

Full wwPDB X-ray Structure Validation Report (i)

May 22, 2023 – 07:09 PM EDT

PDB ID	:	1IWB
Title	:	Crystal structure of diol dehydratase
Authors	:	Shibata, N.; Masuda, J.; Morimoto, Y.; Yasuoka, N.; Toraya, T.
Deposited on	:	2002-05-01
Resolution	:	1.85 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	NOT EXECUTED
EDS	:	NOT EXECUTED
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.33

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 1.85 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motria	Whole archive	Similar resolution
wietric	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
Clashscore	141614	2625 (1.86-1.86)
Ramachandran outliers	138981	2592(1.86-1.86)
Sidechain outliers	138945	2592 (1.86-1.86)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Note EDS was not executed.

Mol	Chain	Length	Quality of chain				
1	А	554	79%			18%	••
1	L	554	76%			21%	•••
2	В	224	53%	23%	•	21%	_
2	Е	224	38%	33%	8%	21%	
3	G	173	53%	21%		21%	_
3	М	173	55%	20%		21%	_

2 Entry composition (i)

There are 6 unique types of molecules in this entry. The entry contains 14446 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	А	551	Total 4201	C 2620	N 727	O 825	S 29	0	0	0
1	L	551	Total 4200	C 2620	N 727	O 824	S 29	0	0	0

• Molecule 1 is a protein called DIOL DEHYDRATASE alpha chain.

• Molecule 2 is a protein called DIOL DEHYDRATASE beta chain.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
2	В	178	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	D	170	1357	859	244	252	2	0	0	0
9	F	177	Total	С	Ν	0	S	0	0	0
	Ľ	111	1352	856	243	251	2	0		0

• Molecule 3 is a protein called DIOL DEHYDRATASE gamma chain.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
3	C	137	Total	С	Ν	0	S	0	0	0
0	G	107	1093	681	195	214	3	0	0	0
2	м	127	Total	С	Ν	0	S	0	0	0
0	IVI	107	1093	681	195	214	3			U

• Molecule 4 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	3	Total K 3 3	0	0
4	L	3	Total K 3 3	0	0

• Molecule 5 is COBALAMIN (three-letter code: B12) (formula: $C_{62}H_{89}CoN_{13}O_{14}P$).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf		
Б	Р	1	Total	С	Co	Ν	Ο	Р	0	0
0	D	L	91	62	1	13	14	1	0	0
5	F	1	Total	С	Co	Ν	Ο	Р	0	0
0 E	L	91	62	1	13	14	1	0	0	

• Molecule 6 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	А	335	Total O 335 335	0	0
6	В	89	Total O 89 89	0	0
6	G	70	Total O 70 70	0	0
6	L	330	Total O 330 330	0	0
6	Е	54	$\begin{array}{cc} \text{Total} & \text{O} \\ 54 & 54 \end{array}$	0	0
6	М	84	Total O 84 84	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Note EDS was not executed.

 \bullet Molecule 1: DIOL DEHYDRATASE alpha chain

MET OLU OLU OLU OLU ASN CLU CLU LEU LEU LEU LEU CLN CLN CLN CLN ASP	VAL LLU SER GLU MET LLYS CLY SER SER FLYS FLYS FLYS FAL ASN ASN	ALA ALA ALA ALA ALA ALA ALA ALA ALA PRO	ALA ALA GLY ASP 646 148 L48	149 151 150 166 166 165 165 165 165
V 77 V 77 8 8 187 187 188 188 188 188 188 189 192 192 192 193 193	698 1100 1100 1100 100 100 1100 113 113 126 113 133	Q143 L148 S149 N150 L151 F154 L150 L150	T161 1162 1162 1163 7164 7165 7165	416 K170 K170 A173 A173 A173 A173 K177 K177 K177 K177 E179
4182 4190 4190 4190 4196 41204 4204 4212 7212 7212	8219 1220 1222 1222 1223 120			
• Molecule 2: DIOI	L DEHYDRATASE be	ta chain		
Chain E:	38%	33%	8%	21%
MET GLU GLU ILE ASN GLU LEU LEU LEU LEU CLN GLN ASP GSP	VAL LEU SER MET MET MET LYS SER ASP PRO ASN ASN ASN	ALA ALA SER ALA ALA PRO GLN ALA ALA ALA ALA PRO	ALA GLY ASP ASP F47 L48 L48	149 151 151 155 155 158 158 158 158 158 158
D61 164 165 466 466 765 773 775 775 775 775 777 776 775	179 179 188 188 188 188 188 188 188 188 188 18	K100 K100 A102 R103 R105 R105 R105 K109 K109	112 118 119 1120 1121 1123 1123	6125 6126 8126 8128 8129 1130 1132 1132 1132 1132
1138 1441 1444 1444 1444 1444 1444 1444	1161 1162 1163 1164 1165 1165 1165 1166 1170 1176 1176 1178 1178 1178 1178 1178	4122 9183 9183 9183 9189 8199 8199 94 8199 8199	L203 H204 V212 T213 G214	4216 4218 5219 1220 1220 8221 ALA LEU LEU
• Molecule 3: DIOI	L DEHYDRATASE ga	mma chain		
Chain G:	53%	21%	••	21%
MET ASN THR ASN ASP ALA ALA CLU SER MET VAL ASP ASC VAL VAL LEU	SER ARG AST AST AST AST AST AST AST AST ALA ALA ALA ALA ALA ALA ALA ALA ALA	GLY GLY GLY ALA ALA ARG ARG A38 A37 837 837 841 841 841	P44 N47 K48 H49 P50	LE1 TE5 TE5 TE7 TE7 TE7 TE7 TE7 TE7 TE7 TE7 FE4
165 166 166 166 170 170 172 174 174 175 175 176 177 176 177 176 177 176	005 100 100 1122 1122 1122 1122 1122 112	S145 S145 R147 7147 A149 K150 A153 A153	L162 1162 1163 1164 1164 1167	1100 1172 1173
• Molecule 3: DIOI	L DEHYDRATASE ga	mma chain		
Chain M:	55%	20%		21%
MET ASN ASN TASN ASP ASP ALA CUL ASP ASC ASC VAL VAL VAL VAL VAL	SER MET MET ASN ASN ASN CUU CUU CUU ALA ALA ALA ALA ALA ALA ALA	GLY GLY GLY ALA ARA A38 A38 A38 A38 A38 A38 A39 A39 CVA	N47 N47 K48 K54	157 N158 K59 L61 L61 D62 D63 F64 T66 T66 T66 T66
N68 V69 K73 A76 M79 R87 A93 K94	1965 100 1100 1100 1100 1100 1100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 11100 1100 1100 1100 1100 1100 1100 110	R145 Y147 Y147 A149 K150 E165 R166 R166 D173		

4 Data and refinement statistics (i)

Xtriage (Phenix) and EDS were not executed - this section is therefore incomplete.

Property	Value	Source	
Space group	P 21 21 21	Depositor	
Cell constants	75.79Å 122.40Å 207.59Å	Depositor	
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor	
Resolution (Å)	10.00 - 1.85	Depositor	
% Data completeness	(Not available) (10.00-1.85)	Depositor	
(in resolution range)	(100 available) (10.00 1.00)	Depositor	
R_{merge}	(Not available)	Depositor	
R _{sym}	(Not available)	Depositor	
Refinement program	CNS, SHELXL-97	Depositor	
R, R_{free}	0.181 , 0.256	Depositor	
Estimated twinning fraction	No twinning to report.	Xtriage	
Total number of atoms	14446	wwPDB-VP	
Average B, all atoms $(Å^2)$	27.0	wwPDB-VP	

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: K, B12

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles	
		RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.33	0/4273	0.99	9/5787~(0.2%)
1	L	0.34	0/4272	1.01	9/5786~(0.2%)
2	В	0.31	0/1379	0.98	4/1867~(0.2%)
2	Е	0.31	0/1374	0.90	1/1860~(0.1%)
3	G	0.31	0/1108	0.96	5/1497~(0.3%)
3	М	0.33	0/1108	1.02	4/1497~(0.3%)
All	All	0.33	0/13514	0.99	32/18294~(0.2%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	1
1	L	0	1
All	All	0	2

There are no bond length outliers.

All (32) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
3	М	100	ARG	CD-NE-CZ	10.07	137.69	123.60
2	В	55	ARG	NE-CZ-NH1	9.79	125.19	120.30
2	В	55	ARG	CD-NE-CZ	8.70	135.78	123.60
1	А	345	ARG	NE-CZ-NH1	-8.62	115.99	120.30
3	М	87	ARG	CD-NE-CZ	7.50	134.10	123.60
1	А	364	TYR	CB-CG-CD1	7.32	125.39	121.00
1	А	194	ARG	NE-CZ-NH1	7.28	123.94	120.30
1	А	370	TYR	CA-CB-CG	6.96	126.63	113.40

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	G	39	ARG	CD-NE-CZ	6.87	133.22	123.60
3	G	146	ARG	CD-NE-CZ	6.78	133.10	123.60
3	G	39	ARG	NE-CZ-NH1	6.61	123.61	120.30
2	В	55	ARG	NE-CZ-NH2	-6.43	117.08	120.30
1	L	257	ARG	NE-CZ-NH2	-6.39	117.11	120.30
1	А	5	ARG	NE-CZ-NH2	6.34	123.47	120.30
1	L	345	ARG	NE-CZ-NH1	-6.30	117.15	120.30
2	Е	193	ARG	NE-CZ-NH2	-6.08	117.26	120.30
1	L	364	TYR	CB-CG-CD1	5.86	124.51	121.00
1	L	252	ARG	NE-CZ-NH1	-5.85	117.38	120.30
1	L	2	ARG	NE-CZ-NH1	5.78	123.19	120.30
3	М	87	ARG	NE-CZ-NH1	5.63	123.11	120.30
1	А	135	ARG	NE-CZ-NH2	5.54	123.07	120.30
3	G	100	ARG	NE-CZ-NH2	-5.54	117.53	120.30
1	L	252	ARG	NE-CZ-NH2	5.53	123.07	120.30
3	G	146	ARG	NE-CZ-NH1	5.22	122.91	120.30
1	L	532	ARG	CD-NE-CZ	5.22	130.90	123.60
3	М	130	ARG	NE-CZ-NH2	-5.20	117.70	120.30
2	В	106	ARG	NE-CZ-NH1	5.19	122.89	120.30
1	А	370	TYR	CB-CG-CD1	5.18	124.11	121.00
1	A	68	ARG	NE-CZ-NH1	-5.14	117.73	120.30
1	L	449	PRO	C-N-CA	-5.12	108.89	121.70
1	L	2	ARG	CD-NE-CZ	5.11	130.75	123.60
1	A	345	ARG	NE-CZ-NH2	5.01	122.81	120.30

There are no chirality outliers.

All (2) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	А	205	GLU	Sidechain
1	L	208	GLU	Sidechain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	4201	0	4138	73	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	L	4200	0	4139	99	0
2	В	1357	0	1408	47	0
2	Е	1352	0	1403	87	0
3	G	1093	0	1101	38	0
3	М	1093	0	1101	35	0
4	А	3	0	0	0	0
4	L	3	0	0	0	0
5	В	91	0	88	9	0
5	Ε	91	0	88	5	0
6	А	335	0	0	7	0
6	В	89	0	0	2	0
6	Е	54	0	0	3	0
6	G	70	0	0	1	0
6	L	330	0	0	6	0
6	М	84	0	0	2	0
All	All	14446	0	13466	366	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 14.

All (366) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
3:M:37:SER:HB3	3:M:39:ARG:HH21	1.32	0.94
2:E:190:GLN:H	2:E:190:GLN:HE21	1.14	0.94
2:B:47:PHE:HA	2:B:223:ALA:HB3	1.52	0.91
1:L:513:GLN:HE22	3:M:47:ASN:HD21	1.13	0.90
2:B:190:GLN:H	2:B:190:GLN:HE21	1.22	0.88
1:L:210:LYS:HE2	1:L:214:LEU:HD11	1.59	0.84
3:M:76:ALA:HA	3:M:79:MET:HE2	1.62	0.80
2:B:55:ARG:HG2	2:B:55:ARG:HH11	1.49	0.78
3:G:60:THR:HG23	3:G:63:ASP:H	1.49	0.77
3:M:100:ARG:HG3	3:M:100:ARG:HH11	1.50	0.77
1:A:494:LYS:HA	1:A:497:LEU:HD12	1.67	0.76
2:E:174:ARG:HE	2:E:181:PRO:HB3	1.50	0.75
2:E:142:GLN:HG3	2:E:145:LEU:HD22	1.69	0.75
1:A:4:LYS:HD2	1:L:441:TYR:O	1.88	0.74
2:E:90:GLU:OE1	2:E:166:ARG:HD2	1.87	0.74
1:A:489:MET:O	1:A:493:GLN:HG2	1.86	0.74
1:L:468:ARG:HB3	1:L:472:GLU:OE2	1.88	0.74
2:B:217:PRO:HD2	6:B:1651:HOH:O	1.87	0.73

	lo uo pugo	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:E:79:ILE:HD12	2:E:203:LEU:HD12	1.69	0.73
1:L:404:ARG:HH11	1:L:404:ARG:HB2	1.55	0.72
1:L:453:ILE:HD11	2:E:183:PRO:HD2	1.72	0.71
3:G:57:THR:HG21	3:G:78:ASP:OD1	1.89	0.71
3:G:60:THR:HG23	3:G:63:ASP:N	2.06	0.71
2:E:49:THR:OG1	2:E:221:ARG:HB3	1.90	0.71
1:L:513:GLN:NE2	3:M:47:ASN:HD21	1.87	0.70
3:G:153:ALA:O	3:G:157:ARG:HG3	1.91	0.70
2:B:48:LEU:HD13	2:B:220:LEU:HD13	1.74	0.70
3:G:67:GLU:OE2	3:G:70:LEU:HD12	1.92	0.70
2:B:93:ALA:O	2:B:97:GLU:HB2	1.90	0.69
1:A:42:LYS:HB2	1:A:50:GLU:HB3	1.72	0.69
2:E:60:GLN:OE1	2:E:126:SER:HA	1.93	0.69
2:E:119:GLU:HG2	2:E:122:ARG:HH12	1.58	0.69
2:E:79:ILE:HG13	2:E:199:LYS:NZ	2.08	0.68
1:L:42:LYS:HB2	1:L:50:GLU:HB3	1.74	0.67
2:E:100:ILE:HG22	2:E:101:LYS:O	1.94	0.67
1:A:484:ASP:OD1	1:A:485:VAL:HG23	1.95	0.67
2:E:49:THR:HG23	2:E:221:ARG:O	1.94	0.67
3:G:71:SER:HB2	3:G:73:LYS:HE2	1.76	0.67
1:L:536:GLU:HG3	6:L:3744:HOH:O	1.95	0.66
2:B:113:VAL:HG23	2:B:133:GLN:HG3	1.77	0.66
3:G:60:THR:O	3:G:63:ASP:HB2	1.95	0.66
1:L:57:SER:HB3	6:L:3805:HOH:O	1.95	0.66
1:A:191:GLN:OE1	1:A:492:ILE:HD13	1.96	0.65
3:G:59:LYS:NZ	3:G:59:LYS:HB3	2.11	0.65
2:E:212:VAL:HG22	2:E:215:LYS:HB3	1.79	0.65
2:E:103:ARG:HD2	2:E:219:GLU:OE1	1.98	0.64
2:E:199:LYS:NZ	2:E:199:LYS:HB3	2.11	0.64
1:L:210:LYS:O	1:L:214:LEU:HD13	1.98	0.64
2:B:87:ILE:O	2:B:91:VAL:HG23	1.97	0.64
2:E:48:LEU:HD21	2:E:88:LEU:HD23	1.79	0.63
1:A:471:LEU:O	1:A:475:LYS:HG3	1.99	0.63
3:G:55:THR:HG23	3:G:59:LYS:O	1.98	0.63
2:E:54:ALA:HA	2:E:219:GLU:HB2	1.82	0.62
2:B:90:GLU:OE1	2:B:166:ARG:HG3	2.00	0.62
2:E:79:ILE:HG13	2:E:199:LYS:HZ3	1.65	0.62
1:L:409:ILE:HG23	1:L:440:THR:HG22	1.81	0.61
1:L:513:GLN:HE22	3:M:47:ASN:ND2	1.92	0.61
1:L:404:ARG:HH12	1:L:406:GLU:HG2	1.64	0.61
3:G:133:LYS:HD2	3:G:164:VAL:HG21	1.83	0.60

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:E:47:PHE:HE2	2:E:88:LEU:HD23	1.66	0.60
1:L:438:ALA:HB1	1:L:448:MET:HE2	1.83	0.60
2:E:58:THR:HG22	2:E:58:THR:O	2.01	0.60
2:B:61:ASP:HB3	2:B:101:LYS:HE2	1.84	0.60
3:G:71:SER:OG	3:G:73:LYS:HD2	2.02	0.59
1:L:462:GLU:HG2	1:L:466:LYS:HG3	1.85	0.59
3:M:59:LYS:HD2	3:M:59:LYS:N	2.18	0.59
1:L:86:LYS:O	1:L:90:MET:HG3	2.02	0.59
1:L:365:SER:HB2	1:L:377:SER:HB3	1.84	0.59
2:E:121:ASN:HB3	2:E:129:SER:OG	2.03	0.59
1:A:528:ALA:HA	6:A:2832:HOH:O	2.01	0.58
2:E:56:GLN:HE21	2:E:57:GLY:H	1.50	0.58
3:G:66:LEU:O	3:G:70:LEU:HG	2.04	0.58
1:L:453:ILE:HD12	1:L:457:ILE:HD12	1.85	0.58
2:E:170:LYS:HD3	2:E:174:ARG:HH11	1.68	0.58
1:L:453:ILE:HD11	2:E:183:PRO:CD	2.33	0.58
1:L:475:LYS:HG2	3:M:70:LEU:HD23	1.86	0.58
1:A:21:LYS:O	1:L:550:PRO:HG3	2.04	0.57
2:E:93:ALA:O	2:E:97:GLU:HB2	2.03	0.57
1:A:175:VAL:O	1:A:178:TYR:HB2	2.05	0.57
1:A:299:SER:OG	1:A:303:ILE:HA	2.04	0.57
2:E:60:GLN:HA	2:E:125:GLY:O	2.04	0.57
1:A:468:ARG:HB3	1:A:472:GLU:OE2	2.04	0.57
2:E:204:HIS:HD2	6:E:1610:HOH:O	1.88	0.57
3:M:54:LYS:HD3	3:M:58:ASN:HA	1.87	0.57
1:A:42:LYS:HB2	1:A:50:GLU:CB	2.35	0.57
1:L:333:SER:HA	1:L:362:SER:OG	2.05	0.57
1:L:25:GLU:OE2	1:L:25:GLU:HA	2.05	0.56
2:E:132:ILE:HG12	2:E:138:THR:HG23	1.87	0.56
2:E:174:ARG:NE	2:E:181:PRO:HB3	2.19	0.56
1:L:494:LYS:O	1:L:498:THR:HG23	2.05	0.56
3:M:76:ALA:HA	3:M:79:MET:CE	2.35	0.56
1:A:434:GLU:HG2	1:A:435:GLU:N	2.19	0.56
2:B:61:ASP:O	2:B:101:LYS:HD2	2.06	0.56
5:B:1601:B12:H362	5:B:1601:B12:H351	1.88	0.56
1:L:442:ALA:HB2	1:L:448:MET:HE1	1.87	0.56
2:E:127:GLY:O	2:E:142:GLN:HA	2.07	0.55
3:M:64:PHE:CE1	3:M:79:MET:HG2	2.41	0.55
2:E:190:GLN:H	2:E:190:GLN:NE2	1.94	0.55
3:M:60:THR:HB	3:M:62:ASP:OD1	2.07	0.55
1:A:23:TRP:HB2	1:L:550:PRO:CG	2.36	0.55

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:E:106:ARG:HD2	2:E:108:PHE:CE2	2.42	0.55
1:A:409:ILE:HD13	1:A:441:TYR:HE1	1.71	0.54
2:E:50:GLU:O	2:E:220:LEU:HD23	2.08	0.54
2:E:50:GLU:O	2:E:51:VAL:HB	2.07	0.54
5:E:1602:B12:H492	5:E:1602:B12:C2B	2.37	0.54
1:L:148:LYS:HD2	1:L:450:GLU:HG2	1.88	0.54
2:B:204:HIS:HD2	6:B:1630:HOH:O	1.90	0.54
1:L:258:PHE:O	1:L:295:LEU:HD12	2.08	0.54
1:L:184:ILE:O	1:L:188:VAL:HG23	2.08	0.54
2:B:55:ARG:HG2	2:B:55:ARG:NH1	2.20	0.54
3:M:129:TYR:CD2	3:M:173:ASP:HB3	2.43	0.53
2:B:62:GLU:O	2:B:126:SER:HB3	2.09	0.53
5:B:1601:B12:C2B	5:B:1601:B12:H492	2.39	0.53
1:L:210:LYS:HE2	1:L:214:LEU:CD1	2.34	0.53
2:E:170:LYS:HD3	2:E:174:ARG:NH1	2.24	0.53
1:L:462:GLU:HG3	1:L:466:LYS:HE3	1.89	0.53
1:L:404:ARG:HH11	1:L:404:ARG:CB	2.21	0.52
3:G:44:PRO:HG2	3:G:47:ASN:OD1	2.10	0.52
1:A:23:TRP:HB2	1:L:550:PRO:HG3	1.90	0.52
2:B:98:GLU:O	2:B:177:LYS:HE3	2.10	0.52
2:E:87:ILE:HG12	2:E:165:TYR:CE2	2.45	0.52
1:A:23:TRP:CZ2	1:A:26:GLU:HG3	2.45	0.52
1:L:259:THR:CG2	1:L:296:GLN:HE21	2.22	0.52
1:L:299:SER:OG	1:L:303:ILE:HA	2.10	0.52
1:A:294:GLY:HA3	1:A:329:GLU:HB3	1.91	0.52
3:G:132:THR:OG1	3:G:135:GLU:HG3	2.09	0.52
2:B:100:ILE:HD11	2:B:177:LYS:HD2	1.92	0.51
1:L:188:VAL:O	1:L:192:VAL:HG23	2.10	0.51
2:E:56:GLN:NE2	2:E:123:LEU:HA	2.25	0.51
2:E:119:GLU:HA	2:E:122:ARG:CZ	2.39	0.51
1:L:453:ILE:HD11	2:E:183:PRO:HG2	1.92	0.51
1:A:548:LEU:HD12	1:L:20:VAL:HG12	1.91	0.51
1:L:442:ALA:HB2	1:L:448:MET:CE	2.41	0.51
2:E:50:GLU:O	2:E:219:GLU:O	2.29	0.51
2:E:199:LYS:NZ	2:E:203:LEU:HD11	2.26	0.51
1:L:450:GLU:OE1	1:L:450:GLU:HA	2.10	0.51
2:E:98:GLU:HG3	2:E:177:LYS:NZ	2.26	0.51
1:L:453:ILE:HD12	1:L:457:ILE:CD1	2.41	0.51
2:E:141:HIS:HE1	2:E:145:LEU:HB3	1.75	0.50
1:A:548:LEU:HG	1:L:19:PHE:O	2.11	0.50
3:G:55:THR:HG21	3:G:64:PHE:CZ	2.46	0.50

	is as pagem	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:L:370:TYR:CZ	1:L:446:LYS:HE3	2.46	0.50
1:L:479:GLN:HG2	6:L:3896:HOH:O	2.10	0.50
3:M:94:LYS:HD3	3:M:102:ALA:CB	2.42	0.50
3:G:71:SER:O	3:G:72:ASN:HB2	2.11	0.50
2:B:148:LEU:HD13	5:B:1601:B12:H411	1.94	0.50
2:E:47:PHE:CE2	2:E:88:LEU:HD23	2.44	0.50
2:E:142:GLN:CG	2:E:145:LEU:HD22	2.41	0.50
1:A:38:LYS:HG2	6:A:2891:HOH:O	2.11	0.50
2:B:47:PHE:O	2:B:222:VAL:HA	2.11	0.50
2:B:98:GLU:OE1	2:B:174:ARG:HG2	2.12	0.50
5:B:1601:B12:O39	5:B:1601:B12:H361	2.12	0.50
2:E:48:LEU:HD21	2:E:88:LEU:CD2	2.42	0.50
2:E:119:GLU:HA	2:E:122:ARG:NH1	2.27	0.49
3:M:146:ARG:HD2	3:M:147:TYR:CZ	2.46	0.49
1:A:458:LYS:HD3	1:A:459:PHE:CE1	2.47	0.49
2:B:61:ASP:HB3	2:B:101:LYS:CE	2.42	0.49
1:L:471:LEU:HD11	3:M:79:MET:HE1	1.94	0.49
3:M:57:THR:O	3:M:58:ASN:OD1	2.30	0.49
3:G:106:GLU:HG3	6:G:224:HOH:O	2.12	0.49
1:A:486:ALA:HB3	3:G:66:LEU:HD11	1.94	0.49
2:E:48:LEU:CD2	2:E:222:VAL:HG13	2.42	0.49
2:E:48:LEU:HD11	2:E:88:LEU:CD2	2.42	0.49
1:A:98:ARG:HG3	1:A:132:MET:CE	2.42	0.49
1:L:334:ASN:ND2	1:L:348:ARG:HD3	2.28	0.49
3:M:165:GLU:HG2	3:M:166:ARG:HG2	1.94	0.49
1:L:56:VAL:HA	1:L:59:PHE:CD1	2.48	0.49
1:A:420:GLN:HG3	1:A:431:ILE:O	2.14	0.48
3:G:67:GLU:CD	3:G:70:LEU:HD12	2.33	0.48
1:L:302:CYS:O	1:L:306:PRO:HD2	2.13	0.48
5:E:1602:B12:H362	5:E:1602:B12:H351	1.95	0.48
2:B:90:GLU:HG3	2:B:162:LEU:HB3	1.94	0.48
1:A:173:VAL:HG21	1:A:176:ALA:HA	1.94	0.48
2:E:142:GLN:O	2:E:145:LEU:HB2	2.13	0.48
2:B:62:GLU:HA	2:B:101:LYS:O	2.13	0.48
2:E:131:GLY:O	2:E:138:THR:HA	2.13	0.48
5:E:1602:B12:H531	5:E:1602:B12:H552	1.94	0.48
1:A:499:GLY:HA2	6:A:2697:HOH:O	2.13	0.48
1:L:148:LYS:HD2	1:L:450:GLU:CD	2.34	0.48
5:B:1601:B12:H3	5:B:1601:B12:N29	2.27	0.48
2:E:121:ASN:HD22	2:E:122:ARG:N	2.12	0.48
1:A:365:SER:HB2	1:A:377:SER:HB3	1.95	0.48

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:L:370:TYR:OH	1:L:444:GLY:HA3	2.13	0.48
1:L:329:GLU:OE2	1:L:505:SER:HA	2.13	0.48
1:L:408:VAL:O	1:L:411:ILE:HG22	2.14	0.48
1:L:431:ILE:HG22	1:L:431:ILE:O	2.14	0.48
1:L:455:GLU:OE1	1:L:459:PHE:HE1	1.97	0.48
3:G:57:THR:OG1	3:G:59:LYS:HD2	2.14	0.48
1:L:33:SER:HB3	1:L:275:SER:HB3	1.95	0.47
1:L:69:TYR:HB2	1:L:289:ALA:HB1	1.95	0.47
3:M:146:ARG:HG2	3:M:146:ARG:O	2.13	0.47
1:A:331:ALA:HB1	1:A:362:SER:HB3	1.96	0.47
1:L:42:LYS:CB	1:L:50:GLU:HB3	2.43	0.47
2:E:48:LEU:HD23	2:E:222:VAL:HG13	1.96	0.47
2:E:190:GLN:HE21	2:E:190:GLN:N	1.98	0.47
2:B:87:ILE:HG23	2:B:165:TYR:CD1	2.49	0.47
3:G:169:LEU:O	3:G:172:ASP:HB2	2.14	0.47
2:E:56:GLN:HG3	2:E:57:GLY:N	2.29	0.47
1:A:180:PRO:HG3	1:A:464:ILE:HD11	1.95	0.47
1:L:404:ARG:NH1	1:L:406:GLU:HG2	2.29	0.47
2:B:51:VAL:HG23	2:B:51:VAL:O	2.15	0.47
3:G:64:PHE:CE1	3:G:79:MET:HG2	2.50	0.47
1:A:69:TYR:HB2	1:A:289:ALA:HB1	1.96	0.47
1:A:493:GLN:HA	1:A:496:LYS:HE3	1.97	0.47
3:G:39:ARG:HG3	3:G:95:ASP:OD2	2.14	0.47
1:A:205:GLU:OE1	1:A:205:GLU:HA	2.15	0.47
1:L:370:TYR:CE2	1:L:446:LYS:HE3	2.50	0.47
3:G:57:THR:HG23	3:G:78:ASP:HA	1.97	0.46
2:E:65:ILE:HD12	2:E:104:VAL:HG22	1.97	0.46
2:E:119:GLU:HG2	2:E:122:ARG:NH1	2.28	0.46
1:A:259:THR:CG2	1:A:296:GLN:HE21	2.29	0.46
3:G:118:ARG:O	3:G:122:ILE:HG13	2.16	0.46
1:L:479:GLN:O	1:L:479:GLN:HG3	2.15	0.46
1:L:365:SER:HB3	1:L:380:ASP:HA	1.98	0.46
2:E:76:THR:HB	6:E:1644:HOH:O	2.16	0.46
3:G:147:TYR:O	3:G:148:GLN:HB2	2.16	0.46
5:B:1601:B12:H91	5:B:1601:B12:H261	1.66	0.46
1:L:3:SER:O	1:L:7:GLU:HG3	2.16	0.46
1:L:23:TRP:CZ2	1:L:26:GLU:HG3	2.51	0.46
2:E:106:ARG:HG2	2:E:108:PHE:CZ	2.50	0.46
2:B:190:GLN:H	2:B:190:GLN:NE2	2.03	0.46
2:B:160:LEU:HD22	2:B:164:THR:HG21	1.98	0.46
1:L:72:ASN:ND2	6:L:3775:HOH:O	2.49	0.45

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:E:66:ALA:HB1	2:E:107:CYS:SG	2.57	0.45
3:M:144:GLU:HG3	3:M:150:LYS:HE3	1.98	0.45
1:A:142:ALA:HB2	1:A:166:PHE:CD1	2.52	0.45
1:A:494:LYS:HA	1:A:497:LEU:CD1	2.43	0.45
3:G:75:THR:O	3:G:79:MET:HG3	2.17	0.45
2:E:60:GLN:OE1	2:E:178:ARG:NH2	2.50	0.45
2:B:77:VAL:HB	2:B:81:GLY:HA2	1.98	0.45
2:B:113:VAL:CG2	2:B:133:GLN:HG3	2.45	0.45
2:B:177:LYS:O	2:B:178:ARG:HB2	2.17	0.45
1:L:259:THR:HG23	1:L:296:GLN:HE21	1.82	0.45
1:L:335:ASP:OD1	1:L:335:ASP:N	2.50	0.45
3:M:54:LYS:CD	3:M:58:ASN:HA	2.46	0.45
1:A:21:LYS:HB2	1:L:550:PRO:HD2	1.99	0.45
1:A:329:GLU:OE2	1:A:505:SEB:HA	2.17	0.45
$2 \cdot B \cdot 100 \cdot ILE \cdot HG13$	2·B·173·ALA·HB1	1.97	0.45
$3 \cdot G \cdot 129 \cdot TYR \cdot CD2$	3·G·173·ASP·HB3	2.51	0.45
1.1.494.LYS.HE3	3:M·61·LEU·O	2.17	0.45
1:A:38:LYS:HA	6:A:2888:HOH:O	2.17	0.45
5·B·1601·B12·N3B	5·B·1601·B12·H202	2.31	0.45
1:A·4·LYS·HE3	6·L·3878·HOH·O	2.17	0.45
1:A:389:VAL:HG11	1:L:344:ARG:HD2	1.99	0.45
1:A:483:THR:HG23	3:G:66:LEU:HD13	1.99	0.45
1:A:549:ASP:OD1	1:A:551:ASN:ND2	2.50	0.45
3:M:173:ASP:OD1	3:M:173:ASP:N	2.50	0.45
3:G:70:LEU:O	3:G:72:ASN:ND2	2.50	0.44
1:L:499:GLY:HA2	6:L:3741:HOH:O	2.17	0.44
3:M:43:TYR:O	3:M:48:LYS:HE2	2.17	0.44
3:M:134:GLU:HB2	6:M:203:HOH:O	2.17	0.44
1:A:458:LYS:HD3	1:A:459:PHE:CD1	2.52	0.44
1:A:493:GLN:NE2	6:A:2678:HOH:O	2.50	0.44
2:B:65:ILE:HG21	2:B:88:LEU:HD11	1.99	0.44
2:B:172:ALA:O	2:B:175:TYR:HB2	2.16	0.44
2:E:118:VAL:O	2:E:121:ASN:ND2	2.50	0.44
1:L:231:VAL:HG23	1:L:270:TYR:HB2	2.00	0.44
2:E:78:ASN:HB2	2:E:135:LYS:O	2.16	0.44
2:E:191:MET:C	2:E:194:PRO:HD2	2.38	0.44
1:A:549:ASP:O	1:A:551:ASN:N	2.50	0.44
1:L:69:TYR:O	3:M:100:ARG:NE	2.50	0.44
2:E:76:THR:O	2:E:83:PRO:HA	2.17	0.44
3:G:173:ASP:OD1	3:G:173:ASP:N	2.50	0.44
2:E:128:ILE:HD12	2:E:128:ILE:N	2.33	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
5:E:1602:B12:H531	5:E:1602:B12:C55	2.48	0.44
1:L:453:ILE:HD11	2:E:183:PRO:CG	2.48	0.44
2:E:75:GLN:NE2	6:E:1617:HOH:O	2.50	0.44
1:A:367:VAL:HB	1:A:368:PRO:HD2	1.99	0.44
3:G:39:ARG:HG3	3:G:95:ASP:CG	2.38	0.44
1:L:334:ASN:ND2	1:L:349:LEU:HA	2.33	0.44
2:E:121:ASN:O	2:E:143:GLN:HG3	2.18	0.44
2:B:191:MET:O	2:B:195:LYS:HG3	2.17	0.43
2:E:64:ILE:HG21	2:E:105:ILE:HD12	1.99	0.43
2:B:97:GLU:OE1	2:B:170:LYS:HD2	2.18	0.43
1:L:60:ASP:OD1	1:L:62:ILE:HB	2.18	0.43
1:L:227:GLY:N	1:L:265:GLU:OE2	2.50	0.43
1:L:386:ASP:O	1:L:390:ILE:HD12	2.18	0.43
2:E:54:ALA:HB2	2:E:219:GLU:N	2.33	0.43
3:M:68:ASN:HB3	3:M:73:LYS:HB3	2.00	0.43
2:E:162:LEU:HD23	2:E:162:LEU:HA	1.86	0.43
1:A:35:ASN:HB2	1:A:273:GLY:O	2.19	0.43
1:A:54:LYS:NZ	6:A:2879:HOH:O	2.50	0.43
1:A:199:THR:H	1:A:218:CYS:HB2	1.84	0.43
3:M:42:ASP:HB3	3:M:49:HIS:CD2	2.54	0.43
1:L:429:PRO:HD3	1:L:459:PHE:CG	2.53	0.43
2:E:117:ALA:HB2	2:E:131:GLY:HA3	2.01	0.43
2:E:180:SER:O	2:E:180:SER:OG	2.29	0.43
1:L:421:ALA:O	1:L:424:ALA:HB3	2.18	0.43
2:E:199:LYS:HB3	2:E:199:LYS:HZ3	1.80	0.43
1:A:172:THR:OG1	5:B:1601:B12:N29	2.49	0.43
2:E:160:LEU:HD23	2:E:164:THR:HG21	2.01	0.43
1:A:179:ALA:HB3	1:A:180:PRO:HD3	2.00	0.43
2:E:69:PRO:HA	2:E:106:ARG:HD3	2.01	0.43
3:G:133:LYS:HD2	3:G:164:VAL:CG2	2.48	0.42
1:L:148:LYS:HD2	1:L:450:GLU:CG	2.48	0.42
1:L:421:ALA:HB2	1:L:482:PHE:HE2	1.84	0.42
1:L:533:LEU:HD11	1:L:541:ILE:HD12	2.01	0.42
2:B:50:GLU:HB3	2:B:218:GLN:OE1	2.19	0.42
1:A:370:TYR:OH	1:A:446:LYS:HB2	2.20	0.42
2:B:47:PHE:O	2:B:48:LEU:HD23	2.20	0.42
1:L:142:ALA:HB2	1:L:166:PHE:CG	2.54	0.42
1:L:152:VAL:HG22	1:L:431:ILE:HG12	2.01	0.42
2:E:98:GLU:HG3	2:E:177:LYS:HZ2	1.85	0.42
2:B:98:GLU:OE1	2:B:174:ARG:HD2	2.19	0.42
3:G:49:HIS:HB3	3:G:52:TRP:CD1	2.54	0.42

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:L:173:VAL:HG21	1:L:176:ALA:HA	2.02	0.42	
1:L:490:LEU:HD12	1:L:490:LEU:HA	1.80	0.42	
1:A:133:ARG:HH11	1:A:133:ARG:HD3	1.69	0.42	
2:B:73:LEU:HD12	2:B:73:LEU:HA	1.72	0.42	
2:B:106:ARG:HD2	2:B:108:PHE:CZ	2.54	0.42	
2:B:159:LEU:N	2:B:159:LEU:HD23	2.34	0.42	
2:B:177:LYS:HB3	2:B:179:GLU:OE2	2.19	0.42	
1:A:350:LEU:HA	1:A:353:PHE:HB3	2.01	0.42	
3:M:62:ASP:OD2	3:M:62:ASP:N	2.50	0.42	
3:M:93:ALA:O	3:M:96:ALA:HB3	2.20	0.42	
1:A:211:LEU:HD23	1:A:211:LEU:HA	1.92	0.42	
1:A:227:GLY:O	1:A:282:ARG:NH1	2.52	0.42	
2:B:160:LEU:CD2	2:B:164:THR:HG21	2.50	0.42	
1:A:215:GLY:HA2	6:A:2828:HOH:O	2.19	0.42	
1:A:334:ASN:ND2	1:A:349:LEU:HA	2.35	0.42	
3:G:167:LYS:HB3	3:G:167:LYS:HE3	1.55	0.42	
2:B:154:PHE:HB3	2:B:160:LEU:HD11	2.02	0.42	
3:M:60:THR:HB	3:M:62:ASP:CG	2.40	0.42	
3:M:133:LYS:HB2	6:M:187:HOH:O	2.20	0.42	
1:A:335:ASP:OD1	1:A:335:ASP:N	2.50	0.41	
5:B:1601:B12:C55	5:B:1601:B12:H531	2.50	0.41	
2:E:154:PHE:HB3	2:E:160:LEU:HD21	2.02	0.41	
3:M:39:ARG:HA	3:M:39:ARG:HD3	1.91	0.41	
1:A:259:THR:HG23	1:A:296:GLN:HE21	1.86	0.41	
1:A:291:GLY:HA2	3:G:100:ARG:HB3	2.01	0.41	
1:A:395:LYS:HG2	1:A:395:LYS:O	2.20	0.41	
2:E:109:LYS:HG3	2:E:119:GLU:OE2	2.21	0.41	
1:A:38:LYS:HA	1:A:39:PRO:HD3	1.92	0.41	
1:L:62:ILE:HG12	1:L:286:ILE:HD11	2.01	0.41	
1:L:146:ASN:HA	1:L:371:ASP:O	2.20	0.41	
3:M:64:PHE:HE1	3:M:79:MET:HG2	1.84	0.41	
2:E:109:LYS:HG3	2:E:119:GLU:CD	2.40	0.41	
1:A:64:HIS:CD2	3:G:162:LEU:HD22	2.56	0.41	
1:A:462:GLU:OE2	1:A:466:LYS:HD2	2.21	0.41	
1:L:370:TYR:CE1	1:L:446:LYS:HE3	2.55	0.41	
2:E:170:LYS:HB2	2:E:170:LYS:HE2	1.75	0.41	
2:B:100:ILE:CG1	2:B:173:ALA:HB1	2.50	0.41	
2:B:108:PHE:O	2:B:212:VAL:N	2.49	0.41	
1:L:205:GLU:OE1	1:L:205:GLU:HA	2.21	0.41	
1:A:347:ALA:HA	1:L:350:LEU:HD21	2.02	0.41	
3:G:57:THR:OG1	3:G:78:ASP:HB3	2.21	0.41	

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:L:110:PRO:O	1:L:114:VAL:HG23	2.20	0.41
1:L:498:THR:HG22	3:M:61:LEU:HD21	2.03	0.41
2:E:47:PHE:CE2	2:E:48:LEU:HG	2.56	0.41
2:E:174:ARG:HH21	2:E:181:PRO:CB	2.34	0.41
1:L:60:ASP:OD1	1:L:62:ILE:N	2.54	0.40
2:E:64:ILE:O	2:E:130:ILE:N	2.49	0.40
5:E:1602:B12:H411	5:E:1602:B12:H363	1.75	0.40
1:A:455:GLU:O	1:A:458:LYS:HB3	2.22	0.40
2:B:47:PHE:HA	2:B:223:ALA:CB	2.38	0.40
2:B:151:LEU:HD23	2:B:151:LEU:HA	1.91	0.40
2:E:132:ILE:HG23	2:E:138:THR:OG1	2.21	0.40
1:A:102:VAL:HB	1:A:103:PRO:HD3	2.03	0.40
1:L:201:CYS:O	1:L:208:GLU:HG3	2.22	0.40
2:E:47:PHE:O	2:E:222:VAL:HA	2.22	0.40
1:A:98:ARG:HG3	1:A:132:MET:HE1	2.03	0.40
1:A:262:SER:N	1:A:299:SER:HA	2.37	0.40
1:A:345:ARG:HH11	1:A:345:ARG:HD2	1.62	0.40
1:L:83:ASP:OD2	1:L:86:LYS:N	2.49	0.40
1:L:163:TRP:O	1:L:401:ARG:NH2	2.50	0.40
1:L:455:GLU:OE1	1:L:458:LYS:HE3	2.20	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percer	ntiles
1	А	549/554~(99%)	526 (96%)	17 (3%)	6 (1%)	14	4
1	L	549/554~(99%)	532 (97%)	14 (3%)	3~(0%)	29	15
2	В	176/224~(79%)	169 (96%)	7 (4%)	0	100	100
2	Е	175/224 (78%)	161 (92%)	8 (5%)	6 (3%)	3	0

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percer	ntiles
3	G	135/173~(78%)	131 (97%)	4 (3%)	0	100	100
3	М	135/173~(78%)	132 (98%)	2(2%)	1 (1%)	22	9
All	All	1719/1902~(90%)	1651 (96%)	52 (3%)	16 (1%)	17	6

All (16) Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
2	Е	50	GLU
2	Е	59	GLN
3	М	57	THR
2	Е	51	VAL
2	Е	52	GLY
1	А	452	ASN
1	А	484	ASP
2	Е	61	ASP
1	А	300	VAL
1	L	300	VAL
1	L	484	ASP
2	Е	56	GLN
1	А	363	GLY
1	L	363	GLY
1	А	550	PRO
1	А	430	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	450/453~(99%)	425~(94%)	25~(6%)	21 7
1	L	450/453~(99%)	426 (95%)	24 (5%)	22 8
2	В	146/183~(80%)	130 (89%)	16 (11%)	6 1
2	Ε	146/183~(80%)	122 (84%)	24 (16%)	2 0
3	G	116/141~(82%)	102 (88%)	14 (12%)	5 0

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
3	М	116/141~(82%)	105~(90%)	11 (10%)	8 1
All	All	1424/1554~(92%)	1310 (92%)	114 (8%)	12 2

All (114) residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
1	А	28	PHE
1	А	38	LYS
1	А	77	GLU
1	А	147	VAL
1	А	178	TYR
1	А	211	LEU
1	А	232	PHE
1	А	267	GLN
1	А	348	ARG
1	А	350	LEU
1	А	370	TYR
1	А	404	ARG
1	А	406	GLU
1	А	434	GLU
1	А	458	LYS
1	А	462	GLU
1	А	466	LYS
1	А	475	LYS
1	А	479	GLN
1	А	484	ASP
1	А	490	LEU
1	А	492	ILE
1	А	501	TYR
1	А	534	GLN
1	А	548	LEU
2	В	49	THR
2	В	55	ARG
2	В	73	LEU
2	В	101	LYS
2	В	113	VAL
2	В	121	ASN
2	В	143	GLN
2	В	149	SER
2	В	150	ASN
2	В	163	GLU
2	В	166	ARG

Mol	Chain	Res	Type
2	В	167	GLN
2	В	177	LYS
2	В	182	GLN
2	В	190	GLN
2	В	195	LYS
3	G	39	ARG
3	G	41	SER
3	G	51	GLU
3	G	55	THR
3	G	59	LYS
3	G	66	LEU
3	G	67	GLU
3	G	73	LYS
3	G	78	ASP
3	G	100	ARG
3	G	121	GLU
3	G	145	SER
3	G	150	LYS
3	G	167	LYS
1	L	1	MET
1	L	28	PHE
1	L	42	LYS
1	L	57	SER
1	L	178	TYR
1	L	191	GLN
1	L	218	CYS
1	L	232	PHE
1	L	348	ARG
1	L	404	ARG
1	L	411	ILE
1	L	437	GLU
1	L	450	GLU
1	L	453	ILE
1	L	455	GLU
1	L	462	GLU
1	L	464	ILE
1	L	479	GLN
1	L	484	ASP
1	L	490	LEU
1	L	501	TYR
1	L	536	GLU
1	L	548	LEU

Mol	Chain	Res	Type
1	L	551	ASN
2	Е	59	GLN
2	Е	60	GLN
2	Е	64	ILE
2	Е	73	LEU
2	Е	85	LYS
2	Е	86	SER
2	Е	88	LEU
2	Е	97	GLU
2	Е	101	LYS
2	Е	105	ILE
2	Е	106	ARG
2	Е	121	ASN
2	Е	122	ARG
2	Е	145	LEU
2	Е	149	SER
2	Е	150	ASN
2	Е	167	GLN
2	Е	170	LYS
2	Е	182	GLN
2	Е	190	GLN
2	Е	199	LYS
2	Е	213	THR
2	Е	218	GLN
2	Е	221	ARG
3	М	57	THR
3	М	58	ASN
3	М	59	LYS
3	М	60	THR
3	М	62	ASP
3	М	66	LEU
3	М	100	ARG
3	М	117	ASP
3	М	145	SER
3	М	148	GLN
3	М	165	GLU

Continued from previous page...

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (26) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	334	ASN
1	А	352	GLN

Mol	Chain	Res	Type
1	А	465	ASN
1	А	551	ASN
2	В	75	GLN
2	В	121	ASN
2	В	143	GLN
2	В	190	GLN
2	В	204	HIS
3	G	68	ASN
3	G	72	ASN
1	L	45	ASN
1	L	334	ASN
1	L	352	GLN
1	L	513	GLN
1	L	543	ASN
1	L	551	ASN
2	Е	56	GLN
2	Е	59	GLN
2	Е	75	GLN
2	Е	121	ASN
2	Е	182	GLN
2	Е	190	GLN
2	Е	204	HIS
2	Е	218	GLN
3	М	58	ASN

Continued from previous page...

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 8 ligands modelled in this entry, 6 are monoatomic - leaving 2 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Typo	Chain	Dec	Tinle	Boi	nd lengt	hs	Bo	nd angle	es
IVIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
5	B12	В	1601	-	90,101,101	0.99	4 (4%)	137,166,166	1.07	6 (4%)
5	B12	Е	1602	-	90,101,101	1.02	4 (4%)	137,166,166	1.18	10 (7%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	B12	В	1601	-	-	10/52/223/223	0/3/11/11
5	B12	Е	1602	-	-	7/52/223/223	0/3/11/11

All (8) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
5	Е	1602	B12	C14-N23	4.05	1.40	1.35
5	В	1601	B12	C14-N23	3.86	1.40	1.35
5	Е	1602	B12	O58-C57	2.67	1.28	1.23
5	Е	1602	B12	C9-N22	2.25	1.36	1.30
5	В	1601	B12	O58-C57	2.25	1.27	1.23
5	В	1601	B12	C20-C1	-2.23	1.49	1.53
5	В	1601	B12	C9-N22	2.20	1.36	1.30
5	Е	1602	B12	C46-C12	2.02	1.58	1.54

All (16) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	Е	1602	B12	C54-C17-C18	-4.26	106.69	112.98
5	Ε	1602	B12	C55-C17-C16	3.75	124.06	116.65
5	В	1601	B12	C20-C1-C19	3.72	112.94	109.36
5	Е	1602	B12	O58-C57-C56	-3.40	115.80	122.02
5	Е	1602	B12	C26-C2-C1	3.18	114.96	110.01
5	Е	1602	B12	C1-C19-C18	-3.00	116.96	121.88

1T	WB
----	----

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	В	1601	B12	O58-C57-C56	-2.92	116.68	122.02
5	Е	1602	B12	C56-C57-N59	2.64	120.87	116.42
5	Е	1602	B12	C36-C7-C8	-2.34	107.76	112.08
5	Е	1602	B12	C56-C55-C17	2.26	119.87	115.52
5	В	1601	B12	C1-C2-C3	-2.15	98.85	101.60
5	В	1601	B12	C19-C1-N21	-2.12	100.00	102.16
5	В	1601	B12	C60-C18-C17	2.11	120.86	115.74
5	В	1601	B12	C54-C17-C18	-2.08	109.91	112.98
5	Ē	1602	B12	C41-C8-C9	-2.05	107.58	111.19
5	Е	1602	B12	C2-C3-C4	2.01	103.92	101.63

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
5	В	1601	B12	C1-C2-C26-C27
5	В	1601	B12	C25-C2-C26-C27
5	В	1601	B12	C3-C2-C26-C27
5	В	1601	B12	C2-C26-C27-N29
5	В	1601	B12	C4-C3-C30-C31
5	В	1601	B12	C2-C26-C27-O28
5	В	1601	B12	C2-C3-C30-C31
5	Е	1602	B12	C30-C31-C32-O34
5	Е	1602	B12	C30-C31-C32-N33
5	Е	1602	B12	C1-C2-C26-C27
5	Е	1602	B12	C25-C2-C26-C27
5	Е	1602	B12	C42-C41-C8-C9
5	В	1601	B12	C17-C18-C60-C61
5	В	1601	B12	C19-C18-C60-C61
5	Е	1602	B12	C17-C18-C60-C61
5	Е	1602	B12	C19-C18-C60-C61
5	В	1601	B12	C42-C41-C8-C9

All (17) torsion outliers are listed below:

There are no ring outliers.

2 monomers are involved in 14 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
5	В	1601	B12	9	0
5	Е	1602	B12	5	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths,

bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

EDS was not executed - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS was not executed - this section is therefore empty.

6.3 Carbohydrates (i)

EDS was not executed - this section is therefore empty.

6.4 Ligands (i)

EDS was not executed - this section is therefore empty.

6.5 Other polymers (i)

EDS was not executed - this section is therefore empty.

