

May 19, 2024 – 12:08 AM JST

PDB II) :	8IP0
EMDB II) : C	EMD-35629
Titl	e :	Cryo-EM structure of type I-B Cascade bound to a PAM-containing dsDNA
		target at 3.6 angstrom resolution
Author	s :	Xiao, Y.; Lu, M.; Yu, C.; Zhang, Y.
Deposited of	n :	2023-03-13
Resolution	n :	3.60 Å(reported)
This	is a	Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	FAILED
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.60 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain							
1	J	551	67%	16% •	15%					
2	А	237	57%	32%	11%					
3	В	301	58%	41%						
3	С	301	65%	34%						
3	D	301	65%	34%	·					
3	Н	301	65%	33%						
3	Ι	301	66%	32%						
3	Ν	301	69%	30%	••					

Continued	from	nrovioue	naae
Continueu	JIOIII	pretious	puye

Mol	Chain	Length	Quality of chain					
3	Ο	301	57	%	23%		20%	
4	Е	15	33%		67%			
5	F	44	27%	36%		36%		
6	G	41		78%			22%	
7	Р	10	6	0%		40%		
8	K	124	55%)	329	%	• 11%	
8	L	124	50%		27%	•	23%	
8	М	124		67%		22%	11%	

2 Entry composition (i)

There are 8 unique types of molecules in this entry. The entry contains 26526 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Type I-MYXAN CRISPR-associated protein Cmx8.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	J	467	Total 3801	C 2462	N 637	O 695	S 7	0	0

There are 32 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
J	1	MET	-	initiating methionine	UNP A0A068N831
J	2	PRO	-	expression tag	UNP A0A068N831
J	3	LYS	-	expression tag	UNP A0A068N831
J	4	THR	-	expression tag	UNP A0A068N831
J	5	GLN	-	expression tag	UNP A0A068N831
J	6	ALA	-	expression tag	UNP A0A068N831
J	7	GLU	-	expression tag	UNP A0A068N831
J	8	ILE	-	expression tag	UNP A0A068N831
J	9	LEU	-	expression tag	UNP A0A068N831
J	10	THR	-	expression tag	UNP A0A068N831
J	11	LEU	-	expression tag	UNP A0A068N831
J	12	ASP	-	expression tag	UNP A0A068N831
J	13	PHE	-	expression tag	UNP A0A068N831
J	14	ASN	-	expression tag	UNP A0A068N831
J	15	LEU	-	expression tag	UNP A0A068N831
J	16	ALA	-	expression tag	UNP A0A068N831
J	17	GLU	-	expression tag	UNP A0A068N831
J	18	LEU	-	expression tag	UNP A0A068N831
J	19	PRO	-	expression tag	UNP A0A068N831
J	20	SER	-	expression tag	UNP A0A068N831
J	21	ALA	-	expression tag	UNP A0A068N831
J	22	GLN	-	expression tag	UNP A0A068N831
J	23	HIS	-	expression tag	UNP A0A068N831
J	24	ARG	_	expression tag	UNP A0A068N831
J	25	ALA	-	expression tag	UNP A0A068N831
J	26	GLY	-	expression tag	UNP A0A068N831
J	27	LEU	_	expression tag	UNP A0A068N831
J	28	ALA	-	expression tag	UNP A0A068N831

Chain	Residue	Modelled	Actual	Comment	Reference
J	29	GLY	-	expression tag	UNP A0A068N831
J	30	LEU	-	expression tag	UNP A0A068N831
J	31	ILE	-	expression tag	UNP A0A068N831
J	32	LEU	_	expression tag	UNP A0A068N831

• Molecule 2 is a protein called Type I-MYXAN CRISPR-associated protein Cas5/Cmx5/DevS.

Mol	Chain	Residues	Atoms				AltConf	Trace	
2	А	212	Total 1695	C 1096	N 290	O 307	${S \over 2}$	0	0

• Molecule 3 is a protein called Fruiting body developmental protein R-like protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
2	Р	200	Total	С	Ν	0	S	0	0
0	D	299	2366	1501	407	449	9	0	0
2	C	200	Total	С	Ν	0	S	0	0
0	U	299	2366	1501	407	449	9	0	0
2	П	299	Total	С	Ν	0	S	0	0
0	3 D		2366	1501	407	449	9	0	0
2	N	200	Total	С	Ν	0	S	0	0
0	1	299	2366	1501	407	449	9	0	0
2	0	941	Total	С	Ν	0	S	0	0
0	0	241	1911	1225	325	352	9	0	0
3	ц	200	Total	С	Ν	0	S	0	0
0	11	299	2366	1501	407	449	9	0	0
3	т	200	Total	С	Ν	0	S	0	0
5	1	299	2366	1501	407	449	9	0	0

• Molecule 4 is a DNA chain called DNA (5'-D(P*TP*CP*CP*AP*TP*GP*TP*TP*AP *TP*CP*AP*CP*C)-3').

Mol	Chain	Residues	Atoms					AltConf	Trace
4	Е	15	Total 300	C 145	N 47	O 93	Р 15	0	0

• Molecule 5 is a RNA chain called RNA (44-MER).

Mol	Chain	Residues	Atoms			AltConf	Trace		
5	F	44	Total 925	C 414	N 152	0 315	Р 44	0	0

• Molecule 6 is a DNA chain called DNA (41-MER).

Mol	Chain	Residues	Atoms			AltConf	Trace		
6	G	41	Total 850	C 403	N 170	O 236	Р 41	0	0

• Molecule 7 is a DNA chain called DNA (5'-D(P*AP*AP*AP*AP*AP*AP*AP*AP*AP*AP*A)-3').

Mol	Chain	Residues	Atoms			AltConf	Trace		
7	Р	10	Total 210	C 100	N 50	O 50	Р 10	0	0

• Molecule 8 is a protein called CRISPR associated protein Cas11b.

Mol	Chain	Residues	Atoms	AltConf	Trace
8	K	110	Total C N O S 918 591 155 171 1	0	0
8	L	96	Total C N O 802 518 132 152	0	0
8	М	110	Total C N O S 918 591 155 171 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Type I-MYXAN CRISPR-associated protein Cmx8

A278 T101 T101 H282 H192 M102 H282 H195 M102 F290 H195 M107 K289 U198 M107 F291 H202 M107 M107 M107 M107 M107 M107 M107 M108 M107 M107 M109 M107 M107 M101 H202 M111 M205 M114 M114 M116 F209 M114 M116 F208 M114 M116 F208 M124 M116 M124 M124 M116 M124 M226 F231 M124 M227 M128 M124 M229 M124 M124 M229 M224 M126

• Molecule 3: Fruiting body developmental protein R-like protein

• Molecule 3: Fruiting body developmental protein R-like protein

Chain O:	57%	23%	20%	
MET SER SER NS N5 Y13 P14 A15 A15 A15 SER	ASN TYR ARG GLY GLY GLU GLU GLU GLU ASR ASG ASN ASC ASS ASS ASS ASS ASS ASS ASS ASS ASS	M49 N51 N51 N54 N64 N64 N68 N68 N68 N68 N68 SER SER SER SER	GLN. GLN 1.75 1	
A99 A104 A104 A104 A104 K105 K108 A112 A112 A112	M14 7115 7115 7120 7120 7128 7128 7128 7128 7128 7128 7128 7128	LEU ASN ASN ASP GL/A ASP ALA ALA ALA ASN SER SER SER SER SER SER	ALA ALA LEU LEU LEU ARG ARG CLU VAL HIS HIS A175 A175 A175 A175 A175 A175	
D177 K186 L189 Q190 R204 R204 R204 P210	R212 T219 F231 D332 D332 L238 L238 L243 T243 T243 T243 T243 T243 T243 T243 T	E267 F258 F258 L269 C261 C261 C261 C261 C261 E263 E263 E263 E277 E277	M276 C280 C280 H1S LEU TYR ASI ASI ASI ASI ASI ASI ASI ASI ASI ASI	
• Molecule 3: Fr	ruiting body developments	al protein R-like pro	otein	
Chain H:	65%		33% ••	
MET SER NS NS NS NS NS NS NS NS NS NS NS NS NS	K33 134 135 135 134 143 144 143 144 143 144 143 145 145 145 145 155 155 165 165 164 164	L69 H70 V77 E81 881 881 E81 E81 E81 E106 M107 K108	LI10 N111 N111 B117 S118 F120 R121 M121 M124 M124 V124	
K132 Y133 D134 0135 0139 0139 K150 K150	H158 H159 V162 V162 F167 A174 A174 A175 A175 A175 A175 A177 A177 A180 A181 A181 P181	K186 K186 L195 R200 G200 H202 H203 Y206 Y206 F203	F209 8213 8215 8215 8215 8216 8216 7218 7221 8221 8222 8223 8223 8224 8223 8224 8223 8224 8224	
Y226 F231 D232 A233 A233 A233 A233 A233 A233 A233	2241 R245 R245 R245 R266 R266 R266 R266 R266 R266 R266 R26	K273 A274 Q276 L276 M279 M279 L283 L283 L299 C300 C300 V301		
• Molecule 3: Fr	ruiting body developments	al protein R-like pro	otein	
Chain I:	66%		32% ••	
MET SER SER L4 L4 L4 L4 L4 L4 L4 L4 L10 L10 N19 N19	131 (332) (332) (334) (135) (135) (135) (134) (1	P63 N64 N65 N65 K80 K80 K80 F88 F88 F88	Y96 E106 M107 M107 M108 M108 K108 K116 R116 R116 R116 F110 F110	
C122 N123 A127 A127 Y131 Y131 Y132 Y133 T134 T135 T135	F137 K150 K150 H159 H159 H159 F167 F167 F167 F167 K173 C173 C173 C178 C178 C178 C178 C178	A180 K181 P182 P182 L189 L195 L195 A203	R200 F200 F200 F200 R212 S213 R213 R213 F219 F219 F219 F220 K221 K221	
A224 G225 7226 Q227 T228 F231 A233 F231 C233 F234 C234 C235 F234	V237 L238 E239 E239 241 246 244 248 248 248 255 7255 7255 7255 7255 7255 7255	M268 M273 L283 V301		
• Molecule 4: D)	NA $(5'-D(P*TP*CP*CP$	*AP*TP*GP*TP*	TP*TP*AP*TP*CH	P*AP*CP*C)-3'
Chain E:	33%	67%		
<mark>7 - 2</mark> - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	- <mark>1</mark> 2			
• Molecule 5: R	NA (44-MER)			
Chain F:	27% 36%		36%	
		PROTEIN DATA BANK		

MET THR VAL ALA THR THR LYS THR

• Molecule 6: DNA (41-MER)

Chain G:	78%		22%
A20 C21 A53 A55 A55 A55 A56 A56 A56 A56 A56 A56 A56	99 9		
• Molecule 7: D	NA (5'-D(P*AP*AP*AI	P*AP*AP*AP*AP*	AP*AP*A)-3')
Chain P:	60%		40%
A28 A33 A34 A35 A35 A35 A37			
• Molecule 8: C	RISPR associated protein	in Cas11b	
Chain K:	55%	32%	• 11%
MET THR VAL ALA THR LYS LYS R9 R1 V11	Y16 Y16 X30 X30 X30 X30 X31 X335 X35 X35 X35 X48 X51 Y48 X51 X51 X51 X51 X51 X51 X51 X51 X51 X51	V55 V56 N57 N57 N57 F60 R66 R66 R66 R66 R66 R66 R66 R66 R66 R	173 174 174 176 176 176 176 181 181 181 182 182 187 187 187 187 187 187 187 187 187 187
1103 8105 8105 8105 81107 1107 8113 9114 9115 1117	K118 ARG GLN GLY GLY GLU GLU		
• Molecule 8: C	RISPR associated protein	in Cas11b	
Chain L:	50%	27%	23%
MET THR VAL ALA ALA THR THR THR THR EIO VIS	118 118 118 122 122 122 122 122 122 122	LT 3 ASN 44 43 44 44 44 45 45 53 45 53 16 53 16 76 45 864	865 865 866 769 774 77 77 781 781 781
R85 Q86 V90 D101 R104 R104 L106 T107	L108 [111 [111 [111] [111] PRO PRO PRO PRO PRO PRO CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN		
• Molecule 8: C	RISPR associated protein	in Cas11b	
Chain M:	67%	2	22% 11%

E53 K54 V55 V55 V56 V56 N57 E58 Q70 A71

K118 ARG GLN GLV GLU THR GLU GLU

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	92454	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	1000	Depositor
Maximum defocus (nm)	2100	Depositor
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	J	0.24	0/3887	0.45	0/5251	
2	А	0.25	0/1741	0.52	0/2366	
3	В	0.26	0/2421	0.55	0/3280	
3	С	0.25	0/2421	0.51	0/3280	
3	D	0.26	0/2421	0.53	0/3280	
3	Н	0.26	0/2421	0.54	0/3280	
3	Ι	0.25	0/2421	0.54	0/3280	
3	Ν	0.25	0/2421	0.53	0/3280	
3	0	0.25	0/1951	0.52	0/2633	
4	Е	0.35	0/333	0.74	0/510	
5	F	0.19	0/1030	0.75	0/1600	
6	G	0.49	0/958	0.77	0/1477	
7	Р	0.41	0/239	0.62	0/366	
8	Κ	0.26	0/937	0.50	0/1260	
8	L	0.25	0/817	0.48	0/1097	
8	М	0.26	0/937	0.52	0/1260	
All	All	0.26	0/27356	0.54	0/37500	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	J	3801	0	3766	187	0
2	А	1695	0	1705	94	0
3	В	2366	0	2305	102	0
3	С	2366	0	2305	78	0
3	D	2366	0	2305	111	0
3	Н	2366	0	2305	79	0
3	Ι	2366	0	2305	81	0
3	Ν	2366	0	2305	78	0
3	0	1911	0	1890	50	0
4	Е	300	0	172	44	0
5	F	925	0	469	45	0
6	G	850	0	459	25	0
7	Р	210	0	111	7	0
8	Κ	918	0	920	37	0
8	Ĺ	802	0	798	45	0
8	М	918	0	920	36	0
All	All	26526	0	25040	943	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 18.

All (943) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:J:153:LYS:CG	1:J:158:THR:HG21	1.14	1.58
3:D:44:ILE:CG1	3:D:125:ALA:HB3	1.29	1.56
1:J:149:TRP:HZ3	1:J:162:PHE:CD2	1.22	1.55
1:J:153:LYS:CB	1:J:158:THR:HG21	1.43	1.49
3:D:44:ILE:HG13	3:D:125:ALA:CB	1.43	1.46
1:J:149:TRP:CZ3	1:J:162:PHE:CD2	2.01	1.44
1:J:153:LYS:HD2	1:J:158:THR:CG2	1.52	1.39
1:J:153:LYS:CG	1:J:158:THR:CG2	1.98	1.37
1:J:153:LYS:CD	1:J:158:THR:CG2	2.05	1.33
1:J:157:ALA:O	1:J:161:PRO:CD	1.80	1.28
1:J:157:ALA:O	1:J:161:PRO:HD2	1.10	1.28
3:N:120:PHE:O	3:N:121:ARG:HD3	1.09	1.25
3:H:120:PHE:O	3:H:121:ARG:HD3	1.40	1.22
1:J:161:PRO:O	1:J:165:ARG:HG2	1.36	1.22
1:J:202:LEU:HD13	6:G:57:DT:OP1	1.37	1.21
1:J:153:LYS:HG3	1:J:158:THR:HG21	1.24	1.17
1:J:153:LYS:CD	1:J:158:THR:HG21	1.73	1.15
1:J:149:TRP:CZ3	1:J:162:PHE:HD2	1.49	1.15

		Interatomic	Clash	
Atom-1	Atom-2	distance $(Å)$	overlap (Å)	
1:J:119:TYR:CD2	4:E:4:DT:C4	2.34	1.14	
1:J:210:GLU:C	2:A:98:TYR:HE2	1.50	1.14	
1:J:153:LYS:HG3	1:J:158:THR:CG2	1.76	1.12	
3:D:44:ILE:CG2	3:D:125:ALA:H	1.62	1.12	
1:J:206:ALA:O	1:J:207:VAL:HG22	1.49	1.10	
3:I:120:PHE:O	3:I:121:ARG:HD3	1.51	1.09	
8:L:66:ARG:HB3	8:L:73:ILE:HG13	1.24	1.09	
1:J:119:TYR:CG	4:E:4:DT:C4	2.40	1.09	
2:A:95:LEU:HD12	2:A:121:VAL:HG12	1.33	1.08	
1:J:206:ALA:HB2	2:A:100:VAL:CG2	1.84	1.07	
4:E:-1:DC:O2	6:G:58:DG:N2	1.87	1.06	
1:J:153:LYS:HD2	1:J:158:THR:HG23	1.37	1.06	
3:N:120:PHE:O	3:N:121:ARG:CD	2.03	1.06	
8:M:11:TYR:OH	8:M:103:ILE:CG2	2.03	1.05	
8:M:11:TYR:OH	8:M:103:ILE:HG23	1.55	1.05	
1:J:202:LEU:CD1	6:G:57:DT:OP1	2.07	1.03	
1:J:153:LYS:CB	1:J:158:THR:CG2	2.31	1.02	
8:L:66:ARG:HB3	8:L:73:ILE:CG1	1.89	1.00	
1:J:206:ALA:HB2	2:A:100:VAL:HG22	1.00	0.99	
1:J:208:ASN:CG	2:A:33:ARG:HH22	1.64	0.99	
1:J:210:GLU:C	2:A:98:TYR:CE2	2.35	0.98	
1:J:206:ALA:CB	2:A:100:VAL:HG22	1.93	0.98	
1:J:161:PRO:O	1:J:165:ARG:CG	2.12	0.97	
1:J:119:TYR:CE2	4:E:4:DT:C2	2.53	0.97	
1:J:153:LYS:HB3	1:J:158:THR:HG21	1.41	0.97	
1:J:149:TRP:HH2	1:J:162:PHE:CB	1.78	0.96	
2:A:107:PHE:CE1	2:A:114:SER:OG	2.17	0.96	
8:L:66:ARG:HG3	8:L:73:ILE:HG21	1.46	0.96	
1:J:122:ILE:CD1	1:J:163:ASN:HD22	1.78	0.96	
1:J:205:MET:HG2	6:G:57:DT:OP2	1.65	0.95	
1:J:119:TYR:CZ	4:E:4:DT:C6	2.55	0.95	
1:J:119:TYR:CD2	4:E:4:DT:N3	2.35	0.94	
8:M:96:LEU:HA	8:M:101:ASP:H	1.34	0.93	
3:D:43:ILE:O	3:D:43:ILE:HG22	1.66	0.93	
1:J:153:LYS:CD	1:J:158:THR:HG22	1.95	0.93	
3:I:119:ILE:HG22	3:I:119:ILE:O	1.67	0.92	
1:J:160:ASN:HB3	1:J:161:PRO:HD3	1.52	0.92	
1:J:153:LYS:HB3	1:J:158:THR:CG2	1.98	0.92	
8:L:66:ARG:CG	8:L:73:ILE:HG21	1.99	0.92	
3:D:44:ILE:CB	3:D:125:ALA:HB3	1.99	0.91	
4:E:0:DA:N1	6:G:57:DT:O4	2.04	0.90	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
6:G:56:DA:H2"	6:G:57:DT:H5"	1.54	0.90	
2:A:95:LEU:CD1	2:A:121:VAL:HG12	2.00	0.90	
1:J:119:TYR:CD1	4:E:4:DT:C5	2.61	0.88	
1:J:197:SER:OG	6:G:58:DG:OP1	1.92	0.88	
1:J:149:TRP:NE1	1:J:159:ARG:CZ	2.36	0.88	
1:J:159:ARG:NH1	4:E:3:DT:OP1	2.06	0.87	
1:J:122:ILE:HD11	1:J:163:ASN:HD22	1.40	0.86	
1:J:119:TYR:CD1	4:E:4:DT:C7	2.58	0.86	
1:J:122:ILE:HD11	1:J:163:ASN:ND2	1.91	0.85	
3:D:31:ILE:HG22	3:D:43:ILE:HD13	1.59	0.85	
3:D:44:ILE:HG21	3:D:125:ALA:H	1.38	0.84	
1:J:149:TRP:CH2	1:J:162:PHE:CB	2.60	0.84	
2:A:93:GLN:HG2	2:A:94:GLN:H	1.43	0.84	
8:L:66:ARG:CB	8:L:73:ILE:HG21	2.07	0.84	
1:J:153:LYS:HD2	1:J:158:THR:HG22	1.50	0.84	
4:E:-2:DC:H4'	4:E:-1:DC:OP1	1.77	0.83	
1:J:149:TRP:HH2	1:J:162:PHE:HB2	1.40	0.83	
8:M:96:LEU:HA	8:M:101:ASP:N	1.94	0.83	
2:A:114:SER:O	5:F:7:C:N4	2.12	0.82	
8:K:30:LYS:HD2	8:K:51:LYS:HB3	1.62	0.81	
8:M:96:LEU:CB	8:M:101:ASP:HA	2.10	0.81	
1:J:208:ASN:ND2	2:A:33:ARG:HH22	1.79	0.81	
8:M:11:TYR:OH	8:M:103:ILE:HG21	1.80	0.80	
8:L:66:ARG:CB	8:L:73:ILE:HG13	2.10	0.80	
8:L:66:ARG:HE	8:L:73:ILE:HG23	1.46	0.80	
1:J:208:ASN:O	1:J:209:ALA:HB2	1.83	0.79	
3:D:44:ILE:CB	3:D:125:ALA:H	1.95	0.79	
8:K:69:LYS:HG2	8:K:74:ASP:HB3	1.64	0.79	
3:B:8:ALA:HA	3:B:216:ALA:HB3	1.63	0.79	
2:A:98:TYR:OH	3:B:98:VAL:HB	1.83	0.78	
1:J:208:ASN:CB	2:A:33:ARG:NH2	2.45	0.78	
1:J:122:ILE:CD1	1:J:163:ASN:ND2	2.44	0.78	
3:B:231:PHE:HB3	3:B:237:TRP:HB2	1.65	0.78	
1:J:119:TYR:CE1	4:E:4:DT:C5	2.72	0.78	
1:J:332:ASN:CG	4:E:2:DG:N2	2.37	0.78	
3:B:89:ALA:O	3:B:90:ASP:OD1	2.01	0.77	
7:P:36:DA:H62	8:K:87:ASP:CB	1.97	0.77	
3:B:135:THR:HA	3:B:160:ARG:O	1.84	0.76	
1:J:149:TRP:CH2	1:J:162:PHE:CD2	2.72	0.76	
3:D:242:ARG:NH1	3:D:246:THR:O	2.19	0.76	
3:D:31:ILE:HG22	3:D:43:ILE:HG21	1.69	0.75	

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	α overlap (\AA)
3·H·217·ABC·NH1	3·H·226·TVB·O	2 16	$\frac{0.75}{0.75}$
1:J:119:TYB:CB	4·E·4·DT·O4	2.10	0.74
3·D·21·ABG·HH22	3·D·45·SEB·HB3	1.52	0.74
1.J.149.TRP.HZ3	1.1.162.PHE.CE2	2.01	0.74
3·B·46·PRO·HD3	3:B:124:MET:HB2	1 69	0.74
8:K:60:PHE:HB3	8·K·64·ABG·HH21	1.53	0.74
1:J:122:ILE:HD13	1:J:163:ASN·HA	1.68	0.74
8:M·103·ILE·HG22	8:M:103:ILE:O	1.86	0.74
3:D:44:ILE:HB	3:D:125:ALA:N	2.01	0.74
3:H:242:ABG:NH2	3:H:279:MET:SD	2.61	0.74
3·C·79·PHE·O	3·C·84·ASN·ND2	2.21	0.73
8:L:65:SEB:O	8:L:66:ARG:HD3	1.87	0.73
8:L:66:ARG:HG3	8:L:73:ILE:CG2	2.17	0.73
3:D:44:ILE:CG1	3:D:125:ALA:CB	2.25	0.73
3:D:44:ILE:O	3:D:124:MET:HB2	1.87	0.73
1:J:254:ILE:HB	1:J:323:GLU:HB2	1.70	0.73
3:B:138:TYR:OH	5:F:13:U:N3	2.22	0.73
3:0:242:ARG:HG2	3:O:254:PRO:HG3	1.71	0.73
3:D:44:ILE:CG2	3:D:125:ALA:N	2.46	0.73
8:M:96:LEU:CG	8:M:101:ASP:HA	2.19	0.73
3:I:130:PRO:O	3:I:132:LYS:NZ	2.21	0.72
3:C:103:ASP:HB3	3:C:109:LYS:HD2	1.70	0.72
1:J:119:TYR:CG	4:E:4:DT:C5	2.75	0.72
3:O:212:ARG:HH22	3:O:259:TRP:HD1	1.37	0.72
1:J:119:TYR:CE1	4:E:4:DT:C6	2.77	0.72
1:J:197:SER:OG	6:G:58:DG:P	2.48	0.72
3:B:10:ILE:HG12	3:B:169:TYR:HB3	1.72	0.71
1:J:149:TRP:CZ3	1:J:162:PHE:CG	2.78	0.71
1:J:157:ALA:O	1:J:161:PRO:CG	2.38	0.71
1:J:119:TYR:CG	4:E:4:DT:O4	2.44	0.71
8:L:70:GLN:HE21	8:L:101:ASP:HA	1.55	0.71
1:J:153:LYS:HB3	1:J:158:THR:CB	2.21	0.71
3:O:121:ARG:HB2	3:O:172:ALA:HB3	1.73	0.71
8:L:86:GLN:H	8:L:89:PHE:HE1	1.39	0.71
1:J:119:TYR:CD1	4:E:4:DT:H73	2.26	0.71
3:H:81:GLU:HG2	3:H:82:TYR:H	1.56	0.71
3:D:204:ARG:HH12	5:F:24:C:H5"	1.56	0.71
1:J:153:LYS:HB3	1:J:158:THR:OG1	1.90	0.70
1:J:149:TRP:HZ2	1:J:159:ARG:HG3	1.56	0.70
3:D:32:GLN:HB2	3:D:132:LYS:HE3	1.73	0.70
1:J:165:ARG:HH12	1:J:176:PHE:HB2	1.57	0.70

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
8:K:108:LEU:HD11	8:L:75:TYR:HB3	1.73	0.70
1:J:208:ASN:HB3	2:A:33:ARG:NH2	2.07	0.70
3:D:43:ILE:O	3:D:43:ILE:CG2	2.39	0.70
1:J:206:ALA:O	1:J:207:VAL:CG2	2.35	0.69
3:C:268:MET:SD	3:C:273:LYS:NZ	2.65	0.69
3:D:212:ARG:HD2	3:D:263:GLU:HG3	1.74	0.69
3:C:4:LEU:HD23	3:C:220:PRO:HB3	1.74	0.69
3:D:44:ILE:HG21	3:D:125:ALA:N	2.05	0.69
3:H:217:ARG:HG2	3:H:218:LEU:HG	1.74	0.69
3:O:189:LEU:HD12	3:O:190:GLN:HG3	1.73	0.69
1:J:122:ILE:HD13	1:J:163:ASN:HD22	1.57	0.68
3:D:32:GLN:HA	3:D:43:ILE:HD11	1.76	0.68
3:O:232:ASP:OD2	3:O:238:LEU:N	2.27	0.68
1:J:119:TYR:CE2	4:E:4:DT:N3	2.61	0.68
1:J:149:TRP:HH2	1:J:162:PHE:HB3	1.57	0.68
1:J:418:GLN:HG3	1:J:536:LEU:HD21	1.74	0.68
1:J:210:GLU:O	2:A:98:TYR:CE2	2.46	0.68
1:J:202:LEU:HD11	6:G:57:DT:P	2.33	0.68
1:J:208:ASN:CG	2:A:33:ARG:NH2	2.44	0.68
2:A:203:LEU:H	2:A:213:THR:HG21	1.59	0.67
1:J:158:THR:O	1:J:162:PHE:HB2	1.93	0.67
1:J:149:TRP:CH2	1:J:162:PHE:HB2	2.26	0.67
1:J:210:GLU:O	2:A:98:TYR:HE2	1.77	0.67
3:I:135:THR:HB	3:I:159:HIS:HB2	1.76	0.67
8:L:66:ARG:CG	8:L:73:ILE:CG2	2.72	0.67
3:B:194:GLU:HG3	3:C:222:LEU:HB2	1.77	0.67
7:P:36:DA:H62	8:K:87:ASP:HB3	1.58	0.67
1:J:524:PHE:HZ	8:L:106:LEU:HD22	1.59	0.67
3:I:119:ILE:O	3:I:119:ILE:CG2	2.40	0.67
8:L:66:ARG:HB3	8:L:73:ILE:HG21	1.77	0.67
1:J:206:ALA:CB	2:A:100:VAL:CG2	2.65	0.66
8:M:96:LEU:HG	8:M:101:ASP:CB	2.25	0.66
1:J:332:ASN:HB3	6:G:55:DC:O2	1.96	0.66
3:D:204:ARG:NH1	5:F:25:C:OP2	2.29	0.66
3:D:21:ARG:NH2	3:D:45:SER:HB3	2.09	0.66
2:A:97:ASN:ND2	2:A:119:ALA:HB3	2.10	0.66
3:C:196:ASN:OD1	3:C:197:GLY:N	2.29	0.66
3:D:21:ARG:HD2	5:F:21:U:H3'	1.78	0.66
3:N:217:ARG:HG2	3:N:218:LEU:HG	1.77	0.66
2:A:98:TYR:HE1	3:B:98:VAL:HG21	1.60	0.66
1:J:160:ASN:CB	1:J:161:PRO:HD3	2.26	0.65

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
4:E:-1:DC:H2'	4:E:0:DA:C8	2.31	0.65
3:I:242:ARG:NH1	3:I:246:THR:O	2.29	0.65
3:B:8:ALA:H	3:B:171:PHE:HB3	1.61	0.65
3:N:179:ALA:O	3:N:181:LYS:NZ	2.25	0.65
2:A:206:ASP:OD1	2:A:210:ASN:ND2	2.30	0.65
3:D:259:TRP:HB3	3:D:290:LEU:HD11	1.79	0.65
8:K:105:SER:HB3	8:L:75:TYR:HD2	1.60	0.65
8:L:66:ARG:HD2	8:L:73:ILE:HD12	1.78	0.65
1:J:208:ASN:O	1:J:209:ALA:CB	2.45	0.65
2:A:222:ASP:OD1	2:A:224:ARG:NH2	2.28	0.65
3:C:50:ARG:NH1	5:F:13:U:OP1	2.29	0.65
3:C:67:THR:HG22	3:C:79:PHE:HB2	1.79	0.65
1:J:208:ASN:CB	2:A:33:ARG:HH22	2.06	0.65
3:D:44:ILE:HG21	3:D:125:ALA:CB	2.27	0.64
3:H:268:MET:O	3:H:273:LYS:NZ	2.29	0.64
2:A:107:PHE:HA	2:A:116:TYR:HD2	1.60	0.64
3:0:40:LYS:NZ	3:O:128:VAL:O	2.27	0.64
3:I:231:PHE:HB3	3:I:238:LEU:HD23	1.79	0.64
1:J:149:TRP:CH2	1:J:162:PHE:HB3	2.31	0.64
8:M:11:TYR:HH	8:M:103:ILE:HG23	1.62	0.64
1:J:149:TRP:CD1	1:J:159:ARG:NH2	2.66	0.63
8:L:66:ARG:NE	8:L:73:ILE:HG23	2.11	0.63
1:J:119:TYR:CE2	4:E:4:DT:N1	2.66	0.63
3:B:137:PHE:HD2	3:C:32:GLN:HE21	1.44	0.63
8:L:104:ARG:HD2	8:L:107:THR:HG21	1.81	0.63
3:B:102:ASN:ND2	3:B:106:GLU:OE2	2.30	0.63
8:L:23:VAL:HG11	8:L:111:LEU:HA	1.81	0.63
1:J:149:TRP:CD1	1:J:159:ARG:CZ	2.82	0.63
3:O:262:GLY:HA2	3:O:266:ARG:HH21	1.63	0.63
3:D:179:ALA:O	3:D:181:LYS:NZ	2.26	0.63
3:C:10:ILE:HG22	3:C:214:VAL:HG12	1.81	0.62
8:L:66:ARG:HB3	8:L:73:ILE:CG2	2.29	0.62
3:D:272:GLN:NE2	3:D:275:GLN:OE1	2.33	0.62
3:H:196:ASN:HD22	3:I:223:VAL:HG11	1.65	0.62
3:I:179:ALA:O	3:I:181:LYS:NZ	2.30	0.62
3:D:93:LEU:HB3	3:D:117:ASP:HB2	1.80	0.62
1:J:202:LEU:CD1	6:G:57:DT:P	2.87	0.62
8:M:96:LEU:HA	8:M:101:ASP:CA	2.29	0.62
8:K:73:ILE:HA	8:K:76:PHE:HD2	1.63	0.62
8:K:117:ILE:HG12	8:K:118:LYS:H	1.63	0.62
1:J:332:ASN:ND2	6:G:55:DC:N3	2.44	0.62

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:D:93:LEU:HD11	3:D:181:LYS:HD2	1.81	0.62
3:D:10:ILE:HG22	3:D:214:VAL:HG23	1.82	0.61
3:D:44:ILE:HB	3:D:125:ALA:H	1.61	0.61
1:J:210:GLU:CA	2:A:98:TYR:CE2	2.84	0.61
3:B:213:SER:HB2	3:B:262:GLY:HA2	1.82	0.61
3:H:179:ALA:O	3:H:181:LYS:NZ	2.28	0.61
3:I:236:ASN:HB3	3:I:264:LEU:HD22	1.82	0.61
3:D:217:ARG:HG2	3:D:218:LEU:HG	1.82	0.61
1:J:122:ILE:HD12	1:J:163:ASN:HB2	1.82	0.61
3:N:93:LEU:HB3	3:N:117:ASP:HB2	1.82	0.61
1:J:206:ALA:HB1	2:A:98:TYR:HB3	1.81	0.61
3:C:139:GLN:NE2	5:F:21:U:OP2	2.34	0.61
3:N:263:GLU:OE2	3:N:267:LYS:NZ	2.29	0.61
1:J:211:ASN:N	2:A:98:TYR:HE2	1.99	0.61
3:B:113:PRO:HB2	3:B:115:LYS:HG3	1.80	0.61
3:B:272:GLN:O	3:B:276:LEU:HG	2.01	0.61
3:O:244:THR:HB	3:O:254:PRO:HD2	1.81	0.61
3:C:20:TYR:HA	3:C:31:ILE:HG22	1.83	0.61
3:I:213:SER:HB3	3:I:263:GLU:HB3	1.82	0.61
3:O:261:GLY:O	3:O:266:ARG:NH2	2.34	0.60
1:J:421:THR:HA	1:J:531:ARG:HE	1.66	0.60
3:B:239:GLU:HG3	3:B:243:LEU:HD13	1.82	0.60
3:N:212:ARG:HD2	3:N:263:GLU:HG3	1.82	0.60
3:N:217:ARG:NH1	3:N:226:TYR:O	2.34	0.60
3:H:10:ILE:HG22	3:H:214:VAL:HG23	1.84	0.60
2:A:205:ILE:HD12	2:A:210:ASN:HD21	1.66	0.60
3:N:106:GLU:O	3:N:110:LEU:N	2.34	0.60
3:D:44:ILE:CB	3:D:125:ALA:N	2.59	0.60
4:E:4:DT:H2'	4:E:4:DT:O2	2.01	0.60
3:H:231:PHE:HA	3:H:237:TRP:HB3	1.83	0.60
8:K:66:ARG:NH2	8:K:104:ARG:O	2.34	0.60
3:N:94:PHE:HE1	3:N:118:SER:HA	1.67	0.60
1:J:332:ASN:CG	4:E:2:DG:H22	2.03	0.60
2:A:93:GLN:HG2	2:A:94:GLN:N	2.15	0.60
2:A:200:ARG:HE	2:A:216:LYS:HB3	1.65	0.60
3:N:32:GLN:HG2	3:N:40:LYS:HB3	1.83	0.60
3:H:119:ILE:O	3:H:119:ILE:HG22	2.02	0.59
3:I:217:ARG:HG2	3:I:218:LEU:HG	1.84	0.59
1:J:149:TRP:CH2	1:J:162:PHE:HD2	2.10	0.59
3:B:56:MET:HE3	3:B:195:LEU:HD12	1.83	0.59
1:J:153:LYS:HG3	1:J:158:THR:HG22	1.77	0.59

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
2·A·107·PHE·HE1	2·A·114·SEB·HG	1.34	0.59
1:J:232:GLN:OE1	1:J:274:ARG:NH2	2.35	0.59
3:0:232:ASP:OD2	3:0:237:TRP:N	2.35	0.59
1:J:202:LEU:HD11	6:G:57:DT:OP2	2.02	0.59
3:B:5:ASN:HB3	3:B:174:ALA:HA	1.85	0.59
3:I:65:ASN:HD22	3:I:80:LYS:HB2	1.67	0.59
3:O:51:ASN:ND2	5:F:44:G:OP2	2.36	0.59
8:L:63:ILE:O	8:L:66:ARG:HG2	2.03	0.59
1:J:119:TYR:CE2	4:E:4:DT:C6	2.90	0.59
3:N:119:ILE:HG22	3:N:119:ILE:O	2.02	0.59
8:L:18:ILE:HG12	8:L:22:PHE:CZ	2.36	0.59
1:J:476:ASN:HA	1:J:479:LYS:HE2	1.85	0.58
1:J:20:SER:OG	1:J:23:HIS:ND1	2.28	0.58
1:J:385:LEU:O	1:J:388:HIS:ND1	2.29	0.58
3:N:88:PHE:HD1	3:N:90:ASP:H	1.50	0.58
3:H:218:LEU:HB3	3:H:221:LYS:HG2	1.84	0.58
3:C:248:SER:OG	3:C:250:ASN:OD1	2.20	0.58
1:J:119:TYR:CE2	4:E:4:DT:C4	2.91	0.58
8:M:74:ASP:HA	8:M:77:VAL:HG22	1.85	0.58
1:J:208:ASN:ND2	2:A:33:ARG:NH2	2.51	0.58
1:J:210:GLU:N	2:A:98:TYR:CE2	2.71	0.58
3:O:263:GLU:HA	3:O:266:ARG:HB2	1.85	0.58
3:B:205:ALA:HA	3:C:123:ASN:HA	1.86	0.58
3:D:44:ILE:CB	3:D:125:ALA:CB	2.75	0.58
1:J:258:ALA:HB2	1:J:320:VAL:HG23	1.86	0.58
2:A:94:GLN:HA	2:A:120:PRO:HB3	1.84	0.58
2:A:150:LYS:HD3	3:B:221:LYS:HE2	1.84	0.58
3:D:31:ILE:C	3:D:43:ILE:HD13	2.24	0.58
3:N:65:ASN:HA	3:N:80:LYS:HG2	1.86	0.58
3:H:106:GLU:O	3:H:110:LEU:N	2.36	0.58
1:J:119:TYR:CZ	4:E:4:DT:N1	2.72	0.58
2:A:176:ILE:HG22	2:A:179:PRO:HG2	1.85	0.58
5:F:23:C:O2'	3:H:116:ARG:NH1	2.33	0.58
3:I:131:TYR:CZ	3:I:133:TYR:HB2	2.39	0.58
1:J:149:TRP:HE1	1:J:159:ARG:CZ	2.16	0.57
3:N:213:SER:HB3	3:N:263:GLU:HB3	1.85	0.57
8:M:103:ILE:CG2	8:M:103:ILE:O	2.52	0.57
3:B:138:TYR:HH	5:F:13:U:H3	1.42	0.57
3:B:143:ASN:HB2	3:C:81:GLU:HG3	1.85	0.57
3:H:272:GLN:NE2	3:H:275:GLN:OE1	2.37	0.57
8:K:51:LYS:O	8:K:54:LYS:HG3	2.04	0.57

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
8:M:96·LEU·HB2	8:M:101:ASP:HA	1.86	0.57
3:B:115:LYS:HD3	5:F:4:G:H1	1.69	0.57
3:H:217:ARG:HH21	3:H:238:LEU:HD11	1.70	0.57
1:J:119:TYR:CZ	4:E:4:DT:C5	2.93	0.57
3:B:193:ALA:HB2	3:B:291:PHE:HD2	1.67	0.57
2:A:96:HIS:HB2	2:A:115:LYS:HD3	1.85	0.57
6:G:56:DA:C2'	6:G:57:DT:H5"	2.31	0.57
3:H:236:ASN:HB3	3:H:264:LEU:HD22	1.87	0.57
3:D:269:ASP:HB2	3:D:272:GLN:HB2	1.86	0.57
3:0:99:ALA:0	3:O:105:LYS:NZ	2.37	0.57
3:D:135:THR:HB	3:D:159:HIS:HB2	1.85	0.57
3:N:32:GLN:OE1	3:N:33:LYS:N	2.38	0.57
1:J:18:LEU:O	1:J:24:ARG:NH2	2.37	0.56
8:L:84:VAL:HG12	8:L:85:ARG:HG2	1.87	0.56
1:J:332:ASN:CB	6:G:55:DC:O2	2.53	0.56
3:C:31:ILE:O	3:C:33:LYS:NZ	2.30	0.56
3:D:31:ILE:CG2	3:D:43:ILE:HD13	2.32	0.56
3:D:131:TYR:CZ	3:D:133:TYR:HB2	2.41	0.56
3:N:120:PHE:CG	3:N:121:ARG:N	2.74	0.56
1:J:128:PHE:HE1	1:J:229:PHE:HB3	1.71	0.56
3:B:109:LYS:HZ3	3:B:111:ASN:HB2	1.69	0.56
8:L:81:TYR:HD1	8:L:82:PRO:HD2	1.69	0.56
2:A:205:ILE:HG12	5:F:3:A:C6	2.41	0.56
3:B:206:TYR:O	3:C:123:ASN:ND2	2.38	0.56
8:L:69:LYS:O	8:L:70:GLN:HG3	2.06	0.56
1:J:303:LYS:HB3	1:J:315:LEU:HD21	1.86	0.56
3:B:88:PHE:H	3:B:184:TRP:HH2	1.54	0.56
3:D:20:TYR:OH	5:F:23:C:OP2	2.22	0.56
3:D:106:GLU:O	3:D:110:LEU:N	2.38	0.56
3:C:5:ASN:O	3:C:217:ARG:NH2	2.38	0.56
3:N:242:ARG:NH1	3:N:246:THR:O	2.38	0.56
3:C:188:LEU:O	3:C:192:ILE:HG12	2.06	0.56
3:C:245:ALA:H	3:C:253:LEU:HD21	1.70	0.56
3:O:80:LYS:HG3	3:O:81:GLU:H	1.71	0.56
2:A:95:LEU:CD1	2:A:121:VAL:CG1	2.78	0.56
3:H:135:THR:HB	3:H:159:HIS:HB2	1.87	0.56
2:A:16:ARG:HG3	2:A:132:ILE:HG13	1.88	0.56
3:B:127:ALA:HB1	3:B:165:THR:HG21	1.87	0.56
7:P:36:DA:H2'	7:P:37:DA:C8	2.41	0.55
3:B:217:ARG:HD2	3:B:259:TRP:H	1.71	0.55
3:B:249:ASP:HB3	3:B:253:LEU:H	1.72	0.55

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:N:10:ILE:HG22	3:N:214:VAL:HG23	1.87	0.55
3:I:173:LEU:HD23	3:I:175:GLY:H	1.71	0.55
3:H:267:LYS:HD2	3:H:267:LYS:O	2.06	0.55
1:J:149:TRP:CZ2	1:J:159:ARG:HG3	2.40	0.55
2:A:94:GLN:HG3	5:F:8:U:OP2	2.06	0.55
3:B:143:ASN:OD1	3:B:144:ALA:N	2.39	0.55
3:N:120:PHE:CD2	3:N:121:ARG:N	2.75	0.55
3:I:32:GLN:OE1	3:I:33:LYS:N	2.38	0.55
3:I:10:ILE:HG22	3:I:214:VAL:HG23	1.89	0.55
3:D:46:PRO:HD3	3:D:124:MET:HB3	1.87	0.55
3:I:54:ARG:HH22	3:I:96:TYR:HE2	1.55	0.55
3:C:21:ARG:O	5:F:15:A:O2'	2.24	0.55
3:I:3:ASN:HD21	3:I:176:LYS:HB3	1.72	0.55
3:N:21:ARG:NH2	5:F:39:U:OP1	2.39	0.55
3:H:131:TYR:CZ	3:H:133:TYR:HB2	2.42	0.55
2:A:30:GLY:O	2:A:33:ARG:NH1	2.40	0.54
2:A:107:PHE:HE1	2:A:114:SER:OG	1.82	0.54
3:H:120:PHE:C	3:H:121:ARG:HD3	2.24	0.54
1:J:411:TYR:N	1:J:479:LYS:HE3	2.22	0.54
3:C:21:ARG:NH1	5:F:15:A:OP1	2.40	0.54
3:D:38:GLY:O	3:D:39:GLN:NE2	2.40	0.54
8:K:87:ASP:OD1	8:K:88:GLU:N	2.40	0.54
8:L:65:SER:O	8:L:66:ARG:CD	2.54	0.54
8:M:11:TYR:HH	8:M:103:ILE:CG2	2.14	0.54
1:J:119:TYR:CD2	4:E:4:DT:C5	2.95	0.54
3:C:142:LEU:HD23	3:C:143:ASN:HB2	1.88	0.54
3:I:217:ARG:NH1	3:I:226:TYR:O	2.39	0.54
3:O:209:PHE:CD2	3:O:211:PRO:HD2	2.43	0.54
8:M:103:ILE:O	8:M:107:THR:HG23	2.07	0.54
3:C:127:ALA:HB1	3:C:165:THR:HG21	1.90	0.54
3:D:182:PRO:HB3	3:D:299:LEU:HD21	1.89	0.54
3:I:93:LEU:HB3	3:I:117:ASP:HB2	1.90	0.54
3:C:62:GLN:OE1	3:C:63:PRO:HD2	2.08	0.54
3:I:237:TRP:NE1	3:I:240:LEU:HD11	2.23	0.54
8:L:15:VAL:HA	8:L:18:ILE:HG22	1.89	0.54
3:B:56:MET:HE1	3:B:196:ASN:H	1.73	0.54
8:M:101:ASP:O	8:M:103:ILE:HG13	2.08	0.54
1:J:149:TRP:NE1	1:J:159:ARG:NH1	2.56	0.54
3:D:31:ILE:O	3:D:43:ILE:HD13	2.08	0.54
8:M:50:ASP:HB3	8:M:54:LYS:NZ	2.23	0.54
2:A:82:GLN:HE22	2:A:85:PRO:HA	1.72	0.53

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:A:205:ILE:HD13	2:A:212:GLN:HG3	1.90	0.53
3:C:87:LYS:HD2	3:C:88:PHE:HB2	1.90	0.53
3:H:81:GLU:HG2	3:H:82:TYR:N	2.20	0.53
3:I:106:GLU:O	3:I:110:LEU:N	2.41	0.53
3:N:246:THR:HB	3:N:255:ALA:HA	1.89	0.53
3:O:256:ASN:ND2	3:0:278:ALA:O	2.39	0.53
3:O:68:ARG:HA	3:O:78:GLU:HG3	1.90	0.53
3:0:113:PRO:HD2	3:O:115:LYS:HG3	1.91	0.53
2:A:100:VAL:HG12	2:A:100:VAL:O	2.08	0.53
3:B:101:THR:HG22	3:B:105:LYS:HZ1	1.71	0.53
3:B:116:ARG:NH2	5:F:5:C:OP1	2.29	0.53
3:C:143:ASN:HD21	3:C:151:ASN:HA	1.73	0.53
3:H:173:LEU:HD23	3:H:175:GLY:H	1.73	0.53
8:K:66:ARG:HA	8:K:69:LYS:HB2	1.90	0.53
3:B:138:TYR:HD2	3:B:158:LEU:HB2	1.73	0.53
3:H:106:GLU:O	3:H:111:ASN:N	2.41	0.53
3:N:11:LEU:HD23	3:N:231:PHE:CE2	2.44	0.53
1:J:206:ALA:C	1:J:207:VAL:HG13	2.28	0.53
5:F:37:U:OP2	3:I:204:ARG:NH1	2.41	0.53
8:K:101:ASP:OD1	8:K:102:GLU:N	2.42	0.53
4:E:-1:DC:H5"	4:E:-1:DC:H6	1.74	0.53
3:H:106:GLU:HB3	3:H:110:LEU:HB2	1.91	0.53
3:B:68:ARG:HB3	3:B:77:VAL:HG22	1.91	0.52
1:J:85:THR:OG1	1:J:166:CYS:SG	2.67	0.52
3:B:215:VAL:HG11	3:B:261:GLY:HA2	1.92	0.52
3:C:66:ARG:NH2	5:F:14:C:OP2	2.39	0.52
3:H:32:GLN:OE1	3:H:33:LYS:N	2.42	0.52
1:J:165:ARG:HH12	1:J:176:PHE:CB	2.21	0.52
2:A:84:LYS:NZ	2:A:85:PRO:O	2.39	0.52
3:D:195:LEU:O	3:D:209:PHE:HB2	2.09	0.52
3:N:34:ILE:HG22	3:N:42:ALA:HB3	1.90	0.52
3:N:116:ARG:NH1	5:F:35:A:O3'	2.43	0.52
3:O:103:ASP:O	3:O:108:LYS:NZ	2.41	0.52
3:O:260:LEU:HB3	3:O:287:PRO:HB3	1.90	0.52
1:J:364:PHE:O	1:J:367:GLN:NE2	2.42	0.52
3:I:242:ARG:HH22	3:I:248:SER:HA	1.75	0.52
3:C:246:THR:OG1	3:C:279:MET:SD	2.65	0.52
3:D:127:ALA:HA	3:D:167:PHE:HB3	1.91	0.52
8:K:86:GLN:OE1	8:K:86:GLN:N	2.40	0.52
2:A:66:LEU:HB3	2:A:207:ARG:HG2	1.90	0.52
3:D:11:LEU:HD23	3:D:231:PHE:CE2	2.45	0.52

	lo uo puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:H:3:ASN:HD21	3:H:176:LYS:HB3	1.75	0.52
3:B:3:ASN:N	3:B:301:VAL:OXT	2.42	0.52
3:O:54:ARG:HH12	3:O:68:ARG:HH22	1.57	0.52
3:H:260:LEU:HD12	3:H:264:LEU:HD12	1.91	0.52
3:I:4:LEU:HD22	3:I:220:PRO:HA	1.92	0.52
2:A:57:ARG:HH22	2:A:73:LEU:HB2	1.74	0.51
3:B:17:ALA:N	3:B:163:THR:O	2.41	0.51
3:C:267:LYS:O	3:C:272:GLN:NE2	2.43	0.51
3:D:44:ILE:HB	3:D:125:ALA:O	2.10	0.51
3:N:50:ARG:NH1	3:I:203:ALA:O	2.43	0.51
1:J:149:TRP:HE1	1:J:159:ARG:NH1	2.09	0.51
2:A:151:GLY:H	3:B:221:LYS:NZ	2.08	0.51
3:B:278:ALA:HB3	3:B:282:HIS:HE2	1.75	0.51
3:H:34:ILE:HG22	3:H:42:ALA:HB3	1.91	0.51
8:L:86:GLN:HG2	8:L:89:PHE:CE1	2.46	0.51
8:L:107:THR:HG23	8:L:108:LEU:HG	1.92	0.51
1:J:119:TYR:HB2	4:E:4:DT:O4	2.10	0.51
3:C:54:ARG:O	3:C:58:ILE:HG12	2.10	0.51
3:C:82:TYR:HB3	3:C:83:PRO:HD3	1.92	0.51
3:D:106:GLU:O	3:D:111:ASN:N	2.43	0.51
2:A:66:LEU:HD22	2:A:207:ARG:HE	1.74	0.51
3:B:283:LEU:HD13	3:B:289:LYS:NZ	2.25	0.51
3:N:231:PHE:HB3	3:N:238:LEU:HD23	1.93	0.51
8:L:19:ALA:HA	8:L:22:PHE:CD2	2.46	0.51
1:J:290:VAL:HG13	1:J:366:ARG:HD3	1.92	0.51
1:J:387:ARG:O	1:J:423:LYS:NZ	2.44	0.51
3:C:112:ARG:NH2	3:C:115:LYS:O	2.41	0.51
3:N:106:GLU:HB3	3:N:110:LEU:HB2	1.91	0.51
8:M:96:LEU:CA	8:M:101:ASP:HA	2.41	0.51
8:M:116:PRO:HA	8:M:118:LYS:HZ2	1.75	0.51
1:J:157:ALA:O	1:J:161:PRO:HG2	2.11	0.51
3:B:164:HIS:NE2	3:C:36:LYS:HA	2.25	0.51
3:C:223:VAL:HG12	3:C:225:GLY:H	1.76	0.51
8:L:66:ARG:HB3	8:L:73:ILE:CB	2.41	0.51
2:A:14:TYR:CB	2:A:134:GLY:HA2	2.41	0.51
7:P:36:DA:N6	8:K:87:ASP:OD2	2.44	0.51
3:B:117:ASP:OD1	3:B:117:ASP:N	2.44	0.51
3:C:95:GLY:HA2	3:C:116:ARG:CZ	2.41	0.51
3:I:212:ARG:HD2	3:I:263:GLU:HG3	1.92	0.51
3:D:162:VAL:HG23	3:H:34:ILE:HD12	1.93	0.51
3:N:242:ARG:HH22	3:N:248:SER:HA	1.75	0.51

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
7:P:36:DA:N6	8:K:87:ASP:CB	2.72	0.51
1:J:198:GLY:HA3	6:G:57:DT:OP1	2.11	0.50
2:A:130:ASP:OD1	2:A:130:ASP:N	2.43	0.50
8:M:96:LEU:HG	8:M:101:ASP:HB3	1.92	0.50
3:N:218:LEU:HD13	3:N:224:ALA:HB3	1.93	0.50
3:N:272:GLN:NE2	3:N:275:GLN:OE1	2.44	0.50
8:K:16:TYR:HD2	8:L:90:VAL:HG13	1.76	0.50
3:C:65:ASN:O	3:C:84:ASN:ND2	2.45	0.50
3:D:44:ILE:HB	3:D:125:ALA:CA	2.41	0.50
3:H:127:ALA:HB1	3:H:165:THR:HG21	1.93	0.50
3:D:44:ILE:HG13	3:D:125:ALA:HB3	0.56	0.50
4:E:0:DA:H5'	4:E:1:DT:OP2	2.12	0.50
1:J:149:TRP:CZ3	1:J:162:PHE:CE2	2.85	0.50
1:J:332:ASN:CB	4:E:2:DG:N2	2.75	0.50
3:D:178:CYS:H	3:D:181:LYS:HB2	1.76	0.50
3:N:54:ARG:HH22	3:N:96:TYR:HE2	1.58	0.50
3:N:223:VAL:HG21	3:I:196:ASN:HD22	1.77	0.50
3:I:58:ILE:HD12	3:I:64:ASN:HD22	1.75	0.50
8:K:30:LYS:HG2	8:K:31:HIS:HD2	1.77	0.50
2:A:121:VAL:HG13	2:A:122:ARG:N	2.27	0.50
3:B:260:LEU:O	3:B:284:TYR:OH	2.22	0.50
3:D:44:ILE:CG2	3:D:125:ALA:HB3	2.41	0.50
8:K:57:ASN:O	8:K:61:LEU:HG	2.12	0.50
3:C:19:ASN:HD21	3:C:21:ARG:NH2	2.09	0.50
3:C:122:CYS:SG	3:C:123:ASN:N	2.85	0.50
3:O:64:ASN:HD21	3:O:91:ASP:HA	1.77	0.50
3:D:26:GLU:HB2	6:G:38:DG:H8	1.77	0.49
3:D:44:ILE:CG2	3:D:125:ALA:CB	2.90	0.49
3:H:256:ASN:OD1	3:H:257:GLU:N	2.45	0.49
3:C:11:LEU:HB3	3:C:168:GLN:HB3	1.94	0.49
3:D:107:MET:SD	3:D:108:LYS:NZ	2.73	0.49
3:B:123:ASN:HB3	3:B:170:PRO:HG2	1.94	0.49
3:D:246:THR:HB	3:D:255:ALA:HA	1.95	0.49
3:N:131:TYR:CZ	3:N:133:TYR:HB2	2.48	0.49
8:K:52:LYS:O	8:K:56:VAL:HG23	2.13	0.49
1:J:149:TRP:CH2	1:J:162:PHE:CG	2.99	0.49
3:B:215:VAL:HG11	3:B:262:GLY:H	1.77	0.49
3:D:116:ARG:NH2	5:F:17:C:O2'	2.30	0.49
3:O:177:ASP:OD1	3:O:177:ASP:N	2.46	0.49
3:I:34:ILE:HG22	3:I:42:ALA:HB3	1.94	0.49
3:B:147:SER:OG	3:B:149:TRP:O	2.31	0.49

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
8:M:96:LEU:HA	8:M:101:ASP:HA	1.94	0.49
8:M:96:LEU:HG	8:M:101:ASP:HA	1.91	0.49
3:B:73:ASP:OD1	3:B:73:ASP:N	2.46	0.49
3:H:70:HIS:ND1	3:I:115:LYS:HG3	2.27	0.49
1:J:42:TRP:HA	1:J:45:ILE:HD12	1.94	0.49
1:J:372:LEU:HB3	1:J:385:LEU:HD12	1.94	0.49
3:C:205:ALA:O	3:D:123:ASN:ND2	2.45	0.49
3:N:46:PRO:HD3	3:N:124:MET:HB3	1.95	0.49
3:H:233:ALA:O	3:H:234:GLU:HG3	2.13	0.49
3:C:233:ALA:HB3	3:C:236:ASN:HB2	1.95	0.49
3:N:231:PHE:HA	3:N:237:TRP:HB3	1.94	0.49
8:K:113:SER:HA	8:L:89:PHE:CE2	2.48	0.49
3:D:231:PHE:HA	3:D:237:TRP:HB3	1.95	0.49
3:D:279:MET:HG3	3:D:281:ALA:H	1.78	0.49
3:N:265:VAL:HG11	3:N:283:LEU:HG	1.95	0.49
5:F:7:C:O2'	5:F:8:U:OP1	2.23	0.49
3:I:120:PHE:C	3:I:121:ARG:HD3	2.29	0.49
3:I:220:PRO:HG2	3:I:256:ASN:HD21	1.78	0.49
3:I:231:PHE:HA	3:I:237:TRP:HB3	1.95	0.49
3:B:266:ARG:NE	3:B:284:TYR:O	2.46	0.48
1:J:165:ARG:NH1	1:J:176:PHE:CB	2.76	0.48
4:E:6:DA:H2'	4:E:7:DT:H73	1.95	0.48
1:J:454:LEU:O	1:J:458:HIS:ND1	2.40	0.48
2:A:14:TYR:HB2	2:A:134:GLY:HA2	1.94	0.48
3:H:178:CYS:H	3:H:181:LYS:HB2	1.78	0.48
3:C:196:ASN:HB3	3:D:223:VAL:HG11	1.95	0.48
3:C:270:GLN:HA	3:C:273:LYS:HE2	1.95	0.48
3:D:90:ASP:OD2	3:D:95:GLY:N	2.45	0.48
3:B:115:LYS:HD3	5:F:4:G:N1	2.28	0.48
3:N:147:SER:HA	3:O:79:PHE:CG	2.49	0.48
2:A:118:ILE:HB	5:F:8:U:C5	2.48	0.48
3:H:127:ALA:HA	3:H:167:PHE:HB3	1.96	0.48
8:M:81:TYR:HB2	8:M:82:PRO:HD3	1.96	0.48
2:A:121:VAL:O	2:A:122:ARG:HG3	2.13	0.48
3:C:243:LEU:HA	3:C:253:LEU:HD13	1.96	0.48
3:H:4:LEU:HB3	3:H:220:PRO:HA	1.96	0.48
1:J:290:VAL:HG11	1:J:370:LEU:HD13	1.96	0.48
1:J:421:THR:HA	1:J:531:ARG:HH21	1.79	0.48
3:B:112:ARG:HD3	3:B:114:ALA:H	1.77	0.48
3:B:198:VAL:HG11	3:B:209:PHE:CD2	2.48	0.48
3:O:108:LYS:HG3	3:O:109:LYS:H	1.79	0.48

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
3.O.262:GLY:CA	3.O.266.ABG.HH21	2.27	0.48
3:I:35:LEU:HB3	3:I:40:LYS:HG2	1.94	0.48
1:J:38:LYS:O	1:J:44:LYS:NZ	2.47	0.47
1:J:332:ASN:HB2	6:G:55:DC:C2	2.49	0.47
2:A:31:SER:O	2:A:33:ARG:NH1	2.47	0.47
3:D:32:GLN:HA	3:D:43:ILE:CD1	2.44	0.47
3:H:31:ILE:HG22	3:H:43:ILE:HG12	1.96	0.47
3:B:271:GLU:O	3:B:274:ALA:N	2.46	0.47
3:D:139:GLN:OE1	5:F:27:A:H5"	2.14	0.47
3:N:107:MET:SD	3:N:108:LYS:HG3	2.54	0.47
3:O:40:LYS:HD3	3:O:40:LYS:HA	1.63	0.47
3:C:19:ASN:HD22	3:C:44:ILE:HG13	1.78	0.47
3:D:56:MET:HE3	3:D:196:ASN:O	2.14	0.47
8:M:70:GLN:HA	8:M:73:ILE:HD12	1.95	0.47
1:J:60:ASP:OD1	1:J:63:GLY:N	2.47	0.47
1:J:119:TYR:CE1	4:E:4:DT:C7	2.96	0.47
2:A:169:LEU:HD13	5:F:2:G:C5	2.49	0.47
3:D:11:LEU:HD23	3:D:231:PHE:CD2	2.50	0.47
3:D:139:GLN:NE2	5:F:26:A:O2'	2.47	0.47
3:I:268:MET:O	3:I:273:LYS:NZ	2.48	0.47
3:C:162:VAL:HG23	3:D:34:ILE:HD12	1.95	0.47
3:C:232:ASP:O	3:C:236:ASN:N	2.48	0.47
3:D:168:GLN:NE2	3:D:232:ASP:OD2	2.48	0.47
1:J:165:ARG:NH2	1:J:176:PHE:HB3	2.30	0.47
1:J:418:GLN:O	1:J:421:THR:OG1	2.31	0.47
2:A:92:ASN:OD1	2:A:122:ARG:HG2	2.14	0.47
2:A:197:GLY:HA2	2:A:220:PRO:HD3	1.96	0.47
3:I:32:GLN:HG2	3:I:40:LYS:HB3	1.96	0.47
1:J:217:LEU:HD12	1:J:220:TRP:H	1.80	0.47
3:H:213:SER:HB3	3:H:263:GLU:HB3	1.97	0.47
8:M:55:VAL:O	8:M:58:GLU:HG3	2.15	0.47
8:M:102:GLU:O	8:M:102:GLU:HG3	2.15	0.47
1:J:160:ASN:HB3	1:J:161:PRO:CD	2.34	0.47
1:J:514:ASP:OD1	1:J:514:ASP:N	2.47	0.47
3:B:205:ALA:N	3:C:122:CYS:O	2.47	0.47
3:C:142:LEU:HD13	3:D:76:ALA:HB2	1.97	0.47
3:C:137:PHE:HZ	3:C:157:LEU:HD21	1.80	0.46
3:C:249:ASP:OD1	3:C:250:ASN:N	2.48	0.46
3:D:33:LYS:HG2	3:D:43:ILE:HG23	1.96	0.46
3:N:68:ARG:NH2	5:F:38:U:OP1	2.48	0.46
3:O:112:ARG:HA	3:O:115:LYS:HZ3	1.81	0.46

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
3:O:244:THR:OG1	3:O:247:ASP:OD1	2.32	0.46	
5:F:30:U:H5'	3:I:116:ARG:NE	2.30	0.46	
3:H:35:LEU:HB3	3:H:40:LYS:HG2	1.97	0.46	
3:C:57:LEU:HD12	3:C:62:GLN:HG2	1.97	0.46	
8:K:34:GLN:NE2	8:K:36:SER:HB3	2.31	0.46	
3:O:244:THR:N	3:O:277:GLU:OE2	2.47	0.46	
8:K:48:TYR:OH	8:K:52:LYS:NZ	2.36	0.46	
1:J:332:ASN:CB	6:G:55:DC:C2	2.98	0.46	
2:A:14:TYR:O	2:A:177:GLU:HB3	2.15	0.46	
3:B:66:ARG:NH2	5:F:7:C:O2'	2.46	0.46	
3:B:157:LEU:HD23	3:B:157:LEU:H	1.80	0.46	
3:C:242:ARG:C	3:C:253:LEU:HD22	2.36	0.46	
3:D:256:ASN:OD1	3:D:257:GLU:N	2.48	0.46	
1:J:332:ASN:HB3	4:E:2:DG:N2	2.31	0.46	
3:D:267:LYS:HD2	3:D:267:LYS:O	2.15	0.46	
3:N:106:GLU:O	3:N:111:ASN:N	2.48	0.46	
3:N:202:HIS:CE1	3:N:207:TYR:H	2.34	0.46	
3:H:218:LEU:HD13	3:H:224:ALA:HB3	1.97	0.46	
3:H:265:VAL:HG11	3:H:283:LEU:HG	1.98	0.46	
3:I:195:LEU:O	3:I:209:PHE:HB2	2.15	0.46	
2:A:206:ASP:OD1	2:A:206:ASP:N	2.49	0.46	
5:F:33:A:OP2	3:H:139:GLN:NE2	2.49	0.46	
3:B:4:LEU:HB3	3:B:220:PRO:HG3	1.97	0.46	
3:B:249:ASP:HB3	3:B:252:ASP:HB2	1.96	0.46	
3:D:241:SER:HA	3:D:244:THR:HG22	1.96	0.46	
3:N:110:LEU:HD13	3:N:112:ARG:HH21	1.81	0.46	
3:H:120:PHE:O	3:H:121:ARG:CD	2.34	0.46	
3:I:246:THR:HB	3:I:255:ALA:HA	1.98	0.46	
3:D:44:ILE:HD11	3:D:167:PHE:CE2	2.51	0.46	
3:N:67:THR:OG1	3:N:78:GLU:OE2	2.34	0.46	
3:H:32:GLN:HB2	3:H:132:LYS:HE3	1.97	0.46	
3:H:93:LEU:HB3	3:H:117:ASP:HB2	1.98	0.46	
8:L:27:LEU:HG	8:L:114:GLN:HG2	1.98	0.46	
8:L:63:ILE:HD12	8:L:77:VAL:HG22	1.98	0.46	
1:J:18:LEU:HD13	1:J:23:HIS:HB3	1.98	0.46	
1:J:122:ILE:CD1	1:J:163:ASN:CB	2.94	0.46	
2:A:223:PHE:HZ	2:A:227:PRO:HA	1.81	0.46	
3:B:58:ILE:HD12	3:B:64:ASN:HD21	1.81	0.46	
3:B:49:MET:HE1	3:B:169:TYR:CE1	2.51	0.46	
3:B:241:SER:OG	3:B:242:ARG:NH1	2.48	0.46	
3:D:63:PRO:HG2	3:D:88:PHE:HB2	1.96	0.46	

	lous page	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
3:H:107:MET:SD	3:H:108:LYS:HG3	2.56	0.46	
1:J:83:SER:O	1:J:166:CYS:HA	2.15	0.45	
3:O:5:ASN:OD1	3:O:175:GLY:N	2.48	0.45	
5:F:29:C:O2'	3:I:116:ARG:NH2	2.47	0.45	
3:I:178:CYS:H	3:I:181:LYS:HB2	1.80	0.45	
8:K:72:PHE:O	8:K:75:TYR:HB3	2.16	0.45	
8:L:59:ALA:O	8:L:63:ILE:HG12	2.16	0.45	
1:J:58:ASN:H	1:J:65:SER:HB2	1.81	0.45	
3:B:30:VAL:HA	3:B:161:GLU:OE2	2.16	0.45	
3:N:3:ASN:HD21	3:N:176:LYS:HB3	1.81	0.45	
3:N:127:ALA:HB1	3:N:165:THR:HG21	1.99	0.45	
3:O:232:ASP:CG	3:O:237:TRP:H	2.19	0.45	
3:I:218:LEU:HD13	3:I:224:ALA:HB3	1.98	0.45	
3:B:15:ALA:HB3	3:B:207:TYR:CE2	2.51	0.45	
3:C:192:ILE:O	3:C:195:LEU:HD23	2.17	0.45	
3:D:173:LEU:HD23	3:D:175:GLY:H	1.81	0.45	
3:N:105:LYS:HB3	3:N:107:MET:HG3	1.98	0.45	
2:A:181:LEU:HD13	2:A:224:ARG:HA	1.98	0.45	
3:B:96:TYR:HE2	5:F:6:A:C8	2.34	0.45	
3:I:6:LEU:HD23	3:I:6:LEU:H	1.82	0.45	
3:I:221:LYS:HZ3	3:I:222:LEU:HB3	1.81	0.45	
1:J:210:GLU:HA	2:A:98:TYR:OH	2.17	0.45	
3:D:218:LEU:HD13	3:D:224:ALA:HB3	1.98	0.45	
3:N:158:LEU:HD13	6:G:20:DA:C6	2.52	0.45	
3:I:265:VAL:HA	3:I:268:MET:HE1	1.99	0.45	
2:A:121:VAL:HG13	2:A:122:ARG:H	1.81	0.45	
3:N:94:PHE:CE1	3:N:118:SER:HA	2.49	0.45	
3:O:298:PHE:HD2	3:O:299:LEU:HD22	1.81	0.45	
3:H:206:TYR:O	3:I:123:ASN:ND2	2.50	0.45	
3:C:198:VAL:HG13	3:C:198:VAL:O	2.16	0.45	
3:I:127:ALA:HA	3:I:167:PHE:HB3	1.99	0.45	
8:M:53:GLU:O	8:M:57:ASN:ND2	2.49	0.45	
1:J:122:ILE:CD1	1:J:163:ASN:HB2	2.46	0.45	
1:J:256:ASP:HB3	1:J:321:GLY:H	1.80	0.45	
2:A:66:LEU:HD23	2:A:207:ARG:H	1.81	0.45	
3:C:284:TYR:HB2	3:C:290:LEU:HD12	1.99	0.45	
3:H:11:LEU:HD23	3:H:231:PHE:CE2	2.52	0.45	
3:H:143:ASN:HD21	3:H:150:LYS:HA	1.81	0.45	
8:M:96:LEU:HG	8:M:101:ASP:CA	2.46	0.45	
3:C:13:TYR:CZ	3:D:226:TYR:HB2	2.52	0.45	
3:C:217:ARG:HB2	3:C:259:TRP:CD1	2.51	0.45	

Interatomic C				
Atom-1	Atom-2	distance (Å)	overlap (Å)	
3:N:150:LYS:HA	3:N:150:LYS:HD3	1.73	0.45	
3:I:173:LEU:HD23	3:I:175:GLY:N	2.32	0.45	
8:L:18:ILE:HD11	8:L:86:GLN:HB2	1.99	0.45	
1:J:119:TYR:CE2	4:E:4:DT:C5	3.04	0.44	
3:H:182:PRO:HB3	3:H:299:LEU:HD21	1.99	0.44	
3:H:237:TRP:HE3	3:H:238:LEU:HD22	1.82	0.44	
3:H:93:LEU:HD11	3:H:181:LYS:HD2	2.00	0.44	
8:L:52:LYS:HD3	8:L:52:LYS:HA	1.76	0.44	
3:B:87:LYS:HE2	3:B:92:PHE:HZ	1.82	0.44	
3:C:7:PHE:HZ	3:C:218:LEU:HD12	1.82	0.44	
4:E:0:DA:N1	6:G:57:DT:C4	2.82	0.44	
1:J:209:ALA:O	1:J:210:GLU:HB2	2.17	0.44	
3:B:37:ASP:N	3:B:37:ASP:OD1	2.51	0.44	
1:J:332:ASN:HB3	4:E:2:DG:H22	1.82	0.44	
3:C:24:SER:OG	3:C:25:GLU:OE1	2.19	0.44	
1:J:332:ASN:CB	4:E:2:DG:H22	2.30	0.44	
2:A:184:TRP:CE2	2:A:227:PRO:HD3	2.52	0.44	
3:D:44:ILE:CB	3:D:125:ALA:CA	2.96	0.44	
3:N:147:SER:HA	3:O:79:PHE:CD2	2.53	0.44	
5:F:38:U:O4	5:F:40:G:O2'	2.33	0.44	
6:G:53:DA:H2'	6:G:54:DA:C8	2.53	0.44	
8:M:53:GLU:HA	8:M:56:VAL:HG22	1.99	0.44	
2:A:14:TYR:HB2	2:A:133:ILE:O	2.17	0.44	
3:C:7:PHE:CZ	3:C:223:VAL:HG13	2.52	0.44	
3:H:32:GLN:HG2	3:H:40:LYS:HD3	2.00	0.44	
3:I:7:PHE:CE2	3:I:217:ARG:HB3	2.53	0.44	
1:J:15:LEU:O	1:J:24:ARG:NH1	2.50	0.44	
2:A:207:ARG:HH12	5:F:4:G:H5'	1.82	0.44	
3:D:3:ASN:HD21	3:D:176:LYS:HB3	1.82	0.44	
3:D:44:ILE:HG21	3:D:125:ALA:HB2	2.00	0.44	
3:N:35:LEU:HB3	3:N:40:LYS:HG2	2.00	0.44	
3:O:68:ARG:HD2	3:O:77:VAL:HG13	1.99	0.44	
3:I:19:ASN:HD22	3:I:44:ILE:HG12	1.83	0.44	
3:I:65:ASN:HD21	3:I:88:PHE:HZ	1.62	0.44	
3:I:150:LYS:HA	3:I:150:LYS:HD3	1.68	0.44	
3:D:127:ALA:HB1	3:D:165:THR:HG21	1.98	0.44	
1:J:359:TYR:HD1	1:J:365:ARG:HB3	1.82	0.43	
1:J:528:ASP:HA	1:J:532:SER:HB3	1.99	0.43	
3:D:237:TRP:CE2	3:D:240:LEU:HD11	2.53	0.43	
3:N:43:ILE:HG22	3:N:44:ILE:N	2.33	0.43	
6:G:21:DC:H6	6:G:21:DC:H2'	1.67	0.43	

	Clash			
Atom-1	Atom-2	distance $(Å)$	overlap (Å)	
3:I:107:MET:SD	3:I:108:LYS:HG3	2.58	0.43	
8:L:43:LYS:HA	8:L:43:LYS:HD3	1.85	0.43	
1:J:179:ASP:OD1	1:J:179:ASP:N	2.51	0.43	
1:J:361:CYS:HB3	1:J:362:PRO:HD3	2.00	0.43	
3:B:122:CYS:HB2	3:B:169:TYR:OH	2.18	0.43	
3:H:218:LEU:HD23	3:H:256:ASN:HB3	1.99	0.43	
3:C:100:GLN:NE2	3:C:101:THR:HG22	2.34	0.43	
3:C:273:LYS:HA	3:C:276:LEU:HD12	1.99	0.43	
3:D:31:ILE:O	3:D:43:ILE:CD1	2.66	0.43	
3:D:182:PRO:HA	3:D:185:VAL:HG12	2.00	0.43	
3:N:7:PHE:CE2	3:N:217:ARG:HB3	2.54	0.43	
7:P:36:DA:N6	8:K:87:ASP:CG	2.72	0.43	
1:J:210:GLU:N	2:A:98:TYR:CZ	2.87	0.43	
3:B:100:GLN:H	3:B:100:GLN:HG3	1.72	0.43	
3:B:144:ALA:HA	3:C:77:VAL:O	2.18	0.43	
3:C:217:ARG:HG3	3:C:257:GLU:HB3	2.00	0.43	
3:N:68:ARG:HA	3:N:77:VAL:HG12	2.01	0.43	
5:F:8:U:O2'	5:F:9:U:OP1	2.29	0.43	
3:H:162:VAL:HG23	3:I:34:ILE:HD12	2.00	0.43	
3:I:7:PHE:HZ	3:I:218:LEU:HD12	1.82	0.43	
3:I:63:PRO:HG2	3:I:88:PHE:HB2	1.99	0.43	
8:K:114:GLN:O	8:K:114:GLN:HG3	2.18	0.43	
8:L:64:ARG:HD3	8:L:64:ARG:HA	1.62	0.43	
2:A:45:TYR:HE2	2:A:73:LEU:HD21	1.83	0.43	
3:B:53:LEU:HD11	3:B:192:ILE:HG12	2.01	0.43	
3:C:181:LYS:N	3:C:182:PRO:HD3	2.33	0.43	
3:D:44:ILE:HG22	3:D:125:ALA:H	1.69	0.43	
3:N:195:LEU:O	3:N:209:PHE:HB2	2.19	0.43	
3:H:120:PHE:CD2	3:H:121:ARG:N	2.86	0.43	
3:I:189:LEU:O	3:I:192:ILE:HG22	2.19	0.43	
1:J:160:ASN:CB	1:J:161:PRO:CD	2.95	0.43	
2:A:174:TYR:HA	2:A:175:PRO:HD3	1.86	0.43	
3:D:31:ILE:C	3:D:43:ILE:CD1	2.86	0.43	
3:O:86:ASP:N	3:O:86:ASP:OD1	2.51	0.43	
1:J:240:ASP:OD1	1:J:244:LYS:N	2.51	0.43	
1:J:451:LEU:HD12	1:J:454:LEU:HD11	2.00	0.43	
3:D:84:ASN:ND2	3:D:87:LYS:HD3	2.33	0.43	
3:N:13:TYR:CE1	3:N:212:ARG:HD3	2.54	0.43	
3:H:231:PHE:HB3	3:H:238:LEU:HD23	2.01	0.43	
3:I:182:PRO:HA	3:I:185:VAL:HG12	2.00	0.43	
3:I:256:ASN:OD1	3:I:257:GLU:N	2.52	0.43	

	lous page	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	α overlap (Å)	
3:C:36:LYS:HB3	3:C:41:TYR:CD1	2.53	0.43	
3:D:32:GLN:OE1	3:D:34:ILE:N	2.52	0.43	
3:D:106:GLU:HB3	3:D:110:LEU:HB2	2.01	0.43	
3:0:13:TYR:HD1	3:O:209:PHE:CG	2.37	0.43	
3:D:189:LEU:O	3:D:192:ILE:HG22	2.18	0.43	
3:H:43:ILE:HG22	3:H:44:ILE:N	2.34	0.43	
3:I:137:PHE:HA	3:I:159:HIS:HB3	2.00	0.43	
1:J:120:ASP:OD1	1:J:120:ASP:N	2.49	0.42	
2:A:128:ASN:OD1	2:A:129:LEU:N	2.51	0.42	
3:B:40:LYS:HB2	3:B:131:TYR:HB3	2.01	0.42	
3:B:109:LYS:NZ	3:B:111:ASN:HB2	2.33	0.42	
1:J:208:ASN:HB3	2:A:33:ARG:HH21	1.82	0.42	
1:J:364:PHE:HZ	1:J:402:GLN:HG2	1.84	0.42	
3:B:18:SER:HB2	3:B:202:HIS:CE1	2.54	0.42	
3:N:247:ASP:OD1	3:N:248:SER:N	2.52	0.42	
3:I:120:PHE:CD2	3:I:121:ARG:N	2.87	0.42	
8:K:66:ARG:HA	8:K:66:ARG:HD2	1.94	0.42	
3:B:18:SER:HB2	3:B:202:HIS:HE1	1.84	0.42	
3:B:112:ARG:HH12	3:B:116:ARG:H	1.67	0.42	
3:B:182:PRO:HB3	3:B:299:LEU:HD13	2.02	0.42	
3:B:214:VAL:HG13	3:B:214:VAL:O	2.20	0.42	
3:O:3:ASN:N	3:O:219:THR:O	2.52	0.42	
3:O:70:HIS:HE2	5:F:44:G:H5"	1.84	0.42	
3:I:31:ILE:HG22	3:I:43:ILE:HG12	2.01	0.42	
3:I:68:ARG:HA	3:I:77:VAL:HG12	2.01	0.42	
3:I:265:VAL:HG11	3:I:283:LEU:HG	2.01	0.42	
8:K:28:SER:HB2	8:K:33:LEU:HD21	2.00	0.42	
8:M:100:THR:O	8:M:101:ASP:CG	2.58	0.42	
2:A:223:PHE:HZ	2:A:228:PRO:HD3	1.84	0.42	
3:C:195:LEU:HB3	3:C:209:PHE:HB2	2.00	0.42	
3:0:41:TYR:OH	3:O:129:ASN:O	2.34	0.42	
3:H:139:GLN:HB3	3:H:157:LEU:HD13	2.02	0.42	
3:H:173:LEU:HD23	3:H:175:GLY:N	2.34	0.42	
3:H:239:GLU:HG2	3:H:240:LEU:N	2.34	0.42	
1:J:205:MET:HG2	6:G:57:DT:P	2.59	0.42	
3:C:53:LEU:HD11	3:C:192:ILE:HD13	2.01	0.42	
3:D:217:ARG:NH1	3:D:226:TYR:O	2.53	0.42	
3:D:265:VAL:HG11	3:D:283:LEU:HG	2.01	0.42	
1:J:417:ARG:HA	1:J:420:PHE:HD2	1.83	0.42	
3:D:34:ILE:CG2	3:D:42:ALA:HB3	2.49	0.42	
3:D:68:ARG:NH1	5:F:20:G:N7	2.68	0.42	

EMD-35629,	8IP 0
------------	---------

	lous page	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap(Å)	
3:N:173:LEU:HD23	3:N:175:GLY:H	1.84	0.42	
3:H:52:ALA:O	3:H:55:GLU:HG3	2.18	0.42	
3:I:233:ALA:O	3:I:234:GLU:HG3	2.19	0.42	
8:K:117:ILE:HG23	8:K:118:LYS:N	2.34	0.42	
8:L:66:ARG:HB3	8:L:73:ILE:CD1	2.46	0.42	
8:M:50:ASP:HB3	8:M:54:LYS:HZ1	1.84	0.42	
2:A:25:ARG:NH1	5:F:3:A:O2'	2.49	0.42	
2:A:93:GLN:N	2:A:93:GLN:OE1	2.53	0.42	
3:B:131:TYR:CZ	3:B:133:TYR:HA	2.55	0.42	
3:I:236:ASN:N	3:I:236:ASN:OD1	2.52	0.42	
8:M:93:ALA:O	8:M:96:LEU:HB3	2.19	0.42	
3:D:236:ASN:HB3	3:D:264:LEU:HD22	2.02	0.42	
1:J:205:MET:O	1:J:207:VAL:HG13	2.20	0.42	
3:B:217:ARG:HB2	3:B:258:PHE:HA	2.02	0.42	
3:C:69:LEU:HG	3:C:71:SER:H	1.85	0.42	
3:D:26:GLU:HB2	6:G:38:DG:C8	2.54	0.42	
3:D:237:TRP:CE3	3:D:240:LEU:HD21	2.55	0.42	
3:N:64:ASN:HD22	3:N:67:THR:HG22	1.85	0.42	
3:O:258:PHE:H	3:O:280:GLY:HA3	1.85	0.42	
3:I:93:LEU:HD22	3:I:119:ILE:HD12	2.02	0.42	
8:M:50:ASP:HA	8:M:53:GLU:OE1	2.19	0.42	
1:J:149:TRP:CD1	1:J:159:ARG:NH1	2.87	0.42	
2:A:57:ARG:HD2	2:A:69:PRO:HD2	2.02	0.42	
2:A:90:LEU:HA	2:A:124:GLU:HA	2.02	0.42	
3:B:19:ASN:ND2	3:B:21:ARG:HD3	2.35	0.42	
3:B:112:ARG:HH12	3:B:117:ASP:N	2.17	0.42	
3:B:189:LEU:HD23	3:B:295:ALA:HB2	2.00	0.42	
3:B:268:MET:SD	3:B:268:MET:N	2.93	0.42	
3:N:54:ARG:HD2	3:N:66:ARG:HH21	1.83	0.42	
3:N:57:LEU:HD23	3:N:57:LEU:HA	1.90	0.42	
3:O:298:PHE:CD2	3:O:299:LEU:HD22	2.54	0.42	
3:H:46:PRO:HD3	3:H:124:MET:HB3	2.01	0.42	
1:J:27:LEU:O	1:J:30:LEU:HG	2.20	0.41	
3:B:170:PRO:HB3	3:B:228:THR:HB	2.02	0.41	
3:N:32:GLN:HG2	3:N:40:LYS:HD3	2.02	0.41	
3:O:113:PRO:HD2	3:O:115:LYS:HZ3	1.85	0.41	
3:O:231:PHE:CG	3:O:232:ASP:N	2.88	0.41	
7:P:33:DA:H2"	7:P:34:DA:H5"	2.02	0.41	
3:I:58:ILE:HD12	3:I:64:ASN:ND2	2.34	0.41	
8:K:99:ASP:OD2	8:K:102:GLU:HB3	2.19	0.41	
2:A:57:ARG:HE	2:A:68:LYS:HG2	1.85	0.41	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
3:B:19:ASN:HD21	3:B:21:ARG:NH1	2.18	0.41	
3:H:241:SER:O	3:H:245:ALA:N	2.48	0.41	
3:H:276:LEU:O	3:H:276:LEU:HD23	2.20	0.41	
8:L:49:ASN:O	8:L:53:GLU:HG2	2.20	0.41	
3:B:217:ARG:NH2	3:B:284:TYR:OH	2.49	0.41	
3:H:221:LYS:HZ3	3:H:222:LEU:HG	1.85	0.41	
3:I:127:ALA:HB1	3:I:165:THR:HG21	2.02	0.41	
8:K:60:PHE:HE1	8:K:115:TYR:HE2	1.68	0.41	
1:J:88:ARG:NH1	4:E:5:DT:OP1	2.53	0.41	
3:B:90:ASP:OD2	3:B:93:LEU:N	2.51	0.41	
3:D:8:ALA:HB3	3:D:171:PHE:CE1	2.55	0.41	
3:D:35:LEU:HD23	3:D:35:LEU:H	1.85	0.41	
3:N:221:LYS:HZ3	3:N:222:LEU:HG	1.85	0.41	
3:H:195:LEU:O	3:H:209:PHE:HB2	2.21	0.41	
8:K:9:ARG:HG3	8:K:11:TYR:H	1.85	0.41	
8:K:30:LYS:HG2	8:K:31:HIS:CD2	2.56	0.41	
2:A:27:PHE:HD2	2:A:28:GLN:HG2	1.85	0.41	
2:A:72:GLU:O	2:A:72:GLU:HG2	2.20	0.41	
2:A:91:ILE:HD12	2:A:93:GLN:HE22	1.84	0.41	
3:B:44:ILE:O	3:B:124:MET:HG3	2.20	0.41	
3:B:55:GLU:O	3:B:58:ILE:HG22	2.20	0.41	
3:B:283:LEU:HD13	3:B:289:LYS:HZ3	1.85	0.41	
3:N:116:ARG:NH1	5:F:35:A:O2'	2.49	0.41	
4:E:3:DT:H2'	4:E:4:DT:H5'	2.02	0.41	
5:F:26:A:C2	3:H:200:GLY:HA2	2.56	0.41	
3:H:6:LEU:H	3:H:6:LEU:HD23	1.86	0.41	
2:A:188:LEU:HD13	2:A:194:PRO:HB3	2.02	0.41	
3:B:138:TYR:CD2	3:B:158:LEU:HB2	2.54	0.41	
3:D:46:PRO:HB3	3:D:124:MET:N	2.35	0.41	
3:D:265:VAL:HA	3:D:268:MET:HG2	2.03	0.41	
3:N:34:ILE:HD13	3:I:162:VAL:HG23	2.02	0.41	
3:N:189:LEU:O	3:N:192:ILE:HG22	2.20	0.41	
3:O:49:MET:SD	3:O:49:MET:N	2.92	0.41	
3:H:203:ALA:HA	3:I:121:ARG:HG3	2.03	0.41	
3:I:106:GLU:OE1	3:I:110:LEU:HD13	2.20	0.41	
2:A:77:ALA:HB3	2:A:136:GLN:HB3	2.02	0.41	
2:A:107:PHE:HD1	2:A:116:TYR:HB2	1.86	0.41	
3:B:10:ILE:HG22	3:B:214:VAL:HG23	2.02	0.41	
3:C:127:ALA:HA	3:C:167:PHE:HB3	2.03	0.41	
3:D:143:ASN:OD1	3:D:144:ALA:N	2.42	0.41	
3:N:34:ILE:HD12	3:I:134:ASP:OD2	2.21	0.41	

	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:N:202:HIS:O	3:N:202:HIS:ND1	2.54	0.41
3:O:14:PRO:HD2	3:O:209:PHE:CD2	2.56	0.41
3:I:43:ILE:HG22	3:I:44:ILE:HG13	2.02	0.41
2:A:223:PHE:CZ	2:A:228:PRO:HD3	2.55	0.41
3:B:21:ARG:HA	3:B:21:ARG:HD2	1.87	0.41
3:B:112:ARG:HH11	3:B:114:ALA:HA	1.86	0.41
3:B:275:GLN:HG2	3:B:276:LEU:N	2.35	0.41
3:N:107:MET:HA	3:N:111:ASN:HA	2.03	0.41
3:O:33:LYS:HA	3:O:33:LYS:HD3	1.89	0.41
3:H:268:MET:SD	3:H:272:GLN:HB3	2.60	0.41
8:K:69:LYS:HA	8:K:74:ASP:HB3	2.02	0.41
8:L:63:ILE:O	8:L:66:ARG:CG	2.68	0.41
1:J:158:THR:O	1:J:162:PHE:N	2.37	0.41
3:B:105:LYS:O	3:B:107:MET:HE3	2.21	0.41
3:B:147:SER:HA	3:C:82:TYR:HD1	1.85	0.41
3:C:17:ALA:N	3:C:163:THR:O	2.49	0.41
3:C:256:ASN:HA	3:C:280:GLY:HA3	2.02	0.41
3:N:11:LEU:HD23	3:N:231:PHE:CD2	2.55	0.41
3:O:189:LEU:CD1	3:O:190:GLN:HG3	2.47	0.41
5:F:32:G:H4'	3:I:47:GLU:OE1	2.20	0.41
5:F:36:U:H2'	5:F:37:U:C6	2.56	0.41
3:I:212:ARG:HB2	3:I:263:GLU:HB2	2.02	0.41
8:M:27:LEU:HD21	8:M:35:TRP:HB3	2.03	0.41
8:M:71:ALA:HB1	8:M:104:ARG:HH21	1.86	0.41
1:J:296:LEU:HB3	1:J:352:TYR:HE1	1.86	0.41
3:C:7:PHE:CZ	3:C:218:LEU:HD12	2.56	0.41
3:D:9:THR:HG21	3:D:228:THR:O	2.21	0.41
3:O:93:LEU:HD21	3:O:119:ILE:H	1.86	0.41
4:E:-2:DC:H2"	4:E:-1:DC:C5	2.56	0.41
3:H:216:ALA:HB3	3:H:259:TRP:HB2	2.03	0.41
8:K:66:ARG:HH12	8:K:107:THR:C	2.24	0.41
2:A:115:LYS:C	5:F:7:C:H41	2.24	0.40
2:A:188:LEU:H	2:A:188:LEU:HD23	1.86	0.40
3:D:289:LYS:HE2	3:D:289:LYS:HB2	1.88	0.40
2:A:184:TRP:CG	2:A:227:PRO:HB3	2.56	0.40
3:N:115:LYS:HZ2	3:N:116:ARG:HG2	1.86	0.40
3:N:242:ARG:NH2	3:N:248:SER:HA	2.36	0.40
3:H:186:LYS:HB2	3:H:186:LYS:HE3	1.82	0.40
3:I:9:THR:HG21	3:I:228:THR:O	2.21	0.40
1:J:270:VAL:HG22	1:J:305:ARG:HG2	2.03	0.40
3:B:113:PRO:HG2	3:B:115:LYS:HZ2	1.86	0.40

EMD-35629,	8IP 0
------------	---------

	1.5	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
3:B:217:ARG:CZ	3:B:259:TRP:HB2	2.51	0.40	
3:B:220:PRO:O	3:B:221:LYS:HD2	2.20	0.40	
3:D:240:LEU:HA	3:D:243:LEU:HG	2.03	0.40	
3:N:11:LEU:HD23	3:N:231:PHE:HE2	1.85	0.40	
4:E:4:DT:H2"	4:E:5:DT:OP2	2.21	0.40	
8:K:81:TYR:N	8:K:82:PRO:HD3	2.35	0.40	
1:J:265:ASP:O	1:J:309:LYS:NZ	2.35	0.40	
3:C:65:ASN:HD22	3:C:84:ASN:CG	2.25	0.40	
3:C:259:TRP:CD2	3:C:294:LEU:HD21	2.57	0.40	
3:N:127:ALA:HA	3:N:167:PHE:HB3	2.03	0.40	
4:E:3:DT:H6	4:E:3:DT:H5"	1.86	0.40	
3:H:64:ASN:OD1	3:H:64:ASN:N	2.51	0.40	
3:H:134:ASP:OD2	3:I:34:ILE:HG13	2.21	0.40	
3:H:236:ASN:OD1	3:H:236:ASN:N	2.54	0.40	
3:I:242:ARG:HD3	3:I:258:PHE:CD2	2.57	0.40	
1:J:122:ILE:HD13	1:J:163:ASN:CA	2.45	0.40	
3:N:64:ASN:ND2	3:N:67:THR:HG22	2.35	0.40	
3:N:139:GLN:HB3	3:N:157:LEU:HD13	2.04	0.40	
3:N:289:LYS:HE2	3:N:289:LYS:HB2	1.96	0.40	
3:O:93:LEU:CD2	3:O:119:ILE:H	2.35	0.40	
3:H:68:ARG:HA	3:H:77:VAL:HG12	2.04	0.40	
3:H:202:HIS:CE1	3:H:207:TYR:H	2.40	0.40	
8:L:63:ILE:HG23	8:L:77:VAL:HG21	2.03	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	J	451/551~(82%)	430 (95%)	19 (4%)	2 (0%)	34	71
2	А	208/237~(88%)	189 (91%)	19 (9%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
3	В	297/301~(99%)	271 (91%)	26~(9%)	0	100	100
3	С	297/301~(99%)	260 (88%)	37 (12%)	0	100	100
3	D	297/301~(99%)	268 (90%)	29 (10%)	0	100	100
3	Н	297/301~(99%)	266 (90%)	30 (10%)	1 (0%)	41	75
3	Ι	297/301~(99%)	269~(91%)	27 (9%)	1 (0%)	41	75
3	Ν	297/301~(99%)	264 (89%)	32 (11%)	1 (0%)	41	75
3	Ο	231/301~(77%)	206 (89%)	25 (11%)	0	100	100
8	Κ	108/124~(87%)	100 (93%)	7 (6%)	1 (1%)	17	57
8	L	92/124~(74%)	83~(90%)	9 (10%)	0	100	100
8	М	108/124~(87%)	96 (89%)	12 (11%)	0	100	100
All	All	2980/3267~(91%)	2702 (91%)	272 (9%)	6 (0%)	50	79

All (6) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	J	209	ALA
1	J	207	VAL
8	Κ	117	ILE
3	N	44	ILE
3	Н	44	ILE
3	Ι	44	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	J	409/487~(84%)	403 (98%)	6 (2%)	65 84
2	А	185/204~(91%)	181 (98%)	4 (2%)	52 77
3	В	245/247~(99%)	243 (99%)	2 (1%)	81 91
3	С	245/247~(99%)	243 (99%)	2 (1%)	81 91
3	D	245/247~(99%)	244 (100%)	1 (0%)	91 97

Mol	Chain	Analysed	Rotameric	Outliers	Perce	\mathbf{ntiles}
3	Н	245/247~(99%)	242~(99%)	3~(1%)	71	87
3	Ι	245/247~(99%)	244 (100%)	1 (0%)	91	97
3	Ν	245/247~(99%)	244 (100%)	1 (0%)	91	97
3	Ο	195/247~(79%)	191~(98%)	4 (2%)	53	78
8	Κ	101/113~(89%)	100 (99%)	1 (1%)	76	88
8	L	88/113~(78%)	87~(99%)	1 (1%)	73	88
8	М	101/113~(89%)	101 (100%)	0	100	100
All	All	2549/2759~(92%)	2523 (99%)	26 (1%)	77	88

All (26) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	J	159	ARG
1	J	162	PHE
1	J	165	ARG
1	J	166	CYS
1	J	205	MET
1	J	303	LYS
2	А	98	TYR
2	А	102	ASN
2	А	105	LYS
2	А	193	ARG
3	В	90	ASP
3	В	108	LYS
3	С	87	LYS
3	С	289	LYS
3	D	267	LYS
3	N	121	ARG
3	0	87	LYS
3	0	186	LYS
3	0	204	ARG
3	0	273	LYS
3	Н	121	ARG
3	Н	242	ARG
3	Н	267	LYS
3	Ι	121	ARG
8	K	54	LYS
8	L	64	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (15)

such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
1	J	163	ASN
1	J	208	ASN
2	А	82	GLN
2	А	97	ASN
3	С	19	ASN
3	С	65	ASN
3	С	84	ASN
3	С	139	GLN
3	D	129	ASN
3	D	272	GLN
3	Ν	65	ASN
3	0	3	ASN
3	0	51	ASN
8	Κ	31	HIS
8	L	20	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
5	F	43/44~(97%)	18 (41%)	3~(6%)

All (18) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
5	F	2	G
5	F	3	А
5	F	4	G
5	F	5	С
5	F	6	А
5	F	7	С
5	F	8	U
5	F	9	U
5	F	12	А
5	F	15	А
5	F	21	U
5	F	24	С
5	F	26	А
5	F	27	А
5	F	33	А
5	F	36	U
5	F	39	U

Continued from previous page...

Mol	Chain	Res	Type
5	F	42	G

All (3) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
5	F	5	С
5	F	7	С
5	F	8	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

