

Full wwPDB X-ray Structure Validation Report (i)

Aug 10, 2020 – 08:54 AM BST

PDB ID	:	1IVC
Title	:	STRUCTURES OF AROMATIC INHIBITORS OF INFLUENZA VIRUS
		NEURAMINIDASE
Authors	:	Jedrzejas, M.J.; Luo, M.
Deposited on	:	1994-12-12
Resolution	:	2.40 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as 541 be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.13.1
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
$\operatorname{CCP4}$:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.13.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 2.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries},{ m resolution\ range}({ m \AA}))$
Clashscore	141614	4398 (2.40-2.40)
Ramachandran outliers	138981	4318 (2.40-2.40)
Sidechain outliers	138945	4319 (2.40-2.40)
RSRZ outliers	127900	3811 (2.40-2.40)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Qua	lity of chain	
1	А	388	56%	38%	6% •
1	В	388	55%	38%	6% •
2	С	2	50%	50%	
2	F	2		100%	
2	G	2	50%	50%	
2	J	2		100%	
3	D	4	25%	75%	

Mol	Chain	Length		Quality	of chain	
4	Б	6				
4	Ľ	0	17%		83%	
	_					
4	I	6	17%		83%	
5	H	4		50%	50%	

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
2	NAG	С	2	-	-	-	Х
3	BMA	D	3	-	-	-	Х
3	FUL	D	4	-	-	Х	Х
4	NAG	Е	1	-	-	Х	-
4	NAG	Е	2	-	-	-	Х
4	BMA	Е	3	-	Х	-	Х
4	MAN	Е	4	-	-	Х	Х
4	MAN	Е	5	-	-	-	Х
4	MAN	Е	6	-	-	Х	Х
4	NAG	Ι	2	-	-	-	Х
4	BMA	Ι	3	-	Х	-	Х
4	MAN	Ι	4	-	-	-	Х
4	MAN	Ι	5	-	-	-	Х
4	MAN	Ι	6	-	-	Х	Х
5	BMA	Н	3	-	-	-	Х
5	FUC	Н	4	Х	-	-	Х

2 Entry composition (i)

There are 7 unique types of molecules in this entry. The entry contains 8220 atoms, of which 1790 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called INFLUENZA A SUBTYPE N2 NEURAMINIDASE.

Mol	Chain	Residues			Aton	ıs	ZeroOcc	AltConf	Trace		
1	Δ	200	Total	С	Η	Ν	Ο	S	0	0	0
	100	3745	1866	723	545	588	23	0	0	U	
1	р	200	Total	С	Η	Ν	Ο	S	0	0	0
ГВ	000	3745	1866	723	545	588	23	0		0	

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	339	ASP	ASN	$\operatorname{conflict}$	UNP P06820
В	339	ASP	ASN	$\operatorname{conflict}$	UNP P06820

• Molecule 2 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues		\mathbf{At}	\mathbf{oms}			ZeroOcc	AltConf	Trace
0	2 C	0	Total	С	Η	Ν	Ο	0	0	0
		2	55	16	27	2	10	0	0	0
0	Б	2	Total	С	Η	Ν	0	0	0	0
		Δ	55	16	27	2	10	0	0	0
0	C	2	Total	С	Η	Ν	Ο	0	0	0
2 G	Z	55	16	27	2	10	0	0	U	
0	т	2	Total	С	Η	Ν	Ο	0	0	0
	2 J	2	55	16	27	2	10	0	0	U

• Molecule 3 is an oligosaccharide called beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-b eta-D-glucopyranose-(1-4)-[beta-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyr anose.

Mol	Chain	Residues		\mathbf{At}	\mathbf{oms}			ZeroOcc	AltConf	Trace
3	D	4	Total 96	C 28	Н 47	N 2	O 19	0	0	0

• Molecule 4 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-D-mannopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues		\mathbf{At}	\mathbf{oms}			ZeroOcc	AltConf	Trace
4	F	6	Total	С	Η	Ν	0	0	0	0
	0	139	40	67	2	30	0	0	0	
4	т	6	Total	С	Η	Ν	0	0	0	0
4 1	0	139	40	67	2	30	0	0	U	

• Molecule 5 is an oligosaccharide called beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-b eta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopy ranose.

Mol	Chain	Residues		\mathbf{At}	\mathbf{oms}			ZeroOcc	AltConf	Trace
5	Н	4	Total 96	C 28	H 47	N 2	O 19	0	0	0

• Molecule 6 is CALCIUM ION (three-letter code: CA) (formula: Ca).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	В	1	Total Ca 1 1	0	0
6	А	1	Total Ca 1 1	0	0

• Molecule 7 is 4-(ACETYLAMINO)-5-AMINO-3-HYDROXYBENZOIC ACID (three-letter

code: ST2) (formula: $C_9H_{10}N_2O_4$).

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf		
7	Λ	1	Total	С	Η	Ν	Ο	0	0
	1	19	9	4	2	4	0	0	
7	D	1	Total	С	Η	Ν	Ο	0	0
	L	19	9	4	2	4	0	0	

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: INFLUENZA A SUBTYPE N2 NEURAMINIDASE

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

50%

Chain C:

NAG NAG BMA MAN MAN MAN 50%

NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

Chain F:		100%	
NAG1 NAG2			
• Molecule 2: opyranose	2-acetamido-2-deoxy-beta	a-D-glucopyranose-(1-4)-2-acetamid	lo-2-deoxy-beta-D-gluc
Chain G:	50%	50%	L. C.
NAG1 NAG2			
• Molecule 2: opyranose	2-acetamido-2-deoxy-beta	a-D-glucopyranose-(1-4)-2-acetamid	lo-2-deoxy-beta-D-gluc
Chain J:		100%	
NAG1 NAG2			
• Molecule 3: a-L-fucopyran	beta-D-mannopyranose-(1 ose-(1-6)]2-acetamido-2-de	1-4)-2-acetamido-2-deoxy-beta-D-gl eoxy-beta-D-glucopyranose	ucopyranose-(1-4)-[bet

Chain D:	25%	75%	
NAG1 NAG2 BMA3 FUL4			

• Molecule 4: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-D-mannopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose

Unain E:	17%	83%	
004 00 H			

• Molecule 4: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-beta-D-mannopyrano se-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-D-mannopyranose-(1-6)]2-aceta mido-2-deoxy-beta-D-glucopyranose

83%

Chain I: 17%

 $\bullet \ Molecule \ 5: \ beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)] 2-acetamido-2-deoxy-beta-D-glucopyranose \ (1-6)] 2-acetamido-2-deoxy-b$

Chain H: 50% 50%

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 2 2 21	Depositor
Cell constants	120.35Å 139.72Å 140.23Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
\mathbf{B} as a solution (\mathbf{A})	6.50 - 2.40	Depositor
	25.94 - 2.40	EDS
% Data completeness	(Not available) $(6.50-2.40)$	Depositor
(in resolution range)	61.4(25.94-2.40)	EDS
R _{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$2.26 (at 2.39 \text{\AA})$	Xtriage
Refinement program	X-PLOR	Depositor
R R.	0.204 , (Not available)	Depositor
Π, Π_{free}	0.213 , (Not available)	DCC
R_{free} test set	No test flags present.	wwPDB-VP
Wilson B-factor $(Å^2)$	22.4	Xtriage
Anisotropy	1.090	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.38 , 57.2	EDS
L-test for $twinning^2$	$ < L >=0.45, < L^2>=0.27$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.88	EDS
Total number of atoms	8220	wwPDB-VP
Average B, all atoms $(Å^2)$	14.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.82% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

 $^{^1 {\}rm Intensities}$ estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: BMA, NAG, CA, FUC, ST2, FUL, MAN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles		
10101		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.65	0/3092	0.91	3/4194~(0.1%)	
1	В	0.65	0/3092	0.91	3/4194~(0.1%)	
All	All	0.65	0/6184	0.91	6/8388~(0.1%)	

There are no bond length outliers.

All (6) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
1	А	430	ARG	N-CA-C	5.66	126.28	111.00
1	В	430	ARG	N-CA-C	5.66	126.28	111.00
1	А	321	LEU	CA-CB-CG	-5.48	102.69	115.30
1	В	321	LEU	CA-CB-CG	-5.48	102.69	115.30
1	А	345	GLY	N-CA-C	5.15	125.97	113.10
1	В	345	GLY	N-CA-C	5.15	125.97	113.10

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3022	723	2852	143	3
1	В	3022	723	2852	159	1
2	С	28	27	25	3	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	F	28	27	25	3	0
2	G	28	27	25	3	0
2	J	28	27	25	3	0
3	D	49	47	43	1	9
4	Ε	72	67	61	28	9
4	Ι	72	67	61	15	2
5	Н	49	47	43	1	0
6	А	1	0	0	0	0
6	В	1	0	0	0	0
7	А	15	4	9	3	0
7	В	15	4	9	3	0
All	All	6430	1790	6030	334	12

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 27.

All (334) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 9	Interatomic	Clash
Atom-1	Atom-2	${ m distance}~({ m \AA})$	overlap (Å)
4:I:6:MAN:C5	4:I:6:MAN:C4	1.76	1.61
4:E:6:MAN:C4	4:E:6:MAN:C5	1.76	1.56
1:B:455:THR:CG2	4:E:1:NAG:H61	1.60	1.32
1:B:455:THR:HG21	4:E:1:NAG:C6	1.59	1.31
1:B:455:THR:CG2	4:E:6:MAN:H2	1.82	1.10
1:A:334:ASN:HA	1:A:387:ASN:HD21	1.20	1.06
1:B:334:ASN:HA	1:B:387:ASN:HD21	1.20	1.01
1:B:177:ALA:HB2	1:B:193:CYS:HB3	1.48	0.96
1:B:455:THR:HG21	4:E:1:NAG:H61	0.98	0.95
1:A:177:ALA:HB2	1:A:193:CYS:HB3	1.48	0.95
1:B:455:THR:HG22	4:E:6:MAN:H2	1.47	0.93
1:B:184:HIS:HD2	1:B:186:GLY:H	1.23	0.86
1:B:437:TRP:H	1:B:469:ILE:HG21	1.43	0.82
1:A:184:HIS:HD2	1:A:186:GLY:H	1.23	0.82
1:A:437:TRP:H	1:A:469:ILE:HG21	1.43	0.81
1:B:184:HIS:CD2	1:B:186:GLY:H	1.99	0.81
1:A:184:HIS:CD2	1:A:186:GLY:H	1.99	0.80
1:B:406:TYR:OH	7:B:471:ST2:H2	1.83	0.78
1:A:311:SER:O	1:A:312:ILE:HD13	1.83	0.78
1:A:406:TYR:OH	7:A:471:ST2:H2	1.83	0.78
1:B:311:SER:O	1:B:312:ILE:HD13	1.83	0.78
1:B:338:ARG:HG2	1:B:338:ARG:HH11	1.51	0.75

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlan (Å)
1·A·338·ABG·HH11	1·A·338·ABG·HG2	1.51	0.74
1:B:411:SEB:HB3	1:B:418:ILE:CD1	2 19	0.73
1·A·411·SEB·HB3	$1 \cdot A \cdot 418 \cdot ILE \cdot CD1$	2.19	0.72
1:A:334:ASN:HA	1:A:387:ASN:ND2	2.10	0.72
1:B:455:THR:CG2	4:E:6:MAN:C2	2.64	0.72
1:A:176:ILE:HG22	1:A:195:THR:HG21	1.73	0.71
1:B:455:THR:HG21	4:E:6:MAN:H2	1.71	0.70
4:I:6:MAN:C6	4:I:6:MAN:C4	2.70	0.70
4:E:6:MAN:C4	4:E:6:MAN:C6	2.70	0.69
1:B:334:ASN:HA	1:B:387:ASN:ND2	2.01	0.69
1:B:176:ILE:HG22	1:B:195:THR:HG21	1.73	0.69
1:A:273:GLN:HG3	1:A:340:PRO:HG3	1.75	0.68
1:A:270:GLY:HA3	1:A:314:SER:H	1.58	0.68
1:A:352:TRP:HD1	1:A:407:SER:HG	1.42	0.68
1:A:144:HIS:HE1	1:B:462:ALA:HA	1.59	0.67
1:B:273:GLN:HG3	1:B:340:PRO:HG3	1.75	0.67
1:B:270:GLY:HA3	1:B:314:SER:H	1.58	0.67
4:E:1:NAG:O6	4:E:2:NAG:N2	2.28	0.67
1:B:455:THR:CB	4:E:1:NAG:H61	2.23	0.67
1:B:184:HIS:HD2	1:B:186:GLY:N	1.92	0.66
4:I:1:NAG:O6	4:I:2:NAG:N2	2.28	0.66
1:A:184:HIS:HD2	1:A:186:GLY:N	1.92	0.66
1:B:245:SER:O	1:B:274:HIS:HE1	1.79	0.66
1:B:366:ILE:HG12	1:B:375:GLU:HG2	1.77	0.66
1:A:245:SER:O	1:A:274:HIS:HE1	1.79	0.65
1:A:366:ILE:HG12	1:A:375:GLU:HG2	1.77	0.65
1:B:455:THR:HG21	4:E:1:NAG:O6	1.96	0.65
1:A:411:SER:HB3	1:A:418:ILE:HD13	1.79	0.65
1:B:366:ILE:CG1	1:B:375:GLU:HG2	2.27	0.64
1:B:352:TRP:HD1	1:B:407:SER:HG	1.46	0.64
1:B:258:GLU:HG3	1:B:263:VAL:HG21	1.80	0.64
1:A:366:ILE:CG1	1:A:375:GLU:HG2	2.27	0.64
1:A:427:ILE:HD11	1:A:439:THR:HG23	1.80	0.64
1:B:255:LEU:HD13	1:B:265:ILE:HG12	1.79	0.64
7:B:471:ST2:HN32	7:B:471:ST2:HM43	1.63	0.64
2:C:2:NAG:H2	2:C:2:NAG:H61	1.80	0.64
1:A:255:LEU:HD13	1:A:265:ILE:HG12	1.79	0.63
1:A:258:GLU:HG3	1:A:263:VAL:HG21	1.80	0.63
1:A:144:HIS:CD2	1:B:466:PHE:HD2	2.16	0.63
1:B:427:ILE:HD11	1:B:439:THR:HG23	1.80	0.63
4:E:6:MAN:H4	4:E:6:MAN:C5	2.15	0.63

Interatomic Cl				
Atom-1	Atom-1 Atom-2		overlap (Å)	
1:B:411:SER:HB3	1:B:418:ILE:HD13	1.79	0.63	
1:B:347:GLN:N	1:B:347:GLN:OE1	2.32	0.62	
1:B:455:THR:HB	4:E:1:NAG:O5	1.98	0.62	
7:A:471:ST2:HM43	7:A:471:ST2:HN32	1.63	0.62	
1:A:347:GLN:OE1	1:A:347:GLN:N	2.32	0.62	
1:B:338:ARG:HD3	1:B:339:ASP:OD2	2.00	0.62	
1:B:359:ASP:OD1	1:B:380:ILE:HA	1.99	0.62	
1:B:274:HIS:HD2	1:B:294:ASN:H	1.48	0.62	
1:A:359:ASP:OD1	1:A:380:ILE:HA	1.99	0.62	
1:A:274:HIS:HD2	1:A:294:ASN:H	1.48	0.61	
2:G:2:NAG:H61	2:G:2:NAG:H2	1.80	0.61	
1:B:136:GLN:CD	1:B:156:ARG:HH11	2.04	0.61	
1:B:228:SER:HB3	1:B:350:LYS:HE2	1.83	0.61	
1:A:136:GLN:CD	1:A:156:ARG:HH11	2.04	0.61	
1:B:281:TYR:HB2	1:B:420:ARG:HH21	1.66	0.61	
1:A:338:ARG:HD3	1:A:339:ASP:OD2	2.00	0.61	
1:B:328:ASN:O	1:B:329:ASP:HB3	2.01	0.61	
1:B:224:ARG:NH2	1:B:244:GLY:N	2.49	0.60	
1:A:328:ASN:O	1:A:329:ASP:HB3	2.01	0.60	
1:A:281:TYR:HB2	1:A:420:ARG:HH21	1.66	0.60	
1:A:227:GLU:HA	1:A:227:GLU:OE1	2.02	0.60	
1:A:224:ARG:NH2	1:A:244:GLY:N	2.49	0.59	
1:B:131:GLN:HE21	1:B:163:LEU:HD12	1.67	0.59	
1:A:131:GLN:HE21	1:A:163:LEU:HD12	1.67	0.59	
1:A:202:THR:HB	1:B:454:GLY:H	1.67	0.59	
1:A:228:SER:HB3	1:A:350:LYS:HE2	1.83	0.59	
1:B:226:GLN:O	1:B:227:GLU:HB2	2.03	0.58	
1:A:109:SER:HB3	1:A:140:LEU:HD13	1.85	0.58	
1:B:109:SER:HB3	1:B:140:LEU:HD13	1.85	0.58	
1:B:257:ILE:O	1:B:257:ILE:HD13	2.04	0.58	
1:A:125:ASP:OD1	1:A:127:VAL:HG22	2.03	0.57	
1:A:226:GLN:O	1:A:227:GLU:HB2	2.03	0.57	
1:B:125:ASP:OD1	1:B:127:VAL:HG22	2.03	0.57	
1:B:227:GLU:OE1	1:B:227:GLU:HA	2.02	0.57	
1:B:392:ILE:HG12	1:B:393:ASN:H	1.69	0.57	
1:A:378:LYS:HG2	1:A:379:VAL:N	2.20	0.57	
1:A:257:ILE:HD13	1:A:257:ILE:O	2.04	0.57	
1:B:378:LYS:HG2	1:B:379:VAL:N	2.20	0.57	
4:E:3:BMA:O6	4:E:6:MAN:C6	2.53	0.57	
4:I:3:BMA:O6	4:I:6:MAN:C6	2.53	0.56	
1:A:392:ILE:HG12	1:A:393:ASN:H	1.69	0.56	

		Interatomic	Clash
Atom-1	.tom-1 Atom-2		overlap (Å)
1:A:144:HIS:ND1	1:B:107:ARG:HG2	2.21	0.56
1:A:295:TRP:O	1:A:346:THR:HA	2.06	0.56
1:B:295:TRP:O	1:B:346:THR:HA	2.06	0.56
1:A:84:TYR:CE1	1:A:187:LYS:HD2	2.42	0.55
1:B:84:TYR:CE1	1:B:187:LYS:HD2	2.42	0.55
1:B:455:THR:OG1	4:E:1:NAG:C1	2.54	0.55
1:B:338:ARG:HG2	1:B:338:ARG:NH1	2.21	0.55
2:C:2:NAG:C6	2:C:2:NAG:H2	2.36	0.55
2:G:2:NAG:C6	2:G:2:NAG:H2	2.36	0.55
1:B:281:TYR:OH	1:B:288:ARG:HD2	2.07	0.55
1:A:203:ALA:HB3	1:A:215:ILE:HG22	1.89	0.55
1:A:281:TYR:OH	1:A:288:ARG:HD2	2.07	0.55
1:B:179:SER:HB3	1:B:194:ILE:HD12	1.88	0.55
1:B:203:ALA:HB3	1:B:215:ILE:HG22	1.89	0.55
1:B:118:ARG:HD2	1:B:427:ILE:HG13	1.89	0.55
1:A:258:GLU:HG3	1:A:263:VAL:CG2	2.38	0.54
1:B:292:ARG:NH1	1:B:294:ASN:OD1	2.40	0.54
1:A:179:SER:HB3	1:A:194:ILE:HD12	1.88	0.54
1:B:258:GLU:HG3	1:B:263:VAL:CG2	2.38	0.54
1:B:365:THR:HG21	1:B:371:ARG:HA	1.90	0.54
1:A:118:ARG:HD2	1:A:427:ILE:HG13	1.89	0.53
4:I:6:MAN:C5	4:I:6:MAN:H4	2.15	0.53
1:A:109:SER:CB	1:A:140:LEU:HD13	2.39	0.53
1:A:338:ARG:HG2	1:A:338:ARG:NH1	2.21	0.53
4:E:3:BMA:O6	4:E:6:MAN:H62	2.08	0.53
1:A:263:VAL:O	1:A:264:HIS:HB2	2.09	0.53
1:A:365:THR:HG21	1:A:371:ARG:HA	1.90	0.53
1:B:430:ARG:HG3	1:B:431:LYS:H	1.73	0.53
1:B:109:SER:CB	1:B:140:LEU:HD13	2.39	0.53
4:I:3:BMA:O6	4:I:6:MAN:H62	2.08	0.53
1:A:144:HIS:CE1	1:B:462:ALA:HA	2.40	0.53
1:A:430:ARG:HG3	1:A:431:LYS:H	1.73	0.52
1:B:455:THR:HG21	4:E:6:MAN:C2	2.38	0.52
1:B:263:VAL:O	1:B:264:HIS:HB2	2.09	0.52
1:A:246:ALA:O	1:A:274:HIS:NE2	2.43	0.52
1:B:278:CYS:HB3	1:B:289:CYS:HB3	1.92	0.52
1:B:455:THR:CG2	4:E:1:NAG:C6	2.45	0.52
1:A:437:TRP:N	1:A:469:ILE:HG21	2.21	0.51
1:B:246:ALA:O	1:B:274:HIS:NE2	2.43	0.51
1:B:256:PHE:CD2	1:B:310:TYR:HD1	2.29	0.51
4:E:1:NAG:O6	4:E:2:NAG:C1	2.58	0.51

Interatomic Clas				
Atom-1	Atom-2	distance (Å)	overlap (Å)	
4:I:1:NAG:O6	4:I:2:NAG:C1	2.58	0.51	
1:A:377:PHE:HB3	1:A:394:ARG:HA	1.93	0.51	
1:B:377:PHE:HB3	1:B:394:ARG:HA	1.93	0.51	
1:A:292:ARG:NH1	1:A:294:ASN:OD1	2.40	0.51	
1:A:273:GLN:OE1	1:A:296:LYS:HE3	2.11	0.51	
1:B:253:ARG:C	1:B:254:ILE:HD12	2.31	0.51	
1:A:253:ARG:C	1:A:254:ILE:HD12	2.31	0.50	
1:A:86:ASN:HB3	1:A:234:ASN:OD1	2.11	0.50	
1:A:176:ILE:HG22	1:A:195:THR:CG2	2.42	0.50	
1:B:176:ILE:HG22	1:B:195:THR:CG2	2.42	0.50	
1:B:273:GLN:OE1	1:B:296:LYS:HE3	2.11	0.50	
1:A:331:ARG:HA	1:A:331:ARG:NH1	2.27	0.50	
1:B:86:ASN:HB3	1:B:234:ASN:OD1	2 11	0.50	
1:B:331:ABG:HA	1:B:331:ARG:NH1	2.27	0.50	
1:A:89:LYS:NZ	1:A:414:GLY:O	2.44	0.50	
1:A:256:PHE:CD2	1:A:310:TYB:HD1	2 29	0.49	
1:B:136:GLN:NE2	1:B:156:ABG:NH1	2.20	0.49	
1:B:240:VAL:HG12	1:B:254:ILE:HG13	1.95	0.49	
1:B:455:THB:CB	4:E:1:NAG:05	2 59	0.49	
1.B.89.LYS.NZ	1·B·414·GLY·O	2.44	0.49	
1:A:378:LYS:HG2	1:A:379:VAL:H	1 77	0.49	
1:B:378:LYS:HG2	1:B:379:VAL:H	1 77	0.49	
1:A:278:CYS:HB3	1:A:289:CYS:HB3	1.92	0.49	
1:A:198:ASP:HB3	1:A:222:ILE:CG1	2.43	0.49	
1:B:117:THB:HG22	1:B:135:GLY:HA2	1.95	0.48	
1:B:198:ASP:HB3	1:B:222:ILE:CG1	2.43	0.48	
1:B:258:GLU:OE2	1:B:263:VAL:HG21	2.13	0.48	
1:A:136:GLN:NE2	1:A:156:ARG:NH1	2.61	0.48	
1:B:198:ASP:HB3	1:B:222:ILE:HG12	1.95	0.48	
1:A:296:LYS:HE2	1:A:340:PRO:HG3	1.95	0.48	
1:A:437:TRP:H	1:A:469:ILE:CG2	2.22	0.48	
1:A:298:SER:O	1:A:324:ASP:HB2	2.14	0.48	
4:E:2:NAG:HN2	4:E:6:MAN:C1	2.27	0.48	
1:A:240:VAL:HG12	1:A:254:ILE:HG13	1.95	0.48	
1:A:347:GLN:N	1:A:347:GLN:CD	2.67	0.48	
1:B:257:ILE:HD13	1:B:257:ILE:C	2.34	0.48	
1:B:347:GLN:CD	1:B:347:GLN:N	2.67	0.48	
4:E:3:BMA:H2	4:E:4:MAN:O6	2.14	0.48	
1:A:198:ASP:HB3	1:A:222:ILE:HG12	1.95	0.48	
1:A:100:PHE:HB3	1:A:445:VAL:HG22	1.96	0.48	
1:A:258:GLU:OE2		2.13	0.48	

	Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:399:ASP:CG	1:A:402:ASN:HD22	2.17	0.48
1:B:296:LYS:HE2	1:B:340:PRO:HG3	1.95	0.48
1:B:100:PHE:HB3	1:B:445:VAL:HG22	1.96	0.48
1:B:149:VAL:HG22	1:B:430:ARG:HB3	1.95	0.48
1:B:399:ASP:CG	1:B:402:ASN:HD22	2.17	0.48
1:A:257:ILE:HD13	1:A:257:ILE:C	2.34	0.47
1:B:437:TRP:N	1:B:469:ILE:HG21	2.21	0.47
4:E:3:BMA:C2	4:E:4:MAN:O6	2.62	0.47
4:I:3:BMA:C2	4:I:4:MAN:O6	2.62	0.47
1:A:427:ILE:HG12	1:A:440:SER:O	2.14	0.47
2:J:1:NAG:O6	2:J:2:NAG:C1	2.62	0.47
1:A:210:ARG:HE	1:A:210:ARG:N	2.12	0.47
1:A:149:VAL:HG22	1:A:430:ARG:HB3	1.95	0.47
1:B:298:SER:O	1:B:324:ASP:HB2	2.14	0.47
1:B:437:TRP:HD1	1:B:469:ILE:CG2	2.28	0.47
1:B:427:ILE:HG12	1:B:440:SER:O	2.14	0.47
2:F:1:NAG:O6	O6 2:F:2:NAG:C1 2.62		0.47
4:I:2:NAG:HN2	4:I:6:MAN:C1	2.27	0.47
1:A:117:THR:HG22	1:A:135:GLY:HA2	1.95	0.47
1:A:256:PHE:CD2	1:A:310:TYR:CD1	3.03	0.47
1:B:154:PRO:HG2	1:B:155:HIS:CE1	2.50	0.47
1:B:97:PHE:HB3	1:B:446:PHE:HB3	1.96	0.47
1:A:154:PRO:HG2	1:A:155:HIS:CE1	2.50	0.47
1:A:245:SER:O	1:A:274:HIS:CE1	2.64	0.47
1:B:210:ARG:HE	1:B:210:ARG:N	2.12	0.47
4:E:6:MAN:H4	4:E:6:MAN:C6	2.43	0.47
1:A:385:THR:HA	1:A:386:PRO:HD2	1.74	0.47
1:A:144:HIS:CE1	1:B:463:ASN:H	2.33	0.47
1:B:256:PHE:CD2	1:B:310:TYR:CD1	3.03	0.47
1:A:97:PHE:HB3	1:A:446:PHE:HB3	1.96	0.47
4:I:2:NAG:H3	4:I:6:MAN:C6	2.45	0.47
1:A:269:ALA:HB3	1:A:312:ILE:O	2.15	0.46
4:I:3:BMA:H2	4:I:4:MAN:O6	2.14	0.46
1:B:245:SER:O	1:B:274:HIS:CE1	2.64	0.46
4:I:6:MAN:C6	4:I:6:MAN:H4	2.43	0.46
1:A:197:ASP:O	1:A:201:ALA:HB2	2.15	0.46
1:B:321:LEU:HD23	1:B:321:LEU:HA	1.44	0.46
1:A:139:THR:O	1:A:142:ASN:HB3	2.15	0.46
1:A:328:ASN:O	1:A:329:ASP:CB	2.64	0.46
1:B:139:THR:O	1:B:142:ASN:HB3	2.15	0.46
1:B:468:PRO:O	1:B:469:ILE:HB	2.15	0.46

Interatomic Clas				
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:299:ASN:HB3	1:A:322:VAL:HG22	1.98	0.46	
1:A:308:GLU:HG3	2:F:1:NAG:H82	1.97	0.46	
1:B:269:ALA:HB3	1:B:312:ILE:O	2.15	0.46	
1:B:328:ASN:O	1:B:329:ASP:CB	2.64	0.46	
4:E:2:NAG:H3	4:E:6:MAN:C6	2.45	0.46	
2:G:2:NAG:C2	2:G:2:NAG:C6	2.94	0.46	
1:A:437:TRP:HD1	1:A:469:ILE:CG2	2.28	0.46	
1:A:136:GLN:CD	1:A:156:ARG:NH1	2.69	0.46	
1:B:331:ARG:HA	1:B:331:ARG:HH11	1.81	0.46	
1:A:468:PRO:O	1:A:469:ILE:HB	2.15	0.46	
1:B:184:HIS:CD2	1:B:186:GLY:N	2.75	0.45	
1:B:197:ASP:O	1:B:201:ALA:HB2	2.15	0.45	
1:B:344:ARG:HH22	1:B:369:ASP:CG	2.19	0.45	
1:A:176:ILE:CG2	1:A:195:THR:HG21	2.45	0.45	
1:A:331:ARG:HH11	1:A:331:ARG:HA	1.81	0.45	
1:B:294:ASN:OD1	1:B:347:GLN:HA	2.17	0.45	
4:E:3:BMA:O2	4:E:4:MAN:H5	2.16	0.45	
4:I:3:BMA:O2	4:I:4:MAN:H5	2.16	0.45	
1:A:358:ASN:HB3	1:A:384:SER:OG	2.17	0.45	
1:B:136:GLN:CD	1:B:156:ARG:NH1	2.69	0.45	
1:B:165:VAL:HA	1:B:166:PRO:HD3	1.77	0.45	
1:A:294:ASN:OD1	1:A:347:GLN:HA	2.17	0.45	
1:A:344:ARG:HH22	1:A:369:ASP:CG	2.19	0.45	
1:B:256:PHE:CE2	1:B:310:TYR:HD1	2.35	0.45	
2:C:2:NAG:C6	2:C:2:NAG:C2	2.94	0.45	
1:B:326:PRO:HA	1:B:368:LYS:O	2.17	0.45	
1:A:184:HIS:CD2	1:A:186:GLY:N	2.75	0.45	
1:A:256:PHE:CE2	1:A:310:TYR:HD1	2.35	0.45	
1:B:288:ARG:NH1	1:B:383:TRP:CZ2	2.85	0.45	
1:B:308:GLU:HG3	2:J:1:NAG:H82	1.97	0.45	
1:A:288:ARG:NH1	1:A:383:TRP:CZ2	2.85	0.44	
1:B:238:THR:HG21	1:B:305:ILE:HD13	1.99	0.44	
1:A:165:VAL:HA	1:A:166:PRO:HD3	1.77	0.44	
1:A:326:PRO:HA	1:A:368:LYS:O	2.17	0.44	
1:B:334:ASN:ND2	1:B:387:ASN:OD1	2.50	0.44	
1:A:224:ARG:HH21	1:A:244:GLY:N	2.16	0.44	
1:B:320:GLY:HA3	1:B:387:ASN:ND2	2.33	0.44	
1:A:334:ASN:ND2	1:A:387:ASN:OD1	2.50	0.44	
1:B:358:ASN:HB3	1:B:384:SER:OG	2.17	0.44	
1:B:229:GLU:OE2	1:B:410:PHE:HA	2.18	0.44	
1:B:299:ASN:HB3	1:B:322:VAL:HG22	1.98	0.44	

Interatomic Clash					
Atom-1	Atom-1 Atom-2		overlap (Å)		
1:A:320:GLY:HA3	1:A:387:ASN:ND2	2.33	0.43		
1:A:329:ASP:C	1:A:329:ASP:OD1	2.57	0.43		
1:A:229:GLU:OE2	1:A:410:PHE:HA	2.18	0.43		
1:A:241:MET:HE2	1:A:255:LEU:HG	2.00	0.43		
1:B:385:THR:HA	1:B:386:PRO:HD2	1.74	0.43		
4:E:2:NAG:H3	4:E:6:MAN:O5	2.19	0.43		
1:A:366:ILE:HG13	1:A:375:GLU:HG2	2.01	0.43		
1:B:329:ASP:C	1:B:329:ASP:OD1	2.57	0.43		
1:A:173:GLN:OE1	1:B:103:ASP:O	2.36	0.43		
1:B:142:ASN:HD22	1:B:143:LYS:N	2.16	0.42		
1:B:419:ASN:HD21	1:B:448:GLY:HA3	1.84	0.42		
1:B:151:ASP:HB3	7:B:471:ST2:O4'	2.19	0.42		
1:B:254:ILE:HD12	1:B:254:ILE:N	2.35	0.42		
1:A:238:THR:HG21	1:A:305:ILE:HD13	1.99	0.42		
1:A:392:ILE:HG12	1:A:393:ASN:N	2.33	0.42		
1:A:169:LEU:HD11	1:B:112:GLY:HA3	2.01	0.42		
1:A:142:ASN:HD22	:A:142:ASN:HD22 1:A:143:LYS:N		0.42		
1:B:224:ARG:NH2	1:B:244:GLY:H	2.17	0.42		
1:B:241:MET:HE2	1:B:255:LEU:HG	2.01	0.42		
4:I:2:NAG:H3	4:I:6:MAN:O5	2.19	0.42		
1:B:157:THR:HG22	1:B:176:ILE:HA	2.02	0.42		
1:B:437:TRP:H	1:B:469:ILE:CG2	2.22	0.42		
3:D:2:NAG:H5	3:D:3:BMA:O6	2.20	0.42		
1:A:419:ASN:HD21	1:A:448:GLY:HA3	1.84	0.42		
1:A:151:ASP:HB3	7:A:471:ST2:O4'	2.19	0.42		
1:A:162:GLU:O	1:A:165:VAL:HG13	2.20	0.42		
1:B:84:TYR:HE1	1:B:185:ASP:OD2	2.03	0.42		
1:B:224:ARG:HH21	1:B:244:GLY:N	2.16	0.42		
1:B:320:GLY:CA	1:B:387:ASN:HD22	2.33	0.42		
5:H:2:NAG:H5	5:H:3:BMA:O6	2.20	0.42		
1:B:176:ILE:CG2	1:B:195:THR:HG21	2.45	0.42		
1:A:157:THR:HG22	1:A:176:ILE:HA	2.02	0.41		
1:A:426:LEU:HD11	1:A:444:VAL:CG2	2.50	0.41		
1:B:431:LYS:HD2	1:B:431:LYS:HA	1.21	0.41		
1:A:136:GLN:O	1:B:107:ARG:NH2	2.49	0.41		
1:B:426:LEU:HD11	1:B:444:VAL:CG2	2.50	0.41		
1:A:320:GLY:CA	1:A:387:ASN:HD22	2.33	0.41		
1:A:430:ARG:HG3	1:A:431:LYS:N	2.36	0.41		
1:B:288:ARG:CZ	1:B:383:TRP:CZ2	3.04	0.41		
1:B:118:ARG:HG2	1:B:425:GLU:OE2	2.20	0.41		
1:A:399:ASP:OD2	1:A:402:ASN:ND2	2.53	0.41		

		Interatomic	Clash
Atom-1	Atom-2	$distance (m \AA)$	overlap (Å)
1:A:84:TYR:HE1	1:A:185:ASP:OD2	2.03	0.41
1:B:399:ASP:OD2	1:B:402:ASN:ND2	2.53	0.41
1:B:162:GLU:O	1:B:165:VAL:HG13	2.20	0.41
1:B:430:ARG:CG	1:B:431:LYS:H	2.33	0.41
4:I:1:NAG:C6	4:I:2:NAG:C1	2.99	0.41
1:A:224:ARG:NH2	1:A:244:GLY:H	2.17	0.41
1:A:284:TYR:CE1	2:F:1:NAG:O7	2.74	0.41
1:A:254:ILE:N	1:A:254:ILE:HD12	2.35	0.41
1:A:90:PRO:O	1:A:417:CYS:HB2	2.21	0.41
1:B:246:ALA:O	1:B:274:HIS:CE1	2.74	0.40
1:B:320:GLY:CA	1:B:387:ASN:ND2	2.84	0.40
1:B:392:ILE:HG12	1:B:393:ASN:N	2.33	0.40
1:B:284:TYR:CE1	2:J:1:NAG:O7	2.74	0.40
1:A:118:ARG:HG2	1:A:425:GLU:OE2	2.20	0.40
1:B:125:ASP:OD2	1:B:130:TYR:HE1	2.04	0.40
1:B:430:ARG:HG3	1:B:431:LYS:N	2.36	0.40
1:A:272:ALA:HA	1:A:316:TYR:HE1	1.86	0.40
1:A:246:ALA:O	1:A:274:HIS:CE1	2.74	0.40
1:A:319:SER:OG	1:A:321:LEU:HB2	2.22	0.40
1:A:288:ARG:CZ	1:A:383:TRP:CZ2	3.04	0.40
1:A:430:ARG:CG	1:A:431:LYS:H	2.33	0.40
1:B:85:ARG:HD2	1:B:184:HIS:O	2.22	0.40
1:A:320:GLY:CA	1:A:387:ASN:ND2	2.84	0.40
1:B:182:SER:HA	1:B:190:LEU:O	2.21	0.40
1:B:319:SER:OG	1:B:321:LEU:HB2	2.22	0.40

All (12) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
3:D:4:FUL:H4	4:E:4:MAN:H1[3_654]	0.90	0.70
3:D:4:FUL:H1	4:E:4:MAN:O3[3_654]	0.96	0.64
3:D:4:FUL:H5	4:E:4:MAN:O5[3_654]	1.26	0.34
1:A:455:THR:HG1	4:I:1:NAG:H1[4_555]	1.31	0.29
3:D:4:FUL:C1	4:E:4:MAN:O3[3_654]	1.93	0.27
1:A:338:ARG:HH21	1:B:315:SER:HG[7_554]	1.34	0.26
3:D:4:FUL:C5	4:E:4:MAN:O5[3_654]	1.94	0.26
1:A:455:THR:CG2	4:I:1:NAG:H61[4_555]	1.42	0.18
3:D:4:FUL:O5	4:E:4:MAN:C4[3_654]	2.05	0.15
3:D:4:FUL:O5	4:E:4:MAN:O5[3_654]	2.05	0.15

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
3:D:4:FUL:C4	4:E:4:MAN:H1[3_654]	1.59	0.01
3:D:4:FUL:O5	4:E:4:MAN:H4[3_654]	1.60	0.00

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Pe	erce	entiles
1	А	386/388~(100%)	338 (88%)	38 (10%)	10 (3%)		5	5
1	В	386/388~(100%)	338 (88%)	38 (10%)	10 (3%)		5	5
All	All	772/776~(100%)	676~(88%)	76 (10%)	20 (3%)		5	5

All (20) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	329	ASP
1	А	330	ASP
1	А	346	THR
1	А	347	GLN
1	В	329	ASP
1	В	330	ASP
1	В	346	THR
1	В	347	GLN
1	А	322	VAL
1	А	382	GLY
1	В	322	VAL
1	В	382	GLY
1	А	264	HIS
1	А	430	ARG
1	В	264	HIS
1	В	430	ARG
1	А	431	LYS
1	В	431	LYS

 $Continued \ from \ previous \ page...$

Mol	Chain	\mathbf{Res}	Type
1	А	222	ILE
1	В	222	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
1	А	338/338~(100%)	305~(90%)	33~(10%)	8 11	
1	В	338/338~(100%)	305~(90%)	33 (10%)	8 11	
All	All	676/676~(100%)	610~(90%)	66~(10%)	8 11	

All (66) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	142	ASN
1	А	165	VAL
1	А	174	VAL
1	А	179	SER
1	А	190	LEU
1	А	192	VAL
1	А	195	THR
1	А	199	LYS
1	А	202	THR
1	А	210	ARG
1	А	213	ASP
1	А	227	GLU
1	А	230	CYS
1	А	239	VAL
1	А	249	ARG
1	А	257	ILE
1	А	292	ARG
1	А	315	SER
1	А	329	ASP
1	А	337	CYS
1	А	338	ARG

Mol	Chain	Res	Type
1	А	347	GLN
1	А	375	GLU
1	А	385	THR
1	А	387	ASN
1	А	390	SER
1	А	412	VAL
1	А	418	ILE
1	А	420	ARG
1	А	427	ILE
1	А	430	ARG
1	А	431	LYS
1	А	445	VAL
1	В	142	ASN
1	В	165	VAL
1	В	174	VAL
1	В	179	SER
1	В	190	LEU
1	В	192	VAL
1	В	195	THR
1	В	199	LYS
1	В	202	THR
1	В	210	ARG
1	В	213	ASP
1	В	227	GLU
1	В	230	CYS
1	В	239	VAL
1	В	249	ARG
1	В	257	ILE
1	В	292	ARG
1	В	315	SER
1	В	329	ASP
1	В	337	CYS
1	В	338	ARG
1	В	347	GLN
1	В	375	GLU
1	В	385	THR
1	В	387	ASN
1	В	390	SER
1	В	412	VAL
1	В	418	ILE
1	В	420	ARG
1	В	427	ILE

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type
1	В	430	ARG
1	В	431	LYS
1	В	445	VAL

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (23) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	104	ASN
1	А	131	GLN
1	А	142	ASN
1	А	144	HIS
1	А	173	GLN
1	А	184	HIS
1	А	274	HIS
1	А	334	ASN
1	А	387	ASN
1	А	393	ASN
1	А	402	ASN
1	А	419	ASN
1	В	104	ASN
1	В	131	GLN
1	В	142	ASN
1	В	155	HIS
1	В	184	HIS
1	В	274	HIS
1	В	334	ASN
1	В	387	ASN
1	В	393	ASN
1	В	402	ASN
1	В	419	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

28 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type Cha		Chain	Res	Res Link	Bo	ond leng	$_{\rm ths}$	Bond angles		
	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	NAG	С	1	1,2	14, 14, 15	2.11	6 (42%)	17,19,21	2.91	5 (29%)
2	NAG	С	2	2	14,14,15	3.49	6 (42%)	17,19,21	3.17	8 (47%)
3	NAG	D	1	1,3	14,14,15	1.73	3 (21%)	17,19,21	2.88	7 (41%)
3	NAG	D	2	3	14,14,15	2.53	7 (50%)	17,19,21	<mark>3.90</mark>	<mark>9 (52%)</mark>
3	BMA	D	3	3	11,11,12	<mark>3.48</mark>	6 (54%)	$15,\!15,\!17$	2.86	<mark>5 (33%)</mark>
3	FUL	D	4	3	10, 10, 11	<mark>3.17</mark>	<mark>6 (60%)</mark>	14,14,16	2.68	<mark>6 (42%)</mark>
4	NAG	Е	1	1,4	14,14,15	<mark>3.56</mark>	7 (50%)	17,19,21	<mark>-3.37</mark>	12 (70%)
4	NAG	Е	2	4	14,14,15	<mark>3.25</mark>	4 (28%)	17,19,21	2.50	<mark>6 (35%)</mark>
4	BMA	Е	3	4	11,11,12	4.87	8 (72%)	$15,\!15,\!17$	3.15	<mark>8 (53%)</mark>
4	MAN	Е	4	4	11,11,12	2.75	6 (54%)	15,15,17	2.72	<mark>8 (53%)</mark>
4	MAN	Е	5	4	11,11,12	<mark>3.93</mark>	8 (72%)	15,15,17	1.74	4 (26%)
4	MAN	Е	6	4	11,11,12	4.98	9 (81%)	15,15,17	2.73	<mark>8 (53%)</mark>
2	NAG	F	1	1,2	14,14,15	<mark>3.25</mark>	6 (42%)	17,19,21	3.42	10 (58%)
2	NAG	F	2	2	14,14,15	1.79	4 (28%)	17,19,21	<mark>3.84</mark>	<mark>11 (64%)</mark>
2	NAG	G	1	1,2	14,14,15	2.11	6 (42%)	17,19,21	2.91	<mark>5 (29%)</mark>
2	NAG	G	2	2	14,14,15	<mark>3.49</mark>	6 (42%)	17,19,21	<mark>3.17</mark>	8 (47%)
5	NAG	Н	1	1,5	14,14,15	1.73	3 (21%)	17,19,21	2.88	7 (41%)
5	NAG	Н	2	5	14,14,15	2.53	7 (50%)	17,19,21	<mark>3.90</mark>	<mark>9 (52%)</mark>
5	BMA	Н	3	5	11,11,12	3.48	6 (54%)	15,15,17	2.86	<mark>5 (33%)</mark>
5	FUC	Н	4	5	10, 10, 11	<mark>3.17</mark>	6 (60%)	14,14,16	2.68	<mark>6 (42%)</mark>
4	NAG	Ι	1	1,4	14,14,15	<mark>3.56</mark>	7 (50%)	17,19,21	<mark>-3.37</mark>	12 (70%)
4	NAG	Ι	2	4	14, 14, 15	<mark>3.25</mark>	4 (28%)	17,19,21	2.50	6(35%)
4	BMA	Ι	3	4	11,11,12	4.87	8 (72%)	$15,\!15,\!17$	3.15	<mark>8 (53%)</mark>
4	MAN	Ι	4	4	11,11,12	2.75	6(54%)	15,15,17	2.72	<mark>8 (53%)</mark>
4	MAN	Ι	5	4	11,11,12	<mark>3.93</mark>	8 (72%)	$15,\!15,\!17$	1.74	4 (26%)
4	MAN	Ι	6	4	11,11,12	4.98	9 (81%)	15,15,17	2.73	<mark>8 (53%)</mark>

	T a	Chain	Dec	Timle	Bo	Bond lengths			Bond angles		
	Moi Type Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2		
2	NAG	J	1	1,2	14,14,15	<mark>3.25</mark>	6 (42%)	17,19,21	3.42	10 (58%)	
2	NAG	J	2	2	14,14,15	1.79	4 (28%)	17,19,21	<mark>3.84</mark>	11 (64%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	NAG	С	1	1,2	-	0/6/23/26	0/1/1/1
2	NAG	С	2	2	-	2/6/23/26	0/1/1/1
3	NAG	D	1	1,3	-	1/6/23/26	0/1/1/1
3	NAG	D	2	3	-	1/6/23/26	0/1/1/1
3	BMA	D	3	3	-	2/2/19/22	0/1/1/1
3	FUL	D	4	3	-	-	0/1/1/1
4	NAG	Ε	1	1,4	-	3/6/23/26	0/1/1/1
4	NAG	Е	2	4	-	0/6/23/26	0/1/1/1
4	BMA	Е	3	4	-	2/2/19/22	1/1/1/1
4	MAN	Е	4	4	-	0/2/19/22	0/1/1/1
4	MAN	Е	5	4	-	2/2/19/22	1/1/1/1
4	MAN	Е	6	4	-	0/2/19/22	0/1/1/1
2	NAG	F	1	1,2	-	3/6/23/26	0/1/1/1
2	NAG	F	2	2	-	2/6/23/26	0/1/1/1
2	NAG	G	1	1,2	-	0/6/23/26	0/1/1/1
2	NAG	G	2	2	-	2/6/23/26	0/1/1/1
5	NAG	Н	1	1,5	-	1/6/23/26	0/1/1/1
5	NAG	Н	2	5	-	1/6/23/26	0/1/1/1
5	BMA	Н	3	5	-	2/2/19/22	0/1/1/1
5	FUC	Н	4	5	1/1/5/5	-	0/1/1/1
4	NAG	Ι	1	1,4	-	3/6/23/26	0/1/1/1
4	NAG	Ι	2	4	-	0/6/23/26	0/1/1/1
4	BMA	Ι	3	4	-	2/2/19/22	1/1/1/1
4	MAN	Ι	4	4	-	0/2/19/22	0/1/1/1
4	MAN	I	5	4	-	2/2/19/22	1/1/1/1
4	MAN	Ι	6	4	-	0/2/19/22	0/1/1/1
2	NAG	J	1	1,2	-	3/6/23/26	0/1/1/1
2	NAG	J	2	2	-	2/6/23/26	0/1/1/1

All (172) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(\text{\AA})$	Ideal(Å)
4	Ι	6	MAN	C4-C5	11.12	1.76	1.53
4	Е	6	MAN	C4-C5	11.12	1.76	1.53
4	Е	3	BMA	C2-C3	9.89	1.67	1.52
4	Ι	3	BMA	C2-C3	9.89	1.67	1.52
4	Е	2	NAG	C1-C2	9.43	1.66	1.52
4	Ι	2	NAG	C1-C2	9.43	1.66	1.52
2	F	1	NAG	C1-C2	9.37	1.66	1.52
2	J	1	NAG	C1-C2	9.37	1.66	1.52
5	Н	3	BMA	C2-C3	9.00	1.65	1.52
3	D	3	BMA	C2-C3	9.00	1.65	1.52
2	G	2	NAG	C1-C2	8.07	1.64	1.52
2	С	2	NAG	C1-C2	8.07	1.64	1.52
4	Ι	1	NAG	C1-C2	7.25	1.63	1.52
4	Е	1	NAG	C1-C2	7.25	1.63	1.52
4	Ι	1	NAG	O5-C1	7.24	1.55	1.43
4	Е	1	NAG	O5-C1	7.24	1.55	1.43
4	Ι	6	MAN	C1-C2	6.72	1.67	1.52
4	Е	6	MAN	C1-C2	6.72	1.67	1.52
4	Е	3	BMA	O3-C3	6.66	1.58	1.43
4	Ι	3	BMA	O3-C3	6.66	1.58	1.43
4	Е	5	MAN	C4-C3	6.23	1.68	1.52
4	Ι	5	MAN	C4-C3	6.23	1.68	1.52
4	Е	5	MAN	O5-C5	6.07	1.55	1.43
4	Ι	5	MAN	O5-C5	6.07	1.55	1.43
4	Е	3	BMA	C4-C5	5.76	1.65	1.53
4	Ι	3	BMA	C4-C5	5.76	1.65	1.53
2	G	2	NAG	C4-C5	5.68	1.65	1.53
2	С	2	NAG	C4-C5	5.68	1.65	1.53
4	Е	3	BMA	C1-C2	5.51	1.64	1.52
4	Ι	3	BMA	C1-C2	5.51	1.64	1.52
3	D	4	FUL	O5-C1	5.19	1.52	1.43
5	Н	4	FUC	O5-C1	5.19	1.52	1.43
4	Ι	6	MAN	O5-C5	5.14	1.53	1.43
4	Е	6	MAN	O5-C5	5.14	1.53	1.43
4	Ι	4	MAN	O2-C2	5.06	1.54	1.43
4	Е	4	MAN	O2-C2	5.06	1.54	1.43
4	Ι	1	NAG	O5-C5	4.95	1.53	1.43
4	Е	1	NAG	O5-C5	4.95	1.53	1.43
4	Е	3	BMA	O5-C5	4.91	1.53	1.43
4	Ι	3	BMA	O5-C5	4.91	1.53	1.43
4	Е	5	MAN	C4-C5	4.84	1.63	1.53
4	Ι	5	MAN	C4-C5	4.84	1.63	1.53
2	G	2	NAG	C4-C3	4.78	1.64	1.52

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	С	2	NAG	C4-C3	4.78	1.64	1.52
4	Ι	6	MAN	C2-C3	4.61	1.59	1.52
4	Ε	6	MAN	C2-C3	4.61	1.59	1.52
4	Е	2	NAG	C6-C5	4.61	1.67	1.51
4	Ι	2	NAG	C6-C5	4.61	1.67	1.51
3	D	4	FUL	C2-C3	4.61	1.59	1.52
5	Н	4	FUC	C2-C3	4.61	1.59	1.52
2	G	1	NAG	C4-C3	4.41	1.63	1.52
2	С	1	NAG	C4-C3	4.41	1.63	1.52
3	D	4	FUL	C4-C5	4.37	1.62	1.52
5	Н	4	FUC	C4-C5	4.37	1.62	1.52
5	Η	2	NAG	O5-C1	4.27	1.50	1.43
3	D	2	NAG	O5-C1	4.27	1.50	1.43
4	Ε	5	MAN	O3-C3	4.23	1.52	1.43
4	Ι	5	MAN	O3-C3	4.23	1.52	1.43
4	Ε	5	MAN	C6-C5	4.20	1.65	1.51
4	Ι	5	MAN	C6-C5	4.20	1.65	1.51
4	Ι	1	NAG	C3-C2	4.19	1.61	1.52
4	Ε	1	NAG	C3-C2	4.19	1.61	1.52
4	Ι	6	MAN	C6-C5	4.18	1.65	1.51
4	Ε	6	MAN	C6-C5	4.18	1.65	1.51
2	F	1	NAG	O5-C1	4.15	1.50	1.43
2	J	1	NAG	O5-C1	4.15	1.50	1.43
2	G	2	NAG	O5-C1	4.05	1.50	1.43
2	С	2	NAG	O5-C1	4.05	1.50	1.43
5	Н	1	NAG	C1-C2	4.04	1.58	1.52
3	D	1	NAG	C1-C2	4.04	1.58	1.52
3	D	4	FUL	C1-C2	4.03	1.61	1.52
5	Н	4	FUC	C1-C2	4.03	1.61	1.52
5	Н	2	NAG	C4-C3	3.90	1.62	1.52
3	D	2	NAG	C4-C3	3.90	1.62	1.52
5	H	2	NAG	C2-N2	3.90	1.53	1.46
3	D	2	NAG	C2-N2	3.90	1.53	1.46
2	G	2	NAG	C6-C5	3.88	1.64	1.51
2	С	2	NAG	C6-C5	3.88	1.64	1.51
4	Е	2	NAG	C3-C2	3.83	1.60	1.52
4	Ι	2	NAG	C3-C2	3.83	1.60	1.52
5	Н	3	BMA	C1-C2	3.80	1.60	1.52
3	D	3	BMA	C1-C2	3.80	1.60	1.52
4	Ι	4	MAN	C4-C3	3.77	1.61	1.52
4	Ε	4	MAN	C4-C3	3.77	1.61	1.52
2	F	$ 1^{-}$	NAG	C2-N2	3.77^{-}	1.52	1.46

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	J	1	NAG	C2-N2	3.77	1.52	1.46
4	Ι	4	MAN	C4-C5	3.50	1.60	1.53
4	Е	4	MAN	C4-C5	3.50	1.60	1.53
4	Ι	4	MAN	C1-C2	3.47	1.60	1.52
4	Е	4	MAN	C1-C2	3.47	1.60	1.52
4	Е	2	NAG	C4-C5	3.45	1.60	1.53
4	Ι	2	NAG	C4-C5	3.45	1.60	1.53
4	Е	3	BMA	C6-C5	3.45	1.63	1.51
4	Ι	3	BMA	C6-C5	3.45	1.63	1.51
4	Ι	1	NAG	C8-C7	3.42	1.57	1.50
4	Е	1	NAG	C8-C7	3.42	1.57	1.50
5	Н	2	NAG	C3-C2	3.39	1.59	1.52
3	D	2	NAG	C3-C2	3.39	1.59	1.52
5	Н	2	NAG	C8-C7	3.37	1.57	1.50
3	D	2	NAG	C8-C7	3.37	1.57	1.50
4	Ι	6	MAN	C4-C3	3.37	1.60	1.52
4	Е	6	MAN	C4-C3	3.37	1.60	1.52
4	Е	5	MAN	O2-C2	3.32	1.50	1.43
4	Ι	5	MAN	O2-C2	3.32	1.50	1.43
4	Е	5	MAN	O5-C1	3.30	1.49	1.43
4	Ι	5	MAN	O5-C1	3.30	1.49	1.43
2	G	1	NAG	O5-C1	3.21	1.48	1.43
2	С	1	NAG	O5-C1	3.21	1.48	1.43
5	Н	2	NAG	C1-C2	3.17	1.57	1.52
3	D	2	NAG	C1-C2	3.17	1.57	1.52
5	Н	3	BMA	C4-C3	3.10	1.60	1.52
3	D	3	BMA	C4-C3	3.10	1.60	1.52
4	Ι	6	MAN	O3-C3	3.10	1.50	1.43
4	E	6	MAN	O3-C3	3.10	1.50	1.43
4	E	5	MAN	C2-C3	3.08	1.57	1.52
4	I	5	MAN	C2-C3	3.08	1.57	1.52
2	J	2	NAG	C8-C7	3.03	1.56	1.50
2	F	2	NAG	C8-C7	3.03	1.56	1.50
2	G	1	NAG	C3-C2	3.02	1.58	1.52
2	С	1	NAG	C3-C2	3.02	1.58	1.52
4	I	4	MAN	C6-C5	2.89	1.61	1.51
4	E	4	MAN	C6-C5	2.89	1.61	1.51
5	H	1	NAG	C4-C3	2.89	1.59	1.52
3	D	1	NAG	C4-C3	2.89	1.59	1.52
5	H	3	BMA	02-C2	2.89	1.49	1.43
3	D	3	BMA	02-C2	2.89	1.49	1.43
2	J	2	NAG	C3-C2	2.87	1.58	1.52

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	F	2	NAG	C3-C2	2.87	1.58	1.52
2	G	1	NAG	O3-C3	2.87	1.49	1.43
2	С	1	NAG	O3-C3	2.87	1.49	1.43
2	F	1	NAG	C3-C2	-2.83	1.46	1.52
2	J	1	NAG	C3-C2	-2.83	1.46	1.52
4	Ι	1	NAG	C2-N2	2.68	1.50	1.46
4	Е	1	NAG	C2-N2	2.68	1.50	1.46
4	Е	3	BMA	O4-C4	2.64	1.49	1.43
4	Ι	3	BMA	O4-C4	2.64	1.49	1.43
2	G	1	NAG	O4-C4	2.58	1.49	1.43
2	С	1	NAG	O4-C4	2.58	1.49	1.43
4	Е	3	BMA	O5-C1	2.57	1.47	1.43
4	Ι	3	BMA	O5-C1	2.57	1.47	1.43
4	Ι	4	MAN	O4-C4	2.57	1.49	1.43
4	Е	4	MAN	O4-C4	2.57	1.49	1.43
5	Н	1	NAG	C8-C7	2.55	1.55	1.50
3	D	1	NAG	C8-C7	2.55	1.55	1.50
2	J	2	NAG	C4-C5	2.53	1.58	1.53
2	F	2	NAG	C4-C5	2.53	1.58	1.53
5	Н	3	BMA	O5-C5	-2.51	1.38	1.43
3	D	3	BMA	O5-C5	-2.51	1.38	1.43
3	D	4	FUL	O3-C3	2.50	1.48	1.43
5	Н	4	FUC	O3-C3	2.50	1.48	1.43
4	Ι	6	MAN	O4-C4	2.44	1.48	1.43
4	Е	6	MAN	O4-C4	2.44	1.48	1.43
4	Ι	6	MAN	O2-C2	2.43	1.48	1.43
4	Е	6	MAN	O2-C2	2.43	1.48	1.43
3	D	4	FUL	O5-C5	2.41	1.48	1.43
5	Н	4	FUC	O5-C5	2.41	1.48	1.43
2	F	1	NAG	C6-C5	2.38	1.59	1.51
2	J	1	NAG	C6-C5	2.38	1.59	1.51
5	H	2	NAG	04-C4	2.32	1.48	1.43
3	D	2	NAG	0 4- C4	2.32	1.48	1.43
2	F	1	NAG	04-C4	2.32	1.48	1.43
2	J	1	NAG	O4-C4	2.32	1.48	1.43
2	G	2	NAG	C8-C7	2.31	1.55	1.50
2	C	2	NAG	C8-C7	2.31	1.55	1.50
4	Ι	1	NAG	O4-C4	2.29	1.48	1.43
4	Е	1	NAG	04-C4	2.29	1.48	1.43
2	G	1	NAG	C8-C7	2.16	1.55	1.50
2	C	1	NAG	C8-C7	2.16	1.55	1.50
5	H	3	BMA	$C\overline{6-C5}$	2.12	1.59	1.51

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
3	D	3	BMA	C6-C5	2.12	1.59	1.51
2	J	2	NAG	C1-C2	-2.09	1.49	1.52
2	F	2	NAG	C1-C2	-2.09	1.49	1.52

All (214) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	Н	1	NAG	C1-O5-C5	8.99	124.37	112.19
3	D	1	NAG	C1-O5-C5	8.99	124.37	112.19
5	Н	2	NAG	C8-C7-N2	8.94	131.23	116.10
3	D	2	NAG	C8-C7-N2	8.94	131.23	116.10
5	Н	3	BMA	C1-O5-C5	8.70	123.98	112.19
3	D	3	BMA	C1-O5-C5	8.70	123.98	112.19
5	Н	2	NAG	O7-C7-C8	-8.58	106.12	122.06
3	D	2	NAG	O7-C7-C8	-8.58	106.12	122.06
2	J	2	NAG	C4-C3-C2	-7.97	99.34	111.02
2	F	2	NAG	C4-C3-C2	-7.97	99.34	111.02
2	F	1	NAG	C1-C2-N2	7.82	123.85	110.49
2	J	1	NAG	C1-C2-N2	7.82	123.85	110.49
2	G	2	NAG	C4-C3-C2	-7.71	99.71	111.02
2	С	2	NAG	C4-C3-C2	-7.71	99.71	111.02
2	G	1	NAG	C1-O5-C5	7.24	122.00	112.19
2	С	1	NAG	C1-O5-C5	7.24	122.00	112.19
4	Ι	1	NAG	C4-C3-C2	7.23	121.61	111.02
4	Е	1	NAG	C4-C3-C2	7.23	121.61	111.02
2	J	2	NAG	O3-C3-C2	6.65	123.22	109.47
2	F	2	NAG	O3-C3-C2	6.65	123.22	109.47
4	Е	3	BMA	C1-O5-C5	6.37	120.82	112.19
4	Ι	3	BMA	C1-O5-C5	6.37	120.82	112.19
4	Е	3	BMA	O3-C3-C2	6.36	122.18	109.99
4	Ι	3	BMA	O3-C3-C2	6.36	122.18	109.99
2	G	1	NAG	C1-C2-N2	-6.29	99.74	110.49
2	С	1	NAG	C1-C2-N2	-6.29	99.74	110.49
2	F	1	NAG	C8-C7-N2	6.23	126.65	116.10
2	J	1	NAG	C8-C7-N2	6.23	126.65	116.10
2	J	2	NAG	C6-C5-C4	6.09	127.27	113.00
2	F	2	NAG	C6-C5-C4	6.09	127.27	113.00
2	F	1	NAG	O7-C7-C8	-5.91	111.08	122.06
2	J	1	NAG	O7-C7-C8	-5.91	111.08	122.06
2	J	2	NAG	O5-C1-C2	-5.83	102.08	111.29
2	F	2	NAG	O5-C1-C2	-5.83	102.08	111.29
4	Ι	4	MAN	C1-O5-C5	5.83	120.09	112.19

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	Ideal(°)
4	Е	4	MAN	C1-O5-C5	5.83	120.09	112.19
4	Е	2	NAG	C1-C2-N2	-5.60	100.92	110.49
4	Ι	2	NAG	C1-C2-N2	-5.60	100.92	110.49
4	Ι	1	NAG	O3-C3-C4	-5.57	97.46	110.35
4	Е	1	NAG	O3-C3-C4	-5.57	97.46	110.35
5	Н	2	NAG	C2-N2-C7	-5.54	115.01	122.90
3	D	2	NAG	C2-N2-C7	-5.54	115.01	122.90
4	Ι	6	MAN	O5-C1-C2	5.50	119.26	110.77
4	Е	6	MAN	O5-C1-C2	5.50	119.26	110.77
4	Е	2	NAG	C1-O5-C5	5.19	119.22	112.19
4	Ι	2	NAG	C1-O5-C5	5.19	119.22	112.19
2	G	2	NAG	C2-N2-C7	-4.99	115.79	122.90
2	С	2	NAG	C2-N2-C7	-4.99	115.79	122.90
3	D	4	FUL	C6-C5-C4	4.92	122.16	113.07
5	Н	4	FUC	C6-C5-C4	4.92	122.16	113.07
2	G	2	NAG	C6-C5-C4	4.85	124.36	113.00
2	С	2	NAG	C6-C5-C4	4.85	124.36	113.00
2	F	1	NAG	C1-O5-C5	4.83	118.74	112.19
2	J	1	NAG	C1-O5-C5	4.83	118.74	112.19
2	G	1	NAG	O4-C4-C3	4.76	121.35	110.35
2	С	1	NAG	O4-C4-C3	4.76	121.35	110.35
3	D	4	FUL	C3-C4-C5	4.73	117.13	109.77
5	Н	4	FUC	C3-C4-C5	4.73	117.13	109.77
4	Ι	4	MAN	O5-C1-C2	4.62	117.90	110.77
4	Е	4	MAN	O5-C1-C2	4.62	117.90	110.77
4	Е	3	BMA	C1-C2-C3	4.58	115.30	109.67
4	Ι	3	BMA	C1-C2-C3	4.58	115.30	109.67
4	Е	2	NAG	C2-N2-C7	4.44	129.22	122.90
4	Ι	2	NAG	C2-N2-C7	4.44	129.22	122.90
2	G	2	NAG	O3-C3-C2	4.42	118.62	109.47
2	С	2	NAG	O3-C3-C2	4.42	118.62	109.47
5	Н	2	NAG	C4-C3-C2	-4.33	104.67	111.02
3	D	2	NAG	C4-C3-C2	-4.33	104.67	111.02
5	Н	1	NAG	C4-C3-C2	-4.24	104.80	111.02
3	D	1	NAG	C4-C3-C2	-4.24	104.80	111.02
4	Ι	6	MAN	C3-C4-C5	3.96	117.30	110.24
4	Е	6	MAN	C3-C4-C5	3.96	117.30	110.24
3	D	4	FUL	C1-C2-C3	-3.85	104.94	109.67
5	Н	4	FUC	C1-C2-C3	-3.85	104.94	109.67
2	F	1	NAG	C4-C3-C2	-3.82	105.43	111.02
2	J	1	NAG	C4-C3-C2	-3.82	105.43	111.02
4	Ι	6	MAN	C1-C2-C3	3.81	114.35	109.67

Mol	Chain	Res		Atoms	Z	$Observed(^{o})$	Ideal(°)
4	Е	6	MAN	C1-C2-C3	3.81	114.35	109.67
4	Ι	1	NAG	C3-C4-C5	-3.75	103.54	110.24
4	Е	1	NAG	C3-C4-C5	-3.75	103.54	110.24
5	Н	2	NAG	O5-C5-C6	3.73	113.06	107.20
3	D	2	NAG	O5-C5-C6	3.73	113.06	107.20
4	Ι	6	MAN	C6-C5-C4	-3.64	104.48	113.00
4	Е	6	MAN	C6-C5-C4	-3.64	104.48	113.00
2	J	2	NAG	O4-C4-C3	-3.57	102.10	110.35
2	F	2	NAG	O4-C4-C3	-3.57	102.10	110.35
5	Н	2	NAG	O4-C4-C3	3.55	118.56	110.35
3	D	2	NAG	O4-C4-C3	3.55	118.56	110.35
4	Ι	1	NAG	O7-C7-C8	-3.50	115.55	122.06
4	Е	1	NAG	O7-C7-C8	-3.50	115.55	122.06
4	Ι	1	NAG	O5-C5-C6	3.44	112.59	107.20
4	Е	1	NAG	O5-C5-C6	3.44	112.59	107.20
4	Е	3	BMA	O4-C4-C3	-3.43	102.42	110.35
4	Ι	3	BMA	O4-C4-C3	-3.43	102.42	110.35
4	Ι	1	NAG	O5-C1-C2	3.39	116.64	111.29
4	Е	1	NAG	O5-C1-C2	3.39	116.64	111.29
4	Е	5	MAN	O3-C3-C2	-3.38	103.52	109.99
4	Ι	5	MAN	O3-C3-C2	-3.38	103.52	109.99
4	Е	3	BMA	O6-C6-C5	3.32	122.68	111.29
4	Ι	3	BMA	O6-C6-C5	3.32	122.68	111.29
2	J	2	NAG	C1-O5-C5	3.31	116.68	112.19
2	F	2	NAG	C1-O5-C5	3.31	116.68	112.19
5	Н	3	BMA	C2-C3-C4	3.27	116.55	110.89
3	D	3	BMA	C2-C3-C4	3.27	116.55	110.89
4	Ι	1	NAG	O4-C4-C5	3.27	117.41	109.30
4	Е	1	NAG	O4-C4-C5	3.27	117.41	109.30
5	Н	3	BMA	O3-C3-C4	-3.22	102.89	110.35
3	D	3	BMA	O3-C3-C4	-3.22	102.89	110.35
4	Ι	1	NAG	C8-C7-N2	3.22	121.55	116.10
4	Е	1	NAG	C8-C7-N2	3.22	121.55	116.10
4	Ι	6	MAN	O3-C3-C4	-3.19	102.98	110.35
4	Ε	6	MAN	O3-C3-C4	-3.19	102.98	110.35
4	Ι	4	MAN	C2-C3-C4	3.16	116.37	110.89
4	Е	4	MAN	C2-C3-C4	3.16	116.37	110.89
2	J	2	NAG	C2-N2-C7	-3.16	118.41	122.90
2	F	2	NAG	C2-N2-C7	-3.16	118.41	122.90
4	E	2	NAG	05-C1-C2	-3.16	106.31	111.29
4	Ι	2	NAG	O5-C1-C2	-3.16	106.31	111.29
2	G	2	NAG	O5-C5-C4	-3.15	103.17	110.83

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	С	2	NAG	O5-C5-C4	-3.15	103.17	110.83
4	Е	2	NAG	O5-C5-C6	-3.14	102.28	107.20
4	Ι	2	NAG	O5-C5-C6	-3.14	102.28	107.20
2	G	1	NAG	C6-C5-C4	-3.11	105.73	113.00
2	С	1	NAG	C6-C5-C4	-3.11	105.73	113.00
4	Ι	4	MAN	C1-C2-C3	3.09	113.47	109.67
4	Е	4	MAN	C1-C2-C3	3.09	113.47	109.67
2	G	1	NAG	C8-C7-N2	-3.08	110.89	116.10
2	С	1	NAG	C8-C7-N2	-3.08	110.89	116.10
4	Е	5	MAN	O5-C1-C2	3.02	115.44	110.77
4	Ι	5	MAN	O5-C1-C2	3.02	115.44	110.77
3	D	4	FUL	C1-O5-C5	3.02	119.63	112.78
5	Н	4	FUC	C1-O5-C5	3.02	119.63	112.78
4	Ι	1	NAG	C6-C5-C4	3.01	120.05	113.00
4	Е	1	NAG	C6-C5-C4	3.01	120.05	113.00
4	Ι	1	NAG	C1-O5-C5	-3.00	108.13	112.19
4	Е	1	NAG	C1-O5-C5	-3.00	108.13	112.19
5	Н	1	NAG	C2-N2-C7	3.00	127.17	122.90
3	D	1	NAG	C2-N2-C7	3.00	127.17	122.90
3	D	4	FUL	O3-C3-C2	2.99	115.72	109.99
5	Н	4	FUC	O3-C3-C2	2.99	115.72	109.99
2	G	2	NAG	C3-C4-C5	2.92	115.45	110.24
2	С	2	NAG	C3-C4-C5	2.92	115.45	110.24
5	Н	3	BMA	O5-C1-C2	2.90	115.24	110.77
3	D	3	BMA	O5-C1-C2	2.90	115.24	110.77
5	Н	1	NAG	O3-C3-C4	2.85	116.93	110.35
3	D	1	NAG	O3-C3-C4	2.85	116.93	110.35
4	Ι	4	MAN	C3-C4-C5	2.84	115.31	110.24
4	Е	4	MAN	C3-C4-C5	2.84	115.31	110.24
3	D	4	FUL	O4-C4-C3	-2.83	103.80	110.35
5	Н	4	FUC	O4-C4-C3	-2.83	103.80	110.35
5	Н	1	NAG	O3-C3-C2	2.83	115.31	109.47
3	D	1	NAG	O3-C3-C2	2.83	115.31	109.47
4	Ι	6	MAN	O4-C4-C3	-2.83	103.82	110.35
4	Е	6	MAN	O4-C4-C3	-2.83	103.82	110.35
4	I	6	MAN	C2-C3-C4	2.82	115.78	110.89
4	E	6	MAN	C2-C3-C4	2.82	115.78	110.89
2	J	2	NAG	C3-C4-C5	-2.82	105.21	110.24
2	F	2	NAG	C3-C4-C5	-2.82	105.21	110.24
4	Ι	1	NAG	O4-C4-C3	-2.80	103.89	110.35
4	Ε	1	NAG	O4-C4-C3	-2.80	103.89	110.35
4	I	1	NAG	O5-C5-C4	-2.78	104.06	110.83

Mol	Chain	Res		Atoms	Z	$Observed(^{o})$	Ideal(°)
4	Е	1	NAG	O5-C5-C4	-2.78	104.06	110.83
4	Ι	4	MAN	C6-C5-C4	2.70	119.34	113.00
4	Е	4	MAN	C6-C5-C4	2.70	119.34	113.00
5	Н	2	NAG	O3-C3-C2	2.69	115.03	109.47
3	D	2	NAG	O3-C3-C2	2.69	115.03	109.47
4	Ι	4	MAN	O2-C2-C3	-2.68	104.77	110.14
4	Е	4	MAN	O2-C2-C3	-2.68	104.77	110.14
5	Н	3	BMA	C1-C2-C3	2.63	112.90	109.67
3	D	3	BMA	C1-C2-C3	2.63	112.90	109.67
2	J	2	NAG	O4-C4-C5	2.61	115.79	109.30
2	F	2	NAG	O4-C4-C5	2.61	115.79	109.30
5	Н	1	NAG	O7-C7-C8	-2.60	117.22	122.06
3	D	1	NAG	O7-C7-C8	-2.60	117.22	122.06
2	G	2	NAG	O3-C3-C4	2.54	116.22	110.35
2	С	2	NAG	O3-C3-C4	2.54	116.22	110.35
4	Е	3	BMA	C6-C5-C4	2.49	118.84	113.00
4	Ι	3	BMA	C6-C5-C4	2.49	118.84	113.00
4	Ι	6	MAN	C1-O5-C5	2.44	115.50	112.19
4	Е	6	MAN	C1-O5-C5	2.44	115.50	112.19
2	F	1	NAG	C3-C4-C5	2.38	114.49	110.24
2	J	1	NAG	C3-C4-C5	2.38	114.49	110.24
2	J	2	NAG	C1-C2-N2	2.36	114.52	110.49
2	F	2	NAG	C1-C2-N2	2.36	114.52	110.49
2	F	1	NAG	O4-C4-C3	-2.33	104.97	110.35
2	J	1	NAG	O4-C4-C3	-2.33	104.97	110.35
5	Н	2	NAG	O5-C1-C2	-2.31	107.64	111.29
3	D	2	NAG	O5-C1-C2	-2.31	107.64	111.29
2	J	2	NAG	O5-C5-C6	-2.29	103.61	107.20
2	F	2	NAG	O5-C5-C6	-2.29	103.61	107.20
4	Е	2	NAG	O3-C3-C2	2.28	114.19	109.47
4	Ι	2	NAG	O3-C3-C2	2.28	114.19	109.47
4	Е	5	MAN	O5-C5-C6	2.26	110.75	107.20
4	Ι	5	MAN	O5-C5-C6	2.26	110.75	107.20
5	Н	1	NAG	C8-C7-N2	2.24	119.89	116.10
3	D	1	NAG	C8-C7-N2	2.24	119.89	116.10
2	F	1	NAG	O3-C3-C4	2.23	115.51	110.35
2	J	1	NAG	O3-C3-C4	2.23	115.51	110.35
2	G	2	NAG	O7-C7-C8	-2.23	117.92	122.06
2	С	2	NAG	O7-C7-C8	-2.23	117.92	122.06
4	Е	3	BMA	C2-C3-C4	-2.16	107.15	110.89
4	Ι	3	BMA	C2-C3-C4	-2.16	107.15	110.89
4	Е	3	BMA	O2-C2-C3	-2.13	105.88	110.14

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	Ι	3	BMA	O2-C2-C3	-2.13	105.88	110.14
2	F	1	NAG	O6-C6-C5	2.12	118.56	111.29
2	J	1	NAG	O6-C6-C5	2.12	118.56	111.29
5	Н	2	NAG	O6-C6-C5	-2.08	104.17	111.29
3	D	2	NAG	O6-C6-C5	-2.08	104.17	111.29
2	F	1	NAG	O4-C4-C5	-2.07	104.16	109.30
2	J	1	NAG	O4-C4-C5	-2.07	104.16	109.30
4	Е	5	MAN	O2-C2-C3	-2.02	106.08	110.14
4	Ι	5	MAN	O2-C2-C3	-2.02	106.08	110.14
4	Ι	4	MAN	O3-C3-C4	-2.02	105.68	110.35
4	Ε	4	MAN	O3-C3-C4	-2.02	105.68	110.35

All (1) chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
5	Н	4	FUC	C1

All (36) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
5	Н	1	NAG	C3-C2-N2-C7
2	J	2	NAG	C1-C2-N2-C7
2	F	2	NAG	C1-C2-N2-C7
3	D	1	NAG	C3-C2-N2-C7
5	Н	3	BMA	O5-C5-C6-O6
3	D	3	BMA	O5-C5-C6-O6
4	Е	5	MAN	O5-C5-C6-O6
2	G	2	NAG	O5-C5-C6-O6
2	С	2	NAG	O5-C5-C6-O6
4	Ι	5	MAN	O5-C5-C6-O6
2	F	1	NAG	O5-C5-C6-O6
2	J	1	NAG	O5-C5-C6-O6
2	G	2	NAG	C4-C5-C6-O6
2	С	2	NAG	C4-C5-C6-O6
5	Н	3	BMA	C4-C5-C6-O6
3	D	3	BMA	C4-C5-C6-O6
4	Е	5	MAN	C4-C5-C6-O6
4	Ι	5	MAN	C4-C5-C6-O6
2	F	1	NAG	C1-C2-N2-C7
2	J	1	NAG	C1-C2-N2-C7
4	Ι	1	NAG	O5-C5-C6-O6
4	Е	1	NAG	O5-C5-C6-O6

Mol

2

2

4

4

4

4

5

3

NAG	C4-C5-C6-O6
NAG	C4-C5-C6-O6
NAG	C1-C2-N2-C7
NAG	C1-C2-N2-C7
BMA	C4-C5-C6-O6

Atoms

C4-C5-C6-O6

O5-C5-C6-O6

O5-C5-C6-O6

Continued from previous page... Chain

F

J

Ι

Е

Е

Ι Η

D

 \mathbf{Res}

1

1

1

1

3

3

2

2

Type

BMA

NAG

NAG

4	Ε	3	BMA	O5-C5-C6-O6
4	Ι	3	BMA	O5-C5-C6-O6
4	Ι	1	NAG	C4-C5-C6-O6
4	Ε	1	NAG	C4-C5-C6-O6
2	J	2	NAG	C3-C2-N2-C7
2	F	2	NAG	C3-C2-N2-C7

All (4) ring outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	Ε	5	MAN	C1-C2-C3-C4-C5-O5
4	Ι	5	MAN	C1-C2-C3-C4-C5-O5
4	Е	3	BMA	C1-C2-C3-C4-C5-O5
4	Ι	3	BMA	C1-C2-C3-C4-C5-O5

21 monomers are involved in 68 short contacts:

Mol	Chain	\mathbf{Res}	Type	Clashes	Symm-Clashes
5	Н	2	NAG	1	0
2	J	2	NAG	1	0
4	Ι	4	MAN	3	0
2	F	1	NAG	3	0
2	G	2	NAG	3	0
3	D	4	FUL	0	9
4	Е	2	NAG	5	0
4	Е	4	MAN	3	9
4	Ι	6	MAN	9	0
3	D	2	NAG	1	0
5	Н	3	BMA	1	0
2	F	2	NAG	1	0
4	Ι	1	NAG	3	2
4	Е	6	MAN	14	0
2	С	2	NAG	3	0
3	D	3	BMA	1	0

		· . · · · ·			
Mol	Chain	\mathbf{Res}	Type	Clashes	Symm-Clashes
4	Е	3	BMA	5	0
4	Ι	2	NAG	6	0
4	Ι	3	BMA	5	0
2	J	1	NAG	3	0
4	Е	1	NAG	11	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

Of 4 ligands modelled in this entry, 2 are monoatomic - leaving 2 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type	Turne	Chain	Dog		Bond lengths			Bond angles		
	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2	
7	ST2	А	471	-	13, 15, 15	2.14	3 (23%)	$15,\!21,\!21$	2.03	3 (20%)
7	ST2	В	471	-	13, 15, 15	2.14	3 (23%)	$15,\!21,\!21$	2.03	3 (20%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
7	ST2	А	471	-	-	2/4/8/8	0/1/1/1
7	ST2	В	471	-	-	2/4/8/8	0/1/1/1

Mol	Chain	\mathbf{Res}	Type	Atoms		Observed(A)	Ideal(Å)
7	А	471	ST2	C1-C'	-6.22	1.41	1.47
7	В	471	ST2	C1-C'	-6.22	1.41	1.47
7	А	471	ST2	C3-C4	2.89	1.43	1.40
7	В	471	ST2	C3-C4	2.89	1.43	1.40
7	А	471	ST2	C6-C5	2.08	1.41	1.38
7	В	471	ST2	C6-C5	2.08	1.41	1.38

All (6) bond length outliers are listed below:

All (6) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
7	А	471	ST2	C4-N4-C4'	-6.22	112.28	122.79
7	В	471	ST2	C4-N4-C4'	-6.22	112.28	122.79
7	А	471	ST2	CM4-C4'-N4	3.56	120.20	114.98
7	В	471	ST2	CM4-C4'-N4	3.56	120.20	114.98
7	А	471	ST2	O4'-C4'-CM4	-2.04	118.26	122.06

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
7	В	471	ST2	O4'-C4'-CM4	-2.04	118.26	122.06

There are no chirality outliers.

All (4) torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
7	А	471	ST2	O4'-C4'-N4-C4
7	А	471	ST2	CM4-C4'-N4-C4
7	В	471	ST2	O4'-C4'-N4-C4
7	В	471	ST2	CM4-C4'-N4-C4

There are no ring outliers.

2 monomers are involved in 6 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
7	А	471	ST2	3	0
7	В	471	ST2	3	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	$\# RSRZ {>}2$	$\mathbf{OWAB}(\mathbf{\AA}^2)$	Q<0.9
1	А	388/388~(100%)	-0.50	0 100 100	4,13,23,31	0
1	В	388/388~(100%)	-0.49	1 (0%) 94 93	4,13,23,31	0
All	All	776/776~(100%)	-0.49	1 (0%) 95 95	4,13,23,31	0

All (1) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	В	346	THR	2.5

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q<0.9
4	MAN	Ι	6	11/12	0.46	0.66	$15,\!15,\!36,\!41$	0
4	MAN	Е	6	11/12	0.53	0.62	$15,\!15,\!36,\!41$	0
3	FUL	D	4	10/11	0.55	0.51	$15,\!15,\!33,\!36$	0
3	BMA	D	3	11/12	0.56	0.55	15,15,38,39	0
4	MAN	Е	4	11/12	0.57	0.49	15,15,34,35	0
4	MAN	Ι	4	11/12	0.61	0.46	$15,\!15,\!34,\!35$	0
4	MAN	Ι	5	11/12	0.62	0.54	15,15,38,40	0
4	NAG	Ι	1	14/15	0.63	0.29	$15,\!18,\!31,\!33$	0

1 T	1 7	α
ΤT	V	U

		Chain		Atoms	BSCC	BSB	B -factors $(Å^2)$	$\Omega < 0.9$
	Type		1005	Atoms			\mathbf{D} -lactors(A)	Q<0.5
4	NAG	E		14/15	0.63	0.28	15,18,31,33	0
4	BMA	Ι	3	11/12	0.64	0.64	$15,\!15,\!35,\!36$	0
5	BMA	Н	3	11/12	0.66	0.45	$15,\!15,\!38,\!39$	0
4	MAN	Е	5	11/12	0.67	0.60	$15,\!15,\!38,\!40$	0
4	NAG	Е	2	14/15	0.68	0.63	$15,\!15,\!38,\!38$	0
4	NAG	Ι	2	14/15	0.69	0.64	$15,\!15,\!38,\!38$	0
2	NAG	С	2	14/15	0.69	0.41	$15,\!15,\!35,\!37$	0
4	BMA	Е	3	11/12	0.73	0.48	$15,\!15,\!35,\!36$	0
5	NAG	Н	2	14/15	0.77	0.37	$15,\!15,\!34,\!36$	0
3	NAG	D	2	14/15	0.77	0.29	$15,\!15,\!34,\!36$	0
5	FUC	Н	4	10/11	0.78	0.47	$15,\!15,\!33,\!36$	0
2	NAG	J	1	14/15	0.81	0.22	$15,\!15,\!35,\!36$	0
2	NAG	G	2	14/15	0.82	0.42	$15,\!15,\!35,\!37$	0
2	NAG	F	2	14/15	0.84	0.36	$15,\!15,\!37,\!37$	0
2	NAG	С	1	14/15	0.86	0.32	$15,\!15,\!31,\!31$	0
5	NAG	Н	1	14/15	0.86	0.18	$1\overline{5,20,27,31}$	0
2	NAG	J	2	14/15	0.87	0.42	$15,\!15,\!37,\!37$	0
2	NAG	G	1	14/15	0.88	0.25	$1\overline{5,}15,\!31,\!31$	0
2	NAG	F	1	14/15	0.89	0.26	$15,\!15,\!35,\!36$	0
3	NAG	D	1	14/15	0.94	0.11	$1\overline{5,20,27,31}$	0

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	${f B} ext{-factors}({ m \AA}^2)$	Q<0.9
7	ST2	В	471	15/15	0.77	0.30	$15,\!33,\!38,\!40$	0
7	ST2	А	471	15/15	0.82	0.26	$15,\!33,\!38,\!40$	0
6	CA	В	470	1/1	0.90	0.07	21,21,21,21	0
6	CA	А	470	1/1	0.94	0.06	21,21,21,21	0

6.5 Other polymers (i)

There are no such residues in this entry.

