

Full wwPDB X-ray Structure Validation Report (i)

Aug 27, 2023 – 08:25 PM EDT

PDB ID	:	3HDQ
Title	:	Crystal structure of UDP-galactopyranose mutase (oxidized form) in complex
		with substrate
Authors	:	Partha, S.K.; van Straaten, K.E.; Sanders, D.A.
Deposited on	:	2009-05-07
Resolution	:	2.36 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.36 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motrie	Whole archive	Similar resolution
WIEUTIC	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R _{free}	130704	1164 (2.36-2.36)
Clashscore	141614	1232 (2.36-2.36)
Ramachandran outliers	138981	1211 (2.36-2.36)
Sidechain outliers	138945	1212 (2.36-2.36)
RSRZ outliers	127900	1150 (2.36-2.36)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain			
1	А	397	^{2%} 76%	14%	•	8%
1	В	397	^{3%} 76%	14%		8%
1	С	397	72%	18%		9%
1	D	397	3% 74%	15%	•	9%
1	Е	397	3%	13%	•	8%

Continue contraction contrac	nued fron	ı previous	page				
Mol	Chain	Length	Quality of chain				
1	F	397	2% 76 %	15%	•	9%	
1	G	397	2% 77%	13%	•	9%	
1	Н	397	2% 78 %	13%	•	8%	
1	Ι	397	2% 75%	14%	•	9%	
1	J	397	72%	18%	•	9%	

3HDQ

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 31875 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
1	Δ	365	Total	С	Ν	Ο	S	0	1	0
1	Л	505	2992	1909	521	554	8	0	T	0
1	В	364	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	1	2	0
	D	504	2990	1909	522	551	8			0
1	C	361	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	23	1	0
	0	501	2964	1894	516	546	8	20	Ĩ	0
1	О	360	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	1	0
		500	2955	1888	514	545	8	0	T	0
1	E	364	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	8	0	0
		501	2975	1899	516	552	8	0	0	0
1	F	363	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	4	1	0
	1	000	2977	1901	519	549	8		1	0
1	G	363	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	4	1	0
	<u> </u>	505	2974	1899	518	549	8	1	1	0
1	н	364	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	1	0
	11	504	2983	1904	520	551	8	0	1	0
1	т	363	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	4	1	0
	1	000	2975	1899	517	551	8		1	
1	Т	361	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	4	1	0
	5	501	2959	1890	515	546	8		L	0

• Molecule 1 is a protein called UDP-galactopyranose mutase.

• Molecule 2 is GALACTOSE-URIDINE-5'-DIPHOSPHATE (three-letter code: GDU) (formula: $C_{15}H_{24}N_2O_{17}P_2$).

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf
9	Δ	1	Total	С	Ν	Ο	Р	0	0
	A	1	36	15	2	17	2	0	0
2	В	1	Total	С	Ν	Ο	Р	0	0
	D	1	36	15	2	17	2	0	0
9	С	1	Total	С	Ν	Ο	Р	0	0
2	U	T	36	15	2	17	2	0	0
2	Л	1	Total	С	Ν	Ο	Р	0	0
2	D	T	36	15	2	17	2	0	0
2	E	1	Total	С	Ν	Ο	Р	0	0
2	Ľ	1	36	15	2	17	2	0	0
2	F	1	Total	С	Ν	Ο	Р	0	0
	T	1	36	15	2	17	2	0	0
2	G	1	Total	\mathbf{C}	Ν	Ο	Р	0	0
	ŭ	I	36	15	2	17	2	0	0
2	н	1	Total	\mathbf{C}	Ν	Ο	Р	0	0
	11	I	36	15	2	17	2	0	0
2	Т	1	Total	\mathbf{C}	Ν	Ο	Р	0	0
	I	1	36	15	2	17	2	0	0
2	Т	1	Total	\mathbf{C}	Ν	Ο	Р	0	0
	J	L	36	15	2	17	2	U	U

• Molecule 3 is FLAVIN-ADENINE DINUCLEOTIDE (three-letter code: FAD) (formula: $\rm C_{27}H_{33}N_9O_{15}P_2).$

Mol	Chain	Residues		Ato	oms			ZeroOcc	AltConf
2	Λ	1	Total	С	Ν	Ο	Р	0	0
0	A	1	53	27	9	15	2	0	0
3	В	1	Total	С	Ν	Ο	Р	0	0
0	D	T	53	27	9	15	2	0	0
3	С	1	Total	С	Ν	Ο	Р	0	Ο
0	U	T	53	27	9	15	2	0	0
3	Л	1	Total	С	Ν	Ο	Р	0	0
0	D	T	53	27	9	15	2	0	0
3	F	1	Total	С	Ν	Ο	Р	0	0
0	Ľ	T	53	27	9	15	2	0	0
3	F	1	Total	С	Ν	Ο	Р	0	0
0	Ľ	1	53	27	9	15	2	0	0
3	C	1	Total	С	Ν	Ο	Р	0	0
0	G	T	53	27	9	15	2	0	0
3	н	1	Total	С	Ν	Ο	Р	0	0
0	11	I	53	27	9	15	2	0	0
3	T	1	Total	Ċ	N	Ō	Р	0	0
0	L	1	53	27	9	15	2	U	U
2	Т	1	Total	С	Ν	Ο	Р	0	0
5	1		53	27	9	15	2	0	

• Molecule 4 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	164	Total O 164 164	0	0
4	В	104	Total O 104 104	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	С	88	Total O 88 88	0	0
4	D	86	Total O 86 86	0	0
4	Ε	110	Total O 110 110	0	0
4	F	143	Total O 143 143	0	0
4	G	116	Total O 116 116	0	0
4	Н	143	Total O 143 143	0	0
4	Ι	160	Total O 160 160	0	0
4	J	127	Total O 127 127	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: UDP-galactopyranose mutase

E143 R280 H281 (152 /153 4155 4155 7156 7157 7158 7158 7158 7158 7158 7161 7161 7163 7165 7165 1250 2251 7252 7253 V261 D262 L272 P273 <mark>Y274</mark> R275 <u>7243</u> 5245 I 246 167 0188 0189 V362 Y335 P336 <mark>V337</mark> P338 L345 Y346 K347 N342 E282

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	134.02Å 176.65Å 220.09Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Bosolution(A)	19.88 - 2.36	Depositor
Resolution (A)	19.88 - 2.30	EDS
% Data completeness	99.9 (19.88-2.36)	Depositor
(in resolution range)	97.8 (19.88-2.30)	EDS
R_{merge}	0.12	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.50 (at 2.30 \text{\AA})$	Xtriage
Refinement program	PHENIX (phenix.refine)	Depositor
P. P.	0.177 , 0.226	Depositor
Λ, Λ_{free}	0.174 , 0.219	DCC
R_{free} test set	11275 reflections $(5.00%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	35.7	Xtriage
Anisotropy	0.109	Xtriage
Bulk solvent $k_{sol}(e/A^3)$, $B_{sol}(A^2)$	0.34, 37.9	EDS
L-test for $twinning^2$	$ < L >=0.47, < L^2>=0.29$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.95	EDS
Total number of atoms	31875	wwPDB-VP
Average B, all atoms $(Å^2)$	36.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 1.70% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: GDU, FAD

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles			
1VIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5		
1	А	0.43	0/3079	0.58	0/4185		
1	В	0.39	0/3081	0.56	0/4188		
1	С	0.35	0/3051	0.54	0/4148		
1	D	0.40	0/3042	0.54	0/4137		
1	Е	0.34	0/3059	0.52	0/4159		
1	F	0.38	0/3064	0.56	1/4165~(0.0%)		
1	G	0.41	0/3061	0.54	0/4161		
1	Н	0.39	0/3070	0.54	0/4173		
1	Ι	0.41	0/3059	0.57	1/4159~(0.0%)		
1	J	0.39	0/3046	0.55	1/4142~(0.0%)		
All	All	0.39	0/30612	0.55	3/41617~(0.0%)		

There are no bond length outliers.

All (3) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	Ι	306	VAL	CB-CA-C	-5.47	101.01	111.40
1	F	306	VAL	CB-CA-C	-5.33	101.27	111.40
1	J	306	VAL	CB-CA-C	-5.05	101.81	111.40

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2992	0	2867	50	0
1	В	2990	0	2868	44	0
1	С	2964	0	2845	56	0
1	D	2955	0	2832	45	0
1	Е	2975	0	2846	36	0
1	F	2977	0	2856	41	0
1	G	2974	0	2853	36	0
1	Η	2983	0	2861	47	0
1	Ι	2975	0	2847	50	0
1	J	2959	0	2835	67	0
2	А	36	0	22	0	0
2	В	36	0	22	3	0
2	С	36	0	22	1	0
2	D	36	0	22	3	0
2	Ε	36	0	22	1	0
2	F	36	0	22	2	0
2	G	36	0	22	3	0
2	Н	36	0	22	1	0
2	Ι	36	0	22	4	0
2	J	36	0	22	2	0
3	А	53	0	30	1	0
3	В	53	0	31	2	0
3	\mathbf{C}	53	0	30	1	0
3	D	53	0	31	0	0
3	Ε	53	0	31	0	0
3	F	53	0	29	1	0
3	G	53	0	31	3	0
3	Н	53	0	31	0	0
3	Ι	53	0	31	1	0
3	J	53	0	30	1	0
4	А	164	0	0	2	0
4	В	104	0	0	3	0
4	С	88	0	0	2	0
4	D	86	0	0	1	0
4	Ε	110	0	0	3	0
4	F	143	0	0	0	0
4	G	116	0	0	1	0
4	Н	143	0	0	0	0
4	Ι	160	0	0	2	0
4	J	127	0	0	0	0
All	All	31875	0	29035	438	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 7.

•	• • •	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:152:LYS:CD	1:A:153:VAL:H	1.54	1.18
1:J:357:GLN:HE21	1:J:357:GLN:HA	1.15	1.10
1:A:152:LYS:HD3	1:A:153:VAL:N	1.72	1.04
1:E:58:VAL:HG22	1:E:238:MET:HB3	1.42	1.01
1:H:152:LYS:HE2	1:H:152:LYS:HA	1.38	1.01
1:D:357:GLN:O	1:D:358:ASP:HB2	1.60	0.99
1:A:152:LYS:HD3	1:A:153:VAL:H	1.26	0.95
1:A:152:LYS:HD2	1:A:153:VAL:H	1.32	0.93
1:H:152:LYS:HA	1:H:152:LYS:CE	2.01	0.90
1:J:357:GLN:HA	1:J:357:GLN:NE2	1.88	0.89
1:A:152:LYS:CD	1:A:153:VAL:N	2.30	0.88
1:F:158:THR:HG22	1:F:160:GLU:H	1.42	0.84
1:A:158:THR:HG22	1:A:160:GLU:H	1.44	0.83
1:F:54:ARG:HH21	1:F:54:ARG:HG3	1.41	0.82
1:A:157:ARG:HG2	1:A:157:ARG:HH11	1.43	0.81
1:H:158:THR:HG22	1:H:161:ASP:H	1.44	0.81
1:C:357:GLN:H	1:C:357:GLN:CD	1.83	0.80
1:J:155:GLN:CG	1:J:157:ARG:NH1	2.45	0.80
1:A:152:LYS:HD2	1:A:153:VAL:O	1.82	0.80
1:B:167:VAL:HG11	1:B:201:THR:HG21	1.64	0.80
1:A:157:ARG:HG2	1:A:157:ARG:NH1	1.97	0.79
1:G:376:VAL:HG21	3:G:450:FAD:H5'2	1.64	0.79
1:A:158:THR:HG22	1:A:160:GLU:N	1.96	0.79
1:D:357:GLN:O	1:D:358:ASP:CB	2.30	0.79
1:D:167:VAL:HG11	1:D:201:THR:HG21	1.64	0.78
1:C:364:ARG:HG3	1:C:369:ARG:O	1.85	0.77
1:G:58:VAL:HG23	1:G:238:MET:HB3	1.66	0.77
1:J:152:LYS:HD2	1:J:153:VAL:H	1.50	0.77
1:A:167:VAL:HG11	1:A:201:THR:HG21	1.66	0.76
1:A:60:ARG:HD3	4:A:1219:HOH:O	1.86	0.76
1:J:155:GLN:HG3	1:J:157:ARG:CZ	2.15	0.75
1:G:151:GLU:HB2	1:G:164:VAL:HG13	1.69	0.75
1:J:155:GLN:HG3	1:J:157:ARG:NH1	2.02	0.74
1:A:227:GLN:HG2	4:A:633:HOH:O	1.86	0.74
1:D:364:ARG:HG3	1:D:369:ARG:O	1.88	0.74
1:H:388:GLN:HB2	1:H:389:GLY:HA2	1.69	0.74
1:H:246:ILE:HB	1:H:250:ILE:HD12	1.71	0.72
1:J:155:GLN:CG	1:J:157:ARG:CZ	2.68	0.72
1:J:158:THR:HG22	1:J:160:GLU:N	2.04	0.71
1:J:158:THR:HG22	1:J:160:GLU:H	1.54	0.71

All (438) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:I:254:HIS:HB2	4:I:1166:HOH:O	1.89	0.71
1:C:238:MET:HE2	1:C:246:ILE:HG21	1.72	0.71
1:J:58:VAL:HG12	1:J:238:MET:HB3	1.72	0.70
1:G:280[B]:ARG:NH1	1:G:282:GLU:OE2	2.24	0.70
1:G:60:ARG:HD3	4:G:1117:HOH:O	1.91	0.70
1:B:208:ARG:HD2	1:G:117:GLY:CA	2.21	0.70
1:I:385:ARG:O	1:I:389:GLY:HA3	1.92	0.70
1:D:336:PRO:O	1:D:338:PRO:HD3	1.92	0.69
1:E:117:GLY:HA3	1:I:208:ARG:HD2	1.74	0.69
1:F:158:THR:CG2	1:F:160:GLU:H	2.06	0.69
1:A:157:ARG:HH11	1:A:157:ARG:CG	2.06	0.69
1:E:117:GLY:CA	1:I:208:ARG:HD2	2.23	0.69
1:D:58:VAL:HG23	1:D:238:MET:HB3	1.75	0.69
1:F:158:THR:HG21	1:F:189:SER:HA	1.73	0.68
1:B:58:VAL:HG12	1:B:238:MET:HB3	1.74	0.68
1:C:356:ALA:HB1	1:C:359:VAL:CG1	2.22	0.68
1:C:53:GLN:O	1:C:234:ASN:HB3	1.94	0.67
1:J:151:GLU:HB2	1:J:164:VAL:HG13	1.76	0.67
1:A:158:THR:HG21	1:A:189:SER:HA	1.75	0.67
1:C:117:GLY:CA	1:J:208:ARG:HD2	2.25	0.67
1:F:158:THR:HG22	1:F:160:GLU:N	2.09	0.67
1:I:388:GLN:CB	1:I:389:GLY:HA2	2.25	0.66
1:H:58:VAL:HG23	1:H:238:MET:HB3	1.77	0.66
1:H:388:GLN:HA	1:H:388:GLN:NE2	2.11	0.66
1:E:206:ASP:OD1	1:E:208:ARG:HD3	1.95	0.66
1:I:280:ARG:HH11	1:I:280:ARG:CG	2.09	0.65
1:B:357:GLN:O	1:B:358:ASP:HB2	1.96	0.65
1:F:158:THR:CG2	1:F:189:SER:HA	2.26	0.65
1:J:158:THR:CG2	1:J:189:SER:HA	2.25	0.65
1:A:117:GLY:CA	1:G:208:ARG:HD2	2.26	0.64
1:E:280:ARG:NH1	1:E:282:GLU:OE2	2.29	0.64
1:I:162:VAL:CG1	1:I:193:ALA:HB1	2.27	0.64
1:D:280[B]:ARG:NH2	1:D:282:GLU:OE2	2.29	0.64
1:E:208:ARG:HD2	1:H:117:GLY:CA	2.28	0.64
1:B:117:GLY:CA	1:C:208:ARG:HD2	2.28	0.63
1:A:117:GLY:HA3	1:G:208:ARG:HD2	1.80	0.63
1:A:254:HIS:NE2	1:A:360:THR:HG22	2.14	0.62
1:C:255:MET:O	1:C:359:VAL:HA	1.99	0.62
1:D:254:HIS:ND1	1:D:358:ASP:HA	2.15	0.62
1:I:388:GLN:CB	1:I:389:GLY:CA	2.78	0.62
1:A:158:THR:CG2	1:A:189:SER:HA	2.30	0.62

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:97:TYR:CD2	1:C:98:LEU:HD12	2.35	0.61
1:J:206:ASP:OD1	1:J:208:ARG:HD3	1.99	0.61
1:C:357:GLN:H	1:C:357:GLN:NE2	1.98	0.61
1:F:206:ASP:OD1	1:F:208:ARG:HD3	2.01	0.61
1:A:167:VAL:CG1	1:A:201:THR:HG21	2.31	0.60
1:J:29:GLY:HA3	1:J:251:PRO:HG2	1.82	0.60
1:F:117:GLY:CA	1:H:208:ARG:HD2	2.32	0.60
1:H:388:GLN:HA	1:H:388:GLN:HE21	1.67	0.60
1:H:388:GLN:CB	1:H:389:GLY:HA2	2.31	0.60
1:D:206:ASP:OD1	1:D:208:ARG:HD3	2.01	0.60
1:B:305:ARG:HH12	2:B:500:GDU:H5'	1.66	0.60
1:B:364:ARG:HG3	1:B:369:ARG:O	2.01	0.60
1:C:336:PRO:O	1:C:338:PRO:HD3	2.02	0.60
1:G:305:ARG:NH1	2:G:500:GDU:H5'	2.17	0.60
1:D:388:GLN:HA	1:D:388:GLN:NE2	2.17	0.60
1:G:206:ASP:OD1	1:G:208:ARG:HD3	2.02	0.60
1:C:269:TYR:CE2	1:C:352:LEU:HD11	2.37	0.59
1:C:30:PHE:O	1:C:252:PHE:HA	2.02	0.59
1:D:388:GLN:HA	1:D:388:GLN:HE21	1.67	0.59
1:C:238:MET:HE2	1:C:241:THR:HG21	1.85	0.59
1:I:242:ASP:HB3	1:I:245:GLU:HG3	1.84	0.59
1:C:344:GLU:O	1:C:347:LYS:HB3	2.03	0.59
1:I:280:ARG:HH11	1:I:280:ARG:HG2	1.67	0.59
1:I:388:GLN:HB2	1:I:389:GLY:CA	2.33	0.59
1:J:376:VAL:HG21	3:J:450:FAD:H5'2	1.84	0.59
1:B:318:HIS:CE1	1:H:316:ARG:HD3	2.38	0.58
1:J:158:THR:CG2	1:J:160:GLU:H	2.15	0.58
1:C:97:TYR:O	1:C:100:ARG:HG3	2.03	0.58
1:D:208:ARG:HD2	1:I:117:GLY:CA	2.33	0.58
1:J:155:GLN:HG2	1:J:157:ARG:NH1	2.17	0.58
1:J:158:THR:HG21	1:J:189:SER:HA	1.85	0.58
1:D:117:GLY:HA2	1:F:208:ARG:HD2	1.84	0.58
1:E:29:GLY:HA3	1:E:251:PRO:HG2	1.86	0.58
1:I:388:GLN:HB2	1:I:389:GLY:HA2	1.86	0.58
1:C:143:GLU:HB2	4:C:1001:HOH:O	2.03	0.58
1:C:117:GLY:HA2	1:J:208:ARG:HD2	1.85	0.58
1:C:206:ASP:OD1	1:C:208:ARG:HD3	2.04	0.58
1:C:123:PRO:HB3	1:C:200:PRO:O	2.04	0.57
1:I:58:VAL:HG23	1:I:238:MET:HB3	1.85	0.57
1:A:158:THR:CG2	1:A:160:GLU:H	2.13	0.57
1:H:206:ASP:OD1	1:H:208:ARG:HD3	2.03	0.57

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:E:208:ARG:HD2	1:H:117:GLY:HA2	1.86	0.57
1:J:155:GLN:HG2	1:J:157:ARG:CZ	2.34	0.57
1:J:158:THR:HB	1:J:161:ASP:OD2	2.04	0.57
1:B:208:ARG:HD2	1:G:117:GLY:HA3	1.86	0.57
1:I:223:THR:O	1:I:227[B]:GLN:HG3	2.04	0.57
1:B:201:THR:HG23	4:B:982:HOH:O	2.05	0.57
1:F:54:ARG:HG3	1:F:54:ARG:NH2	2.14	0.57
1:I:348:LYS:HE2	4:I:936:HOH:O	2.04	0.56
1:C:269:TYR:HE2	1:C:352:LEU:CD1	2.18	0.56
1:I:210:PHE:HZ	2:I:500:GDU:O4'	1.88	0.56
1:I:280:ARG:HG2	1:I:280:ARG:NH1	2.20	0.56
1:D:384:PHE:O	1:D:388:GLN:HG2	2.05	0.56
1:F:167:VAL:CG1	1:F:201:THR:HG21	2.35	0.56
1:H:151:GLU:HB2	1:H:164:VAL:CG1	2.36	0.56
1:H:158:THR:CG2	1:H:189:SER:HA	2.35	0.56
1:J:29:GLY:CA	1:J:251:PRO:HG2	2.36	0.56
1:C:356:ALA:HB1	1:C:359:VAL:HG13	1.87	0.56
1:A:208:ARG:HD2	1:J:117:GLY:CA	2.35	0.55
1:B:117:GLY:HA2	1:C:208:ARG:HD2	1.87	0.55
1:E:198:ARG:O	1:E:200:PRO:HD3	2.06	0.55
1:F:117:GLY:HA3	1:H:208:ARG:HD2	1.87	0.55
1:J:158:THR:HG22	1:J:161:ASP:H	1.70	0.55
1:H:151:GLU:HB2	1:H:164:VAL:HG13	1.89	0.55
1:D:210:PHE:HZ	2:D:500:GDU:HO4'	1.55	0.55
1:J:123:PRO:HB3	1:J:200:PRO:O	2.06	0.55
1:J:151:GLU:O	1:J:165:SER:HA	2.06	0.55
1:J:347:LYS:HE2	1:J:350:GLU:OE2	2.06	0.55
1:E:364:ARG:HG3	1:E:369:ARG:O	2.06	0.55
1:H:158:THR:CG2	1:H:160:GLU:H	2.19	0.55
1:C:359:VAL:HG22	1:C:361:PHE:CE1	2.42	0.54
1:H:44:LEU:HD13	1:H:256:ILE:HD13	1.89	0.54
1:A:152:LYS:HE2	1:A:165:SER:HB2	1.88	0.54
1:G:151:GLU:HB2	1:G:164:VAL:CG1	2.37	0.54
1:B:305:ARG:NH1	2:B:500:GDU:H5'	2.23	0.54
1:I:261:VAL:HG13	1:I:366:ALA:O	2.08	0.54
1:J:152:LYS:CD	1:J:153:VAL:H	2.20	0.54
1:B:272:LEU:HD22	1:B:368:TYR:CE1	2.42	0.54
1:D:135:LEU:HD23	1:F:138:THR:HG21	1.90	0.54
1:A:158:THR:HG23	1:A:188:PRO:O	2.07	0.54
1:H:86:ILE:HD13	2:H:500:GDU:H6'2	1.90	0.54
1:E:336:PRO:O	1:E:338:PRO:HD3	2.08	0.53

	A L O	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:97:TYR:HD2	1:C:98:LEU:CD1	2.21	0.53
1:C:238:MET:CE	1:C:246:ILE:HG21	2.37	0.53
1:A:206:ASP:OD1	1:A:208:ARG:HD3	2.09	0.53
1:G:357:GLN:HA	1:G:357:GLN:HE21	1.73	0.53
1:D:167:VAL:CG1	1:D:201:THR:HG21	2.36	0.53
1:G:364:ARG:HG3	1:G:369:ARG:O	2.09	0.53
1:B:254[A]:HIS:NE2	1:B:360:THR:CG2	2.71	0.53
1:F:162:VAL:O	1:F:166:LYS:HD2	2.09	0.52
1:I:206:ASP:OD1	1:I:208:ARG:HD3	2.09	0.52
1:B:272:LEU:HD22	1:B:368:TYR:CZ	2.45	0.52
1:C:298:PRO:HG3	4:C:1238:HOH:O	2.09	0.52
1:J:158:THR:HG23	1:J:189:SER:HA	1.90	0.52
1:J:262:ASP:HB3	1:J:272:LEU:HB2	1.91	0.52
1:D:117:GLY:CA	1:F:208:ARG:HD2	2.38	0.52
1:J:243:TYR:O	1:J:246:ILE:HG22	2.10	0.52
1:D:208:ARG:HD2	1:I:117:GLY:HA2	1.91	0.52
1:I:115:VAL:HG11	1:I:174:LYS:HG2	1.91	0.52
1:B:117:GLY:HA3	1:C:208:ARG:HD2	1.92	0.51
1:F:376:VAL:HG21	3:F:450:FAD:H5'2	1.92	0.51
1:I:357:GLN:OE1	1:I:357:GLN:HA	2.10	0.51
1:J:167:VAL:HG11	1:J:201:THR:HG21	1.91	0.51
1:J:280[B]:ARG:HD2	1:J:282:GLU:OE2	2.11	0.51
1:J:242:ASP:HB3	1:J:245:GLU:HG3	1.90	0.51
1:C:58:VAL:HG23	1:C:238:MET:HB3	1.92	0.51
1:I:364:ARG:HG3	1:I:369:ARG:O	2.10	0.51
1:J:185:GLY:O	1:J:186:LEU:HD13	2.10	0.51
1:B:162:VAL:HG13	1:B:193:ALA:HB1	1.91	0.51
1:I:167:VAL:HG11	1:I:201:THR:HG21	1.93	0.51
1:H:357:GLN:H	1:H:357:GLN:CD	2.14	0.51
1:G:158:THR:O	1:G:162:VAL:HG22	2.11	0.51
1:C:308:GLU:HB3	1:C:311:HIS:HD2	1.76	0.51
1:E:262:ASP:HB3	1:E:272:LEU:HB2	1.92	0.51
1:B:208:ARG:HD2	1:G:117:GLY:HA2	1.92	0.50
1:B:376:VAL:HG21	3:B:450:FAD:H5'2	1.91	0.50
1:D:344:GLU:HG3	4:D:1032:HOH:O	2.11	0.50
1:G:123:PRO:HB3	1:G:200:PRO:O	2.12	0.50
1:G:262:ASP:HB3	1:G:272:LEU:HB2	1.93	0.50
1:H:249:PHE:O	1:H:251:PRO:HD3	2.12	0.50
1:J:280[B]:ARG:NH2	1:J:326:TYR:OH	2.44	0.50
1:B:201:THR:HG22	4:B:715:HOH:O	2.11	0.50
1:D:30:PHE:O	1:D:252:PHE:HA	2.11	0.50

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:H:162:VAL:CG1	1:H:193:ALA:HB1	2.41	0.50
1:A:254:HIS:NE2	1:A:360:THR:CG2	2.74	0.50
1:F:336:PRO:O	1:F:338:PRO:HD3	2.11	0.50
1:I:280:ARG:NH1	1:I:324:TYR:CD2	2.74	0.50
1:C:139:SER:O	1:C:142:VAL:HG12	2.11	0.50
1:D:86:ILE:N	1:D:86:ILE:HD12	2.25	0.50
1:A:123:PRO:HB3	1:A:200:PRO:O	2.11	0.50
1:A:122:ILE:HA	1:A:123:PRO:C	2.32	0.50
1:I:30:PHE:O	1:I:252:PHE:HA	2.12	0.50
1:H:162:VAL:HG13	1:H:193:ALA:HB1	1.93	0.50
1:G:86:ILE:N	1:G:86:ILE:HD12	2.27	0.49
1:J:86:ILE:HG21	1:J:109:HIS:HB2	1.94	0.49
1:J:280[B]:ARG:NH1	1:J:282:GLU:OE2	2.41	0.49
1:B:139:SER:O	1:B:142:VAL:HG12	2.12	0.49
1:C:376:VAL:HG21	3:C:450:FAD:H5'2	1.94	0.49
1:E:357:GLN:HE21	1:E:357:GLN:HA	1.77	0.49
1:G:272:LEU:HD23	1:G:273:PRO:HD2	1.94	0.49
1:I:115:VAL:CG1	1:I:174:LYS:HG2	2.41	0.49
1:B:254[A]:HIS:NE2	1:B:360:THR:HG22	2.26	0.49
1:F:122:ILE:HA	1:F:123:PRO:C	2.33	0.49
1:A:156:VAL:HG11	1:A:162:VAL:HG13	1.94	0.49
1:J:272:LEU:HD13	1:J:368:TYR:CD1	2.47	0.49
1:C:361:PHE:N	1:C:361:PHE:CD1	2.80	0.49
1:H:277:LEU:HD23	1:H:327:PRO:HA	1.95	0.49
1:J:246:ILE:HG13	1:J:250:ILE:HD12	1.94	0.49
1:H:122:ILE:HA	1:H:123:PRO:C	2.33	0.49
1:G:305:ARG:HH12	2:G:500:GDU:H5'	1.76	0.49
1:I:40:ALA:HB1	1:I:362:VAL:HG22	1.94	0.49
1:I:123:PRO:HB3	1:I:200:PRO:O	2.12	0.49
1:I:280:ARG:HH11	1:I:280:ARG:HB3	1.76	0.49
1:E:86:ILE:HG21	1:E:109:HIS:HB2	1.94	0.49
1:F:162:VAL:HG21	1:F:196:THR:OG1	2.13	0.49
2:I:500:GDU:O4'	2:I:500:GDU:O6'	2.26	0.49
1:J:261:VAL:CG1	1:J:366:ALA:O	2.61	0.49
1:G:37:ALA:HA	1:G:57:ILE:HD11	1.94	0.49
1:H:145:PHE:O	1:H:149:VAL:HG22	2.12	0.49
1:H:158:THR:HG21	1:H:189:SER:HA	1.95	0.48
1:E:159:SER:HB3	1:E:196:THR:HG23	1.95	0.48
1:J:29:GLY:HA3	1:J:251:PRO:O	2.14	0.48
1:A:86:ILE:HG21	1:A:109:HIS:HB2	1.94	0.48
1:E:357:GLN:HA	1:E:357:GLN:NE2	2.27	0.48

A 4 1	A 4 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:97:TYR:HD2	1:C:98:LEU:HD12	1.76	0.48
1:J:47:ARG:NE	1:J:47:ARG:HA	2.27	0.48
1:B:273:PRO:HG2	1:B:342:ASN:OD1	2.14	0.48
1:C:64:ILE:HD12	1:C:226:PHE:HB3	1.95	0.48
1:A:208:ARG:HD2	1:J:117:GLY:HA3	1.95	0.48
1:I:162:VAL:HG11	1:I:193:ALA:HB1	1.95	0.48
1:I:388:GLN:HB3	1:I:389:GLY:HA2	1.95	0.48
1:C:269:TYR:CE2	1:C:352:LEU:CD1	2.96	0.48
1:D:47:ARG:NH1	1:D:100:ARG:HH12	2.10	0.48
1:B:206:ASP:OD1	1:B:208:ARG:HD3	2.14	0.47
1:C:246:ILE:HD12	1:C:250:ILE:HD12	1.96	0.47
1:I:86:ILE:HG21	1:I:109:HIS:HB2	1.96	0.47
1:I:151:GLU:HB2	1:I:164:VAL:HG13	1.95	0.47
1:J:158:THR:HB	1:J:161:ASP:CG	2.34	0.47
1:A:236:LYS:HB3	1:I:238:MET:HE3	1.96	0.47
1:C:86:ILE:HD13	2:C:500:GDU:H6'2	1.97	0.47
1:F:305:ARG:NH1	2:F:500:GDU:H5'	2.30	0.47
1:E:47:ARG:NE	1:E:47:ARG:HA	2.30	0.46
1:G:318:HIS:NE2	1:H:285:ASP:OD2	2.44	0.46
1:B:122:ILE:HA	1:B:123:PRO:C	2.36	0.46
1:H:158:THR:HG22	1:H:160:GLU:N	2.30	0.46
1:C:282:GLU:OE1	1:C:284:HIS:CE1	2.69	0.46
1:F:305:ARG:HH12	2:F:500:GDU:H5'	1.80	0.46
1:C:32:TYR:CD1	1:C:254:HIS:HB3	2.51	0.46
1:D:37:ALA:HA	1:D:57:ILE:HD11	1.97	0.46
1:D:246:ILE:HD13	1:D:250:ILE:HD12	1.97	0.46
1:B:162:VAL:CG1	1:B:193:ALA:HB1	2.45	0.46
1:A:158:THR:CG2	1:A:160:GLU:HB3	2.46	0.46
1:C:122:ILE:HA	1:C:123:PRO:C	2.36	0.46
1:D:383:THR:HG22	1:D:387:LEU:HD22	1.97	0.46
1:I:47:ARG:NH1	1:I:100:ARG:HH12	2.14	0.46
1:C:257:TYR:HE2	1:C:260:PRO:O	1.97	0.46
1:D:122:ILE:HA	1:D:123:PRO:C	2.35	0.46
1:J:172:TYR:OH	1:J:188:PRO:HG2	2.16	0.46
1:G:357:GLN:HA	1:G:357:GLN:NE2	2.31	0.46
3:A:450:FAD:O2'	3:A:450:FAD:O4'	2.30	0.46
1:D:206:ASP:HA	1:I:116:ASP:O	2.16	0.46
1:H:158:THR:HG23	1:H:189:SER:HA	1.97	0.46
1:I:280:ARG:HH11	1:I:280:ARG:CB	2.29	0.46
1:H:86:ILE:HG21	1:H:109:HIS:HB2	1.99	0.45
1:B:167:VAL:CG1	1:B:201:THR:HG21	2.41	0.45

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:E:208:ARG:HD2	1:H:117:GLY:HA3	1.98	0.45
1:F:273:PRO:HG2	1:F:342:ASN:OD1	2.15	0.45
1:J:152:LYS:HD2	1:J:153:VAL:O	2.16	0.45
1:J:158:THR:O	1:J:162:VAL:HG22	2.17	0.45
1:I:376:VAL:HG21	3:I:450:FAD:H5'2	1.98	0.45
1:B:272:LEU:HD13	1:B:368:TYR:CD1	2.51	0.45
1:C:237:VAL:O	1:F:238:MET:HA	2.16	0.45
1:D:162:VAL:HG13	1:D:193:ALA:HB1	1.98	0.45
1:A:124:ILE:HB	1:A:201:THR:HG22	1.98	0.45
1:A:273:PRO:HG2	1:A:342:ASN:OD1	2.17	0.45
1:F:272:LEU:HD13	1:F:368:TYR:CD1	2.51	0.45
1:J:155:GLN:HG2	1:J:157:ARG:NH2	2.32	0.45
1:A:206:ASP:HA	1:J:116:ASP:O	2.17	0.45
1:C:245:GLU:OE2	1:F:236:LYS:HE3	2.16	0.45
1:B:318:HIS:NE2	1:H:316:ARG:HD3	2.30	0.45
1:B:37:ALA:HA	1:B:57:ILE:HD11	1.98	0.45
1:H:97:TYR:HD2	1:H:98:LEU:HD13	1.82	0.45
1:A:152:LYS:HD3	1:A:152:LYS:HA	1.26	0.45
1:A:158:THR:HG21	1:A:160:GLU:HB3	1.99	0.45
1:D:135:LEU:HD23	1:F:138:THR:CG2	2.46	0.45
1:A:158:THR:O	1:A:162:VAL:HG22	2.17	0.45
1:D:305:ARG:NH1	2:D:500:GDU:H5'	2.32	0.45
1:E:261:VAL:HG13	1:E:366:ALA:O	2.17	0.45
1:J:336:PRO:O	1:J:338:PRO:HD3	2.17	0.45
1:C:117:GLY:HA3	1:J:208:ARG:HD2	1.98	0.44
1:C:167:VAL:CG1	1:C:201:THR:HG21	2.46	0.44
1:F:145:PHE:O	1:F:149:VAL:HG22	2.16	0.44
1:F:158:THR:HG23	1:F:188:PRO:O	2.17	0.44
1:G:58:VAL:HG22	1:G:241:THR:HB	1.99	0.44
1:I:44:LEU:HD13	1:I:256:ILE:HD13	1.99	0.44
1:B:357:GLN:O	1:B:358:ASP:CB	2.65	0.44
1:C:97:TYR:CZ	1:C:101:PHE:HE1	2.35	0.44
1:D:208:ARG:HD2	1:I:117:GLY:HA3	1.98	0.44
1:D:371:TYR:HB3	1:D:376:VAL:HG23	1.98	0.44
1:G:339:ARG:HB2	1:G:340:PRO:HD2	1.99	0.44
1:F:86:ILE:N	1:F:86:ILE:HD12	2.32	0.44
1:H:246:ILE:HD12	1:H:250:ILE:HD12	1.98	0.44
1:J:246:ILE:HD12	1:J:246:ILE:HA	1.82	0.44
1:D:388:GLN:HE21	1:D:388:GLN:CA	2.30	0.44
1:H:158:THR:HG23	1:H:160:GLU:H	1.81	0.44
1:H:337:VAL:HB	1:H:342:ASN:ND2	2.33	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:I:384:PHE:CE1	1:I:388:GLN:HG3	2.52	0.44
2:I:500:GDU:HO4'	2:I:500:GDU:HO6'	1.61	0.44
1:D:238:MET:HG2	1:D:241:THR:OG1	2.17	0.44
1:D:250:ILE:HA	1:D:251:PRO:HD3	1.78	0.44
1:E:29:GLY:CA	1:E:251:PRO:HG2	2.48	0.44
1:E:116:ASP:O	1:I:206:ASP:HA	2.18	0.44
1:F:39:PHE:O	1:F:43:VAL:HG23	2.17	0.44
1:G:187:ASP:CG	1:G:188:PRO:HD2	2.38	0.44
1:C:92:LYS:O	1:C:96:GLU:HG3	2.18	0.44
1:D:156:VAL:CG1	1:D:162:VAL:HG13	2.47	0.44
1:A:151:GLU:O	1:A:165:SER:HA	2.17	0.43
1:E:169:ARG:HD2	4:E:520:HOH:O	2.18	0.43
1:H:152:LYS:NZ	1:H:153:VAL:H	2.16	0.43
1:A:277:LEU:HD23	1:A:327:PRO:HA	2.01	0.43
1:C:275:ARG:HB3	1:C:335:TYR:HB2	2.00	0.43
1:D:236:LYS:HA	1:D:236:LYS:HD3	1.89	0.43
1:H:47:ARG:HA	1:H:47:ARG:NE	2.34	0.43
1:A:116:ASP:O	1:G:206:ASP:HA	2.18	0.43
1:E:248:ASP:HB2	4:E:1050:HOH:O	2.18	0.43
1:F:30:PHE:O	1:F:252:PHE:HA	2.18	0.43
1:J:272:LEU:HD13	1:J:368:TYR:CE1	2.54	0.43
2:G:500:GDU:H2'	3:G:450:FAD:C4	2.49	0.43
1:I:272:LEU:HD13	1:I:368:TYR:CD1	2.54	0.43
1:J:122:ILE:HA	1:J:123:PRO:C	2.38	0.43
1:D:355:ALA:O	1:D:357:GLN:NE2	2.51	0.43
1:A:364:ARG:HG3	1:A:369:ARG:O	2.18	0.43
1:E:28:LYS:HA	1:E:28:LYS:HD2	1.84	0.43
1:E:125:ASN:HB2	1:E:204:ASN:O	2.19	0.43
1:G:47:ARG:HA	1:G:47:ARG:NE	2.33	0.43
1:I:272:LEU:HD13	1:I:368:TYR:CE1	2.54	0.43
1:E:122:ILE:HA	1:E:123:PRO:C	2.38	0.43
1:J:127:ASP:O	1:J:131:ARG:HG3	2.19	0.43
1:A:300:ASP:O	1:A:301:TYR:HB2	2.19	0.43
1:J:167:VAL:CG1	1:J:201:THR:HG21	2.49	0.43
1:A:138:THR:HG21	1:J:135:LEU:HD23	2.01	0.43
1:C:257:TYR:CE2	1:C:260:PRO:O	2.72	0.43
1:J:253:GLN:HE21	1:J:253:GLN:N	2.16	0.43
1:C:339:ARG:HB2	1:C:340:PRO:HD2	2.01	0.42
1:B:86:ILE:HG21	1:B:109:HIS:HB2	2.00	0.42
1:B:151:GLU:HB2	1:B:164:VAL:HG13	2.01	0.42
1:D:305:ARG:HH12	2:D:500:GDU:H5'	1.84	0.42

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:J:384:PHE:O	1:J:388:GLN:HG2	2.18	0.42
1:D:266:ASP:O	1:D:267:PHE:HB2	2.19	0.42
1:J:156:VAL:HG13	1:J:161:ASP:HB3	2.01	0.42
1:B:277:LEU:HD23	1:B:327:PRO:HA	2.01	0.42
1:D:261:VAL:HG13	1:D:366:ALA:O	2.19	0.42
1:E:117:GLY:HA2	1:I:208:ARG:HD2	1.99	0.42
1:J:124:ILE:HB	1:J:201:THR:HG22	2.00	0.42
1:B:141:GLN:HA	1:B:144:GLU:HG3	2.01	0.42
1:E:388:GLN:NE2	1:E:388:GLN:HA	2.34	0.42
1:H:48:LEU:HD13	1:H:384:PHE:CD1	2.54	0.42
1:F:162:VAL:CG2	1:F:196:THR:OG1	2.67	0.42
1:I:37:ALA:HA	1:I:57:ILE:HD11	2.00	0.42
1:C:250:ILE:HA	1:C:251:PRO:HD3	1.71	0.42
1:D:162:VAL:CG1	1:D:193:ALA:HB1	2.49	0.42
1:E:58:VAL:CG2	1:E:238:MET:HB3	2.31	0.42
1:G:125:ASN:HB2	1:G:204:ASN:O	2.19	0.42
1:E:345:LEU:HD22	1:E:345:LEU:O	2.20	0.42
1:F:47:ARG:HA	1:F:47:ARG:NE	2.35	0.42
1:F:123:PRO:HB3	1:F:200:PRO:O	2.20	0.42
1:B:187:ASP:CG	1:B:188:PRO:HD2	2.40	0.42
1:E:357:GLN:O	1:E:358:ASP:HB2	2.20	0.42
1:H:341:GLU:HG2	1:H:342:ASN:N	2.34	0.42
1:A:32:TYR:HA	1:A:254:HIS:O	2.20	0.41
1:A:47:ARG:HA	1:A:47:ARG:NE	2.35	0.41
1:B:344:GLU:HG3	4:B:764:HOH:O	2.21	0.41
1:D:306:VAL:HG22	1:D:324:TYR:CD1	2.55	0.41
1:E:176:PHE:HA	2:E:500:GDU:O2	2.20	0.41
1:A:58:VAL:HG23	1:A:238:MET:HB3	2.01	0.41
1:A:262:ASP:HB3	1:A:272:LEU:HB2	2.02	0.41
1:G:155:GLN:HB3	1:G:157:ARG:HH11	1.85	0.41
3:G:450:FAD:O2'	3:G:450:FAD:O4'	2.30	0.41
1:H:48:LEU:HD13	1:H:384:PHE:CE1	2.56	0.41
1:C:269:TYR:HE2	1:C:352:LEU:HD11	1.79	0.41
1:F:250:ILE:HA	1:F:251:PRO:HD3	1.87	0.41
1:G:159:SER:HA	1:G:162:VAL:CG2	2.50	0.41
1:F:116:ASP:O	1:H:206:ASP:HA	2.21	0.41
1:F:153:VAL:HG23	1:F:153:VAL:O	2.20	0.41
1:G:48:LEU:HD12	1:G:53:GLN:HG3	2.03	0.41
1:A:297:TYR:HE1	1:A:306:VAL:HG23	1.86	0.41
1:H:364:ARG:HG3	1:H:369:ARG:O	2.20	0.41
1:J:305:ARG:HH12	2:J:500:GDU:H5'	1.86	0.41

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:B:500:GDU:H2'	3:B:450:FAD:C4	2.51	0.41
1:G:98:LEU:HD12	1:G:98:LEU:HA	1.91	0.41
1:C:269:TYR:HE2	1:C:352:LEU:HD12	1.85	0.41
1:E:30:PHE:O	1:E:252:PHE:HA	2.21	0.41
1:G:122:ILE:HA	1:G:123:PRO:C	2.40	0.41
1:G:236:LYS:HA	1:G:236:LYS:HD3	1.96	0.41
1:J:275:ARG:HB3	1:J:335:TYR:HB2	2.03	0.41
1:J:305:ARG:NH1	2:J:500:GDU:H5'	2.35	0.41
1:C:356:ALA:CB	1:C:359:VAL:HG13	2.50	0.41
1:F:306:VAL:HG13	1:F:324:TYR:CE1	2.56	0.41
1:B:160:GLU:HG3	1:B:172:TYR:CZ	2.56	0.40
1:B:277:LEU:HD11	1:B:335:TYR:HE1	1.86	0.40
1:E:385:ARG:NH2	4:E:415:HOH:O	2.54	0.40
1:F:364:ARG:HG3	1:F:369:ARG:O	2.21	0.40
1:I:86:ILE:HD13	2:I:500:GDU:O6'	2.21	0.40
1:I:275:ARG:HB3	1:I:335:TYR:HB2	2.03	0.40
1:J:273:PRO:HG2	1:J:342:ASN:OD1	2.21	0.40
1:B:47:ARG:HA	1:B:47:ARG:NE	2.35	0.40
1:B:275:ARG:HB3	1:B:335:TYR:HB2	2.03	0.40
1:B:297:TYR:HE1	1:B:306:VAL:HG23	1.85	0.40
1:D:339:ARG:O	1:D:340:PRO:C	2.60	0.40
1:E:92:LYS:HE2	1:E:96:GLU:OE2	2.21	0.40
1:F:275:ARG:HB3	1:F:335:TYR:HB2	2.02	0.40
1:H:158:THR:HG22	1:H:161:ASP:N	2.24	0.40
1:B:272:LEU:HD23	1:B:273:PRO:HD2	2.02	0.40
1:B:338:PRO:O	1:B:339:ARG:HB3	2.22	0.40
1:E:158:THR:O	1:E:162:VAL:HG22	2.21	0.40
1:C:217:MET:HG3	1:C:312:ILE:O	2.21	0.40
1:F:162:VAL:HG23	1:F:163:VAL:N	2.36	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	364/397~(92%)	355~(98%)	9 (2%)	0	100	100
1	В	364/397~(92%)	352~(97%)	12 (3%)	0	100	100
1	С	360/397~(91%)	347 (96%)	13 (4%)	0	100	100
1	D	359/397~(90%)	345~(96%)	13 (4%)	1 (0%)	41	47
1	Е	362/397~(91%)	353~(98%)	9 (2%)	0	100	100
1	F	362/397~(91%)	356~(98%)	6 (2%)	0	100	100
1	G	362/397~(91%)	355~(98%)	6 (2%)	1 (0%)	41	47
1	Н	363/397~(91%)	353 (97%)	10 (3%)	0	100	100
1	Ι	362/397~(91%)	353 (98%)	9 (2%)	0	100	100
1	J	360/397~(91%)	353 (98%)	7 (2%)	0	100	100
All	All	3618/3970~(91%)	3522 (97%)	94 (3%)	2 (0%)	51	63

All (2) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	D	340	PRO
1	G	154	GLU

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	318/346~(92%)	292~(92%)	26~(8%)	11 11
1	В	318/346~(92%)	299~(94%)	19 (6%)	19 21
1	С	315/346~(91%)	294~(93%)	21 (7%)	16 17
1	D	314/346~(91%)	294~(94%)	20~(6%)	17 18
1	Ε	316/346~(91%)	298~(94%)	18 (6%)	20 22
1	F	316/346~(91%)	296 (94%)	20 (6%)	18 19
1	G	316/346~(91%)	294~(93%)	22 (7%)	15 15
1	Н	317/346~(92%)	301 (95%)	16 (5%)	24 28

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	Ι	316/346~(91%)	294~(93%)	22 (7%)	15 15
1	J	314/346~(91%)	295~(94%)	19 (6%)	18 20
All	All	3160/3460~(91%)	2957 (94%)	203 (6%)	17 18

All (203) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	26	GLU
1	А	48	LEU
1	А	60	ARG
1	А	98	LEU
1	А	112	LEU
1	А	120	LEU
1	А	126	LEU
1	А	152	LYS
1	А	155	GLN
1	А	157	ARG
1	А	162	VAL
1	А	186	LEU
1	А	201	THR
1	А	246	ILE
1	А	261	VAL
1	А	272	LEU
1	А	286	THR
1	А	306	VAL
1	А	330	GLU
1	А	339	ARG
1	А	345	LEU
1	А	347	LYS
1	А	348	LYS
1	А	360	THR
1	А	370	TYR
1	А	387	LEU
1	В	48	LEU
1	В	98	LEU
1	В	112	LEU
1	В	120	LEU
1	В	126	LEU
1	В	139	SER
1	В	144	GLU
1	В	186	LEU

Mol	Chain	Res	Type
1	В	246	ILE
1	В	261	VAL
1	В	272	LEU
1	В	286	THR
1	В	306	VAL
1	В	330	GLU
1	В	341	GLU
1	В	345	LEU
1	В	360	THR
1	В	370	TYR
1	В	387	LEU
1	С	28	LYS
1	С	48	LEU
1	С	58	VAL
1	С	112	LEU
1	С	120	LEU
1	С	126	LEU
1	С	139	SER
1	С	159	SER
1	С	166	LYS
1	С	174	LYS
1	С	186	LEU
1	С	261	VAL
1	С	280[A]	ARG
1	С	280[B]	ARG
1	С	345	LEU
1	С	348	LYS
1	С	354	ASP
1	С	357	GLN
1	С	361	PHE
1	С	370	TYR
1	С	379	GLN
1	D	48	LEU
1	D	58	VAL
1	D	93	ASP
1	D	98	LEU
1	D	112	LEU
1	D	120	LEU
1	D	126	LEU
1	D	154	GLU
1	D	155	GLN
1	D	162	VAL
		•	

Mol	Chain	Res	Type
1	D	164	VAL
1	D	182	LYS
1	D	186	LEU
1	D	261	VAL
1	D	292	THR
1	D	341	GLU
1	D	345	LEU
1	D	370	TYR
1	D	387	LEU
1	D	388	GLN
1	Е	28	LYS
1	Е	48	LEU
1	Ε	98	LEU
1	Е	112	LEU
1	Ε	120	LEU
1	Е	126	LEU
1	Е	154	GLU
1	Ε	162	VAL
1	Е	186	LEU
1	Ε	261	VAL
1	Е	272	LEU
1	Ε	330	GLU
1	Ε	344	GLU
1	Ε	345	LEU
1	Ε	348	LYS
1	Ε	362	VAL
1	Е	370	TYR
1	Е	387	LEU
1	F	48	LEU
1	F	54	ARG
1	F	58	VAL
1	F	93	ASP
1	F	98	LEU
1	F	112	LEU
1	F	120	LEU
1	F	126	LEU
1	F	158	THR
1	F	159	SER
1	F	164	VAL
1	F	186	LEU
1	F	261	VAL
1	F	272	LEU

Mol	Chain	Res	Type
1	F	306	VAL
1	F	330	GLU
1	F	345	LEU
1	F	348	LYS
1	F	370	TYR
1	F	387	LEU
1	G	27	SER
1	G	28	LYS
1	G	58	VAL
1	G	98	LEU
1	G	112	LEU
1	G	120	LEU
1	G	126	LEU
1	G	152	LYS
1	G	162	VAL
1	G	164	VAL
1	G	186	LEU
1	G	261	VAL
1	G	272	LEU
1	G	292	THR
1	G	306	VAL
1	G	318	HIS
1	G	330	GLU
1	G	345	LEU
1	G	348	LYS
1	G	362	VAL
1	G	370	TYR
1	G	371	TYR
1	Н	48	LEU
1	Н	98	LEU
1	Н	112	LEU
1	H	120	LEU
1	Н	126	LEU
1	H	$15\overline{2}$	LYS
1	Н	158	THR
1	Н	162	VAL
1	Н	186	LEU
1	Н	261	VAL
1	H	272	LEU
1	Н	330	GLU
1	H	345	LEU
1	Н	370	TYR

Mol	Chain	Res	Type
1	Н	387	LEU
1	Н	390	GLN
1	Ι	48	LEU
1	Ι	58	VAL
1	Ι	98	LEU
1	Ι	112	LEU
1	Ι	120	LEU
1	Ι	126	LEU
1	Ι	159	SER
1	Ι	164	VAL
1	Ι	174	LYS
1	Ι	186	LEU
1	Ι	201	THR
1	Ι	261	VAL
1	Ι	272	LEU
1	Ι	280	ARG
1	Ι	286	THR
1	Ι	292	THR
1	Ι	306	VAL
1	Ι	339	ARG
1	Ι	345	LEU
1	Ι	362	VAL
1	Ι	370	TYR
1	Ι	387	LEU
1	J	48	LEU
1	J	98	LEU
1	J	112	LEU
1	J	120	LEU
1	J	126	LEU
1	J	143	GLU
1	J	152	LYS
1	J	162	VAL
1	J	186	LEU
1	J	201	THR
1	J	212	ASP
1	J	272	LEU
1	J	306	VAL
1	J	330	GLU
1	J	345	LEU
1	J	357	GLN
1	J	362	VAL
1	J	370	TYR

Continued from previous page...

Mol	Chain	Res	Type
1	J	387	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (12) such sidechains are listed below:

Mol	Chain	Res	Type
1	С	284	HIS
1	С	311	HIS
1	С	357	GLN
1	D	388	GLN
1	Е	357	GLN
1	Е	388	GLN
1	F	390	GLN
1	G	357	GLN
1	Н	284	HIS
1	Н	388	GLN
1	J	253	GLN
1	J	357	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

20 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the

Mal Trma		Chain	Dec	Tink	Bond lengths			Bond angles		
NIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
2	GDU	Е	500	-	$35,\!38,\!38$	2.70	4 (11%)	53,58,58	3.53	16 (30%)
2	GDU	В	500	-	35,38,38	2.66	4 (11%)	53,58,58	<mark>3.60</mark>	18 (33%)
2	GDU	А	500	-	35,38,38	2.66	5 (14%)	53,58,58	3.56	15 (28%)
2	GDU	Ι	500	-	35,38,38	2.65	4 (11%)	53,58,58	<mark>3.73</mark>	18 (33%)
3	FAD	J	450	-	$53,\!58,\!58$	1.86	18 (33%)	68,89,89	1.37	8 (11%)
3	FAD	F	450	-	$53,\!58,\!58$	1.82	18 (33%)	68,89,89	1.37	8 (11%)
3	FAD	В	450	-	53,58,58	1.75	19 (35%)	68,89,89	1.48	8 (11%)
2	GDU	J	500	-	35,38,38	2.66	3 (8%)	53,58,58	<mark>3.64</mark>	17 (32%)
2	GDU	Н	500	-	35,38,38	2.76	5 (14%)	53,58,58	3.43	14 (26%)
2	GDU	D	500	-	35,38,38	2.72	6 (17%)	53,58,58	<mark>3.62</mark>	17 (32%)
2	GDU	F	500	-	35,38,38	2.70	4 (11%)	53,58,58	<mark>3.70</mark>	21 (39%)
2	GDU	G	500	-	35,38,38	2.66	4 (11%)	53,58,58	3.64	18 (33%)
3	FAD	А	450	-	53,58,58	1.84	20 (37%)	68,89,89	1.61	14 (20%)
3	FAD	С	450	-	53,58,58	1.88	17 (32%)	68,89,89	1.62	12 (17%)
3	FAD	Ι	450	-	53,58,58	1.82	19 (35%)	68,89,89	1.41	11 (16%)
3	FAD	D	450	-	53,58,58	1.75	19 (35%)	68,89,89	1.53	12 (17%)
3	FAD	Н	450	-	$53,\!58,\!58$	1.82	18 (33%)	68,89,89	1.25	8 (11%)
3	FAD	G	450	-	$53,\!58,\!58$	1.73	14 (26%)	68,89,89	1.37	8 (11%)
2	GDU	С	500	-	35,38,38	2.72	4 (11%)	53,58,58	3.55	17 (32%)
3	FAD	Е	450	-	53,58,58	1.77	16 (30%)	68,89,89	1.45	10 (14%)

expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	GDU	Е	500	-	-	4/23/59/59	0/3/3/3
2	GDU	В	500	-	-	2/23/59/59	0/3/3/3
2	GDU	А	500	-	-	3/23/59/59	0/3/3/3
2	GDU	Ι	500	-	-	6/23/59/59	0/3/3/3
3	FAD	J	450	-	-	3/30/50/50	0/6/6/6
3	FAD	F	450	-	-	2/30/50/50	0/6/6/6
3	FAD	В	450	-	-	1/30/50/50	0/6/6/6

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	GDU	J	500	-	-	6/23/59/59	0/3/3/3
2	GDU	Н	500	-	-	4/23/59/59	0/3/3/3
2	GDU	D	500	-	-	6/23/59/59	0/3/3/3
2	GDU	F	500	-	-	6/23/59/59	0/3/3/3
2	GDU	G	500	-	-	4/23/59/59	0/3/3/3
3	FAD	А	450	-	-	$\frac{5/30/50/50}{50}$	0/6/6/6
3	FAD	С	450	-	-	1/30/50/50	0/6/6/6
3	FAD	Ι	450	-	-	4/30/50/50	0/6/6/6
3	FAD	D	450	-	-	3/30/50/50	0/6/6/6
3	FAD	Н	450	-	-	5/30/50/50	0/6/6/6
3	FAD	G	450	-	-	3/30/50/50	0/6/6/6
2	GDU	С	500	-	-	6/23/59/59	0/3/3/3
3	FAD	Е	450	-	-	6/30/50/50	0/6/6/6

All (221) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	D	500	GDU	O2-C2	11.27	1.43	1.23
2	G	500	GDU	O2-C2	11.25	1.43	1.23
2	Е	500	GDU	O2-C2	11.23	1.43	1.23
2	С	500	GDU	O2-C2	11.14	1.43	1.23
2	F	500	GDU	O2-C2	11.01	1.43	1.23
2	Н	500	GDU	O2-C2	11.01	1.43	1.23
2	В	500	GDU	O2-C2	10.84	1.42	1.23
2	Ι	500	GDU	O2-C2	10.81	1.42	1.23
2	А	500	GDU	O2-C2	10.64	1.42	1.23
2	J	500	GDU	O2-C2	10.45	1.42	1.23
2	А	500	GDU	C2-N1	-8.05	1.25	1.38
2	J	500	GDU	C2-N1	-7.94	1.25	1.38
2	Н	500	GDU	C2-N1	-7.88	1.25	1.38
2	F	500	GDU	C2-N1	-7.75	1.26	1.38
2	Ι	500	GDU	C2-N1	-7.75	1.26	1.38
2	G	500	GDU	C2-N1	-7.54	1.26	1.38
2	Е	500	GDU	C2-N1	-7.53	1.26	1.38
2	В	500	GDU	C2-N1	-7.49	1.26	1.38
2	С	500	GDU	C2-N1	-7.34	1.26	1.38
2	D	500	GDU	C2-N1	-7.27	1.26	1.38
2	Н	500	GDU	C2-N3	-6.68	1.26	1.38
2	С	500	GDU	C2-N3	-6.48	1.26	1.38
2	Ε	500	GDU	C2-N3	-6.35	1.26	1.38

эпDQ

Conti	Continued from previous page									
Mol	Chain	Res	Type	Atoms	Z	Observed(A)	Ideal(A)			
2	Ι	500	GDU	C2-N3	-6.33	1.26	1.38			
2	А	500	GDU	C2-N3	-6.23	1.26	1.38			
2	J	500	GDU	C2-N3	-6.20	1.26	1.38			
2	F	500	GDU	C2-N3	-6.15	1.27	1.38			
2	В	500	GDU	C2-N3	-6.14	1.27	1.38			
2	D	500	GDU	C2-N3	-6.13	1.27	1.38			
2	G	500	GDU	C2-N3	-5.89	1.27	1.38			
3	С	450	FAD	C5X-N5	-4.20	1.31	1.39			
3	В	450	FAD	C5X-N5	-3.45	1.32	1.39			
3	J	450	FAD	O4-C4	-3.40	1.17	1.23			
3	Ι	450	FAD	C5X-N5	-3.33	1.33	1.39			
3	Н	450	FAD	P-O2P	-3.16	1.40	1.55			
3	В	450	FAD	C9A-C5X	-3.13	1.36	1.41			
3	F	450	FAD	O4'-C4'	-3.13	1.36	1.43			
3	J	450	FAD	P-O2P	-3.11	1.40	1.55			
3	G	450	FAD	O2-C2	-3.11	1.18	1.24			
3	С	450	FAD	C2A-N3A	3.08	1.37	1.32			
3	А	450	FAD	PA-O2A	-3.08	1.40	1.55			
3	Ι	450	FAD	P-O2P	-3.08	1.40	1.55			
3	Ι	450	FAD	O4-C4	-3.07	1.17	1.23			
3	С	450	FAD	O2-C2	-3.06	1.18	1.24			
3	Е	450	FAD	O2-C2	-3.06	1.18	1.24			
3	С	450	FAD	C9A-N10	-3.05	1.35	1.41			
3	F	450	FAD	P-O2P	-3.02	1.41	1.55			
3	А	450	FAD	C4X-C10	-3.02	1.35	1.44			
3	D	450	FAD	C9A-C5X	-2.99	1.36	1.41			
3	J	450	FAD	C9A-N10	-2.98	1.35	1.41			
3	С	450	FAD	C4X-C10	-2.91	1.35	1.44			
3	F	450	FAD	PA-O2A	-2.90	1.41	1.55			
3	G	450	FAD	P-O2P	-2.90	1.41	1.55			
3	F	450	FAD	O4-C4	-2.89	1.18	1.23			
3	А	450	FAD	P-O2P	-2.88	1.41	1.55			
3	Е	450	FAD	C4X-C10	-2.88	1.35	1.44			
3	J	450	FAD	O2-C2	-2.86	1.19	1.24			
3	В	450	FAD	P-O2P	-2.86	1.41	1.55			
3	J	450	FAD	C4X-C4	-2.86	1.34	1.44			
3	D	450	FAD	C4X-C4	-2.85	1.34	1.44			
3	Ι	450	FAD	PA-O2A	-2.85	1.42	1.55			
3	G	450	FAD	O4B-C4B	-2.84	1.38	1.45			
3	А	450	FAD	O3'-C3'	-2.84	1.36	1.43			
3	А	450	FAD	O4B-C4B	-2.84	1.38	1.45			
3	С	450	FAD	O2'-C2'	-2.83	1.37	1.43			

 α ntia Jf

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	G	450	FAD	C5X-N5	-2.83	1.34	1.39
3	G	450	FAD	PA-O2A	-2.81	1.42	1.55
3	Н	450	FAD	PA-O2A	-2.79	1.42	1.55
3	Ι	450	FAD	C9A-N10	-2.78	1.36	1.41
3	G	450	FAD	C9A-C5X	-2.78	1.36	1.41
3	С	450	FAD	O3B-C3B	-2.76	1.36	1.43
3	Н	450	FAD	O4-C4	-2.76	1.18	1.23
3	Е	450	FAD	O4-C4	-2.76	1.18	1.23
3	С	450	FAD	C4X-C4	-2.75	1.34	1.44
3	F	450	FAD	PA-O1A	-2.75	1.41	1.50
3	С	450	FAD	PA-O2A	-2.75	1.42	1.55
3	D	450	FAD	PA-O2A	-2.75	1.42	1.55
3	J	450	FAD	C2A-N3A	2.71	1.36	1.32
3	Н	450	FAD	C5X-N5	-2.70	1.34	1.39
3	В	450	FAD	O2-C2	-2.70	1.19	1.24
3	F	450	FAD	O3'-C3'	-2.70	1.36	1.43
3	Н	450	FAD	O4'-C4'	-2.70	1.37	1.43
3	Е	450	FAD	P-O2P	-2.68	1.42	1.55
3	G	450	FAD	P-O1P	-2.67	1.41	1.50
3	А	450	FAD	P-O1P	-2.67	1.41	1.50
3	В	450	FAD	PA-O2A	-2.66	1.42	1.55
3	J	450	FAD	PA-O2A	-2.65	1.42	1.55
3	Н	450	FAD	C4X-C4	-2.63	1.34	1.44
3	J	450	FAD	O3'-C3'	-2.63	1.36	1.43
3	Ε	450	FAD	PA-O2A	-2.63	1.43	1.55
3	D	450	FAD	O2-C2	-2.62	1.19	1.24
3	Н	450	FAD	C4X-C10	-2.62	1.36	1.44
3	F	450	FAD	O2-C2	-2.61	1.19	1.24
3	F	450	FAD	O4B-C4B	-2.61	1.39	1.45
3	D	450	FAD	C5X-N5	-2.60	1.34	1.39
3	Ε	450	FAD	O4B-C4B	-2.60	1.39	1.45
3	Е	450	FAD	C9A-N10	-2.60	1.36	1.41
3	J	450	FAD	C5X-N5	-2.59	1.34	1.39
3	Ε	450	FAD	C4X-N5	2.58	1.35	1.30
3	A	450	FAD	C4X-C4	-2.57	1.35	1.44
3	Ι	450	FAD	C4X-C4	-2.57	1.35	1.44
3	С	450	FAD	C9A-C5X	-2.57	1.36	1.41
3	А	450	FAD	PA-O1A	-2.56	1.41	1.50
3	Е	450	FAD	C9A-C5X	-2.56	1.36	1.41
3	Ι	450	FAD	O3'-C3'	-2.56	1.37	1.43
3	J	450	FAD	O4B-C1B	-2.55	1.37	1.41
3	D	450	FAD	C2A-N3A	2.55	1.36	1.32

Η

J

G

FAD

FAD

FAD

Continued from previous page							
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	Е	450	FAD	O3'-C3'	-2.55	1.37	1.43
3	В	450	FAD	C4X-C4	-2.54	1.35	1.44
3	G	450	FAD	C2A-N3A	2.53	1.36	1.32
3	J	450	FAD	C6-C5X	-2.51	1.36	1.40
3	С	450	FAD	C6-C5X	-2.50	1.36	1.40
3	J	450	FAD	C4X-C10	-2.50	1.36	1.44
3	Е	450	FAD	C5X-N5	-2.49	1.34	1.39
3	F	450	FAD	P-O1P	-2.49	1.42	1.50
3	Н	450	FAD	C2A-N3A	2.48	1.36	1.32
3	F	450	FAD	C4X-C4	-2.47	1.35	1.44
3	А	450	FAD	O4-C4	-2.46	1.18	1.23
3	Ι	450	FAD	PA-O1A	-2.46	1.42	1.50
3	В	450	FAD	PA-O1A	-2.45	1.42	1.50
3	F	450	FAD	C4X-C10	-2.43	1.37	1.44
3	Е	450	FAD	O2'-C2'	-2.43	1.38	1.43
3	J	450	FAD	C9A-C5X	-2.43	1.37	1.41
3	D	450	FAD	O4B-C4B	-2.43	1.39	1.45
3	С	450	FAD	P-O2P	-2.42	1.44	1.55
3	А	450	FAD	C4'-C3'	-2.41	1.48	1.53
3	Ι	450	FAD	O4B-C4B	-2.41	1.39	1.45
3	G	450	FAD	O3'-C3'	-2.41	1.37	1.43
3	D	450	FAD	P-O2P	-2.41	1.44	1.55
3	D	450	FAD	C4X-C10	-2.40	1.37	1.44
3	Ι	450	FAD	C2A-N3A	2.40	1.36	1.32
3	А	450	FAD	C9A-N10	-2.40	1.36	1.41
3	Ι	450	FAD	C4A-N3A	-2.39	1.32	1.35
3	А	450	FAD	O2-C2	-2.39	1.19	1.24
3	F	450	FAD	C5X-N5	-2.38	1.34	1.39
3	Н	450	FAD	O4B-C1B	-2.38	1.37	1.41
3	Ι	450	FAD	P-O1P	-2.38	1.42	1.50
3	Ι	450	FAD	C9A-C5X	-2.37	1.37	1.41
3	Ι	450	FAD	O2-C2	-2.37	1.19	1.24
3	В	450	FAD	C6-C5X	-2.36	1.36	1.40
3	Н	450	FAD	C4-N3	-2.36	1.34	1.38
3	Н	450	FAD	O3'-C3'	-2.34	1.37	1.43
3	В	450	FAD	C4-N3	-2.34	1.34	1.38
3	А	450	FAD	C4X-N5	2.34	1.35	1.30
2	Н	500	GDU	C4-N3	-2.33	1.34	1.38
3	D	450	FAD	C4'-C3'	-2.33	1.49	1.53

Cont

Continued on next page...

1.39

1.34

1.35

1.45

1.38

1.30

-2.32

-2.31

2.31

O4B-C4B

C4-N3

C4X-N5

3F	H)(Q

	Chain		Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	Н	450	FAD	COA N10	2 31	1 37	1 /1
3	D	450	FAD FAD	O4'-C4'	-2.01	1.37	1.41
3	F	450	FAD	$0^{2}-C^{2}$	-2.30	1.30	1.43
3	D	450	FAD	C6-C7	-2.30	1.36	1.19
3	B	450	FAD	O4'-C4'	-2.29	1.30	1.00
3	F	450	FAD	C2A-N3A	2.29	1.35	1.10
3	B	450	FAD	C4X-C10	-2.28	1.30	1.02
$\frac{3}{2}$	A	500	GDU	C5-C4	2.20 2.28	1.31	1.11
3	Н	450	FAD	C9A-C5X	-2.27	1.37	1.13
3	H	450	FAD	P-01P	-2.26	1.42	1.50
3	C	450	FAD	C4-N3	-2.26	1.34	1.38
3	E	450	FAD	C4X-C4	-2.26	1.36	1.44
3	J	450	FAD	04'-C4'	-2.25	1.38	1.43
3	C	450	FAD	C2B-C1B	-2.25	1.50	1.53
3	I	450	FAD	C4X-C10	-2.24	1.37	1.44
3	В	450	FAD	O4B-C4B	-2.21	1.40	1.45
3	С	450	FAD	O4-C4	-2.21	1.19	1.23
3	A	450	FAD	O2'-C2'	-2.21	1.38	1.43
3	Ι	450	FAD	O2'-C2'	-2.20	1.38	1.43
3	D	450	FAD	C8-C7	-2.19	1.35	1.40
3	F	450	FAD	C9A-N10	-2.19	1.37	1.41
3	А	450	FAD	C5X-N5	-2.19	1.35	1.39
3	А	450	FAD	C2B-C1B	-2.18	1.50	1.53
3	D	450	FAD	P-O1P	-2.17	1.43	1.50
3	С	450	FAD	O3'-C3'	-2.17	1.37	1.43
2	Ι	500	GDU	C4-N3	-2.16	1.34	1.38
3	Н	450	FAD	C4X-N5	2.16	1.35	1.30
3	F	450	FAD	O3B-C3B	-2.16	1.37	1.43
3	D	450	FAD	O3'-C3'	-2.15	1.37	1.43
2	С	500	GDU	C4-N3	-2.15	1.34	1.38
3	Ι	450	FAD	C2B-C1B	-2.15	1.50	1.53
2	В	500	GDU	C5-C4	2.14	1.48	1.43
3	D	450	FAD	O4-C4	-2.13	1.19	1.23
2	Е	500	GDU	C4-N3	-2.13	1.34	1.38
2	D	500	GDU	C4-N3	-2.12	1.34	1.38
3	В	450	FAD	O4B-C1B	-2.11	1.38	1.41
3	H	450	FAD	O2'-C2'	-2.11	1.38	1.43
3	B	450	FAD	C5'-C4'	-2.11	1.48	1.51
3	С	450	FAD	PA-O1A	-2.11	1.43	1.50
2	Н	500	GDU	C4'-C5'	2.11	1.57	1.53
3	В	450	FAD	O3'-C3'	-2.11	1.38	1.43
3	А	450	FAD	C2-N3	-2.10	1.34	1.39

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	А	450	FAD	O2B-C2B	-2.10	1.38	1.43
3	J	450	FAD	O4B-C4B	-2.10	1.40	1.45
3	А	450	FAD	O4B-C1B	-2.10	1.38	1.41
2	G	500	GDU	C4-N3	-2.09	1.34	1.38
3	Е	450	FAD	C4-N3	-2.08	1.35	1.38
3	F	450	FAD	C4A-N3A	-2.07	1.32	1.35
3	Ι	450	FAD	O3B-C3B	-2.06	1.38	1.43
3	В	450	FAD	C2A-N3A	2.06	1.35	1.32
3	G	450	FAD	C4X-C10	-2.05	1.38	1.44
3	Ι	450	FAD	O4'-C4'	-2.05	1.39	1.43
3	J	450	FAD	C6-C7	-2.05	1.36	1.39
3	В	450	FAD	O4-C4	-2.05	1.19	1.23
2	А	500	GDU	C4-N3	-2.04	1.34	1.38
2	D	500	GDU	C4'-C3'	2.04	1.57	1.52
2	D	500	GDU	C4'-C5'	2.04	1.57	1.53
3	D	450	FAD	C2B-C1B	-2.03	1.50	1.53
3	D	450	FAD	O3B-C3B	-2.03	1.38	1.43
3	А	450	FAD	C2A-N3A	2.03	1.35	1.32
3	Н	450	FAD	PA-O1A	-2.03	1.43	1.50
3	G	450	FAD	O4'-C4'	-2.03	1.39	1.43
3	F	450	FAD	C4X-N5	2.03	1.34	1.30
3	J	450	FAD	C4X-N5	2.03	1.34	1.30
3	Е	450	FAD	C6-C5X	-2.02	1.36	1.40
3	В	450	FAD	P-O1P	-2.02	1.43	1.50
3	G	450	FAD	C9A-N10	-2.02	1.37	1.41
3	G	450	FAD	O4B-C1B	-2.01	1.38	1.41
3	Е	450	FAD	C9-C8	-2.01	1.36	1.39
3	D	450	FAD	O2'-C2'	-2.00	1.39	1.43
3	В	450	FAD	C6-C7	-2.00	1.36	1.39
2	F	500	GDU	C5-C4	2.00	1.48	1.43

All (270) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	Ι	500	GDU	N3-C2-N1	16.64	136.98	114.89
2	А	500	GDU	N3-C2-N1	16.60	136.93	114.89
2	J	500	GDU	N3-C2-N1	16.59	136.91	114.89
2	F	500	GDU	N3-C2-N1	16.40	136.66	114.89
2	В	500	GDU	N3-C2-N1	16.38	136.64	114.89
2	G	500	GDU	N3-C2-N1	16.34	136.58	114.89
2	Е	500	GDU	N3-C2-N1	16.26	136.47	114.89
2	Н	500	GDU	N3-C2-N1	16.02	136.16	114.89

OTT	
зн	1)()
om	νQ

	Chain		Type	Atoms	7	Observed ⁽⁰⁾	$\mathbf{Idoal}(^{o})$
2	D	500	CDU	N2 C2 N1	15.07	126.00	114.90
	D	500	CDU	N3-02-N1 N2 C2 N1	15.97	130.09	114.09
	U I	500	CDU	$\frac{\text{N}_{3}\text{-}\text{O}_{2}\text{-}\text{N}_{1}}{\text{O}_{4}\text{-}\text{N}_{2}\text{-}\text{O}_{2}}$	10.01 10.57	133.00	114.09
	J	500	CDU	C4 N2 C2	-10.57	112.04	120.00
	I F	500	CDU	C4-N3-C2	-10.43	112.00	120.00
	Г D	500	GDU	C4-N5-C2	-10.44	112.80	120.08
	В	500	GDU	C4-N3-C2	-10.38	112.89	120.38
2	A	500	GDU	C4-N3-C2	-10.25	113.05	126.58
2		500	GDU	C4-N3-C2	-10.24	113.07	126.58
2	D	500	GDU	C4-N3-C2	-10.22	113.10	126.58
2	E	500	GDU	C4-N3-C2	-9.89	113.53	126.58
2	G	500	GDU	C4-N3-C2	-9.85	113.58	126.58
2	H	500	GDU	C4-N3-C2	-9.65	113.84	126.58
2	A	500	GDU	O2-C2-N1	-8.34	111.70	122.79
2	G	500	GDU	O2-C2-N1	-8.31	111.74	122.79
2	J	500	GDU	O2-C2-N1	-8.29	111.77	122.79
2	F	500	GDU	O2-C2-N1	-8.27	111.79	122.79
2	В	500	GDU	O2-C2-N1	-8.10	112.02	122.79
2	Ι	500	GDU	O2-C2-N1	-7.66	112.60	122.79
2	Ε	500	GDU	O2-C2-N1	-7.44	112.89	122.79
2	D	500	GDU	O2-C2-N1	-7.21	113.20	122.79
2	Н	500	GDU	O2-C2-N1	-7.20	113.21	122.79
2	С	500	GDU	O2-C2-N1	-7.01	113.47	122.79
2	G	500	GDU	O3A-PB-O3B	6.61	115.81	102.48
2	Е	500	GDU	O3A-PB-O3B	6.58	115.75	102.48
2	Ι	500	GDU	O3A-PB-O3B	6.41	115.42	102.48
2	Ι	500	GDU	O5'-C1'-O3B	-6.38	103.03	111.36
2	D	500	GDU	O3A-PB-O3B	6.30	115.19	102.48
2	G	500	GDU	C6-N1-C2	-6.18	113.09	120.99
3	В	450	FAD	N3A-C2A-N1A	-6.16	119.06	128.68
2	Ι	500	GDU	O2-C2-N3	-5.95	110.41	121.50
2	Ι	500	GDU	C6-N1-C2	-5.94	113.39	120.99
3	D	450	FAD	N3A-C2A-N1A	-5.91	119.44	128.68
3	С	450	FAD	N3A-C2A-N1A	-5.90	119.46	128.68
3	J	450	FAD	N3A-C2A-N1A	-5.88	119.49	128.68
2	Н	500	GDU	O2-C2-N3	-5.85	110.61	121.50
2	Е	500	GDU	O2-C2-N3	-5.84	110.62	121.50
2	С	500	GDU	O2-C2-N3	-5.83	110.64	121.50
3	А	450	FAD	N3A-C2A-N1A	-5.80	119.61	128.68
2	D	500	GDU	O2-C2-N3	-5.79	110.71	121.50
3	G	450	FAD	N3A-C2A-N1A	-5.76	119.67	128.68
2	F	500	GDU	O3A-PB-O3B	5.74	114.06	102.48
2	J	500	GDU	C6-N1-C2	-5.63	113.78	120.99

OTTI	
эпі	JQ

Conti	nued from	n previ	ous page				
Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	Н	500	GDU	C6-N1-C2	-5.63	113.79	120.99
2	Е	500	GDU	C6-N1-C2	-5.63	113.80	120.99
2	D	500	GDU	C6-N1-C2	-5.61	113.82	120.99
2	С	500	GDU	O3A-PB-O3B	5.61	113.79	102.48
2	А	500	GDU	O3A-PB-O3B	5.56	113.69	102.48
2	D	500	GDU	O5'-C5'-C4'	5.55	119.77	109.69
2	В	500	GDU	O3A-PB-O3B	5.53	113.64	102.48
2	J	500	GDU	O2-C2-N3	-5.50	111.26	121.50
2	В	500	GDU	O2-C2-N3	-5.45	111.34	121.50
2	А	500	GDU	O2-C2-N3	-5.44	111.36	121.50
2	J	500	GDU	O3A-PB-O3B	5.41	113.40	102.48
2	В	500	GDU	C6-N1-C2	-5.41	114.07	120.99
2	А	500	GDU	C6-N1-C2	-5.41	114.08	120.99
2	Н	500	GDU	O5'-C5'-C4'	5.36	119.43	109.69
2	F	500	GDU	O2-C2-N3	-5.36	111.52	121.50
2	С	500	GDU	C6-N1-C2	-5.32	114.19	120.99
2	F	500	GDU	C6-N1-C2	-5.29	114.23	120.99
2	G	500	GDU	O2-C2-N3	-5.28	111.66	121.50
2	Е	500	GDU	O5'-C5'-C4'	5.26	119.25	109.69
2	А	500	GDU	O5'-C5'-C4'	5.22	119.17	109.69
2	F	500	GDU	O5'-C5'-C4'	5.21	119.15	109.69
2	Н	500	GDU	O3A-PB-O3B	5.16	112.88	102.48
3	F	450	FAD	N3A-C2A-N1A	-5.08	120.73	128.68
3	Е	450	FAD	N3A-C2A-N1A	-5.08	120.74	128.68
2	С	500	GDU	O5'-C5'-C4'	5.00	118.78	109.69
2	В	500	GDU	O5'-C5'-C4'	4.99	118.76	109.69
2	D	500	GDU	C1D-N1-C2	4.98	126.58	117.57
2	J	500	GDU	O5'-C5'-C4'	4.95	118.69	109.69
2	F	500	GDU	O5'-C1'-O3B	-4.90	104.96	111.36
2	Ι	500	GDU	O5'-C5'-C4'	4.85	118.50	109.69
3	Н	450	FAD	N3A-C2A-N1A	-4.82	121.14	128.68
2	С	500	GDU	C1D-N1-C2	4.80	126.26	117.57
2	G	500	GDU	O5'-C5'-C4'	4.70	118.23	109.69
2	Е	500	GDU	C1D-N1-C2	4.67	126.03	117.57
3	Ι	450	FAD	N3A-C2A-N1A	-4.66	121.39	128.68
2	С	500	GDU	PB-O3B-C1'	4.66	137.73	119.74
2	J	500	GDU	C1D-N1-C2	4.60	125.90	117.57
2	Ι	500	GDU	C1D-N1-C2	4.58	125.87	117.57
2	G	500	GDU	C1D-N1-C2	4.49	125.69	117.57
3	A	450	FAD	O3'-C3'-C4'	-4.46	98.04	108.81
2	F	500	GDU	PB-O3B-C1'	4.35	136.56	119.74
2	Н	500	GDU	C1D-N1-C2	4.35	125.44	117.57
						Continued on n	$ext \ page$

9U1	DO
ы	DQ

Conti	nued from	ı previ	ous page				
Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$Observed(^{o})$	$Ideal(^{o})$
2	В	500	GDU	C1D-N1-C2	4.27	125.30	117.57
2	D	500	GDU	PB-O3B-C1'	4.24	136.13	119.74
2	G	500	GDU	PB-O3B-C1'	4.16	135.82	119.74
2	J	500	GDU	PB-O3B-C1'	4.12	135.68	119.74
2	D	500	GDU	O5'-C1'-O3B	-4.01	106.12	111.36
2	С	500	GDU	O3B-C1'-C2'	3.99	115.70	108.38
2	F	500	GDU	C1D-N1-C2	3.91	124.65	117.57
3	В	450	FAD	C4-C4X-C10	3.89	123.33	116.79
2	В	500	GDU	PB-O3B-C1'	3.84	134.59	119.74
3	Е	450	FAD	C4-N3-C2	-3.80	118.62	125.64
2	А	500	GDU	C1D-N1-C2	3.78	124.41	117.57
3	J	450	FAD	C4-N3-C2	-3.71	118.79	125.64
3	J	450	FAD	O4-C4-C4X	-3.59	117.07	126.60
3	С	450	FAD	C4-N3-C2	-3.56	119.06	125.64
2	Н	500	GDU	PB-O3B-C1'	3.55	133.47	119.74
2	А	500	GDU	PB-O3B-C1'	3.53	133.40	119.74
2	С	500	GDU	O5'-C1'-O3B	-3.45	106.85	111.36
2	G	500	GDU	O5'-C1'-O3B	-3.44	106.87	111.36
2	D	500	GDU	O3B-C1'-C2'	3.44	114.68	108.38
2	В	500	GDU	O5'-C1'-O3B	-3.43	106.88	111.36
3	D	450	FAD	O4-C4-C4X	-3.41	117.56	126.60
2	Ι	500	GDU	PB-O3B-C1'	3.39	132.85	119.74
2	А	500	GDU	O5'-C1'-O3B	-3.33	107.01	111.36
2	J	500	GDU	O4-C4-C5	-3.31	119.34	125.16
2	F	500	GDU	O2'-C2'-C3'	3.26	117.88	110.35
3	G	450	FAD	C4-N3-C2	-3.26	119.63	125.64
2	С	500	GDU	O4-C4-C5	-3.21	119.52	125.16
3	С	450	FAD	O2'-C2'-C3'	-3.20	101.31	109.10
3	Ι	450	FAD	C4-N3-C2	-3.19	119.74	125.64
3	С	450	FAD	C4-C4X-C10	3.19	122.15	116.79
3	Ι	450	FAD	C5X-C9A-N10	3.17	121.22	117.95
2	G	500	GDU	C1'-C2'-C3'	-3.15	103.43	110.00
3	С	450	FAD	O4-C4-C4X	-3.15	118.25	126.60
2	F	500	GDU	O4-C4-C5	-3.15	119.63	125.16
2	J	500	GDU	O5'-C1'-O3B	-3.14	107.26	111.36
2	В	500	GDU	C1'-C2'-C3'	-3.13	103.48	110.00
2	D	500	GDU	O4-C4-C5	-3.12	119.67	125.16
2	G	500	GDU	O4D-C4D-C5D	3.11	119.60	109.37
3	D	450	FAD	C4-C4X-C10	3.08	121.96	116.79
3	Е	450	FAD	C4X-C4-N3	3.07	120.99	113.19
2	Е	500	GDU	PB-O3B-C1'	3.06	131.56	119.74
2	F	500	GDU	O3B-C1'-C2'	3.05	113.96	108.38

<u>эп</u>	DO
ЪП.	DQ

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
3	С	450	FAD	C6-C5X-C9A	3.02	123.21	118.94
2	Н	500	GDU	O4D-C4D-C5D	3.01	119.29	109.37
3	А	450	FAD	C4X-C10-N10	3.00	120.87	116.48
3	А	450	FAD	O4-C4-C4X	-3.00	118.65	126.60
2	Ι	500	GDU	O4D-C4D-C5D	2.99	119.21	109.37
3	В	450	FAD	C4X-C10-N1	-2.99	117.80	124.73
3	D	450	FAD	C4-N3-C2	-2.98	120.14	125.64
3	J	450	FAD	C4X-C4-N3	2.97	120.74	113.19
3	Ι	450	FAD	O4-C4-C4X	-2.97	118.72	126.60
3	F	450	FAD	C4-N3-C2	-2.97	120.16	125.64
2	F	500	GDU	C4'-C3'-C2'	-2.96	105.66	110.82
2	А	500	GDU	PB-O3A-PA	-2.95	122.70	132.83
3	Е	450	FAD	C9A-C5X-N5	-2.91	119.27	122.43
3	F	450	FAD	C4X-C10-N10	2.89	120.71	116.48
2	Е	500	GDU	O4D-C4D-C5D	2.89	118.88	109.37
3	С	450	FAD	C5'-C4'-C3'	-2.86	106.69	112.20
2	F	500	GDU	C2D-C1D-N1	2.85	121.29	113.22
2	G	500	GDU	C4'-C3'-C2'	-2.85	105.85	110.82
2	J	500	GDU	O4D-C1D-N1	2.84	114.85	108.36
2	F	500	GDU	O4D-C4D-C5D	2.84	118.71	109.37
3	А	450	FAD	C10-N1-C2	2.84	122.57	116.90
2	J	500	GDU	O4D-C4D-C5D	2.83	118.70	109.37
2	Ι	500	GDU	O4D-C1D-N1	2.83	114.83	108.36
2	G	500	GDU	O4-C4-C5	-2.83	120.19	125.16
2	В	500	GDU	O2'-C2'-C3'	2.81	116.85	110.35
3	G	450	FAD	C4-C4X-C10	2.81	121.50	116.79
3	В	450	FAD	O4-C4-C4X	-2.77	119.24	126.60
2	Ι	500	GDU	O4-C4-C5	-2.77	120.30	125.16
2	В	500	GDU	O4-C4-C5	-2.75	120.32	125.16
3	Е	450	FAD	C1B-N9A-C4A	-2.74	121.82	126.64
2	В	500	GDU	O4D-C4D-C5D	2.73	118.34	109.37
3	А	450	FAD	C4-N3-C2	-2.72	120.62	125.64
2	G	500	GDU	O4D-C1D-N1	2.71	114.56	108.36
3	В	450	FAD	C6-C5X-C9A	2.71	122.77	118.94
3	Ι	450	FAD	C4X-C4-N3	2.70	120.04	113.19
2	F	500	GDU	O4D-C1D-C2D	-2.70	100.76	106.64
3	Н	450	FAD	C5X-C9A-N10	2.69	120.73	117.95
3	А	450	FAD	C4X-C4-N3	2.68	120.00	113.19
3	F	450	FAD	C4X-C4-N3	2.68	120.00	113.19
2	Н	500	GDU	O4D-C1D-N1	2.68	114.49	108.36
3	D	450	FAD	C4X-C10-N1	-2.68	118.52	124.73
3	Е	450	FAD	O4-C4-C4X	-2.67	119.53	126.60

OTT	DO
эп	DQ

$\alpha \cdot \cdot \cdot$	c	•	
1 Continued	trom	nromanic	naae
Continucu	110110		page
	2	1	1 0

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	Н	500	GDU	O4-C4-C5	-2.65	120.51	125.16
3	В	450	FAD	C4-N3-C2	-2.63	120.78	125.64
2	Е	500	GDU	C4'-C3'-C2'	-2.63	106.22	110.82
2	С	500	GDU	C5-C4-N3	2.63	118.78	114.84
3	Н	450	FAD	C4X-C10-N10	2.63	120.33	116.48
3	С	450	FAD	O3B-C3B-C4B	-2.62	103.47	111.05
3	Е	450	FAD	C5X-C9A-N10	2.62	120.66	117.95
2	D	500	GDU	O4D-C4D-C5D	2.61	117.96	109.37
2	Е	500	GDU	O4-C4-C5	-2.58	120.63	125.16
3	G	450	FAD	C4A-C5A-N7A	-2.57	106.72	109.40
3	Н	450	FAD	C4-N3-C2	-2.57	120.89	125.64
3	Е	450	FAD	C4A-C5A-N7A	-2.57	106.72	109.40
3	Ι	450	FAD	C4X-C10-N1	-2.56	118.78	124.73
3	G	450	FAD	C4X-C10-N1	-2.54	118.83	124.73
3	В	450	FAD	C4-C4X-N5	-2.53	114.63	118.23
3	А	450	FAD	O3'-C3'-C2'	2.53	114.92	108.81
2	С	500	GDU	C2D-C1D-N1	2.51	120.34	113.22
3	Ι	450	FAD	C6-C5X-C9A	2.51	122.49	118.94
3	А	450	FAD	C4X-C10-N1	-2.50	118.94	124.73
2	В	500	GDU	C4'-C3'-C2'	-2.47	106.51	110.82
3	Н	450	FAD	C4X-C4-N3	2.47	119.45	113.19
2	С	500	GDU	O4D-C4D-C5D	2.46	117.48	109.37
2	А	500	GDU	O4D-C4D-C5D	2.46	117.47	109.37
3	J	450	FAD	O4B-C1B-C2B	-2.46	103.33	106.93
3	F	450	FAD	O4-C4-C4X	-2.44	120.12	126.60
3	Ι	450	FAD	C4-C4X-C10	2.44	120.89	116.79
3	С	450	FAD	C4X-C10-N1	-2.42	119.11	124.73
3	F	450	FAD	C5X-C9A-N10	2.42	120.45	117.95
3	F	450	FAD	C4X-C10-N1	-2.40	119.15	124.73
2	D	500	GDU	C5-C4-N3	2.40	118.42	114.84
3	D	450	FAD	O3'-C3'-C4'	-2.39	103.03	108.81
3	G	450	FAD	C10-C4X-N5	-2.38	119.80	124.86
2	A	500	GDU	O4-C4-C5	-2.37	120.99	125.16
3	B	450	FAD	C5X-C9A-N10	2.37	120.40	117.95
2	Ι	500	GDU	C5-C4-N3	2.36	118.37	114.84
3	Н	450	FAD	O4-C4-C4X	-2.36	120.35	126.60
2	F	500	GDU	O4D-C1D-N1	2.35	113.73	108.36
2	A	500	GDU	O4D-C1D-N1	2.33	113.69	108.36
3	D	$45\overline{0}$	FAD	C4X-C4-N3	2.32	119.09	113.19
2	D	500	GDU	O4D-C1D-N1	2.32	113.67	108.36
3	A	450	FAD	C9A-C5X-N5	-2.31	119.92	122.43
3	Ι	450	FAD	C9A-C5X-N5	-2.29	119.94	122.43

9U1	DO
ы	DQ

Mol	Chain	Res	Type	Atoms	Z	Observed(^o)	$Ideal(^{o})$
3	Е	450	FAD	C4X-C10-N10	2.29	119.83	116.48
3	Н	450	FAD	C9A-C5X-N5	-2.29	119.94	122.43
2	Н	500	GDU	C1'-C2'-C3'	-2.29	105.23	110.00
3	G	450	FAD	O4-C4-C4X	-2.29	120.53	126.60
3	J	450	FAD	C4X-C10-N10	2.28	119.82	116.48
3	A	450	FAD	O5'-C5'-C4'	2.26	115.39	109.36
3	С	450	FAD	C4X-C4-N3	2.26	118.92	113.19
3	D	450	FAD	C4A-C5A-N7A	-2.23	107.07	109.40
2	Е	500	GDU	C1'-C2'-C3'	-2.23	105.35	110.00
3	С	450	FAD	O4B-C1B-C2B	-2.22	103.68	106.93
2	J	500	GDU	C5-C4-N3	2.22	118.16	114.84
3	G	450	FAD	C4X-C10-N10	2.22	119.72	116.48
2	Е	500	GDU	O5'-C1'-O3B	-2.21	108.47	111.36
2	В	500	GDU	C5-C4-N3	2.21	118.15	114.84
2	J	500	GDU	C1'-C2'-C3'	-2.21	105.40	110.00
3	А	450	FAD	C5'-C4'-C3'	-2.21	107.94	112.20
2	Ι	500	GDU	C4'-C3'-C2'	-2.20	106.97	110.82
2	В	500	GDU	C2D-C1D-N1	2.20	119.45	113.22
3	Н	450	FAD	O3'-C3'-C4'	-2.19	103.52	108.81
2	Ι	500	GDU	C2D-C1D-N1	2.19	119.42	113.22
3	F	450	FAD	C9A-C5X-N5	-2.18	120.06	122.43
3	Е	450	FAD	C5'-C4'-C3'	2.18	116.42	112.20
2	G	500	GDU	O2'-C2'-C3'	2.18	115.38	110.35
2	J	500	GDU	O4-C4-N3	2.17	122.50	119.31
3	D	450	FAD	C8M-C8-C7	-2.17	116.29	120.74
2	F	500	GDU	C5-C4-N3	2.16	118.07	114.84
3	J	450	FAD	C4X-C10-N1	-2.14	119.76	124.73
2	В	500	GDU	PB-O3A-PA	-2.14	125.49	132.83
3	I	450	FAD	C4A-C5A-N7A	-2.14	107.17	109.40
2	С	500	GDU	O2'-C2'-C3'	2.14	115.29	110.35
2	J	500	GDU	C2D-C1D-N1	2.14	119.27	113.22
2	I	500	GDU	O4D-C1D-C2D	-2.14	101.98	106.64
2	E	500	GDU	O2'-C2'-C3'	2.14	115.28	110.35
2	D	500	GDU	O2'-C2'-C3'	2.13	115.28	110.35
3	С	450	FAD	C4X-C10-N10	2.13	119.59	116.48
3	D	450	FAD	C6-C5X-C9A	2.12	121.94	118.94
2	G	500	GDU	PB-O3A-PA	-2.11	125.60	132.83
2	С	500	GDU	O4D-C1D-N1	2.11	113.18	108.36
3	D	450	FAD	C5'-C4'-C3'	-2.10	108.15	112.20
2	I	500	GDU	O3B-C1'-C2'	2.09	112.21	108.38
2	Н	500	GDU	PB-O3A-PA	-2.08	125.70	132.83
2	D	500	GDU	C2D-C1D-N1	2.07	119.08	113.22

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	G	500	GDU	C2D-C1D-N1	2.05	119.04	113.22
3	А	450	FAD	O4B-C1B-C2B	-2.05	103.93	106.93
3	Ι	450	FAD	O3'-C3'-C2'	2.05	113.77	108.81
2	F	500	GDU	O4-C4-N3	2.04	122.31	119.31
3	А	450	FAD	C5X-C9A-N10	2.03	120.05	117.95
3	D	450	FAD	C8M-C8-C9	2.02	123.23	119.49
2	Е	500	GDU	C2D-C1D-N1	2.02	118.93	113.22
3	J	450	FAD	C4-C4X-C10	2.02	120.18	116.79
2	F	500	GDU	C1'-C2'-C3'	-2.01	105.80	110.00
2	А	500	GDU	C5-C4-N3	2.01	117.84	114.84

There are no chirality outliers.

All (80) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	А	500	GDU	O5'-C1'-O3B-PB
2	В	500	GDU	O5'-C1'-O3B-PB
2	С	500	GDU	C1'-O3B-PB-O2B
2	С	500	GDU	C2'-C1'-O3B-PB
2	С	500	GDU	O5'-C1'-O3B-PB
2	D	500	GDU	C1'-O3B-PB-O2B
2	D	500	GDU	C2'-C1'-O3B-PB
2	D	500	GDU	O5'-C1'-O3B-PB
2	Е	500	GDU	PA-O3A-PB-O3B
2	Е	500	GDU	O5'-C1'-O3B-PB
2	F	500	GDU	C1'-O3B-PB-O2B
2	F	500	GDU	C2'-C1'-O3B-PB
2	F	500	GDU	O5'-C1'-O3B-PB
2	G	500	GDU	O5'-C1'-O3B-PB
2	Н	500	GDU	O5'-C1'-O3B-PB
2	Ι	500	GDU	C1'-O3B-PB-O2B
2	Ι	500	GDU	C2'-C1'-O3B-PB
2	Ι	500	GDU	O5'-C1'-O3B-PB
2	J	500	GDU	C1'-O3B-PB-O2B
2	J	500	GDU	O5'-C1'-O3B-PB
3	Е	450	FAD	C1'-C2'-C3'-O3'
3	Е	450	FAD	C5'-O5'-P-O2P
2	D	500	GDU	O5'-C5'-C6'-O6'
2	Н	500	GDU	O5'-C5'-C6'-O6'
2	А	500	GDU	O5'-C5'-C6'-O6'
2	J	500	GDU	O5'-C5'-C6'-O6'
3	D	450	FAD	O4B-C4B-C5B-O5B

Mol	Chain	Res	Type	Atoms
2	С	500	GDU	O5'-C5'-C6'-O6'
2	G	500	GDU	O5'-C5'-C6'-O6'
2	А	500	GDU	C4'-C5'-C6'-O6'
2	Е	500	GDU	O5'-C5'-C6'-O6'
2	D	500	GDU	C1'-O3B-PB-O3A
2	F	500	GDU	C1'-O3B-PB-O3A
2	Ι	500	GDU	C1'-O3B-PB-O3A
2	F	500	GDU	O5'-C5'-C6'-O6'
2	В	500	GDU	O5'-C5'-C6'-O6'
3	А	450	FAD	O3'-C3'-C4'-O4'
3	D	450	FAD	C3B-C4B-C5B-O5B
3	А	450	FAD	O3'-C3'-C4'-C5'
3	А	450	FAD	C2'-C3'-C4'-C5'
2	С	500	GDU	C1'-O3B-PB-O3A
3	А	450	FAD	C2'-C3'-C4'-O4'
3	Н	450	FAD	O3'-C3'-C4'-C5'
2	J	500	GDU	C2'-C1'-O3B-PB
3	Е	450	FAD	PA-O3P-P-O5'
3	G	450	FAD	PA-O3P-P-O5'
3	Е	450	FAD	C5'-O5'-P-O3P
2	С	500	GDU	C1'-O3B-PB-O1B
2	D	500	GDU	C1'-O3B-PB-O1B
2	F	500	GDU	C1'-O3B-PB-O1B
2	Ι	500	GDU	C1'-O3B-PB-O1B
2	J	500	GDU	C1'-O3B-PB-O1B
3	Е	450	FAD	C5'-O5'-P-O1P
3	Ι	450	FAD	C5'-O5'-P-O1P
3	Ι	450	FAD	C1'-C2'-C3'-O3'
3	J	450	FAD	C1'-C2'-C3'-O3'
2	Н	500	GDU	C4'-C5'-C6'-O6'
3	Н	450	FAD	C2'-C3'-C4'-O4'
2	J	500	GDU	C1'-O3B-PB-O3A
2	Ι	500	GDU	O5'-C5'-C6'-O6'
3	Н	450	FAD	O3'-C3'-C4'-O4'
3	H	450	FAD	C2'-C3'-C4'-C5'
2	Е	500	GDU	C1'-O3B-PB-O2B
2	G	500	GDU	C1'-O3B-PB-O2B
2	Н	500	GDU	C1'-O3B-PB-O2B
3	А	450	FAD	O4B-C4B-C5B-O5B
3	F	450	FAD	P-O3P-PA-O5B
3	Ι	450	FAD	PA-O3P-P-O5'
2	G	500	GDU	C2'-C1'-O3B-PB

Continued from previous page...

Mol	Chain	Res	Type	Atoms
3	В	450	FAD	O4B-C4B-C5B-O5B
3	Н	450	FAD	O4B-C4B-C5B-O5B
3	G	450	FAD	O4B-C4B-C5B-O5B
3	Ι	450	FAD	O4B-C4B-C5B-O5B
3	D	450	FAD	C5B-O5B-PA-O1A
3	G	450	FAD	C5'-O5'-P-O1P
3	С	450	FAD	O4B-C4B-C5B-O5B
3	Е	450	FAD	O4B-C4B-C5B-O5B
3	F	450	FAD	O4B-C4B-C5B-O5B
3	J	450	FAD	O4B-C4B-C5B-O5B
3	J	450	FAD	O2'-C2'-C3'-O3'

There are no ring outliers.

16 monomers are involved in 28 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	Е	500	GDU	1	0
2	В	500	GDU	3	0
2	Ι	500	GDU	4	0
3	J	450	FAD	1	0
3	F	450	FAD	1	0
3	В	450	FAD	2	0
2	J	500	GDU	2	0
2	Н	500	GDU	1	0
2	D	500	GDU	3	0
2	F	500	GDU	2	0
2	G	500	GDU	3	0
3	А	450	FAD	1	0
3	С	450	FAD	1	0
3	Ι	450	FAD	1	0
3	G	450	FAD	3	0
2	С	500	GDU	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and

any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	# RSRZ >	>2	$OWAB(Å^2)$	Q < 0.9
1	А	365/397~(91%)	-0.43	6 (1%) 72	80	20, 30, 46, 75	0
1	В	364/397~(91%)	-0.31	10 (2%) 54	64	23, 34, 54, 80	1 (0%)
1	С	361/397~(90%)	-0.05	12 (3%) 46	59	25, 39, 64, 82	6(1%)
1	D	360/397~(90%)	-0.15	11 (3%) 49	61	20, 41, 65, 81	0
1	Е	364/397~(91%)	-0.31	11 (3%) 50	61	24, 37, 57, 98	2 (0%)
1	F	363/397~(91%)	-0.38	8 (2%) 62	72	20, 32, 51, 75	1 (0%)
1	G	363/397~(91%)	-0.29	8 (2%) 62	72	20, 35, 55, 78	1 (0%)
1	Н	364/397~(91%)	-0.34	8 (2%) 62	72	20, 32, 52, 76	0
1	Ι	363/397~(91%)	-0.39	6 (1%) 70	78	20, 32, 47, 70	1 (0%)
1	J	$36\overline{1/397}~(90\%)$	-0.24	7 (1%) 66	76	20, 35, 59, 81	1 (0%)
All	All	3628/3970~(91%)	-0.29	87 (2%) 59	68	20, 34, 58, 98	13 (0%)

All (87) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	Е	26	GLU	7.7
1	D	357 GLN		5.6
1	D	153	VAL	5.3
1	G	27	SER	5.3
1	Н	27 SER		5.2
1	F	153	VAL	5.2
1	Н	28	LYS	5.0
1	В	27	SER	4.6
1	С	357	GLN	4.5
1	В	390	GLN	4.3
1	A	154	GLU	4.3
1	В	28	LYS	4.2
1	Н	357	GLN	4.1

Mol	Chain	Res	Type	RSRZ	
1	С	385	ARG	4.1	
1	Н	389	GLY	4.1	
1	Е	155	GLN	3.9	
1	G	153	VAL	3.9	
1	В	357	GLN	3.9	
1	А	26	GLU	3.8	
1	Н	390	GLN	3.8	
1	Е	27	SER	3.8	
1	G	28	LYS	3.7	
1	В	389	GLY	3.7	
1	D	157	ARG	3.7	
1	Ι	357	GLN	3.7	
1	D	385	ARG	3.6	
1	В	154	GLU	3.4	
1	J	357	GLN	3.4	
1	Е	28	LYS	3.4	
1	Н	154	GLU	3.3	
1	С	355	ALA	3.3	
1	J	389	GLY	3.3	
1	А	153	VAL	3.3	
1	А	357	GLN	3.2	
1	Н	29	GLY	3.2	
1	В	155	GLN	3.2	
1	С	28	LYS	3.2	
1	Е	357	GLN	3.2	
1	F	248	ASP	3.2	
1	D	154	GLU	3.0	
1	F	357	GLN	3.0	
1	J	386	ARG	2.9	
1	G	154	GLU	2.9	
1	С	153	VAL	2.9	
1	F	152	LYS	2.8	
1	Ι	152	LYS	2.8	
1	J	155	GLN	2.7	
1	D	155	GLN	2.7	
1	D	358	ASP	2.6	
1	G	152	LYS	2.5	
1	Е	388	GLN	2.5	
1	С	354	ASP	2.5	
1	D	152	LYS	2.5	
1	В	157	ARG	2.5	
1	F	270	GLY	2.5	

Mol	Chain	Res	Type	RSRZ	
1	С	52	GLY	2.4	
1	Е	154	GLU	2.4	
1	Ι	153	VAL	2.4	
1	Ι	355	ALA	2.4	
1	А	155	GLN	2.4	
1	G	34	ILE	2.3	
1	D	386	ARG	2.3	
1	С	248	ASP	2.3	
1	А	152	LYS	2.3	
1	J	153	VAL	2.3	
1	С	387	LEU	2.3	
1	Н	155	GLN	2.2	
1	F	56	LEU	2.2	
1	F	28	LYS	2.2	
1	Е	389	GLY	2.2	
1	D	56	LEU	2.2	
1	В	248	ASP	2.2	
1	С	29	GLY	2.2	
1	С	358	ASP	2.2	
1	J	57	ILE	2.2	
1	Е	355	ALA	2.1	
1	В	355	ALA	2.1	
1	Ι	389	GLY	2.1	
1	Ι	155	GLN	2.1	
1	Е	153	VAL	2.1	
1	Е	157	ARG	2.1	
1	D	249	PHE	2.0	
1	G	386	ARG	2.0	
1	G	56	LEU	2.0	
1	J	388	GLN	2.0	
1	F	34	ILE	2.0	
1	С	41	GLY	2.0	

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	${f B}$ -factors(${f A}^2$)	Q < 0.9
2	GDU	В	500	36/36	0.93	0.16	$31,\!39,\!57,\!61$	0
2	GDU	D	500	36/36	0.93	0.16	35,44,65,69	0
2	GDU	С	500	36/36	0.94	0.14	29,39,63,64	0
2	GDU	Ι	500	36/36	0.94	0.16	29,34,54,58	0
2	GDU	Н	500	36/36	0.95	0.14	$25,\!31,\!48,\!52$	0
2	GDU	Е	500	36/36	0.95	0.14	$28,\!36,\!55,\!58$	0
2	GDU	J	500	36/36	0.95	0.15	$25,\!32,\!54,\!57$	0
3	FAD	С	450	53/53	0.95	0.14	23,29,36,51	0
3	FAD	В	450	53/53	0.96	0.09	23,29,36,51	0
2	GDU	F	500	36/36	0.96	0.14	$26,\!35,\!50,\!53$	0
3	FAD	F	450	53/53	0.96	0.09	23,29,36,51	0
3	FAD	G	450	53/53	0.96	0.11	$23,\!29,\!36,\!51$	0
3	FAD	Н	450	53/53	0.96	0.09	$23,\!29,\!36,\!51$	0
3	FAD	J	450	53/53	0.96	0.11	23,29,36,51	0
3	FAD	D	450	53/53	0.97	0.11	23,29,36,51	0
3	FAD	Е	450	53/53	0.97	0.10	$23,\!29,\!36,\!51$	0
3	FAD	Ι	450	53/53	0.97	0.08	23,29,36,51	0
3	FAD	А	450	53/53	0.97	0.09	23,29,36,51	0
2	GDU	G	500	36/36	0.98	0.13	31,36,40,43	11
2	GDU	A	500	36/36	0.98	0.12	25,29,32,34	12

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

