

# Full wwPDB X-ray Structure Validation Report (i)

Jan 14, 2024 - 02:19 am GMT

| PDB ID       | : | 6I1L                                                                  |
|--------------|---|-----------------------------------------------------------------------|
| Title        | : | Crystal structure of FnCas12a in complex with a crRNA guide and ssDNA |
|              |   | target                                                                |
| Authors      | : | Jinek, M.; Swarts, D.C.                                               |
| Deposited on | : | 2018-10-29                                                            |
| Resolution   | : | 2.98  Å(reported)                                                     |
|              |   |                                                                       |

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| MolProbity                     | : | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.4, CSD as541be (2020)                                          |
| Xtriage (Phenix)               | : | 1.13                                                               |
| EDS                            | : | 2.36                                                               |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| Refmac                         | : | 5.8.0158                                                           |
| CCP4                           | : | 7.0.044 (Gargrove)                                                 |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.36                                                               |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $X\text{-}RAY\;DIFFRACTION$ 

The reported resolution of this entry is 2.98 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Motria                | Whole archive        | Similar resolution                                          |
|-----------------------|----------------------|-------------------------------------------------------------|
|                       | $(\# {\rm Entries})$ | $(\# { m Entries},  { m resolution}  { m range}({ m \AA}))$ |
| R <sub>free</sub>     | 130704               | 2754 (3.00-2.96)                                            |
| Clashscore            | 141614               | 3103 (3.00-2.96)                                            |
| Ramachandran outliers | 138981               | 2993 (3.00-2.96)                                            |
| Sidechain outliers    | 138945               | 2996 (3.00-2.96)                                            |
| RSRZ outliers         | 127900               | 2644 (3.00-2.96)                                            |
| RNA backbone          | 3102                 | 1088 (3.26-2.70)                                            |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain |     |       |  |  |  |
|-----|-------|--------|------------------|-----|-------|--|--|--|
| 1   | А     | 1301   | 7%               | 83% | 15% • |  |  |  |
| 1   | D     | 1301   | 16%              | 80% | 16% • |  |  |  |
| 2   | В     | 40     | 38%              | 52% | 10%   |  |  |  |
| 2   | Е     | 40     | 32%              | 55% | 12%   |  |  |  |



| Mol | Chain | Length | Quality of chain |     |   |  |
|-----|-------|--------|------------------|-----|---|--|
| 3   | С     | 20     | 35%              | 65% | - |  |
| 3   | F     | 20     | 30%              | 70% | - |  |

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

| Mol | Type | Chain | Res  | Chirality | Geometry | Clashes | Electron density |
|-----|------|-------|------|-----------|----------|---------|------------------|
| 5   | CIT  | А     | 1406 | -         | -        | -       | Х                |
| 5   | CIT  | Е     | 103  | -         | -        | -       | Х                |
| 6   | K    | D     | 1411 | -         | -        | -       | Х                |
| 6   | Κ    | Е     | 105  | -         | -        | -       | Х                |



# 2 Entry composition (i)

There are 7 unique types of molecules in this entry. The entry contains 23637 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain | Residues |                | $\mathbf{A}$ | $\operatorname{toms}$ |           |         | ZeroOcc | AltConf | Trace |
|-----|-------|----------|----------------|--------------|-----------------------|-----------|---------|---------|---------|-------|
| 1   | А     | 1277     | Total<br>10551 | C<br>6784    | N<br>1743             | O<br>2003 | S<br>21 | 0       | 0       | 0     |
| 1   | D     | 1254     | Total<br>10351 | C<br>6662    | N<br>1702             | O<br>1966 | S<br>21 | 0       | 0       | 0     |

• Molecule 1 is a protein called CRISPR-associated endonuclease Cas12a.

There are 6 discrepancies between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment             | Reference  |
|-------|---------|----------|--------|---------------------|------------|
| А     | 0       | ASN      | -      | expression tag      | UNP A0Q7Q2 |
| А     | 1       | ALA      | -      | expression tag      | UNP A0Q7Q2 |
| А     | 1006    | GLN      | GLU    | engineered mutation | UNP A0Q7Q2 |
| D     | 0       | ASN      | -      | expression tag      | UNP A0Q7Q2 |
| D     | 1       | ALA      | -      | expression tag      | UNP A0Q7Q2 |
| D     | 1006    | GLN      | GLU    | engineered mutation | UNP A0Q7Q2 |

• Molecule 2 is a RNA chain called crRNA (40-MER).

| Mol | Chain | Residues | Atoms |     |     |     |    | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|-----|-----|-----|----|---------|---------|-------|
| 2   | В     | 40       | Total | С   | Ν   | 0   | Р  | 0       | 0       | 0     |
| _   | Ľ     | 10       | 843   | 380 | 144 | 280 | 39 | Ŭ       | Ŭ       |       |
| 0   | Б     | 40       | Total | С   | Ν   | 0   | Р  | 0       | 0       | 0     |
|     | E     | 40       | 827   | 371 | 141 | 276 | 39 | 0       | 0       | 0     |

• Molecule 3 is a DNA chain called ssDNA target strand.

| Mol        | Chain | Residues | Atoms |     |    |     |    | ZeroOcc | AltConf | Trace |
|------------|-------|----------|-------|-----|----|-----|----|---------|---------|-------|
| 3          | С     | 20       | Total | С   | Ν  | 0   | Р  | 0       | 0       | 0     |
| 5          |       | 20       | 403   | 197 | 67 | 120 | 19 | 0       | 0       | 0     |
| 2          | Б     | 20       | Total | С   | Ν  | 0   | Р  | 0       | 0       | 0     |
| ່ <u>ບ</u> | Г     | 20       | 403   | 197 | 67 | 120 | 19 | 0       | 0       | 0     |

• Molecule 4 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).



| 01 | 1 | т   |
|----|---|-----|
| 61 |   |     |
| U  |   | . Ц |

| Mol | Chain | Residues | Atoms           | ZeroOcc | AltConf |
|-----|-------|----------|-----------------|---------|---------|
| 4   | А     | 4        | Total Mg<br>4 4 | 0       | 0       |
| 4   | В     | 1        | Total Mg<br>1 1 | 0       | 0       |
| 4   | D     | 3        | Total Mg<br>3 3 | 0       | 0       |
| 4   | Е     | 1        | Total Mg<br>1 1 | 0       | 0       |

• Molecule 5 is CITRIC ACID (three-letter code: CIT) (formula:  $C_6H_8O_7$ ).



| Mol | Chain | Residues | Atoms                                                                         | ZeroOcc | AltConf |
|-----|-------|----------|-------------------------------------------------------------------------------|---------|---------|
| 5   | А     | 1        | Total         C         O           13         6         7                    | 0       | 0       |
| 5   | А     | 1        | Total         C         O           13         6         7                    | 0       | 0       |
| 5   | А     | 1        | Total         C         O           13         6         7                    | 0       | 0       |
| 5   | В     | 1        | Total         C         O           13         6         7                    | 0       | 0       |
| 5   | В     | 1        | Total         C         O           13         6         7                    | 0       | 0       |
| 5   | D     | 1        | Total         C         O           13         6         7                    | 0       | 0       |
| 5   | D     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 13  6  7 \end{array}$ | 0       | 0       |
| 5   | D     | 1        | Total         C         O           13         6         7                    | 0       | 0       |



Continued from previous page...

| Mol | Chain | Residues | Atoms                                                                         | ZeroOcc | AltConf |
|-----|-------|----------|-------------------------------------------------------------------------------|---------|---------|
| 5   | Е     | 1        | Total         C         O           13         6         7                    | 0       | 0       |
| 5   | Е     | 1        | Total         C         O           13         6         7                    | 0       | 0       |
| 5   | Е     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 13  6  7 \end{array}$ | 0       | 0       |

• Molecule 6 is POTASSIUM ION (three-letter code: K) (formula: K).

| Mol | Chain | Residues | Atoms          | ZeroOcc | AltConf |
|-----|-------|----------|----------------|---------|---------|
| 6   | А     | 5        | Total K<br>5 5 | 0       | 0       |
| 6   | В     | 1        | Total K<br>1 1 | 0       | 0       |
| 6   | D     | 5        | Total K<br>5 5 | 0       | 0       |
| 6   | Е     | 1        | Total K<br>1 1 | 0       | 0       |

• Molecule 7 is water.

| Mol | Chain | Residues | Atoms                                                              | ZeroOcc | AltConf |
|-----|-------|----------|--------------------------------------------------------------------|---------|---------|
| 7   | А     | 45       | $\begin{array}{cc} \text{Total} & \text{O} \\ 45 & 45 \end{array}$ | 0       | 0       |
| 7   | В     | 10       | Total         O           10         10                            | 0       | 0       |
| 7   | С     | 3        | Total O<br>3 3                                                     | 0       | 0       |
| 7   | D     | 26       | Total         O           26         26                            | 0       | 0       |
| 7   | Е     | 11       | Total         O           11         11                            | 0       | 0       |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.



• Molecule 1: CRISPR-associated endonuclease Cas12a

• Molecule 1: CRISPR-associated endonuclease Cas12a



ASN



• Molecule 2: crRNA (40-MER)

Chain B: 38% 52% 10% A-18 A-17 

• Molecule 2: crRNA (40-MER)



| CT | 1 | т |  |
|----|---|---|--|
| 01 | T | L |  |

| Chain E:                                                                                                   | 32%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 55%                                                                                         | 12% |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----|
| A 18<br>C 114<br>C 114<br>C 1112<br>C 1112<br>C 10<br>C 10<br>C 10<br>C 10<br>C 10<br>C 10<br>C 10<br>C 10 | <mark>и - 7</mark><br>1- 7<br>8 - 6<br>6 - 6<br>8 - 3<br>8 - | 649<br>6110<br>6111<br>7115<br>0116<br>016<br>016<br>018<br>018<br>020<br>020<br>020<br>020 |     |
| • Molecule 3                                                                                               | : ssDNA target                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | strand                                                                                      |     |
| Chain C:                                                                                                   | 35%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 65%                                                                                         |     |
| A-20<br>A-19<br>A-19<br>A-15<br>A-15<br>A-15<br>A-15<br>A-15<br>A-15<br>A-15<br>A-15                       | C-11<br>7-9<br>7-3<br>7-3<br>7-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |     |
| • Molecule 3                                                                                               | : ssDNA target                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | strand                                                                                      |     |
| Chain F:                                                                                                   | 30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70%                                                                                         |     |
| A-20<br>A-16<br>A-16<br>A-16<br>A-15<br>A-12<br>A-12<br>A-12<br>C-11                                       | T-100<br>T-20<br>T-20<br>T-20<br>T-20<br>T-20<br>T-20<br>T-20<br>T-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |     |



## 4 Data and refinement statistics (i)

| Property                                       | Value                                           | Source    |
|------------------------------------------------|-------------------------------------------------|-----------|
| Space group                                    | P 21 21 21                                      | Depositor |
| Cell constants                                 | 78.80Å 188.58Å 284.12Å                          | Depositor |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$         | $90.00^{\circ}$ $90.00^{\circ}$ $90.00^{\circ}$ | Depositor |
| Bosolution (Å)                                 | 49.14 - 2.98                                    | Depositor |
|                                                | 49.14 - 2.98                                    | EDS       |
| % Data completeness                            | $100.0 \ (49.14-2.98)$                          | Depositor |
| (in resolution range)                          | 97.2 (49.14-2.98)                               | EDS       |
| $R_{merge}$                                    | (Not available)                                 | Depositor |
| $R_{sym}$                                      | (Not available)                                 | Depositor |
| $< I/\sigma(I) > 1$                            | $1.96 (at 2.96 \text{\AA})$                     | Xtriage   |
| Refinement program                             | PHENIX (1.14_3211: ???)                         | Depositor |
| B B.                                           | 0.204 , 0.231                                   | Depositor |
| $n, n_{free}$                                  | 0.204 , $0.231$                                 | DCC       |
| $R_{free}$ test set                            | 8753 reflections (10.00%)                       | wwPDB-VP  |
| Wilson B-factor $(Å^2)$                        | 75.0                                            | Xtriage   |
| Anisotropy                                     | 0.230                                           | Xtriage   |
| Bulk solvent $k_{sol}(e/A^3)$ , $B_{sol}(A^2)$ | 0.31 , $42.7$                                   | EDS       |
| L-test for twinning <sup>2</sup>               | $ < L >=0.46, < L^2>=0.28$                      | Xtriage   |
| Estimated twinning fraction                    | No twinning to report.                          | Xtriage   |
| $F_o, F_c$ correlation                         | 0.93                                            | EDS       |
| Total number of atoms                          | 23637                                           | wwPDB-VP  |
| Average B, all atoms $(Å^2)$                   | 85.0                                            | wwPDB-VP  |

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.39% of the height of the origin peak. No significant pseudotranslation is detected.

<sup>&</sup>lt;sup>2</sup>Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

# 5 Model quality (i)

### 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: CIT, MG, K

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | Chain | Bond lengths |          | Bond angles |          |
|-----|-------|--------------|----------|-------------|----------|
|     | Chain | RMSZ         | # Z  > 5 | RMSZ        | # Z  > 5 |
| 1   | А     | 0.32         | 0/10758  | 0.45        | 0/14440  |
| 1   | D     | 0.30         | 0/10553  | 0.44        | 0/14165  |
| 2   | В     | 0.45         | 0/942    | 0.90        | 0/1464   |
| 2   | Е     | 0.37         | 0/924    | 0.84        | 0/1437   |
| 3   | С     | 0.74         | 0/450    | 1.01        | 0/692    |
| 3   | F     | 0.69         | 0/450    | 1.00        | 0/692    |
| All | All   | 0.34         | 0/24077  | 0.53        | 0/32890  |

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | А     | 10551 | 0        | 10545    | 118     | 0            |
| 1   | D     | 10351 | 0        | 10342    | 141     | 0            |
| 2   | В     | 843   | 0        | 426      | 16      | 0            |
| 2   | Е     | 827   | 0        | 414      | 21      | 0            |
| 3   | С     | 403   | 0        | 231      | 12      | 0            |
| 3   | F     | 403   | 0        | 231      | 17      | 0            |
| 4   | А     | 4     | 0        | 0        | 0       | 0            |



| 6I1L |
|------|
|------|

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 4   | В     | 1     | 0        | 0        | 0       | 0            |
| 4   | D     | 3     | 0        | 0        | 0       | 0            |
| 4   | Е     | 1     | 0        | 0        | 0       | 0            |
| 5   | А     | 39    | 0        | 15       | 3       | 0            |
| 5   | В     | 26    | 0        | 10       | 1       | 0            |
| 5   | D     | 39    | 0        | 15       | 3       | 0            |
| 5   | Ε     | 39    | 0        | 15       | 1       | 0            |
| 6   | А     | 5     | 0        | 0        | 0       | 0            |
| 6   | В     | 1     | 0        | 0        | 0       | 0            |
| 6   | D     | 5     | 0        | 0        | 0       | 0            |
| 6   | Ε     | 1     | 0        | 0        | 0       | 0            |
| 7   | А     | 45    | 0        | 0        | 2       | 0            |
| 7   | В     | 10    | 0        | 0        | 0       | 0            |
| 7   | С     | 3     | 0        | 0        | 0       | 0            |
| 7   | D     | 26    | 0        | 0        | 1       | 0            |
| 7   | Е     | 11    | 0        | 0        | 0       | 0            |
| All | All   | 23637 | 0        | 22244    | 314     | 0            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 7.

All (314) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom 1            | Atom 2            | Interatomic  | Clash       |
|-------------------|-------------------|--------------|-------------|
| Atom-1            | Atom-2            | distance (Å) | overlap (Å) |
| 1:D:940:THR:HG22  | 1:D:942:ASN:H     | 1.39         | 0.87        |
| 1:D:922:HIS:HA    | 1:D:942:ASN:HD21  | 1.41         | 0.85        |
| 1:D:15:LYS:HG3    | 2:E:1:A:H5"       | 1.59         | 0.84        |
| 1:A:1293:GLU:O    | 1:A:1297:ASN:HB2  | 1.80         | 0.81        |
| 1:D:1191:ILE:HG22 | 1:D:1195:ILE:HG13 | 1.61         | 0.81        |
| 1:A:1165:THR:HG21 | 1:A:1221:LYS:HA   | 1.60         | 0.80        |
| 1:A:400:THR:HG23  | 1:A:410:TYR:HB2   | 1.64         | 0.79        |
| 1:A:400:THR:HG21  | 3:C:-20:DA:H62    | 1.50         | 0.75        |
| 1:A:443:LYS:HA    | 1:A:447:LYS:HB3   | 1.70         | 0.72        |
| 1:D:249:LYS:HD2   | 1:D:265:GLU:HG2   | 1.70         | 0.72        |
| 1:D:55:ASP:OD1    | 1:D:186:ARG:NH1   | 2.23         | 0.72        |
| 1:D:921:ARG:NH2   | 1:D:1221:LYS:O    | 2.24         | 0.71        |
| 1:D:443:LYS:HA    | 1:D:447:LYS:HB3   | 1.73         | 0.71        |
| 1:A:191:SER:HB3   | 1:A:195:ILE:HD11  | 1.72         | 0.71        |
| 1:D:923:LEU:HD21  | 1:D:1023:VAL:HG11 | 1.74         | 0.70        |
| 1:A:1108:PHE:HA   | 1:A:1111:LYS:HE3  | 1.75         | 0.68        |
| 1:D:537:LEU:HB2   | 1:D:575:ILE:HD11  | 1.76         | 0.67        |



| A + a 1          |                   | Interatomic             | Clash       |
|------------------|-------------------|-------------------------|-------------|
| Atom-1           | Atom-2            | distance $(\text{\AA})$ | overlap (Å) |
| 1:D:985:LEU:HA   | 1:D:988:VAL:HG12  | 1.76                    | 0.67        |
| 1:A:125:GLN:HG3  | 1:A:176:THR:HG21  | 1.76                    | 0.66        |
| 1:D:945:GLY:HA3  | 1:D:950:LYS:HA    | 1.79                    | 0.65        |
| 3:C:-17:DG:H2'   | 3:C:-16:DA:C8     | 2.32                    | 0.65        |
| 1:D:27:THR:HG21  | 1:D:785:LEU:H     | 1.62                    | 0.65        |
| 1:D:887:ASN:ND2  | 1:D:1056:GLN:OE1  | 2.30                    | 0.65        |
| 1:A:11:TYR:HB2   | 1:A:892:GLY:HA2   | 1.79                    | 0.64        |
| 1:D:1002:ILE:HA  | 1:D:1073:ILE:HG22 | 1.79                    | 0.64        |
| 1:A:65:ILE:HD13  | 1:A:113:ILE:HG22  | 1.79                    | 0.64        |
| 1:A:106:LYS:NZ   | 1:A:194:ASP:OD1   | 2.27                    | 0.64        |
| 1:D:49:LYS:NZ    | 1:D:158:ASP:O     | 2.30                    | 0.63        |
| 1:D:981:LYS:HD2  | 1:D:1023:VAL:HG22 | 1.81                    | 0.63        |
| 1:A:1038:LEU:HB3 | 1:A:1055:TYR:HB2  | 1.81                    | 0.62        |
| 3:F:-6:DT:H2"    | 3:F:-5:DA:H5"     | 1.82                    | 0.61        |
| 1:D:391:ILE:HG22 | 1:D:453:LEU:HD13  | 1.81                    | 0.61        |
| 1:D:534:ASN:HA   | 1:D:575:ILE:HD12  | 1.81                    | 0.60        |
| 2:B:-3:A:H8      | 2:B:-3:A:H5"      | 1.66                    | 0.60        |
| 1:A:922:HIS:HA   | 1:A:942:ASN:HD21  | 1.67                    | 0.59        |
| 1:D:342:LEU:HD22 | 1:D:347:ASP:HB3   | 1.84                    | 0.59        |
| 5:A:1406:CIT:O3  | 5:A:1406:CIT:O7   | 2.21                    | 0.59        |
| 1:D:964:ARG:HA   | 1:D:974:ILE:HD13  | 1.85                    | 0.59        |
| 1:A:497:ASP:O    | 1:A:500:ALA:HB3   | 2.03                    | 0.59        |
| 1:A:693:ASN:HB3  | 1:A:707:TYR:CD1   | 2.38                    | 0.59        |
| 1:D:18:ARG:NH2   | 5:D:1405:CIT:O6   | 2.36                    | 0.59        |
| 1:A:463:PHE:CE2  | 1:A:467:ARG:HD2   | 2.38                    | 0.58        |
| 2:E:10:G:H2'     | 2:E:11:G:H8       | 1.67                    | 0.58        |
| 1:A:404:GLN:HG2  | 1:A:410:TYR:HB3   | 1.85                    | 0.58        |
| 1:D:1174:LEU:HG  | 1:D:1210:VAL:HG11 | 1.84                    | 0.58        |
| 1:A:235:LYS:HD3  | 1:A:242:LEU:HD13  | 1.85                    | 0.58        |
| 1:A:400:THR:HG21 | 3:C:-20:DA:N6     | 2.17                    | 0.58        |
| 1:A:687:ASP:O    | 1:A:691:ILE:HG12  | 2.04                    | 0.58        |
| 1:A:964:ARG:NH2  | 3:C:-9:DT:O3'     | 2.36                    | 0.58        |
| 1:A:1069:LYS:HB2 | 1:A:1284:LEU:HD13 | 1.85                    | 0.57        |
| 1:A:696:THR:HG22 | 1:A:710:PHE:HB2   | 1.87                    | 0.57        |
| 1:D:355:PHE:CZ   | 1:D:575:ILE:HG23  | 2.39                    | 0.57        |
| 1:A:409:ASP:HB3  | 1:A:412:VAL:HG23  | 1.86                    | 0.57        |
| 3:F:-5:DA:H2"    | 3:F:-4:DA:H8      | 1.70                    | 0.57        |
| 1:D:973:LYS:NZ   | 3:F:-9:DT:OP1     | 2.28                    | 0.57        |
| 1:A:823:LYS:HD2  | 1:A:888:PHE:CE1   | 2.41                    | 0.56        |
| 3:C:-12:DA:H2'   | 3:C:-11:DC:C6     | 2.39                    | 0.56        |
| 1:D:328:ILE:HG22 | 1:D:329:LEU:HD13  | 1.85                    | 0.56        |



|                   |                   | Interatomic             | Clash       |
|-------------------|-------------------|-------------------------|-------------|
| Atom-1            | Atom-2            | distance $(\text{\AA})$ | overlap (Å) |
| 1:D:1235:ASP:OD1  | 1:D:1239:ASN:N    | 2.37                    | 0.56        |
| 1:D:640:ILE:HG21  | 1:D:777:VAL:HG11  | 1.86                    | 0.56        |
| 1:A:821:VAL:HG23  | 1:A:822:TYR:CD2   | 2.40                    | 0.56        |
| 1:A:425:ILE:HD12  | 1:A:441:ILE:HD13  | 1.88                    | 0.56        |
| 1:A:965:ASP:OD2   | 1:A:969:LYS:NZ    | 2.27                    | 0.56        |
| 1:D:390:LYS:HB3   | 1:D:558:ASP:N     | 2.20                    | 0.56        |
| 1:D:462:GLU:HA    | 1:D:465:LYS:HE3   | 1.88                    | 0.55        |
| 1:A:1058:THR:HA   | 1:A:1072:GLY:HA3  | 1.89                    | 0.55        |
| 1:A:651:GLY:O     | 1:A:768:ASN:HB3   | 2.06                    | 0.55        |
| 1:D:976:ASN:HB3   | 1:D:979:GLU:HB2   | 1.88                    | 0.55        |
| 3:F:-17:DG:H2'    | 3:F:-16:DA:C8     | 2.41                    | 0.54        |
| 1:D:974:ILE:HD12  | 1:D:977:ILE:HD11  | 1.89                    | 0.54        |
| 1:D:791:LYS:N     | 2:E:-15:U:OP1     | 2.40                    | 0.54        |
| 1:D:259:SER:HB3   | 1:D:262:GLU:HG3   | 1.90                    | 0.54        |
| 3:C:-15:DA:H3'    | 3:C:-14:DT:H71    | 1.90                    | 0.53        |
| 1:D:1117:TYR:HD1  | 1:D:1124:PHE:CE1  | 2.26                    | 0.53        |
| 1:A:61:PHE:CZ     | 1:A:65:ILE:HD11   | 2.43                    | 0.53        |
| 1:D:1017:PHE:N    | 1:D:1021:LYS:HD2  | 2.23                    | 0.53        |
| 5:E:104:CIT:O4    | 5:E:104:CIT:O7    | 2.26                    | 0.53        |
| 2:B:16:U:H2'      | 2:B:17:C:C6       | 2.44                    | 0.53        |
| 1:D:938:GLN:NE2   | 1:D:1250:MET:O    | 2.42                    | 0.53        |
| 3:F:-12:DA:H2'    | 3:F:-11:DC:C6     | 2.44                    | 0.53        |
| 1:D:174:GLY:HA2   | 5:D:1406:CIT:H22  | 1.90                    | 0.52        |
| 5:A:1405:CIT:O4   | 5:A:1405:CIT:O7   | 2.27                    | 0.52        |
| 2:B:-18:A:O5'     | 5:B:103:CIT:H41   | 2.09                    | 0.52        |
| 1:D:27:THR:CG2    | 1:D:785:LEU:H     | 2.22                    | 0.52        |
| 2:E:10:G:H2'      | 2:E:11:G:C8       | 2.43                    | 0.52        |
| 2:E:16:U:H2'      | 2:E:17:C:C6       | 2.45                    | 0.52        |
| 1:A:1097:PRO:HB2  | 1:A:1208:THR:HG23 | 1.90                    | 0.52        |
| 1:A:109:ILE:O     | 1:A:113:ILE:HG23  | 2.10                    | 0.52        |
| 1:A:512:LYS:HA    | 1:A:585:TYR:OH    | 2.10                    | 0.52        |
| 1:D:470:ASP:N     | 1:D:470:ASP:OD1   | 2.43                    | 0.51        |
| 2:E:1:A:H1'       | 2:E:2:G:C8        | 2.44                    | 0.51        |
| 1:A:759:ASN:HB3   | 1:A:889:LYS:HG2   | 1.93                    | 0.51        |
| 1:A:810:ALA:O     | 1:A:816:ASN:ND2   | 2.43                    | 0.51        |
| 1:D:922:HIS:HA    | 1:D:942:ASN:ND2   | 2.19                    | 0.51        |
| 1:D:1063:THR:HG23 | 1:D:1066:LYS:H    | 1.76                    | 0.51        |
| 1:D:1057:LEU:HB3  | 1:D:1073:ILE:CD1  | 2.40                    | 0.51        |
| 1:D:409:ASP:HB3   | 1:D:412:VAL:HG23  | 1.93                    | 0.51        |
| 3:F:-6:DT:C2'     | 3:F:-5:DA:H5"     | 2.40                    | 0.51        |
| 3:F:-6:DT:H2'     | 3:F:-5:DA:H8      | 1.76                    | 0.51        |



|                   | 1 J               | Interatomic             | Clash       |
|-------------------|-------------------|-------------------------|-------------|
| Atom-1            | Atom-2            | distance $(\text{\AA})$ | overlap (Å) |
| 1:A:243:THR:HA    | 1:A:256:ARG:O     | 2.11                    | 0.51        |
| 1:D:1032:ILE:HG21 | 1:D:1061:PHE:HB2  | 1.92                    | 0.51        |
| 1:D:1151:LEU:N    | 1:D:1219:ASN:OD1  | 2.40                    | 0.50        |
| 1:D:661:LEU:HA    | 1:D:761:GLY:O     | 2.10                    | 0.50        |
| 2:B:20:U:H5'      | 2:B:21:C:OP1      | 2.11                    | 0.50        |
| 1:D:982:GLU:HG2   | 1:D:1030:MET:HE1  | 1.92                    | 0.50        |
| 1:D:1124:PHE:CE2  | 1:D:1174:LEU:HB3  | 2.46                    | 0.50        |
| 1:A:1095:LEU:O    | 1:A:1097:PRO:HD3  | 2.11                    | 0.50        |
| 1:D:921:ARG:NH2   | 1:D:1220:SER:HB2  | 2.26                    | 0.50        |
| 1:D:669:LEU:HB2   | 1:D:670:PRO:HD3   | 1.93                    | 0.50        |
| 1:D:957:LEU:O     | 1:D:960:ILE:HG22  | 2.12                    | 0.50        |
| 1:A:397:LYS:NZ    | 3:C:-19:DT:O4     | 2.44                    | 0.50        |
| 1:A:26:LYS:NZ     | 7:A:1505:HOH:O    | 2.45                    | 0.49        |
| 1:A:821:VAL:HG23  | 1:A:822:TYR:HD2   | 1.76                    | 0.49        |
| 2:B:-10:C:O2'     | 2:B:-8:G:N7       | 2.38                    | 0.49        |
| 1:A:1218:ARG:NH1  | 1:A:1227:ASP:OD2  | 2.45                    | 0.49        |
| 2:B:-3:A:H5"      | 2:B:-3:A:C8       | 2.46                    | 0.49        |
| 1:D:267:ALA:O     | 1:D:270:ASN:ND2   | 2.46                    | 0.49        |
| 1:A:985:LEU:HD11  | 1:A:1023:VAL:HG12 | 1.94                    | 0.49        |
| 1:A:1272:ARG:NH2  | 1:A:1290:GLU:OE1  | 2.45                    | 0.49        |
| 1:D:468:ASP:HB2   | 1:D:471:LYS:HE3   | 1.94                    | 0.49        |
| 1:A:1234:ALA:HB2  | 1:A:1240:PHE:CZ   | 2.47                    | 0.49        |
| 1:D:221:LEU:HB2   | 1:D:319:TYR:HD1   | 1.78                    | 0.49        |
| 1:A:289:PHE:CE2   | 1:A:296:LYS:HD2   | 2.47                    | 0.49        |
| 1:A:464:ASN:HB3   | 1:A:472:GLN:NE2   | 2.28                    | 0.49        |
| 1:D:1272:ARG:NH1  | 1:D:1285:VAL:O    | 2.39                    | 0.48        |
| 1:A:953:TYR:CD1   | 1:A:984:TYR:HB2   | 2.48                    | 0.48        |
| 1:D:924:ALA:HB3   | 1:D:941:PHE:HB2   | 1.94                    | 0.48        |
| 2:E:13:A:H2'      | 2:E:14:A:C8       | 2.48                    | 0.48        |
| 3:C:-15:DA:H5"    | 3:C:-15:DA:H8     | 1.78                    | 0.48        |
| 1:D:231:TYR:O     | 1:D:235:LYS:HG2   | 2.13                    | 0.48        |
| 1:A:407:PHE:CD1   | 1:A:473:CYS:HB3   | 2.48                    | 0.48        |
| 1:D:259:SER:O     | 1:D:263:VAL:HG13  | 2.13                    | 0.48        |
| 1:A:597:LYS:HE2   | 1:A:829:GLU:OE2   | 2.14                    | 0.48        |
| 1:D:463:PHE:CE2   | 1:D:467:ARG:HD2   | 2.49                    | 0.48        |
| 1:D:560:HIS:O     | 1:D:564:VAL:HG23  | 2.13                    | 0.48        |
| 1:D:345:ASP:OD2   | 1:D:513:ASP:N     | 2.36                    | 0.48        |
| 1:D:382:LYS:HA    | 1:D:479:LEU:HD13  | 1.95                    | 0.48        |
| 1:D:618:THR:HG22  | 1:D:633:MET:H     | 1.77                    | 0.48        |
| 1:D:661:LEU:HG    | 1:D:663:PRO:HD3   | 1.95                    | 0.48        |
| 1:D:499:LEU:HD21  | 1:D:525:ALA:HB1   | 1.95                    | 0.48        |



| Atom 1            | Atom 2            | Interatomic             | Clash       |
|-------------------|-------------------|-------------------------|-------------|
| Atom-1            | Atom-2            | distance $(\text{\AA})$ | overlap (Å) |
| 1:D:800:ARG:NH2   | 7:D:1502:HOH:O    | 2.47                    | 0.48        |
| 1:A:996:VAL:HA    | 1:A:1001:ALA:HB3  | 1.95                    | 0.47        |
| 1:D:359:ILE:HD12  | 1:D:572:LEU:HD23  | 1.96                    | 0.47        |
| 1:D:4:TYR:CZ      | 1:D:1073:ILE:HD13 | 2.49                    | 0.47        |
| 1:D:823:LYS:HD2   | 1:D:888:PHE:CE1   | 2.49                    | 0.47        |
| 1:A:945:GLY:HA3   | 1:A:950:LYS:HA    | 1.95                    | 0.47        |
| 2:E:-12:U:H2'     | 2:E:-11:A:C8      | 2.48                    | 0.47        |
| 1:A:58:HIS:O      | 1:A:62:ILE:HG13   | 2.15                    | 0.47        |
| 1:A:1023:VAL:HG12 | 1:A:1023:VAL:O    | 2.15                    | 0.47        |
| 1:D:671:LYS:O     | 1:D:675:SER:HB3   | 2.14                    | 0.47        |
| 1:D:945:GLY:HA3   | 1:D:950:LYS:HG2   | 1.97                    | 0.47        |
| 1:D:964:ARG:CZ    | 1:D:977:ILE:HD12  | 2.45                    | 0.47        |
| 2:B:-14:U:H2'     | 2:B:-13:C:C6      | 2.50                    | 0.47        |
| 1:D:390:LYS:HB3   | 1:D:558:ASP:H     | 1.79                    | 0.47        |
| 1:D:463:PHE:CZ    | 1:D:467:ARG:HD2   | 2.49                    | 0.47        |
| 1:A:470:ASP:OD2   | 1:A:470:ASP:N     | 2.47                    | 0.47        |
| 3:F:-13:DT:H2'    | 3:F:-12:DA:C8     | 2.50                    | 0.47        |
| 1:A:199:ILE:HG22  | 1:A:328:ILE:HB    | 1.95                    | 0.47        |
| 1:A:623:ILE:HG13  | 1:A:657:ILE:HD11  | 1.97                    | 0.47        |
| 1:A:695:SER:O     | 1:A:709:LYS:HE3   | 2.14                    | 0.47        |
| 1:A:574:ASN:O     | 1:A:577:PRO:HD2   | 2.15                    | 0.47        |
| 1:D:967:ALA:HB1   | 1:D:972:LYS:HG2   | 1.97                    | 0.47        |
| 1:D:932:LYS:O     | 1:D:1298:ARG:NH2  | 2.46                    | 0.46        |
| 1:A:229:ILE:HG22  | 1:A:303:TYR:HB2   | 1.97                    | 0.46        |
| 1:A:543:PHE:HB2   | 1:A:565:PHE:CZ    | 2.50                    | 0.46        |
| 1:A:844:PRO:HG2   | 1:A:847:GLU:OE1   | 2.15                    | 0.46        |
| 1:D:921:ARG:HH22  | 1:D:1220:SER:HB2  | 1.79                    | 0.46        |
| 1:A:110:SER:O     | 1:A:113:ILE:HG12  | 2.15                    | 0.46        |
| 1:A:182:PHE:O     | 1:A:185:ASN:HB2   | 2.15                    | 0.46        |
| 1:D:188:ASN:HB3   | 1:D:197:THR:OG1   | 2.15                    | 0.46        |
| 3:F:-13:DT:H2'    | 3:F:-12:DA:H8     | 1.80                    | 0.46        |
| 1:A:402:LEU:HD21  | 1:A:478:ILE:HG23  | 1.98                    | 0.46        |
| 1:A:871:LYS:HE2   | 2:B:-16:U:OP1     | 2.15                    | 0.46        |
| 1:A:1021:LYS:O    | 1:A:1023:VAL:HG23 | 2.16                    | 0.46        |
| 2:E:12:U:H2'      | 2:E:13:A:C8       | 2.51                    | 0.46        |
| 1:D:544:HIS:ND1   | 1:D:566:GLU:OE1   | 2.40                    | 0.46        |
| 1:D:978:LYS:O     | 1:D:982:GLU:HG3   | 2.16                    | 0.46        |
| 3:F:-6:DT:H2'     | 3:F:-5:DA:C8      | 2.51                    | 0.46        |
| 1:A:241:GLU:HG2   | 1:A:283:THR:HB    | 1.96                    | 0.46        |
| 1:A:371:LYS:HD3   | 1:A:489:PHE:HB2   | 1.97                    | 0.46        |
| 1:A:693:ASN:HA    | 1:A:704:GLN:HB2   | 1.98                    | 0.46        |



| A 4 a m 1         |                   | Interatomic             | Clash       |
|-------------------|-------------------|-------------------------|-------------|
| Atom-1            | Atom-2            | distance $(\text{\AA})$ | overlap (Å) |
| 1:A:1152:ILE:HD12 | 1:A:1168:VAL:HG21 | 1.98                    | 0.46        |
| 1:D:65:ILE:O      | 1:D:69:VAL:HG23   | 2.16                    | 0.46        |
| 1:D:512:LYS:HA    | 1:D:585:TYR:OH    | 2.16                    | 0.46        |
| 1:D:880:PHE:CE2   | 1:D:882:CYS:HB2   | 2.51                    | 0.46        |
| 1:A:917:ASP:OD1   | 1:A:918:ARG:N     | 2.46                    | 0.45        |
| 3:C:-4:DA:H3'     | 3:C:-3:DT:H71     | 1.98                    | 0.45        |
| 1:D:917:ASP:HB2   | 1:D:1262:ILE:HD12 | 1.97                    | 0.45        |
| 3:F:-14:DT:H2'    | 3:F:-13:DT:C6     | 2.51                    | 0.45        |
| 1:D:402:LEU:HD21  | 1:D:478:ILE:HG23  | 1.99                    | 0.45        |
| 1:D:1117:TYR:CE2  | 1:D:1119:LEU:HD23 | 2.51                    | 0.45        |
| 3:F:-4:DA:H3'     | 3:F:-3:DT:H71     | 1.98                    | 0.45        |
| 1:A:1291:TYR:O    | 1:A:1295:VAL:HG12 | 2.17                    | 0.45        |
| 2:B:13:A:H2'      | 2:B:14:A:C8       | 2.51                    | 0.45        |
| 1:D:543:PHE:HB2   | 1:D:565:PHE:CZ    | 2.51                    | 0.45        |
| 1:D:640:ILE:HD11  | 1:D:782:LYS:HB3   | 1.99                    | 0.45        |
| 2:E:13:A:H2'      | 2:E:14:A:H8       | 1.82                    | 0.45        |
| 1:A:944:ILE:HD11  | 1:A:991:GLU:HG3   | 1.99                    | 0.45        |
| 1:D:965:ASP:O     | 1:D:969:LYS:HD3   | 2.17                    | 0.45        |
| 1:A:259:SER:O     | 1:A:263:VAL:HG13  | 2.16                    | 0.45        |
| 2:E:8:A:H2'       | 2:E:9:A:C8        | 2.52                    | 0.45        |
| 1:D:34:ARG:NH1    | 1:D:601:GLU:OE2   | 2.49                    | 0.45        |
| 1:A:597:LYS:NZ    | 7:A:1503:HOH:O    | 2.39                    | 0.45        |
| 1:A:840:LYS:O     | 1:A:868:ILE:HG23  | 2.16                    | 0.45        |
| 1:D:1185:TYR:HB3  | 1:D:1191:ILE:HD11 | 1.99                    | 0.45        |
| 2:B:-13:C:H2'     | 2:B:-12:U:C6      | 2.52                    | 0.44        |
| 1:A:1272:ARG:HB3  | 1:A:1282:LEU:HD11 | 1.99                    | 0.44        |
| 1:D:1236:VAL:HG21 | 1:D:1299:ASN:HD21 | 1.83                    | 0.44        |
| 1:D:537:LEU:CB    | 1:D:575:ILE:HD11  | 2.45                    | 0.44        |
| 1:A:196:PRO:HA    | 1:A:201:TYR:CD2   | 2.52                    | 0.44        |
| 1:D:1175:GLU:HG2  | 1:D:1185:TYR:CE1  | 2.52                    | 0.44        |
| 1:D:1242:ASP:OD2  | 1:D:1244:ARG:HG3  | 2.18                    | 0.44        |
| 1:A:886:ILE:HG21  | 1:A:1037:TYR:CZ   | 2.53                    | 0.44        |
| 1:D:922:HIS:HB3   | 1:D:940:THR:HG23  | 2.00                    | 0.44        |
| 1:A:184:GLU:HG2   | 3:C:-3:DT:H2"     | 1.99                    | 0.44        |
| 2:B:-5:G:C2       | 2:B:-4:U:C5       | 3.06                    | 0.44        |
| 2:E:-5:G:H2'      | 2:E:-4:U:H5'      | 2.00                    | 0.44        |
| 1:A:699:LYS:O     | 1:A:699:LYS:HD3   | 2.17                    | 0.43        |
| 1:D:356:TYR:CE2   | 1:D:533:THR:HG21  | 2.53                    | 0.43        |
| 2:E:17:C:H2'      | 2:E:18:U:O4'      | 2.18                    | 0.43        |
| 1:A:359:ILE:HD12  | 1:A:572:LEU:HD23  | 2.01                    | 0.43        |
| 1:D:196:PRO:HA    | 1:D:201:TYR:CD2   | 2.52                    | 0.43        |



|                   |                   | Interatomic             | Clash       |
|-------------------|-------------------|-------------------------|-------------|
| Atom-1            | Atom-2            | distance $(\text{\AA})$ | overlap (Å) |
| 1:D:352:MET:CE    | 1:D:526:ILE:HG23  | 2.48                    | 0.43        |
| 1:D:886:ILE:HG21  | 1:D:1037:TYR:CZ   | 2.53                    | 0.43        |
| 2:B:2:G:H2'       | 2:B:3:A:C8        | 2.53                    | 0.43        |
| 1:A:1174:LEU:HD12 | 1:A:1174:LEU:HA   | 1.86                    | 0.43        |
| 3:C:-18:DA:H2'    | 3:C:-17:DG:H8     | 1.83                    | 0.43        |
| 1:D:808:TRP:O     | 1:D:811:LEU:HB2   | 2.18                    | 0.43        |
| 1:D:869:LYS:HB2   | 2:E:-18:A:H5"     | 1.99                    | 0.43        |
| 1:A:34:ARG:NH1    | 1:A:601:GLU:OE1   | 2.50                    | 0.43        |
| 1:A:289:PHE:CE1   | 1:A:296:LYS:HB2   | 2.52                    | 0.43        |
| 1:A:1151:LEU:O    | 1:A:1216:GLN:NE2  | 2.45                    | 0.43        |
| 1:D:572:LEU:O     | 1:D:575:ILE:HG12  | 2.19                    | 0.43        |
| 1:D:974:ILE:CD1   | 1:D:977:ILE:HD11  | 2.48                    | 0.43        |
| 1:D:289:PHE:CE1   | 1:D:296:LYS:HB2   | 2.54                    | 0.43        |
| 1:D:545:ILE:HG12  | 1:D:566:GLU:OE2   | 2.19                    | 0.43        |
| 1:A:511:LYS:HA    | 1:A:511:LYS:HD3   | 1.73                    | 0.42        |
| 1:D:1026:LYS:HZ3  | 3:F:-7:DT:P       | 2.42                    | 0.42        |
| 1:D:15:LYS:HE3    | 1:D:15:LYS:HB2    | 1.84                    | 0.42        |
| 1:D:651:GLY:O     | 1:D:768:ASN:HB3   | 2.20                    | 0.42        |
| 1:D:1081:PHE:CD1  | 1:D:1092:VAL:HG11 | 2.54                    | 0.42        |
| 1:D:576:VAL:HB    | 1:D:577:PRO:HD3   | 2.01                    | 0.42        |
| 1:D:774:ILE:O     | 1:D:778:VAL:HG12  | 2.19                    | 0.42        |
| 1:D:941:PHE:HD1   | 1:D:944:ILE:HD11  | 1.85                    | 0.42        |
| 1:D:979:GLU:N     | 1:D:979:GLU:OE2   | 2.53                    | 0.42        |
| 1:D:1117:TYR:HB3  | 1:D:1188:GLY:HA2  | 2.00                    | 0.42        |
| 1:A:671:LYS:O     | 1:A:675:SER:HB3   | 2.19                    | 0.42        |
| 1:A:820:VAL:H     | 1:A:889:LYS:NZ    | 2.18                    | 0.42        |
| 1:D:782:LYS:NZ    | 5:D:1404:CIT:O4   | 2.44                    | 0.42        |
| 1:D:941:PHE:CD1   | 1:D:988:VAL:HG23  | 2.54                    | 0.42        |
| 1:A:429:ASN:HB3   | 1:A:432:ASN:O     | 2.19                    | 0.42        |
| 1:A:499:LEU:CD1   | 1:A:529:LEU:HD22  | 2.50                    | 0.42        |
| 1:A:927:THR:HG21  | 1:A:1260:TYR:HA   | 2.00                    | 0.42        |
| 1:D:773:TYR:O     | 1:D:777:VAL:HG23  | 2.20                    | 0.42        |
| 1:A:45:LYS:NZ     | 1:D:32:LYS:O      | 2.45                    | 0.42        |
| 2:B:-2:G:H2'      | 2:B:-1:A:O4'      | 2.19                    | 0.42        |
| 2:E:-14:U:H2'     | 2:E:-13:C:C6      | 2.54                    | 0.42        |
| 2:E:-5:G:C2'      | 2:E:-4:U:H5'      | 2.49                    | 0.42        |
| 3:F:-15:DA:H2'    | 3:F:-14:DT:C6     | 2.54                    | 0.42        |
| 1:A:329:LEU:HD23  | 1:A:329:LEU:HA    | 1.86                    | 0.42        |
| 3:F:-17:DG:H2'    | 3:F:-16:DA:H8     | 1.84                    | 0.42        |
| 1:A:693:ASN:HB3   | 1:A:707:TYR:HD1   | 1.84                    | 0.42        |
| 1:D:291:ASN:HB3   | 1:D:337:PHE:CD1   | 2.54                    | 0.42        |



|                   |                   | Interatomic             | Clash       |
|-------------------|-------------------|-------------------------|-------------|
| Atom-1            | Atom-2            | distance $(\text{\AA})$ | overlap (Å) |
| 1:D:1119:LEU:HD21 | 1:D:1186:GLY:O    | 2.20                    | 0.42        |
| 1:D:1150:ARG:HG2  | 1:D:1213:THR:O    | 2.20                    | 0.42        |
| 2:E:-14:U:H2'     | 2:E:-13:C:H6      | 1.85                    | 0.42        |
| 1:D:1057:LEU:O    | 1:D:1073:ILE:HG13 | 2.20                    | 0.41        |
| 1:A:527:LYS:HE3   | 1:A:969:LYS:O     | 2.20                    | 0.41        |
| 1:A:921:ARG:NH1   | 1:A:1222:THR:HA   | 2.35                    | 0.41        |
| 1:A:1034:LYS:HD3  | 2:B:0:U:P         | 2.60                    | 0.41        |
| 1:A:1115:ILE:HD12 | 1:A:1192:LYS:HG3  | 2.02                    | 0.41        |
| 1:A:1220:SER:HB3  | 1:A:1227:ASP:HA   | 2.02                    | 0.41        |
| 1:A:635:LYS:HA    | 1:A:635:LYS:HD2   | 1.80                    | 0.41        |
| 1:A:1043:ASN:HD22 | 1:A:1049:GLY:HA3  | 1.85                    | 0.41        |
| 2:B:12:U:H2'      | 2:B:13:A:C8       | 2.55                    | 0.41        |
| 1:D:1124:PHE:CZ   | 1:D:1178:LEU:HD12 | 2.56                    | 0.41        |
| 1:A:249:LYS:HD2   | 1:A:265:GLU:HG2   | 2.02                    | 0.41        |
| 1:A:782:LYS:HZ3   | 5:A:1405:CIT:H22  | 1.86                    | 0.41        |
| 3:C:-14:DT:H2'    | 3:C:-13:DT:C6     | 2.56                    | 0.41        |
| 1:D:16:THR:HG21   | 2:E:2:G:H1'       | 2.02                    | 0.41        |
| 1:D:422:THR:HG22  | 1:D:441:ILE:HD13  | 2.01                    | 0.41        |
| 1:D:450:TYR:OH    | 1:D:545:ILE:HA    | 2.21                    | 0.41        |
| 3:F:-3:DT:H2'     | 3:F:-2:DC:C6      | 2.55                    | 0.41        |
| 1:D:597:LYS:NZ    | 1:D:829:GLU:HG2   | 2.35                    | 0.41        |
| 1:D:922:HIS:ND1   | 1:D:1255:ASP:OD2  | 2.52                    | 0.41        |
| 1:A:188:ASN:HB3   | 1:A:197:THR:OG1   | 2.20                    | 0.41        |
| 1:A:342:LEU:HG    | 1:A:581:LYS:HB3   | 2.01                    | 0.41        |
| 1:A:141:TRP:CE3   | 1:A:142:LEU:HD12  | 2.56                    | 0.41        |
| 1:A:308:SER:HA    | 1:A:316:LEU:HD12  | 2.03                    | 0.41        |
| 1:A:392:TYR:HB3   | 1:A:450:TYR:HB3   | 2.02                    | 0.41        |
| 1:A:1217:MET:O    | 1:A:1229:LEU:HA   | 2.21                    | 0.41        |
| 1:D:918:ARG:HH11  | 1:D:1021:LYS:HG2  | 1.85                    | 0.41        |
| 1:D:964:ARG:HA    | 1:D:974:ILE:CD1   | 2.51                    | 0.41        |
| 1:D:1058:THR:HA   | 1:D:1072:GLY:HA3  | 2.03                    | 0.41        |
| 1:D:1183:ILE:HG21 | 1:D:1191:ILE:HG23 | 2.02                    | 0.41        |
| 1:D:816:ASN:O     | 1:D:820:VAL:HA    | 2.21                    | 0.41        |
| 1:A:927:THR:HG22  | 1:A:929:VAL:HG23  | 2.03                    | 0.40        |
| 1:D:1094:GLN:HA   | 1:D:1096:TYR:CE2  | 2.56                    | 0.40        |
| 2:E:-4:U:H2'      | 2:E:-3:A:C8       | 2.56                    | 0.40        |
| 3:F:-5:DA:H2"     | 3:F:-4:DA:C8      | 2.55                    | 0.40        |
| 2:B:2:G:H2'       | 2:B:3:A:H8        | 1.86                    | 0.40        |
| 1:D:49:LYS:HB3    | 1:D:168:ILE:HD13  | 2.02                    | 0.40        |
| 1:D:1235:ASP:OD1  | 1:D:1238:GLY:N    | 2.53                    | 0.40        |
| 2:E:2:G:H2'       | 2:E:3:A:C8        | 2.56                    | 0.40        |



| Atom-1           | Atom-2           | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|------------------|------------------|-----------------------------|----------------------|
| 1:A:421:ILE:HG22 | 1:A:441:ILE:HD13 | 2.03                        | 0.40                 |
| 1:A:1087:PRO:HG3 | 1:A:1257:ASN:OD1 | 2.21                        | 0.40                 |
| 1:A:492:ILE:HG23 | 1:A:529:LEU:HD11 | 2.03                        | 0.40                 |
| 1:A:1082:THR:O   | 1:A:1261:HIS:HB2 | 2.22                        | 0.40                 |
| 1:D:985:LEU:HD22 | 1:D:1027:LEU:HB2 | 2.02                        | 0.40                 |
| 1:A:527:LYS:NZ   | 1:A:531:ASP:OD1  | 2.54                        | 0.40                 |
| 1:A:797:SER:OG   | 1:A:798:LYS:N    | 2.54                        | 0.40                 |
| 1:D:337:PHE:CE2  | 1:D:339:ILE:HD13 | 2.56                        | 0.40                 |
| 1:D:938:GLN:NE2  | 1:D:1252:GLN:HG2 | 2.37                        | 0.40                 |
| 2:E:19:A:H2'     | 2:E:20:U:C6      | 2.57                        | 0.40                 |

There are no symmetry-related clashes.

### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Favoured   | Allowed | Outliers | Perce | ntiles |
|-----|-------|-----------------|------------|---------|----------|-------|--------|
| 1   | А     | 1265/1301~(97%) | 1217 (96%) | 48 (4%) | 0        | 100   | 100    |
| 1   | D     | 1238/1301~(95%) | 1213~(98%) | 25~(2%) | 0        | 100   | 100    |
| All | All   | 2503/2602~(96%) | 2430 (97%) | 73~(3%) | 0        | 100   | 100    |

There are no Ramachandran outliers to report.

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.



| Mol | Chain | Analysed        | Rotameric   | Outliers | Perce | ntiles |
|-----|-------|-----------------|-------------|----------|-------|--------|
| 1   | А     | 1163/1184~(98%) | 1156 (99%)  | 7(1%)    | 86    | 94     |
| 1   | D     | 1142/1184 (96%) | 1139 (100%) | 3~(0%)   | 92    | 97     |
| All | All   | 2305/2368~(97%) | 2295 (100%) | 10 (0%)  | 91    | 97     |

All (10) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 1   | А     | 151  | GLU  |
| 1   | А     | 473  | CYS  |
| 1   | А     | 694  | HIS  |
| 1   | А     | 804  | HIS  |
| 1   | А     | 852  | LYS  |
| 1   | А     | 1014 | ARG  |
| 1   | А     | 1284 | LEU  |
| 1   | D     | 720  | PHE  |
| 1   | D     | 1130 | TYR  |
| 1   | D     | 1150 | ARG  |

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (1) such side chains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | D     | 538 | HIS  |

#### 5.3.3 RNA (i)

| Mol | Chain | Analysed    | Backbone Outliers | Pucker Outliers |
|-----|-------|-------------|-------------------|-----------------|
| 2   | В     | 39/40~(97%) | 7~(17%)           | 0               |
| 2   | Е     | 38/40~(95%) | 8 (21%)           | 0               |
| All | All   | 77/80~(96%) | 15 (19%)          | 0               |

All (15) RNA backbone outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | В     | -8  | G    |
| 2   | В     | -6  | U    |
| 2   | В     | -5  | G    |
| 2   | В     | -4  | U    |
| 2   | В     | 1   | А    |
| 2   | В     | 18  | U    |
| 2   | В     | 21  | С    |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | Е     | -10 | С    |
| 2   | Е     | -8  | G    |
| 2   | Е     | -6  | U    |
| 2   | Е     | -5  | G    |
| 2   | Е     | -4  | U    |
| 2   | Е     | 1   | А    |
| 2   | Е     | 18  | U    |
| 2   | Е     | 20  | U    |

There are no RNA pucker outliers to report.

#### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

#### 5.6 Ligand geometry (i)

Of 32 ligands modelled in this entry, 21 are monoatomic - leaving 11 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal   | Turne | Chain | Dec  | Res Link | Bo       | ond leng | $_{\rm sths}$ | B              | ond ang | les     |
|-------|-------|-------|------|----------|----------|----------|---------------|----------------|---------|---------|
| INIOI | туре  | Unain | nes  | LIIIK    | Counts   | RMSZ     | # Z  > 2      | Counts         | RMSZ    | # Z >2  |
| 5     | CIT   | Е     | 104  | -        | 12,12,12 | 1.03     | 0             | 17,17,17       | 1.61    | 2 (11%) |
| 5     | CIT   | Е     | 102  | -        | 12,12,12 | 1.01     | 0             | 17,17,17       | 1.70    | 3 (17%) |
| 5     | CIT   | E     | 103  | -        | 12,12,12 | 0.99     | 0             | 17,17,17       | 1.69    | 4 (23%) |
| 5     | CIT   | В     | 103  | -        | 12,12,12 | 1.00     | 0             | 17,17,17       | 1.57    | 2 (11%) |
| 5     | CIT   | D     | 1406 | -        | 12,12,12 | 0.99     | 0             | $17,\!17,\!17$ | 1.75    | 1 (5%)  |
| 5     | CIT   | А     | 1407 | -        | 12,12,12 | 0.95     | 0             | 17,17,17       | 1.73    | 2 (11%) |
| 5     | CIT   | В     | 102  | 6        | 12,12,12 | 0.97     | 0             | 17,17,17       | 1.96    | 6 (35%) |



| Mal   | Mol Type Chain | Deg Link |      | Bond lengths |          |      | Bond angles |                |      |          |
|-------|----------------|----------|------|--------------|----------|------|-------------|----------------|------|----------|
| INIOI | туре           | Unam     | nes  |              | Counts   | RMSZ | # Z >2      | Counts         | RMSZ | # Z  > 2 |
| 5     | CIT            | А        | 1406 | -            | 12,12,12 | 0.98 | 0           | $17,\!17,\!17$ | 1.57 | 2 (11%)  |
| 5     | CIT            | А        | 1405 | -            | 12,12,12 | 1.03 | 0           | 17,17,17       | 1.77 | 4 (23%)  |
| 5     | CIT            | D        | 1405 | 6            | 12,12,12 | 1.09 | 0           | 17,17,17       | 1.53 | 3 (17%)  |
| 5     | CIT            | D        | 1404 | -            | 12,12,12 | 1.01 | 0           | 17,17,17       | 1.71 | 4 (23%)  |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res  | Link | Chirals | Torsions    | Rings |
|-----|------|-------|------|------|---------|-------------|-------|
| 5   | CIT  | Е     | 104  | -    | -       | 4/16/16/16  | -     |
| 5   | CIT  | Е     | 102  | -    | -       | 9/16/16/16  | -     |
| 5   | CIT  | Е     | 103  | -    | -       | 11/16/16/16 | -     |
| 5   | CIT  | В     | 103  | -    | -       | 4/16/16/16  | -     |
| 5   | CIT  | D     | 1406 | -    | -       | 4/16/16/16  | -     |
| 5   | CIT  | А     | 1407 | -    | -       | 6/16/16/16  | -     |
| 5   | CIT  | В     | 102  | 6    | -       | 8/16/16/16  | -     |
| 5   | CIT  | А     | 1406 | -    | -       | 3/16/16/16  | -     |
| 5   | CIT  | А     | 1405 | -    | -       | 11/16/16/16 | -     |
| 5   | CIT  | D     | 1405 | 6    | -       | 5/16/16/16  | -     |
| 5   | CIT  | D     | 1404 | -    | -       | 0/16/16/16  | -     |

There are no bond length outliers.

All (33) bond angle outliers are listed below:

| Mol | Chain | Res  | Type | Atoms    | Ζ    | $\mathbf{Observed}(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|----------|------|---------------------------|---------------|
| 5   | В     | 102  | CIT  | O6-C6-C3 | 5.37 | 122.38                    | 113.05        |
| 5   | D     | 1406 | CIT  | O6-C6-C3 | 4.94 | 121.63                    | 113.05        |
| 5   | А     | 1407 | CIT  | O6-C6-C3 | 4.89 | 121.55                    | 113.05        |
| 5   | Е     | 103  | CIT  | O6-C6-C3 | 4.73 | 121.26                    | 113.05        |
| 5   | Е     | 102  | CIT  | O6-C6-C3 | 4.67 | 121.15                    | 113.05        |
| 5   | А     | 1406 | CIT  | O6-C6-C3 | 4.54 | 120.93                    | 113.05        |
| 5   | А     | 1405 | CIT  | O6-C6-C3 | 4.49 | 120.84                    | 113.05        |
| 5   | D     | 1404 | CIT  | O6-C6-C3 | 4.47 | 120.82                    | 113.05        |
| 5   | В     | 103  | CIT  | O6-C6-C3 | 4.25 | 120.43                    | 113.05        |
| 5   | Ε     | 104  | CIT  | O6-C6-C3 | 4.13 | 120.22                    | 113.05        |
| 5   | D     | 1405 | CIT  | O6-C6-C3 | 3.70 | 119.48                    | 113.05        |
| 5   | А     | 1405 | CIT  | O2-C1-C2 | 2.59 | 122.65                    | 114.35        |



| Mol | Chain | Res  | Type | Atoms    | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|----------|-------|------------------|---------------|
| 5   | В     | 102  | CIT  | O2-C1-C2 | 2.52  | 122.45           | 114.35        |
| 5   | В     | 102  | CIT  | O4-C5-C4 | 2.42  | 122.13           | 114.35        |
| 5   | Е     | 103  | CIT  | O4-C5-C4 | 2.40  | 122.05           | 114.35        |
| 5   | А     | 1405 | CIT  | O2-C1-O1 | -2.35 | 117.45           | 123.30        |
| 5   | Е     | 104  | CIT  | C3-C4-C5 | -2.32 | 108.19           | 113.81        |
| 5   | D     | 1404 | CIT  | O2-C1-C2 | 2.30  | 121.75           | 114.35        |
| 5   | Е     | 102  | CIT  | O2-C1-C2 | 2.28  | 121.66           | 114.35        |
| 5   | В     | 102  | CIT  | O2-C1-O1 | -2.25 | 117.68           | 123.30        |
| 5   | Е     | 103  | CIT  | O4-C5-O3 | -2.25 | 117.69           | 123.30        |
| 5   | В     | 102  | CIT  | O5-C6-C3 | -2.21 | 119.12           | 122.25        |
| 5   | В     | 102  | CIT  | O4-C5-O3 | -2.17 | 117.90           | 123.30        |
| 5   | D     | 1404 | CIT  | C3-C4-C5 | -2.14 | 108.64           | 113.81        |
| 5   | А     | 1406 | CIT  | O5-C6-C3 | -2.11 | 119.27           | 122.25        |
| 5   | А     | 1407 | CIT  | O4-C5-C4 | 2.10  | 121.08           | 114.35        |
| 5   | Е     | 103  | CIT  | O2-C1-O1 | -2.08 | 118.11           | 123.30        |
| 5   | В     | 103  | CIT  | O2-C1-O1 | -2.04 | 118.20           | 123.30        |
| 5   | D     | 1404 | CIT  | O2-C1-O1 | -2.04 | 118.21           | 123.30        |
| 5   | А     | 1405 | CIT  | O4-C5-O3 | -2.04 | 118.22           | 123.30        |
| 5   | D     | 1405 | CIT  | O4-C5-C4 | 2.03  | 120.88           | 114.35        |
| 5   | Е     | 102  | CIT  | O2-C1-O1 | -2.02 | 118.25           | 123.30        |
| 5   | D     | 1405 | CIT  | O2-C1-C2 | 2.01  | 120.80           | 114.35        |

There are no chirality outliers.

All (65) torsion outliers are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type | Atoms       |
|-----|-------|----------------|------|-------------|
| 5   | А     | 1405           | CIT  | C2-C3-C6-O5 |
| 5   | А     | 1405           | CIT  | C2-C3-C6-O6 |
| 5   | А     | 1405           | CIT  | O7-C3-C6-O5 |
| 5   | А     | 1405           | CIT  | O7-C3-C6-O6 |
| 5   | А     | 1406           | CIT  | C2-C3-C4-C5 |
| 5   | А     | 1406           | CIT  | O7-C3-C4-C5 |
| 5   | А     | 1406           | CIT  | C6-C3-C4-C5 |
| 5   | А     | 1407           | CIT  | C1-C2-C3-O7 |
| 5   | А     | 1407           | CIT  | C1-C2-C3-C4 |
| 5   | А     | 1407           | CIT  | C1-C2-C3-C6 |
| 5   | В     | 102            | CIT  | O7-C3-C6-O5 |
| 5   | В     | 102            | CIT  | O7-C3-C6-O6 |
| 5   | В     | 102            | CIT  | C4-C3-C6-O5 |
| 5   | В     | 102            | CIT  | C4-C3-C6-O6 |
| 5   | Е     | 102            | CIT  | O7-C3-C6-O5 |
| 5   | Е     | 102            | CIT  | O7-C3-C6-O6 |



| Mol | Chain | Res  | Type | Atoms       |
|-----|-------|------|------|-------------|
| 5   | Е     | 102  | CIT  | C4-C3-C6-O5 |
| 5   | Е     | 102  | CIT  | C4-C3-C6-O6 |
| 5   | А     | 1407 | CIT  | O7-C3-C4-C5 |
| 5   | А     | 1407 | CIT  | C6-C3-C4-C5 |
| 5   | В     | 103  | CIT  | C1-C2-C3-C4 |
| 5   | Е     | 102  | CIT  | C6-C3-C4-C5 |
| 5   | А     | 1405 | CIT  | C3-C4-C5-O4 |
| 5   | А     | 1405 | CIT  | C3-C4-C5-O3 |
| 5   | А     | 1407 | CIT  | C2-C3-C4-C5 |
| 5   | Е     | 102  | CIT  | C2-C3-C4-C5 |
| 5   | Е     | 102  | CIT  | O7-C3-C4-C5 |
| 5   | Е     | 103  | CIT  | O7-C3-C6-O5 |
| 5   | А     | 1405 | CIT  | C4-C3-C6-O5 |
| 5   | А     | 1405 | CIT  | C4-C3-C6-O6 |
| 5   | Е     | 103  | CIT  | C2-C3-C6-O5 |
| 5   | Ε     | 103  | CIT  | C2-C3-C6-O6 |
| 5   | Е     | 103  | CIT  | C4-C3-C6-O6 |
| 5   | В     | 103  | CIT  | C1-C2-C3-C6 |
| 5   | D     | 1405 | CIT  | C1-C2-C3-C6 |
| 5   | D     | 1406 | CIT  | O7-C3-C4-C5 |
| 5   | D     | 1406 | CIT  | C6-C3-C4-C5 |
| 5   | Е     | 103  | CIT  | C6-C3-C4-C5 |
| 5   | В     | 103  | CIT  | C1-C2-C3-O7 |
| 5   | D     | 1405 | CIT  | C1-C2-C3-O7 |
| 5   | D     | 1406 | CIT  | C2-C3-C4-C5 |
| 5   | Ε     | 103  | CIT  | C4-C3-C6-O5 |
| 5   | Ε     | 102  | CIT  | O2-C1-C2-C3 |
| 5   | Ε     | 103  | CIT  | C3-C4-C5-O4 |
| 5   | Ε     | 103  | CIT  | O7-C3-C4-C5 |
| 5   | Ε     | 104  | CIT  | O7-C3-C4-C5 |
| 5   | D     | 1405 | CIT  | C3-C4-C5-O4 |
| 5   | Е     | 102  | CIT  | O1-C1-C2-C3 |
| 5   | Е     | 103  | CIT  | C3-C4-C5-O3 |
| 5   | Е     | 103  | CIT  | O7-C3-C6-O6 |
| 5   | D     | 1405 | CIT  | C3-C4-C5-O3 |
| 5   | В     | 102  | CIT  | C3-C4-C5-O4 |
| 5   | Е     | 103  | CIT  | C2-C3-C4-C5 |
| 5   | В     | 102  | CIT  | O2-C1-C2-C3 |
| 5   | В     | 102  | CIT  | C3-C4-C5-O3 |
| 5   | D     | 1406 | CIT  | C4-C3-C6-O6 |
| 5   | А     | 1405 | CIT  | O1-C1-C2-C3 |
| 5   | В     | 102  | CIT  | O1-C1-C2-C3 |

Continued from previous page...



| Mol | Chain | Res  | Type | Atoms       |
|-----|-------|------|------|-------------|
| 5   | Е     | 104  | CIT  | C3-C4-C5-O3 |
| 5   | В     | 103  | CIT  | O7-C3-C4-C5 |
| 5   | А     | 1405 | CIT  | O2-C1-C2-C3 |
| 5   | Е     | 104  | CIT  | C3-C4-C5-O4 |
| 5   | А     | 1405 | CIT  | O7-C3-C4-C5 |
| 5   | D     | 1405 | CIT  | C1-C2-C3-C4 |
| 5   | Е     | 104  | CIT  | C6-C3-C4-C5 |

There are no ring outliers.

7 monomers are involved in 8 short contacts:

| Mol | Chain | Res  | Type | Clashes | Symm-Clashes |
|-----|-------|------|------|---------|--------------|
| 5   | Е     | 104  | CIT  | 1       | 0            |
| 5   | В     | 103  | CIT  | 1       | 0            |
| 5   | D     | 1406 | CIT  | 1       | 0            |
| 5   | А     | 1406 | CIT  | 1       | 0            |
| 5   | А     | 1405 | CIT  | 2       | 0            |
| 5   | D     | 1405 | CIT  | 1       | 0            |
| 5   | D     | 1404 | CIT  | 1       | 0            |

### 5.7 Other polymers (i)

There are no such residues in this entry.

### 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Fit of model and data (i)

### 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

| Mol | Chain | Analysed        | <RSRZ $>$ | #RSRZ>2       | $OWAB(Å^2)$      | Q<0.9 |
|-----|-------|-----------------|-----------|---------------|------------------|-------|
| 1   | А     | 1277/1301~(98%) | 0.57      | 96 (7%) 14 7  | 43, 72, 120, 206 | 0     |
| 1   | D     | 1254/1301~(96%) | 0.91      | 209 (16%) 1 1 | 52, 90, 166, 207 | 0     |
| 2   | В     | 40/40~(100%)    | 0.40      | 0 100 100     | 48, 56, 96, 192  | 0     |
| 2   | Ε     | 40/40~(100%)    | -0.02     | 0 100 100     | 59, 69, 96, 129  | 0     |
| 3   | С     | 20/20~(100%)    | -0.05     | 0 100 100     | 50, 57, 75, 76   | 0     |
| 3   | F     | 20/20~(100%)    | -0.31     | 0 100 100     | 63, 74, 97, 99   | 0     |
| All | All   | 2651/2722 (97%) | 0.71      | 305 (11%) 4 2 | 43, 80, 147, 207 | 0     |

All (305) RSRZ outliers are listed below:

| Mol | Chain | Res  | Type | RSRZ |
|-----|-------|------|------|------|
| 1   | D     | 1166 | ARG  | 10.1 |
| 1   | А     | 1163 | TRP  | 10.0 |
| 1   | D     | 748  | ASN  | 8.6  |
| 1   | D     | 1099 | TYR  | 8.6  |
| 1   | D     | 1201 | LYS  | 8.3  |
| 1   | D     | 750  | ILE  | 8.2  |
| 1   | D     | 1204 | PHE  | 8.1  |
| 1   | D     | 1200 | ASP  | 7.4  |
| 1   | D     | 1203 | PHE  | 7.4  |
| 1   | D     | 1205 | ALA  | 7.1  |
| 1   | D     | 674  | PHE  | 7.1  |
| 1   | А     | 948  | ARG  | 6.9  |
| 1   | D     | 716  | ASP  | 6.8  |
| 1   | D     | 1101 | SER  | 6.7  |
| 1   | D     | 700  | ASN  | 6.6  |
| 1   | D     | 1137 | ALA  | 6.6  |
| 1   | D     | 749  | SER  | 6.6  |
| 1   | D     | 686  | GLU  | 6.4  |
| 1   | D     | 1282 | LEU  | 6.3  |



| Mol | Chain | Res  | Type | RSRZ |
|-----|-------|------|------|------|
| 1   | D     | 1109 | PHE  | 6.1  |
| 1   | D     | 1202 | LYS  | 6.1  |
| 1   | D     | 745  | GLN  | 6.0  |
| 1   | D     | 1138 | ALA  | 6.0  |
| 1   | D     | 668  | MET  | 5.8  |
| 1   | D     | 227  | GLU  | 5.7  |
| 1   | D     | 720  | PHE  | 5.6  |
| 1   | D     | 1199 | SER  | 5.6  |
| 1   | D     | 1176 | LYS  | 5.5  |
| 1   | D     | 1100 | GLU  | 5.5  |
| 1   | D     | 1133 | PHE  | 5.4  |
| 1   | D     | 1102 | VAL  | 5.3  |
| 1   | D     | 712  | PHE  | 5.2  |
| 1   | D     | 226  | PRO  | 5.2  |
| 1   | D     | 1169 | TYR  | 5.0  |
| 1   | D     | 1108 | PHE  | 4.9  |
| 1   | D     | 697  | HIS  | 4.9  |
| 1   | D     | 92   | ASP  | 4.8  |
| 1   | D     | 754  | TYR  | 4.7  |
| 1   | D     | 447  | LYS  | 4.7  |
| 1   | А     | 151  | GLU  | 4.6  |
| 1   | D     | 1165 | THR  | 4.6  |
| 1   | D     | 425  | ILE  | 4.6  |
| 1   | D     | 1106 | GLN  | 4.6  |
| 1   | А     | 96   | LYS  | 4.5  |
| 1   | D     | 724  | TYR  | 4.5  |
| 1   | D     | 444  | LYS  | 4.5  |
| 1   | А     | 947  | ASP  | 4.5  |
| 1   | D     | 747  | TYR  | 4.5  |
| 1   | D     | 315  | THR  | 4.5  |
| 1   | D     | 696  | THR  | 4.5  |
| 1   | A     | 85   | LYS  | 4.5  |
| 1   | D     | 1281 | LYS  | 4.4  |
| 1   | А     | 708  | GLU  | 4.4  |
| 1   | D     | 737  | PHE  | 4.3  |
| 1   | D     | 751  | ASP  | 4.3  |
| 1   | А     | 149  | GLY  | 4.3  |
| 1   | D     | 1134 | GLY  | 4.3  |
| 1   | D     | 690  | ARG  | 4.3  |
| 1   | D     | 441  | ILE  | 4.3  |
| 1   | D     | 1152 | ILE  | 4.2  |
| 1   | D     | 1283 | ASN  | 4.2  |



| Mol | Chain | $\mathbf{Res}$ | Type | RSRZ |
|-----|-------|----------------|------|------|
| 1   | D     | 1207           | LEU  | 4.2  |
| 1   | D     | 974            | ILE  | 4.2  |
| 1   | А     | 95             | GLN  | 4.1  |
| 1   | А     | 1282           | LEU  | 4.1  |
| 1   | D     | 699            | LYS  | 4.1  |
| 1   | D     | 677            | LYS  | 4.1  |
| 1   | D     | 307            | TYR  | 4.0  |
| 1   | D     | 443            | LYS  | 3.9  |
| 1   | D     | 701            | GLY  | 3.9  |
| 1   | D     | 1130           | TYR  | 3.9  |
| 1   | D     | 427            | PRO  | 3.9  |
| 1   | А     | 86             | LEU  | 3.9  |
| 1   | D     | 744            | THR  | 3.9  |
| 1   | D     | 1206           | LYS  | 3.9  |
| 1   | D     | 1136           | LYS  | 3.9  |
| 1   | D     | 1135           | ASP  | 3.8  |
| 1   | D     | 704            | GLN  | 3.8  |
| 1   | А     | 860            | GLU  | 3.8  |
| 1   | D     | 682            | TYR  | 3.8  |
| 1   | D     | 955            | ASP  | 3.7  |
| 1   | D     | 1208           | THR  | 3.7  |
| 1   | D     | 89             | SER  | 3.7  |
| 1   | D     | 418            | LEU  | 3.7  |
| 1   | D     | 424            | GLN  | 3.7  |
| 1   | D     | 688            | ILE  | 3.7  |
| 1   | D     | 1132           | ASN  | 3.7  |
| 1   | А     | 94             | LEU  | 3.7  |
| 1   | D     | 229            | ILE  | 3.6  |
| 1   | D     | 421            | ILE  | 3.6  |
| 1   | D     | 1181           | TYR  | 3.6  |
| 1   | D     | 1269           | LEU  | 3.6  |
| 1   | D     | 707            | TYR  | 3.6  |
| 1   | D     | 676            | ALA  | 3.6  |
| 1   | A     | 447            | LYS  | 3.5  |
| 1   | А     | 436            | LYS  | 3.5  |
| 1   | D     | 715            | GLU  | 3.5  |
| 1   | D     | 711            | GLU  | 3.4  |
| 1   | D     | 1018           | LYS  | 3.4  |
| 1   | D     | 311            | ILE  | 3.4  |
| 1   | D     | 1151           | LEU  | 3.4  |
| 1   | A     | 79             | TYR  | 3.4  |
| 1   | D     | 713            | ASN  | 3.4  |



| $\mathbf{Mol}$ | Chain | Res  | Type | RSRZ |  |
|----------------|-------|------|------|------|--|
| 1              | D     | 1177 | LEU  | 3.4  |  |
| 1              | D     | 1105 | SER  | 3.4  |  |
| 1              | D     | 895  | LYS  | 3.4  |  |
| 1              | А     | 1098 | LYS  | 3.3  |  |
| 1              | D     | 1195 | ILE  | 3.3  |  |
| 1              | D     | 1065 | LYS  | 3.3  |  |
| 1              | А     | 747  | TYR  | 3.3  |  |
| 1              | D     | 755  | ARG  | 3.3  |  |
| 1              | D     | 646  | ILE  | 3.3  |  |
| 1              | D     | 1168 | VAL  | 3.3  |  |
| 1              | А     | 859  | LYS  | 3.3  |  |
| 1              | D     | 253  | VAL  | 3.2  |  |
| 1              | D     | 1098 | LYS  | 3.2  |  |
| 1              | А     | 717  | CYS  | 3.2  |  |
| 1              | D     | 91   | ASP  | 3.2  |  |
| 1              | А     | 98   | PHE  | 3.2  |  |
| 1              | D     | 739  | PHE  | 3.2  |  |
| 1              | D     | 702  | SER  | 3.2  |  |
| 1              | D     | 1068 | GLY  | 3.2  |  |
| 1              | А     | 741  | PHE  | 3.2  |  |
| 1              | D     | 1103 | SER  | 3.2  |  |
| 1              | D     | 90   | ASP  | 3.2  |  |
| 1              | D     | 316  | LEU  | 3.2  |  |
| 1              | D     | 466  | HIS  | 3.2  |  |
| 1              | А     | 439  | GLU  | 3.1  |  |
| 1              | D     | 572  | LEU  | 3.1  |  |
| 1              | А     | 450  | TYR  | 3.1  |  |
| 1              | D     | 1170 | PRO  | 3.1  |  |
| 1              | А     | 950  | LYS  | 3.1  |  |
| 1              | А     | 1275 | ASN  | 3.1  |  |
| 1              | D     | 423  | GLN  | 3.1  |  |
| 1              | А     | 82   | VAL  | 3.0  |  |
| 1              | D     | 1107 | GLU  | 3.0  |  |
| 1              | A     | 84   | PHE  | 3.0  |  |
| 1              | D     | 1284 | LEU  | 3.0  |  |
| 1              | A     | 920  | GLU  | 3.0  |  |
| 1              | A     | 1281 | LYS  | 3.0  |  |
| 1              | D     | 222  | LYS  | 3.0  |  |
| 1              | D     | 420  | TYR  | 3.0  |  |
| 1              | А     | 1226 | LEU  | 3.0  |  |
| 1              | D     | 313  | ASP  | 3.0  |  |
| 1              | А     | 1021 | LYS  | 2.9  |  |



| Conti | nued fron | n previo | ous page. |      |
|-------|-----------|----------|-----------|------|
| Mol   | Chain     | Res      | Type      | RSRZ |
| 1     | А         | 303      | TYR       | 2.9  |
| 1     | А         | 92       | ASP       | 2.9  |
| 1     | А         | 749      | SER       | 2.9  |
| 1     | D         | 231      | TYR       | 2.9  |
| 1     | D         | 714      | ILE       | 2.9  |
| 1     | А         | 321      | MET       | 2.9  |
| 1     | D         | 1173     | GLU       | 2.9  |
| 1     | D         | 717      | CYS       | 2.9  |
| 1     | А         | 93       | ASN       | 2.9  |
| 1     | D         | 976      | ASN       | 2.9  |
| 1     | D         | 1221     | LYS       | 2.9  |
| 1     | D         | 1139     | LYS       | 2.9  |
| 1     | D         | 1142     | TRP       | 2.8  |
| 1     | D         | 96       | LYS       | 2.8  |
| 1     | D         | 225      | ALA       | 2.8  |
| 1     | D         | 721      | ILE       | 2.8  |
| 1     | D         | 923      | LEU       | 2.8  |
| 1     | D         | 705      | LYS       | 2.8  |
| 1     | D         | 641      | PHE       | 2.8  |
| 1     | D         | 1183     | ILE       | 2.8  |
| 1     | А         | 1008     | LEU       | 2.8  |
| 1     | А         | 99       | LYS       | 2.8  |
| 1     | А         | 1298     | ARG       | 2.7  |
| 1     | А         | 904      | LEU       | 2.7  |
| 1     | D         | 252      | GLU       | 2.7  |
| 1     | D         | 85       | LYS       | 2.7  |
| 1     | D         | 1185     | TYR       | 2.7  |
| 1     | D         | 1228     | TYR       | 2.7  |
| 1     | А         | 932      | LYS       | 2.7  |
| 1     | D         | 773      | TYR       | 2.7  |
| 1     | D         | 1178     | LEU       | 2.7  |
| 1     | D         | 84       | PHE       | 2.7  |
| 1     | D         | 865      | TYR       | 2.7  |
| 1     | D         | 949      | MET       | 2.6  |
| 1     | А         | 721      | ILE       | 2.6  |
| 1     | D         | 306      | LEU       | 2.6  |
| 1     | D         | 685      | SER       | 2.6  |
| 1     | D         | 422      | THR       | 2.6  |
| 1     | D         | 1112     | PHE       | 2.6  |
| 1     | А         | 1284     | LEU       | 2.6  |
| 1     | D         | 695      | SER       | 2.6  |
| 1     | D         | 224      | LYS       | 2.6  |



| Mol | Chain | Res  | Type | RSRZ |  |
|-----|-------|------|------|------|--|
| 1   | А     | 78   | ASN  | 2.6  |  |
| 1   | D     | 442  | ALA  | 2.6  |  |
| 1   | D     | 1095 | LEU  | 2.6  |  |
| 1   | А     | 495  | ASN  | 2.6  |  |
| 1   | А     | 221  | LEU  | 2.6  |  |
| 1   | А     | 906  | GLU  | 2.6  |  |
| 1   | D     | 1180 | ASP  | 2.6  |  |
| 1   | D     | 741  | PHE  | 2.6  |  |
| 1   | А     | 737  | PHE  | 2.5  |  |
| 1   | D     | 7    | PHE  | 2.5  |  |
| 1   | D     | 1215 | LEU  | 2.5  |  |
| 1   | А     | 748  | ASN  | 2.5  |  |
| 1   | D     | 95   | GLN  | 2.5  |  |
| 1   | D     | 554  | ILE  | 2.5  |  |
| 1   | D     | 499  | LEU  | 2.5  |  |
| 1   | D     | 678  | SER  | 2.5  |  |
| 1   | D     | 703  | PRO  | 2.5  |  |
| 1   | D     | 1175 | GLU  | 2.5  |  |
| 1   | А     | 1014 | ARG  | 2.5  |  |
| 1   | D     | 223  | ASP  | 2.5  |  |
| 1   | А     | 435  | LYS  | 2.5  |  |
| 1   | D     | 319  | TYR  | 2.5  |  |
| 1   | D     | 458  | LEU  | 2.5  |  |
| 1   | D     | 553  | ASN  | 2.5  |  |
| 1   | А     | 83   | TYR  | 2.4  |  |
| 1   | А     | 674  | PHE  | 2.4  |  |
| 1   | D     | 1019 | VAL  | 2.4  |  |
| 1   | D     | 1110 | SER  | 2.4  |  |
| 1   | А     | 451  | LEU  | 2.4  |  |
| 1   | А     | 714  | ILE  | 2.4  |  |
| 1   | А     | 944  | ILE  | 2.4  |  |
| 1   | A     | 307  | TYR  | 2.4  |  |
| 1   | A     | 712  | PHE  | 2.4  |  |
| 1   | D     | 1273 | ILE  | 2.4  |  |
| 1   | A     | 333  | GLU  | 2.3  |  |
| 1   | D     | 1017 | PHE  | 2.3  |  |
| 1   | D     | 264  | PHE  | 2.3  |  |
| 1   | A     | 746  | ARG  | 2.3  |  |
| 1   | D     | 862  | VAL  | 2.3  |  |
| 1   | A     | 751  | ASP  | 2.3  |  |
| 1   | D     | 267  | ALA  | 2.3  |  |
| 1   | D     | 426  | ALA  | 2.3  |  |

Continued from previous page...



| Mol | Chain | Res  | Type | RSRZ |  |
|-----|-------|------|------|------|--|
| 1   | D     | 549  | GLU  | 2.3  |  |
| 1   | D     | 753  | PHE  | 2.3  |  |
| 1   | D     | 417  | VAL  | 2.3  |  |
| 1   | D     | 1097 | PRO  | 2.3  |  |
| 1   | А     | 456  | ILE  | 2.3  |  |
| 1   | D     | 1277 | GLN  | 2.3  |  |
| 1   | D     | 1123 | TYR  | 2.3  |  |
| 1   | D     | 710  | PHE  | 2.3  |  |
| 1   | D     | 973  | LYS  | 2.3  |  |
| 1   | D     | 1172 | LYS  | 2.3  |  |
| 1   | А     | 316  | LEU  | 2.3  |  |
| 1   | А     | 418  | LEU  | 2.3  |  |
| 1   | А     | 740  | ARG  | 2.3  |  |
| 1   | D     | 645  | ALA  | 2.3  |  |
| 1   | А     | 696  | THR  | 2.3  |  |
| 1   | А     | 1299 | ASN  | 2.3  |  |
| 1   | D     | 647  | LYS  | 2.3  |  |
| 1   | А     | 694  | HIS  | 2.3  |  |
| 1   | А     | 921  | ARG  | 2.3  |  |
| 1   | D     | 560  | HIS  | 2.3  |  |
| 1   | D     | 640  | ILE  | 2.3  |  |
| 1   | D     | 561  | PHE  | 2.3  |  |
| 1   | А     | 1195 | ILE  | 2.2  |  |
| 1   | D     | 960  | ILE  | 2.2  |  |
| 1   | D     | 980  | MET  | 2.2  |  |
| 1   | А     | 699  | LYS  | 2.2  |  |
| 1   | А     | 743  | ASP  | 2.2  |  |
| 1   | D     | 858  | LYS  | 2.2  |  |
| 1   | D     | 1096 | TYR  | 2.2  |  |
| 1   | А     | 555  | LEU  | 2.2  |  |
| 1   | А     | 688  | ILE  | 2.2  |  |
| 1   | А     | 739  | PHE  | 2.2  |  |
| 1   | A     | 753  | PHE  | 2.2  |  |
| 1   | D     | 221  | LEU  | 2.2  |  |
| 1   | D     | 706  | GLY  | 2.2  |  |
| 1   | А     | 710  | PHE  | 2.2  |  |
| 1   | D     | 633  | MET  | 2.2  |  |
| 1   | A     | 1154 | PHE  | 2.2  |  |
| 1   | D     | 392  | TYR  | 2.2  |  |
| 1   | D     | 1140 | GLY  | 2.2  |  |
| 1   | D     | 848  | ALA  | 2.2  |  |
| 1   | А     | 962  | LYS  | 2.2  |  |

Continued from previous page...



| Mol | Chain | $\operatorname{Res}$ | Type | RSRZ |
|-----|-------|----------------------|------|------|
| 1   | А     | 662                  | LEU  | 2.2  |
| 1   | А     | 1273                 | ILE  | 2.2  |
| 1   | А     | 132                  | LYS  | 2.2  |
| 1   | А     | 431                  | ASP  | 2.1  |
| 1   | D     | 689                  | LEU  | 2.1  |
| 1   | D     | 212                  | LEU  | 2.1  |
| 1   | D     | 846                  | LYS  | 2.1  |
| 1   | D     | 1286                 | ILE  | 2.1  |
| 1   | А     | 698                  | THR  | 2.1  |
| 1   | А     | 752                  | GLU  | 2.1  |
| 1   | А     | 75                   | LEU  | 2.1  |
| 1   | D     | 218                  | TYR  | 2.1  |
| 1   | D     | 1081                 | PHE  | 2.1  |
| 1   | А     | 750                  | ILE  | 2.1  |
| 1   | D     | 708                  | GLU  | 2.1  |
| 1   | D     | 864                  | GLU  | 2.1  |
| 1   | D     | 718                  | ARG  | 2.1  |
| 1   | D     | 1144                 | ILE  | 2.1  |
| 1   | D     | 709                  | LYS  | 2.0  |
| 1   | D     | 719                  | LYS  | 2.0  |
| 1   | D     | 777                  | VAL  | 2.0  |
| 1   | А     | 1007                 | ASP  | 2.0  |
| 1   | D     | 147                  | ASP  | 2.0  |
| 1   | D     | 671                  | LYS  | 2.0  |
| 1   | А     | 433                  | PRO  | 2.0  |
| 1   | А     | 1297                 | ASN  | 2.0  |
| 1   | А     | 438                  | GLN  | 2.0  |
| 1   | D     | 394                  | LYS  | 2.0  |
| 1   | А     | 152                  | LEU  | 2.0  |
| 1   | D     | 684                  | PRO  | 2.0  |
| 1   | А     | 646                  | ILE  | 2.0  |
| 1   | А     | 849                  | ILE  | 2.0  |
| 1   | А     | 1100                 | GLU  | 2.0  |
| 1   | D     | 962                  | LYS  | 2.0  |

Continued from previous page...

### 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

### 6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

#### 6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

| Mol | Type | Chain | Res  | Atoms | RSCC | RSR  | $B-factors(A^2)$    | Q<0.9 |
|-----|------|-------|------|-------|------|------|---------------------|-------|
| 4   | MG   | В     | 101  | 1/1   | 0.16 | 0.32 | 85,85,85,85         | 0     |
| 4   | MG   | D     | 1402 | 1/1   | 0.41 | 0.19 | 86,86,86,86         | 0     |
| 5   | CIT  | Е     | 103  | 13/13 | 0.53 | 0.52 | 116,116,116,116     | 0     |
| 4   | MG   | А     | 1404 | 1/1   | 0.60 | 0.14 | 78,78,78,78         | 0     |
| 4   | MG   | А     | 1401 | 1/1   | 0.63 | 0.08 | 74,74,74,74         | 0     |
| 5   | CIT  | Е     | 104  | 13/13 | 0.67 | 0.39 | 131,131,131,131     | 0     |
| 6   | K    | D     | 1411 | 1/1   | 0.68 | 0.51 | 126,126,126,126     | 0     |
| 5   | CIT  | D     | 1406 | 13/13 | 0.72 | 0.38 | 112,112,112,112     | 0     |
| 5   | CIT  | А     | 1406 | 13/13 | 0.72 | 0.48 | 96,96,96,96         | 0     |
| 4   | MG   | А     | 1402 | 1/1   | 0.73 | 0.13 | 70,70,70,70         | 0     |
| 6   | K    | Е     | 105  | 1/1   | 0.76 | 0.41 | 106,106,106,106     | 0     |
| 4   | MG   | D     | 1401 | 1/1   | 0.77 | 0.08 | 86,86,86,86         | 0     |
| 4   | MG   | D     | 1403 | 1/1   | 0.77 | 0.23 | 103,103,103,103     | 0     |
| 6   | K    | А     | 1411 | 1/1   | 0.80 | 0.26 | 106,106,106,106     | 0     |
| 6   | К    | А     | 1412 | 1/1   | 0.81 | 0.15 | 102,102,102,102     | 0     |
| 6   | К    | D     | 1408 | 1/1   | 0.81 | 0.34 | 93,93,93,93         | 0     |
| 5   | CIT  | А     | 1405 | 13/13 | 0.82 | 0.36 | 95,95,95,95         | 0     |
| 5   | CIT  | Е     | 102  | 13/13 | 0.84 | 0.24 | 98,98,98,98         | 0     |
| 5   | CIT  | D     | 1404 | 13/13 | 0.85 | 0.52 | 110,110,110,110     | 0     |
| 5   | CIT  | А     | 1407 | 13/13 | 0.86 | 0.22 | 85,85,85,85         | 0     |
| 6   | Κ    | D     | 1410 | 1/1   | 0.86 | 0.14 | 108,108,108,108     | 0     |
| 4   | MG   | А     | 1403 | 1/1   | 0.88 | 0.17 | $95,\!95,\!95,\!95$ | 0     |
| 5   | CIT  | В     | 103  | 13/13 | 0.88 | 0.79 | 112,112,112,112     | 0     |
| 6   | K    | D     | 1409 | 1/1   | 0.88 | 0.47 | 109,109,109,109     | 0     |
| 6   | K    | D     | 1407 | 1/1   | 0.89 | 0.35 | 104,104,104,104     | 0     |
| 5   | CIT  | В     | 102  | 13/13 | 0.89 | 0.25 | $79,\!79,\!79,\!79$ | 0     |
| 6   | K    | А     | 1408 | 1/1   | 0.89 | 0.25 | $95,\!95,\!95,\!95$ | 0     |
| 6   | K    | A     | 1409 | 1/1   | 0.90 | 0.18 | 94,94,94,94         | 0     |
| 5   | CIT  | D     | 1405 | 13/13 | 0.91 | 0.19 | 89,89,89,89         | 0     |
| 4   | MG   | E     | 101  | 1/1   | 0.92 | 0.12 | 91,91,91,91         | 0     |
| 6   | K    | В     | 104  | 1/1   | 0.94 | 0.34 | 81,81,81,81         | 0     |
| 6   | K    | A     | 1410 | 1/1   | 0.96 | 0.30 | 84,84,84,84         | 0     |



## 6.5 Other polymers (i)

There are no such residues in this entry.

