

Full wwPDB X-ray Structure Validation Report (i)

Aug 7, 2020 – 12:19 PM BST

:	1KBP
:	KIDNEY BEAN PURPLE ACID PHOSPHATASE
:	Klabunde, T.; Strater, N.; Krebs, B.
:	1995-02-20
:	2.65 Å(reported)
	: : : :

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	NOT EXECUTED
EDS	:	NOT EXECUTED
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.13.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 2.65 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
Clashscore	141614	1374 (2.68-2.64)
Ramachandran outliers	138981	1349 (2.68-2.64)
Sidechain outliers	138945	1349 (2.68-2.64)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Note EDS was not executed.

Mol	Chain	Length	Quality of chain					
1	А	432	68%	25%	•••			
1	В	432	66%	27%	• ••			
1	С	432	69%	23%	5% •			
1	D	432	67%	26%	5% •			

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 14334 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace	
1	Λ	494	Total	С	Ν	Ο	S	0	0	0	
	A	424	3494	2243	605	636	10	0	0	0	
1	В	494	Total	С	Ν	Ο	S	0	0	0	
	D	424	3494	2243	605	636	10	0	0	U	
1	C	49.4	494	Total	С	Ν	Ο	S	0	0	0
		424	3494	2243	605	636	10	0	0	0	
1	1 D	494	Total	С	Ν	Ο	S	0	0	0	
	424	3494	2243	605	636	10	0		U		

• Molecule 1 is a protein called PURPLE ACID PHOSPHATASE.

There are 8 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	253	TYR	HIS	$\operatorname{conflict}$	UNP P80366
А	254	SER	ILE	conflict	UNP P80366
В	253	TYR	HIS	conflict	UNP P80366
В	254	SER	ILE	conflict	UNP P80366
С	253	TYR	HIS	conflict	UNP P80366
С	254	SER	ILE	conflict	UNP P80366
D	253	TYR	HIS	conflict	UNP P80366
D	254	SER	ILE	conflict	UNP P80366

• Molecule 2 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	A	ton	ns		ZeroOcc	AltConf
0	Δ	1	Total	С	Ν	0	0	0
	A	L	14	8	1	5	0	0
0	Λ	1	Total	С	Ν	Ο	0	0
	А	L	14	8	1	5	0	0
9	Λ	1	Total	С	Ν	Ο	0	0
	л	I	14	8	1	5	0	0
9	Λ	1	Total	С	Ν	Ο	0	0
	л	I	14	8	1	5	0	0
2	Δ	1	Total	С	Ν	Ο	0	0
	Π	T	14	8	1	5	0	0
2	В	1	Total	С	Ν	Ο	0	0
2	D	T	14	8	1	5	0	0
2	В	1	Total	С	Ν	Ο	0	0
2	D	T	14	8	1	5	0	0
2	В	1	Total	С	Ν	Ο	0	0
2	D	T	14	8	1	5	0	0
2	В	1	Total	С	Ν	Ο	0	0
	D	T	14	8	1	5	0	0
2	В	1	Total	С	Ν	Ο	0	0
	D	T	14	8	1	5	0	0
2	С	1	Total	С	Ν	Ο	0	0
	U	T	14	8	1	5	0	0
2	С	1	Total	С	Ν	Ο	0	0
	U	T	14	8	1	5	0	0
2	C	1	Total	C	N	Ο	0	0
		1	14	8	1	5	0	U
2	C	1	Total	С	Ν	0	0	0
			14	8	1	5		U

Continued from previous page...

Mol	Chain	Residues	A	ton	ns		ZeroOcc	AltConf
9	C	C 1	Total	С	Ν	Ο	0	0
	U	L	14	8	1	5	0	0
9	п	1	Total	С	Ν	Ο	0	0
	D	L	14	8	1	5	0	0
2	п	1	Total	С	Ν	Ο	0	0
	D	1	14	8	1	5	0	0
2	п	1	Total	С	Ν	Ο	0	0
	D	T	14	8	1	5	0	0
2	п	1	Total	С	Ν	Ο	0	0
	D	T	14	8	1	5	0	0
2	D	1	Total	С	N	0	0	0
	D	L	14	8	1	5		U

• Molecule 3 is FE (III) ION (three-letter code: FE) (formula: Fe).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	В	1	Total Fe 1 1	0	0
3	А	1	Total Fe 1 1	0	0
3	D	1	Total Fe 1 1	0	0
3	С	1	Total Fe 1 1	0	0

• Molecule 4 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	В	1	Total Zn 1 1	0	0
4	А	1	Total Zn 1 1	0	0
4	D	1	Total Zn 1 1	0	0
4	С	1	Total Zn 1 1	0	0

• Molecule 5 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	18	Total O 18 18	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	В	17	Total O 17 17	0	0
5	С	17	Total O 17 17	0	0
5	D	18	Total O 18 18	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Note EDS was not executed.

• Molecule 1: PURPLE ACID PHOSPHATASE

PHE	VAL ARG	LYS THR ASM	LYS	ß	D16 V17 F18	R19 V20	P21 P7	623	Y24 N25		028 029	V30 H21	132	T33 Q34	V38	T48	M49 D50	E51 P52	<mark>S55</mark>	<u>665</u>	644	M74	575 176	G 85	F86 187	H88	192	L95	199	Y103	E104 V105
-	T110 T111	R112 R113 E114	T122	<mark>6123</mark> L124	T129	L132	0 <mark>138</mark>	L146	S147	E150	L151 S152	P153 V164	K155	<mark>G156</mark> Q157	V162	171	H174	D175 N176	V177 R178	R184		O RT A	W195	E209	K217 D218	017.1	Y223	S230	F2 <mark>36</mark> W237	R242	A243
<mark>S251</mark>	S254	R275 C076	P279	W280 1281	M285 H286	<mark>5287</mark>	H295 H706	F297	M298	E301	R304	T305 V206		K315 V316	D317 V318	A321	<mark>5334</mark>	Y338	K339 1340	V348			P354	T358 I359	4362	G363	N364 Y365	G366 V367	1368 13	M372 I373	Q374
R383	F387	N396 1330	T398 H399	S403	R406 N407	0408 D409	CLAN	01 1	S417 V418		F421 N422	R423 HADA	N425	Y426 P427	V428 D429	D430 S431	T432														
•	М	olec	ule	1:	ΡU	RF	Σ	Е	AC	CI	D	ΡI	ΗC)SI	PH	AЛ	[AS	SE													
С	ha	in I): -								6	7%											2	6%			-	5%	·		
C and	ha INA INA	in I	SN ASN	R9 D10	D14 S15	D16 V17	F18 B10	V20	Y24	N25	0 128	7%	H31	132 133	Q34	M49 D50	E51 P52	S55 S55	R58	G65		K73	M74 S75	6%	584 285	F86	187 H88	5%	<mark>191</mark> .	L95	19 <mark>9</mark>
C	ha INA NAL E104 ARG	in I	F114 ASN	L124 D10	T129 D14 S15	L132 D16 V17	D135 F18 B10	Q138 V20	S139 Y24	L146 N25	S147 028 0	E150 (129 (129 (129 (129 (129 (129 (129 (129	S152 H31	P153 I32 K154 T33	K155 Q34 G156	Q157 M49 D50	V162 E51 P52	Y171 S55	H174 D175 B58	N176 V177 G65	R178	R184 K73	V190 S75	W195 T76 0.0	▲207 ▲207	P208 F86	E209 187 1210 H88	N211 H89 1300	K217 T91 • P218 I92	Y223	<u>199</u>
E228	Ha Y103 VAL \$230 \$104 ARG \$230 \$104 ARG	C C C C C C C C C C C C C C C C C C C	F236 F114 ASN	R242 R9 L124 D10	S251 T129 S254 S15	L132 D16 R275 V17	S276 D135 F18	P279 Q138 V20	S139 M285 Y24	L146 N25	1290 S147 Q28 9	Y293 E150 Q29 %2 ND04 1151 ND04	H295 S152 H31	H296 P153 I32 F297 K154 T33	M298 K155 Q34 G156	E301 0157 M49 D50	1305 V162 E51 K306 P52	F307 ¥171 E308 F308 F308 F308 F308 F308 F308 F308 F	H174 K315 D175 R58	V316 N176 D317 G65	V318 R178 V318 V310	F320 R184 K73	A321 M74 M74 S75 S	R332 T76 000 M195 000 M155 000 M195 0000 M195 000 M195 0000 M195 0000 M195 0000 M195 0000 M195 0000 M155 0000 M195 0000 M1000 M195 0000 M195 0000 M15 0000 M15 0000 M	S334 S334 S334 S334 S337 S334 S337 S334 S337 S334 S337 S337	Y338 P208 F86	K339 E209 187 1340 1210 H88	N248 N211 H89 5	K217 T91 • • • • • • • • • • • • • • • • • • •	P364 Y223 L95	T358 Y227 T99

4 Data and refinement statistics (i)

Xtriage (Phenix) and EDS were not executed - this section is therefore incomplete.

Property	Value	Source	
Space group	C 2 2 21	Depositor	
Cell constants	132.70Å 347.30Å 128.70Å	Depositor	
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor	
Resolution (Å)	10.00 - 2.65	Depositor	
% Data completeness	(Not available) (10.00-2.65)	Depositor	
(in resolution range)	(100 available) (10.00 2.00)	Depender	
R_{merge}	0.07	Depositor	
R_{sym}	(Not available)	Depositor	
Refinement program	X-PLOR 3.1	Depositor	
R, R_{free}	0.195 , 0.233	Depositor	
Estimated twinning fraction	No twinning to report.	Xtriage	
Total number of atoms	14334	wwPDB-VP	
Average B, all atoms $(Å^2)$	39.0	wwPDB-VP	

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, NAG, FE

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	Bond angles			
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5		
1	А	0.98	2/3613~(0.1%)	1.00	7/4912~(0.1%)		
1	В	0.89	1/3613~(0.0%)	0.96	7/4912~(0.1%)		
1	С	0.96	1/3613~(0.0%)	0.98	7/4912~(0.1%)		
1	D	0.96	2/3613~(0.1%)	1.00	8/4912~(0.2%)		
All	All	0.95	6/14452~(0.0%)	0.98	29/19648~(0.1%)		

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	2
1	В	0	1
1	С	0	1
1	D	0	2
All	All	0	6

All (6) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
1	С	425	TRP	CB-CG	-5.76	1.39	1.50
1	А	372	MET	CG-SD	-5.57	1.66	1.81
1	В	425	TRP	CB-CG	-5.39	1.40	1.50
1	D	378	GLU	CG-CD	5.08	1.59	1.51
1	D	308	GLU	CD-OE2	5.04	1.31	1.25
1	А	378	GLU	CG-CD	5.01	1.59	1.51

All (29) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	132	LEU	CA-CB-CG	-8.03	96.83	115.30
1	С	132	LEU	CA-CB-CG	-7.59	97.84	115.30
1	С	230	SER	N-CA-C	-6.98	92.14	111.00
1	А	230	SER	N-CA-C	-6.96	92.21	111.00
1	D	230	SER	N-CA-C	-6.88	92.42	111.00
1	D	132	LEU	CA-CB-CG	-6.82	99.62	115.30
1	А	154	LYS	N-CA-C	-6.80	92.64	111.00
1	А	132	LEU	CA-CB-CG	-6.70	99.90	115.30
1	В	230	SER	N-CA-C	-6.65	93.04	111.00
1	С	154	LYS	N-CA-C	-6.31	93.97	111.00
1	А	318	VAL	CB-CA-C	-6.20	99.62	111.40
1	В	318	VAL	CB-CA-C	-6.16	99.69	111.40
1	D	154	LYS	N-CA-C	-6.15	94.40	111.00
1	D	318	VAL	CB-CA-C	-6.06	99.89	111.40
1	В	154	LYS	N-CA-C	-6.00	94.79	111.00
1	С	318	VAL	CB-CA-C	-5.71	100.56	111.40
1	С	33	THR	CB-CA-C	-5.70	96.21	111.60
1	А	275	ARG	NE-CZ-NH2	-5.62	117.49	120.30
1	D	135	ASP	CB-CG-OD1	5.54	123.29	118.30
1	D	10	ASP	CB-CG-OD1	5.32	123.09	118.30
1	С	33	THR	N-CA-CB	5.27	120.31	110.30
1	А	33	THR	CB-CA-C	-5.23	97.47	111.60
1	А	112	ARG	NE-CZ-NH2	-5.20	117.70	120.30
1	D	275	ARG	NE-CZ-NH2	-5.20	117.70	120.30
1	В	393	ASP	CB-CG-OD2	-5.12	113.69	118.30
1	С	38	VAL	N-CA-C	5.08	124.73	111.00
1	В	33	THR	CB-CA-C	-5.03	98.02	111.60
1	В	430	ASP	CB-CA-C	-5.02	100.36	110.40
1	D	332	ARG	NE-CZ-NH1	-5.00	117.80	120.30

There are no chirality outliers.

All (6) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	А	223	TYR	Sidechain
1	А	290	TYR	Sidechain
1	В	223	TYR	Sidechain
1	С	223	TYR	Sidechain
1	D	223	TYR	Sidechain
1	D	290	TYR	Sidechain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3494	0	3307	81	0
1	В	3494	0	3306	93	0
1	С	3494	0	3306	83	0
1	D	3494	0	3307	83	0
2	А	70	0	65	2	0
2	В	70	0	65	0	0
2	С	70	0	65	0	0
2	D	70	0	65	1	0
3	А	1	0	0	0	0
3	В	1	0	0	0	0
3	С	1	0	0	0	0
3	D	1	0	0	0	0
4	А	1	0	0	0	0
4	В	1	0	0	0	0
4	С	1	0	0	0	0
4	D	1	0	0	0	0
5	А	18	0	0	1	0
5	В	17	0	0	1	0
5	С	17	0	0	3	0
5	D	18	0	0	2	0
All	All	14334	0	13486	339	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 12.

All (339) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:73:LYS:HA	1:A:73:LYS:HE2	1.50	0.93
1:B:129:THR:HG21	1:B:155:LYS:HE3	1.53	0.91
1:D:73:LYS:HE2	1:D:73:LYS:HA	1.52	0.91
1:C:73:LYS:HE2	1:C:73:LYS:HA	1.53	0.89
1:A:359:ILE:H	1:A:359:ILE:HD13	1.35	0.89
1:A:129:THR:HG21	1:A:155:LYS:HE3	1.53	0.88
1:B:73:LYS:HA	1:B:73:LYS:HE2	1.55	0.87

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:A:359:ILE:N	1:A:359:ILE:HD13	1.90	0.86
1:D:129:THR:HG21	1:D:155:LYS:HE3	1.61	0.82
1:B:359:ILE:H	1:B:359:ILE:HD13	1.44	0.82
1:C:359:ILE:N	1:C:359:ILE:HD13	1.95	0.82
1:C:129:THR:HG21	1:C:155:LYS:HE3	1.60	0.81
1:C:359:ILE:H	1:C:359:ILE:HD13	1.45	0.79
1:D:359:ILE:H	1:D:359:ILE:HD13	1.47	0.78
1:B:359:ILE:HD13	1:B:359:ILE:N	1.97	0.77
1:A:426:TYR:N	1:A:427:PRO:HD3	1.99	0.76
1:A:33:THR:HG23	1:A:195:TRP:O	1.87	0.74
1:B:426:TYR:N	1:B:427:PRO:HD3	2.03	0.74
1:B:74:MET:HE3	1:B:86:PHE:HD1	1.54	0.73
1:D:359:ILE:HD13	1:D:359:ILE:N	2.03	0.73
1:D:275:ARG:NH2	1:D:315:LYS:O	2.23	0.71
1:C:74:MET:HE3	1:C:86:PHE:HD1	1.56	0.70
1:C:358:THR:HG21	5:C:452:HOH:O	1.91	0.70
1:D:421:PHE:CD2	1:D:430:ASP:HB3	2.27	0.70
1:C:33:THR:HG21	5:C:450:HOH:O	1.90	0.70
1:C:217:LYS:HB3	1:C:218:PRO:HD3	1.74	0.69
1:B:24:TYR:O	1:B:110:THR:HG23	1.93	0.69
1:B:275:ARG:NH2	1:B:315:LYS:O	2.26	0.68
1:C:138:GLN:NE2	1:C:178:ARG:HH11	1.92	0.68
1:B:33:THR:HG23	1:B:195:TRP:O	1.93	0.68
1:A:24:TYR:O	1:A:110:THR:HG23	1.94	0.68
1:C:275:ARG:NH2	1:C:315:LYS:O	2.27	0.67
1:D:190:VAL:HG13	1:D:195:TRP:CD1	2.29	0.67
1:B:9:ARG:HG2	1:B:366:GLY:HA3	1.74	0.67
1:C:33:THR:HG23	1:C:195:TRP:O	1.93	0.67
1:A:138:GLN:NE2	1:A:178:ARG:HH11	1.93	0.67
1:C:301:GLU:O	1:C:305:THR:HG23	1.96	0.66
1:A:368:ILE:HG12	1:A:387:PHE:CZ	2.32	0.65
1:C:338:TYR:CZ	1:C:340:ILE:HA	2.31	0.65
1:A:275:ARG:NH2	1:A:315:LYS:O	2.29	0.64
1:B:29:GLN:O	1:B:31:HIS:HD2	1.80	0.64
1:B:338:TYR:CZ	1:B:340:ILE:HA	2.33	0.64
1:D:24:TYR:O	1:D:110:THR:HG23	1.98	0.63
1:D:217:LYS:HB3	1:D:218:PRO:HD3	1.80	0.63
1:B:217:LYS:HB3	1:B:218:PRO:HD3	1.81	0.63
1:C:374:GLN:HE22	1:C:383:ARG:HH12	1.44	0.62
1:D:74:MET:HE3	1:D:86:PHE:HD1	1.63	0.62
1:B:28:GLN:HG3	1:B:29:GLN:HG3	1.82	0.62

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:138:GLN:NE2	1:B:178:ARG:HH11	1.98	0.62
1:D:33:THR:HG23	1:D:195:TRP:O	1.99	0.62
1:B:301:GLU:O	1:B:305:THR:HG23	1.99	0.62
1:D:368:ILE:HG12	1:D:387:PHE:CZ	2.35	0.62
1:A:217:LYS:HB3	1:A:218:PRO:HD3	1.81	0.61
1:B:10:ASP:HA	1:B:139:SER:HA	1.81	0.61
1:A:338:TYR:CZ	1:A:340:ILE:HA	2.36	0.60
1:D:16:ASP:HA	1:D:19:ARG:HD3	1.83	0.60
1:D:55:SER:OG	1:D:88:HIS:HD2	1.83	0.60
1:C:421:PHE:CD2	1:C:430:ASP:HB3	2.37	0.60
1:A:55:SER:OG	1:A:88:HIS:HD2	1.85	0.60
1:B:316:VAL:HG22	1:B:354:PRO:HB3	1.84	0.60
1:D:129:THR:H	1:D:157:GLN:HE21	1.49	0.60
1:A:409:ASP:HB3	1:A:413:VAL:HB	1.83	0.59
1:D:409:ASP:HB3	1:D:413:VAL:HB	1.83	0.59
1:A:74:MET:HE3	1:A:86:PHE:HD1	1.67	0.59
1:D:138:GLN:NE2	1:D:178:ARG:HH11	1.99	0.59
1:B:33:THR:HG21	5:B:449:HOH:O	2.02	0.59
1:C:368:ILE:HG12	1:C:387:PHE:CZ	2.36	0.59
1:A:25:ASN:ND2	1:A:51:GLU:H	2.00	0.59
1:A:129:THR:H	1:A:157:GLN:HE21	1.50	0.59
1:B:368:ILE:HG12	1:B:387:PHE:CZ	2.38	0.58
1:A:421:PHE:CD2	1:A:430:ASP:HB3	2.38	0.58
1:C:129:THR:H	1:C:157:GLN:HE21	1.52	0.57
1:A:74:MET:CE	1:A:76:THR:HG23	2.33	0.57
1:A:28:GLN:HG3	1:A:29:GLN:HG3	1.86	0.57
1:D:146:LEU:O	1:D:150:GLU:HG3	2.03	0.57
1:A:301:GLU:O	1:A:305:THR:HG23	2.05	0.57
1:A:10:ASP:HA	1:A:139:SER:HA	1.87	0.57
1:B:399:HIS:CE1	1:B:421:PHE:HE1	2.23	0.56
1:C:28:GLN:NE2	1:C:184:ARG:HE	2.03	0.56
1:A:316:VAL:HG22	1:A:354:PRO:HB3	1.87	0.56
1:A:406:ARG:HB3	1:A:408:GLN:OE1	2.05	0.56
1:C:316:VAL:HG22	1:C:354:PRO:HB3	1.87	0.56
1:B:129:THR:H	1:B:157:GLN:HE21	1.52	0.56
1:C:74:MET:CE	1:C:76:THR:HG23	2.36	0.56
1:C:24:TYR:O	1:C:110:THR:HG23	2.05	0.56
1:C:396:ASN:HB2	1:C:398:THR:H	1.70	0.56
1:D:28:GLN:HG3	1:D:29:GLN:HG3	1.87	0.55
1:A:146:LEU:O	1:A:150:GLU:HG3	2.06	0.55
1:D:25:ASN:HD22	1:D:50:ASP:H	1.54	0.54

		Interatomic	Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)		
1:A:190:VAL:HG13	1:A:195:TRP:CD1	2.42	0.54		
1:B:409:ASP:HB3	1:B:413:VAL:HB	1.90	0.54		
1:A:28:GLN:NE2	1:A:184:ARG:HE	2.06	0.54		
1:C:174:HIS:O	1:C:175:ASP:C	2.46	0.54		
1:A:285:MET:O	1:A:321:ALA:HA	2.08	0.53		
1:D:396:ASN:HB2	1:D:398:THR:H	1.73	0.53		
1:B:174:HIS:O	1:B:175:ASP:C	2.47	0.53		
1:A:174:HIS:O	1:A:175:ASP:C	2.46	0.53		
1:B:146:LEU:O	1:B:150:GLU:HG3	2.09	0.53		
1:B:171:TYR:CE1	1:B:178:ARG:HG3	2.43	0.53		
1:C:34:GLN:NE2	1:C:242:ARG:HE	2.06	0.53		
1:C:74:MET:HE1	1:C:76:THR:HG23	1.90	0.53		
1:C:421:PHE:CD2	1:C:428:VAL:HG22	2.44	0.53		
1:D:29:GLN:O	1:D:31:HIS:HD2	1.92	0.53		
1:C:33:THR:CG2	1:C:195:TRP:O	2.57	0.52		
1:D:34:GLN:NE2	1:D:242:ARG:HE	2.07	0.52		
1:A:33:THR:CG2	1:A:195:TRP:O	2.57	0.52		
1:B:129:THR:HG23	1:B:157:GLN:HE21	1.72	0.52		
1:B:190:VAL:HG13	1:B:195:TRP:CD1	2.44	0.52		
1:B:25:ASN:ND2	1:B:51:GLU:H	2.08	0.52		
1:D:301:GLU:O	1:D:305:THR:HG23	2.09	0.52		
1:D:364:ASN:ND2	1:D:367:VAL:H	2.08	0.52		
1:A:25:ASN:HD21	1:A:51:GLU:H	1.58	0.52		
1:D:171:TYR:CE1	1:D:178:ARG:HG3	2.45	0.52		
1:B:421:PHE:HB3	1:B:426:TYR:HD2	1.73	0.52		
1:B:406:ARG:HB3	1:B:408:GLN:OE1	2.10	0.52		
1:C:359:ILE:N	1:C:359:ILE:CD1	2.71	0.52		
1:B:421:PHE:HB3	1:B:426:TYR:O	2.09	0.52		
1:C:28:GLN:HG3	1:C:29:GLN:HG3	1.92	0.52		
1:B:28:GLN:NE2	1:B:184:ARG:HE	2.07	0.51		
1:D:398:THR:HG22	1:D:426:TYR:HB2	1.91	0.51		
1:B:73:LYS:HA	1:B:73:LYS:CE	2.34	0.51		
1:D:431:SER:O	1:D:432:THR:HG23	2.10	0.51		
1:A:417:SER:C	1:A:418:VAL:HG23	2.31	0.51		
1:B:55:SER:OG	1:B:88:HIS:HD2	1.92	0.51		
1:C:29:GLN:O	1:C:31:HIS:HD2	1.93	0.51		
1:C:364:ASN:HD21	1:C:367:VAL:H	1.56	0.51		
1:B:365:TYR:CD1	1:B:365:TYR:N	2.78	0.51		
1:C:364:ASN:ND2	1:C:367:VAL:H	2.08	0.51		
1:D:129:THR:HG23	1:D:157:GLN:HE21	1.76	0.51		
1:D:399:HIS:CE1	1:D:421:PHE:HE1	2.28	0.51		

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:D:316:VAL:HG22	1:D:354:PRO:HB3	1.91	0.51	
1:A:351:GLN:OE1	1:A:429:ASP:HA	2.10	0.51	
1:B:34:GLN:NE2	1:B:242:ARG:HE	2.09	0.51	
1:C:424:HIS:HD2	1:C:425:TRP:CD1	2.28	0.51	
1:A:29:GLN:O	1:A:31:HIS:HD2	1.92	0.50	
1:B:295:HIS:O	1:B:296:HIS:HB2	2.10	0.50	
1:C:406:ARG:HB3	1:C:408:GLN:OE1	2.11	0.50	
1:B:281:LEU:HD23	1:B:316:VAL:HA	1.93	0.50	
1:B:327:TYR:OH	1:B:402:PHE:HE2	1.94	0.50	
1:C:409:ASP:HB3	1:C:413:VAL:HB	1.93	0.50	
1:D:338:TYR:CZ	1:D:340:ILE:HA	2.46	0.50	
1:C:362:ALA:HB2	5:C:444:HOH:O	2.11	0.50	
1:B:359:ILE:CD1	1:B:359:ILE:N	2.72	0.50	
1:B:423:ARG:HA	1:B:423:ARG:NE	2.27	0.50	
1:D:338:TYR:O	1:D:339:LYS:HG2	2.11	0.50	
1:D:297:PHE:CE2	1:D:298:MET:HG3	2.47	0.50	
1:C:351:GLN:OE1	1:C:429:ASP:HA	2.12	0.49	
1:C:73:LYS:HA	1:C:73:LYS:CE	2.32	0.49	
1:B:16:ASP:HA	1:B:19:ARG:HD3	1.95	0.49	
1:B:207:ALA:HA	1:B:209:GLU:OE2	2.13	0.49	
1:C:155:LYS:HE2	1:C:155:LYS:N	2.27	0.49	
1:C:297:PHE:CE2	1:C:298:MET:HG3	2.47	0.49	
1:D:174:HIS:O	1:D:175:ASP:C	2.50	0.49	
1:D:406:ARG:HB3	1:D:408:GLN:OE1	2.12	0.49	
1:D:351:GLN:OE1	1:D:429:ASP:HA	2.12	0.49	
1:D:74:MET:CE	1:D:76:THR:HG23	2.43	0.49	
1:A:16:ASP:HA	1:A:19:ARG:HD3	1.94	0.49	
1:A:33:THR:HG21	5:A:449:HOH:O	2.13	0.49	
1:A:359:ILE:CD1	1:A:359:ILE:N	2.67	0.49	
1:C:374:GLN:NE2	1:C:383:ARG:HH12	2.09	0.49	
1:D:190:VAL:HG13	1:D:195:TRP:CG	2.47	0.49	
1:D:72:GLY:HA3	1:D:90:THR:OG1	2.13	0.49	
1:B:422:ASN:OD1	1:B:425:TRP:N	2.43	0.49	
1:C:426:TYR:O	1:C:426:TYR:CG	2.64	0.49	
1:A:129:THR:HG23	1:A:157:GLN:HE21	1.78	0.49	
1:A:396:ASN:HB2	1:A:398:THR:H	1.78	0.48	
1:B:155:LYS:N	1:B:155:LYS:HE2	2.28	0.48	
1:D:364:ASN:HD21	1:D:367:VAL:H	1.59	0.48	
1:D:25:ASN:ND2	1:D:50:ASP:H	2.11	0.48	
1:D:155:LYS:HE2	1:D:155:LYS:N	2.28	0.48	
1:D:14:ASP:O	1:D:15:SER:C	2.50	0.48	

A 4 1	A 4 5 775 0	Interatomic	Clash
Atom-1	Atom-2	${ m distance}~({ m \AA})$	overlap (Å)
1:D:25:ASN:ND2	1:D:51:GLU:H	2.10	0.48
1:A:364:ASN:ND2	1:A:367:VAL:H	2.11	0.48
1:C:25:ASN:ND2	1:C:51:GLU:H	2.12	0.48
1:B:122:THR:HG23	1:B:243:ALA:O	2.14	0.48
1:C:16:ASP:HA	1:C:19:ARG:HD3	1.96	0.48
1:B:25:ASN:HD22	1:B:50:ASP:H	1.60	0.47
1:C:301:GLU:OE1	1:C:304:ARG:NH1	2.47	0.47
1:B:396:ASN:HB2	1:B:398:THR:H	1.79	0.47
1:D:171:TYR:CD1	1:D:178:ARG:HG3	2.48	0.47
1:A:74:MET:HE3	1:A:76:THR:HG23	1.97	0.47
1:B:124:LEU:O	1:B:279:PRO:HG3	2.15	0.47
1:B:24:TYR:N	1:B:110:THR:HG21	2.30	0.47
1:B:285:MET:O	1:B:321:ALA:HA	2.15	0.47
1:C:104:GLU:HA	1:C:112:ARG:O	2.15	0.47
1:A:92:ILE:CG2	1:A:95:LEU:HD21	2.45	0.47
1:B:162:VAL:HG11	1:B:321:ALA:C	2.35	0.47
1:C:423:ARG:NE	1:C:423:ARG:HA	2.30	0.47
1:C:103:TYR:CE1	1:C:114:PHE:HB2	2.50	0.47
1:A:190:VAL:HG13	1:A:195:TRP:CG	2.50	0.47
1:B:104:GLU:HA	1:B:112:ARG:O	2.15	0.47
1:B:316:VAL:O	1:B:354:PRO:HB3	2.16	0.46
1:D:10:ASP:HA	1:D:139:SER:HA	1.96	0.46
1:D:92:ILE:CG2	1:D:95:LEU:HD21	2.45	0.46
1:B:399:HIS:HB3	1:B:419:TRP:CZ3	2.50	0.46
1:C:146:LEU:O	1:C:150:GLU:HG3	2.15	0.46
1:C:9:ARG:HG2	1:C:9:ARG:HH11	1.79	0.46
1:A:364:ASN:HD21	1:A:367:VAL:H	1.63	0.46
1:A:103:TYR:CE1	1:A:114:PHE:HB2	2.51	0.46
1:B:291:ASN:ND2	1:B:293:TYR:H	2.13	0.46
1:C:398:THR:OG1	1:C:399:HIS:HD2	1.99	0.46
1:A:398:THR:OG1	1:A:399:HIS:HD2	1.99	0.46
1:B:351:GLN:OE1	1:B:429:ASP:HA	2.15	0.46
1:C:295:HIS:O	1:C:296:HIS:HB2	2.16	0.46
1:D:132:LEU:HD22	1:D:320:PHE:CD1	2.50	0.46
1:D:162:VAL:HG11	1:D:321:ALA:C	2.36	0.46
1:A:48:THR:OG1	1:A:88:HIS:HE1	1.99	0.46
1:D:423:ARG:NE	1:D:423:ARG:HA	2.30	0.46
1:B:399:HIS:CE1	1:B:421:PHE:CE1	3.04	0.46
1:C:138:GLN:HE21	1:C:178:ARG:HH11	1.59	0.46
1:D:103:TYR:CE2	1:D:114:PHE:HB2	2.51	0.46
1:A:155:LYS:N	1:A:155:LYS:HE2	2.30	0.46

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:25:ASN:HD22	1:A:50:ASP:H	1.64	0.46
1:B:364:ASN:ND2	1:B:367:VAL:H	2.14	0.46
1:A:34:GLN:HE22	1:A:242:ARG:HE	1.64	0.45
1:A:421:PHE:HB3	1:A:426:TYR:O	2.16	0.45
1:B:422:ASN:OD1	1:B:424:HIS:HB3	2.16	0.45
1:B:294:ASN:ND2	1:B:372:MET:O	2.49	0.45
1:C:285:MET:O	1:C:321:ALA:HA	2.15	0.45
1:C:281:LEU:HD23	1:C:316:VAL:HA	1.98	0.45
1:C:374:GLN:NE2	1:C:374:GLN:HA	2.31	0.45
1:D:34:GLN:HE22	1:D:242:ARG:HE	1.64	0.45
1:D:295:HIS:O	1:D:296:HIS:HB2	2.17	0.45
1:A:399:HIS:CE1	1:A:421:PHE:HE1	2.35	0.45
1:A:34:GLN:NE2	1:A:242:ARG:HE	2.15	0.45
1:A:251:SER:HB3	1:A:254:SER:HB2	1.97	0.45
1:B:33:THR:CG2	1:B:195:TRP:O	2.62	0.45
1:A:295:HIS:O	1:A:296:HIS:HB2	2.17	0.45
1:A:429:ASP:OD1	1:A:431:SER:HB2	2.17	0.45
1:B:171:TYR:CD1	1:B:178:ARG:HG3	2.52	0.45
1:D:236:PHE:O	1:D:251:SER:HB2	2.17	0.45
1:A:73:LYS:CE	1:A:73:LYS:HA	2.30	0.44
1:B:103:TYR:CZ	1:B:114:PHE:HB2	2.52	0.44
1:B:364:ASN:HD21	1:B:367:VAL:H	1.64	0.44
1:D:33:THR:HG21	5:D:450:HOH:O	2.17	0.44
1:D:92:ILE:HG22	1:D:95:LEU:HD21	1.98	0.44
1:C:48:THR:OG1	1:C:88:HIS:HE1	1.99	0.44
1:D:421:PHE:CD2	1:D:428:VAL:CG2	3.00	0.44
1:A:132:LEU:HD22	1:A:320:PHE:CD1	2.52	0.44
1:B:425:TRP:O	1:B:426:TYR:HB2	2.15	0.44
1:B:228:GLU:C	1:B:230:SER:O	2.56	0.44
1:B:316:VAL:CG2	1:B:354:PRO:HB3	2.46	0.44
1:B:368:ILE:HG12	1:B:387:PHE:CE1	2.52	0.44
1:D:28:GLN:HE21	1:D:29:GLN:HE21	1.65	0.44
1:C:25:ASN:ND2	1:C:50:ASP:HB2	2.33	0.44
1:D:124:LEU:O	1:D:279:PRO:HG3	2.17	0.44
1:D:74:MET:HE1	1:D:76:THR:HG23	1.99	0.44
1:D:103:TYR:CZ	1:D:114:PHE:HB2	2.53	0.44
1:D:424:HIS:HD2	1:D:425:TRP:CD1	2.35	0.44
1:A:60:TRP:HB3	1:A:67:LYS:HA	2.00	0.44
1:B:103:TYR:CE2	1:B:114:PHE:HB2	2.52	0.44
1:D:162:VAL:CG1	1:D:162:VAL:O	2.66	0.44
1:D:207:ALA:HA	1:D:209:GLU:OE2	2.17	0.44

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:D:228:GLU:C	1:D:230:SER:O	2.56	0.44	
1:D:368:ILE:HG12	1:D:387:PHE:CE1	2.52	0.44	
1:A:338:TYR:O	1:A:339:LYS:HG2	2.18	0.43	
1:B:190:VAL:HG13	1:B:195:TRP:CG	2.53	0.43	
1:B:398:THR:OG1	1:B:399:HIS:HD2	2.01	0.43	
1:D:33:THR:CG2	1:D:195:TRP:O	2.65	0.43	
1:A:251:SER:CB	1:A:254:SER:HB2	2.48	0.43	
1:B:236:PHE:O	1:B:251:SER:HB2	2.17	0.43	
1:B:424:HIS:HD2	1:B:425:TRP:NE1	2.17	0.43	
1:B:58:ARG:O	1:B:103:TYR:HA	2.19	0.43	
1:B:325:HIS:HA	1:B:360:GLY:O	2.19	0.43	
1:C:122:THR:HG23	1:C:243:ALA:O	2.18	0.43	
1:C:34:GLN:HE22	1:C:242:ARG:HE	1.65	0.43	
1:C:368:ILE:HG12	1:C:387:PHE:CE1	2.54	0.43	
1:D:316:VAL:CG2	1:D:354:PRO:HB3	2.47	0.43	
1:C:237:TRP:O	1:C:237:TRP:CD1	2.71	0.43	
1:A:78:ARG:NH2	1:D:84:SER:O	2.52	0.43	
1:B:374:GLN:HA	1:B:375:PRO:HA	1.69	0.43	
1:D:162:VAL:HG13	1:D:162:VAL:O	2.18	0.43	
1:A:365:TYR:N	1:A:365:TYR:CD1	2.86	0.43	
1:A:292:SER:O	1:A:373:ILE:HB	2.19	0.43	
1:C:426:TYR:N	1:C:427:PRO:CD	2.81	0.43	
1:D:28:GLN:NE2	1:D:184:ARG:HE	2.17	0.43	
1:D:365:TYR:CD1	1:D:365:TYR:N	2.86	0.43	
1:B:124:LEU:HD12	1:B:279:PRO:HD3	2.00	0.43	
1:A:79:PHE:O	1:A:212:GLU:OE2	2.36	0.42	
1:B:251:SER:HB3	1:B:254:SER:HB2	2.00	0.42	
1:D:358:THR:HG21	5:D:453:HOH:O	2.18	0.42	
1:A:24:TYR:N	1:A:110:THR:HG21	2.33	0.42	
1:A:330:SER:HB2	1:A:379:TYR:O	2.18	0.42	
1:B:74:MET:CE	1:B:76:THR:HG23	2.48	0.42	
1:B:92:ILE:HG22	1:B:95:LEU:HD21	1.99	0.42	
1:C:92:ILE:CG2	1:C:95:LEU:HD21	2.49	0.42	
1:B:426:TYR:N	1:B:427:PRO:CD	2.76	0.42	
1:C:171:TYR:CE1	1:C:178:ARG:HG3	2.55	0.42	
1:B:92:ILE:CG2	1:B:95:LEU:HD21	2.49	0.42	
1:D:25:ASN:ND2	1:D:50:ASP:HB2	2.35	0.42	
1:A:124:LEU:HD12	1:A:279:PRO:HD3	2.02	0.42	
1:B:132:LEU:HD22	1:B:320:PHE:CD1	2.54	0.42	
1:C:92:ILE:HG22	1:C:95:LEU:HD21	2.02	0.42	
1:A:104:GLU:HA	1:A:112:ARG:O	2.20	0.41	

	i i i i i i i i i i i i i i i i i i i	Interatomic	mic Clash (Å) overlap (Å)	
Atom-1	Atom-2	distance (Å)		
1:A:425:TRP:C	1:A:427:PRO:HD3	2.39	0.41	
1:A:55:SER:HB2	1:A:71:LYS:HZ3	1.84	0.41	
1:D:297:PHE:CD1	1:D:373:ILE:HD11	2.55	0.41	
1:C:155:LYS:HG3	1:C:155:LYS:H	1.58	0.41	
1:C:34:GLN:HE21	1:C:242:ARG:HH21	1.68	0.41	
1:D:285:MET:O	1:D:321:ALA:HA	2.20	0.41	
1:A:211:ASN:OD1	2:A:436(A):NAG:N2	2.54	0.41	
1:A:423:ARG:NE	1:A:423:ARG:HA	2.34	0.41	
1:B:72:GLY:HA3	1:B:90:THR:OG1	2.20	0.41	
1:C:399:HIS:CE1	1:C:421:PHE:HE1	2.38	0.41	
1:C:55:SER:OG	1:C:88:HIS:HD2	2.03	0.41	
1:A:399:HIS:HB3	1:A:419:TRP:CZ3	2.56	0.41	
1:D:293:TYR:HA	1:D:372:MET:HA	2.02	0.41	
1:A:211:ASN:OD1	2:A:436(A):NAG:C2	2.68	0.41	
1:A:251:SER:OG	1:A:254:SER:HB2	2.20	0.41	
1:C:124:LEU:O	1:C:279:PRO:HG3	2.20	0.41	
1:A:406:ARG:HG3	1:A:415:ALA:CB	2.51	0.41	
1:C:236:PHE:O	1:C:251:SER:HB2	2.19	0.41	
1:C:338:TYR:O	1:C:339:LYS:HG2	2.20	0.41	
1:C:25:ASN:HD22	1:C:50:ASP:H	1.67	0.41	
1:D:51:GLU:HB2	1:D:52:PRO:HD2	2.01	0.41	
1:D:374:GLN:HA	1:D:375:PRO:HA	1.79	0.41	
1:C:171:TYR:CD1	1:C:178:ARG:HG3	2.55	0.41	
1:C:365:TYR:N	1:C:365:TYR:CD1	2.87	0.41	
1:A:14:ASP:O	1:A:15:SER:C	2.59	0.41	
1:A:236:PHE:O	1:A:251:SER:HB2	2.21	0.41	
1:A:382:PHE:CD1	1:A:382:PHE:C	2.93	0.41	
1:C:374:GLN:HE21	1:C:374:GLN:HA	1.86	0.41	
1:B:26:ALA:HA	1:B:27:PRO:HD3	1.90	0.40	
1:B:338:TYR:O	1:B:339:LYS:HG2	2.21	0.40	
1:C:162:VAL:O	1:C:162:VAL:HG13	2.21	0.40	
1:C:428:VAL:HG23	1:C:429:ASP:N	2.34	0.40	
1:D:58:ARG:O	1:D:103:TYR:HA	2.21	0.40	
1:C:190:VAL:HG13	1:C:195:TRP:CD1	2.56	0.40	
1:B:129:THR:H	1:B:157:GLN:NE2	2.17	0.40	
1:B:178:ARG:HD3	1:B:178:ARG:HA	2.00	0.40	
1:C:316:VAL:CG2	1:C:354:PRO:HB3	2.51	0.40	
1:C:417:SER:C	1:C:418:VAL:HG23	2.41	0.40	
1:B:186:THR:O	1:B:190:VAL:HG23	2.22	0.40	
1:B:406:ARG:HG3	1:B:415:ALA:CB	2.52	0.40	
1:B:48:THR:OG1	1:B:88:HIS:HE1	2.04	0.40	

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:D:227:TYR:O	1:D:232:SER:HB3	2.21	0.40
1:A:368:ILE:HG12	1:A:387:PHE:CE1	2.56	0.40
1:C:76:THR:HG22	1:C:85:GLY:O	2.22	0.40
1:D:211:ASN:OD1	2:D:436(A):NAG:C2	2.69	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	422/432~(98%)	387~(92%)	32 (8%)	3 (1%)	22	33
1	В	422/432~(98%)	380 (90%)	39 (9%)	3 (1%)	22	33
1	С	422/432~(98%)	386~(92%)	32 (8%)	4 (1%)	17	26
1	D	422/432~(98%)	388~(92%)	32 (8%)	2 (0%)	29	43
All	All	1688/1728~(98%)	1541 (91%)	135 (8%)	12 (1%)	22	33

All (12) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	175	ASP
1	С	175	ASP
1	А	65	GLY
1	В	175	ASP
1	С	65	GLY
1	С	431	SER
1	D	65	GLY
1	D	175	ASP
1	В	431	SER
1	А	427	PRO
1	В	65	GLY

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type
1	С	426	TYR

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	373/381~(98%)	339~(91%)	34~(9%)	9 13
1	В	373/381~(98%)	338~(91%)	35~(9%)	8 13
1	С	373/381~(98%)	334~(90%)	39~(10%)	7 10
1	D	373/381~(98%)	336~(90%)	37~(10%)	8 11
All	All	1492/1524~(98%)	1347 (90%)	145(10%)	8 11

All (145) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	9	ARG
1	А	19	ARG
1	А	20	VAL
1	А	33	THR
1	А	49	MET
1	А	69	ILE
1	А	73	LYS
1	А	74	MET
1	А	99	THR
1	А	105	VAL
1	А	110	THR
1	А	129	THR
1	А	132	LEU
1	А	147	SER
1	A	152	SER
1	А	155	LYS
1	A	162	VAL
1	A	190	VAL
1	А	209	GLU
1	А	230	SER

Mol	Chain	Res	Type
1	А	254	SER
1	А	276	SER
1	А	287	SER
1	А	306	LYS
1	А	316	VAL
1	А	318	VAL
1	А	334	SER
1	А	348	VAL
1	А	358	THR
1	А	359	ILE
1	А	374	GLN
1	А	383	ARG
1	А	403	SER
1	А	417	SER
1	В	9	ARG
1	В	19	ARG
1	В	20	VAL
1	В	33	THR
1	В	49	MET
1	В	52	PRO
1	В	73	LYS
1	В	74	MET
1	В	99	THR
1	В	105	VAL
1	В	110	THR
1	В	129	THR
1	В	132	LEU
1	В	147	SER
1	В	152	SER
1	В	154	LYS
1	В	155	LYS
1	В	$16\overline{2}$	VAL
1	В	176	ASN
1	В	190	VAL
1	В	209	GLU
1	В	230	SER
1	В	254	SER
1	В	276	SER
1	В	306	LYS
1	В	316	VAL
1	В	318	VAL
1	В	334	SER

Mol	Chain	Res	Type
1	В	348	VAL
1	В	358	THR
1	В	359	ILE
1	В	371	ASN
1	В	383	ARG
1	В	403	SER
1	В	417	SER
1	С	17	VAL
1	С	19	ARG
1	С	20	VAL
1	С	22	PRO
1	С	33	THR
1	С	49	MET
1	С	52	PRO
1	С	73	LYS
1	С	74	MET
1	С	99	THR
1	С	105	VAL
1	С	110	THR
1	С	129	THR
1	С	132	LEU
1	С	147	SER
1	С	152	SER
1	С	154	LYS
1	С	155	LYS
1	С	162	VAL
1	С	176	ASN
1	С	190	VAL
1	С	209	GLU
1	С	230	SER
1	С	254	SER
1	С	276	SER
1	С	287	SER
1	С	306	LYS
1	С	316	VAL
1	С	318	VAL
1	С	334	SER
1	С	348	VAL
1	С	358	THR
1	С	359	ILE
1	C	372	MET
1	С	374	GLN

Mol	Chain	Res	Type
1	С	383	ARG
1	С	403	SER
1	С	417	SER
1	С	428	VAL
1	D	9	ARG
1	D	17	VAL
1	D	19	ARG
1	D	20	VAL
1	D	33	THR
1	D	49	MET
1	D	52	PRO
1	D	73	LYS
1	D	74	MET
1	D	99	THR
1	D	105	VAL
1	D	110	THR
1	D	129	THR
1	D	132	LEU
1	D	147	SER
1	D	152	SER
1	D	154	LYS
1	D	155	LYS
1	D	162	VAL
1	D	176	ASN
1	D	190	VAL
1	D	209	GLU
1	D	230	SER
1	D	254	SER
1	D	276	SER
1	D	306	LYS
1	D	316	VAL
1	D	318	VAL
1	D	334	SER
1	D	348	VAL
1	D	358	THR
1	D	359	ILE
1	D	371	ASN
1	D	383	ARG
1	D	403	SER
1	D	417	SER
$ 1^{-}$	D	432	THR

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (51) such

sidechains are listed below:

Mol	Chain	Res	Type
1	А	25	ASN
1	А	28	GLN
1	А	31	HIS
1	А	34	GLN
1	А	88	HIS
1	А	138	GLN
1	А	157	GLN
1	А	291	ASN
1	А	294	ASN
1	А	364	ASN
1	А	371	ASN
1	А	399	HIS
1	А	424	HIS
1	В	25	ASN
1	В	28	GLN
1	В	31	HIS
1	В	34	GLN
1	В	88	HIS
1	В	138	GLN
1	В	157	GLN
1	В	291	ASN
1	В	294	ASN
1	В	364	ASN
1	В	399	HIS
1	В	424	HIS
1	С	25	ASN
1	С	28	GLN
1	С	31	HIS
1	С	34	GLN
1	С	88	HIS
1	С	138	GLN
1	C _	157	GLN
1	С	291	ASN
1	С	294	ASN
1	С	364	ASN
1	C	374	GLN
1	C	399	HIS
1	С	424	HIS
1	D	25	ASN
1	D	28	GLN
1	D	31	HIS
1	D	34	GLN

Mol	Chain	Res	Type
1	D	88	HIS
1	D	138	GLN
1	D	157	GLN
1	D	224	HIS
1	D	291	ASN
1	D	294	ASN
1	D	364	ASN
1	D	399	HIS
1	D	424	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 28 ligands modelled in this entry, 8 are monoatomic - leaving 20 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	d Type Chain Bos		Tink	Bo	Bond lengths			Bond angles		
	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	NAG	А	436(A)	1	14, 14, 15	1.30	2 (14%)	17,19,21	1.10	2 (11%)
2	NAG	D	434(A)	1	14, 14, 15	1.03	1 (7%)	17,19,21	1.77	4 (23%)
2	NAG	А	437(A)	1	14,14,15	1.29	2 (14%)	17,19,21	0.84	0
2	NAG	В	433(A)	1	14,14,15	0.86	0	17,19,21	1.46	4 (23%)

Mal	Tune	Chain	Dog	Tink	Bo	Bond lengths			Bond angles		
	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
2	NAG	С	437(A)	1	14,14,15	1.15	1 (7%)	17,19,21	0.74	0	
2	NAG	D	433(A)	1	14,14,15	1.00	0	17,19,21	1.43	<mark>3 (17%)</mark>	
2	NAG	А	433(A)	1	14,14,15	1.13	1 (7%)	17,19,21	1.52	3 (17%)	
2	NAG	С	436(A)	1	14,14,15	1.32	2 (14%)	17,19,21	1.14	2 (11%)	
2	NAG	С	433(A)	1	14,14,15	0.91	0	17,19,21	1.32	2 (11%)	
2	NAG	D	437(A)	1	14,14,15	1.92	5 (35%)	17,19,21	1.12	<mark>3 (17%)</mark>	
2	NAG	В	436(A)	1	14,14,15	1.35	2 (14%)	17,19,21	1.14	2 (11%)	
2	NAG	С	434(A)	1	14,14,15	1.09	1 (7%)	17,19,21	1.77	3(17%)	
2	NAG	D	436(A)	1	14,14,15	1.20	1 (7%)	17,19,21	1.05	2 (11%)	
2	NAG	В	437(A)	1	14,14,15	1.24	1 (7%)	17,19,21	0.78	0	
2	NAG	С	435(A)	1	14,14,15	0.48	0	17,19,21	0.65	0	
2	NAG	D	435(A)	1	14,14,15	0.68	0	17,19,21	0.92	0	
2	NAG	А	435(A)	1	14,14,15	0.72	0	17,19,21	0.84	0	
2	NAG	В	435(A)	1	14,14,15	0.69	0	17,19,21	0.55	0	
2	NAG	A	434(A)	1	14,14,15	1.01	1 (7%)	17,19,21	1.71	3 (17%)	
2	NAG	В	434(A)	1	14,14,15	0.93	1 (7%)	17,19,21	1.60	2 (11%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	NAG	А	436(A)	1	-	2/6/23/26	0/1/1/1
2	NAG	D	434(A)	1	-	3/6/23/26	0/1/1/1
2	NAG	А	437(A)	1	-	2/6/23/26	0/1/1/1
2	NAG	В	433(A)	1	-	2/6/23/26	0/1/1/1
2	NAG	С	437(A)	1	-	2/6/23/26	0/1/1/1
2	NAG	D	433(A)	1	-	2/6/23/26	0/1/1/1
2	NAG	А	433(A)	1	-	2/6/23/26	0/1/1/1
2	NAG	С	436(A)	1	-	2/6/23/26	0/1/1/1
2	NAG	С	433(A)	1	-	2/6/23/26	0/1/1/1
2	NAG	D	437(A)	1	-	2/6/23/26	0/1/1/1
2	NAG	В	436(A)	1	-	2/6/23/26	0/1/1/1
2	NAG	С	434(A)	1	-	3/6/23/26	0/1/1/1
2	NAG	D	436(A)	1	-	2/6/23/26	0/1/1/1
2	NAG	В	437(A)	1	-	2/6/23/26	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	NAG	C	435(A)	1	-	2/6/23/26	0/1/1/1
2	NAG	D	435(A)	1	-	2/6/23/26	0/1/1/1
2	NAG	А	435(A)	1	-	2/6/23/26	0/1/1/1
2	NAG	В	435(A)	1	-	1/6/23/26	0/1/1/1
2	NAG	А	434(A)	1	-	3/6/23/26	0/1/1/1
2	NAG	В	434(A)	1	-	4/6/23/26	0/1/1/1

All (21) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
2	D	437(A)	NAG	C4-C3	4.02	1.62	1.52
2	В	436(A)	NAG	C1-C2	3.37	1.57	1.52
2	С	436(A)	NAG	C1-C2	3.26	1.57	1.52
2	А	436(A)	NAG	C1-C2	2.98	1.56	1.52
2	D	437(A)	NAG	C4-C5	2.96	1.59	1.53
2	В	437(A)	NAG	C4-C5	2.89	1.59	1.53
2	D	437(A)	NAG	C1-C2	2.80	1.56	1.52
2	D	436(A)	NAG	C1-C2	2.66	1.56	1.52
2	А	434(A)	NAG	C4-C5	2.60	1.58	1.53
2	D	437(A)	NAG	C3-C2	2.53	1.57	1.52
2	D	434(A)	NAG	C4-C5	2.50	1.58	1.53
2	В	434(A)	NAG	C4-C5	2.43	1.58	1.53
2	С	434(A)	NAG	C4-C5	2.38	1.58	1.53
2	А	433(A)	NAG	C1-C2	2.38	1.55	1.52
2	А	437(A)	NAG	C4-C3	2.37	1.58	1.52
2	С	437(A)	NAG	C4-C3	2.31	1.58	1.52
2	A	436(A)	NAG	O5-C5	2.16	1.47	1.43
2	D	437(A)	NAG	C8-C7	2.16	1.55	1.50
2	С	436(A)	NAG	O5-C5	2.07	1.47	1.43
2	A	437(A)	NAG	C4-C5	2.05	1.57	1.53
2	В	436(A)	NAG	O5-C5	2.02	1.47	1.43

All (35) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	А	434(A)	NAG	C4-C3-C2	-5.07	103.58	111.02
2	С	434(A)	NAG	C4-C3-C2	-4.94	103.77	111.02
2	D	434(A)	NAG	C4-C3-C2	-4.78	104.01	111.02
2	В	434(A)	NAG	C4-C3-C2	-4.63	104.24	111.02
2	В	433(A)	NAG	C4-C3-C2	-3.29	106.19	111.02
2	С	433(A)	NAG	C4-C3-C2	-3.24	106.27	111.02

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	D	433(A)	NAG	C4-C3-C2	-3.13	106.43	111.02
2	А	433(A)	NAG	C4-C3-C2	-3.11	106.46	111.02
2	D	434(A)	NAG	O5-C5-C6	-2.92	102.62	107.20
2	А	433(A)	NAG	C2-N2-C7	-2.81	118.90	122.90
2	А	436(A)	NAG	C4-C3-C2	-2.78	106.94	111.02
2	С	434(A)	NAG	O5-C1-C2	-2.77	106.91	111.29
2	С	436(A)	NAG	C4-C3-C2	-2.72	107.03	111.02
2	D	436(A)	NAG	C4-C3-C2	-2.67	107.11	111.02
2	D	433(A)	NAG	C2-N2-C7	-2.65	119.13	122.90
2	В	436(A)	NAG	C4-C3-C2	-2.61	107.19	111.02
2	А	433(A)	NAG	C1-O5-C5	2.57	115.67	112.19
2	В	434(A)	NAG	O5-C1-C2	-2.46	107.41	111.29
2	В	436(A)	NAG	C1-O5-C5	2.37	115.40	112.19
2	А	434(A)	NAG	O5-C5-C6	-2.31	103.58	107.20
2	D	434(A)	NAG	C1-O5-C5	2.31	115.32	112.19
2	D	437(A)	NAG	C4-C3-C2	-2.29	107.66	111.02
2	С	436(A)	NAG	C1-O5-C5	2.29	115.29	112.19
2	В	433(A)	NAG	C2-N2-C7	-2.29	119.65	122.90
2	А	434(A)	NAG	O5-C1-C2	-2.24	107.75	111.29
2	D	437(A)	NAG	O3-C3-C4	2.23	115.50	110.35
2	А	436(A)	NAG	C1-O5-C5	2.19	115.16	112.19
2	D	436(A)	NAG	C1-O5-C5	2.17	115.13	112.19
2	С	434(A)	NAG	O5-C5-C6	-2.16	103.82	107.20
2	В	433(A)	NAG	C1-O5-C5	2.15	115.11	112.19
2	С	433(A)	NAG	C2-N2-C7	-2.12	119.88	122.90
2	D	434(A)	NAG	O5-C1-C2	-2.03	108.08	111.29
2	D	437(A)	NAG	O4-C4-C3	2.03	115.04	110.35
2	В	433(A)	NAG	C3-C4-C5	-2.03	106.63	110.24
2	D	433(A)	NAG	C3-C4-C5	-2.01	106.65	110.24

Continued from previous page...

There are no chirality outliers.

All (44) torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
2	В	434(A)	NAG	O5-C5-C6-O6
2	А	434(A)	NAG	O5-C5-C6-O6
2	С	434(A)	NAG	O5-C5-C6-O6
2	D	434(A)	NAG	O5-C5-C6-O6
2	D	433(A)	NAG	O5-C5-C6-O6
2	С	433(A)	NAG	O5-C5-C6-O6
2	А	433(A)	NAG	O5-C5-C6-O6
2	В	433(A)	NAG	O5-C5-C6-O6

Mol	Chain	Res	Type	Atoms
2	А	437(A)	NAG	O5-C5-C6-O6
2	С	435(A)	NAG	O5-C5-C6-O6
2	С	437(A)	NAG	O5-C5-C6-O6
2	А	437(A)	NAG	C4-C5-C6-O6
2	D	433(A)	NAG	C4-C5-C6-O6
2	А	435(A)	NAG	O5-C5-C6-O6
2	С	437(A)	NAG	C4-C5-C6-O6
2	D	437(A)	NAG	C4-C5-C6-O6
2	С	433(A)	NAG	C4-C5-C6-O6
2	В	437(A)	NAG	C4-C5-C6-O6
2	D	435(A)	NAG	O5-C5-C6-O6
2	D	437(A)	NAG	O5-C5-C6-O6
2	В	437(A)	NAG	O5-C5-C6-O6
2	D	434(A)	NAG	C4-C5-C6-O6
2	С	434(A)	NAG	C4-C5-C6-O6
2	В	435(A)	NAG	O5-C5-C6-O6
2	В	433(A)	NAG	C4-C5-C6-O6
2	А	433(A)	NAG	C4-C5-C6-O6
2	В	434(A)	NAG	C4-C5-C6-O6
2	А	434(A)	NAG	C4-C5-C6-O6
2	С	436(A)	NAG	O5-C5-C6-O6
2	А	436(A)	NAG	O5-C5-C6-O6
2	В	436(A)	NAG	O5-C5-C6-O6
2	D	436(A)	NAG	O5-C5-C6-O6
2	С	435(A)	NAG	C4-C5-C6-O6
2	A	$\overline{435}(A)$	NAG	C4-C5-C6-O6
2	В	$\overline{436}(A)$	NAG	C3-C2-N2-C7
2	A	434(A)	NAG	C3-C2-N2-C7
2	С	$\overline{434(A)}$	NAG	C3-C2-N2-C7
2	С	436(A)	NAG	C3-C2-N2-C7
2	D	$\overline{436}(A)$	NAG	C3-C2-N2-C7
2	А	$\overline{436}(A)$	NAG	C3-C2-N2-C7
2	D	434(A)	NAG	C3-C2-N2-C7
2	D	435(A)	NAG	C4-C5-C6-O6
2	В	434(A)	NAG	C3-C2-N2-C7
2	В	434(A)	NAG	C1-C2-N2-C7

Continued from previous page...

There are no ring outliers.

2 monomers are involved in 3 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	А	436(A)	NAG	2	0
				<i>a</i> .:	1 1

Continued from previous page...

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	D	436(A)	NAG	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

EDS was not executed - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS was not executed - this section is therefore empty.

6.3 Carbohydrates (i)

EDS was not executed - this section is therefore empty.

6.4 Ligands (i)

EDS was not executed - this section is therefore empty.

6.5 Other polymers (i)

EDS was not executed - this section is therefore empty.

