117.20
5	F	502	GLY	N-CA-C	5.92	127.89	113.10
5	Е	468	CYS	C-N-CA	5.82	136.26	121.70
5	Е	448	THR	C-N-CA	5.74	136.04	121.70
5	F	266	CYS	C-N-CA	5.71	135.97	121.70
5	Е	264	HIS	CA-C-N	-5.65	104.77	117.20
5	Е	266	CYS	C-N-CA	5.44	135.30	121.70
4	Q	93	SER	C-N-CA	5.38	135.15	121.70
5	Е	512	TYR	C-N-CA	5.37	135.12	121.70
4	D	93	SER	C-N-CA	5.28	134.89	121.70
5	Е	502	GLY	N-CA-C	5.25	126.24	113.10
4	Q	108	ARG	CB-CA-C	-5.23	99.93	110.40

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
5	Ε	180	GLU	CA-C-N	5.17	128.57	117.20
5	F	268	ASN	C-N-CA	5.16	134.59	121.70
5	Ε	268	ASN	C-N-CA	5.13	134.53	121.70
5	Е	401	TYR	CA-CB-CG	5.10	123.10	113.40
3	С	89	GLU	C-N-CA	5.02	134.25	121.70

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	${ m H}({ m model})$	H(added)	Clashes	Symm-Clashes
1	А	159	0	145	3	0
1	Ι	159	0	145	7	0
2	В	127	0	120	0	0
2	J	127	0	120	7	0
3	С	1589	0	1568	25	0
3	Р	1662	0	1640	29	0
4	D	1650	0	1572	19	0
4	Q	1650	0	1572	16	0
5	Е	4760	0	4626	75	0
5	F	4766	0	4614	85	0
6	G	24	0	22	1	0
6	H	24	0	22	2	0
7	K	38	0	34	1	0
All	All	16735	0	16200	232	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 7.

All (232) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
5:E:372:ARG:HH21	5:F:533:ASP:CB	1.66	1.08
5:E:372:ARG:NH2	5:F:533:ASP:CB	2.20	1.03

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
5:E:372:ARG:NH2	5:F:533:ASP:HB3	1.78	0.98	
5:E:559:TRP:CE3	5:E:592:ALA:HB2	2.05	0.92	
1:I:5:GLN:HE21	1:I:15:GLN:HE21	1.18	0.91	
3:C:100:TRP:HB2	4:D:34:TYR:HE2	1.33	0.90	
5:E:372:ARG:CZ	5:F:533:ASP:HB3	2.04	0.87	
5:E:372:ARG:NH2	5:F:533:ASP:HB2	1.91	0.86	
5:E:351:ALA:HB2	5:E:521:GLN:HB2	1.57	0.84	
3:P:100:TRP:HB2	4:Q:34:TYR:HE2	1.42	0.83	
5:E:372:ARG:HH21	5:F:533:ASP:HB2	1.42	0.82	
5:E:95:ILE:HD13	5:E:119:ILE:HG12	1.61	0.81	
5:E:169:CYS:HB2	5:E:180:GLU:HG2	1.62	0.81	
1:A:5:GLN:HE21	1:A:15:GLN:HE21	1.26	0.81	
5:F:559:TRP:CE3	5:F:592:ALA:HB2	2.16	0.80	
5:F:95:ILE:HD13	5:F:119:ILE:HG12	1.65	0.78	
5:F:570:VAL:HA	5:F:579:TYR:HB2	1.65	0.78	
3:C:100:TRP:CB	4:D:34:TYR:HE2	1.98	0.76	
3:C:100:TRP:HB2	4:D:34:TYR:CE2	2.19	0.76	
5:E:449:LYS:HB3	5:E:452:GLN:NE2	2.00	0.75	
5:F:573:SER:HB3	5:F:577:ARG:HA	1.68	0.74	
5:F:169:CYS:HB2	5:F:180:GLU:HG2	1.70	0.74	
5:E:552:LEU:H	5:E:552:LEU:HD12	1.53	0.74	
5:E:130:THR:O	5:E:181:ARG:HA	1.89	0.73	
3:P:121:VAL:HG22	3:P:142:VAL:HG13	1.71	0.73	
5:F:552:LEU:HD12	5:F:552:LEU:H	1.54	0.73	
3:P:35:HIS:HD1	3:P:47:TRP:HE1	1.38	0.71	
5:E:271:ARG:HH11	5:E:313:HIS:HB3	1.55	0.70	
5:E:559:TRP:CD2	5:E:592:ALA:HB2	2.26	0.70	
5:E:471:GLU:HB2	5:E:581:ALA:HB2	1.74	0.69	
5:F:516:THR:O	5:F:519:ASP:HB2	1.92	0.68	
4:Q:132:VAL:HG13	4:Q:179:LEU:HB3	1.75	0.68	
5:F:467:SER:HB2	5:F:579:TYR:HD1	1.59	0.68	
5:E:427:PHE:HE1	5:E:429:HIS:HB2	1.58	0.68	
1:I:16:LEU:HD11	2:J:6:LEU:HD21	1.77	0.66	
5:E:559:TRP:CE3	5:E:592:ALA:CB	2.79	0.66	
5:F:471:GLU:HB2	5:F:581:ALA:HB2	1.76	0.65	
3:P:171:GLN:HG3	4:Q:160:LEU:HD21	1.79	0.65	
4:D:132:VAL:HG13	4:D:179:LEU:HB3	1.77	0.65	
5:F:501:LEU:HA	5:F:536:PRO:HG3	1.79	0.64	
5:F:427:PHE:HE1	5:F:429:HIS:HB2	1.61	0.64	
5:F:467:SER:HB2	5:F:579:TYR:CD1	2.33	0.64	
5:F:351:ALA:HB2	5:F:521:GLN:HB2	1.79	0.64	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:J:11:LEU:O	2:J:15:LEU:HD12	1.98	0.64	
3:P:100:TRP:HB2	4:Q:34:TYR:CE2	2.30	0.63	
3:P:100:TRP:CB	4:Q:34:TYR:HE2	2.12	0.63	
5:E:372:ARG:NE	5:F:533:ASP:HB3	2.14	0.62	
5:F:56:MET:HG3	5:F:81:VAL:HB	1.82	0.61	
5:E:516:THR:O	5:E:519:ASP:HB2	2.00	0.61	
4:Q:132:VAL:CG1	4:Q:179:LEU:HB3	2.31	0.61	
3:C:100:TRP:CB	4:D:34:TYR:CE2	2.83	0.61	
5:E:372:ARG:HD3	5:F:504:MET:CE	2.31	0.60	
5:F:546:GLN:HG2	5:F:546:GLN:O	2.01	0.60	
5:F:160:PRO:HB3	5:F:164:LYS:HA	1.83	0.59	
3:P:8:GLY:HA3	3:P:107:THR:HG23	1.84	0.59	
5:E:270:ARG:HD3	5:E:337:ASN:ND2	2.18	0.59	
5:E:346:GLY:HA3	5:F:525:GLY:N	2.17	0.59	
3:C:8:GLY:HA3	3:C:107:THR:HG23	1.85	0.59	
5:E:160:PRO:HB3	5:E:164:LYS:HA	1.83	0.59	
5:F:559:TRP:CE3	5:F:592:ALA:CB	2.85	0.58	
3:C:202:SER:HB2	3:C:204:THR:OG1	2.05	0.57	
5:E:546:GLN:O	5:E:546:GLN:HG2	2.04	0.57	
3:C:171:GLN:HG3	4:D:160:LEU:HD11	1.87	0.57	
5:E:56:MET:HG3	5:E:81:VAL:HB	1.87	0.57	
3:P:125:ALA:HB2	3:P:210:ILE:HG12	1.87	0.57	
5:E:170:PRO:O	5:E:180:GLU:O	2.22	0.56	
4:D:150:ILE:HD11	4:D:179:LEU:HD21	1.87	0.56	
5:F:289:PRO:HG2	5:F:292:TYR:CD2	2.40	0.56	
5:F:559:TRP:CD2	5:F:592:ALA:HB2	2.39	0.56	
5:E:372:ARG:HD3	5:F:504:MET:HE3	1.87	0.56	
5:E:372:ARG:HH21	5:F:533:ASP:CG	2.07	0.55	
5:E:429:HIS:CD2	5:E:458:ALA:HB2	2.41	0.55	
5:E:501:LEU:HA	5:E:536:PRO:HG3	1.86	0.55	
5:E:394:GLU:HG2	5:E:401:TYR:CD2	2.42	0.55	
3:P:119:PRO:HB3	3:P:145:TYR:HB3	1.89	0.55	
3:C:195:CYS:HB3	3:C:210:ILE:HD11	1.88	0.54	
5:E:159:CYS:HB2	5:E:160:PRO:HD3	1.90	0.54	
3:P:202:SER:HB2	3:P:204:THR:OG1	2.08	0.54	
4:Q:21:LEU:HD12	4:Q:21:LEU:N	2.23	0.54	
5:F:467:SER:CB	5:F:579:TYR:HD1	2.21	0.54	
4:Q:150:ILE:HD11	4:Q:179:LEU:HD21	1.88	0.54	
3:C:119:PRO:HB3	3:C:145:TYR:HB3	1.89	0.54	
5:F:278:VAL:HG12	5:F:294:MET:HG3	1.90	0.53	
4:D:132:VAL:CG1	4:D:179:LEU:HB3	2.39	0.53	

	lo ao pagoni	Interatomic	Clash overlap (Å)	
Atom-1	Atom-2	distance $(Å)$		
1:A:7:CYS:C	1:A:9:SER:H	2.12	0.53	
5:F:3:TYR:HB3	5:F:27:SER:HB3	1.91	0.53	
5:E:165:GLY:H	5:E:168:ASN:HD21	1.58	0.52	
5:E:569:LEU:HD11	5:F:404:ASP:OD1	2.10	0.52	
5:E:289:PRO:HG2	5:E:292:TYR:CD2	2.45	0.52	
4:Q:195:GLU:HG2	4:Q:206:VAL:HG22	1.91	0.52	
3:C:121:VAL:HG22	3:C:142:VAL:HG13	1.91	0.52	
4:D:195:GLU:HG2	4:D:206:VAL:HG22	1.91	0.52	
5:E:449:LYS:HB3	5:E:452:GLN:HE21	1.70	0.52	
5:E:160:PRO:HB3	5:E:165:GLY:H	1.75	0.51	
3:P:5:GLN:HE21	3:P:5:GLN:HA	1.75	0.51	
5:E:64:PHE:CD1	5:E:96:PHE:HD2	2.28	0.51	
5:E:270:ARG:HH11	5:E:271:ARG:NH1	2.09	0.51	
5:E:430:TYR:OH	5:F:571:THR:HG23	2.10	0.51	
3:C:210:ILE:H	3:C:210:ILE:HD12	1.76	0.50	
5:F:469:GLU:HG3	5:F:582:LYS:HD3	1.93	0.50	
5:E:278:VAL:HG12	5:E:294:MET:HG3	1.93	0.50	
7:K:1:NAG:H61	7:K:2:NAG:C7	2.41	0.50	
5:F:95:ILE:N	5:F:95:ILE:HD12	2.27	0.50	
5:F:467:SER:HB2	5:F:579:TYR:HB3	1.94	0.50	
5:E:263:HIS:HD2	5:E:277:TYR:O	1.95	0.49	
3:C:171:GLN:CG	4:D:160:LEU:HD11	2.42	0.49	
1:I:17:GLU:HG2	2:J:18:VAL:HG13	1.92	0.49	
5:E:24:GLU:OE2	6:G:1:NAG:H3	2.13	0.49	
5:F:311:VAL:HG12	5:F:313:HIS:CD2	2.47	0.49	
4:D:108:ARG:HG3	4:D:171:SER:HB2	1.95	0.49	
5:F:278:VAL:CG1	5:F:294:MET:HG3	2.43	0.49	
5:E:404:ASP:OD1	5:F:569:LEU:HD11	2.13	0.49	
5:F:160:PRO:HB3	5:F:165:GLY:H	1.78	0.49	
1:A:12:SER:HB3	1:A:15:GLN:OE1	2.13	0.49	
3:P:171:GLN:CG	4:Q:160:LEU:HD11	2.42	0.49	
5:E:552:LEU:HD12	5:E:552:LEU:N	2.26	0.49	
5:F:394:GLU:HG2	5:F:401:TYR:CD2	2.47	0.49	
5:F:22:GLU:O	6:H:1:NAG:H83	2.12	0.49	
5:E:118:ARG:HD2	5:E:144:HIS:HB3	1.95	0.49	
3:P:123:PRO:HG3	3:P:208:LYS:HB3	1.94	0.49	
5:F:532:VAL:HG11	5:F:551:TRP:CE2	2.48	0.49	
5:E:429:HIS:NE2	5:E:458:ALA:HB2	2.28	0.48	
3:C:125:ALA:HB2	3:C:210:ILE:HG22	1.94	0.48	
4:D:21:LEU:N	4:D:21:LEU:HD12	2.28	0.48	
3:C:8:GLY:HA2	3:C:9:PRO:O	2.11	0.48	

			Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
3:C:47:TRP:CZ2	3:C:49:GLY:HA2	2.48	0.48	
4:D:61:ARG:CZ	4:D:79:GLU:HG3	2.43	0.48	
5:F:159:CYS:HB2	5:F:160:PRO:HD3	1.95	0.48	
3:P:119:PRO:HB2	3:P:142:VAL:HG12	1.96	0.48	
3:C:123:PRO:HG3	3:C:208:LYS:HB3	1.96	0.48	
5:E:532:VAL:HG11	5:E:551:TRP:CE2	2.49	0.48	
5:E:596:GLU:O	5:E:599:LEU:HB3	2.14	0.48	
1:I:7:CYS:C	1:I:9:SER:H	2.15	0.48	
5:F:2:LEU:HD22	5:F:225:CYS:O	2.14	0.47	
5:E:64:PHE:HD1	5:E:96:PHE:HD2	1.62	0.47	
5:F:289:PRO:HG2	5:F:292:TYR:HD2	1.79	0.47	
5:F:17:LEU:HD11	5:F:46:PHE:CE1	2.50	0.47	
5:F:165:GLY:H	5:F:168:ASN:HD21	1.62	0.47	
3:C:5:GLN:HE21	3:C:5:GLN:HA	1.80	0.47	
3:C:213:ARG:HB3	4:D:214:CYS:HB3	1.97	0.47	
5:E:507:TYR:HA	5:E:563:ALA:O	2.15	0.47	
3:P:12:VAL:HG11	3:P:18:VAL:HB	1.97	0.47	
5:E:269:SER:O	5:E:274:CYS:HB2	2.15	0.46	
3:P:47:TRP:CZ2	3:P:49:GLY:HA2	2.50	0.46	
4:Q:21:LEU:HD13	4:Q:73:LEU:HB3	1.97	0.46	
5:F:427:PHE:CD1	5:F:427:PHE:C	2.89	0.46	
5:F:507:TYR:HA	5:F:563:ALA:O	2.15	0.46	
3:C:12:VAL:HG11	3:C:18:VAL:HB	1.96	0.46	
5:F:1:HIS:H3	5:F:235:GLY:HA3	1.81	0.46	
5:E:419:LEU:O	5:E:446:SER:HA	2.16	0.46	
1:I:10:VAL:HG13	2:J:5:HIS:CD2	2.50	0.46	
4:D:149:LYS:HB2	4:D:193:THR:HB	1.98	0.46	
5:E:394:GLU:HG2	5:E:401:TYR:HD2	1.80	0.46	
5:F:263:HIS:HD2	5:F:277:TYR:O	1.98	0.45	
5:F:269:SER:O	5:F:274:CYS:HB2	2.16	0.45	
5:F:275:HIS:HD2	5:F:277:TYR:CE1	2.34	0.45	
5:F:118:ARG:HD2	5:F:144:HIS:HB3	1.97	0.45	
3:C:38:LYS:HB2	3:C:48:ILE:HD11	1.97	0.45	
3:C:27:TYR:CE2	3:C:98:ARG:HD2	2.52	0.45	
5:F:559:TRP:HB2	5:F:592:ALA:HB2	1.98	0.45	
5:E:600:HIS:HA	5:E:604:PHE:CE2	2.52	0.45	
3:P:8:GLY:HA2	3:P:9:PRO:O	2.17	0.45	
3:P:12:VAL:HG21	3:P:86:LEU:HD13	1.97	0.45	
5:E:278:VAL:CG1	5:E:294:MET:HG3	2.47	0.45	
5:F:552:LEU:HD12	5:F:552:LEU:N	2.27	0.45	
5:F:294:MET:SD	5:F:299:LEU:HA	2.57	0.45	

	lo uo pugom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
5:F:427:PHE:C	5:F:427:PHE:HD1	2.21	0.45
5:E:595:PHE:CD2	5:E:595:PHE:C	2.89	0.44
5:F:1:HIS:N	5:F:235:GLY:CA	2.80	0.44
5:F:522:ASP:HB3	5:F:527:ASN:HD21	1.82	0.44
3:P:27:TYR:CE2	3:P:98:ARG:HD2	2.51	0.44
5:E:17:LEU:HD11	5:E:46:PHE:CE1	2.52	0.44
5:E:506:PHE:O	5:E:564:ILE:HA	2.18	0.44
5:F:482:PHE:HA	5:F:591:ASP:HB2	1.98	0.44
5:E:311:VAL:HG12	5:E:313:HIS:CD2	2.52	0.44
5:E:482:PHE:HA	5:E:591:ASP:HB2	1.99	0.44
3:P:32:TYR:O	3:P:53:PRO:HD2	2.17	0.44
4:D:62:PHE:CE1	4:D:75:ILE:HG12	2.52	0.44
5:F:22:GLU:O	6:H:1:NAG:C8	2.65	0.44
3:C:12:VAL:HG21	3:C:86:LEU:HD13	2.00	0.44
4:D:103:LYS:HE2	4:D:104:LEU:O	2.18	0.44
3:P:100:TRP:CB	4:Q:34:TYR:CE2	2.97	0.44
3:C:169:VAL:HG11	4:D:160:LEU:HD22	2.00	0.43
4:Q:61:ARG:CZ	4:Q:79:GLU:HG3	2.47	0.43
5:E:473:LEU:HD11	5:E:568:THR:HG23	2.00	0.43
5:F:419:LEU:O	5:F:446:SER:HA	2.18	0.43
4:Q:149:LYS:HB2	4:Q:193:THR:HB	1.99	0.43
5:F:64:PHE:HD1	5:F:96:PHE:HD2	1.66	0.43
5:F:479:ARG:HD3	3:P:33:ASP:OD2	2.18	0.43
3:P:29:PHE:CE2	3:P:53:PRO:HB3	2.53	0.43
5:F:1:HIS:H3	5:F:235:GLY:CA	2.32	0.43
1:I:17:GLU:HA	2:J:18:VAL:HG11	2.00	0.43
3:P:150:VAL:HG21	3:P:177:LEU:HD22	2.01	0.43
5:F:64:PHE:CD1	5:F:96:PHE:HD2	2.36	0.43
3:P:20:ILE:HD11	3:P:81:MET:HE1	2.01	0.43
4:Q:108:ARG:HH12	4:Q:111:ALA:HB2	1.84	0.43
5:E:447:GLY:C	5:E:449:LYS:H	2.22	0.42
5:E:603:VAL:HG12	5:E:604:PHE:CE1	2.54	0.42
5:F:577:ARG:H	5:F:577:ARG:HG2	1.57	0.42
4:Q:103:LYS:HE2	4:Q:104:LEU:O	2.19	0.42
4:D:123:GLU:H	4:D:123:GLU:HG3	1.69	0.42
5:E:270:ARG:HH11	5:E:271:ARG:HH12	1.68	0.42
3:P:124:LEU:HD11	3:P:141:LEU:HB2	2.01	0.42
5:F:548:HIS:HA	5:F:549:PRO:HD2	1.88	0.42
5:F:160:PRO:HB2	5:F:164:LYS:HD3	2.01	0.42
5:E:427:PHE:CE1	5:E:429:HIS:HB2	2.46	0.42
3:P:38:LYS:HB2	3:P:48:ILE:HD11	2.01	0.42

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
5:F:37:LEU:HD21	5:F:64:PHE:HE2	1.84	0.41
3:C:32:TYR:O	3:C:53:PRO:HD2	2.20	0.41
5:E:294:MET:SD	5:E:299:LEU:HA	2.60	0.41
5:E:372:ARG:HD3	5:F:504:MET:HE2	2.02	0.41
5:F:93:LEU:HG	5:F:95:ILE:HD11	2.01	0.41
1:I:16:LEU:HD11	2:J:6:LEU:CD2	2.48	0.41
5:F:89:PHE:O	5:F:91:TYR:CD2	2.74	0.41
3:C:4:LEU:CD1	3:C:97:ALA:HA	2.50	0.41
5:E:427:PHE:C	5:E:427:PHE:CD1	2.93	0.41
5:F:506:PHE:O	5:F:564:ILE:HA	2.20	0.41
5:F:93:LEU:HG	5:F:95:ILE:CD1	2.51	0.41
5:E:107:TYR:HA	5:E:183:TRP:CD1	2.56	0.41
5:E:275:HIS:CD2	5:E:277:TYR:CE1	3.09	0.41
5:F:107:TYR:HA	5:F:183:TRP:CD1	2.55	0.41
5:F:596:GLU:O	5:F:599:LEU:HB3	2.21	0.41
5:F:275:HIS:CD2	5:F:277:TYR:CE1	3.09	0.41
5:F:404:ASP:HA	5:F:430:TYR:O	2.20	0.41
5:F:571:THR:H	5:F:579:TYR:HA	1.85	0.41
5:F:427:PHE:CE1	5:F:429:HIS:HB2	2.48	0.40
3:P:20:ILE:HD11	3:P:81:MET:CE	2.51	0.40
5:E:452:GLN:HB3	5:E:453:GLU:H	1.67	0.40
5:E:275:HIS:HD2	5:E:277:TYR:CE1	2.38	0.40
2:J:7:CYS:O	2:J:11:LEU:HG	2.22	0.40
3:P:163:VAL:HA	3:P:180:SER:O	2.22	0.40
5:E:289:PRO:HG2	5:E:292:TYR:HD2	1.84	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	19/21~(90%)	13~(68%)	4 (21%)	2(10%)	0 8

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	Ι	19/21~(90%)	13~(68%)	4 (21%)	2(10%)	0	8
2	В	15/30~(50%)	12 (80%)	2(13%)	1 (7%)	1	18
2	J	15/30~(50%)	12 (80%)	1 (7%)	2(13%)	0	4
3	С	207/220~(94%)	184 (89%)	15 (7%)	8 (4%)	3	26
3	Р	218/220~(99%)	189 (87%)	21 (10%)	8 (4%)	3	28
4	D	212/214~(99%)	204 (96%)	6 (3%)	2(1%)	17	56
4	Q	212/214~(99%)	204 (96%)	6 (3%)	2(1%)	17	56
5	Е	589/609~(97%)	533~(90%)	42 (7%)	14 (2%)	6	36
5	F	588/609~(97%)	536 (91%)	37~(6%)	15 (3%)	5	35
All	All	2094/2188 (96%)	1900 (91%)	138 (7%)	56 (3%)	5	34

All (56) Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	18	ASN
3	С	9	PRO
3	С	159	LEU
4	D	94	SER
5	Е	267	LYS
5	Ε	269	SER
5	Е	513	GLN
5	Е	521	GLN
5	F	267	LYS
5	F	269	SER
5	F	513	GLN
5	F	521	GLN
5	F	570	VAL
1	Ι	18	ASN
3	Р	9	PRO
3	Р	88	SER
3	Р	159	LEU
4	Q	94	SER
3	С	88	SER
5	Е	100	HIS
5	Е	511	PRO
5	Е	541	ASN
5	F	100	HIS
5	F	511	PRO
5	F	541	ASN

Mol	Chain	Res	Type
2	J	8	GLY
3	С	90	LYS
3	С	215	PRO
5	Е	273	GLY
5	Е	470	ASN
5	F	265	LYS
5	F	273	GLY
5	F	523	ALA
1	Ι	17	GLU
3	Р	135	SER
3	С	135	SER
4	D	150	ILE
5	Е	161	GLY
5	Е	265	LYS
5	F	161	GLY
2	J	19	CYS
3	Р	90	LYS
4	Q	150	ILE
1	А	17	GLU
3	С	125	ALA
5	Е	181	ARG
5	Е	452	GLN
5	F	470	ASN
5	F	575	GLU
3	Р	125	ALA
3	Р	128	CYS
2	В	8	GLY
3	С	128	CYS
3	Р	219	PRO
5	Е	495	PRO
5	F	495	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	19/19~(100%)	13~(68%)	6(32%)	0 2
1	Ι	19/19~(100%)	13~(68%)	6(32%)	0 2
2	В	14/25~(56%)	11 (79%)	3(21%)	1 7
2	J	14/25~(56%)	11 (79%)	3(21%)	1 7
3	С	178/187~(95%)	164 (92%)	14 (8%)	12 38
3	Р	187/187~(100%)	$171 \ (91\%)$	16 (9%)	10 35
4	D	190/190~(100%)	177~(93%)	13~(7%)	16 43
4	Q	190/190~(100%)	178 (94%)	12~(6%)	18 44
5	Ε	537/553~(97%)	512 (95%)	25~(5%)	26 53
5	F	538/553~(97%)	510 (95%)	28 (5%)	23 50
All	All	1886/1948 (97%)	1760 (93%)	126 (7%)	16 43

All (126) residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
1	А	2	ILE
1	А	7	CYS
1	А	10	VAL
1	А	12	SER
1	А	16	LEU
1	А	20	CYS
2	В	7	CYS
2	В	12	VAL
2	В	19	CYS
3	С	5	GLN
3	С	17	LEU
3	С	30	THR
3	С	82	HIS
3	С	108	LEU
3	С	128	CYS
3	С	134	SER
3	С	140	CYS
3	С	143	LYS
3	С	171	GLN
3	С	177	LEU
3	С	195	CYS
3	С	202	SER

Mol	Chain	Res	Type
3	С	213	ARG
4	D	3	GLN
4	D	12	SER
4	D	21	LEU
4	D	44	ILE
4	D	67	SER
4	D	89	LEU
4	D	104	LEU
4	D	108	ARG
4	D	121	SER
4	D	156	GLN
4	D	167	ASP
4	D	201	SER
4	D	214	CYS
5	Е	22	GLU
5	Е	27	SER
5	Е	48	ASP
5	Е	154	GLU
5	Е	158	ILE
5	Е	266	CYS
5	Ε	271	ARG
5	Е	348	ASN
5	Ε	371	ARG
5	Ε	401	TYR
5	Е	427	PHE
5	Е	435	CYS
5	Е	465	GLN
5	Е	497	PHE
5	E	501	LEU
5	E	518	PHE
5	Е	527	ASN
5	E	530	THR
5	Е	533	ASP
5	E	541	ASN
5	Е	546	GLN
5	Е	552	LEU
5	Е	561	GLN
5	Е	593	THR
5	E	598	TYR
5	F	22	GLU
5	F	27	SER
5	F	48	ASP

Mol	Chain	Res	Type
5	F	154	GLU
5	F	158	ILE
5	F	266	CYS
5	F	298	ASN
5	F	348	ASN
5	F	371	ARG
5	F	401	TYR
5	F	427	PHE
5	F	429	HIS
5	F	465	GLN
5	F	497	PHE
5	F	501	LEU
5	F	518	PHE
5	F	527	ASN
5	F	530	THR
5	F	533	ASP
5	F	541	ASN
5	F	546	GLN
5	F	552	LEU
5	F	561	GLN
5	F	572	PHE
5	F	576	ARG
5	F	577	ARG
5	F	593	THR
5	F	598	TYR
1	Ι	2	ILE
1	Ι	7	CYS
1	Ι	10	VAL
1	Ι	12	SER
1	Ι	16	LEU
1	Ι	20	CYS
2	J	7	CYS
2	J	12	VAL
2	J	19	CYS
3	Р	5	GLN
3	Р	17	LEU
3	P	30	THR
3	Р	108	LEU
3	Р	128	CYS
3	Р	134	SER
3	P	140	CYS
3	Р	143	LYS

Mol	Chain	Res	Type
3	Р	171	GLN
3	Р	177	LEU
3	Р	190	SER
3	Р	195	CYS
3	Р	202	SER
3	Р	209	LYS
3	Р	210	ILE
3	Р	218	LYS
4	Q	3	GLN
4	Q	12	SER
4	Q	21	LEU
4	Q	44	ILE
4	Q	67	SER
4	Q	89	LEU
4	Q	108	ARG
4	Q	121	SER
4	Q	142	LYS
4	Q	167	ASP
4	Q	201	SER
4	Q	214	CYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (26) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	5	GLN
3	С	5	GLN
5	Е	32	HIS
5	Е	34	GLN
5	Е	168	ASN
5	Е	218	GLN
5	Е	275	HIS
5	Е	313	HIS
5	Е	328	GLN
5	Е	349	ASN
5	Е	452	GLN
5	Е	561	GLN
5	Е	600	HIS
5	F	32	HIS
5	F	34	GLN
5	F	168	ASN
5	F	264	HIS
5	F	275	HIS

Mol	Chain	Res	Type
5	F	313	HIS
5	F	328	GLN
5	F	349	ASN
5	F	546	GLN
5	F	561	GLN
5	F	600	HIS
1	Ι	5	GLN
3	Р	5	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

7 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	ths	B	ond ang	les
INIOI	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
6	NAG	G	1	5,6	14,14,15	0.40	0	17,19,21	1.16	2 (11%)
6	FUC	G	2	6	10,10,11	0.54	0	14,14,16	0.90	1 (7%)
6	NAG	Н	1	5,6	14,14,15	0.41	0	17,19,21	2.06	3 (17%)
6	FUC	Н	2	6	10,10,11	0.59	0	14,14,16	1.30	1 (7%)
7	NAG	К	1	5,7	14,14,15	0.43	0	17,19,21	2.02	1 (5%)
7	NAG	K	2	7	14,14,15	0.37	0	17,19,21	1.12	1 (5%)
7	FUC	K	3	7	10,10,11	0.57	0	14,14,16	0.99	1 (7%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral

- means no outners of that kind were identified.								
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings	
6	NAG	G	1	5,6	-	5/6/23/26	0/1/1/1	
6	FUC	G	2	6	-	-	0/1/1/1	
6	NAG	Н	1	$5,\!6$	-	2/6/23/26	0/1/1/1	
6	FUC	Н	2	6	-	-	0/1/1/1	
7	NAG	К	1	5,7	-	2/6/23/26	0/1/1/1	
7	NAG	К	2	7	-	1/6/23/26	0/1/1/1	
7	FUC	K	3	7	-	-	0/1/1/1	

centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

There are no bond length outliers.

All (10) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	Κ	1	NAG	O5-C1-C2	-7.79	98.99	111.29
6	Н	1	NAG	O5-C1-C2	-6.60	100.87	111.29
6	Н	1	NAG	C1-O5-C5	4.58	118.40	112.19
7	Κ	2	NAG	C1-O5-C5	4.29	118.01	112.19
6	Н	2	FUC	C1-C2-C3	3.67	114.17	109.67
6	G	1	NAG	O5-C1-C2	-3.03	106.51	111.29
6	G	1	NAG	C1-C2-N2	-2.74	105.81	110.49
7	Κ	3	FUC	C1-O5-C5	2.39	118.20	112.78
6	G	2	FUC	C1-C2-C3	2.37	112.57	109.67
6	Н	1	NAG	C3-C4-C5	2.05	113.90	110.24

There are no chirality outliers.

All (10) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
6	G	1	NAG	C8-C7-N2-C2
6	G	1	NAG	O7-C7-N2-C2
6	Н	1	NAG	C8-C7-N2-C2
6	Н	1	NAG	O7-C7-N2-C2
7	Κ	1	NAG	O5-C5-C6-O6
6	G	1	NAG	C4-C5-C6-O6
6	G	1	NAG	O5-C5-C6-O6
7	Κ	1	NAG	C4-C5-C6-O6
7	Κ	2	NAG	O5-C5-C6-O6
6	G	1	NAG	C1-C2-N2-C7

There are no ring outliers.

4 monomers are involved in 4 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
6	G	1	NAG	1	0
7	Κ	2	NAG	1	0
6	Н	1	NAG	2	0
7	Κ	1	NAG	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.3 Carbohydrates (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.5 Other polymers (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

