

# Full wwPDB X-ray Structure Validation Report (i)

#### Oct 11, 2023 – 10:07 PM EDT

| PDB ID       | : | 7JTR                                                                 |
|--------------|---|----------------------------------------------------------------------|
| Title        | : | Complex of maltose-binding protein (MBP) with single-chain Fv (scFv) |
| Authors      | : | Loll, P.J.                                                           |
| Deposited on | : | 2020-08-18                                                           |
| Resolution   | : | 2.50  Å(reported)                                                    |
|              |   |                                                                      |

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| MolProbity                     | : | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as541be (2020)                                 |
| Xtriage (Phenix)               | : | 1.13                                                               |
| EDS                            | : | 2.35.1                                                             |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| Refmac                         | : | 5.8.0158                                                           |
| CCP4                           | : | 7.0.044 (Gargrove)                                                 |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.35.1                                                             |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $X\text{-}RAY \, DIFFRACTION$ 

The reported resolution of this entry is 2.50 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | $\begin{array}{c} {\rm Whole \ archive} \\ (\#{\rm Entries}) \end{array}$ | ${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$ |
|-----------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| R <sub>free</sub>     | 130704                                                                    | 4661 (2.50-2.50)                                                          |
| Clashscore            | 141614                                                                    | 5346 (2.50-2.50)                                                          |
| Ramachandran outliers | 138981                                                                    | 5231 (2.50-2.50)                                                          |
| Sidechain outliers    | 138945                                                                    | 5233 (2.50-2.50)                                                          |
| RSRZ outliers         | 127900                                                                    | 4559 (2.50-2.50)                                                          |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain |      |   |
|-----|-------|--------|------------------|------|---|
| 1   | ٨     | 260    | 3%               |      |   |
| 1   | A     | 509    | 5%               | 18%  | • |
| 1   | С     | 369    | 76%              | 22%  | · |
| 1   | Б     | 0.00   | 4%               |      |   |
|     | E     | 369    | 84%              | 15%  | • |
|     | a     | 2.60   | 6%               |      | _ |
|     | G     | 369    | 78%              | 20%  | • |
| _   | _     |        | 4%               | _    |   |
| 2   | В     | 251    | 69% 20%          | • 10 | % |



| Mol | Chain | Length | Quality of chain |      |   |      |
|-----|-------|--------|------------------|------|---|------|
| 2   | П     | 951    | 4%               | 100/ |   | 110/ |
|     |       | 201    | 6%<br>6%         | 19%  | • | 11%  |
| 2   | F     | 251    | 67%              | 21%  | • | 11%  |
| 2   | Н     | 251    | 4% 71%           | 18%  |   | 11%  |
| 3   | J     | 2      | 50%              | 50%  |   |      |
| 3   | K     | 2      | 50%              | 50%  |   |      |
| 3   | L     | 2      | 100%             |      |   |      |
| 3   | М     | 2      | 50%              | 50%  |   |      |



## 2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 18514 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain | Residues | Atoms |      |     |     |              | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|------|-----|-----|--------------|---------|---------|-------|
| 1   | Δ     | 260      | Total | С    | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
|     | A     | 309      | 2871  | 1849 | 467 | 549 | 6            | 0       | 0       | 0     |
| 1   | C     | 260      | Total | С    | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
|     | U     | 309      | 2871  | 1849 | 467 | 549 | 6            | 0       | 0       | 0     |
| 1   | Б     | 260      | Total | С    | Ν   | 0   | S            | 0       | 0       | 0     |
|     |       | 309      | 2871  | 1849 | 467 | 549 | 6            | 0       | 0       | 0     |
| 1 G | 260   | Total    | С     | Ν    | 0   | S   | 0            | 0       | 0       |       |
|     | 369   | 2871     | 1849  | 467  | 549 | 6   | 0            | U       | U       |       |

• Molecule 1 is a protein called Maltose/maltodextrin-binding periplasmic protein.

There are 4 discrepancies between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment | Reference  |
|-------|---------|----------|--------|---------|------------|
| А     | 312     | VAL      | ALA    | variant | UNP P0AEX9 |
| С     | 312     | VAL      | ALA    | variant | UNP P0AEX9 |
| Е     | 312     | VAL      | ALA    | variant | UNP P0AEX9 |
| G     | 312     | VAL      | ALA    | variant | UNP P0AEX9 |

• Molecule 2 is a protein called single-chain Fv antibody fragment (scFv).

| Mol | Chain | Residues | Atoms |      |     |     |   | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|------|-----|-----|---|---------|---------|-------|
| 0   | р     | 225      | Total | С    | Ν   | 0   | S | 0       | 0       | 0     |
|     | D     | 220      | 1734  | 1096 | 288 | 341 | 9 | 0       | 0       | 0     |
| 0   | П     | 202      | Total | С    | Ν   | 0   | S | 0       | 0       | 0     |
|     | D     | 223      | 1721  | 1089 | 285 | 338 | 9 | 0       | 0       | 0     |
| 0   | Б     | F 224    | Total | С    | Ν   | 0   | S | 0       | 0       | 0     |
|     | Г     |          | 1731  | 1094 | 289 | 339 | 9 | 0       | 0       | 0     |
| 2 H | п     | 224      | Total | С    | Ν   | 0   | S | 0       | 0       | 0     |
|     | п     |          | 1731  | 1094 | 289 | 339 | 9 |         | U       | U     |

• Molecule 3 is an oligosaccharide called alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose.





| Mol | Chain | Residues | Atoms                                                        | ZeroOcc | AltConf | Trace |
|-----|-------|----------|--------------------------------------------------------------|---------|---------|-------|
| 3   | J     | 2        | Total         C         O           23         12         11 | 0       | 0       | 0     |
| 3   | K     | 2        | Total         C         O           23         12         11 | 0       | 0       | 0     |
| 3   | L     | 2        | Total         C         O           23         12         11 | 0       | 0       | 0     |
| 3   | М     | 2        | Total         C         O           23         12         11 | 0       | 0       | 0     |

• Molecule 4 is CHLORIDE ION (three-letter code: CL) (formula: Cl).

| Mol | Chain | Residues | Atoms           | ZeroOcc | AltConf |
|-----|-------|----------|-----------------|---------|---------|
| 4   | В     | 1        | Total Cl<br>1 1 | 0       | 0       |
| 4   | F     | 1        | Total Cl<br>1 1 | 0       | 0       |
| 4   | Н     | 1        | Total Cl<br>1 1 | 0       | 0       |

• Molecule 5 is water.

| Mol | Chain | Residues | Atoms          | ZeroOcc | AltConf |
|-----|-------|----------|----------------|---------|---------|
| 5   | А     | 4        | Total O<br>4 4 | 0       | 0       |
| 5   | С     | 2        | Total O<br>2 2 | 0       | 0       |
| 5   | D     | 1        | Total O<br>1 1 | 0       | 0       |
| 5   | Е     | 4        | Total O<br>4 4 | 0       | 0       |
| 5   | F     | 2        | Total O<br>2 2 | 0       | 0       |
| 5   | G     | 4        | Total O<br>4 4 | 0       | 0       |
| 5   | Н     | 1        | Total O<br>1 1 | 0       | 0       |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Maltose/maltodextrin-binding periplasmic protein



• Molecule 1: Maltose/maltodextrin-binding periplasmic protein



• Molecule 1: Maltose/maltodextrin-binding periplasmic protein







| • Molecule                                   | 2: single-chain Fv antibody fra                                                                                                   | agment (scFv)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Chain II.                                    | 6                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                      |
| Chain H:                                     | 71%                                                                                                                               | 18% 11%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                      |
| MET<br>01<br>05<br>111<br>112<br>113<br>113  | R23<br>R32<br>R32<br>R32<br>R33<br>R32<br>R33<br>R33<br>R32<br>R33<br>R40<br>R40<br>R40<br>R40<br>R40<br>R40<br>R40<br>R55<br>R53 | 866<br>772<br>885<br>885<br>186<br>187<br>885<br>186<br>187<br>885<br>811<br>8111<br>8111<br>8111<br>8113<br>8113<br>8113<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GLY<br>SER<br>GLY<br>GLY<br>GLY<br>SER |
| D130<br>0135<br>0135<br>8143<br>0146<br>0146 | V148<br>V148<br>V149<br>T149<br>T149<br>N161<br>N161<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN        | 11481<br>11483<br>11483<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>11488<br>114888<br>114888<br>114888<br>114888<br>1148888<br>114888<br>114888<br>114888<br>114888<br>1148888 | HIS<br>HIS<br>HIS<br>HIS<br>HIS<br>HIS |
| • Molecule                                   | 3: alpha-D-glucopyranose-(1-4                                                                                                     | l)-alpha-D-glucopyranose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
| Chain J:                                     | 50%                                                                                                                               | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                      |
| GLC1<br>GLC2                                 |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |
| • Molecule                                   | 3: alpha-D-glucopyranose-(1-4                                                                                                     | alpha-D-glucopyranose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
| Chain K:                                     | 50%                                                                                                                               | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                      |
| GLC1<br>GLC2                                 |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |
| • Molecule                                   | 3: alpha-D-glucopyranose-(1-4                                                                                                     | )-alpha-D-glucopyranose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
| Chain L:                                     | 1(                                                                                                                                | 00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                      |
| GLC1<br>GLC2                                 |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |
| • Molecule                                   | 3: alpha-D-glucopyranose-(1-4                                                                                                     | alpha-D-glucopyranose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
| Chain M:                                     | 50%                                                                                                                               | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| GL C1<br>GL C2                               |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |



## 4 Data and refinement statistics (i)

| Property                                           | Value                                           | Source    |
|----------------------------------------------------|-------------------------------------------------|-----------|
| Space group                                        | P 1 21 1                                        | Depositor |
| Cell constants                                     | 95.20Å 91.70Å 174.63Å                           | Deperitor |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$             | $90.00^{\circ}$ $91.44^{\circ}$ $90.00^{\circ}$ | Depositor |
| $\mathbf{P}_{\text{oscolution}}(\hat{\mathbf{A}})$ | 20.00 - 2.50                                    | Depositor |
| Resolution (A)                                     | 20.00 - 2.50                                    | EDS       |
| % Data completeness                                | 98.2 (20.00-2.50)                               | Depositor |
| (in resolution range)                              | 98.4 (20.00-2.50)                               | EDS       |
| $R_{merge}$                                        | 0.08                                            | Depositor |
| $R_{sym}$                                          | (Not available)                                 | Depositor |
| $< I/\sigma(I) > 1$                                | $2.33 (at 2.50 \text{\AA})$                     | Xtriage   |
| Refinement program                                 | PHENIX v1.11.1                                  | Depositor |
| B B.                                               | 0.201 , $0.237$                                 | Depositor |
| $\mathbf{n}, \mathbf{n}_{free}$                    | 0.201 , $0.238$                                 | DCC       |
| $R_{free}$ test set                                | 1980 reflections $(1.94\%)$                     | wwPDB-VP  |
| Wilson B-factor $(Å^2)$                            | 56.3                                            | Xtriage   |
| Anisotropy                                         | 0.851                                           | Xtriage   |
| Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$        | 0.31 , $40.0$                                   | EDS       |
| L-test for $twinning^2$                            | $<  L  > = 0.48, < L^2 > = 0.31$                | Xtriage   |
|                                                    | 0.009 for k,h,-l                                |           |
| Estimated twinning fraction                        | 0.004 for -k,-h,-l                              | Xtriage   |
|                                                    | 0.026 for h,-k,-l                               |           |
| $F_o, F_c$ correlation                             | 0.95                                            | EDS       |
| Total number of atoms                              | 18514                                           | wwPDB-VP  |
| Average B, all atoms $(Å^2)$                       | 66.0                                            | wwPDB-VP  |

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 5.17% of the height of the origin peak. No significant pseudotranslation is detected.

<sup>&</sup>lt;sup>2</sup>Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

# 5 Model quality (i)

## 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: CL, GLC

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol Chain |     | Bo   | nd lengths     | Bond angles |                 |  |
|-----------|-----|------|----------------|-------------|-----------------|--|
|           |     | RMSZ | # Z  > 5       | RMSZ        | # Z  > 5        |  |
| 1         | А   | 0.51 | 2/2940~(0.1%)  | 0.74        | 9/3990~(0.2%)   |  |
| 1         | С   | 0.53 | 1/2940~(0.0%)  | 0.83        | 12/3990~(0.3%)  |  |
| 1         | Ε   | 0.50 | 1/2940~(0.0%)  | 0.73        | 5/3990~(0.1%)   |  |
| 1         | G   | 0.51 | 1/2940~(0.0%)  | 0.77        | 13/3990~(0.3%)  |  |
| 2         | В   | 0.49 | 0/1773         | 0.72        | 3/2403~(0.1%)   |  |
| 2         | D   | 0.50 | 0/1760         | 0.96        | 8/2385~(0.3%)   |  |
| 2         | F   | 0.51 | 0/1770         | 0.83        | 5/2398~(0.2%)   |  |
| 2         | Н   | 0.49 | 0/1770         | 0.75        | 3/2398~(0.1%)   |  |
| All       | All | 0.51 | 5/18833~(0.0%) | 0.79        | 58/25544~(0.2%) |  |

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

| Mol | Chain | #Chirality outliers | #Planarity outliers |
|-----|-------|---------------------|---------------------|
| 1   | С     | 0                   | 1                   |

All (5) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms  | Z     | $\operatorname{Observed}(\operatorname{\AA})$ | $\operatorname{Ideal}(\operatorname{\AA})$ |
|-----|-------|-----|------|--------|-------|-----------------------------------------------|--------------------------------------------|
| 1   | Е     | 179 | LYS  | CD-CE  | 6.21  | 1.66                                          | 1.51                                       |
| 1   | А     | 359 | GLU  | CD-OE2 | 5.97  | 1.32                                          | 1.25                                       |
| 1   | А     | 359 | GLU  | CD-OE1 | 5.72  | 1.31                                          | 1.25                                       |
| 1   | С     | 34  | LYS  | CD-CE  | 5.67  | 1.65                                          | 1.51                                       |
| 1   | G     | 367 | ARG  | CB-CG  | -5.07 | 1.38                                          | 1.52                                       |

All (58) bond angle outliers are listed below:



| Mol | Chain | Res              | Type | Atoms      | Z      | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------------------|------|------------|--------|------------------|---------------|
| 2   | D     | 40               | ARG  | NE-CZ-NH1  | -16.17 | 112.22           | 120.30        |
| 2   | D     | 40               | ARG  | NE-CZ-NH2  | 13.70  | 127.15           | 120.30        |
| 2   | D     | 70               | LEU  | CB-CG-CD2  | -13.24 | 88.49            | 111.00        |
| 1   | G     | 341              | TYR  | CA-CB-CG   | -10.55 | 93.35            | 113.40        |
| 2   | D     | 40               | ARG  | CG-CD-NE   | 9.56   | 131.88           | 111.80        |
| 1   | С     | 341              | TYR  | CB-CG-CD2  | -9.45  | 115.33           | 121.00        |
| 1   | А     | 1                | LYS  | N-CA-C     | 8.95   | 135.16           | 111.00        |
| 2   | F     | 159              | LEU  | CB-CG-CD2  | 8.58   | 125.59           | 111.00        |
| 1   | G     | 367              | ARG  | NE-CZ-NH2  | -8.41  | 116.09           | 120.30        |
| 2   | F     | 5                | GLN  | C-N-CA     | 8.31   | 142.47           | 121.70        |
| 1   | С     | 34               | LYS  | CB-CG-CD   | -8.12  | 90.48            | 111.60        |
| 1   | С     | 341              | TYR  | CB-CG-CD1  | 8.12   | 125.87           | 121.00        |
| 1   | G     | 127              | LYS  | CB-CG-CD   | -7.46  | 92.21            | 111.60        |
| 1   | G     | 341              | TYR  | CB-CG-CD1  | 7.23   | 125.34           | 121.00        |
| 1   | С     | 66               | ARG  | CG-CD-NE   | 7.21   | 126.94           | 111.80        |
| 2   | F     | 72               | VAL  | CG1-CB-CG2 | 7.12   | 122.30           | 110.90        |
| 1   | С     | 34               | LYS  | CA-CB-CG   | 7.10   | 129.02           | 113.40        |
| 2   | Н     | 180              | LYS  | CA-CB-CG   | 7.03   | 128.88           | 113.40        |
| 1   | G     | 102              | LYS  | CD-CE-NZ   | -6.91  | 95.80            | 111.70        |
| 1   | А     | 1                | LYS  | CB-CA-C    | -6.89  | 96.63            | 110.40        |
| 2   | D     | 5                | GLN  | C-N-CA     | 6.87   | 138.87           | 121.70        |
| 1   | А     | 175              | LYS  | CA-CB-CG   | 6.78   | 128.31           | 113.40        |
| 1   | Ε     | 239              | LYS  | CA-CB-CG   | 6.72   | 128.18           | 113.40        |
| 1   | А     | 179              | LYS  | CA-CB-CG   | 6.71   | 128.16           | 113.40        |
| 1   | С     | 335              | GLN  | CA-CB-CG   | 6.65   | 128.03           | 113.40        |
| 2   | D     | 39               | GLN  | C-N-CA     | -6.62  | 105.15           | 121.70        |
| 1   | G     | 102              | LYS  | CA-CB-CG   | -6.56  | 98.96            | 113.40        |
| 1   | Ε     | 33               | ILE  | CA-CB-CG1  | -6.55  | 98.55            | 111.00        |
| 2   | F     | 159              | LEU  | CA-CB-CG   | 6.55   | 130.37           | 115.30        |
| 1   | G     | 200              | LYS  | CD-CE-NZ   | -6.52  | 96.71            | 111.70        |
| 2   | В     | 70               | LEU  | CB-CG-CD2  | -6.48  | 99.98            | 111.00        |
| 1   | G     | 367              | ARG  | NE-CZ-NH1  | 6.34   | 123.47           | 120.30        |
| 1   | G     | $36\overline{7}$ | ARG  | CB-CA-C    | 6.29   | 122.98           | 110.40        |
| 1   | G     | 367              | ARG  | N-CA-CB    | -6.29  | 99.28            | 110.60        |
| 1   | G     | $5\overline{0}$  | VAL  | CG1-CB-CG2 | 6.26   | 120.92           | 110.90        |
| 2   | D     | 70               | LEU  | CA-CB-CG   | -5.96  | 101.60           | 115.30        |
| 1   | С     | 34               | LYS  | CD-CE-NZ   | 5.72   | 124.86           | 111.70        |
| 1   | A     | 175              | LYS  | CB-CA-C    | -5.59  | 99.22            | 110.40        |
| 1   | E     | 239              | LYS  | N-CA-CB    | -5.51  | 100.68           | 110.60        |
| 1   | А     | 66               | ARG  | CG-CD-NE   | 5.50   | 123.36           | 111.80        |
| 1   | A     | 175              | LYS  | N-CA-CB    | 5.49   | 120.49           | 110.60        |
| 2   | F     | 112              | VAL  | CG1-CB-CG2 | 5.45   | 119.62           | 110.90        |
| 1   | Ε     | 269              | ALA  | C-N-CA     | -5.41  | 108.17           | 121.70        |



| Mol | Chain | $\mathbf{Res}$ | Type | Atoms      | $\mathbf{Z}$ | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|----------------|------|------------|--------------|------------------|---------------|
| 1   | Е     | 6              | LYS  | CB-CA-C    | 5.41         | 121.22           | 110.40        |
| 2   | В     | 23             | LYS  | CA-CB-CG   | 5.39         | 125.27           | 113.40        |
| 1   | С     | 138            | GLU  | N-CA-CB    | -5.38        | 100.91           | 110.60        |
| 1   | G     | 340            | TRP  | CA-CB-CG   | 5.35         | 123.86           | 113.70        |
| 1   | А     | 1              | LYS  | CD-CE-NZ   | -5.34        | 99.42            | 111.70        |
| 1   | А     | 359            | GLU  | CB-CA-C    | 5.34         | 121.08           | 110.40        |
| 2   | Н     | 43             | GLN  | C-N-CA     | -5.31        | 111.15           | 122.30        |
| 1   | С     | 327            | GLY  | C-N-CA     | -5.30        | 108.45           | 121.70        |
| 1   | G     | 102            | LYS  | CB-CG-CD   | 5.26         | 125.27           | 111.60        |
| 1   | С     | 367            | ARG  | NE-CZ-NH2  | -5.24        | 117.68           | 120.30        |
| 1   | С     | 189            | LYS  | CD-CE-NZ   | 5.16         | 123.57           | 111.70        |
| 2   | В     | 112            | VAL  | CG1-CB-CG2 | -5.14        | 102.68           | 110.90        |
| 2   | Н     | 106            | GLN  | CA-CB-CG   | 5.09         | 124.61           | 113.40        |
| 2   | D     | 198            | ILE  | CG1-CB-CG2 | 5.06         | 122.53           | 111.40        |
| 1   | С     | 288            | GLU  | N-CA-CB    | -5.03        | 101.56           | 110.60        |

There are no chirality outliers.

All (1) planarity outliers are listed below:

| Mol | Chain | Res | Type | Group     |
|-----|-------|-----|------|-----------|
| 1   | С     | 335 | GLN  | Sidechain |

### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | А     | 2871  | 0        | 2850     | 44      | 0            |
| 1   | С     | 2871  | 0        | 2850     | 62      | 2            |
| 1   | Е     | 2871  | 0        | 2850     | 37      | 2            |
| 1   | G     | 2871  | 0        | 2850     | 64      | 0            |
| 2   | В     | 1734  | 0        | 1676     | 37      | 0            |
| 2   | D     | 1721  | 0        | 1665     | 50      | 0            |
| 2   | F     | 1731  | 0        | 1675     | 40      | 0            |
| 2   | Н     | 1731  | 0        | 1676     | 24      | 0            |
| 3   | J     | 23    | 0        | 21       | 0       | 0            |
| 3   | Κ     | 23    | 0        | 21       | 4       | 0            |
| 3   | L     | 23    | 0        | 21       | 1       | 0            |



| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 3   | М     | 23    | 0        | 21       | 2       | 0            |
| 4   | В     | 1     | 0        | 0        | 0       | 0            |
| 4   | F     | 1     | 0        | 0        | 1       | 0            |
| 4   | Н     | 1     | 0        | 0        | 0       | 0            |
| 5   | А     | 4     | 0        | 0        | 1       | 0            |
| 5   | С     | 2     | 0        | 0        | 0       | 0            |
| 5   | D     | 1     | 0        | 0        | 0       | 0            |
| 5   | Ε     | 4     | 0        | 0        | 0       | 0            |
| 5   | F     | 2     | 0        | 0        | 0       | 0            |
| 5   | G     | 4     | 0        | 0        | 0       | 0            |
| 5   | Н     | 1     | 0        | 0        | 0       | 0            |
| All | All   | 18514 | 0        | 18176    | 350     | 2            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 10.

All (350) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom 1           | Atom 2           | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:G:1:LYS:HD2    | 1:G:54:GLY:C     | 1.72         | 1.09        |
| 1:C:170:LYS:HE2  | 1:C:172:GLU:CG   | 1.83         | 1.08        |
| 1:G:1:LYS:HD2    | 1:G:54:GLY:O     | 1.53         | 1.07        |
| 2:D:13:ARG:HG2   | 2:D:14:PRO:HD2   | 1.43         | 1.01        |
| 1:C:170:LYS:HE2  | 1:C:172:GLU:HG3  | 1.02         | 1.01        |
| 1:E:3:GLU:OE1    | 1:E:6:LYS:HE2    | 1.62         | 0.99        |
| 2:D:13:ARG:CG    | 2:D:14:PRO:HD2   | 1.94         | 0.98        |
| 1:E:3:GLU:CD     | 1:E:6:LYS:HE2    | 1.84         | 0.98        |
| 2:D:13:ARG:HB2   | 2:D:113:SER:C    | 1.86         | 0.94        |
| 1:G:355:GLN:OE1  | 1:G:359:GLU:OE1  | 1.88         | 0.91        |
| 2:D:13:ARG:CG    | 2:D:14:PRO:CD    | 2.50         | 0.90        |
| 1:C:170:LYS:CE   | 1:C:172:GLU:HG3  | 1.99         | 0.87        |
| 2:D:51:ILE:HD11  | 2:D:72:VAL:HB    | 1.55         | 0.85        |
| 1:G:341:TYR:HH   | 3:M:2:GLC:HO4    | 1.26         | 0.84        |
| 1:C:192:LEU:HD23 | 1:C:361:LEU:HD11 | 1.61         | 0.82        |
| 2:D:13:ARG:HG2   | 2:D:14:PRO:CD    | 2.09         | 0.82        |
| 1:A:89:LEU:HD12  | 1:A:94:TRP:CZ2   | 2.15         | 0.80        |
| 2:D:13:ARG:HG3   | 2:D:14:PRO:CD    | 2.11         | 0.80        |
| 2:D:51:ILE:CD1   | 2:D:72:VAL:HB    | 2.12         | 0.79        |
| 1:G:1:LYS:CD     | 1:G:54:GLY:HA3   | 2.16         | 0.76        |
| 2:F:135:GLN:NE2  | 2:F:221:TYR:O    | 2.18         | 0.75        |
| 2:F:174:LYS:NZ   | 4:F:301:CL:CL    | 2.57         | 0.75        |



|                  |                  | Interatomic             | Clash       |
|------------------|------------------|-------------------------|-------------|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |
| 2:B:12:VAL:HG23  | 2:B:112:VAL:HG12 | 1.70                    | 0.74        |
| 1:C:1:LYS:N      | 1:C:55:ASP:OD1   | 2.18                    | 0.74        |
| 1:A:48:PRO:HG3   | 1:A:70:TYR:HE1   | 1.51                    | 0.74        |
| 2:H:5:GLN:HB3    | 2:H:23:LYS:HB3   | 1.70                    | 0.73        |
| 2:H:135:GLN:NE2  | 2:H:221:TYR:O    | 2.23                    | 0.72        |
| 1:G:1:LYS:HG2    | 1:G:55:ASP:OD2   | 1.91                    | 0.71        |
| 2:F:142:MET:HG3  | 2:F:148:VAL:HG22 | 1.72                    | 0.71        |
| 1:A:239:LYS:HG3  | 2:H:149:THR:HG21 | 1.73                    | 0.70        |
| 1:G:1:LYS:HD2    | 1:G:54:GLY:CA    | 2.21                    | 0.70        |
| 2:F:39:GLN:HB2   | 2:F:45:LEU:HD23  | 1.72                    | 0.70        |
| 2:H:143:SER:O    | 2:H:146:GLN:HG3  | 1.92                    | 0.69        |
| 1:A:48:PRO:HG3   | 1:A:70:TYR:CE1   | 2.28                    | 0.68        |
| 1:C:344:ARG:NH2  | 3:K:2:GLC:H62    | 2.08                    | 0.68        |
| 2:B:161:ASN:HA   | 2:B:164:GLN:HG3  | 1.75                    | 0.68        |
| 1:E:238:SER:O    | 1:E:239:LYS:HB2  | 1.94                    | 0.68        |
| 2:H:166:ASN:HD21 | 2:H:202:SER:HB2  | 1.58                    | 0.68        |
| 1:E:48:PRO:HG3   | 1:E:70:TYR:HE1   | 1.60                    | 0.67        |
| 2:D:160:ILE:HD11 | 2:D:164:GLN:HE22 | 1.59                    | 0.67        |
| 2:B:87:THR:O     | 2:B:112:VAL:HG21 | 1.95                    | 0.67        |
| 2:D:13:ARG:CB    | 2:D:113:SER:C    | 2.62                    | 0.66        |
| 1:A:312:VAL:HG13 | 1:A:321:MET:HE1  | 1.77                    | 0.66        |
| 2:D:13:ARG:HG3   | 2:D:14:PRO:HD3   | 1.78                    | 0.66        |
| 2:B:142:MET:HG3  | 2:B:148:VAL:HG22 | 1.78                    | 0.66        |
| 1:E:8:VAL:HG13   | 1:E:57:PRO:HA    | 1.79                    | 0.65        |
| 2:B:160:ILE:HD11 | 2:B:165:LYS:HE3  | 1.77                    | 0.65        |
| 1:E:308:GLU:O    | 1:E:312:VAL:HG23 | 1.97                    | 0.65        |
| 1:G:89:LEU:HD23  | 1:G:107:PRO:HG2  | 1.79                    | 0.65        |
| 1:C:96:ALA:HB2   | 1:C:329:ILE:HD11 | 1.78                    | 0.65        |
| 2:D:13:ARG:HG3   | 2:D:14:PRO:HD2   | 1.71                    | 0.65        |
| 1:A:89:LEU:HD23  | 1:A:304:LEU:HA   | 1.80                    | 0.64        |
| 1:C:126:PRO:HD2  | 1:C:224:MET:HE3  | 1.79                    | 0.64        |
| 2:D:12:VAL:O     | 2:D:112:VAL:HA   | 1.98                    | 0.64        |
| 1:A:110:VAL:HG12 | 1:A:261:VAL:HG22 | 1.78                    | 0.64        |
| 2:D:12:VAL:HG11  | 2:D:18:VAL:CG1   | 2.27                    | 0.64        |
| 1:G:363:ASP:O    | 1:G:367:ARG:HB2  | 1.97                    | 0.64        |
| 1:E:48:PRO:HG3   | 1:E:70:TYR:CE1   | 2.33                    | 0.64        |
| 2:F:210:ILE:HB   | 2:F:213:VAL:HG12 | 1.79                    | 0.64        |
| 1:G:1:LYS:CD     | 1:G:54:GLY:O     | 2.40                    | 0.63        |
| 1:A:308:GLU:O    | 1:A:312:VAL:HG23 | 1.99                    | 0.63        |
| 2:B:225:GLN:HE21 | 2:B:232:THR:HG22 | 1.63                    | 0.63        |
| 2:B:13:ARG:HG2   | 2:B:113:SER:O    | 1.99                    | 0.63        |



|                  | le as pagem      | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:C:239:LYS:HG3  | 2:F:149:THR:HG21 | 1.80         | 0.63        |
| 2:F:88:SER:HA    | 2:F:112:VAL:CG2  | 2.29         | 0.63        |
| 2:H:53:PRO:HB3   | 2:H:72:VAL:HG21  | 1.79         | 0.63        |
| 1:G:1:LYS:HD3    | 1:G:54:GLY:HA3   | 1.80         | 0.62        |
| 1:E:3:GLU:OE2    | 1:E:6:LYS:HE2    | 1.99         | 0.62        |
| 1:G:176:TYR:CZ   | 1:G:331:PRO:HG3  | 2.35         | 0.62        |
| 2:F:196:ARG:HD2  | 2:F:212:SER:O    | 2.00         | 0.62        |
| 1:G:78:GLU:CD    | 1:G:102:LYS:HD3  | 2.20         | 0.62        |
| 2:D:12:VAL:HG11  | 2:D:18:VAL:HG13  | 1.82         | 0.61        |
| 1:G:48:PRO:HG3   | 1:G:70:TYR:HE1   | 1.65         | 0.61        |
| 2:D:135:GLN:NE2  | 2:D:221:TYR:O    | 2.33         | 0.61        |
| 1:C:205:ASN:HB3  | 1:C:207:ASP:OD1  | 2.01         | 0.61        |
| 2:F:14:PRO:HD3   | 2:F:113:SER:C    | 2.21         | 0.61        |
| 1:G:110:VAL:HG22 | 1:G:261:VAL:HG22 | 1.83         | 0.61        |
| 2:F:142:MET:HG3  | 2:F:148:VAL:CG2  | 2.30         | 0.60        |
| 1:C:44:GLU:HG2   | 1:C:45:GLU:N     | 2.17         | 0.60        |
| 1:G:308:GLU:O    | 1:G:312:VAL:HG23 | 2.01         | 0.60        |
| 1:E:89:LEU:HD23  | 1:E:107:PRO:HG2  | 1.83         | 0.59        |
| 2:H:11:LEU:HD23  | 2:H:111:THR:HB   | 1.85         | 0.59        |
| 1:C:79:ILE:HG13  | 1:C:81:PRO:HD3   | 1.84         | 0.58        |
| 1:G:331:PRO:HD2  | 1:G:336:MET:HE3  | 1.83         | 0.58        |
| 1:A:238:SER:O    | 1:A:238:SER:OG   | 2.20         | 0.58        |
| 2:B:12:VAL:O     | 2:B:112:VAL:HA   | 2.03         | 0.58        |
| 1:C:259:VAL:HG13 | 1:C:329:ILE:HA   | 1.84         | 0.58        |
| 1:G:8:VAL:HG13   | 1:G:57:PRO:HA    | 1.86         | 0.57        |
| 2:D:87:THR:O     | 2:D:112:VAL:HG11 | 2.03         | 0.57        |
| 2:F:160:ILE:HD11 | 2:F:165:LYS:HE2  | 1.87         | 0.57        |
| 2:F:153:LYS:HE3  | 2:F:204:THR:OG1  | 2.05         | 0.57        |
| 1:C:65:ASP:OD2   | 3:K:2:GLC:O3     | 2.21         | 0.57        |
| 1:G:268:ALA:O    | 1:G:273:LYS:NZ   | 2.35         | 0.57        |
| 2:B:112:VAL:HG23 | 2:B:112:VAL:O    | 2.04         | 0.57        |
| 1:C:312:VAL:HG13 | 1:C:321:MET:HE1  | 1.86         | 0.57        |
| 2:B:131:ILE:O    | 2:B:232:THR:HG21 | 2.05         | 0.56        |
| 2:D:160:ILE:HD11 | 2:D:164:GLN:NE2  | 2.20         | 0.56        |
| 1:G:350:ALA:HA   | 1:G:355:GLN:O    | 2.05         | 0.56        |
| 2:B:51:ILE:HG12  | 2:B:72:VAL:HG23  | 1.87         | 0.56        |
| 2:F:168:LEU:HD22 | 2:F:206:PHE:CG   | 2.40         | 0.56        |
| 2:H:142:MET:HG3  | 2:H:148:VAL:HG22 | 1.87         | 0.56        |
| 1:C:89:LEU:HD23  | 1:C:107:PRO:HG2  | 1.87         | 0.56        |
| 1:C:45:GLU:O     | 1:C:48:PRO:HD2   | 2.06         | 0.56        |
| 1:E:277:LYS:HE3  | 1:E:281:GLU:OE2  | 2.06         | 0.56        |



|                  |                  | Interatomic             | Clash       |
|------------------|------------------|-------------------------|-------------|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |
| 1:C:48:PRO:HG3   | 1:C:70:TYR:HE1   | 1.71                    | 0.56        |
| 2:D:12:VAL:O     | 2:D:113:SER:N    | 2.33                    | 0.56        |
| 1:G:1:LYS:CG     | 1:G:55:ASP:OD2   | 2.54                    | 0.56        |
| 1:G:45:GLU:O     | 1:G:48:PRO:HD2   | 2.06                    | 0.56        |
| 1:G:192:LEU:O    | 1:G:196:VAL:HG23 | 2.06                    | 0.56        |
| 1:G:312:VAL:HG13 | 1:G:321:MET:HE1  | 1.87                    | 0.56        |
| 2:H:218:LEU:HD23 | 2:H:240:GLU:HA   | 1.88                    | 0.56        |
| 1:A:286:THR:HB   | 1:A:289:GLY:H    | 1.71                    | 0.55        |
| 2:H:39:GLN:HB2   | 2:H:45:LEU:HD23  | 1.87                    | 0.55        |
| 1:E:44:GLU:HB2   | 1:E:66:ARG:HD3   | 1.88                    | 0.55        |
| 1:E:278:GLU:OE2  | 2:F:28:THR:HB    | 2.06                    | 0.55        |
| 2:H:196:ARG:NH2  | 2:H:217:ASP:OD1  | 2.38                    | 0.55        |
| 1:C:122:LEU:HD21 | 1:C:126:PRO:HD3  | 1.88                    | 0.55        |
| 2:D:142:MET:HG3  | 2:D:148:VAL:HG22 | 1.88                    | 0.55        |
| 1:C:308:GLU:O    | 1:C:312:VAL:HG23 | 2.07                    | 0.54        |
| 2:F:71:THR:OG1   | 2:F:80:TYR:HB2   | 2.07                    | 0.54        |
| 2:F:112:VAL:HG23 | 2:F:112:VAL:O    | 2.08                    | 0.54        |
| 1:E:342:ALA:HB3  | 1:E:368:ILE:HD11 | 1.90                    | 0.54        |
| 1:E:68:GLY:HA3   | 1:E:332:ASN:O    | 2.07                    | 0.54        |
| 2:D:4:LEU:HD12   | 2:D:103:TYR:HD1  | 1.73                    | 0.54        |
| 2:D:172:GLN:HB2  | 2:D:182:LEU:HD11 | 1.89                    | 0.54        |
| 1:C:115:LEU:HD11 | 1:C:224:MET:HE2  | 1.89                    | 0.54        |
| 1:C:344:ARG:HH21 | 3:K:2:GLC:H62    | 1.72                    | 0.54        |
| 2:D:35:HIS:HB2   | 2:D:97:THR:HG22  | 1.90                    | 0.54        |
| 1:G:341:TYR:OH   | 3:M:2:GLC:O4     | 2.11                    | 0.53        |
| 2:B:12:VAL:CG2   | 2:B:112:VAL:HG12 | 2.38                    | 0.53        |
| 1:G:349:ASN:HB3  | 1:G:355:GLN:CG   | 2.39                    | 0.53        |
| 2:B:87:THR:HG23  | 2:B:89:GLU:H     | 1.73                    | 0.53        |
| 1:E:45:GLU:O     | 1:E:48:PRO:HD2   | 2.08                    | 0.53        |
| 1:C:126:PRO:HD2  | 1:C:224:MET:CE   | 2.38                    | 0.53        |
| 2:D:91:SER:OG    | 2:D:112:VAL:HG12 | 2.09                    | 0.53        |
| 1:A:176:TYR:CZ   | 1:A:331:PRO:HG3  | 2.43                    | 0.52        |
| 2:F:172:GLN:HB2  | 2:F:182:LEU:HD11 | 1.90                    | 0.52        |
| 1:C:31:THR:HB    | 1:C:33:ILE:HD12  | 1.90                    | 0.52        |
| 1:C:111:GLU:O    | 1:C:259:VAL:HG23 | 2.09                    | 0.52        |
| 1:A:79:ILE:HG13  | 1:A:81:PRO:HD3   | 1.92                    | 0.52        |
| 2:F:88:SER:HA    | 2:F:112:VAL:HG21 | 1.90                    | 0.52        |
| 2:D:168:LEU:HD22 | 2:D:206:PHE:CG   | 2.44                    | 0.52        |
| 1:G:48:PRO:HG3   | 1:G:70:TYR:CE1   | 2.44                    | 0.52        |
| 1:C:199:ILE:HD13 | 1:C:204:MET:HB2  | 1.92                    | 0.51        |
| 1:G:184:ASP:OD1  | 1:G:189:LYS:HE2  | 2.10                    | 0.51        |



|                  | A L O            | Interatomic             | Clash       |  |
|------------------|------------------|-------------------------|-------------|--|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |  |
| 1:C:48:PRO:HG3   | 1:C:70:TYR:CE1   | 2.45                    | 0.51        |  |
| 1:A:44:GLU:HG2   | 1:A:45:GLU:HG3   | 1.91                    | 0.51        |  |
| 1:G:1:LYS:CD     | 1:G:54:GLY:CA    | 2.81                    | 0.51        |  |
| 1:G:21:ALA:O     | 1:G:25:LYS:HG3   | 2.10                    | 0.51        |  |
| 1:C:67:PHE:HB3   | 1:C:104:ILE:HD12 | 1.93                    | 0.51        |  |
| 1:A:122:LEU:HD21 | 1:A:126:PRO:HD3  | 1.93                    | 0.51        |  |
| 2:B:35:HIS:HB2   | 2:B:97:THR:HG22  | 1.93                    | 0.51        |  |
| 2:D:6:GLN:HB3    | 2:D:108:THR:HG22 | 1.92                    | 0.51        |  |
| 1:G:9:ILE:HB     | 1:G:37:VAL:HG12  | 1.93                    | 0.50        |  |
| 1:G:68:GLY:HA3   | 1:G:332:ASN:O    | 2.10                    | 0.50        |  |
| 2:B:172:GLN:HB2  | 2:B:182:LEU:HD11 | 1.92                    | 0.50        |  |
| 1:C:176:TYR:CE2  | 1:C:331:PRO:HG3  | 2.47                    | 0.50        |  |
| 2:D:70:LEU:HD21  | 2:D:81:MET:CB    | 2.41                    | 0.50        |  |
| 1:A:185:ASN:O    | 1:A:189:LYS:HG3  | 2.11                    | 0.50        |  |
| 1:C:257:PRO:HD2  | 1:C:327:GLY:HA3  | 1.93                    | 0.50        |  |
| 2:D:70:LEU:HD23  | 2:D:80:TYR:O     | 2.12                    | 0.50        |  |
| 2:D:218:LEU:HD13 | 2:D:240:GLU:HA   | 1.94                    | 0.50        |  |
| 1:E:339:PHE:HA   | 1:E:368:ILE:HD12 | 1.93                    | 0.50        |  |
| 2:D:51:ILE:HD11  | 2:D:72:VAL:CB    | 2.36                    | 0.49        |  |
| 2:F:153:LYS:HD3  | 2:F:205:ASP:OD1  | 2.12                    | 0.49        |  |
| 2:D:97:THR:HG21  | 2:D:101:PHE:CD2  | 2.47                    | 0.49        |  |
| 1:C:365:GLN:O    | 1:C:365:GLN:HG3  | 2.12                    | 0.49        |  |
| 2:F:67:LYS:HB2   | 2:H:87:THR:HG21  | 1.95                    | 0.49        |  |
| 1:G:44:GLU:O     | 1:G:70:TYR:OH    | 2.30                    | 0.49        |  |
| 2:D:6:GLN:HB3    | 2:D:108:THR:CG2  | 2.43                    | 0.49        |  |
| 1:E:312:VAL:HG12 | 1:E:312:VAL:O    | 2.13                    | 0.49        |  |
| 1:E:331:PRO:O    | 1:E:336:MET:HG3  | 2.12                    | 0.49        |  |
| 2:B:12:VAL:HG21  | 2:B:86:LEU:HD13  | 1.95                    | 0.49        |  |
| 1:A:62:TRP:CD1   | 1:A:66:ARG:HG3   | 2.47                    | 0.49        |  |
| 2:D:53:PRO:HB3   | 2:D:72:VAL:HG21  | 1.94                    | 0.49        |  |
| 1:C:361:LEU:HA   | 1:C:364:ALA:HB3  | 1.95                    | 0.48        |  |
| 2:D:168:LEU:HD22 | 2:D:206:PHE:CD1  | 2.48                    | 0.48        |  |
| 2:B:168:LEU:HD22 | 2:B:206:PHE:CG   | 2.47                    | 0.48        |  |
| 1:A:362:LYS:O    | 1:A:366:THR:HG23 | 2.13                    | 0.48        |  |
| 2:B:91:SER:OG    | 2:B:112:VAL:HG22 | 2.13                    | 0.48        |  |
| 1:C:258:PHE:CD1  | 1:C:330:MET:HG2  | 2.49                    | 0.48        |  |
| 1:E:170:LYS:HD2  | 1:E:180:ASP:OD2  | 2.13                    | 0.48        |  |
| 1:E:185:ASN:O    | 1:E:189:LYS:HG3  | 2.14                    | 0.48        |  |
| 2:F:35:HIS:CE1   | 2:F:50:ASN:HD22  | 2.31                    | 0.48        |  |
| 2:F:159:LEU:HB2  | 2:F:166:ASN:OD1  | 2.14                    | 0.48        |  |
| 2:F:87:THR:O     | 2:F:112:VAL:HG21 | 2.13                    | 0.48        |  |



| Interatomic Clash |                  |              |             |  |
|-------------------|------------------|--------------|-------------|--|
| Atom-1            | Atom-2           | distance (Å) | overlap (Å) |  |
| 1:A:229:PRO:HA    | 1:A:232:TRP:CE2  | 2.49         | 0.48        |  |
| 1:E:3:GLU:OE2     | 1:E:6:LYS:CE     | 2.60         | 0.48        |  |
| 1:E:173:ASN:O     | 1:E:175:LYS:HD2  | 2.14         | 0.48        |  |
| 1:A:325:GLN:O     | 1:A:325:GLN:HG2  | 2.13         | 0.48        |  |
| 1:G:67:PHE:HB3    | 1:G:104:ILE:HD12 | 1.95         | 0.48        |  |
| 1:A:365:GLN:O     | 1:A:369:THR:OG1  | 2.31         | 0.47        |  |
| 2:F:91:SER:OG     | 2:F:112:VAL:HG22 | 2.14         | 0.47        |  |
| 1:G:185:ASN:O     | 1:G:189:LYS:HG3  | 2.13         | 0.47        |  |
| 1:G:205:ASN:OD1   | 1:G:206:ALA:N    | 2.47         | 0.47        |  |
| 1:G:170:LYS:HD2   | 1:G:180:ASP:OD2  | 2.14         | 0.47        |  |
| 2:B:68:ALA:HA     | 2:B:82:GLN:O     | 2.14         | 0.47        |  |
| 2:H:12:VAL:HG11   | 2:H:86:LEU:HD13  | 1.95         | 0.47        |  |
| 1:C:78:GLU:CD     | 1:C:102:LYS:HD3  | 2.35         | 0.47        |  |
| 1:C:66:ARG:NH2    | 3:K:2:GLC:O4     | 2.48         | 0.47        |  |
| 1:C:228:GLY:HA3   | 1:C:230:TRP:CH2  | 2.50         | 0.47        |  |
| 1:G:78:GLU:OE2    | 1:G:102:LYS:HD3  | 2.15         | 0.47        |  |
| 1:G:233:SER:HB2   | 1:G:298:PRO:HD3  | 1.97         | 0.47        |  |
| 1:G:302:VAL:HG12  | 1:G:304:LEU:H    | 1.79         | 0.47        |  |
| 2:H:159:LEU:HG    | 2:H:161:ASN:H    | 1.80         | 0.47        |  |
| 1:A:356:THR:OG1   | 1:A:359:GLU:HG2  | 2.14         | 0.47        |  |
| 1:C:357:VAL:O     | 1:C:361:LEU:HD12 | 2.15         | 0.47        |  |
| 1:G:344:ARG:HG2   | 1:G:348:ILE:HD12 | 1.95         | 0.47        |  |
| 2:F:89:GLU:OE2    | 2:H:40:ARG:NH1   | 2.48         | 0.47        |  |
| 2:B:35:HIS:CE1    | 2:B:50:ASN:HD22  | 2.33         | 0.46        |  |
| 2:B:98:ARG:HD3    | 2:B:103:TYR:HD1  | 1.81         | 0.46        |  |
| 1:A:189:LYS:HD3   | 1:A:358:ASP:OD1  | 2.14         | 0.46        |  |
| 2:F:51:ILE:HD11   | 2:F:56:GLY:HA2   | 1.97         | 0.46        |  |
| 1:G:341:TYR:CE1   | 1:G:344:ARG:NH2  | 2.84         | 0.46        |  |
| 2:F:53:PRO:HB3    | 2:F:72:VAL:HG21  | 1.98         | 0.46        |  |
| 1:E:344:ARG:NH2   | 3:L:2:GLC:H62    | 2.30         | 0.45        |  |
| 1:G:199:ILE:HA    | 1:G:204:MET:O    | 2.16         | 0.45        |  |
| 1:C:363:ASP:O     | 1:C:367:ARG:HG3  | 2.16         | 0.45        |  |
| 2:B:35:HIS:HB2    | 2:B:97:THR:CG2   | 2.46         | 0.45        |  |
| 1:C:229:PRO:HB3   | 1:C:232:TRP:CH2  | 2.51         | 0.45        |  |
| 1:C:193:THR:O     | 1:C:196:VAL:HG22 | 2.16         | 0.45        |  |
| 1:C:277:LYS:HE3   | 1:C:281:GLU:OE2  | 2.17         | 0.45        |  |
| 1:E:140:LYS:HD3   | 1:E:144:LYS:O    | 2.17         | 0.45        |  |
| 1:A:29:LYS:HA     | 2:B:100:LEU:HD12 | 1.99         | 0.45        |  |
| 1:C:331:PRO:HB2   | 1:C:336:MET:HE3  | 1.97         | 0.45        |  |
| 1:G:78:GLU:OE1    | 1:G:102:LYS:HD3  | 2.16         | 0.45        |  |
| 1:A:229:PRO:HB3   | 1:A:232:TRP:CH2  | 2.52         | 0.45        |  |



|                  | lo ao pagom      | Interatomic  | Clash       |  |
|------------------|------------------|--------------|-------------|--|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |  |
| 2:D:70:LEU:HD21  | 2:D:81:MET:HB2   | 1.98         | 0.45        |  |
| 2:D:70:LEU:CD2   | 2:D:81:MET:HA    | 2.47         | 0.45        |  |
| 2:D:70:LEU:HD23  | 2:D:70:LEU:HA    | 1.64         | 0.45        |  |
| 1:E:66:ARG:HG2   | 1:E:66:ARG:HH11  | 1.81         | 0.45        |  |
| 1:G:258:PHE:HD2  | 1:G:340:TRP:CH2  | 2.35         | 0.45        |  |
| 1:C:77:ALA:HB2   | 1:C:273:LYS:HE3  | 1.98         | 0.45        |  |
| 1:G:176:TYR:CE1  | 1:G:331:PRO:HG3  | 2.52         | 0.45        |  |
| 1:A:45:GLU:O     | 1:A:48:PRO:HD2   | 2.16         | 0.44        |  |
| 2:D:40:ARG:HH11  | 2:D:40:ARG:HD2   | 1.40         | 0.44        |  |
| 1:A:158:TRP:CE2  | 1:A:258:PHE:CE2  | 3.05         | 0.44        |  |
| 2:B:40:ARG:NH1   | 2:B:91:SER:O     | 2.48         | 0.44        |  |
| 2:D:35:HIS:HB2   | 2:D:97:THR:CG2   | 2.48         | 0.44        |  |
| 1:C:229:PRO:HA   | 1:C:232:TRP:CE2  | 2.52         | 0.44        |  |
| 1:C:312:VAL:HG12 | 1:C:312:VAL:O    | 2.17         | 0.44        |  |
| 2:B:97:THR:HG21  | 2:B:101:PHE:CD2  | 2.52         | 0.44        |  |
| 1:A:270:SER:O    | 1:A:273:LYS:NZ   | 2.50         | 0.44        |  |
| 1:E:167:TYR:CZ   | 1:E:170:LYS:HE3  | 2.53         | 0.44        |  |
| 2:H:189:ARG:HG2  | 2:H:193:VAL:CG2  | 2.47         | 0.44        |  |
| 1:A:220:GLY:HA2  | 5:A:401:HOH:O    | 2.18         | 0.44        |  |
| 2:D:242:LYS:HA   | 2:D:242:LYS:HD3  | 1.78         | 0.44        |  |
| 2:F:39:GLN:HB2   | 2:F:45:LEU:CD2   | 2.44         | 0.44        |  |
| 2:H:172:GLN:HB2  | 2:H:182:LEU:HD11 | 2.00         | 0.44        |  |
| 1:C:159:PRO:HG3  | 1:C:257:PRO:HA   | 2.00         | 0.44        |  |
| 2:D:168:LEU:HG   | 2:D:169:ALA:N    | 2.33         | 0.44        |  |
| 1:E:44:GLU:HG2   | 1:E:45:GLU:HG3   | 1.99         | 0.44        |  |
| 2:F:168:LEU:HG   | 2:F:169:ALA:N    | 2.32         | 0.44        |  |
| 1:G:44:GLU:HG2   | 1:G:45:GLU:HG3   | 1.99         | 0.44        |  |
| 1:C:59:ILE:HA    | 1:C:265:GLY:O    | 2.18         | 0.44        |  |
| 1:C:193:THR:HA   | 1:C:196:VAL:HG22 | 2.00         | 0.43        |  |
| 1:E:179:LYS:HD3  | 1:E:179:LYS:HA   | 1.67         | 0.43        |  |
| 2:F:210:ILE:CB   | 2:F:213:VAL:HG12 | 2.46         | 0.43        |  |
| 2:H:85:SER:O     | 2:H:85:SER:OG    | 2.30         | 0.43        |  |
| 2:D:170:TRP:CD2  | 2:D:208:LEU:HB2  | 2.53         | 0.43        |  |
| 1:G:6:LYS:NZ     | 1:G:34:LYS:NZ    | 2.66         | 0.43        |  |
| 2:H:35:HIS:CE1   | 2:H:50:ASN:HD22  | 2.36         | 0.43        |  |
| 1:G:171:TYR:O    | 1:G:172:GLU:HG3  | 2.19         | 0.43        |  |
| 2:B:88:SER:HA    | 2:B:112:VAL:CG2  | 2.49         | 0.43        |  |
| 1:C:129:TRP:HB3  | 1:C:194:PHE:CE1  | 2.53         | 0.43        |  |
| 2:F:153:LYS:HD2  | 2:F:204:THR:O    | 2.18         | 0.43        |  |
| 1:G:194:PHE:CE2  | 1:G:198:LEU:HD11 | 2.54         | 0.43        |  |
| 1:A:215:ALA:O    | 1:A:219:LYS:HG3  | 2.18         | 0.43        |  |



|                  | A i a            | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:C:3:GLU:OE1    | 1:C:6:LYS:HE2    | 2.18         | 0.43        |
| 1:C:346:ALA:HB2  | 1:C:364:ALA:HB2  | 2.01         | 0.43        |
| 1:E:365:GLN:O    | 1:E:369:THR:OG1  | 2.33         | 0.43        |
| 2:F:62:GLU:HA    | 2:F:65:LYS:HD2   | 1.99         | 0.43        |
| 1:G:308:GLU:OE1  | 1:G:312:VAL:HG22 | 2.19         | 0.43        |
| 2:F:47:TRP:CZ2   | 2:F:49:GLY:HA2   | 2.54         | 0.43        |
| 1:G:79:ILE:HG13  | 1:G:81:PRO:HD3   | 2.00         | 0.43        |
| 2:H:174:LYS:HG2  | 2:H:219:ALA:HB2  | 1.99         | 0.43        |
| 1:A:175:LYS:HE2  | 1:A:175:LYS:HB3  | 1.67         | 0.43        |
| 1:A:233:SER:O    | 1:A:237:THR:HG23 | 2.19         | 0.43        |
| 2:D:34:MET:HB3   | 2:D:51:ILE:HG23  | 2.00         | 0.43        |
| 1:A:97:VAL:O     | 1:A:104:ILE:HG13 | 2.19         | 0.42        |
| 2:B:30:THR:HG22  | 2:B:54:GLY:HA2   | 2.01         | 0.42        |
| 1:G:51:ALA:HB3   | 1:G:75:LEU:HD13  | 2.00         | 0.42        |
| 1:G:287:ASP:O    | 1:G:291:GLU:HG3  | 2.18         | 0.42        |
| 2:B:149:THR:HG21 | 1:G:239:LYS:HD3  | 2.01         | 0.42        |
| 2:F:45:LEU:HD12  | 2:F:233:PHE:CE1  | 2.54         | 0.42        |
| 2:B:182:LEU:HA   | 2:B:193:VAL:HG21 | 2.01         | 0.42        |
| 1:C:204:MET:HE2  | 1:C:204:MET:HB3  | 1.71         | 0.42        |
| 1:G:1:LYS:HE3    | 1:G:269:ALA:HB1  | 2.02         | 0.42        |
| 1:A:7:LEU:HA     | 1:A:7:LEU:HD23   | 1.78         | 0.42        |
| 1:C:195:LEU:HA   | 1:C:198:LEU:HD12 | 2.02         | 0.42        |
| 1:C:302:VAL:HG21 | 1:C:307:TYR:HD2  | 1.84         | 0.42        |
| 2:D:195:ASP:OD1  | 2:D:195:ASP:N    | 2.53         | 0.42        |
| 1:A:331:PRO:HD2  | 1:A:336:MET:CE   | 2.49         | 0.42        |
| 1:E:129:TRP:HB3  | 1:E:194:PHE:CE2  | 2.55         | 0.42        |
| 2:H:13:ARG:HD3   | 2:H:13:ARG:HA    | 1.67         | 0.42        |
| 1:A:277:LYS:HE3  | 1:A:281:GLU:OE2  | 2.18         | 0.42        |
| 2:B:20:LEU:HD22  | 2:B:108:THR:HG21 | 2.01         | 0.42        |
| 1:G:159:PRO:HG3  | 1:G:257:PRO:HA   | 2.01         | 0.42        |
| 2:B:36:TRP:HA    | 2:B:95:TYR:O     | 2.20         | 0.42        |
| 2:D:240:GLU:HG2  | 2:D:241:ILE:N    | 2.34         | 0.42        |
| 1:E:122:LEU:HD21 | 1:E:125:PRO:HA   | 2.01         | 0.42        |
| 1:E:254:PRO:HB3  | 1:E:326:LYS:HD3  | 2.02         | 0.42        |
| 2:F:94:TYR:O     | 2:F:107:GLY:HA2  | 2.20         | 0.42        |
| 1:A:110:VAL:HG22 | 1:A:301:ALA:HB3  | 2.00         | 0.42        |
| 1:E:215:ALA:O    | 1:E:219:LYS:HG3  | 2.19         | 0.42        |
| 2:B:88:SER:HA    | 2:B:112:VAL:HG23 | 2.01         | 0.42        |
| 2:B:168:LEU:HG   | 2:B:169:ALA:N    | 2.33         | 0.42        |
| 2:B:36:TRP:CD1   | 2:B:70:LEU:HD21  | 2.55         | 0.41        |
| 1:C:115:LEU:HD21 | 1:C:224:MET:CE   | 2.50         | 0.41        |



|                  |                  | Interatomic  | Clash       |  |
|------------------|------------------|--------------|-------------|--|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |  |
| 1:C:302:VAL:HG21 | 1:C:307:TYR:CD2  | 2.55         | 0.41        |  |
| 2:F:4:LEU:HA     | 2:F:23:LYS:O     | 2.20         | 0.41        |  |
| 1:A:46:LYS:O     | 1:A:50:VAL:HG22  | 2.19         | 0.41        |  |
| 1:C:355:GLN:OE1  | 1:C:360:ALA:HA   | 2.20         | 0.41        |  |
| 1:E:14:ASP:O     | 1:E:297:LYS:HD2  | 2.20         | 0.41        |  |
| 1:G:171:TYR:HB2  | 1:G:176:TYR:CE1  | 2.55         | 0.41        |  |
| 2:H:183:VAL:HG23 | 2:H:188:THR:O    | 2.20         | 0.41        |  |
| 1:A:68:GLY:HA3   | 1:A:332:ASN:O    | 2.19         | 0.41        |  |
| 2:D:170:TRP:CE2  | 2:D:208:LEU:HB2  | 2.55         | 0.41        |  |
| 1:E:51:ALA:HB3   | 1:E:75:LEU:HD13  | 2.02         | 0.41        |  |
| 1:G:66:ARG:HH12  | 1:G:341:TYR:HE2  | 1.62         | 0.41        |  |
| 1:A:158:TRP:CD1  | 1:A:258:PHE:CD2  | 3.09         | 0.41        |  |
| 2:F:47:TRP:CE3   | 2:F:61:ASP:HB2   | 2.56         | 0.41        |  |
| 2:D:40:ARG:HA    | 2:D:41:PRO:HD3   | 1.91         | 0.41        |  |
| 2:F:89:GLU:OE1   | 2:H:40:ARG:NH1   | 2.53         | 0.41        |  |
| 1:E:151:LEU:HD11 | 1:E:204:MET:HE2  | 2.03         | 0.41        |  |
| 1:G:331:PRO:CD   | 1:G:336:MET:HE3  | 2.47         | 0.41        |  |
| 2:H:13:ARG:HD2   | 2:H:14:PRO:HD3   | 2.02         | 0.41        |  |
| 1:C:192:LEU:CD2  | 1:C:361:LEU:HD11 | 2.42         | 0.41        |  |
| 1:G:331:PRO:O    | 1:G:336:MET:HG3  | 2.20         | 0.41        |  |
| 2:D:7:PRO:O      | 2:D:108:THR:HG22 | 2.21         | 0.41        |  |
| 2:D:69:THR:HG23  | 2:D:82:GLN:HB3   | 2.02         | 0.41        |  |
| 2:F:112:VAL:CG2  | 2:F:112:VAL:O    | 2.68         | 0.41        |  |
| 1:A:168:ALA:O    | 1:A:181:VAL:HA   | 2.21         | 0.41        |  |
| 2:B:135:GLN:NE2  | 2:B:221:TYR:O    | 2.47         | 0.41        |  |
| 1:C:205:ASN:ND2  | 1:C:207:ASP:CG   | 2.75         | 0.41        |  |
| 1:C:291:GLU:O    | 1:C:295:LYS:HB2  | 2.21         | 0.41        |  |
| 1:G:341:TYR:HE1  | 1:G:344:ARG:NH2  | 2.19         | 0.41        |  |
| 1:A:52:ALA:C     | 1:A:54:GLY:H     | 2.23         | 0.41        |  |
| 2:B:166:ASN:O    | 2:B:185:PHE:HA   | 2.21         | 0.41        |  |
| 1:C:304:LEU:HD23 | 1:C:307:TYR:HB2  | 2.03         | 0.41        |  |
| 1:E:109:ALA:HA   | 1:E:302:VAL:HA   | 2.04         | 0.40        |  |
| 1:A:61:PHE:HA    | 1:A:263:SER:O    | 2.22         | 0.40        |  |
| 2:B:47:TRP:CZ2   | 2:B:49:GLY:HA2   | 2.57         | 0.40        |  |
| 1:C:66:ARG:NH2   | 1:C:341:TYR:CZ   | 2.89         | 0.40        |  |
| 1:G:302:VAL:CG1  | 1:G:304:LEU:H    | 2.34         | 0.40        |  |
| 1:A:349:ASN:HB3  | 1:A:355:GLN:HB2  | 2.04         | 0.40        |  |
| 2:D:20:LEU:O     | 2:D:80:TYR:HA    | 2.21         | 0.40        |  |
| 1:G:364:ALA:O    | 1:G:368:ILE:HG13 | 2.22         | 0.40        |  |
| 1:A:59:ILE:HA    | 1:A:265:GLY:O    | 2.21         | 0.40        |  |
| 2:F:29:PHE:CZ    | 2:F:72:VAL:CG2   | 3.05         | 0.40        |  |



| Atom-1         | Atom-2                | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|----------------|-----------------------|-----------------------------|----------------------|
| 1:C:175:LYS:NZ | 1:E:219:LYS:NZ[2_957] | 1.06                        | 1.14                 |
| 1:C:175:LYS:NZ | 1:E:219:LYS:CE[2_957] | 2.14                        | 0.06                 |

All (2) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Favoured   | Allowed | Outliers | Perce | entiles |
|-----|-------|-----------------|------------|---------|----------|-------|---------|
| 1   | А     | 367/369~(100%)  | 359~(98%)  | 8 (2%)  | 0        | 100   | 100     |
| 1   | С     | 367/369~(100%)  | 359~(98%)  | 7 (2%)  | 1 (0%)   | 41    | 61      |
| 1   | Ε     | 367/369~(100%)  | 360 (98%)  | 7 (2%)  | 0        | 100   | 100     |
| 1   | G     | 367/369~(100%)  | 359~(98%)  | 8 (2%)  | 0        | 100   | 100     |
| 2   | В     | 219/251~(87%)   | 209 (95%)  | 9 (4%)  | 1 (0%)   | 29    | 48      |
| 2   | D     | 217/251~(86%)   | 207 (95%)  | 9 (4%)  | 1 (0%)   | 29    | 48      |
| 2   | F     | 218/251~(87%)   | 211 (97%)  | 7(3%)   | 0        | 100   | 100     |
| 2   | Н     | 218/251~(87%)   | 207 (95%)  | 11 (5%) | 0        | 100   | 100     |
| All | All   | 2340/2480 (94%) | 2271 (97%) | 66 (3%) | 3 (0%)   | 51    | 73      |

All (3) Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | С     | 337 | SER  |
| 2   | D     | 165 | LYS  |
| 2   | В     | 44  | GLY  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar



resolution.

| Mol | Chain        | Analysed        | Rotameric  | Outliers | Percentiles |
|-----|--------------|-----------------|------------|----------|-------------|
| 1   | А            | 297/297~(100%)  | 291~(98%)  | 6 (2%)   | 55 79       |
| 1   | С            | 297/297~(100%)  | 294~(99%)  | 3~(1%)   | 76 90       |
| 1   | Ε            | 297/297~(100%)  | 294~(99%)  | 3~(1%)   | 76 90       |
| 1   | G            | 297/297~(100%)  | 291~(98%)  | 6(2%)    | 55 79       |
| 2   | В            | 192/206~(93%)   | 192 (100%) | 0        | 100 100     |
| 2   | D            | 191/206~(93%)   | 191 (100%) | 0        | 100 100     |
| 2   | $\mathbf{F}$ | 192/206~(93%)   | 190 (99%)  | 2(1%)    | 76 90       |
| 2   | Η            | 192/206~(93%)   | 190 (99%)  | 2(1%)    | 76 90       |
| All | All          | 1955/2012~(97%) | 1933 (99%) | 22 (1%)  | 73 89       |

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

All (22) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type |
|-----|-------|----------------|------|
| 1   | А     | 66             | ARG  |
| 1   | А     | 88             | LYS  |
| 1   | А     | 229            | PRO  |
| 1   | А     | 233            | SER  |
| 1   | А     | 313            | LYS  |
| 1   | А     | 336            | MET  |
| 1   | С     | 233            | SER  |
| 1   | С     | 258            | PHE  |
| 1   | С     | 335            | GLN  |
| 1   | Е     | 1              | LYS  |
| 1   | Е     | 233            | SER  |
| 1   | Е     | 258            | PHE  |
| 2   | F     | 195            | ASP  |
| 2   | F     | 243            | ARG  |
| 1   | G     | 3              | GLU  |
| 1   | G     | 6              | LYS  |
| 1   | G     | 233            | SER  |
| 1   | G     | 258            | PHE  |
| 1   | G     | 358            | ASP  |
| 1   | G     | 367            | ARG  |
| 2   | Н     | 17             | SER  |
| 2   | Н     | 168            | LEU  |
|     |       |                |      |



Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (7) such sidechains are listed below:

| Mol | Chain | $\operatorname{Res}$ | Type |
|-----|-------|----------------------|------|
| 2   | В     | 50                   | ASN  |
| 2   | D     | 164                  | GLN  |
| 2   | F     | 50                   | ASN  |
| 2   | F     | 59                   | ASN  |
| 1   | G     | 355                  | GLN  |
| 2   | Н     | 50                   | ASN  |
| 2   | Н     | 214                  | GLN  |

#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 5.5 Carbohydrates (i)

8 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | Tune | Chain | Dec | Tink | Bo       | Bond lengths |          |                | Bond angles |          |  |
|-----|------|-------|-----|------|----------|--------------|----------|----------------|-------------|----------|--|
|     | Type | Unain | nes |      | Counts   | RMSZ         | # Z  > 2 | Counts         | RMSZ        | # Z  > 2 |  |
| 3   | GLC  | J     | 1   | 3    | 12,12,12 | 0.57         | 0        | 17,17,17       | 0.64        | 0        |  |
| 3   | GLC  | J     | 2   | 3    | 11,11,12 | 0.60         | 0        | $15,\!15,\!17$ | 1.16        | 1 (6%)   |  |
| 3   | GLC  | K     | 1   | 3    | 12,12,12 | 0.65         | 0        | $17,\!17,\!17$ | 1.05        | 1 (5%)   |  |
| 3   | GLC  | K     | 2   | 3    | 11,11,12 | 1.11         | 0        | $15,\!15,\!17$ | 2.82        | 5 (33%)  |  |
| 3   | GLC  | L     | 1   | 3    | 12,12,12 | 0.58         | 0        | $17,\!17,\!17$ | 1.27        | 2 (11%)  |  |
| 3   | GLC  | L     | 2   | 3    | 11,11,12 | 0.57         | 0        | $15,\!15,\!17$ | 0.96        | 0        |  |
| 3   | GLC  | М     | 1   | 3    | 12,12,12 | 0.62         | 0        | $17,\!17,\!17$ | 1.05        | 1 (5%)   |  |
| 3   | GLC  | М     | 2   | 3    | 11,11,12 | 0.92         | 0        | $15,\!15,\!17$ | 1.84        | 3 (20%)  |  |



In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res | Link | Chirals | Torsions  | Rings   |
|-----|------|-------|-----|------|---------|-----------|---------|
| 3   | GLC  | J     | 1   | 3    | -       | 0/2/22/22 | 0/1/1/1 |
| 3   | GLC  | J     | 2   | 3    | -       | 0/2/19/22 | 0/1/1/1 |
| 3   | GLC  | Κ     | 1   | 3    | -       | 0/2/22/22 | 0/1/1/1 |
| 3   | GLC  | K     | 2   | 3    | -       | 1/2/19/22 | 0/1/1/1 |
| 3   | GLC  | L     | 1   | 3    | -       | 0/2/22/22 | 0/1/1/1 |
| 3   | GLC  | L     | 2   | 3    | -       | 2/2/19/22 | 0/1/1/1 |
| 3   | GLC  | М     | 1   | 3    | -       | 0/2/22/22 | 0/1/1/1 |
| 3   | GLC  | М     | 2   | 3    | -       | 2/2/19/22 | 0/1/1/1 |

There are no bond length outliers.

All (13) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms    | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|----------|-------|------------------|---------------|
| 3   | K     | 2   | GLC  | O3-C3-C2 | -8.00 | 94.67            | 109.99        |
| 3   | K     | 2   | GLC  | O5-C5-C6 | -4.63 | 99.94            | 107.20        |
| 3   | М     | 2   | GLC  | O4-C4-C3 | -3.90 | 101.34           | 110.35        |
| 3   | М     | 2   | GLC  | O4-C4-C5 | 3.07  | 116.91           | 109.30        |
| 3   | K     | 2   | GLC  | C1-C2-C3 | 2.90  | 113.23           | 109.67        |
| 3   | L     | 1   | GLC  | C1-C2-C3 | 2.74  | 116.00           | 110.31        |
| 3   | K     | 2   | GLC  | C6-C5-C4 | 2.68  | 119.27           | 113.00        |
| 3   | K     | 2   | GLC  | C1-O5-C5 | 2.60  | 115.71           | 112.19        |
| 3   | L     | 1   | GLC  | C3-C4-C5 | 2.53  | 114.75           | 110.24        |
| 3   | М     | 2   | GLC  | C2-C3-C4 | -2.45 | 106.66           | 110.89        |
| 3   | М     | 1   | GLC  | O5-C5-C4 | -2.41 | 105.31           | 109.69        |
| 3   | К     | 1   | GLC  | C1-C2-C3 | 2.25  | 114.99           | 110.31        |
| 3   | J     | 2   | GLC  | O5-C5-C6 | 2.01  | 110.36           | 107.20        |

There are no chirality outliers.

All (5) torsion outliers are listed below:

| Mol | Chain | Res | Type | Atoms       |
|-----|-------|-----|------|-------------|
| 3   | М     | 2   | GLC  | C4-C5-C6-O6 |
| 3   | М     | 2   | GLC  | O5-C5-C6-O6 |
| 3   | L     | 2   | GLC  | C4-C5-C6-O6 |
| 3   | Κ     | 2   | GLC  | O5-C5-C6-O6 |
| 3   | L     | 2   | GLC  | O5-C5-C6-O6 |



There are no ring outliers.

3 monomers are involved in 7 short contacts:

| Mol | Chain | Res | Type | Clashes | Symm-Clashes |
|-----|-------|-----|------|---------|--------------|
| 3   | М     | 2   | GLC  | 2       | 0            |
| 3   | L     | 2   | GLC  | 1       | 0            |
| 3   | К     | 2   | GLC  | 4       | 0            |

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.















### 5.6 Ligand geometry (i)

Of 3 ligands modelled in this entry, 3 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

### 5.7 Other polymers (i)

There are no such residues in this entry.



## 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



## 6 Fit of model and data (i)

### 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

| Mol | Chain | Analysed        | <rsrz></rsrz> | #RSRZ>2        | $OWAB(Å^2)$     | Q<0.9 |
|-----|-------|-----------------|---------------|----------------|-----------------|-------|
| 1   | А     | 369/369~(100%)  | 0.02          | 10 (2%) 54 58  | 47, 61, 78, 106 | 0     |
| 1   | С     | 369/369~(100%)  | 0.21          | 18 (4%) 29 31  | 50, 66, 97, 110 | 0     |
| 1   | Е     | 369/369~(100%)  | 0.02          | 13 (3%) 44 47  | 45, 59, 77, 101 | 0     |
| 1   | G     | 369/369~(100%)  | 0.12          | 22 (5%) 21 22  | 49, 68, 88, 97  | 0     |
| 2   | В     | 225/251~(89%)   | 0.19          | 11 (4%) 29 31  | 53, 65, 83, 97  | 0     |
| 2   | D     | 223/251~(88%)   | 0.35          | 11 (4%) 29 31  | 54, 69, 90, 113 | 0     |
| 2   | F     | 224/251~(89%)   | 0.20          | 14 (6%) 20 21  | 50, 65, 82, 111 | 0     |
| 2   | Н     | 224/251~(89%)   | 0.27          | 11 (4%) 29 31  | 55, 69, 84, 113 | 0     |
| All | All   | 2372/2480~(95%) | 0.15          | 110 (4%) 32 34 | 45, 65, 87, 113 | 0     |

All (110) RSRZ outliers are listed below:

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | G     | 341 | TYR  | 5.1  |
| 2   | F     | 243 | ARG  | 4.7  |
| 2   | D     | 13  | ARG  | 4.3  |
| 2   | Н     | 1   | GLN  | 4.3  |
| 1   | G     | 1   | LYS  | 4.3  |
| 2   | Н     | 161 | ASN  | 4.2  |
| 1   | С     | 354 | ARG  | 4.0  |
| 1   | С     | 174 | GLY  | 3.8  |
| 2   | Н     | 243 | ARG  | 3.8  |
| 1   | С     | 341 | TYR  | 3.8  |
| 1   | С     | 172 | GLU  | 3.4  |
| 1   | Е     | 173 | ASN  | 3.3  |
| 2   | F     | 1   | GLN  | 3.3  |
| 1   | А     | 173 | ASN  | 3.2  |
| 2   | D     | 221 | TYR  | 3.1  |
| 2   | F     | 159 | LEU  | 3.1  |



| 7 | J | Τ | R |
|---|---|---|---|
|   |   |   |   |

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | Е     | 186 | ALA  | 3.1  |
| 1   | А     | 312 | VAL  | 3.0  |
| 2   | F     | 161 | ASN  | 3.0  |
| 2   | D     | 1   | GLN  | 2.9  |
| 1   | А     | 179 | LYS  | 2.9  |
| 1   | G     | 116 | ILE  | 2.9  |
| 2   | В     | 36  | TRP  | 2.8  |
| 1   | С     | 173 | ASN  | 2.8  |
| 1   | G     | 355 | GLN  | 2.8  |
| 2   | В     | 160 | ILE  | 2.8  |
| 1   | А     | 52  | ALA  | 2.8  |
| 2   | В     | 13  | ARG  | 2.8  |
| 1   | С     | 359 | GLU  | 2.7  |
| 1   | G     | 175 | LYS  | 2.7  |
| 2   | В     | 168 | LEU  | 2.7  |
| 2   | Н     | 160 | ILE  | 2.7  |
| 1   | С     | 202 | LYS  | 2.7  |
| 2   | Н     | 106 | GLN  | 2.6  |
| 1   | Е     | 172 | GLU  | 2.6  |
| 1   | А     | 172 | GLU  | 2.6  |
| 1   | А     | 171 | TYR  | 2.6  |
| 1   | Е     | 109 | ALA  | 2.5  |
| 2   | В     | 223 | CYS  | 2.5  |
| 2   | D     | 75  | SER  | 2.5  |
| 2   | D     | 36  | TRP  | 2.5  |
| 1   | С     | 175 | LYS  | 2.5  |
| 2   | D     | 169 | ALA  | 2.5  |
| 2   | В     | 169 | ALA  | 2.5  |
| 1   | G     | 171 | TYR  | 2.4  |
| 2   | Н     | 36  | TRP  | 2.4  |
| 1   | Е     | 362 | LYS  | 2.4  |
| 1   | Е     | 171 | TYR  | 2.4  |
| 1   | Е     | 108 | ILE  | 2.4  |
| 1   | А     | 1   | LYS  | 2.4  |
| 1   | G     | 53  | THR  | 2.4  |
| 2   | В     | 66  | SER  | 2.4  |
| 1   | С     | 207 | ASP  | 2.4  |
| 1   | А     | 264 | ALA  | 2.4  |
| 2   | F     | 169 | ALA  | 2.4  |
| 1   | G     | 54  | GLY  | 2.3  |
| 2   | Н     | 66  | SER  | 2.3  |
| 1   | С     | 179 | LYS  | 2.3  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | Е     | 3   | GLU  | 2.3  |
| 1   | G     | 146 | ALA  | 2.3  |
| 1   | Е     | 312 | VAL  | 2.3  |
| 2   | В     | 34  | MET  | 2.3  |
| 2   | В     | 42  | GLY  | 2.3  |
| 1   | С     | 158 | TRP  | 2.3  |
| 2   | Н     | 34  | MET  | 2.2  |
| 2   | Н     | 170 | TRP  | 2.2  |
| 1   | Е     | 313 | LYS  | 2.2  |
| 1   | С     | 327 | GLY  | 2.2  |
| 2   | D     | 106 | GLN  | 2.2  |
| 2   | D     | 34  | MET  | 2.2  |
| 2   | F     | 2   | VAL  | 2.2  |
| 1   | С     | 102 | LYS  | 2.2  |
| 1   | G     | 141 | ALA  | 2.2  |
| 2   | F     | 97  | THR  | 2.2  |
| 1   | G     | 9   | ILE  | 2.2  |
| 1   | G     | 45  | GLU  | 2.2  |
| 1   | G     | 6   | LYS  | 2.2  |
| 2   | F     | 208 | LEU  | 2.2  |
| 2   | F     | 5   | GLN  | 2.2  |
| 1   | А     | 108 | ILE  | 2.2  |
| 2   | D     | 42  | GLY  | 2.2  |
| 1   | G     | 192 | LEU  | 2.2  |
| 2   | F     | 3   | GLN  | 2.1  |
| 2   | F     | 25  | SER  | 2.2  |
| 1   | G     | 264 | ALA  | 2.1  |
| 2   | F     | 160 | ILE  | 2.1  |
| 2   | F     | 41  | PRO  | 2.1  |
| 1   | G     | 354 | ARG  | 2.1  |
| 1   | G     | 61  | PHE  | 2.1  |
| 2   | Н     | 221 | TYR  | 2.1  |
| 1   | А     | 87  | ASP  | 2.1  |
| 1   | G     | 52  | ALA  | 2.1  |
| 1   | G     | 60  | ILE  | 2.1  |
| 2   | F     | 168 | LEU  | 2.1  |
| 1   | С     | 72  | GLN  | 2.1  |
| 2   | D     | 175 | PRO  | 2.0  |
| 1   | G     | 183 | VAL  | 2.0  |
| 2   | В     | 191 | SER  | 2.0  |
| 2   | D     | 80  | TYR  | 2.0  |
| 2   | Н     | 32  | SER  | 2.0  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | С     | 192 | LEU  | 2.0  |
| 1   | Е     | 107 | PRO  | 2.0  |
| 1   | Е     | 179 | LYS  | 2.0  |
| 1   | G     | 219 | LYS  | 2.0  |
| 1   | С     | 74  | GLY  | 2.0  |
| 1   | G     | 367 | ARG  | 2.0  |
| 1   | Е     | 328 | GLU  | 2.0  |
| 1   | С     | 325 | GLN  | 2.0  |
| 1   | С     | 171 | TYR  | 2.0  |
| 2   | В     | 221 | TYR  | 2.0  |

#### 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

| Mol | Type | Chain | Res | Atoms | RSCC | RSR  | ${f B}	ext{-factors}({ m \AA}^2)$ | Q<0.9 |
|-----|------|-------|-----|-------|------|------|-----------------------------------|-------|
| 3   | GLC  | K     | 2   | 11/12 | 0.90 | 0.14 | $53,\!65,\!77,\!78$               | 0     |
| 3   | GLC  | K     | 1   | 12/12 | 0.96 | 0.12 | $54,\!56,\!61,\!64$               | 0     |
| 3   | GLC  | L     | 1   | 12/12 | 0.96 | 0.10 | 47,52,58,59                       | 0     |
| 3   | GLC  | L     | 2   | 11/12 | 0.96 | 0.13 | 52,54,59,64                       | 0     |
| 3   | GLC  | М     | 1   | 12/12 | 0.96 | 0.11 | 60,63,67,69                       | 0     |
| 3   | GLC  | М     | 2   | 11/12 | 0.96 | 0.12 | 62,65,71,73                       | 0     |
| 3   | GLC  | J     | 2   | 11/12 | 0.97 | 0.13 | 51,58,61,61                       | 0     |
| 3   | GLC  | J     | 1   | 12/12 | 0.98 | 0.09 | 51,58,62,62                       | 0     |

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

















### 6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

| Mol | Type | Chain | Res | Atoms | RSCC | RSR  | $\mathbf{B}	ext{-factors}(\mathrm{\AA}^2)$ | Q<0.9 |
|-----|------|-------|-----|-------|------|------|--------------------------------------------|-------|
| 4   | CL   | Н     | 301 | 1/1   | 0.90 | 0.18 | 75, 75, 75, 75, 75                         | 0     |
| 4   | CL   | F     | 301 | 1/1   | 0.91 | 0.07 | 81,81,81,81                                | 0     |
| 4   | CL   | В     | 301 | 1/1   | 0.91 | 0.08 | 79,79,79,79                                | 0     |

### 6.5 Other polymers (i)

There are no such residues in this entry.

