

Full wwPDB X-ray Structure Validation Report (i)

Jan 2, 2024 – 09:42 pm GMT

PDB ID	:	5JW4
Title	:	Structure of MEDI8852 Fab Fragment in Complex with H5 HA
Authors	:	Neu, U.; Collins, P.J.; Walker, P.A.; Vorlaender, M.K.; Ogrodowicz, R.W.;
		Martin, S.R.; Gamblin, S.J.; Skehel, J.J.
Deposited on	:	2016-05-11
Resolution	:	3.70 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$				
R _{free}	130704	1049 (3.88-3.52)				
Clashscore	141614	1027 (3.86-3.54)				
Ramachandran outliers	138981	1069 (3.88-3.52)				
Sidechain outliers	138945	1065 (3.88-3.52)				
RSRZ outliers	127900	1578(3.90-3.50)				

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	321	96%	•
			% *	
1	С	321	93%	7% •
1	Е	321	93%	6%
			7%	
1	G	321	93%	7%
1	т	201		
		321	94%	6%

Mol	Chain	Length	Quality of chain								
1	K	321	<u>6%</u> 93%		7%						
2	В	169	%		F 0/						
	D	102	94% *		5% •						
2	D	162	94%		6%						
2	F	162	93%	93% 7%							
2	Н	162	94%								
2	J	162	.% • 94%		6%						
2	T,	162	2%								
2	M	007	5470		070						
<u>э</u>	IVI	221	91% •		6% ••						
3	0	227	89% %		8% •						
3	S	227	91%	7% •							
3	U	227	92%	6% •							
3	W	227	% 9 0%	8% •							
4	Ν	206	88%		12%						
4	Р	206	90%		9%						
4	Т	206	3% 87%		12%						
4	V	206	%								
4	v	200	91%		8% •						
4	X	206	92% 2%		8%						
5	Q	231	69%	7%	23%						
6	R	210	58% 11%		30%						
7	Y	2	50%	50%							
7	Z	2	100%								
7	a	2	100%								
7	b	2	100%								
7	с	2	100%								

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit crite-

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
7	NAG	Y	1	Х	-	-	-
7	NAG	Ζ	2	-	-	Х	-
7	NAG	a	1	X	-	-	-
7	NAG	b	1	Х	-	-	-
7	NAG	с	1	Х	-	-	-
8	NAG	D	201	Х	-	-	-
8	NAG	L	201	Х	-	-	-

ria:

2 Entry composition (i)

There are 8 unique types of molecules in this entry. The entry contains 42466 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Λ	201	Total	С	Ν	0	\mathbf{S}	0	1	0
1	Л	521	2551	1613	439	484	15	0	I	0
1	C	391	Total	С	Ν	0	S	0	1	0
1	U	521	2551	1613	439	484	15	0	I	0
1	F	321	Total	С	Ν	0	S	0	1	0
1	Ľ		2551	1613	439	484	15		I	0
1	С	201	Total	С	Ν	0	S	0	1	0
1	G	521	2551	1613	439	484	15	0		0
1	т	391	Total	С	Ν	0	S	0	1	0
	321	2551	1613	439	484	15	0	I	0	
1	1 K	K 321	Total	С	Ν	0	S	0	1	0
	Л		2551	1613	439	484	15	0		

• Molecule 1 is a protein called Hemagglutinin.

There are 6 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	182	LYS	ASN	engineered mutation	UNP Q6DQ34
С	182	LYS	ASN	engineered mutation	UNP Q6DQ34
Е	182	LYS	ASN	engineered mutation	UNP Q6DQ34
G	182	LYS	ASN	engineered mutation	UNP Q6DQ34
Ι	182	LYS	ASN	engineered mutation	UNP Q6DQ34
K	182	LYS	ASN	engineered mutation	UNP Q6DQ34

• Molecule 2 is a protein called Hemagglutinin.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
2	В	169	Total	С	Ν	0	S	0	0	0
2 D	102	1312	819	226	259	8	0	0	0	
0	Л	162	Total	С	Ν	0	S	0	0	0
	D		1312	819	226	259	8			
0	9 F	169	Total	С	Ν	0	S	0	0	0
2 F	102	1312	819	226	259	8	0	0	0	

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
9	Ц	169	Total	С	Ν	Ο	S	0	0	0
2 П	102	1312	819	226	259	8	0	0	0	
0	т	169	Total	С	Ν	0	S	0	0	0
2 J	102	1312	819	226	259	8	0	0	U	
9	0 I	169	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	102	1312	819	226	259	8	0	U	0	

• Molecule 3 is a protein called MEDI8852 heavy chain.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
2	3 M	003	Total	С	Ν	0	S	0	1	0
	220	1697	1071	285	335	6	0	I	0	
2	0	003	Total	С	Ν	0	S	0	1	0
3 0		223	1697	1071	285	335	6	0		0
2	C	223	Total	С	Ν	0	S	0	1	0
5	C C		1697	1071	285	335	6	0	L	0
9	TT	002	Total	С	Ν	0	S	0	1	0
	U	223	1697	1071	285	335	6	0	L	0
3 V	W	202	Total	С	Ν	0	S	0	1	0
	vv	223	1697	1071	285	335	6			

• Molecule 4 is a protein called MEDI8852 light chain.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
4	N	206	Total	С	Ν	0	S	0	0	0
4 11	200	1577	980	270	322	5	0	0	0	
4	D (206	Total	С	Ν	0	S	0	0	0
4	1	200	1577	980	270	322	5	0	0	0
4	т	206	Total	С	Ν	0	S	0	0	0
4	1		1577	980	270	322	5	0	0	0
4	V	206	Total	С	Ν	0	S	0	0	0
4 V	200	1577	980	270	322	5	0	0	0	
4	v	206	Total	С	Ν	0	S	0	0	0
	Λ		1577	980	270	322	5			U

• Molecule 5 is a protein called MEDI8852 heavy chain.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
5	Q	177	Total 1369	C 867	N 230	O 267	${S \atop 5}$	0	0	0

• Molecule 6 is a protein called MEDI8852 light chain.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
6	R	148	Total 1129	C 701	N 193	O 230	${f S}{5}$	0	0	0

• Molecule 7 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
7	Y	2	Total C N O 28 16 2 10	0	0	0
7	Z	2	Total C N O 28 16 2 10	0	0	0
7	a	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	0
7	b	2	Total C N O 28 16 2 10	0	0	0
7	с	2	Total C N O 28 16 2 10	0	0	0

• Molecule 8 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

00 00 4	5J	W	4
---------	----	---	---

8 A 1 Total C N O 0 0 8 A 1 Total C N O 0 0 8 A 1 Total C N O 0 0 8 A 1 Total C N O 0 0 8 A 1 Total C N O 0 0 8 C 1 Total C N O 0 0 8 C 1 Total C N O 0 0 8 C 1 Total C N O 0 0 8 D 1 Total C N O 0 0 8 E 1 Total C N O 0 0 8 G 1 Total C N O 0 0 8 G 1 Total C	Mol	Chain	Residues	A	ton	ns		ZeroOcc	AltConf	
3 A 1 14 8 1 5 0 0 8 A 1 14 8 1 5 0 0 8 A 1 14 8 1 5 0 0 8 C 1 14 8 1 5 0 0 8 C 1 14 8 1 5 0 0 8 C 1 14 8 1 5 0 0 8 C 1 14 8 1 5 0 0 8 D 1 14 8 1 5 0 0 8 E 1 14 8 1 5 0 0 8 G 1 14 8 1 5 0 0 8 G 1 1 1 1	0	Δ	1	Total	С	Ν	0	0	0	
8 A 1 Total C N O 0 0 8 A 1 Total C N O 0 0 8 C 1 Total C N O 0 0 8 C 1 Total C N O 0 0 8 C 1 Total C N O 0 0 8 C 1 Total C N O 0 0 8 C 1 Total C N O 0 0 8 D 1 Total C N O 0 0 8 D 1 Total C N O 0 0 8 E 1 Total C N O 0 0 8 G 1 Total C N O 0 0 8 I 1 Total C	0	A	1	14	8	1	5	0	0	
3 A 1 14 8 1 5 0 0 8 A 1 14 8 1 5 0 0 8 C 1 14 8 1 5 0 0 8 C 1 14 8 1 5 0 0 8 C 1 14 8 1 5 0 0 8 C 1 14 8 1 5 0 0 8 D 1 14 8 1 5 0 0 8 E 1 14 8 1 5 0 0 8 G 1 14 8 1 5 0 0 8 G 1 14 8 1 5 0 0 8 I 1 1 1 1	0	Δ	1	Total	С	Ν	0	0	0	
8 A 1 Total C N O 0 0 8 C 1 Total C N O 0 0 8 C 1 Total C N O 0 0 8 C 1 Total C N O 0 0 8 C 1 Total C N O 0 0 8 C 1 Total C N O 0 0 8 D 1 Total C N O 0 0 8 E 1 Total C N O 0 0 8 E 1 Total C N O 0 0 8 G 1 Total C N O 0 0 8 G 1 Total C N O 0 0 8 I 1 Total C	0	A	1	14	8	1	5	0	0	
S A I 14 8 1 5 0 0 8 C 1 Total C N O 0 8 D 1 Total C N O 0 8 E 1 Total C N O 0 8 E 1 Total C N O 0 8 E 1 Total C N O 0 8 G 1 Total C N O 0 8 G 1 Total C N O 0 8 I 1 Total C N </td <td>8</td> <td>Δ</td> <td>1</td> <td>Total</td> <td>С</td> <td>Ν</td> <td>0</td> <td>0</td> <td>0</td>	8	Δ	1	Total	С	Ν	0	0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	Л	1	14	8	1	5	0	0	
S C I 14 8 1 5 0 0 8 C 1 Total C N O 0 0 8 C 1 Total C N O 0 0 8 C 1 Total C N O 0 0 8 D 1 Total C N O 0 0 8 E 1 Total C N O 0 0 8 E 1 Total C N O 0 0 8 E 1 Total C N O 0 0 8 G 1 Total C N O 0 0 8 G 1 Total C N O 0 0 8 I 1 Total C N O 0 0 8 I 1 Total C	8	C	1	Total	С	Ν	0	0	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	U	I	14	8	1	5	0	0	
0 0 1 14 8 1 5 0 0 8 C 1 Total C N 0 0 0 8 D 1 Total C N 0 0 0 8 D 1 Total C N 0 0 0 8 E 1 Total C N 0 0 0 8 E 1 Total C N 0 0 0 8 E 1 Total C N 0 0 0 8 G 1 Total C N 0 0 0 8 G 1 Total C N 0 0 0 8 G 1 Total C N 0 0 0 8 I 1 Total C N 0 0 0 8 I 1 Total C	8	C	1	Total	С	Ν	Ο	0	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	0	Ĩ	14	8	1	5	0	U	
0 1 14 8 1 5 0 0 8 D 1 Total C N 0 0 0 8 E 1 Total C N 0 0 0 0 8 E 1 Total C N 0 0 0 8 E 1 Total C N 0 0 0 8 E 1 Total C N 0 0 0 8 E 1 Total C N 0 0 0 8 G 1 Total C N 0 0 0 8 G 1 Total C N 0 0 0 8 I 1 Total C N 0 0 0 8 I 1 Total C N 0 0 0 8 K 1 Total C	8	С	1	Total	С	Ν	Ο	0	0	
8 D 1 Total C N O 0 0 8 E 1 Total C N O 0 0 8 E 1 Total C N O 0 0 8 E 1 Total C N O 0 0 8 E 1 Total C N O 0 0 8 E 1 Total C N O 0 0 8 G 1 Total C N O 0 0 8 G 1 Total C N O 0 0 8 G 1 Total C N O 0 0 8 I 1 Total C N O 0 0 8 I 1 Total C N O 0 0 8 K 1 Total C		0	1	14	8	1	5	0	0	
0 1 14 8 1 5 0 0 8 E 1 Total C N 0 0 8 E 1 Total C N 0 0 0 8 E 1 Total C N 0 0 0 8 E 1 Total C N 0 0 0 8 G 1 Total C N 0 0 0 8 G 1 Total C N 0 0 0 8 G 1 Total C N 0 0 0 8 G 1 Total C N 0 0 0 8 I 1 Total C N 0 0 0 8 I 1 Total C N 0 0 0 8 K 1 Total C N 0	8	а	1	Total	С	Ν	Ο	0	0	
8 E 1 Total C N O 0 0 8 E 1 Total C N O 0 0 8 E 1 Total C N O 0 0 8 G 1 Total C N O 0 0 8 G 1 Total C N O 0 0 8 G 1 Total C N O 0 0 8 G 1 Total C N O 0 0 8 G 1 Total C N O 0 0 8 I 1 Total C N O 0 0 8 I 1 Total C N O 0 0 8 I 1 Total C N O 0 0 8 K 1 Total C			1	14	8	1	5	0	0	
3 1 14 8 1 5 0 0 8 E 1 14 8 1 5 0 0 8 G 1 14 8 1 5 0 0 8 G 1 14 8 1 5 0 0 8 G 1 14 8 1 5 0 0 8 G 1 14 8 1 5 0 0 8 G 1 1 14 8 1 0 0 8 I 1 1 14 8 1 0 0 8 I 1 1 14 8 1 0 0 0 8 I 1 1 14 8 1 0 0 0 8 K 1 1 14	8	E	1	Total	С	Ν	Ο	0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	14	8	1	5	Ŭ		
I I	8	Е	1	Total	С	Ν	Ο	0	0	
8 G 1 Total C N O 0 0 8 G 1 Total C N O 0 0 8 G 1 Total C N O 0 0 8 G 1 Total C N O 0 0 8 G 1 Total C N O 0 0 8 G 1 1 Total C N O 0 0 8 I 1 Total C N O 0 0 8 I 1 Total C N O 0 0 8 I 1 Total C N O 0 0 8 K 1 Total C N O 0 0 8 K 1 Total C N O 0 0 8 K 1 Total			-	14	8	1	5			
8 G 1 14 8 1 5 0 0 8 G 1 Total C N O 0 0 8 G 1 Total C N O 0 0 8 G 1 Total C N O 0 0 8 I 1 Total C N O 0 0 8 I 1 Total C N O 0 0 8 I 1 Total C N O 0 0 8 I 1 Total C N O 0 0 8 I 1 Total C N O 0 0 8 K 1 Total C N O 0 0 8 K 1 Total C N O 0 0 8 K 1 Total C	8	G	1	Total	С	Ν	0	0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				14	8	1	5	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	G	1	Total	C	Ν	Õ	0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				14	8	1	5			
8 I 1 14 8 1 5 0 0 8 I 1 14 8 1 5 0 0 8 I 1 14 8 1 5 0 0 8 I 1 14 8 1 5 0 0 8 I 1 14 8 1 5 0 0 8 I 1 14 8 1 5 0 0 8 K 1 14 8 1 5 0 0 8 K 1 Total C N 0 0 0 8 K 1 Total C N 0 0 0 8 K 1 Total C N 0 0 0 8 K 1 Total C N 0 0 0 8 L 1 Total C N	8	G	1	Total	C	N 1	U F	0	0	
8 I 1 1 otal C N 0 0 0 8 I 1 14 8 1 5 0 0 0 8 I 1 1 Total C N O 0 0 8 I 1 1 Total C N O 0 0 8 I 1 1 Total C N O 0 0 8 K 1 14 8 1 5 0 0 0 8 K 1 Total C N O 0 0 0 8 K 1 Total C N O 0 0 0 8 K 1 Total C N O 0 0 0 8 K 1 Total C N O 0 0 0 8 L 1 Total C N				14 Tutul	8	1 	0			
8 I 1 Total C N 0 0 8 K 1 Total C N 0 0 8 L 1 Total C N	8	Ι	1		° C	1N	5	0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Tatal	$\frac{\circ}{C}$	1 	$\frac{0}{0}$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	Ι	1	10tai 14	C o	1N 1	5	0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Total	$\frac{0}{C}$	I N	$\frac{0}{0}$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	Ι	1	100ai	8	1	5	0	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Total	$\frac{0}{C}$	N	$\frac{0}{0}$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	K	1	14	8	1	5	0	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Total	$\frac{\mathrm{C}}{\mathrm{C}}$	N	$\overline{0}$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	K	1	14	8	1	5	0	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Total	Č	N	0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	K	1	14	8	1	5	0	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		т,		Total	C	Ν	0		6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	К		14	8	1	5	0	0	
$\begin{bmatrix} 8 \\ L \end{bmatrix} \begin{bmatrix} 1 \\ 14 \\ 8 \\ 15 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$		т	1	Total	С	Ν	0		0	
	ð			14	8	1	5	0	U	

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Hemagglutinin

• Molecule 2: Hemagglutinin

- Molecule 4: MEDI8852 light chain Chain N: 88% 12% S31 Y32 T33 H34 • Molecule 4: MEDI8852 light chain Chain P: 90% 9% • Molecule 4: MEDI8852 light chain Chain T: 87% 12% S31 Y32 T33 H34 • Molecule 4: MEDI8852 light chain Chain V: 91% 8% • • Molecule 4: MEDI8852 light chain Chain X: 92% 8% • Molecule 5: MEDI8852 heavy chain Chain Q: 69% 7% 23% LEU ALA PRO SER SER LYS SER LYS SER THR SER THR SER THR ALA ALA ALA CUY GLY GLY GLY GLY GLY GLY CU TRP ASN SER GLY GLY ALA LEU LEU THR SER SER VAL VAL ASP LYS LYS VAL GLU PRO LYS VAL PRO SER SER SER LLEU LLEU LLEU CLN THR THR THR THR THR THR THR THR ASN ASN
- Molecule 6: MEDI8852 light chain

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain Y:	50%	50%	i de la companya de l
NAG2 NAG2			
• Molecule opyranose	7: 2-acetamido-2-deoxy-beta	a-D-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
Chain Z:		100%	
NAG1 NAG2			
• Molecule opyranose	7: 2-acetamido-2-deoxy-beta	a-D-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
Chain a:		100%	
NAG1 NAG2			
• Molecule opyranose	7: 2-acetamido-2-deoxy-beta	a-D-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
Chain b:		100%	
NAG1 NAG2			

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain c:

100%

NAG1 NAG2

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 1 2 1	Depositor
Cell constants	151.26Å 386.36 Å 165.86 Å	Deperitor
a, b, c, α , β , γ	90.00° 90.44° 90.00°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	29.80 - 3.70	Depositor
Resolution (A)	29.80 - 3.70	EDS
% Data completeness	97.6 (29.80-3.70)	Depositor
(in resolution range)	97.6 (29.80-3.70)	EDS
R _{merge}	0.12	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.20 (at 3.75 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.9_1692	Depositor
D D.	0.274 , 0.285	Depositor
Π, Π_{free}	0.274 , 0.285	DCC
R_{free} test set	4769 reflections $(4.85%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	136.3	Xtriage
Anisotropy	0.252	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.30 , 83.3	EDS
L-test for twinning ²	$< L >=0.40, < L^2>=0.23$	Xtriage
Estimated twinning fraction	0.065 for h,-k,-l	Xtriage
F_o, F_c correlation	0.90	EDS
Total number of atoms	42466	wwPDB-VP
Average B, all atoms $(Å^2)$	152.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.89% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bond angles		
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.41	0/2616	0.58	0/3553	
1	С	0.58	1/2616~(0.0%)	0.62	3/3553~(0.1%)	
1	Е	0.43	0/2616	0.58	0/3553	
1	G	0.40	0/2616	0.58	0/3553	
1	Ι	0.40	0/2616	0.58	0/3553	
1	К	0.50	1/2616~(0.0%)	0.62	3/3553~(0.1%)	
2	В	0.48	0/1339	0.60	0/1802	
2	D	0.50	0/1339	0.61	0/1802	
2	F	0.51	0/1339	0.61	0/1802	
2	Н	0.49	0/1339	0.60	0/1802	
2	J	0.49	0/1339	0.62	1/1802~(0.1%)	
2	L	0.48	0/1339	0.61	0/1802	
3	М	0.75	4/1738~(0.2%)	0.78	4/2374~(0.2%)	
3	0	0.59	3/1738~(0.2%)	0.75	4/2374~(0.2%)	
3	S	0.61	3/1738~(0.2%)	0.73	1/2374~(0.0%)	
3	U	0.62	5/1738~(0.3%)	0.73	3/2374~(0.1%)	
3	W	0.79	1/1738~(0.1%)	1.03	4/2374~(0.2%)	
4	Ν	0.56	0/1610	0.72	0/2182	
4	Р	0.49	0/1610	0.70	0/2182	
4	Т	0.70	1/1610~(0.1%)	0.77	3/2182~(0.1%)	
4	V	0.55	0/1610	0.73	1/2182~(0.0%)	
4	Х	0.53	0/1610	0.70	0/2182	
5	Q	0.57	0/1401	0.79	$1/\overline{1908}~(0.1\%)$	
6	R	0.99	1/1147~(0.1%)	0.95	4/1547~(0.3%)	
All	All	0.56	$20/\overline{43018}~(0.0\%)$	0.69	$32/\overline{58365}~(0.1\%)$	

All (20) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
6	R	103	LYS	C-N	26.41	1.94	1.34
3	W	195	SER	C-N	25.07	1.91	1.34

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	С	46	GLY	C-N	19.65	1.79	1.34
4	Т	24	ARG	C-N	19.10	1.77	1.34
3	М	115	PHE	C-N	17.29	1.73	1.34
1	Κ	46	GLY	C-N	14.37	1.67	1.34
3	М	195	SER	CA-C	-7.26	1.34	1.52
3	U	196[A]	VAL	N-CA	-7.20	1.31	1.46
3	U	196[B]	VAL	N-CA	-7.20	1.31	1.46
3	S	196[A]	VAL	N-CA	-6.74	1.32	1.46
3	S	196[B]	VAL	N-CA	-6.74	1.32	1.46
3	U	195	SER	CA-C	-6.74	1.35	1.52
3	М	196[A]	VAL	N-CA	-6.62	1.33	1.46
3	М	196[B]	VAL	N-CA	-6.62	1.33	1.46
3	S	195	SER	CA-C	-6.14	1.36	1.52
3	0	195	SER	CA-C	-6.13	1.36	1.52
3	0	196[A]	VAL	N-CA	-6.00	1.34	1.46
3	0	196[B]	VAL	N-CA	-6.00	1.34	1.46
3	U	196[A]	VAL	CA-CB	-5.15	1.44	1.54
3	U	196[B]	VAL	CA-CB	-5.15	1.44	1.54

All (32) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	W	195	SER	O-C-N	-22.98	85.93	122.70
3	W	195	SER	CA-C-N	-22.98	66.65	117.20
3	W	195	SER	C-N-CA	-19.06	74.06	121.70
6	R	103	LYS	O-C-N	-14.20	99.97	122.70
6	R	103	LYS	C-N-CA	11.06	149.34	121.70
1	Κ	46	GLY	CA-C-N	-8.88	97.66	117.20
6	R	103	LYS	CA-C-N	8.80	136.56	117.20
4	Т	24	ARG	CA-C-N	-8.61	98.26	117.20
1	С	46	GLY	C-N-CA	-7.84	102.11	121.70
4	Т	24	ARG	O-C-N	7.55	134.79	122.70
3	М	195	SER	C-N-CA	-7.43	103.11	121.70
4	Т	24	ARG	C-N-CA	-7.43	103.12	121.70
1	Κ	46	GLY	C-N-CA	-7.40	103.20	121.70
1	С	46	GLY	CA-C-N	-7.22	101.31	117.20
5	Q	101	ARG	NE-CZ-NH1	7.19	123.90	120.30
2	J	37	ASP	CB-CG-OD1	7.09	124.68	118.30
3	0	195	SER	N-CA-C	-6.96	92.21	111.00
3	М	195	SER	CB-CA-C	-6.34	98.06	110.10
1	К	46	GLY	O-C-N	5.90	132.15	122.70
3	U	195	SER	N-CA-C	-5.74	95.50	111.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	U	195	SER	C-N-CA	-5.62	107.66	121.70
4	V	32	TYR	CB-CG-CD1	5.52	124.31	121.00
3	М	115	PHE	CA-C-N	-5.42	105.27	117.20
3	U	195	SER	CA-C-O	5.41	131.46	120.10
3	0	195	SER	CA-C-O	5.26	131.14	120.10
6	R	92	ARG	NE-CZ-NH2	-5.21	117.70	120.30
3	М	115	PHE	O-C-N	5.20	131.02	122.70
3	W	45	ARG	NE-CZ-NH2	-5.15	117.72	120.30
1	С	46	GLY	O-C-N	5.13	130.91	122.70
3	0	196[A]	VAL	CG1-CB-CG2	5.13	119.11	110.90
3	0	196[B]	VAL	CG1-CB-CG2	5.13	119.11	110.90
3	S	195	SER	C-N-CA	-5.05	109.08	121.70

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2551	0	2501	10	0
1	С	2551	0	2500	22	2
1	Е	2551	0	2501	27	0
1	G	2551	0	2501	19	0
1	Ι	2551	0	2500	15	0
1	K	2551	0	2500	19	0
2	В	1312	0	1218	7	0
2	D	1312	0	1218	10	0
2	F	1312	0	1218	14	0
2	Н	1312	0	1218	10	0
2	J	1312	0	1218	9	0
2	L	1312	0	1218	8	0
3	М	1697	0	1648	31	0
3	0	1697	0	1649	20	2
3	S	1697	0	1649	14	0
3	U	1697	0	1649	15	0
3	W	1697	0	1647	38	0

5JW4	
------	--

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
4	Ν	1577	0	1531	28	0
4	Р	1577	0	1531	19	0
4	Т	1577	0	1530	27	0
4	V	1577	0	1531	23	0
4	Х	1577	0	1531	16	0
5	Q	1369	0	1324	18	0
6	R	1129	0	1089	35	0
7	Y	28	0	25	0	0
7	Ζ	28	0	24	12	0
7	a	28	0	25	0	0
7	b	28	0	25	0	0
7	с	28	0	25	0	0
8	А	42	0	39	1	0
8	С	42	0	39	1	0
8	D	14	0	13	0	0
8	Ε	28	0	26	0	0
8	G	42	0	39	1	0
8	Ι	42	0	39	1	0
8	Κ	56	0	50	6	0
8	L	14	0	13	0	0
All	All	42466	0	41002	387	2

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

All (387) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
8:K:401:NAG:O3	8:K:402:NAG:C1	1.64	1.43
3:W:195:SER:C	3:W:196[A]:VAL:C	1.76	1.42
3:M:115:PHE:C	3:M:116:ASP:N	1.73	1.41
7:Z:1:NAG:O3	7:Z:2:NAG:C1	1.65	1.41
3:W:195:SER:N	3:W:196[B]:VAL:N	1.64	1.40
1:C:46:GLY:C	1:C:47:VAL:N	1.79	1.34
4:T:24:ARG:C	4:T:25:THR:N	1.78	1.34
3:W:195:SER:C	3:W:196[A]:VAL:O	1.68	1.24
1:E:236:ASN:HD21	7:Z:2:NAG:C8	1.51	1.23
6:R:103:LYS:C	6:R:104:ARG:N	1.94	1.18
3:W:195:SER:CA	3:W:196[B]:VAL:N	2.01	1.17
3:W:195:SER:O	3:W:196[A]:VAL:CA	1.95	1.15
3:W:194:SER:HB3	3:W:196[B]:VAL:HG13	1.16	1.13

5JW4	
------	--

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
3:W:194:SER:CB	3:W:196[B]:VAL:HG13	1.81	1.08
3:W:194:SER:HB3	3:W:196[B]:VAL:CG1	1.88	1.03
3:W:194:SER:C	3:W:196[B]:VAL:N	2.13	1.02
1:E:236:ASN:HD21	7:Z:2:NAG:C7	1.75	1.00
2:J:38:LYS:HD2	4:V:32:TYR:HE2	1.25	0.99
3:W:195:SER:C	3:W:196[A]:VAL:CA	2.04	0.97
3:W:195:SER:O	3:W:196[A]:VAL:C	2.03	0.96
4:T:78:LEU:HD21	4:T:102:ILE:HG13	1.46	0.96
1:E:236:ASN:ND2	7:Z:2:NAG:C7	2.29	0.96
3:U:112:VAL:HG23	4:V:32:TYR:CD1	2.01	0.95
3:M:196[A]:VAL:C	3:M:197:VAL:N	2.20	0.95
3:S:196[B]:VAL:C	3:S:197:VAL:N	2.21	0.94
3:S:196[A]:VAL:C	3:S:197:VAL:N	2.22	0.92
3:M:196[B]:VAL:C	3:M:197:VAL:N	2.22	0.92
2:J:38:LYS:HD2	4:V:32:TYR:CE2	2.05	0.90
4:N:25:THR:OG1	4:N:90:GLN:NE2	2.05	0.90
1:E:236:ASN:ND2	7:Z:2:NAG:C8	2.37	0.87
3:U:196[B]:VAL:C	3:U:197:VAL:N	2.28	0.86
1:E:236:ASN:HD21	7:Z:2:NAG:H81	1.40	0.84
1:C:28:HIS:CD2	1:C:315:THR:OG1	2.30	0.84
1:A:28:HIS:CD2	1:A:315:THR:OG1	2.31	0.84
1:K:28:HIS:CD2	1:K:315:THR:OG1	2.31	0.83
3:U:196[A]:VAL:C	3:U:197:VAL:N	2.32	0.83
1:I:28:HIS:CD2	1:I:315:THR:OG1	2.31	0.83
2:F:19:ASP:OD2	6:R:92:ARG:NH2	2.12	0.83
3:W:139:LEU:CD1	3:W:196[B]:VAL:HG12	2.10	0.82
5:Q:101:ARG:NH1	5:Q:104:HIS:ND1	2.28	0.81
1:E:28:HIS:CD2	1:E:315:THR:OG1	2.33	0.81
1:G:28:HIS:CD2	1:G:315:THR:OG1	2.33	0.81
2:D:38:LYS:HD2	4:P:32:TYR:CE1	2.16	0.80
3:W:181:PHE:HE1	3:W:196[A]:VAL:CG1	1.95	0.79
3:W:195:SER:O	3:W:196[A]:VAL:HA	1.69	0.77
4:T:24:ARG:C	4:T:25:THR:CA	2.53	0.77
4:X:25:THR:HG1	4:X:90:GLN:CD	1.89	0.76
4:T:24:ARG:CA	4:T:25:THR:N	2.48	0.76
3:M:195:SER:O	3:M:196[B]:VAL:CG1	2.35	0.75
6:R:29:LEU:HD13	6:R:32:TYR:CD2	2.22	0.74
4:T:25:THR:O	4:T:69:THR:HB	1.86	0.74
1:C:46:GLY:C	1:C:47:VAL:CA	2.55	0.74
6:R:101:GLU:OE1	6:R:169:TYR:OH	2.07	0.72
4:V:28:SER:HB2	4:V:68:GLY:O	1.90	0.72

	• pugoin	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
5:Q:107:VAL:HG12	5:Q:108:PHE:CD2	2.25	0.71
3:M:153:LEU:O	3:M:196[A]:VAL:CG2	2.38	0.71
3:M:154:GLY:HA3	3:M:196[B]:VAL:HG12	1.73	0.71
1:C:206:ASN:O	1:E:212:ARG:NH2	2.24	0.71
6:R:32:TYR:O	6:R:34:HIS:CD2	2.44	0.70
6:R:29:LEU:HD13	6:R:32:TYR:HD2	1.56	0.70
3:O:196[A]:VAL:C	3:O:197:VAL:N	2.45	0.70
3:W:139:LEU:HD13	3:W:196[B]:VAL:HG12	1.71	0.70
6:R:32:TYR:O	6:R:34:HIS:NE2	2.25	0.69
5:Q:101:ARG:HH12	5:Q:104:HIS:CE1	2.10	0.69
1:E:236:ASN:ND2	7:Z:2:NAG:O7	2.24	0.69
1:C:46:GLY:CA	1:C:47:VAL:N	2.56	0.68
3:W:181:PHE:HE1	3:W:196[B]:VAL:CG2	2.06	0.68
3:M:153:LEU:O	3:M:196[A]:VAL:HG23	1.95	0.67
3:S:112:VAL:HG21	4:T:31:SER:O	1.95	0.67
2:L:38:LYS:HD2	4:X:32:TYR:CE1	2.30	0.66
3:O:196[B]:VAL:C	3:O:197:VAL:N	2.49	0.66
3:W:181:PHE:CE1	3:W:196[A]:VAL:CG1	2.77	0.66
1:C:28:HIS:HD2	1:C:315:THR:OG1	1.78	0.66
6:R:102:ILE:C	6:R:103:LYS:N	2.49	0.66
2:B:38:LYS:HD2	4:N:32:TYR:CE1	2.31	0.65
3:U:112:VAL:HG23	4:V:32:TYR:HD1	1.55	0.65
1:K:28:HIS:HD2	1:K:315:THR:OG1	1.80	0.65
1:A:28:HIS:HD2	1:A:315:THR:OG1	1.80	0.65
8:K:401:NAG:O3	8:K:401:NAG:H82	1.97	0.64
3:M:195:SER:C	3:M:196[B]:VAL:HG13	2.17	0.64
5:Q:101:ARG:NH1	5:Q:104:HIS:CG	2.66	0.64
1:I:28:HIS:HD2	1:I:315:THR:OG1	1.80	0.64
2:D:39:GLU:O	2:D:43:LYS:HG2	1.98	0.64
2:J:39:GLU:O	2:J:43:LYS:HG2	1.98	0.64
3:M:195:SER:C	3:M:196[B]:VAL:CG1	2.65	0.64
4:N:25:THR:OG1	4:N:90:GLN:CD	2.37	0.63
2:L:39:GLU:O	2:L:43:LYS:HG2	1.99	0.63
3:O:181:PHE:HE1	3:O:196[B]:VAL:CG2	2.11	0.63
6:R:12:SER:HB3	6:R:103:LYS:CA	2.29	0.63
2:B:39:GLU:O	2:B:43:LYS:HG2	1.99	0.63
4:N:28:SER:HB2	4:N:68:GLY:O	1.99	0.63
4:X:25:THR:HG22	4:X:69:THR:O	1.99	0.63
2:D:106:ARG:NH1	2:F:105:GLU:OE1	2.32	0.62
3:M:196[A]:VAL:HG22	3:M:197:VAL:N	2.13	0.62
6:R:12:SER:CB	6:R:103:LYS:HB2	2.30	0.62

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
3:M:115:PHE:CA	3:M:116:ASP:N	2.60	0.61
6:R:12:SER:HB3	6:R:103:LYS:N	2.15	0.61
3:M:154:GLY:HA3	3:M:196[A]:VAL:HG23	1.83	0.61
1:C:206:ASN:OD1	1:E:216:ARG:NH1	2.34	0.60
1:E:28:HIS:HD2	1:E:315:THR:OG1	1.82	0.60
3:W:181:PHE:CE1	3:W:196[A]:VAL:HG12	2.35	0.60
1:G:28:HIS:HD2	1:G:315:THR:OG1	1.83	0.60
7:Z:1:NAG:O3	7:Z:1:NAG:H82	2.01	0.60
3:0:111:ASN:OD1	3:O:113:ASP:N	2.22	0.60
3:O:181:PHE:HE1	3:O:196[B]:VAL:HG22	1.67	0.60
4:T:34:HIS:ND1	4:T:49:TYR:HA	2.16	0.60
3:W:194:SER:HB2	3:W:196[B]:VAL:HG13	1.81	0.60
5:Q:112:VAL:HG21	6:R:31:SER:O	2.02	0.59
5:Q:196:VAL:HG21	6:R:131:LEU:HD22	1.84	0.59
3:M:153:LEU:O	3:M:196[A]:VAL:HG22	2.02	0.59
6:R:12:SER:HB2	6:R:103:LYS:HB2	1.84	0.59
2:B:51:LYS:HE3	1:C:20:MET:HE2	1.85	0.59
2:F:39:GLU:O	2:F:43:LYS:HG2	2.03	0.59
2:H:39:GLU:O	2:H:43:LYS:HG2	2.03	0.59
4:T:28:SER:HB2	4:T:68:GLY:O	2.03	0.58
2:H:38:LYS:HD2	4:T:32:TYR:CZ	2.39	0.58
4:T:34:HIS:CE1	4:T:50:ALA:H	2.21	0.57
1:K:236:ASN:HD21	8:K:402:NAG:H81	1.70	0.57
3:M:112:VAL:HG21	4:N:31:SER:O	2.05	0.57
2:B:18:VAL:HG21	3:M:54:TYR:CE2	2.40	0.57
3:W:181:PHE:HE1	3:W:196[A]:VAL:HG11	1.70	0.56
3:W:194:SER:HB3	3:W:196[A]:VAL:HB	1.86	0.56
3:S:111:ASN:OD1	3:S:113:ASP:N	2.23	0.56
3:M:18:LEU:HD12	3:M:124:VAL:HG11	1.88	0.56
3:W:181:PHE:CE1	3:W:196[B]:VAL:HG22	2.40	0.56
5:Q:111:ASN:OD1	5:Q:113:ASP:N	2.26	0.56
1:K:5:ILE:HD11	2:L:122:VAL:HG21	1.87	0.55
1:E:236:ASN:ND2	7:Z:2:NAG:H81	2.15	0.55
3:U:18:LEU:HD12	3:U:124:VAL:HG11	1.88	0.55
3:S:18:LEU:HD12	3:S:124:VAL:HG11	1.88	0.55
3:M:179:HIS:O	3:M:196[A]:VAL:HG12	2.06	0.55
2:F:38:LYS:HD2	6:R:32:TYR:CE2	2.41	0.55
3:O:112:VAL:HG21	4:P:31:SER:O	2.07	0.55
3:W:18:LEU:HD12	3:W:124:VAL:HG11	1.87	0.55
4:N:12:SER:OG	4:N:103:LYS:HB2	2.07	0.55
3:O:35:VAL:HG21	3:O:111:ASN:HD22	1.71	0.55

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
6:R:101:GLU:HB2	6:R:162:GLN:OE1	2.06	0.55
4:T:25:THR:HG22	4:T:69:THR:O	2.06	0.55
5:Q:112:VAL:HG23	6:R:32:TYR:CD1	2.42	0.55
6:R:29:LEU:CD1	6:R:32:TYR:HD2	2.20	0.55
3:W:181:PHE:CE1	3:W:196[B]:VAL:CG2	2.90	0.54
4:P:102:ILE:N	4:P:102:ILE:HD12	2.23	0.54
5:Q:18:LEU:HD12	5:Q:124:VAL:HG11	1.89	0.54
4:V:25:THR:HG22	4:V:69:THR:O	2.07	0.54
3:O:18:LEU:HD12	3:O:124:VAL:HG11	1.88	0.54
2:F:18:VAL:HG12	5:Q:111:ASN:HB3	1.89	0.54
3:O:105:ILE:HG13	3:O:105:ILE:O	2.08	0.54
2:H:156:THR:HG22	2:H:156:THR:O	2.07	0.54
4:N:33:THR:HA	4:N:89:GLN:O	2.08	0.54
4:P:25:THR:HG22	4:P:69:THR:O	2.08	0.53
2:B:156:THR:HG22	2:B:156:THR:O	2.08	0.53
2:J:18:VAL:HG21	3:U:54:TYR:CE2	2.43	0.53
2:L:156:THR:HG22	2:L:156:THR:O	2.08	0.53
3:M:112:VAL:CG2	4:N:32:TYR:HA	2.39	0.53
3:O:181:PHE:CE1	3:O:196[B]:VAL:HG22	2.43	0.53
3:W:194:SER:HB3	3:W:196[B]:VAL:N	2.23	0.53
3:U:2:VAL:HG21	3:U:101:ARG:NH1	2.24	0.53
3:M:195:SER:OG	3:M:196[A]:VAL:N	2.39	0.53
4:N:25:THR:HG22	4:N:69:THR:O	2.09	0.53
2:D:156:THR:O	2:D:156:THR:HG22	2.09	0.53
4:T:25:THR:N	4:T:69:THR:O	2.41	0.53
1:E:236:ASN:HD21	7:Z:2:NAG:H82	1.60	0.52
2:J:156:THR:HG22	2:J:156:THR:O	2.08	0.52
2:F:156:THR:O	2:F:156:THR:HG22	2.09	0.52
3:W:103:GLY:CA	3:W:111:ASN:OD1	2.57	0.52
4:V:33:THR:HA	4:V:89:GLN:O	2.09	0.52
3:M:195:SER:O	3:M:196[B]:VAL:HG12	2.10	0.52
4:P:33:THR:HA	4:P:89:GLN:O	2.10	0.52
4:V:25:THR:OG1	4:V:90:GLN:OE1	2.23	0.52
4:X:33:THR:HA	4:X:89:GLN:O	2.10	0.52
2:F:38:LYS:HD2	6:R:32:TYR:CZ	2.46	0.51
5:Q:105:ILE:HG13	5:Q:105:ILE:O	2.10	0.51
5:Q:112:VAL:HG22	6:R:32:TYR:HA	1.92	0.51
3:U:112:VAL:CG2	4:V:32:TYR:CD1	2.87	0.51
4:X:102:ILE:N	4:X:102:ILE:HD12	2.26	0.51
3:W:181:PHE:CD1	3:W:196[A]:VAL:HG12	2.46	0.51
4:T:33:THR:HA	4:T:89:GLN:O	2.11	0.51

5JW4	
------	--

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:U:105:ILE:O	3:U:105:ILE:HG13	2.10	0.51
4:V:102:ILE:N	4:V:102:ILE:HD12	2.26	0.51
2:F:38:LYS:NZ	6:R:91:SER:OG	2.43	0.51
1:K:236:ASN:HD21	8:K:402:NAG:C8	2.23	0.51
3:O:102:SER:HB3	3:O:115:PHE:CD1	2.45	0.51
3:W:105:ILE:HG13	3:W:105:ILE:O	2.10	0.51
4:N:145:LYS:CG	4:N:150:LEU:HD23	2.41	0.51
5:Q:107:VAL:HG12	5:Q:108:PHE:HD2	1.72	0.51
2:D:124:LEU:HD22	2:F:134:GLY:HA2	1.94	0.50
4:N:102:ILE:N	4:N:102:ILE:HD12	2.27	0.50
6:R:33:THR:HA	6:R:89:GLN:O	2.12	0.50
4:P:11:LEU:O	4:P:101:GLU:HG2	2.12	0.50
4:T:11:LEU:O	4:T:101:GLU:HG2	2.12	0.50
3:S:105:ILE:O	3:S:105:ILE:HG13	2.11	0.50
7:Z:1:NAG:O3	7:Z:2:NAG:C2	2.54	0.50
1:A:216:ARG:NH1	1:E:206:ASN:OD1	2.43	0.50
3:M:2:VAL:HG21	3:M:101:ARG:NH1	2.26	0.50
3:O:196[A]:VAL:HG21	4:P:131:LEU:HD22	1.93	0.50
8:C:401:NAG:O3	8:C:401:NAG:H82	2.11	0.49
1:E:178:ILE:HD12	1:E:198:ILE:CD1	2.42	0.49
1:K:178:ILE:HD12	1:K:198:ILE:CD1	2.42	0.49
3:M:111:ASN:OD1	3:M:113:ASP:N	2.28	0.49
3:M:195:SER:OG	3:M:196[B]:VAL:N	2.43	0.49
4:X:11:LEU:O	4:X:101:GLU:HG2	2.12	0.49
4:N:11:LEU:O	4:N:101:GLU:HG2	2.12	0.49
3:O:102:SER:HB3	3:O:115:PHE:HD1	1.77	0.49
6:R:83:PHE:HB2	6:R:102:ILE:CD1	2.42	0.49
3:M:105:ILE:O	3:M:105:ILE:HG13	2.11	0.49
1:A:178:ILE:HD12	1:A:198:ILE:CD1	2.42	0.49
5:Q:112:VAL:CG2	6:R:32:TYR:HA	2.42	0.49
2:H:18:VAL:HG12	3:S:111:ASN:HB3	1.94	0.49
1:C:28:HIS:CD2	3:O:108:PHE:HA	2.48	0.49
4:P:4:MET:SD	4:P:90:GLN:HB2	2.52	0.49
3:W:112:VAL:HG21	4:X:31:SER:O	2.12	0.49
1:C:178:ILE:HD12	1:C:198:ILE:CD1	2.42	0.49
1:I:178:ILE:HD12	1:I:198:ILE:CD1	2.42	0.49
1:G:178:ILE:HD12	1:G:198:ILE:CD1	2.42	0.49
4:N:34:HIS:HD2	4:N:50:ALA:H	1.61	0.49
4:V:11:LEU:O	4:V:101:GLU:HG2	2.13	0.49
1:G:290:PRO:HG3	2:H:56:ILE:HG12	1.94	0.48
5:Q:156:LEU:HG	5:Q:158:LYS:HG2	1.95	0.48

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:I:206:ASN:O	1:K:212:ARG:NH2	2.45	0.48
4:P:32:TYR:N	4:P:32:TYR:CD2	2.81	0.48
3:O:37:ASN:ND2	3:O:102:SER:OG	2.36	0.48
3:W:37:ASN:ND2	3:W:102:SER:OG	2.38	0.48
3:M:195:SER:O	3:M:196[A]:VAL:HB	2.04	0.48
3:S:112:VAL:CG2	4:T:32:TYR:HA	2.44	0.48
3:W:112:VAL:CG2	4:X:32:TYR:HA	2.44	0.48
1:G:206:ASN:O	1:I:212:ARG:NH2	2.46	0.47
3:S:101:ARG:NH2	3:S:104:HIS:CD2	2.82	0.47
4:N:32:TYR:CD2	4:N:32:TYR:N	2.81	0.47
4:T:78:LEU:HD21	4:T:102:ILE:CG1	2.33	0.47
2:D:110:PHE:CD2	1:E:20:MET:HE1	2.50	0.47
1:C:240:ASN:HB2	1:E:215:THR:O	2.15	0.47
1:G:206:ASN:OD1	1:I:216:ARG:NH1	2.47	0.47
1:G:212:ARG:NH2	1:K:206:ASN:O	2.47	0.47
2:J:51:LYS:HE3	1:K:20:MET:HE2	1.95	0.47
8:K:401:NAG:O3	8:K:402:NAG:C2	2.56	0.47
6:R:47:LEU:HD11	6:R:62:PHE:CD1	2.49	0.47
4:T:24:ARG:HA	4:T:25:THR:N	2.30	0.47
2:B:42:GLN:HG2	4:N:29:LEU:HA	1.96	0.47
1:E:178:ILE:HD12	1:E:198:ILE:HD12	1.97	0.47
1:I:99:GLU:HB3	2:L:76:ARG:HD3	1.97	0.47
1:K:28:HIS:CD2	3:W:108:PHE:HA	2.50	0.47
3:S:112:VAL:HG22	4:T:32:TYR:HA	1.97	0.47
1:C:5:ILE:HD11	2:D:122:VAL:HG21	1.97	0.47
3:M:112:VAL:HG22	4:N:32:TYR:HA	1.95	0.47
4:P:32:TYR:N	4:P:32:TYR:HD2	2.12	0.47
1:A:178:ILE:HD12	1:A:198:ILE:HD12	1.97	0.47
2:F:38:LYS:HB3	6:R:29:LEU:HD13	1.97	0.47
1:I:178:ILE:HD12	1:I:198:ILE:HD12	1.97	0.47
1:C:290:PRO:HG3	2:D:56:ILE:HG12	1.97	0.46
1:G:178:ILE:HD12	1:G:198:ILE:HD12	1.97	0.46
4:N:32:TYR:N	4:N:32:TYR:HD2	2.13	0.46
1:G:5:ILE:HD11	2:H:122:VAL:HG21	1.96	0.46
1:G:196:THR:OG1	1:G:246:ASN:ND2	2.48	0.46
4:P:102:ILE:N	4:P:102:ILE:CD1	2.79	0.46
6:R:29:LEU:CD1	6:R:32:TYR:CD2	2.95	0.46
1:E:196:THR:OG1	1:E:246:ASN:ND2	2.49	0.46
8:I:401:NAG:O3	8:I:401:NAG:H82	2.16	0.46
3:W:194:SER:CB	3:W:196[B]:VAL:CG1	2.66	0.46
8:G:401:NAG:H82	8:G:401:NAG:O3	2.16	0.46

	A t a	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
3:O:194:SER:HB3	3:O:196[B]:VAL:HG13	1.97	0.46
1:C:178:ILE:HD12	1:C:198:ILE:HD12	1.98	0.46
1:E:236:ASN:CG	7:Z:2:NAG:C7	2.83	0.46
6:R:28:SER:HB2	6:R:68:GLY:O	2.15	0.46
1:G:290:PRO:HB3	2:H:56:ILE:HG23	1.97	0.46
1:I:196:THR:OG1	1:I:246:ASN:ND2	2.49	0.46
6:R:47:LEU:HG	6:R:48:ILE:HG12	1.98	0.46
4:T:32:TYR:O	4:T:90:GLN:HA	2.15	0.46
1:A:196:THR:OG1	1:A:246:ASN:ND2	2.49	0.46
1:E:160:ILE:O	1:E:242:GLU:HA	2.16	0.46
4:N:25:THR:HG1	4:N:90:GLN:NE2	2.12	0.46
8:A:401:NAG:O3	8:A:401:NAG:H82	2.15	0.45
1:C:196:THR:OG1	1:C:246:ASN:ND2	2.49	0.45
3:W:194:SER:HB3	3:W:196[A]:VAL:N	2.32	0.45
1:K:236:ASN:ND2	8:K:402:NAG:O7	2.49	0.45
3:O:2:VAL:HG21	3:O:101:ARG:NH1	2.31	0.45
6:R:47:LEU:HD11	6:R:62:PHE:CG	2.51	0.45
3:O:181:PHE:HE1	3:O:196[B]:VAL:HG21	1.82	0.45
1:K:196:THR:OG1	1:K:246:ASN:ND2	2.49	0.45
4:P:12:SER:OG	4:P:101:GLU:OE2	2.35	0.45
4:T:33:THR:HG1	4:T:90:GLN:HE21	1.62	0.45
1:K:51:ILE:HD12	1:K:271:TYR:HB2	1.98	0.45
4:N:32:TYR:O	4:N:90:GLN:HA	2.17	0.45
1:A:160:ILE:O	1:A:242:GLU:HA	2.17	0.45
1:K:160:ILE:O	1:K:242:GLU:HA	2.17	0.45
6:R:33:THR:O	6:R:34:HIS:ND1	2.50	0.45
3:S:37:ASN:ND2	3:S:102:SER:OG	2.36	0.45
4:T:25:THR:HG21	4:T:71:PHE:HE1	1.81	0.45
3:U:102:SER:HB3	3:U:115:PHE:CD1	2.52	0.45
3:U:112:VAL:CG2	4:V:32:TYR:HD1	2.25	0.45
3:W:102:SER:HB3	3:W:115:PHE:CD1	2.51	0.45
2:F:18:VAL:HG21	5:Q:54:TYR:CE2	2.52	0.45
3:M:179:HIS:O	3:M:196[B]:VAL:HG22	2.16	0.45
3:O:112:VAL:CG2	4:P:32:TYR:HA	2.47	0.45
3:M:115:PHE:C	3:M:116:ASP:CA	2.78	0.45
4:T:78:LEU:CD2	4:T:102:ILE:HG13	2.32	0.45
2:B:22:TYR:HD2	2:B:40:SER:OG	2.00	0.44
1:K:178:ILE:HD12	1:K:198:ILE:HD12	1.98	0.44
3:U:111:ASN:OD1	3:U:113:ASP:N	2.30	0.44
1:C:160:ILE:O	1:C:242:GLU:HA	2.17	0.44
2:J:18:VAL:HG12	3:U:111:ASN:HB3	1.99	0.44

5JW4	
------	--

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
3:W:111:ASN:ND2	3:W:113:ASP:H	2.15	0.44
4:X:28:SER:O	4:X:29:LEU:HD23	2.17	0.44
2:H:110:PHE:CD2	1:I:20:MET:HE1	2.52	0.44
2:J:66:VAL:HG21	2:L:83:LYS:HE2	1.99	0.44
1:G:160:ILE:O	1:G:242:GLU:HA	2.17	0.44
1:I:160:ILE:O	1:I:242:GLU:HA	2.17	0.44
4:P:89:GLN:NE2	4:P:91:SER:O	2.45	0.44
1:A:212:ARG:NH2	1:E:206:ASN:O	2.50	0.44
1:E:291:PHE:HZ	2:F:59:MET:HG3	1.82	0.44
1:G:291:PHE:HZ	2:H:59:MET:HG3	1.83	0.44
4:P:28:SER:HB2	4:P:68:GLY:O	2.17	0.44
1:E:317:LEU:HB3	2:F:111:HIS:CG	2.53	0.44
4:X:25:THR:HG21	4:X:71:PHE:HE1	1.82	0.44
1:G:216:ARG:NH1	1:K:206:ASN:OD1	2.51	0.44
3:W:103:GLY:HA3	3:W:111:ASN:OD1	2.17	0.44
1:C:51:ILE:HD12	1:C:271:TYR:HB2	1.99	0.44
6:R:28:SER:O	6:R:29:LEU:HD23	2.18	0.44
4:V:25:THR:HG1	4:V:90:GLN:CD	2.19	0.44
4:N:28:SER:O	4:N:29:LEU:HD23	2.18	0.44
6:R:104:ARG:HD2	6:R:166:ASP:O	2.17	0.44
4:V:102:ILE:N	4:V:102:ILE:CD1	2.81	0.43
1:G:51:ILE:HD12	1:G:271:TYR:HB2	2.00	0.43
1:K:45:ASP:C	1:K:47:VAL:H	2.22	0.43
4:V:12:SER:OG	4:V:101:GLU:OE2	2.35	0.43
3:W:2:VAL:HG21	3:W:101:ARG:CZ	2.48	0.43
1:E:196:THR:HG22	1:E:244:ASN:HB3	2.00	0.43
4:X:32:TYR:CD2	4:X:32:TYR:N	2.87	0.43
4:X:102:ILE:N	4:X:102:ILE:CD1	2.82	0.43
1:C:46:GLY:N	1:C:47:VAL:N	2.67	0.43
4:T:12:SER:OG	4:T:101:GLU:OE2	2.35	0.43
1:A:130:GLY:HA3	1:A:149:TRP:HB3	2.01	0.43
1:G:196:THR:HG22	1:G:244:ASN:HB3	2.00	0.43
1:A:196:THR:HG22	1:A:244:ASN:HB3	2.01	0.43
4:N:89:GLN:NE2	4:N:91:SER:O	2.42	0.43
4:P:28:SER:O	4:P:29:LEU:HD23	2.19	0.43
3:U:112:VAL:CG2	4:V:32:TYR:HA	2.48	0.43
4:V:28:SER:HB2	4:V:68:GLY:C	2.39	0.43
3:M:154:GLY:CA	3:M:196[A]:VAL:HG23	2.47	0.42
4:N:102:ILE:N	4:N:102:ILE:CD1	2.82	0.42
2:J:19:ASP:OD2	4:V:92:ARG:NH2	2.52	0.42
3:M:195:SER:O	3:M:196[B]:VAL:HG13	2.15	0.42

5J	W	4
~ ~		

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:X:47:LEU:HD11	4:X:62:PHE:CG	2.55	0.42
1:C:130:GLY:HA3	1:C:149:TRP:HB3	2.01	0.42
1:C:240:ASN:HB3	1:E:215:THR:HB	2.01	0.42
4:N:4:MET:HE1	4:N:90:GLN:HG3	2.02	0.42
3:S:2:VAL:HG21	3:S:101:ARG:NH1	2.35	0.42
1:I:100:GLU:OE1	2:L:75:ARG:N	2.42	0.42
4:P:47:LEU:HD11	4:P:62:PHE:CG	2.55	0.42
3:S:102:SER:HB3	3:S:115:PHE:CD1	2.55	0.42
1:C:196:THR:HG22	1:C:244:ASN:HB3	2.00	0.42
2:D:38:LYS:HD2	4:P:32:TYR:HE1	1.79	0.42
4:V:32:TYR:O	4:V:90:GLN:HA	2.20	0.42
4:X:12:SER:OG	4:X:101:GLU:OE2	2.36	0.42
1:I:196:THR:HG22	1:I:244:ASN:HB3	2.00	0.42
5:Q:102:SER:HB3	5:Q:115:PHE:CD1	2.54	0.42
4:V:29:LEU:HD13	4:V:32:TYR:CD2	2.55	0.42
6:R:12:SER:CB	6:R:103:LYS:CB	2.97	0.41
4:T:13:ALA:O	4:T:102:ILE:HG23	2.20	0.41
1:E:290:PRO:HG3	2:F:56:ILE:HG12	2.02	0.41
1:G:130:GLY:HA3	1:G:149:TRP:HB3	2.01	0.41
1:K:196:THR:HG22	1:K:244:ASN:HB3	2.01	0.41
1:E:130:GLY:HA3	1:E:149:TRP:HB3	2.02	0.41
4:X:32:TYR:O	4:X:90:GLN:HA	2.20	0.41
3:U:112:VAL:HG21	4:V:31:SER:O	2.21	0.41
1:C:291:PHE:HZ	2:D:59:MET:HG3	1.86	0.41
4:N:47:LEU:HD11	4:N:62:PHE:CG	2.56	0.41
3:O:181:PHE:HE1	3:O:196[A]:VAL:CG1	2.34	0.41
3:S:102:SER:HB3	3:S:115:PHE:HD1	1.86	0.41
1:G:20:MET:HE2	2:L:51:LYS:HE3	2.03	0.41
4:T:47:LEU:HD11	4:T:62:PHE:CG	2.55	0.41
4:V:28:SER:O	4:V:29:LEU:HD23	2.21	0.41
1:G:317:LEU:HB3	2:H:111:HIS:CG	2.56	0.41
1:I:130:GLY:HA3	1:I:149:TRP:HB3	2.02	0.41
4:N:25:THR:OG1	4:N:90:GLN:OE1	2.38	0.41
4:T:28:SER:O	4:T:29:LEU:HD23	2.21	0.41
4:X:32:TYR:N	4:X:32:TYR:HD2	2.18	0.41
3:M:2:VAL:HG21	3:M:101:ARG:CZ	2.52	0.40
4:N:145:LYS:HG2	4:N:150:LEU:HD23	2.01	0.40
4:P:32:TYR:O	4:P:90:GLN:HA	2.20	0.40
4:V:47:LEU:HD11	4:V:62:PHE:CG	2.56	0.40
1:I:51:ILE:HD12	1:I:271:TYR:HB2	2.03	0.40
1:K:130:GLY:HA3	1:K:149:TRP:HB3	2.02	0.40

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
5:Q:158:LYS:HD2	5:Q:192:SER:OG	2.22	0.40
6:R:25:THR:HG22	6:R:69:THR:O	2.22	0.40
4:T:159:VAL:HG22	4:T:171:LEU:HD12	2.04	0.40
4:N:25:THR:HG21	4:N:71:PHE:HE1	1.87	0.40
4:N:145:LYS:HE2	4:N:150:LEU:HD21	2.03	0.40

All (2) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:C:169:GLN:CG	3:O:219:ASN:OD1[2_655]	1.93	0.27
1:C:252:TYR:CE1	3:O:79:LYS:CE[2_655]	2.05	0.15

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	320/321~(100%)	311~(97%)	9~(3%)	0	100	100
1	С	320/321~(100%)	311 (97%)	9~(3%)	0	100	100
1	E	320/321~(100%)	311 (97%)	9(3%)	0	100	100
1	G	320/321~(100%)	311 (97%)	9(3%)	0	100	100
1	Ι	320/321~(100%)	311~(97%)	9~(3%)	0	100	100
1	K	320/321~(100%)	311 (97%)	9~(3%)	0	100	100
2	В	160/162~(99%)	156~(98%)	4 (2%)	0	100	100
2	D	160/162~(99%)	156 (98%)	4 (2%)	0	100	100
2	F	160/162~(99%)	156 (98%)	4 (2%)	0	100	100
2	Н	160/162~(99%)	156 (98%)	4 (2%)	0	100	100
2	J	160/162~(99%)	156 (98%)	4 (2%)	0	100	100

5JV	W4
-----	----

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percen	tiles
2	L	160/162~(99%)	156~(98%)	4 (2%)	0	100	100
3	М	217/227~(96%)	210 (97%)	7 (3%)	0	100	100
3	Ο	217/227~(96%)	211 (97%)	6 (3%)	0	100	100
3	S	217/227~(96%)	212 (98%)	5 (2%)	0	100	100
3	U	217/227~(96%)	211 (97%)	6 (3%)	0	100	100
3	W	217/227~(96%)	210 (97%)	7 (3%)	0	100	100
4	Ν	204/206~(99%)	200 (98%)	4 (2%)	0	100	100
4	Р	204/206~(99%)	200 (98%)	4 (2%)	0	100	100
4	Т	204/206~(99%)	200 (98%)	4 (2%)	0	100	100
4	V	204/206~(99%)	200 (98%)	4 (2%)	0	100	100
4	Х	204/206~(99%)	199 (98%)	5 (2%)	0	100	100
5	Q	167/231~(72%)	163 (98%)	4 (2%)	0	100	100
6	R	136/210~(65%)	133 (98%)	3 (2%)	0	100	100
All	All	5288/5504~(96%)	5151 (97%)	137 (3%)	0	100	100

There are no Ramachandran outliers to report.

Protein sidechains (i) 5.3.2

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percer	ntiles
1	А	290/289~(100%)	288~(99%)	2(1%)	84	91
1	С	290/289~(100%)	288~(99%)	2(1%)	84	91
1	Ε	290/289~(100%)	288~(99%)	2(1%)	84	91
1	G	290/289~(100%)	288~(99%)	2(1%)	84	91
1	Ι	290/289~(100%)	288~(99%)	2(1%)	84	91
1	Κ	290/289~(100%)	288~(99%)	2(1%)	84	91
2	В	138/138~(100%)	137 (99%)	1 (1%)	84	91
2	D	138/138~(100%)	138 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	s Percentile	
2	\mathbf{F}	138/138~(100%)	138 (100%)	0	100	100
2	Η	138/138~(100%)	138 (100%)	0	100	100
2	J	138/138~(100%)	138 (100%)	0	100	100
2	L	138/138~(100%)	138 (100%)	0	100	100
3	М	195/198~(98%)	195 (100%)	0	100	100
3	Ο	195/198~(98%)	195 (100%)	0	100	100
3	S	195/198~(98%)	194 (100%)	1 (0%)	88	94
3	U	195/198~(98%)	195 (100%)	0	100	100
3	W	195/198~(98%)	195 (100%)	0	100	100
4	Ν	181/181 (100%)	180 (99%)	1 (1%)	86	93
4	Р	181/181 (100%)	179~(99%)	2(1%)	73	85
4	Т	181/181 (100%)	179~(99%)	2(1%)	73	85
4	V	181/181 (100%)	179~(99%)	2(1%)	73	85
4	Х	181/181 (100%)	179~(99%)	2(1%)	73	85
5	Q	157/201~(78%)	157 (100%)	0	100	100
6	R	130/185~(70%)	128 (98%)	2 (2%)	65	81
All	All	$473\overline{5/4843}$ (98%)	4710 (100%)	25~(0%)	88	94

Continued from previous page...

All (25) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	162	ARG
1	А	178	ILE
2	В	22	TYR
1	С	162	ARG
1	С	178	ILE
1	Е	162	ARG
1	Ε	178	ILE
1	G	162	ARG
1	G	178	ILE
1	Ι	162	ARG
1	Ι	178	ILE
1	Κ	162	ARG
1	Κ	178	ILE
4	N	26	SER
4	Р	12	SER

Mol	Chain	Bos	
IVIOI	Ullaili	nes	Type
4	Р	26	SER
6	R	26	SER
6	R	92	ARG
3	S	117	MET
4	Т	12	SER
4	Т	26	SER
4	V	12	SER
4	V	26	SER
4	Х	12	SER
4	Х	26	SER

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (19) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	28	HIS
1	А	246	ASN
1	С	28	HIS
1	С	246	ASN
2	D	79	ASN
1	Е	28	HIS
1	Е	236	ASN
1	Е	246	ASN
2	F	79	ASN
1	G	28	HIS
1	G	246	ASN
2	Н	79	ASN
1	Ι	28	HIS
1	Ι	246	ASN
2	J	79	ASN
1	К	28	HIS
1	К	236	ASN
1	К	246	ASN
4	Ν	90	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

10 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	Link	Bo	ond leng	$_{\rm ths}$	В	ond ang	les
	туре	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
7	NAG	Y	1	7,2	14,14,15	0.65	0	17,19,21	1.95	5 (29%)
7	NAG	Y	2	7	14,14,15	0.48	0	17,19,21	0.97	0
7	NAG	Z	1	1,7	14,14,15	1.06	2 (14%)	17,19,21	3.19	8 (47%)
7	NAG	Z	2	7	14,14,15	1.40	2 (14%)	17,19,21	3.24	7 (41%)
7	NAG	a	1	7,2	14,14,15	1.11	1 (7%)	17,19,21	1.71	5 (29%)
7	NAG	a	2	7	14,14,15	0.39	0	17,19,21	1.09	1 (5%)
7	NAG	b	1	7,2	14,14,15	0.74	1 (7%)	17,19,21	1.42	4 (23%)
7	NAG	b	2	7	14,14,15	0.41	0	17,19,21	0.99	1 (5%)
7	NAG	с	1	7,2	14,14,15	0.77	0	17,19,21	2.20	5 (29%)
7	NAG	с	2	7	14,14,15	0.49	0	17,19,21	0.99	1 (5%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
7	NAG	Y	1	7,2	1/1/5/7	3/6/23/26	0/1/1/1
7	NAG	Y	2	7	-	3/6/23/26	0/1/1/1
7	NAG	Z	1	1,7	-	5/6/23/26	0/1/1/1
7	NAG	Ζ	2	7	-	2/6/23/26	0/1/1/1
7	NAG	a	1	7,2	1/1/5/7	3/6/23/26	0/1/1/1
7	NAG	a	2	7	-	3/6/23/26	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
7	NAG	b	1	7,2	1/1/5/7	2/6/23/26	0/1/1/1
7	NAG	b	2	7	-	3/6/23/26	0/1/1/1
7	NAG	с	1	7,2	1/1/5/7	2/6/23/26	0/1/1/1
7	NAG	с	2	7	-	2/6/23/26	0/1/1/1

Continued from previous page...

All (6) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
7	Ζ	2	NAG	C1-C2	4.26	1.58	1.52
7	а	1	NAG	O5-C1	-3.39	1.38	1.43
7	Ζ	1	NAG	C3-C2	-2.41	1.47	1.52
7	Ζ	2	NAG	C2-N2	2.30	1.50	1.46
7	Ζ	1	NAG	O5-C1	-2.24	1.40	1.43
7	b	1	NAG	O5-C1	-2.24	1.40	1.43

All (37) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	Ζ	2	NAG	C1-O5-C5	11.12	127.25	112.19
7	Ζ	1	NAG	O4-C4-C5	6.79	126.15	109.30
7	Ζ	1	NAG	O4-C4-C3	-6.25	95.89	110.35
7	Y	1	NAG	C1-O5-C5	5.29	119.35	112.19
7	с	1	NAG	C1-O5-C5	4.92	118.86	112.19
7	Ζ	1	NAG	O5-C1-C2	4.79	118.85	111.29
7	с	1	NAG	O5-C1-C2	-4.76	103.77	111.29
7	Ζ	1	NAG	C2-N2-C7	4.29	129.01	122.90
7	Ζ	2	NAG	C1-C2-N2	4.19	117.65	110.49
7	Y	1	NAG	C8-C7-N2	3.42	121.88	116.10
7	Ζ	1	NAG	O5-C5-C4	-3.34	102.70	110.83
7	Ζ	1	NAG	C8-C7-N2	3.24	121.59	116.10
7	Ζ	2	NAG	C4-C3-C2	3.24	115.77	111.02
7	a	1	NAG	O5-C5-C6	-3.23	102.14	107.20
7	с	1	NAG	C8-C7-N2	3.20	121.52	116.10
7	Ζ	1	NAG	C1-O5-C5	-3.15	107.92	112.19
7	a	1	NAG	C8-C7-N2	3.13	121.41	116.10
7	a	1	NAG	O5-C1-C2	2.63	115.44	111.29
7	b	1	NAG	O5-C5-C6	-2.57	103.17	107.20
7	b	1	NAG	C4-C3-C2	-2.53	107.31	111.02
7	Ζ	2	NAG	C8-C7-N2	-2.46	111.94	116.10
7	Ζ	2	NAG	O7-C7-C8	2.45	126.60	122.06
7	Z	1	NAG	O3-C3-C4	-2.36	104.90	110.35

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	с	1	NAG	C1-C2-N2	-2.35	106.48	110.49
7	Y	1	NAG	C2-N2-C7	2.25	126.10	122.90
7	Y	1	NAG	O5-C5-C6	-2.23	103.72	107.20
7	Ζ	2	NAG	C2-N2-C7	2.22	126.07	122.90
7	Ζ	2	NAG	O5-C1-C2	2.19	114.75	111.29
7	с	1	NAG	O3-C3-C4	-2.14	105.40	110.35
7	b	2	NAG	C1-O5-C5	2.13	115.08	112.19
7	b	1	NAG	C2-N2-C7	2.13	125.93	122.90
7	a	1	NAG	C2-N2-C7	2.11	125.91	122.90
7	a	1	NAG	O4-C4-C5	2.10	114.50	109.30
7	a	2	NAG	O5-C5-C4	-2.06	105.81	110.83
7	Y	1	NAG	O7-C7-C8	-2.06	118.24	122.06
7	b	1	NAG	C8-C7-N2	2.03	119.54	116.10
7	с	2	NAG	C4-C3-C2	2.01	113.96	111.02

All (4) chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
7	Y	1	NAG	C1
7	a	1	NAG	C1
7	b	1	NAG	C1
7	с	1	NAG	C1

All (28) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
7	Ζ	2	NAG	C4-C5-C6-O6
7	Y	1	NAG	C8-C7-N2-C2
7	Y	1	NAG	O7-C7-N2-C2
7	Ζ	1	NAG	C8-C7-N2-C2
7	Ζ	1	NAG	O7-C7-N2-C2
7	а	1	NAG	C8-C7-N2-C2
7	a	1	NAG	O7-C7-N2-C2
7	b	1	NAG	C8-C7-N2-C2
7	b	1	NAG	O7-C7-N2-C2
7	с	1	NAG	C8-C7-N2-C2
7	с	1	NAG	O7-C7-N2-C2
7	Ζ	2	NAG	O5-C5-C6-O6
7	Ζ	1	NAG	O5-C5-C6-O6
7	Ζ	1	NAG	C1-C2-N2-C7
7	Ζ	1	NAG	C4-C5-C6-O6
7	a	2	NAG	O5-C5-C6-O6

Mol	Chain	Res	Type	Atoms
7	a	2	NAG	C4-C5-C6-O6
7	а	1	NAG	O5-C5-C6-O6
7	b	2	NAG	O5-C5-C6-O6
7	Y	2	NAG	C3-C2-N2-C7
7	a	2	NAG	C3-C2-N2-C7
7	с	2	NAG	C4-C5-C6-O6
7	Y	1	NAG	O5-C5-C6-O6
7	b	2	NAG	C4-C5-C6-O6
7	с	2	NAG	O5-C5-C6-O6
7	Y	2	NAG	O5-C5-C6-O6
7	Y	2	NAG	C4-C5-C6-O6
7	b	2	NAG	C3-C2-N2-C7

There are no ring outliers.

2 monomers are involved in 12 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
7	Z	1	NAG	3	0
7	Ζ	2	NAG	11	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

20 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol /	Turne	Chain	Dec	Tiple	Bo	ond leng	$_{\rm ths}$	Bond angles		
MOI	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
8	NAG	А	401	1	14,14,15	0.75	1 (7%)	17,19,21	1.74	4 (23%)
8	NAG	А	402	1	14,14,15	0.48	0	17,19,21	1.54	3 (17%)
8	NAG	С	401	1	14,14,15	0.41	0	17,19,21	1.93	6 (35%)

Mal	Mol Type C		Dec	Tink	Bo	Bond lengths			Bond angles		
10101	туре	Unain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2	
8	NAG	К	402	-	14,14,15	1.44	2 (14%)	17,19,21	3.02	3 (17%)	
8	NAG	L	201	2	14,14,15	0.39	0	17,19,21	1.45	2 (11%)	
8	NAG	Ι	402	1	14,14,15	0.28	0	17,19,21	1.57	4 (23%)	
8	NAG	G	403	1	14,14,15	0.39	0	17,19,21	0.74	0	
8	NAG	Ι	403	1	14,14,15	0.29	0	17,19,21	1.06	0	
8	NAG	D	201	2	14,14,15	0.40	0	17,19,21	2.04	4 (23%)	
8	NAG	С	403	1	14,14,15	0.32	0	17,19,21	0.83	0	
8	NAG	К	401	1	14,14,15	0.83	1 (7%)	17,19,21	3.17	8 (47%)	
8	NAG	G	402	1	14,14,15	0.39	0	17,19,21	1.41	2 (11%)	
8	NAG	С	402	1	14,14,15	0.39	0	17,19,21	1.65	3 (17%)	
8	NAG	Е	404	1	14,14,15	1.38	1 (7%)	17,19,21	1.54	5 (29%)	
8	NAG	Ι	401	1	14,14,15	1.02	1 (7%)	17,19,21	2.16	4 (23%)	
8	NAG	А	403	1	14,14,15	0.31	0	17,19,21	1.16	2 (11%)	
8	NAG	G	401	1	14,14,15	0.70	1 (7%)	17,19,21	2.11	8 (47%)	
8	NAG	K	403	1	14,14,15	0.39	0	17,19,21	1.67	4 (23%)	
8	NAG	K	404	1	14,14,15	0.78	1 (7%)	17,19,21	0.92	0	
8	NAG	Е	403	1	14,14,15	0.42	0	17,19,21	1.51	3 (17%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
8	NAG	А	401	1	-	4/6/23/26	0/1/1/1
8	NAG	А	402	1	-	2/6/23/26	0/1/1/1
8	NAG	С	401	1	-	5/6/23/26	0/1/1/1
8	NAG	K	402	-	-	2/6/23/26	0/1/1/1
8	NAG	L	201	2	1/1/5/7	4/6/23/26	0/1/1/1
8	NAG	Ι	402	1	-	2/6/23/26	0/1/1/1
8	NAG	G	403	1	-	0/6/23/26	0/1/1/1
8	NAG	Ι	403	1	-	0/6/23/26	0/1/1/1
8	NAG	D	201	2	1/1/5/7	4/6/23/26	0/1/1/1
8	NAG	С	403	1	-	0/6/23/26	0/1/1/1
8	NAG	K	401	1	-	5/6/23/26	0/1/1/1
8	NAG	G	402	1	-	2/6/23/26	0/1/1/1
8	NAG	С	402	1	-	2/6/23/26	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
8	NAG	Е	404	1	-	0/6/23/26	0/1/1/1
8	NAG	Ι	401	1	-	4/6/23/26	0/1/1/1
8	NAG	А	403	1	-	0/6/23/26	0/1/1/1
8	NAG	G	401	1	-	5/6/23/26	0/1/1/1
8	NAG	К	403	1	-	2/6/23/26	0/1/1/1
8	NAG	K	404	1	-	0/6/23/26	0/1/1/1
8	NAG	Е	403	1	-	2/6/23/26	0/1/1/1

Continued from previous page...

All (8) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
8	Κ	402	NAG	C1-C2	4.59	1.59	1.52
8	Е	404	NAG	C1-C2	4.52	1.59	1.52
8	Κ	404	NAG	C1-C2	2.83	1.56	1.52
8	Ι	401	NAG	O5-C1	-2.66	1.39	1.43
8	G	401	NAG	C1-C2	-2.31	1.48	1.52
8	А	401	NAG	C1-C2	2.26	1.55	1.52
8	Κ	402	NAG	C2-N2	2.24	1.50	1.46
8	Κ	401	NAG	C3-C2	-2.01	1.48	1.52

All (65) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
8	Κ	402	NAG	C1-O5-C5	11.07	127.18	112.19
8	Κ	401	NAG	O4-C4-C3	-6.37	95.62	110.35
8	Κ	401	NAG	O4-C4-C5	6.12	124.50	109.30
8	С	402	NAG	C1-O5-C5	5.22	119.27	112.19
8	Ι	401	NAG	O5-C1-C2	5.01	119.20	111.29
8	Κ	403	NAG	C1-O5-C5	5.00	118.97	112.19
8	Κ	401	NAG	O5-C1-C2	4.77	118.81	111.29
8	D	201	NAG	C1-O5-C5	4.70	118.56	112.19
8	Κ	401	NAG	C2-N2-C7	4.44	129.22	122.90
8	С	401	NAG	C8-C7-N2	4.20	123.22	116.10
8	А	401	NAG	C2-N2-C7	4.06	128.68	122.90
8	Ι	401	NAG	C2-N2-C7	3.97	128.56	122.90
8	Κ	402	NAG	C1-C2-N2	3.97	117.27	110.49
8	А	401	NAG	C8-C7-N2	3.91	122.72	116.10
8	G	401	NAG	C8-C7-N2	3.84	122.60	116.10
8	Κ	401	NAG	C8-C7-N2	3.83	122.59	116.10
8	G	402	NAG	O5-C5-C6	3.75	113.08	107.20
8	С	401	NAG	C2-N2-C7	3.67	128.12	122.90

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	Ideal(°)
8	А	402	NAG	O5-C5-C6	3.56	112.79	107.20
8	Ι	401	NAG	C8-C7-N2	3.56	122.12	116.10
8	G	401	NAG	O5-C1-C2	3.55	116.89	111.29
8	Ι	402	NAG	O5-C5-C6	3.41	112.55	107.20
8	D	201	NAG	C8-C7-N2	3.40	121.86	116.10
8	А	402	NAG	C1-C2-N2	-3.34	104.78	110.49
8	Е	403	NAG	O5-C5-C6	3.30	112.39	107.20
8	G	401	NAG	C1-O5-C5	-3.22	107.83	112.19
8	L	201	NAG	C1-C2-N2	-3.22	104.99	110.49
8	D	201	NAG	C1-C2-N2	-3.03	105.31	110.49
8	Е	404	NAG	C1-O5-C5	2.96	116.20	112.19
8	L	201	NAG	C8-C7-N2	2.94	121.08	116.10
8	Е	403	NAG	C2-N2-C7	2.89	127.02	122.90
8	G	401	NAG	C2-N2-C7	2.88	127.00	122.90
8	D	201	NAG	C2-N2-C7	2.87	126.99	122.90
8	К	401	NAG	O3-C3-C4	-2.86	103.74	110.35
8	Ι	402	NAG	C1-C2-N2	-2.81	105.69	110.49
8	К	401	NAG	O5-C5-C4	-2.77	104.09	110.83
8	G	401	NAG	C1-C2-N2	-2.75	105.80	110.49
8	А	402	NAG	C1-O5-C5	2.70	115.85	112.19
8	С	401	NAG	O5-C5-C6	2.69	111.42	107.20
8	Ι	402	NAG	C1-O5-C5	2.66	115.80	112.19
8	С	401	NAG	O7-C7-C8	-2.63	117.18	122.06
8	K	403	NAG	O5-C5-C6	2.62	111.32	107.20
8	G	401	NAG	O5-C5-C4	-2.55	104.62	110.83
8	Ι	402	NAG	C2-N2-C7	2.53	126.50	122.90
8	G	401	NAG	O5-C5-C6	2.53	111.16	107.20
8	С	402	NAG	O5-C5-C6	2.48	111.10	107.20
8	Е	404	NAG	C1-C2-N2	2.47	114.71	110.49
8	Ι	401	NAG	O5-C5-C4	-2.47	104.82	110.83
8	Κ	402	NAG	O5-C5-C4	2.41	116.70	110.83
8	А	403	NAG	C1-O5-C5	2.35	115.38	112.19
8	G	402	NAG	C2-N2-C7	2.35	126.25	122.90
8	А	401	NAG	O7-C7-C8	-2.33	117.73	122.06
8	Κ	401	NAG	O7-C7-C8	-2.31	117.77	122.06
8	G	401	NAG	O7-C7-C8	-2.27	117.84	122.06
8	E	403	NAG	O5-C1-C2	2.24	114.83	111.29
8	K	403	NAG	C1-C2-N2	-2.22	106.69	110.49
8	E	404	NAG	C2-N2-C7	2.21	126.04	122.90
8	A	401	NAG	O5-C5-C4	-2.16	105.56	110.83
8	С	401	NAG	C1-C2-N2	-2.13	106.84	110.49
8	E	404	NAG	O5-C1-C2	-2.13	107.93	111.29

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
8	С	402	NAG	C2-N2-C7	2.12	125.93	122.90
8	K	403	NAG	C2-N2-C7	2.12	125.92	122.90
8	А	403	NAG	C4-C3-C2	2.11	114.12	111.02
8	С	401	NAG	O5-C5-C4	-2.09	105.75	110.83
8	Е	404	NAG	C4-C3-C2	2.02	113.98	111.02

Continued from previous page...

All (2) chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
8	D	201	NAG	C1
8	L	201	NAG	C1

All (45) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
8	G	402	NAG	O5-C5-C6-O6
8	Е	403	NAG	O5-C5-C6-O6
8	Ι	401	NAG	O5-C5-C6-O6
8	А	402	NAG	O5-C5-C6-O6
8	Ι	402	NAG	O5-C5-C6-O6
8	Ι	401	NAG	C4-C5-C6-O6
8	K	402	NAG	C4-C5-C6-O6
8	А	402	NAG	C4-C5-C6-O6
8	Ι	402	NAG	C4-C5-C6-O6
8	G	402	NAG	C4-C5-C6-O6
8	А	401	NAG	C8-C7-N2-C2
8	А	401	NAG	O7-C7-N2-C2
8	С	401	NAG	C8-C7-N2-C2
8	С	401	NAG	O7-C7-N2-C2
8	D	201	NAG	C8-C7-N2-C2
8	D	201	NAG	O7-C7-N2-C2
8	G	401	NAG	C8-C7-N2-C2
8	G	401	NAG	O7-C7-N2-C2
8	Ι	401	NAG	C8-C7-N2-C2
8	Ι	401	NAG	O7-C7-N2-C2
8	Κ	401	NAG	C8-C7-N2-C2
8	K	401	NAG	O7-C7-N2-C2
8	L	201	NAG	C8-C7-N2-C2
8	L	201	NAG	O7-C7-N2-C2
8	Е	403	NAG	C4-C5-C6-O6
8	С	402	NAG	C4-C5-C6-O6
8	K	403	NAG	C4-C5-C6-O6

Mol	Chain	Res	Type	Atoms
8	С	402	NAG	O5-C5-C6-O6
8	K	401	NAG	O5-C5-C6-O6
8	K	403	NAG	O5-C5-C6-O6
8	С	401	NAG	O5-C5-C6-O6
8	А	401	NAG	O5-C5-C6-O6
8	G	401	NAG	O5-C5-C6-O6
8	K	401	NAG	C4-C5-C6-O6
8	С	401	NAG	C1-C2-N2-C7
8	K	402	NAG	O5-C5-C6-O6
8	А	401	NAG	C4-C5-C6-O6
8	G	401	NAG	C4-C5-C6-O6
8	G	401	NAG	C1-C2-N2-C7
8	К	401	NAG	C1-C2-N2-C7
8	С	401	NAG	C4-C5-C6-O6
8	D	201	NAG	O5-C5-C6-O6
8	D	201	NAG	C4-C5-C6-O6
8	L	201	NAG	C4-C5-C6-O6
8	L	201	NAG	O5-C5-C6-O6

Continued from previous page...

There are no ring outliers.

6 monomers are involved in 10 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
8	А	401	NAG	1	0
8	С	401	NAG	1	0
8	Κ	402	NAG	5	0
8	Κ	401	NAG	3	0
8	Ι	401	NAG	1	0
8	G	401	NAG	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
3	W	4

3.4	F 1		•		-	0.1	-
$C \epsilon$	onti	nued	from	pret	vious	page	

Mol	Chain	Number of breaks
3	М	3
3	0	2
6	R	2
3	U	2
3	S	2
5	Q	1
1	С	1
4	Т	1
1	Κ	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	W	196[B]:VAL	С	197:VAL	Ν	3.54
1	W	196[A]:VAL	С	197:VAL	Ν	3.43
1	Q	128:SER	С	129:ALA	Ν	3.05
1	0	196[B]:VAL	С	197:VAL	Ν	2.49
1	R	102:ILE	С	103:LYS	Ν	2.49
1	0	196[A]:VAL	С	197:VAL	Ν	2.45
1	U	196[A]:VAL	С	197:VAL	Ν	2.32
1	U	196[B]:VAL	С	197:VAL	Ν	2.28
1	М	196[B]:VAL	С	197:VAL	Ν	2.22
1	S	196[A]:VAL	С	197:VAL	Ν	2.22
1	S	196[B]:VAL	С	197:VAL	Ν	2.21
1	М	196[A]:VAL	С	197:VAL	Ν	2.20
1	W	195:SER	С	196[B]:VAL	Ν	2.06
1	R	103:LYS	С	104:ARG	Ν	1.94
1	W	195:SER	С	196[A]:VAL	Ν	1.91
1	С	46:GLY	С	47:VAL	Ν	1.79
1	Т	24:ARG	С	25:THR	Ν	1.78
1	М	115:PHE	С	116:ASP	Ν	1.73
1	K	46:GLY	С	47:VAL	Ν	1.67

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	# RSRZ >2	2	$\mathbf{OWAB}(\mathrm{\AA}^2)$	$Q{<}0.9$
1	А	321/321~(100%)	0.18	16~(4%) 28	21	107,166,215,249	0
1	С	321/321~(100%)	0.13	3 (0%) 84	76	106,154,211,232	0
1	Е	321/321~(100%)	0.17	2(0%) 89	83	101, 145, 164, 177	0
1	G	321/321~(100%)	0.28	23~(7%) 15	11	118,199,244,262	0
1	Ι	321/321~(100%)	0.37	35~(10%) 5	4	122, 214, 247, 264	0
1	K	321/321~(100%)	0.21	18 (5%) 24	17	125, 193, 231, 253	0
2	В	162/162~(100%)	0.12	1 (0%) 89	83	104, 122, 149, 161	0
2	D	162/162~(100%)	0.18	1 (0%) 89	83	104,118,136,142	0
2	F	162/162~(100%)	0.12	1 (0%) 89	83	104,117,141,152	0
2	Н	162/162~(100%)	0.08	1 (0%) 89	83	112, 132, 173, 191	0
2	J	162/162~(100%)	0.15	2 (1%) 79	69	125, 138, 174, 189	0
2	L	162/162~(100%)	0.09	4 (2%) 57	45	121, 134, 174, 199	0
3	М	223/227~(98%)	0.06	0 100 10	0	105, 134, 161, 179	0
3	Ο	223/227~(98%)	0.21	3 (1%) 77	67	109, 139, 186, 205	0
3	S	223/227~(98%)	0.11	3 (1%) 77	67	117, 168, 210, 220	0
3	U	223/227~(98%)	0.04	3 (1%) 77	67	112, 134, 161, 174	0
3	W	223/227~(98%)	0.17	3 (1%) 77	67	120, 145, 182, 196	0
4	Ν	206/206~(100%)	0.07	1 (0%) 91	85	106, 124, 153, 170	0
4	Р	206/206~(100%)	0.04	1 (0%) 91	85	109,154,180,192	0
4	Т	206/206~(100%)	0.26	6 (2%) 51	39	134, 188, 231, 238	0
4	V	206/206~(100%)	0.01	3 (1%) 73	63	115, 131, 155, 166	0
4	X	206/206~(100%)	-0.01	0 100 10	0	124, 151, 182, 189	0
5	Q	177/231~(76%)	0.11	5 (2%) 53	40	101, 124, 161, 161	0
6	R	148/210~(70%)	0.16	4 (2%) 54	42	103, 134, 162, 174	0

Mol	Chain	Analysed	< RSRZ >	# RSRZ > 2	$\mathbf{OWAB}(\mathbf{\AA}^2)$	Q<0.9
All	All	5368/5504~(97%)	0.15	139 (2%) 56 43	101, 144, 223, 264	0

All (139) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	Ι	150	LEU	8.0
1	G	175	LEU	7.9
1	G	176	TRP	6.2
1	А	150	LEU	5.9
1	Ι	58	ALA	5.5
1	Ι	250	PRO	5.3
1	Ι	253	ALA	5.1
1	Ι	62	LEU	5.0
1	G	228	PHE	4.9
1	Ι	175	LEU	4.5
1	G	147	VAL	4.4
1	G	62	LEU	4.0
5	Q	213	VAL	3.9
1	G	150	LEU	3.8
1	G	266	LYS	3.8
1	Ι	151	ILE	3.7
1	А	175	LEU	3.6
1	Ι	130	GLY	3.6
1	Ι	241	PHE	3.6
1	Ι	148	VAL	3.4
1	G	148	VAL	3.4
4	Р	4	MET	3.4
1	G	160	ILE	3.3
2	В	59	MET	3.3
1	Κ	70	PHE	3.3
1	Ι	111	PHE	3.3
3	S	153	LEU	3.2
1	K	209	LEU	3.2
1	G	129	LEU	3.1
1	K	175	LEU	3.1
1	Ι	314	ALA	3.1
1	E	175	LEU	3.1
1	K	241	PHE	3.0
1	G	95	PHE	3.0
1	Ι	163	SER	3.0
1	K	50	LEU	3.0
1	I	134	ALA	3.0

Mol	Chain	Res	Type	RSRZ
1	G	207	GLN	2.9
2	F	59	MET	2.9
4	Т	167	SER	2.9
2	J	63	PHE	2.9
1	Ι	161	LYS	2.8
4	V	47	LEU	2.8
4	V	109	PRO	2.8
1	А	239	ILE	2.8
2	L	84	MET	2.8
3	U	226	VAL	2.8
1	Ι	239	ILE	2.8
3	S	197	VAL	2.8
1	Κ	174	VAL	2.8
5	Q	222	VAL	2.8
1	Ι	313	LEU	2.7
1	G	111	PHE	2.7
1	G	256	ILE	2.7
1	А	157	TYR	2.6
6	R	195	GLN	2.6
1	А	148	VAL	2.6
1	С	127	ALA	2.6
1	G	241	PHE	2.6
1	Ι	149	TRP	2.6
1	Κ	101	LEU	2.6
1	Κ	226	MET	2.6
6	R	130	CYS	2.6
1	Κ	57	VAL	2.6
1	Ι	57	VAL	2.6
6	R	106	VAL	2.6
1	K	199	SER	2.6
1	С	62	LEU	2.5
1	Ι	218	LYS	2.5
3	W	150	THR	2.5
1	I	88	ASP	2.5
2	J	59	MET	2.5
1	G	116	ILE	2.5
1	K	230	TRP	2.5
5	Q	180	THR	2.4
1	A	152	LYS	2.4
1	Ι	159	THR	2.4
1	I	60	TRP	2.4
4	Т	133	ASN	2.4

Mol	Chain	Res	Type	RSRZ
1	Ι	103	HIS	2.4
1	K	200	VAL	2.4
1	K	250	PRO	2.4
1	А	140	LYS	2.4
1	А	41	LEU	2.3
2	L	68	ARG	2.3
3	S	47	LEU	2.3
1	А	117	ILE	2.3
1	А	163	SER	2.3
1	Ι	242	GLU	2.3
1	G	102	LYS	2.3
1	А	162	ARG	2.3
2	D	21	TRP	2.3
1	Ι	171	ASP	2.3
1	G	177	GLY	2.3
4	Т	4	MET	2.3
3	0	24	ILE	2.3
2	L	21	TRP	2.3
6	R	113	ILE	2.3
3	W	196[A]	VAL	2.3
1	G	159	THR	2.2
1	А	151	ILE	2.2
1	Ι	105	LEU	2.2
1	Ι	89	LEU	2.2
1	Κ	151	ILE	2.2
5	Q	156	LEU	2.2
3	W	107	VAL	2.2
1	С	126	GLU	2.1
1	Ι	247	PHE	2.1
1	A	62	LEU	2.1
3	U	24	ILE	2.1
1	K	76	TRP	2.1
1	K	210	VAL	2.1
2	H	59	MET	2.1
4	Т	151	GLN	2.1
1	Ι	269	LEU	2.1
5	Q	2	VAL	2.1
1	K	228	PHE	2.1
3	0	153	LEU	2.1
4	V	111	VAL	2.1
4	Т	142	VAL	2.1
3	0	184	VAL	2.1

Mol	Chain	Res	Type	RSRZ
1	Е	260	GLY	2.1
1	Ι	311	LEU	2.1
1	K	62	LEU	2.1
1	Ι	173	LEU	2.1
1	G	255	LYS	2.1
1	А	250	PRO	2.0
1	G	213	ILE	2.0
1	G	57	VAL	2.0
4	N	47	LEU	2.0
4	Т	106	VAL	2.0
1	G	209	LEU	2.0
3	U	151	ALA	2.0
1	А	101	LEU	2.0
1	А	95	PHE	2.0
1	Ι	256	ILE	2.0
1	Ι	154	ASN	2.0
1	Ι	200	VAL	2.0
2	L	63	PHE	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
7	NAG	Y	2	14/15	0.70	0.32	182,185,188,188	0
7	NAG	с	2	14/15	0.74	0.27	189,190,192,192	0
7	NAG	Z	2	14/15	0.77	0.31	139,139,139,139	0
7	NAG	b	2	14/15	0.81	0.26	193,195,196,197	0
7	NAG	Z	1	14/15	0.86	0.30	139,139,139,139	0
7	NAG	a	2	14/15	0.86	0.27	190,191,194,196	0
7	NAG	с	1	14/15	0.87	0.20	184,186,187,188	0
7	NAG	Y	1	14/15	0.88	0.23	176,178,181,181	0
7	NAG	b	1	14/15	0.89	0.24	188,189,192,192	0
7	NAG	a	1	14/15	0.94	0.21	182,185,189,189	0

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
8	NAG	D	201	14/15	0.68	0.33	174,176,178,178	0
8	NAG	Ι	403	14/15	0.69	0.24	139,139,139,139	0
8	NAG	K	403	14/15	0.69	0.28	139,139,139,139	0
8	NAG	С	401	14/15	0.70	0.26	139,139,139,139	0
8	NAG	С	402	14/15	0.75	0.28	139,139,139,139	0
8	NAG	G	403	14/15	0.76	0.23	139,139,139,139	0
8	NAG	А	401	14/15	0.78	0.28	139,139,139,139	0
8	NAG	K	402	14/15	0.78	0.26	139,139,139,139	0
8	NAG	А	402	14/15	0.78	0.26	139,139,139,139	0
8	NAG	L	201	14/15	0.80	0.30	190,192,195,196	0
8	NAG	Е	404	14/15	0.81	0.20	139,139,139,139	0
8	NAG	Е	403	14/15	0.82	0.27	139,139,139,139	0
8	NAG	Ι	402	14/15	0.83	0.29	139,139,139,139	0
8	NAG	Ι	401	14/15	0.84	0.16	139,139,139,139	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
8	NAG	G	401	14/15	0.86	0.23	139,139,139,139	0
8	NAG	С	403	14/15	0.86	0.29	139,139,139,139	0
8	NAG	Κ	404	14/15	0.87	0.31	139,139,139,139	0
8	NAG	G	402	14/15	0.89	0.22	139,139,139,139	0
8	NAG	Κ	401	14/15	0.91	0.18	139,139,139,139	0
8	NAG	А	403	14/15	0.92	0.15	139,139,139,139	0

Continued from previous page...

6.5 Other polymers (i)

There are no such residues in this entry.

