

Full wwPDB NMR Structure Validation Report (i)

Aug 20, 2022 - 09:45 AM EDT

PDB ID	:	2JZN
Title	:	Solution NMR structure of the productive complex between IIAMannose and
		IIBMannose of the mannose transporter of the E. coli phosphotransferase sys-
		tem
Authors	:	Clore, G.M.; Hu, J.; Hu, K.
Deposited on	:	2008-01-10

This is a Full wwPDB NMR Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/NMRValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
RCI	:	v_1n_11_5_13_A (Berjanski et al., 2005)
PANAV	:	Wang et al. (2010)
ShiftChecker	:	2.29
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.29

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $SOLUTION\ NMR$

The overall completeness of chemical shifts assignment was not calculated.

There are no overall percentile quality scores available for this entry.

The table below summarises the geometric issues observed across the polymeric chains and their fit to the experimental data. The red, orange, yellow and green segments indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A cyan segment indicates the fraction of residues that are not part of the well-defined cores, and a grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain
1	А	133	100%
1	В	133	100%
2	С	165	100%

2 Ensemble composition and analysis (i)

This entry contains 1 models. Identification of well-defined residues and clustering analysis are not possible.

3 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 6705 atoms, of which 3390 are hydrogens and 0 are deuteriums.

• Molecule 1 is a protein called Mannose-specific phosphotransferase enzyme IIA component.

Mol	Chain	Residues		Atoms					Trace
1	٨	133	Total	С	Η	Ν	0	S	0
	А	199	2039	650	1023	163	200	3	0
1	D	133	Total	С	Η	Ν	0	S	0
	D	199	2039	650	1023	163	200	3	U

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	10	GLU	HIS	engineered mutation	UNP P69797
В	10	GLU	HIS	engineered mutation	UNP P69797

• Molecule 2 is a protein called Mannose-specific phosphotransferase enzyme IIB component.

Mol	Chain	Residues	Atoms					Trace	
2	С	165	Total	С	Н	Ν	Ο	\mathbf{S}	0
2	U	105	2627	805	1344	230	242	6	0

4 Residue-property plots (i)

These plots are provided for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey.

• Molecule 1: Mannose-specific phosphotransferase enzyme IIA component

Chain A: 100%
12 15 15 15 15 15 15 15 15 15 15 15 15 15
V62 L65 F63 F63 F63 F63 F65 F65 F63 F65 F65 F63 F74 F74 F74 F74 F77 F74 F77 F74 F77 F77
612 6125 7128 7128 7133 7133 7133 7134
\bullet Molecule 1: Mannose-specific phosphotransferase enzyme IIA component
Chain B: 100%
123 144 145 145 145 145 145 145 145 145 145
V62 F65 F65 F65 F65 F66 F66 F66 F66 F66 F66
G122 E123 V126 V126 V128 V132 V134 V134
• Molecule 2: Mannose-specific phosphotransferase enzyme IIB component
Chain C: 100%
N209 N201 N211 N212 N213 N212 N213 N215 N215 N215 N216 N216 N221 N221 N221 N221 N225 N226 N226 N226 N226 N226 N226 N226
H268 V277 V277 V277 V277 K275 K275 K275 K275 K275 K275 K275 K
N329 N330 N331 N330 N333 N3335 N3335 N3355 N3355 N3355 N3355 N3355 N3355 N3355 N3355 N3355 N3355 N3355 N3355 N3355 N3355 N3355 N3355 N3355 N3555

5 Refinement protocol and experimental data overview (i)

The models were refined using the following method: *conjoined rigid body/torsion angle simulated annealing*.

Of the 120 calculated structures, 1 were deposited, based on the following criterion: restrained regularized mean.

The following table shows the software used for structure solution, optimisation and refinement.

Software name	Classification	Version
X-PLOR NIH	structure solution	2.18.1
X-PLOR NIH	refinement	2.18.1

No chemical shift data was provided.

6 Model quality (i)

6.1 Standard geometry (i)

There are no covalent bond-length or bond-angle outliers.

There are no bond-length outliers.

There are no bond-angle outliers.

There are no chirality outliers.

There are no planarity outliers.

6.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble.

Mol	Chain	Non-H	H(model)	H(added)	Clashes
1	А	0	0	0	0
1	В	0	0	0	0
2	С	0	0	0	0
All	All	0	0	0	-

The all-atom clash score is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clash score for this structure is -.

There are no clashes.

6.3 Torsion angles (i)

6.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the backbone conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	0	-	-	-	-
1	В	0	-	-	-	-
2	С	0	-	-	-	-
All	All	0	-	-	-	-

There are no Ramachandran outliers.

6.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the sidechain conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	0	-	-	-
1	В	0	-	-	-
2	С	0	-	-	-
All	All	0	-	-	-

There are no protein residues with a non-rotameric sidechain to report.

6.3.3 RNA (i)

There are no RNA molecules in this entry.

6.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.5 Carbohydrates (i)

There are no monosaccharides in this entry.

6.6 Ligand geometry (i)

There are no ligands in this entry.

6.7 Other polymers (i)

There are no such molecules in this entry.

6.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

7 Chemical shift validation (i)

No chemical shift data were provided

