

Full wwPDB NMR Structure Validation Report (i)

Mar 3, 2022 – 07:36 AM EST

PDB ID	:	2HDC
Title	:	STRUCTURE OF TRANSCRIPTION FACTOR GENESIS/DNA COM-
		PLEX
Authors	:	Jin, C.; Marsden, I.; Chen, X.; Liao, X.
Deposited on	:	1999-05-05

This is a Full wwPDB NMR Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/NMRValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
RCI	:	v_1n_11_5_13_A (Berjanski et al., 2005)
PANAV	:	Wang et al. (2010)
ShiftChecker	:	2.27
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.27

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $SOLUTION\ NMR$

The overall completeness of chemical shifts assignment was not calculated.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f NMR} {f archive} \ (\# { m Entries})$
Clashscore	158937	12864
Ramachandran outliers	154571	11451
Sidechain outliers	154315	11428

The table below summarises the geometric issues observed across the polymeric chains and their fit to the experimental data. The red, orange, yellow and green segments indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A cyan segment indicates the fraction of residues that are not part of the well-defined cores, and a grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length		Quality of chain		
1	В	17	29%	71%		
2	С	17	18%	82%		
3	А	97	19%	58%	7%	16%

2 Ensemble composition and analysis (i)

This entry contains 20 models. Model 6 is the overall representative, medoid model (most similar to other models). The authors have identified model 1 as representative.

The following residues are included in the computation of the global validation metrics.

	Well-defined (core) p	protein residues	
Well-defined core	Residue range (total)	Backbone RMSD (Å)	Medoid model
1	A:7-A:87 (81)	0.52	6

Ill-defined regions of proteins are excluded from the global statistics.

Ligands and non-protein polymers are included in the analysis.

The models can be grouped into 2 clusters. No single-model clusters were found.

Cluster number	Models
1	$\begin{vmatrix} 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, \\ 19, 20 \end{vmatrix}$
2	1, 13

3 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 2581 atoms, of which 1080 are hydrogens and 0 are deuteriums.

• Molecule 1 is a DNA chain called DNA (5'-D(P*GP*CP*TP*TP*AP*AP*AP*AP*AP*AP*AP*AP*AP)-3').

Mol	Chain	Residues		Atoms												
1	D	17	Total	С	Η	Ν	Ο	Р	0							
1	D	17	493	167	145	67	97	17	0							

• Molecule 2 is a DNA chain called DNA (5'-D(P*GP*TP*AP*TP*TP*GP*TP*AP*TP *TP*TP*AP*AP*GP*C)-3').

Mol	Chain	Residues			Aton	ns			Trace
0	С	17	Total	С	Η	Ν	0	Р	0
		11	484	169	135	56	107	17	

• Molecule 3 is a protein called PROTEIN (TRANSCRIPTION FACTOR).

Mol	Chain	Residues			Aton	ıs			Trace
9	Δ	07	Total	С	Н	Ν	0	S	0
5	A	91	1604	517	800	143	140	4	0

4 Residue-property plots (i)

4.1 Average score per residue in the NMR ensemble

These plots are provided for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey.

• Molecule 1: DNA (5'-D(P*GP*CP*TP*TP*AP*AP*AP*AP*AP*AP*AP*AP*CP*AP*AP*TP*A P*C)-3')

Chain B:	29%	71%		•
G249 C250 T251 T251 A253 A253 A255 A255 A255	A 250 A 256 A 261 A 261 A 262 A 264 C 265 C 265			
• Molecule 2 P*C)-3')	: DNA (5'-D(P*GP*T	P*AP*TP*TP*GP*TP ^{>}	*TP*AP*TP*1	TP*TP*TP*AP*AP*G
Chain C:	18%	82%		
G349 T350 A351 T352 T352 G354 T355 T355 A357	13590 13590 13661 13662 13664 13664 13664 13664 13665 13665			
• Molecule 3	: PROTEIN (TRANSO	CRIPTION FACTOR)		
Chain A:	19%	58%	7% 16%	•
V2 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5	112 113 113 113 115 115 117 117 117 117 1126 1124 1126 1126 1126	129 133 133 133 133 133 133 133 133 133 13	850 151 152 153 153 153 153 153 157 157 157 157 157 157 157 157 157 157	F61 V62 164 F65 F65
R66 E67 P68 059 070 071 071 072 K73 K73	77 777 777 777 778 777 778 178 178 178 1	L93 194 R95 K97 K98 R98		

4.2 Scores per residue for each member of the ensemble

Colouring as in section 4.1 above.

4.2.1 Score per residue for model 1

• Molecule 1: DNA (5'-D(P*GP*CP*TP*TP*AP*AP*AP*AP*AP*TP*AP*AP*CP*AP*AP*TP*A P*C)-3')

Chain B: 29%

71%

• Molecule 2: DNA (5'-D(P*GP*TP*AP*TP*TP*GP*TP*TP*AP*TP*TP*TP*TP*TP*AP*AP*G P*C)-3')

Chain (C:			35	%				659	%			
G349 T350 A351 T352 T353	G354 T355 T356	A357 T358 T359 T359	1360 T361 A362	A363 6364	<mark>C365</mark>								

• Molecule 3: PROTEIN (TRANSCRIPTION FACTOR)

Chair	n A	4:	-	30%								31%													22%											16													
V2 K3 P4 P5	Y6 672	Vg X8	19	C T H	112		A15	116	L17	Q18	S19	P20	Q21		124 TOF	621 56	527 S27	G28	129	-	F32	133	F37	101 D38	739 739	V40		K43	F44	P45	A46	048 048	N49	S50	151	K5Z H63	N54	L55	S56	L57	N58	D59	C60	F61 V62	K63	164	P65	R66	-
G69 N70 K73	2647	0/1 MT7	T78	L79	D81		202 203		F87	D88	N89	G90	S91	F92	L93	R94 DOF	R96	K97	R98																														

4.2.2 Score per residue for model 2

• Molecule 1: DNA (5'-D(P*GP*CP*TP*TP*AP*AP*AP*AP*AP*TP*AP*AP*CP*AP*AP*TP*A P*C)-3')

Chain	B:	35%	65%	I
G249 C250 T251 T252 A253	A255 A255 A256 A256 A258 A258 C260 C260 A261 A261	T263 A264 C265		
• Mole P*C)-3	ecule 2: DNA 3')	A (5'-D(P*GP*TP*AP*TP*TP*(GP*TP*TP*AP*TP*T	`P*TP*TP*AP*AP*G

Chain C:	18%		82%		
G349 T350 A351 T352 T352 G354 T355 T356	A357 T355 T359 T360 T361 A362 A363 G364	C366			
• Molecule	e 3: PROTI	EIN (TRANSCRIP'	TION FACTOR	L)	
Chain A:	28%	33%	21	ı% • 16 ⁹	%
V2 K3 P4 P5 S7 Y Y8	111 111 112 113 113 115 115 115 115	q 18 8.19 8.20 8.20 8.21 1.24 1.24 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25	F37 P38 γ39 γ39 γ40 F44 F44 F44 P45 P45 V47	445 N49 S50 151 151 H53 L55 S56 L55 S56 L55 N58	F61 V62 K63 I64

4.2.3 Score per residue for model 3

• Molecule 1: DNA (5'-D(P*GP*CP*TP*TP*AP*AP*AP*AP*AP*TP*AP*AP*CP*AP*AP*TP*AP*CP*AP*AP*TP*AP*C)-3')

Chain B:	24%	76%	1
G249 C250 T251 T251 A253 A255 A255 A255 A255 A255	A259 A260 A261 A261 A263 T263 A264 C265		
• Molecule 2: P*C)-3')	: DNA (5'-E)(P*GP*TP*AP*TP*TP*GP*TP*TP*AP*TP*T	'P*TP*TP*AP*AP*G
Chain C:	24%	76%	1
G349 T350 A351 T352 T355 G354 G354 T355 A357 A357 T355	T359 T360 A362 A363 A363 G364 G365 C365		

• Molecule 3: PROTEIN (TRANSCRIPTION FACTOR)

Chain	A:	_			2	6%	6											4	449	%									10)%		·			16	5%							
V2 K3 P5 Y6	S7 Y8	19 410	L11	112 T13	M14	A15	116	L1/ 018	r	q21 	K22 V 00	L24	T25	L26	TOO	C30	E31	F32 T32	100	F37	P38	Y39 VAO	140 R41	E42	K43	F44	2417	048	N49	850 311	151 RF2	H53	N54	L55 S56	L57	N58	D59	C60	F61 V62	K63	I64	P65	R66
<mark>669</mark> 672 К73	G74 N75	77b	T78	L79 D80	P81	<mark>082</mark>	S83	E84 D85	M86	F87	D88 Moo	060 060	S 91	F92	L93 R94	R95	R96	K97	L AO																								

4.2.4 Score per residue for model 4

G249 C250 C250 T251 A253 A255 A255 A256 A256 A256 A256 A256 A261 A261 A261 A265 A265 A265 A265 C265

• Molecule 2: DNA (5'-D(P*GP*TP*AP*TP*TP*GP*TP*TP*AP*TP*TP*TP*TP*TP*AP*AP*G P*C)-3')

С	hə	ai	n	С):										4	41
G349	1350 A351	T352	T353	G354	T355	T356	A357	T358	T359	TORD	195.I	A362	8363	0000	6364	C365

• Molecule 3: PROTEIN (TRANSCRIPTION FACTOR)

4.2.5 Score per residue for model 5

• Molecule 1: DNA (5'-D(P*GP*CP*TP*TP*AP*AP*AP*AP*AP*TP*AP*AP*CP*AP*AP*TP*A P*C)-3')

Chain I	3: 35%	65%	
G249 C250 T251 A253	A254 A255 A255 A255 A256 A256 A266 A261 A264 A263 T263 C265		
• Moleo P*C)-3	cule 2: DNA (5 [°] ')	² -D(P*GP*TP*AP*TP*TP*GP*TP*TP*AP*TP*T	P*TP*TP*AP*AP*G
Chain (C: 29%	71%	
G349 T350 A351 T352 T353	6354 1355 1355 1355 1355 1355 1355 1355 1		
• Moleo	cule 3: PROTE	IN (TRANSCRIPTION FACTOR)	
Chain A	A: 21%	45% 16% • 16%	
V2 F4 F5 Y6	8 19 110 111 112 113 112 113 113 113 113 113 113	R 219 P 20 P 20	Nes D55 F61 V62 V62
K63 I64 P65 R66 E67	698 698 0170 074 075 074 177 178 177 178 179 179 179	P81 P81 Q32 S33 Q32 S33 C32 S33 C32 S33 C32 S34 C33 S34 C33 S34 C34 S34 C35 S34 C35 S34 C35 S34 C35 S34 C35	
4.2.6	Score per res	sidue for model 6 (medoid)	

• Molecule 1: DNA (5'-D(P*GP*CP*TP*TP*AP*AP*AP*AP*AP*TP*AP*AP*CP*AP*AP*TP*A P*C)-3')

0249 7250 7250 7251 7255 7255 7255 7255 7255 7264 7265 7265 7265 7265 7265	Chain	B:				3	5%
	G249 C250 T251 T252 A253	A254 A255	A256 T257 A758	A259 C260	A261	A262 T263	A264 C265

• Molecule 2: DNA (5'-D(P*GP*TP*AP*TP*TP*GP*TP*TP*AP*TP*TP*TP*TP*TP*AP*AP*G P*C)-3')

Chain C:	35%	65%
	_	

 G349

 T350

 T351

 T352

 T352

 T355

 T355

• Molecule 3: PROTEIN (TRANSCRIPTION FACTOR)

Chain A	\: -		Ĩ	229	%			•								4	6%	,								-	1	3%	6		•		1	169	%						
V2 K3 P4 P5 Y6 S7	Y8 19	A10 L11	112 T13	M14	A15	Q18	S19	P20	K22	K23	L24	125		129	004	F32	133 S34	N35	R36	F37	739 739	Y40	R41	E42	K43 F44	P45	A46		N49	S50	151 DE2	H53	N54	L55	S56	N5.8	D59	C60	1.61	V02 K63	164
P65 R66 E67 P68 G69 N70	P71 G72	N75	Y76 W77	T78	L79 D80	P81	Q82	D85		D88	N89	690 891	F92	L93	R94	R95	08N K97	R98																							

4.2.7 Score per residue for model 7

• Molecule 1: DNA (5'-D(P*GP*CP*TP*TP*AP*AP*AP*AP*TP*AP*AP*CP*AP*AP*TP*A P*C)-3')

Chain B:	41%	59%

G249 G2240 C250 T251 T253 A255 A256 A256

• Molecule 2: DNA (5'-D(P*GP*TP*AP*TP*TP*GP*TP*TP*AP*TP*TP*TP*TP*TP*AP*AP*G P*C)-3')

Chain C:	47%		53%	
6349 T350 A351 T352 T352 C354 C354 T355 T355	435 1358 1359 1360 1361 4362 4363 6364 0365 C365			
• Molecule	3: PROTEIN (7	FRANSCRIPTION FA	ACTOR)	
Chain A:	24%	39%	21%	16%

4.2.8 Score per residue for model 8

• Molecule 1: DNA (5'-D(P*GP*CP*TP*TP*AP*AP*AP*AP*AP*TP*AP*AP*CP*AP*AP*TP*A P*C)-3')

Chain B: 24% 76%

• Molecule 2: DNA (5'-D(P*GP*TP*AP*TP*TP*GP*TP*TP*AP*TP*TP*TP*TP*TP*TP*AP*AP*G P*C)-3')

Chain C:	29%	71%	
G349 T350 A351 T352 T353 G354 T355	1355 1355 1358 1368 1361 1361 1361 1362 1363 1363 1364 1365		

• Molecule 3: PROTEIN (TRANSCRIPTION FACTOR)

C	h	ıa	ir	1.	A	•						29	9%	,													41	.%									12	%		•			1	6%	b						
V2	K3	P4	P5	Y6	S7		1.11	112	-	A15	116	L17	Q18	S19	201	024	T25	L26	-	129	E30	192	534 S34	N35	R36	F37	P38	Y39	Y40	-	K43	144 115	r40 A46	W47	<mark>0</mark> 48	 101	H53	N54	L55	S56	L57	NEO	000	F61	V62	K63	164	P65	K60 E67	P68	222
G72	K73	G74	N75	Y76	N7.7	1/8	DBO	P81	Q 82		F87	D88	N89	(90 (100	291 200	102	R94	R95	R96	K97	R98																														

4.2.9 Score per residue for model 9

• Molecule 1: DNA (5'-D(P*GP*CP*TP*TP*AP*AP*AP*AP*TP*AP*AP*CP*AP*AP*TP*AP*CP*AP*TP*AP*CP*AP*TP*A

Chain B:	35%	65%		
2249 7250 7251 7252 7253 7253 7255 7255 7255 7255 7255	C260 A261 A262 T263 A264 C265			
• Molecule 2: 1 P*C)-3')	DNA (5'-D(P*	GP*TP*AP*TP*TP*GP*TP	*TP*AP*TP*T	P*TP*TP*AP*AP*G
Chain C:	24%	76%		
G349 T350 A351 T352 T353 C354 T355 A357 A357 T356 A357 T358	T360 T361 A362 A363 G364 C365			
• Molecule 3: 1	PROTEIN (T	RANSCRIPTION FACTOR)		
Chain A:	31%	36% 16	% 16%	
		WORLDWIDE PROTEIN DATA BANK		

MTO V2 K73 V3 M75 V3 M15 V3 M89 M14 M89 M14 M89 M14 M89 M14 M89 M14 M89 M44 M95 M45 M95 M46 M96 M46 M96 M61 M96 M61 M96 M61 M96 M6

4.2.10 Score per residue for model 10

• Molecule 1: DNA (5'-D(P*GP*CP*TP*TP*AP*AP*AP*AP*AP*TP*AP*AP*CP*AP*AP*TP*AP*CP*AP*AP*TP*AP*C)-3')

Chain B:	35%		65%					
G249 C250 T251 T251 A253 A253 A255 A255 A255 A255 A255 A255	A269 C260 A261 A261 A262 T263 A264 C265							
• Molecule 2: P*C)-3')	DNA (5'-D(P*	GP*TP*AP*TP*TP	*GP*TP*T	P*AP	*TP*T	P*TP*′	TP*AP*	[•] AP*G
Chain C:	47%		53%					
G349 T350 A351 T352 T352 T355 G354 T355 T355 T355 T355 T355	T359 T360 T361 A362 A363 G364 C365							
• Molecule 3:	PROTEIN (TI	RANSCRIPTION FAC	CTOR)					
Chain A:	27%	38%	18%	•	16%			
V2 K3 P5 P5 87 87 87 111	T13 M14 A16 L17 L17 Q18 S19 Q21 Q21 K22 K23	L24 L26 L26 L26 L26 C30 E31 F32 F33 F33 F33 F33 F33 F34 F37 F38 F37 F38 F37 F38	F44 P45 A46 W47 Q48 N49 S50	191 R52 H53 N54 L55	S56 L57 D59 C60	F61 V62 K63 I64 P65		
R66 E67 F68 C69 C69 C73 C73 C74 C74	T78 179 180 181 179 181 883 883 883 888 888	889 891 1992 193 193 195 195 195 195 195 198						

4.2.11 Score per residue for model 11

• Molecule 1: DNA (5'-D(P*GP*CP*TP*TP*AP*AP*AP*AP*AP*TP*AP*AP*CP*AP*AP*TP*A P*C)-3')

• Molecule 2: DNA (5'-D(P*GP*TP*AP*TP*TP*GP*TP*TP*AP*TP*TP*TP*TP*TP*AP*AP*G P*C)-3')

Chain C: 24%

• Molecule 3: PROTEIN (TRANSCRIPTION FACTOR)

4.2.12 Score per residue for model 12

Chain B	: 18%	82%
G249 C250 T251 T252 A253 A254	A255 A256 A256 A258 A258 A259 A261 T263 T263 T263	

• Molecule 2: DNA (5'-D(P*GP*TP*AP*TP*TP*GP*TP*TP*AP*TP*TP*TP*TP*TP*AP*AP*G P*C)-3')

Chain C:	24%	76%		
6349 T350 A351 T352 T353 G354 G354 T355	T356 A357 T358 T359 T360 T361 A362 A363 C365 C365 C365			
• Molecul	le 3: PROTEIN	(TRANSCRIPTION FACT	$\Gamma OR)$	
Chain A:	27%	39%	15% • 16%	
V2 K3 P4 P5 Y6 Y8	19 111 111 112 112 112 112 112 112 112 1	K23 124 125 126 126 827 827 827 133 133 133 133 133 133 133 133 133 13	N49 151 151 153 153 153 155 155 155 155 155	R66 E67 N70 P71
G72 K73 G74 N75 V76 W77 T78	L79 D80 P81 S83 S83 F87 F88 F88 F88 C90 C91 S91	F 92 L 93 R 96 R 96 R 96 R 96 R 96		

4.2.13 Score per residue for model 13

Chain B: 35% 65%

• Molecule 2: DNA (5'-D(P*GP*TP*AP*TP*TP*GP*TP*TP*AP*TP*TP*TP*TP*TP*AP*AP*G P*C)-3')

4.2.14 Score per residue for model 14

• Molecule 1: DNA (5'-D(P*GP*CP*TP*TP*AP*AP*AP*AP*AP*TP*AP*AP*CP*AP*AP*TP*A P*C)-3')

Chain B:	41%		59%	
6249 C250 T251 T252 A253 A255 A255 A255 A255	A259 A259 A261 A261 A261 A265 A265 A265 C265			
• Molecule P*C)-3')	2: DNA (5'-D(P'	*GP*TP*AP*TP*T	P*GP*TP*TI	P*AP*TP*TP
Chain C:	24%		76%	
G349 T350 T351 T352 T352 G354 T355 T355	T355 T355 T356 T360 T361 A363 A363 C365 C365			
• Molecule	3: PROTEIN (T	RANSCRIPTION F	ACTOR)	
Chain A:	26%	37%	20%	• 16%
V2 K3 P4 P5 Y6 Y8 Y8 I9	112 113 113 114 116 116 117 018 018 018 018 018 021 021 021 K22 K23	L24 125 L26 S27 628 C30 C30 C30 C30 C30 C30 C30 C30 C30 C30	R41 E42 F44 P45 A46 W47 W47 N49 S50	151 152 163 163 155 155 155 157 157 059 059
P65 R66 E67 N70 K73	178 178 179 179 179 179 179 180 189 189 189 189 189	G90 891 892 894 895 895 895 895 895 898		

4.2.15Score per residue for model 15

• Molecule 1: DNA (5'-D(P*GP*CP*TP*TP*AP*AP*AP*AP*AP*TP*AP*AP*CP*AP*AP*TP*A P*C)-3')

Chain B: 24% 76%

• Molecule 2: DNA (5'-D(P*GP*TP*AP*TP*TP*GP*TP*TP*AP*TP*TP*TP*TP*TP*AP*AP*G P*C)-3')

Chain C:	24%	76%				•
G349 T351 A351 T352 T352 G354 T355 T355 A357	T358 T359 T360 T361 A362 A363 G364 C365					
• Molecule 3	: PROTEIN	(TRANSCRIPTION FACTOR	.)			
Chain A:	21%	51%	9%	·	16%	•
0 0 7 0 0 1 0 0 1	<u>8</u> 7 8 8 8 7 7 7 8 8 7 7 7 7 8 7 7 7 7 7	22 22 25 25 25 25 25 25 25 25 25 25 25 2	149 150 151	52 54 54	.55 556 57 58 58 59 59 59 59 59 59 59 50	665 166 166 166

I 26 C 30 E 31 F 32 I 33

4.2.16Score per residue for model 16

• Molecule 1: DNA (5'-D(P*GP*CP*TP*TP*AP*AP*AP*AP*AP*TP*AP*AP*CP*AP*AP*TP*A P*C)-3')

Y40 R41 E42 K43

N49 S50 S50 S50 R52 R52 N52 C55 C55

Chain	B:	18%	82%	
G249 C250 T251 T252 A253	A254 A255 A256 T257 A258	A259 C260 A261 A261 T263 A264 C265		
• Mole P*C)-3	cule 2: S')	DNA (5)	-D(P*GP*TP*AP*TP*TP*GP*TP*TP*AP*TP*T	P*TP*TP*AP*AP*G

Chain C:	41%		59%		
G349 T350 A351 T352 T353 G354 T355 T355 T355 T355	1358 1359 1361 1361 1361 1365 1365 1365 1365				
• Molecule 3	: PROTEIN (TR	ANSCRIPTION FACT	OR)		
Chain A:	32%	34%	15%	•	16%
		W O R L D W I D PROTEIN DATA BAN	E NK		

KT3 K2 GT 4 WT6 WT6 WT6 WT6 WT6 WT6 W17 WT7 W17 WT7 W17 WT7 W17 WT7 W17 WT7 W17 W17 W12 PB1 W14 PB2 M14 PB3 M14 PB4 M14 PB2 M14 PB3 M14 PB3 M14 PB3 M14 PB4 M14 PB3 M14 PB3 M14 P34 M14 P34 M26 P34 M26 P34 M26 P34 M26 P45 M28 P46 M28 P46 M28 P46 M68 P46 M68 P46 M68 P46

4.2.17 Score per residue for model 17

• Molecule 1: DNA (5'-D(P*GP*CP*TP*TP*AP*AP*AP*AP*AP*TP*AP*AP*CP*AP*AP*TP*AP*CP*AP*AP*TP*AP*C)-3')

0249 7251 7252 7253 7255 7255 7256 7256 7256 7265 7265 7265	
• Molecule 2: DNA (5'-D(P*GP*TP*AP*TP*TP*GP*TP*TP*AP*TP*TP*TP*TP*TP*AP*AP*P*P*C)-3')	*G
Chain C: 18% 82%	
CC349 T3551 T3551 T3553 T3555 T3555 T3555 T3556 T3565 C365 C365 C365	
• Molecule 3: PROTEIN (TRANSCRIPTION FACTOR)	
Chain A: 24% 43% 14% 16%	

E31 F32 F32 F32 F32 F37 F33 F33 F33 F33 F37 F37 F37 F37 F44 F44 F44 F44 F44 N45 S56 I51 R52 H53

4.2.18 Score per residue for model 18

• Molecule 1: DNA (5'-D(P*GP*CP*TP*TP*AP*AP*AP*AP*AP*TP*AP*AP*CP*AP*AP*TP*A P*C)-3')

Chain B: 35% 65%

• Molecule 2: DNA (5'-D(P*GP*TP*AP*TP*TP*GP*TP*TP*AP*TP*TP*TP*TP*TP*AP*AP*G P*C)-3')

Chain C: 35%

65%

G349 T350 T350 T355 T352 T355 T355 T355 T355 T355 T356 T356 T361 T361 T361 T361 T361 T361 T361 C365 C365

• Molecule 3: PROTEIN (TRANSCRIPTION FACTOR)

4.2.19 Score per residue for model 19

Chain E	8:	24%	76%	
G249 C250 T251 A253 A253 A254	A255 A256 A256 A258 A259	C260 A261 A262 T263 A264 C265		
• Molec	ule 2: D	ONA (5'	·D(P*GP*TP*AP*TP*TP*GP*TP*TP*AP*TP*TF	*TP*TP

• Molecule 2: DNA (5'-D(P*GP*TP*AP*TP*TP*GP*TP*TP*AP*TP*TP*TP*TP*TP*AP*AP*G P*C)-3')

Chain C:	24%		76%	
G349 T350 A351 T352 T353 G354 T355 T355	1356 4357 1358 1358 1358 1360 1361 1360 4363 6364 6365 6365			
• Molecul	e 3: PROTEIN	(TRANSCRIPTION I	FACTOR)	
Chain A:	13%	52%	16% • 16%	
V2 K3 P4 P5 Y6 Y8	19 A10 L11 112 112 A15 A15 L17 L17 Q18 S19 S19	P20 P20 K22 K23 K23 F26 L26 C30 C30 C30 C30 C30 C30 C30 C30 C30 C30	Y39 841 844 844 844 845 845 844 945 846 846 846 846 846 846 846 846 846 846	C60 C60 F61 V62 K63
164 P65 R66 E67 P68 G69 N70	P71 G72 K73 K73 G74 075 V76 T76 L79 D80 D80	482 8482 8494 8494 8494 8494 8494 8494 8		

4.2.20 Score per residue for model 20

76%

Chain B: 24%

• Molecule 2: DNA (5'-D(P*GP*TP*AP*TP*TP*GP*TP*TP*AP*TP*TP*TP*TP*TP*AP*AP*G P*C)-3')

Chain C: 24% 76%

• Molecule 3: PROTEIN (TRANSCRIPTION FACTOR)

5 Refinement protocol and experimental data overview (i)

The models were refined using the following method: *distance geometry*.

Of the 200 calculated structures, 20 were deposited, based on the following criterion: LEAST RESTRAINT VIOLATION.

The following table shows the software used for structure solution, optimisation and refinement.

Software name	Classification	Version
DYANA	refinement	1.5
DYANA	structure solution	

No chemical shift data was provided.

6 Model quality (i)

6.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the (average) root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	I	Bond lengths	Bond angles		
		RMSZ	$\#Z{>}5$	RMSZ	#Z>5	
1	В	4.98 ± 2.25	$13{\pm}1/391$ ($3.4{\pm}$ 0.3%)	$5.51 {\pm} 0.64$	$49{\pm}1/600~(~8.1{\pm}~0.2\%)$	
2	С	$3.59 {\pm} 0.38$	$12{\pm}2/389$ ($3.2{\pm}$ 0.4%)	4.76 ± 0.32	$62{\pm}2/599$ ($10.4{\pm}$ 0.3%)	
3	А	$0.72 {\pm} 0.00$	$0{\pm}0/685~(~0.0{\pm}~0.0\%)$	$0.92{\pm}0.00$	$0{\pm}0/9{30}~(~0.0{\pm}~0.0\%)$	
All	All	3.42	513/29300 ($1.8%$)	3.93	2223/42580~(~5.2%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	Chirality	Planarity
1	В	8.1±1.1	$0.0{\pm}0.0$
2	С	$4.2{\pm}1.0$	$0.0{\pm}0.0$
All	All	246	0

All unique bond outliers are listed below. They are sorted according to the Z-score of the worst occurrence in the ensemble.

Mal	Chain Res Type Atoms Z Observed(Å)		Ideal(Å)	Moo	dels				
	Ullalli	nes	туре	Atoms	2	Observeu(A)	Iueai(A)	Worst	Total
1	В	249	DG	C4'-O4'	277.59	4.22	1.45	20	15
2	С	359	DT	C4'-O4'	60.77	2.05	1.45	18	19
2	С	363	DA	C4'-O4'	44.67	1.89	1.45	9	7
1	В	260	DC	C4'-O4'	42.10	1.87	1.45	3	20
1	В	254	DA	C4'-O4'	-37.77	1.07	1.45	2	20
2	С	360	DT	C4'-O4'	-37.67	1.07	1.45	15	9
1	В	250	DC	C4'-O4'	-37.58	1.07	1.45	7	8
1	В	264	DA	C4'-O4'	-37.00	1.08	1.45	15	7
2	С	358	DT	C4'-O4'	-36.89	1.08	1.45	11	17
1	В	263	DT	C4'-O4'	-36.42	1.08	1.45	15	19
1	В	256	DA	C4'-O4'	36.40	1.81	1.45	6	20
1	В	259	DA	C4'-O4'	-36.35	1.08	1.45	18	19
2	С	352	DT	C4'-O4'	-35.81	1.09	1.45	2	9

Mal	Chain	Dec	Turne	Atoma	7	$Observed(\hat{\lambda})$	$Ideal(\lambda)$	Mod	dels
NIOI	Chain	nes	Type	Atoms		Observed(A)	Ideal(A)	Worst	Total
1	В	261	DA	C4'-O4'	-35.61	1.09	1.45	12	19
2	С	355	DT	C4'-O4'	-35.19	1.09	1.45	10	15
1	В	257	DT	C4'-O4'	-34.80	1.10	1.45	11	16
1	В	255	DA	C4'-O4'	-34.78	1.10	1.45	11	20
2	С	357	DA	C4'-O4'	-34.76	1.10	1.45	6	17
1	В	258	DA	C4'-O4'	-34.08	1.10	1.45	13	8
1	В	253	DA	C4'-O4'	-32.16	1.12	1.45	19	15
2	С	364	DG	C4'-O4'	29.21	1.74	1.45	9	20
1	В	251	DT	C4'-O4'	29.06	1.74	1.45	10	19
2	С	365	DC	C4'-O4'	-28.58	1.16	1.45	6	20
1	В	265	DC	C4'-O4'	-24.70	1.20	1.45	17	17
2	С	354	DG	C4'-O4'	21.69	1.66	1.45	11	19
1	В	262	DA	C4'-O4'	18.69	1.63	1.45	16	17
2	С	361	DT	C4'-O4'	18.45	1.63	1.45	9	15
2	С	353	DT	C4'-O4'	18.07	1.63	1.45	3	19
2	С	362	DA	C4'-O4'	-16.50	1.28	1.45	20	14
2	С	356	DT	C4'-O4'	-15.17	1.29	1.45	10	10
2	С	350	DT	C4'-O4'	14.79	1.59	1.45	16	20
1	В	252	DT	C4'-O4'	14.37	1.59	1.45	2	8
2	С	351	DA	C4'-O4'	9.73	1.54	1.45	2	6
2	С	349	DG	C4'-O4'	-7.22	1.37	1.45	20	10

All unique angle outliers are listed below. They are sorted according to the Z-score of the worst occurrence in the ensemble.

Mol	Mol Chain		Type	Atoms	7	Observed ⁽⁰⁾	Ideal(0)	Moo	Models	
	Ullaili	nes	туре	Atoms	2	Observed()	Ideal()	Worst	Total	
1	В	249	DG	O4'-C4'-C3'	-121.26	33.25	106.00	20	12	
1	В	249	DG	C1'-O4'-C4'	-79.09	31.00	110.10	20	17	
2	С	359	DT	O4'-C4'-C3'	-56.61	72.04	106.00	18	14	
2	С	363	DA	O4'-C4'-C3'	-48.22	77.07	106.00	9	19	
1	В	260	DC	O4'-C4'-C3'	-45.03	78.98	106.00	11	20	
1	В	263	DT	O4'-C4'-C3'	-42.83	80.30	106.00	6	17	
1	В	255	DA	O4'-C4'-C3'	-42.64	80.42	106.00	18	10	
1	В	257	DT	O4'-C4'-C3'	-41.50	81.10	106.00	13	19	
1	В	256	DA	O4'-C4'-C3'	-40.44	81.73	106.00	6	16	
2	С	364	DG	O4'-C4'-C3'	-39.23	82.46	106.00	9	20	
1	В	251	DT	O4'-C4'-C3'	-38.50	82.90	106.00	10	20	
1	В	254	DA	O4'-C4'-C3'	-34.83	85.10	106.00	17	1	
2	С	358	DT	O4'-C4'-C3'	-32.92	86.25	106.00	13	15	
2	С	353	DT	O4'-C4'-C3'	-32.03	86.78	106.00	19	20	
1	В	262	DA	O4'-C4'-C3'	-30.30	87.82	106.00	16	20	

		D		•	7		T 1 (0)	Mo	dels
Mol	Chain	Res	Type	Atoms	Z	Observed(⁶)	Ideal(°)	Worst	Total
2	С	363	DA	C5'-C4'-O4'	30.25	166.77	109.30	9	1
2	С	354	DG	O4'-C4'-C3'	-30.15	87.91	106.00	11	20
1	В	259	DA	O4'-C4'-C3'	-29.07	88.56	106.00	14	16
1	В	261	DA	O4'-C4'-C3'	-29.05	88.57	106.00	14	19
1	В	253	DA	O4'-C4'-C3'	-28.29	89.02	106.00	3	17
1	В	252	DT	O4'-C4'-C3'	-27.64	89.41	106.00	2	20
2	С	360	DT	O4'-C4'-C3'	-27.48	89.51	106.00	13	19
1	В	263	DT	C5'-C4'-O4'	27.47	161.49	109.30	19	20
1	В	260	DC	C5'-C4'-O4'	26.91	160.43	109.30	6	20
2	С	359	DT	C5'-C4'-O4'	26.88	160.36	109.30	10	18
1	В	256	DA	C5'-C4'-O4'	26.72	160.06	109.30	17	20
1	В	255	DA	C5'-C4'-O4'	26.51	159.67	109.30	19	20
2	С	357	DA	O4'-C4'-C3'	-26.32	90.21	106.00	20	14
2	С	361	DT	O4'-C4'-C3'	-26.02	90.39	106.00	9	20
2	С	351	DA	O4'-C4'-C3'	-25.67	90.60	106.00	2	20
1	В	251	DT	C5'-C4'-O4'	25.45	157.65	109.30	12	20
2	С	358	DT	C5'-C4'-O4'	25.08	156.96	109.30	13	19
2	С	354	DG	C5'-C4'-O4'	25.07	156.93	109.30	9	20
1	В	262	DA	C5'-C4'-O4'	24.98	156.76	109.30	16	20
1	В	257	DT	C5'-C4'-O4'	24.64	156.12	109.30	8	19
1	В	261	DA	C5'-C4'-O4'	24.59	156.01	109.30	11	19
2	С	353	DT	C5'-C4'-O4'	24.55	155.95	109.30	17	20
1	В	265	DC	O4'-C4'-C3'	-24.55	91.27	106.00	8	20
1	В	253	DA	C5'-C4'-O4'	24.45	155.75	109.30	2	19
1	В	259	DA	C5'-C4'-O4'	24.07	155.03	109.30	14	20
1	В	252	DT	C5'-C4'-O4'	23.68	154.30	109.30	2	20
1	В	264	DA	O4'-C4'-C3'	-23.64	91.82	106.00	11	17
2	С	361	DT	C5'-C4'-O4'	23.54	154.03	109.30	9	20
2	С	351	DA	C5'-C4'-O4'	23.30	153.57	109.30	2	20
2	С	355	DT	C5'-C4'-O4'	22.89	152.80	109.30	6	20
2	С	362	DA	O4'-C4'-C3'	-22.86	92.28	106.00	2	16
1	В	264	DA	C5'-C4'-O4'	22.25	151.57	109.30	11	20
2	С	355	DT	O4'-C4'-C3'	-22.24	92.65	106.00	6	17
1	В	258	DA	C5'-C4'-O4'	22.05	151.21	109.30	6	19
1	В	258	DA	O4'-C4'-C3'	-21.93	92.84	106.00	8	17
2	С	362	DA	C5'-C4'-O4'	21.80	150.72	109.30	2	20
1	В	265	DC	C5'-C4'-O4'	21.77	150.66	109.30	13	20
2	С	349	DG	04'-C4'-C3'	-21.68	92.99	106.00	9	20
2	C	356	DT	C5'-C4'-O4'	21.40	149.97	109.30	20	20
2	С	357	DA	C5'-C4'-O4'	21.12	149.43	109.30	4	20
2	С	350	DT	04'-C4'-C3'	-20.54	93.67	106.00	9	20

		- prees			-		(0)	Mo	dels
Mol	Chain	Res	Type	Atoms	Z	Observed(o)	$\operatorname{Ideal}(^{o})$	Worst	Total
1	В	254	DA	C5'-C4'-O4'	20.23	147.74	109.30	17	19
2	С	364	DG	C5'-C4'-O4'	19.42	146.20	109.30	9	6
2	С	356	DT	O4'-C4'-C3'	-19.36	94.38	106.00	11	20
1	В	250	DC	O4'-C4'-C3'	-19.16	94.50	106.00	19	15
2	С	352	DT	C5'-C4'-O4'	15.04	137.88	109.30	7	13
2	С	352	DT	O4'-C4'-C3'	-14.76	97.14	106.00	9	18
2	С	360	DT	C5'-C4'-O4'	-13.60	83.45	109.30	2	18
2	С	360	DT	C1'-O4'-C4'	13.60	123.70	110.10	15	17
1	В	254	DA	C1'-O4'-C4'	13.55	123.65	110.10	2	19
1	В	250	DC	C1'-O4'-C4'	13.47	123.57	110.10	7	19
1	В	263	DT	C1'-O4'-C4'	13.33	123.43	110.10	15	4
2	С	358	DT	C1'-O4'-C4'	13.28	123.38	110.10	11	11
1	В	249	DG	C5'-C4'-O4'	-13.20	84.22	109.30	4	14
1	В	264	DA	C1'-O4'-C4'	13.19	123.29	110.10	15	18
2	С	352	DT	C1'-O4'-C4'	12.90	123.00	110.10	2	11
1	В	259	DA	C1'-O4'-C4'	12.88	122.98	110.10	18	4
1	В	255	DA	C1'-O4'-C4'	12.81	122.91	110.10	17	12
2	С	349	DG	C5'-C4'-O4'	12.63	133.30	109.30	17	15
1	В	256	DA	C1'-O4'-C4'	12.61	122.71	110.10	20	5
2	С	359	DT	C1'-O4'-C4'	12.50	122.60	110.10	13	6
1	В	258	DA	C1'-O4'-C4'	12.39	122.49	110.10	13	16
1	В	261	DA	C1'-O4'-C4'	11.94	122.04	110.10	12	4
2	С	364	DG	C5-C6-N1	11.92	117.46	111.50	11	20
2	С	354	DG	C5-C6-N1	11.91	117.46	111.50	9	20
2	С	349	DG	C5-C6-N1	11.89	117.44	111.50	3	20
1	В	249	DG	C5-C6-N1	11.88	117.44	111.50	3	20
2	С	363	DA	C1'-O4'-C4'	11.74	121.84	110.10	6	14
2	С	355	DT	C1'-O4'-C4'	11.54	121.64	110.10	10	7
2	С	365	DC	C1'-O4'-C4'	11.50	121.60	110.10	6	20
2	С	357	DA	C1'-O4'-C4'	11.23	121.33	110.10	6	9
1	В	257	DT	C1'-O4'-C4'	11.17	121.27	110.10	11	10
2	С	349	DG	C6-N1-C2	-11.08	118.45	125.10	7	20
1	В	249	DG	C6-N1-C2	-11.06	118.46	125.10	2	20
2	С	364	DG	C6-N1-C2	-11.05	118.47	125.10	5	20
2	С	354	DG	C6-N1-C2	-11.04	118.48	125.10	18	20
1	В	253	DA	C1'-O4'-C4'	10.01	120.11	110.10	12	15
1	В	265	DC	C1'-O4'-C4'	9.86	119.96	110.10	17	16
2	С	356	DT	C1'-O4'-C4'	8.95	119.05	110.10	3	16
2	С	365	DC	C5'-C4'-O4'	-8.82	92.55	109.30	20	20
2	С	362	DA	C1'-O4'-C4'	8.80	118.90	110.10	17	20
1	В	262	DA	C1'-O4'-C4'	8.78	118.88	110.10	12	12

				• •	-		T 1 (a)	Mo	dels
Mol	Chain	Res	Type	Atoms		Observed(⁶)	Ideal(°)	Worst	Total
2	С	364	DG	N1-C2-N3	8.75	129.15	123.90	4	20
2	С	354	DG	N1-C2-N3	8.73	129.14	123.90	2	20
1	В	249	DG	N1-C2-N3	8.73	129.14	123.90	13	20
2	С	349	DG	N1-C2-N3	8.73	129.14	123.90	11	20
1	В	250	DC	C5'-C4'-O4'	-8.52	93.11	109.30	7	14
1	В	252	DT	C1'-O4'-C4'	8.26	118.36	110.10	10	18
2	С	349	DG	C1'-O4'-C4'	8.24	118.34	110.10	3	20
2	С	351	DA	C1'-O4'-C4'	7.21	117.31	110.10	15	15
2	С	361	DT	C1'-O4'-C4'	7.11	117.20	110.10	15	13
2	С	354	DG	C1'-O4'-C4'	6.99	117.09	110.10	8	6
2	С	350	DT	C5'-C4'-O4'	6.49	121.64	109.30	15	14
2	С	353	DT	C1'-O4'-C4'	6.15	116.25	110.10	18	8
1	В	257	DT	C2-N3-C4	-6.15	123.51	127.20	15	20
2	С	353	DT	C2-N3-C4	-6.14	123.51	127.20	5	20
2	С	359	DT	C2-N3-C4	-6.13	123.52	127.20	3	20
2	С	352	DT	C2-N3-C4	-6.11	123.53	127.20	13	20
2	С	358	DT	C2-N3-C4	-6.10	123.54	127.20	11	20
2	С	356	DT	C2-N3-C4	-6.09	123.55	127.20	9	20
2	С	350	DT	C2-N3-C4	-6.08	123.55	127.20	15	20
1	В	263	DT	C2-N3-C4	-6.08	123.55	127.20	19	20
2	С	361	DT	C2-N3-C4	-6.08	123.55	127.20	6	20
2	С	360	DT	C2-N3-C4	-6.07	123.56	127.20	7	20
1	В	252	DT	C2-N3-C4	-6.07	123.56	127.20	3	20
2	С	355	DT	C2-N3-C4	-6.06	123.56	127.20	14	20
1	В	251	DT	C2-N3-C4	-6.05	123.57	127.20	4	20
1	В	251	DT	C1'-O4'-C4'	5.88	115.98	110.10	9	5
2	С	364	DG	N1-C2-N2	-5.50	111.25	116.20	5	20
1	В	249	DG	N1-C2-N2	-5.49	111.26	116.20	16	20
2	С	349	DG	N1-C2-N2	-5.49	111.26	116.20	10	20
2	С	354	DG	N1-C2-N2	-5.49	111.26	116.20	18	20
2	С	364	DG	C5-C6-O6	-5.47	125.32	128.60	11	20
1	В	249	DG	C5-C6-O6	-5.42	125.35	128.60	1	20
2	С	349	DG	C5-C6-O6	-5.41	125.35	128.60	14	20
2	С	354	DG	C5-C6-O6	-5.41	125.36	128.60	4	20
2	С	350	DT	C1'-O4'-C4'	5.21	115.31	110.10	2	1

All unique chiral outliers are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Atoms	Models (Total)
1	В	255	DA	C4'	20
1	В	260	DC	C4'	20

Mol	Chain	Res	Type	Atoms	Models (Total)
1	В	263	DT	C4'	18
2	С	359	DT	C4'	18
2	С	353	DT	C4'	16
2	С	358	DT	C4'	15
1	В	253	DA	C4'	13
1	В	256	DA	C4'	13
1	В	257	DT	C4'	13
2	С	362	DA	C4'	13
1	В	254	DA	C4'	12
1	В	251	DT	C4'	11
1	В	264	DA	C4'	10
1	В	262	DA	C4'	9
1	В	258	DA	C4'	8
2	С	356	DT	C4'	8
1	В	252	DT	C4'	5
2	С	361	DT	C4'	4
2	С	357	DA	C4'	3
1	В	261	DA	C4'	3
1	В	265	DC	C4'	3
1	В	259	DA	C4'	3
2	С	355	DT	C4'	2
2	С	364	DG	C4'	2
2	С	351	DA	C4'	1
1	В	249	DG	C4'	1
2	С	354	DG	C4'	1
2	С	363	DA	C4'	1

There are no planarity outliers.

6.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble.

Mol	Chain	Non-H	H(model)	H(added)	Clashes
1	В	348	145	192	26 ± 6
2	С	349	135	197	22 ± 5
3	А	664	652	652	72 ± 13
All	All	27220	18640	20820	2141

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 45.

Atom 1 Atom 2 C		$Clash(\lambda)$	Distance(Å)	Models	
Atom-1	III-1 Atom-2 Clash(A) Distance(A)		Distance(A)	Worst	Total
1:B:261:DA:O4'	1:B:261:DA:C4'	1.39	1.64	13	8
2:C:361:DT:C4'	2:C:361:DT:O4'	1.38	1.63	9	1
1:B:256:DA:O4'	1:B:256:DA:C4'	1.37	1.64	11	12
2:C:364:DG:O4'	2:C:364:DG:C4'	1.36	1.64	15	8
1:B:251:DT:O4'	1:B:251:DT:C4'	1.35	1.65	3	4
1:B:259:DA:C4'	1:B:259:DA:O4'	1.35	1.65	16	4
1:B:255:DA:O4'	1:B:255:DA:C4'	1.34	1.66	15	7
1:B:249:DG:C4'	1:B:249:DG:O4'	1.34	1.64	17	2
2:C:354:DG:C4'	2:C:354:DG:O4'	1.34	1.66	11	3
1:B:262:DA:O4'	1:B:262:DA:C4'	1.33	1.63	16	1
1:B:257:DT:O4'	1:B:257:DT:C4'	1.33	1.65	6	5
1:B:260:DC:O4'	1:B:260:DC:C4'	1.32	1.70	1	17
2:C:359:DT:C4'	2:C:359:DT:O4'	1.31	1.70	1	14
1:B:265:DC:O4'	1:B:265:DC:C4'	1.29	1.64	8	1
1:B:254:DA:C4'	1:B:254:DA:O4'	1.27	1.68	17	1
1:B:263:DT:C4'	1:B:263:DT:O4'	1.27	1.77	2	8
2:C:358:DT:C4'	2:C:358:DT:O4'	1.19	1.68	13	1
2:C:363:DA:C4'	2:C:363:DA:O4'	1.04	1.89	9	1
3:A:16:ILE:HD12	3:A:24:LEU:HD21	0.95	1.35	14	1
3:A:64:ILE:HG22	3:A:76:TYR:O	0.94	1.62	20	10
3:A:9:ILE:O	3:A:13:THR:HG23	0.90	1.65	19	8
3:A:13:THR:HG21	3:A:87:PHE:CE1	0.90	2.00	12	4
3:A:13:THR:O	3:A:17:LEU:HD23	0.89	1.67	11	10
3:A:12:ILE:HD11	3:A:51:ILE:HD11	0.89	1.42	8	1
3:A:23:LYS:O	3:A:24:LEU:HD22	0.87	1.69	3	4
3:A:9:ILE:HG22	3:A:58:ASN:OD1	0.85	1.71	13	2
3:A:47:TRP:O	3:A:51:ILE:HG23	0.85	1.71	6	1
1:B:249:DG:O4'	1:B:249:DG:C5'	0.85	2.24	17	2
3:A:9:ILE:HD11	3:A:58:ASN:OD1	0.84	1.72	17	2
3:A:26:LEU:HD23	3:A:55:LEU:HD23	0.84	1.49	6	2
3:A:16:ILE:HG21	3:A:79:LEU:HD13	0.83	1.50	13	2
3:A:79:LEU:HD23	3:A:80:ASP:O	0.83	1.72	16	14
3:A:16:ILE:HG12	3:A:79:LEU:HD13	0.82	1.50	1	3
1:B:258:DA:C2	2:C:357:DA:C2	0.82	2.68	15	19
3:A:40:TYR:CD2	3:A:47:TRP:CH2	0.82	2.68	7	7
3:A:40:TYR:CD2	3:A:47:TRP:CZ2	0.81	2.69	7	3
2:C:356:DT:H72	3:A:57:LEU:HD11	0.81	1.53	14	1
2:C:355:DT:H72	3:A:52:ARG:NE	0.79	1.92	4	2

All unique clashes are listed below, sorted by their clash magnitude.

OTI	DC	
2Π	DU	

	to as page			Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
3:A:40:TYR:CG	3:A:47:TRP:CH2	0.79	2.71	9	2	
3:A:44:PHE:CD1	3:A:47:TRP:CD1	0.79	2.71	16	2	
3:A:79:LEU:HD22	3:A:80:ASP:N	0.79	1.92	19	1	
3:A:11:LEU:HD22	3:A:37:PHE:CE1	0.78	2.14	2	2	
3:A:47:TRP:CE3	3:A:51:ILE:HD11	0.78	2.15	1	2	
3:A:26:LEU:HD11	3:A:52:ARG:NH2	0.77	1.94	15	1	
3:A:19:SER:OG	3:A:24:LEU:HD23	0.76	1.79	10	1	
3:A:8:TYR:HB3	3:A:51:ILE:HD12	0.75	1.57	3	2	
3:A:79:LEU:HD13	3:A:80:ASP:O	0.75	1.82	19	1	
3:A:53:HIS:CE1	3:A:57:LEU:HD22	0.75	2.16	13	6	
3:A:8:TYR:CE2	3:A:12:ILE:HD11	0.75	2.17	6	2	
2:C:359:DT:C4'	2:C:360:DT:OP1	0.74	2.34	2	4	
3:A:33:ILE:HG21	3:A:47:TRP:CZ3	0.74	2.17	19	7	
1:B:255:DA:H1'	1:B:256:DA:H4'	0.74	1.59	11	7	
3:A:47:TRP:CZ3	3:A:51:ILE:HD13	0.74	2.18	19	2	
3:A:12:ILE:HD11	3:A:51:ILE:CD1	0.74	2.12	8	2	
3:A:25:THR:HG23	3:A:75:ASN:O	0.74	1.83	20	4	
3:A:79:LEU:HD22	3:A:80:ASP:H	0.74	1.40	19	1	
3:A:12:ILE:HD12	3:A:55:LEU:HD13	0.73	1.56	3	3	
3:A:19:SER:OG	3:A:24:LEU:HD22	0.73	1.83	16	4	
3:A:13:THR:HG21	3:A:87:PHE:CD1	0.73	2.18	14	1	
3:A:44:PHE:O	3:A:44:PHE:CG	0.73	2.42	2	2	
3:A:12:ILE:HD12	3:A:55:LEU:HG	0.73	1.58	18	6	
3:A:32:PHE:CE2	3:A:33:ILE:HD11	0.72	2.19	17	4	
3:A:12:ILE:CD1	3:A:51:ILE:HD11	0.72	2.13	8	2	
3:A:23:LYS:C	3:A:24:LEU:HD22	0.72	2.04	17	3	
3:A:67:GLU:N	3:A:68:PRO:HD3	0.72	1.99	8	1	
3:A:11:LEU:HD21	3:A:37:PHE:CZ	0.71	2.19	10	1	
3:A:44:PHE:CD1	3:A:47:TRP:NE1	0.71	2.58	16	1	
3:A:16:ILE:HD12	3:A:79:LEU:HD13	0.71	1.62	11	3	
3:A:16:ILE:CD1	3:A:24:LEU:HD21	0.71	2.14	14	2	
3:A:15:ALA:HB2	3:A:32:PHE:CE2	0.71	2.19	1	4	
3:A:40:TYR:CG	3:A:47:TRP:CZ2	0.71	2.78	7	4	
3:A:61:PHE:HB3	3:A:79:LEU:HD23	0.71	1.62	19	1	
3:A:8:TYR:CD1	3:A:47:TRP:CZ3	0.70	2.79	5	1	
3:A:25:THR:O	3:A:29:ILE:HD13	0.70	1.87	9	4	
2:C:355:DT:H4'	2:C:356:DT:OP1	0.70	1.87	20	3	
2:C:364:DG:O4'	2:C:364:DG:C5'	0.70	2.39	10	6	
1:B:255:DA:C2	1:B:256:DA:C4	0.70	2.80	9	16	
3:A:13:THR:HG21	3:A:87:PHE:CE2	0.69	2.22	13	1	
3:A:45:PRO:O	3:A:46:ALA:HB3	0.69	1.86	1	2	

911	T D	\mathbf{C}
2Π	\mathbf{D}	U

	tio de page			Mo	dels
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
3:A:32:PHE:CE2	3:A:33:ILE:CD1	0.69	2.76	17	4
3:A:44:PHE:CE1	3:A:47:TRP:CB	0.69	2.76	19	1
1:B:257:DT:H73	3:A:53:HIS:ND1	0.69	2.03	6	2
3:A:39:TYR:CE2	3:A:40:TYR:CE1	0.69	2.80	6	2
1:B:255:DA:H2"	1:B:256:DA:OP2	0.68	1.87	19	4
3:A:8:TYR:O	3:A:12:ILE:HD13	0.68	1.87	14	3
1:B:250:DC:H2'	1:B:251:DT:H72	0.68	1.65	6	4
3:A:75:ASN:C	3:A:76:TYR:CD1	0.67	2.66	6	10
3:A:26:LEU:CD2	3:A:55:LEU:HD23	0.67	2.18	6	1
3:A:15:ALA:HB1	3:A:29:ILE:HD11	0.67	1.66	1	2
3:A:11:LEU:HD22	3:A:37:PHE:CZ	0.67	2.23	16	2
3:A:45:PRO:O	3:A:46:ALA:HB2	0.67	1.89	20	8
2:C:354:DG:C8	3:A:52:ARG:NH1	0.67	2.63	19	1
1:B:259:DA:H1'	1:B:260:DC:H4'	0.67	1.67	13	1
3:A:24:LEU:HD23	3:A:29:ILE:HD11	0.67	1.65	15	1
2:C:357:DA:N6	3:A:53:HIS:CD2	0.66	2.63	12	9
3:A:43:LYS:O	3:A:45:PRO:N	0.66	2.28	17	1
2:C:358:DT:C4'	2:C:359:DT:OP1	0.66	2.42	5	2
1:B:257:DT:C2	1:B:258:DA:N7	0.66	2.64	13	9
1:B:257:DT:H72	3:A:50:SER:HA	0.66	1.67	18	3
3:A:24:LEU:HD12	3:A:29:ILE:HG12	0.66	1.66	14	1
3:A:75:ASN:O	3:A:76:TYR:CD1	0.66	2.49	20	8
3:A:46:ALA:HB1	3:A:49:ASN:ND2	0.66	2.05	5	1
1:B:257:DT:H73	3:A:53:HIS:CD2	0.66	2.25	19	4
3:A:53:HIS:CE1	3:A:57:LEU:CD2	0.66	2.79	13	1
3:A:43:LYS:C	3:A:45:PRO:HD3	0.65	2.10	6	2
3:A:8:TYR:CZ	3:A:50:SER:CB	0.65	2.79	18	1
2:C:355:DT:H72	3:A:52:ARG:CZ	0.65	2.21	11	2
3:A:16:ILE:HD12	3:A:79:LEU:CD1	0.65	2.21	11	1
1:B:255:DA:C2'	1:B:256:DA:OP2	0.65	2.45	19	1
1:B:249:DG:O4'	1:B:250:DC:C6	0.65	2.49	20	1
1:B:256:DA:C8	1:B:257:DT:H72	0.65	2.27	2	6
3:A:8:TYR:O	3:A:12:ILE:HD12	0.65	1.92	4	3
2:C:359:DT:H2'	2:C:360:DT:H72	0.65	1.69	17	6
3:A:79:LEU:HD11	3:A:83:SER:CB	0.64	2.22	1	2
1:B:256:DA:N7	3:A:53:HIS:CE1	0.64	2.65	18	3
1:B:257:DT:O4	3:A:53:HIS:CD2	0.64	2.51	18	6
3:A:61:PHE:CD2	3:A:79:LEU:HD12	0.64	2.26	7	8
3:A:11:LEU:CD2	3:A:37:PHE:CE1	0.64	2.81	10	2
3:A:39:TYR:CE2	3:A:40:TYR:CD1	0.64	2.86	14	1
2:C:358:DT:H4'	2:C:359:DT:OP1	0.64	1.92	18	3

OTT	
2Π	$\mathcal{D}\mathcal{C}$

	to as page		D1 (8)	Mo	dels	
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
3:A:67:GLU:N	3:A:68:PRO:CD	0.64	2.60	8	1	
3:A:55:LEU:O	3:A:61:PHE:CE2	0.64	2.50	9	6	
3:A:8:TYR:CZ	3:A:47:TRP:CZ2	0.64	2.85	19	1	
2:C:357:DA:N6	3:A:53:HIS:CE1	0.63	2.66	5	5	
1:B:257:DT:H71	3:A:53:HIS:CD2	0.63	2.28	1	2	
3:A:61:PHE:HD2	3:A:79:LEU:HD12	0.63	1.51	16	9	
3:A:55:LEU:HD22	3:A:61:PHE:CZ	0.63	2.28	14	8	
1:B:257:DT:O4	3:A:53:HIS:CG	0.63	2.52	19	17	
3:A:37:PHE:CB	3:A:40:TYR:CD2	0.63	2.81	1	5	
3:A:16:ILE:HD11	3:A:55:LEU:HD11	0.63	1.70	17	2	
3:A:8:TYR:OH	3:A:47:TRP:CZ2	0.63	2.52	19	2	
3:A:39:TYR:CD1	3:A:40:TYR:N	0.63	2.67	2	4	
3:A:16:ILE:HD12	3:A:24:LEU:HD22	0.62	1.71	1	1	
2:C:358:DT:H2'	2:C:359:DT:H72	0.62	1.71	17	4	
3:A:13:THR:HG21	3:A:87:PHE:CZ	0.62	2.29	13	2	
2:C:363:DA:C4'	2:C:364:DG:OP1	0.62	2.47	10	19	
3:A:39:TYR:CD1	3:A:39:TYR:C	0.62	2.73	6	3	
2:C:352:DT:H4'	2:C:353:DT:OP1	0.62	1.95	2	1	
3:A:51:ILE:HD13	3:A:51:ILE:O	0.62	1.94	8	1	
3:A:71:PRO:O	3:A:72:GLY:C	0.62	2.37	20	3	
2:C:363:DA:O4'	2:C:364:DG:OP1	0.62	2.17	10	19	
3:A:16:ILE:CD1	3:A:79:LEU:HD13	0.62	2.25	7	1	
3:A:13:THR:CG2	3:A:87:PHE:CE1	0.62	2.80	12	1	
1:B:257:DT:C2	1:B:258:DA:C8	0.62	2.88	10	10	
3:A:75:ASN:ND2	3:A:77:TRP:CD1	0.62	2.68	6	2	
3:A:15:ALA:O	3:A:24:LEU:HD13	0.61	1.95	14	1	
3:A:55:LEU:O	3:A:61:PHE:CZ	0.61	2.53	4	17	
1:B:257:DT:O4	3:A:53:HIS:CE1	0.61	2.53	20	3	
2:C:352:DT:H2'	2:C:353:DT:H72	0.61	1.72	2	2	
3:A:44:PHE:CE1	3:A:46:ALA:O	0.61	2.53	12	2	
3:A:44:PHE:CZ	3:A:47:TRP:CE2	0.61	2.88	16	1	
3:A:11:LEU:HD22	3:A:37:PHE:CE2	0.61	2.31	3	2	
3:A:62:VAL:HG23	3:A:78:THR:HB	0.61	1.73	15	3	
3:A:46:ALA:HB1	3:A:49:ASN:HD22	0.61	1.54	5	1	
3:A:26:LEU:HD11	3:A:52:ARG:CZ	0.61	2.26	15	1	
1:B:254:DA:H2"	1:B:255:DA:OP2	0.60	1.96	17	1	
3:A:43:LYS:O	3:A:44:PHE:C	0.60	2.38	14	11	
2:C:354:DG:OP2	3:A:77:TRP:CZ2	0.60	2.55	4	8	
3:A:59:ASP:O	3:A:60:CYS:CB	0.60	2.49	5	12	
3:A:40:TYR:CD1	3:A:47:TRP:CZ2	0.60	2.89	9	2	
1:B:261:DA:C2	2:C:354:DG:C2	0.60	2.89	10	4	

911	T D	\mathbf{C}
2Π	\mathbf{D}	U

	to as page		D1 (8)	Models	
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
2:C:359:DT:O4'	2:C:359:DT:O3'	0.60	2.10	18	4
3:A:8:TYR:HE2	3:A:12:ILE:HD11	0.60	1.55	6	2
3:A:11:LEU:HD11	3:A:37:PHE:CE2	0.60	2.32	12	2
3:A:45:PRO:O	3:A:46:ALA:CB	0.59	2.49	1	4
3:A:59:ASP:CB	3:A:61:PHE:CD2	0.59	2.84	19	11
3:A:44:PHE:CZ	3:A:46:ALA:O	0.59	2.55	12	2
3:A:8:TYR:CE1	3:A:51:ILE:HG22	0.59	2.32	6	1
1:B:249:DG:C4'	1:B:250:DC:OP1	0.59	2.49	5	3
3:A:64:ILE:HG21	3:A:76:TYR:HD2	0.59	1.58	20	2
2:C:355:DT:C6	2:C:356:DT:H72	0.59	2.33	7	3
2:C:355:DT:H2'	2:C:356:DT:H72	0.59	1.75	10	3
1:B:255:DA:C1'	1:B:256:DA:O5'	0.59	2.51	11	12
2:C:357:DA:H4'	2:C:358:DT:OP1	0.59	1.97	11	5
1:B:256:DA:OP1	3:A:7:SER:HA	0.59	1.97	19	1
3:A:79:LEU:HD11	3:A:83:SER:HB3	0.58	1.75	1	2
1:B:256:DA:OP2	3:A:7:SER:CB	0.58	2.51	8	6
3:A:11:LEU:HD22	3:A:33:ILE:HG23	0.58	1.75	5	1
3:A:49:ASN:OD1	3:A:50:SER:N	0.58	2.36	11	4
2:C:357:DA:C8	2:C:358:DT:H72	0.58	2.33	15	6
2:C:356:DT:C7	3:A:52:ARG:NH2	0.58	2.66	17	2
3:A:44:PHE:CE2	3:A:47:TRP:CB	0.58	2.87	6	3
3:A:79:LEU:HD21	3:A:83:SER:HB3	0.58	1.75	14	2
3:A:59:ASP:HB2	3:A:61:PHE:CE2	0.58	2.33	19	10
3:A:11:LEU:HB3	3:A:33:ILE:HD12	0.58	1.75	5	1
3:A:44:PHE:CZ	3:A:47:TRP:HB2	0.58	2.33	6	4
3:A:40:TYR:CD1	3:A:47:TRP:CH2	0.58	2.90	9	1
3:A:79:LEU:HD23	3:A:80:ASP:N	0.58	2.13	9	3
2:C:357:DA:H2"	2:C:358:DT:OP2	0.58	1.96	15	1
3:A:16:ILE:CD1	3:A:24:LEU:HD22	0.58	2.28	1	1
3:A:16:ILE:HD12	3:A:24:LEU:HG	0.58	1.73	19	1
3:A:55:LEU:HD23	3:A:77:TRP:CZ3	0.58	2.34	17	2
3:A:86:MET:HE1	3:A:87:PHE:CZ	0.58	2.33	11	1
2:C:356:DT:C7	3:A:57:LEU:HD11	0.58	2.27	14	1
2:C:360:DT:C6	2:C:360:DT:H5'	0.58	2.33	15	1
2:C:359:DT:O4'	2:C:360:DT:OP1	0.57	2.22	2	3
3:A:51:ILE:O	3:A:55:LEU:N	0.57	2.36	7	10
3:A:8:TYR:CE1	3:A:50:SER:CB	0.57	2.87	18	2
1:B:257:DT:O2	1:B:258:DA:C8	0.57	2.58	10	3
3:A:44:PHE:CE1	3:A:47:TRP:CE2	0.57	2.91	16	1
1:B:250:DC:H4'	1:B:251:DT:OP1	0.57	1.97	6	3
3:A:44:PHE:CD1	3:A:47:TRP:HB2	0.57	2.34	19	3

911	T D	\mathbf{C}
2Π	\mathbf{D}	U

				Models	
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
2:C:355:DT:H72	3:A:52:ARG:CD	0.57	2.30	17	2
1:B:256:DA:H2"	3:A:8:TYR:CE2	0.57	2.34	4	2
3:A:44:PHE:CE2	3:A:47:TRP:HB2	0.57	2.34	6	3
3:A:59:ASP:CB	3:A:61:PHE:CE2	0.57	2.87	12	5
2:C:352:DT:C6	2:C:353:DT:H72	0.57	2.35	7	7
3:A:11:LEU:HD21	3:A:37:PHE:CE1	0.57	2.35	10	2
3:A:44:PHE:CG	3:A:47:TRP:NE1	0.57	2.73	16	1
3:A:52:ARG:NH1	3:A:56:SER:CB	0.56	2.68	4	2
3:A:9:ILE:C	3:A:9:ILE:HD12	0.56	2.20	20	1
3:A:51:ILE:O	3:A:55:LEU:HB2	0.56	2.00	5	9
1:B:257:DT:H2"	1:B:258:DA:OP2	0.56	2.00	13	1
3:A:33:ILE:CG2	3:A:47:TRP:CZ3	0.56	2.87	18	1
3:A:79:LEU:CD2	3:A:80:ASP:O	0.56	2.54	5	11
3:A:56:SER:HA	3:A:61:PHE:CE1	0.56	2.35	16	10
3:A:17:LEU:HD21	3:A:84:GLU:HB2	0.56	1.78	19	1
2:C:363:DA:C1'	2:C:364:DG:OP1	0.56	2.54	6	19
3:A:52:ARG:CZ	3:A:56:SER:OG	0.56	2.53	4	1
3:A:51:ILE:HG13	3:A:52:ARG:N	0.56	2.16	14	3
3:A:75:ASN:C	3:A:76:TYR:CG	0.56	2.79	18	6
3:A:24:LEU:CD1	3:A:29:ILE:HD13	0.56	2.31	13	1
3:A:33:ILE:HG21	3:A:47:TRP:HZ3	0.56	1.60	7	2
3:A:37:PHE:HB2	3:A:40:TYR:CD2	0.56	2.34	1	5
3:A:57:LEU:O	3:A:58:ASN:CB	0.56	2.53	9	11
3:A:63:LYS:HG2	3:A:77:TRP:CE3	0.56	2.35	3	8
3:A:24:LEU:CD2	3:A:29:ILE:HD11	0.56	2.30	4	1
3:A:64:ILE:HG21	3:A:76:TYR:CD2	0.56	2.36	5	4
3:A:9:ILE:HD11	3:A:58:ASN:CG	0.56	2.21	17	1
3:A:47:TRP:CZ3	3:A:51:ILE:HD11	0.56	2.36	1	2
3:A:59:ASP:HB3	3:A:61:PHE:CD2	0.56	2.35	12	4
3:A:76:TYR:CD1	3:A:76:TYR:N	0.56	2.74	6	1
1:B:256:DA:H1'	1:B:257:DT:H4'	0.56	1.78	13	4
3:A:33:ILE:HG23	3:A:37:PHE:CD1	0.55	2.36	14	1
3:A:11:LEU:CD2	3:A:37:PHE:CZ	0.55	2.88	10	2
3:A:25:THR:CG2	3:A:75:ASN:OD1	0.55	2.54	16	2
1:B:256:DA:P	3:A:7:SER:HA	0.55	2.41	13	2
3:A:8:TYR:CE2	3:A:50:SER:HB3	0.55	2.37	18	5
3:A:27:SER:CB	3:A:73:LYS:O	0.55	2.54	2	3
3:A:11:LEU:HD23	3:A:33:ILE:CG2	0.55	2.31	4	1
1:B:254:DA:C2'	1:B:255:DA:O5'	0.55	2.55	20	18
2:C:357:DA:H2'	2:C:358:DT:H72	0.55	1.78	6	5
3:A:53:HIS:O	3:A:57:LEU:CB	0.55	2.55	5	2

911	T D	\mathbf{C}
2Π	\mathbf{D}	U

	tio ao pago				odels	
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
3:A:25:THR:CG2	3:A:75:ASN:O	0.55	2.54	20	3	
1:B:250:DC:C6	1:B:251:DT:H72	0.55	2.37	12	17	
3:A:26:LEU:HB2	3:A:77:TRP:CE2	0.55	2.37	11	12	
2:C:352:DT:O2	3:A:66:ARG:CG	0.55	2.55	4	2	
3:A:47:TRP:O	3:A:51:ILE:N	0.55	2.28	5	2	
3:A:8:TYR:CD2	3:A:51:ILE:HA	0.55	2.36	6	1	
3:A:51:ILE:CG2	3:A:52:ARG:N	0.55	2.70	19	5	
3:A:38:PRO:O	3:A:42:GLU:N	0.55	2.40	17	1	
1:B:259:DA:N7	3:A:49:ASN:ND2	0.55	2.55	16	11	
2:C:359:DT:C1'	2:C:360:DT:OP1	0.55	2.55	6	3	
3:A:24:LEU:HD12	3:A:29:ILE:HD11	0.55	1.78	9	1	
2:C:354:DG:N7	3:A:52:ARG:NH1	0.54	2.55	14	4	
3:A:17:LEU:HD11	3:A:87:PHE:CD2	0.54	2.37	1	1	
1:B:262:DA:C8	1:B:263:DT:H72	0.54	2.37	12	9	
3:A:65:PRO:O	3:A:67:GLU:N	0.54	2.40	2	7	
2:C:351:DA:C2'	2:C:352:DT:H72	0.54	2.31	2	2	
2:C:354:DG:OP2	3:A:77:TRP:NE1	0.54	2.40	2	6	
3:A:37:PHE:CG	3:A:40:TYR:CE2	0.54	2.95	1	3	
3:A:49:ASN:O	3:A:53:HIS:CB	0.54	2.55	9	6	
3:A:37:PHE:CD1	3:A:37:PHE:N	0.54	2.76	15	4	
3:A:26:LEU:HD22	3:A:26:LEU:O	0.54	2.03	16	1	
3:A:44:PHE:O	3:A:47:TRP:CD1	0.54	2.60	12	2	
2:C:359:DT:C2'	2:C:360:DT:H71	0.54	2.33	1	1	
3:A:12:ILE:HG23	3:A:55:LEU:HD23	0.54	1.79	12	1	
3:A:48:GLN:CG	3:A:52:ARG:NH2	0.54	2.71	1	2	
3:A:8:TYR:CZ	3:A:50:SER:HB3	0.54	2.37	18	3	
1:B:258:DA:N1	2:C:357:DA:C6	0.54	2.75	3	2	
3:A:61:PHE:CE1	3:A:77:TRP:CE3	0.54	2.96	7	1	
3:A:33:ILE:HG21	3:A:47:TRP:CE3	0.54	2.36	18	1	
3:A:65:PRO:O	3:A:66:ARG:C	0.54	2.43	16	7	
2:C:354:DG:C4	2:C:355:DT:C5	0.54	2.96	4	5	
2:C:359:DT:O4'	2:C:359:DT:C5'	0.54	2.55	18	1	
3:A:33:ILE:HG23	3:A:37:PHE:CE1	0.54	2.38	7	2	
2:C:354:DG:N7	3:A:52:ARG:NH2	0.54	2.55	6	2	
3:A:59:ASP:HB2	3:A:61:PHE:CD2	0.54	2.38	4	5	
2:C:351:DA:C8	2:C:352:DT:H72	0.54	2.37	4	5	
3:A:64:ILE:CG2	3:A:76:TYR:O	0.54	2.55	18	3	
3:A:53:HIS:O	3:A:57:LEU:N	0.53	2.41	7	10	
1:B:254:DA:C1'	1:B:255:DA:O5'	0.53	2.56	8	16	
2:C:354:DG:OP1	3:A:77:TRP:NE1	0.53	2.41	10	4	
3:A:8:TYR:OH	3:A:47:TRP:CE2	0.53	2.61	10	1	

OTI	DC	
2Π	DU	

				Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
1:B:258:DA:N1	2:C:357:DA:N1	0.53	2.56	3	8	
1:B:256:DA:OP2	3:A:9:ILE:HG23	0.53	2.03	2	1	
1:B:257:DT:C2	1:B:258:DA:C5	0.53	2.96	20	6	
3:A:47:TRP:O	3:A:51:ILE:HG22	0.53	2.03	16	3	
2:C:359:DT:H4'	2:C:360:DT:OP1	0.53	2.03	6	2	
3:A:21:GLN:O	3:A:22:LYS:C	0.53	2.46	9	5	
3:A:70:ASN:N	3:A:70:ASN:ND2	0.53	2.57	14	4	
1:B:255:DA:H1'	1:B:256:DA:OP2	0.53	2.03	19	1	
3:A:15:ALA:HB2	3:A:32:PHE:HE2	0.53	1.57	1	4	
3:A:19:SER:OG	3:A:24:LEU:HD13	0.53	2.04	11	2	
3:A:24:LEU:O	3:A:77:TRP:N	0.53	2.40	5	9	
3:A:15:ALA:O	3:A:18:GLN:CG	0.53	2.56	11	7	
3:A:12:ILE:HG13	3:A:55:LEU:HD13	0.53	1.79	17	1	
3:A:79:LEU:CD1	3:A:80:ASP:O	0.53	2.55	19	1	
3:A:44:PHE:HA	3:A:47:TRP:CD1	0.53	2.39	20	6	
1:B:250:DC:C2'	1:B:251:DT:H72	0.53	2.33	19	6	
3:A:13:THR:O	3:A:17:LEU:HD12	0.53	2.03	9	1	
3:A:8:TYR:CE1	3:A:47:TRP:CZ3	0.53	2.97	13	1	
3:A:24:LEU:HD12	3:A:29:ILE:HD13	0.53	1.81	13	1	
3:A:44:PHE:CE1	3:A:47:TRP:HB2	0.53	2.38	7	7	
3:A:29:ILE:HG22	3:A:30:CYS:N	0.53	2.19	11	5	
3:A:36:ARG:HB2	3:A:37:PHE:CE1	0.53	2.38	15	3	
3:A:8:TYR:CE1	3:A:50:SER:HB2	0.53	2.39	18	1	
3:A:32:PHE:CE2	3:A:33:ILE:HG13	0.53	2.39	4	6	
1:B:257:DT:C2'	1:B:258:DA:O5'	0.53	2.57	11	1	
3:A:44:PHE:CE2	3:A:47:TRP:CZ2	0.53	2.97	16	1	
3:A:15:ALA:HB1	3:A:29:ILE:CD1	0.53	2.34	1	1	
3:A:32:PHE:C	3:A:32:PHE:CD1	0.53	2.82	7	2	
3:A:63:LYS:HG2	3:A:77:TRP:CZ3	0.53	2.39	14	3	
3:A:12:ILE:HG23	3:A:55:LEU:HD13	0.53	1.81	8	1	
2:C:355:DT:H72	3:A:52:ARG:NH2	0.53	2.19	11	1	
3:A:75:ASN:CG	3:A:76:TYR:N	0.53	2.61	3	1	
3:A:8:TYR:CZ	3:A:51:ILE:HG12	0.53	2.39	5	1	
3:A:75:ASN:N	3:A:75:ASN:OD1	0.53	2.40	9	3	
3:A:16:ILE:HD13	3:A:24:LEU:CD2	0.53	2.34	11	2	
3:A:15:ALA:HB1	3:A:29:ILE:CG1	0.53	2.33	18	1	
3:A:64:ILE:HG12	3:A:76:TYR:CB	0.52	2.34	1	1	
3:A:44:PHE:O	3:A:47:TRP:HD1	0.52	1.87	12	2	
3:A:56:SER:HA	3:A:61:PHE:CZ	0.52	2.39	8	6	
1:B:259:DA:C1'	1:B:260:DC:O5'	0.52	2.56	13	4	
1:B:258:DA:C2	1:B:259:DA:C5	0.52	2.97	14	3	

	A L D		(1,1,(3))	\mathbf{D}	Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total		
3:A:61:PHE:HB2	3:A:78:THR:O	0.52	2.03	9	7		
3:A:51:ILE:CG1	3:A:52:ARG:N	0.52	2.72	6	3		
3:A:11:LEU:HD13	3:A:33:ILE:HD13	0.52	1.82	8	1		
2:C:359:DT:C6	2:C:360:DT:H72	0.52	2.40	20	7		
2:C:357:DA:N6	3:A:53:HIS:ND1	0.52	2.57	5	3		
3:A:44:PHE:CD2	3:A:47:TRP:NE1	0.52	2.78	3	2		
3:A:44:PHE:CZ	3:A:47:TRP:CB	0.52	2.92	6	2		
3:A:55:LEU:HG	3:A:77:TRP:CZ3	0.52	2.40	7	5		
2:C:354:DG:OP2	3:A:77:TRP:CE2	0.52	2.63	4	4		
3:A:8:TYR:CD2	3:A:12:ILE:HG12	0.52	2.40	6	2		
3:A:12:ILE:CG2	3:A:55:LEU:HD13	0.52	2.35	8	1		
1:B:249:DG:O4'	1:B:249:DG:O5'	0.52	2.28	7	1		
3:A:55:LEU:HD13	3:A:77:TRP:CZ3	0.52	2.39	11	3		
3:A:8:TYR:CE2	3:A:50:SER:CB	0.52	2.93	16	1		
3:A:13:THR:CB	3:A:87:PHE:CZ	0.52	2.93	1	2		
1:B:256:DA:C2'	1:B:257:DT:O5'	0.52	2.58	20	4		
3:A:57:LEU:O	3:A:58:ASN:CG	0.52	2.49	13	6		
2:C:357:DA:N6	3:A:53:HIS:NE2	0.52	2.58	7	3		
3:A:44:PHE:CZ	3:A:47:TRP:HB3	0.52	2.40	19	1		
3:A:49:ASN:OD1	3:A:49:ASN:C	0.51	2.48	11	1		
3:A:13:THR:HB	3:A:87:PHE:CE1	0.51	2.40	20	1		
3:A:8:TYR:O	3:A:12:ILE:CD1	0.51	2.58	14	5		
3:A:44:PHE:CE1	3:A:47:TRP:CG	0.51	2.98	19	1		
2:C:357:DA:C2'	2:C:358:DT:H71	0.51	2.35	20	1		
3:A:46:ALA:O	3:A:50:SER:CB	0.51	2.57	14	3		
3:A:83:SER:O	3:A:87:PHE:CD2	0.51	2.63	7	2		
1:B:250:DC:H5"	1:B:250:DC:C6	0.51	2.41	19	1		
3:A:41:ARG:HA	3:A:44:PHE:CD1	0.51	2.40	19	1		
3:A:13:THR:O	3:A:16:ILE:HG22	0.51	2.06	19	2		
3:A:11:LEU:HD22	3:A:37:PHE:HE2	0.51	1.63	3	1		
3:A:8:TYR:O	3:A:11:LEU:N	0.51	2.44	11	7		
3:A:7:SER:O	3:A:11:LEU:HD23	0.51	2.06	11	1		
3:A:59:ASP:C	3:A:60:CYS:SG	0.51	2.89	11	1		
1:B:257:DT:C7	3:A:54:ASN:OD1	0.51	2.58	14	1		
3:A:63:LYS:HD3	3:A:77:TRP:CZ3	0.51	2.40	20	1		
3:A:26:LEU:C	3:A:26:LEU:HD13	0.51	2.27	6	3		
3:A:26:LEU:C	3:A:26:LEU:CD2	0.51	2.78	11	1		
3:A:16:ILE:HD12	3:A:24:LEU:CD2	0.51	2.23	14	1		
3:A:11:LEU:HD11	3:A:37:PHE:CE1	0.51	2.40	18	2		
2:C:355:DT:C2	2:C:356:DT:C5	0.51	2.99	7	5		
3:A:12:ILE:HD13	3:A:12:ILE:N	0.51	2.19	11	1		

OTI	DC	
2Π	DU	

		(1, 1, (3))	(1, 1, (3))		Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total		
1:B:256:DA:OP2	3:A:7:SER:HA	0.51	2.06	14	1		
1:B:255:DA:C1'	1:B:256:DA:OP2	0.51	2.58	19	1		
2:C:354:DG:C2'	2:C:355:DT:H71	0.51	2.36	11	12		
1:B:259:DA:H4'	1:B:260:DC:OP1	0.51	2.04	4	2		
3:A:8:TYR:CE2	3:A:51:ILE:HB	0.51	2.40	6	1		
3:A:12:ILE:CG2	3:A:55:LEU:HD23	0.51	2.36	13	1		
3:A:63:LYS:HE3	3:A:77:TRP:CH2	0.51	2.40	19	2		
1:B:258:DA:C2'	1:B:259:DA:O5'	0.51	2.59	18	1		
1:B:257:DT:N3	1:B:258:DA:C5	0.50	2.79	20	4		
1:B:264:DA:C2'	1:B:265:DC:O5'	0.50	2.60	15	3		
2:C:360:DT:H2'	2:C:361:DT:H72	0.50	1.82	15	1		
3:A:44:PHE:CZ	3:A:47:TRP:CZ2	0.50	2.98	16	1		
3:A:39:TYR:CD1	3:A:39:TYR:O	0.50	2.64	1	2		
3:A:71:PRO:O	3:A:73:LYS:N	0.50	2.45	12	3		
3:A:26:LEU:HB2	3:A:77:TRP:CZ2	0.50	2.40	15	2		
3:A:56:SER:OG	3:A:57:LEU:HD22	0.50	2.06	3	1		
1:B:249:DG:H4'	1:B:250:DC:C5'	0.50	2.35	4	4		
1:B:255:DA:H1'	1:B:256:DA:O5'	0.50	2.05	13	4		
1:B:259:DA:C2'	1:B:260:DC:O5'	0.50	2.59	13	4		
3:A:44:PHE:CD1	3:A:47:TRP:HB3	0.50	2.41	4	1		
3:A:32:PHE:O	3:A:32:PHE:CD1	0.50	2.64	5	4		
3:A:44:PHE:CD1	3:A:47:TRP:CB	0.50	2.95	19	1		
3:A:24:LEU:CD1	3:A:29:ILE:HD11	0.50	2.36	3	1		
3:A:79:LEU:HD22	3:A:83:SER:HB2	0.50	1.81	10	1		
3:A:24:LEU:HB2	3:A:29:ILE:HD11	0.50	1.82	20	1		
3:A:15:ALA:O	3:A:18:GLN:HG3	0.50	2.06	14	8		
3:A:61:PHE:C	3:A:61:PHE:CD1	0.50	2.85	2	1		
3:A:48:GLN:O	3:A:52:ARG:HB2	0.50	2.07	12	4		
3:A:43:LYS:O	3:A:45:PRO:CD	0.50	2.60	17	1		
3:A:44:PHE:CE1	3:A:47:TRP:HB3	0.50	2.42	19	1		
3:A:10:ALA:O	3:A:13:THR:OG1	0.50	2.25	6	6		
2:C:363:DA:O4'	2:C:363:DA:O3'	0.50	2.25	9	1		
3:A:63:LYS:HE3	3:A:77:TRP:CZ3	0.50	2.42	19	1		
3:A:21:GLN:O	3:A:22:LYS:HB2	0.50	2.07	3	3		
1:B:249:DG:H2"	1:B:250:DC:C5'	0.50	2.36	19	1		
2:C:359:DT:C2'	2:C:360:DT:H72	0.50	2.37	18	2		
3:A:8:TYR:CE2	3:A:12:ILE:CD1	0.50	2.94	6	1		
3:A:40:TYR:CE2	3:A:47:TRP:CH2	0.50	2.99	7	2		
2:C:354:DG:C2	2:C:355:DT:C4	0.49	3.00	4	1		
3:A:67:GLU:HG3	3:A:76:TYR:CE2	0.49	2.41	12	1		
3:A:40:TYR:O	3:A:47:TRP:NE1	0.49	2.45	13	1		

			(1,1)		Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total		
2:C:354:DG:C8	2:C:355:DT:H72	0.49	2.41	15	2		
2:C:353:DT:C2'	3:A:52:ARG:CZ	0.49	2.90	5	1		
1:B:255:DA:C2'	1:B:256:DA:O5'	0.49	2.61	3	9		
3:A:44:PHE:CG	3:A:47:TRP:HB3	0.49	2.42	4	1		
1:B:258:DA:OP2	3:A:46:ALA:HB3	0.49	2.07	10	2		
1:B:263:DT:C2'	1:B:264:DA:O5'	0.49	2.60	12	3		
3:A:11:LEU:HD13	3:A:33:ILE:HG23	0.49	1.84	12	1		
2:C:353:DT:OP1	3:A:74:GLY:N	0.49	2.45	13	1		
1:B:250:DC:H2'	1:B:251:DT:C7	0.49	2.38	7	3		
1:B:256:DA:C2'	3:A:7:SER:OG	0.49	2.60	6	1		
2:C:355:DT:H71	3:A:52:ARG:HD3	0.49	1.83	19	1		
3:A:51:ILE:O	3:A:55:LEU:CB	0.49	2.60	6	3		
2:C:358:DT:C2'	2:C:359:DT:O5'	0.49	2.61	15	3		
3:A:13:THR:HB	3:A:87:PHE:CZ	0.49	2.43	1	2		
3:A:11:LEU:HD11	3:A:40:TYR:CE2	0.49	2.42	6	2		
3:A:8:TYR:CE2	3:A:50:SER:HB2	0.49	2.43	7	1		
1:B:258:DA:OP2	3:A:44:PHE:CE1	0.49	2.66	11	2		
3:A:25:THR:HG23	3:A:75:ASN:CG	0.49	2.28	16	1		
2:C:356:DT:C2	2:C:357:DA:N7	0.49	2.80	3	1		
3:A:33:ILE:CG2	3:A:47:TRP:CH2	0.49	2.96	4	1		
1:B:256:DA:OP2	3:A:9:ILE:CG2	0.49	2.61	6	1		
1:B:254:DA:H1'	1:B:255:DA:H4'	0.49	1.84	15	3		
3:A:12:ILE:HG21	3:A:55:LEU:HA	0.49	1.82	13	1		
3:A:8:TYR:CD2	3:A:51:ILE:CG2	0.49	2.96	15	1		
3:A:53:HIS:NE2	3:A:57:LEU:HD22	0.49	2.23	7	2		
3:A:47:TRP:CE3	3:A:51:ILE:HD13	0.49	2.43	15	2		
2:C:360:DT:H4'	2:C:361:DT:OP1	0.49	2.08	15	1		
3:A:51:ILE:HG23	3:A:52:ARG:N	0.49	2.22	19	2		
1:B:256:DA:P	3:A:7:SER:CB	0.49	3.01	6	1		
3:A:11:LEU:HD13	3:A:14:MET:SD	0.49	2.48	11	1		
3:A:16:ILE:CD1	3:A:55:LEU:HD11	0.49	2.37	17	1		
1:B:257:DT:C7	3:A:53:HIS:CD2	0.49	2.96	1	2		
3:A:37:PHE:CD2	3:A:40:TYR:CE2	0.49	3.01	1	3		
3:A:19:SER:OG	3:A:24:LEU:CD1	0.49	2.61	19	2		
3:A:26:LEU:CD1	3:A:52:ARG:CZ	0.49	2.91	15	1		
1:B:263:DT:H2"	1:B:264:DA:OP2	0.49	2.08	17	1		
2:C:360:DT:C6	2:C:361:DT:H72	0.48	2.43	10	5		
3:A:44:PHE:HB3	3:A:47:TRP:CD1	0.48	2.42	4	1		
3:A:13:THR:HA	3:A:87:PHE:CZ	0.48	2.43	10	2		
3:A:67:GLU:CB	3:A:68:PRO:HD3	0.48	2.38	2	1		
3:A:12:ILE:O	3:A:15:ALA:N	0.48	2.46	11	7		

OTI	DC	
2Π	DU	

			(1, 1, (3))		Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total		
3:A:32:PHE:O	3:A:36:ARG:CG	0.48	2.61	18	1		
3:A:29:ILE:HD13	3:A:55:LEU:HD11	0.48	1.82	19	1		
3:A:61:PHE:CE1	3:A:77:TRP:CZ3	0.48	3.01	13	4		
3:A:36:ARG:HB3	3:A:37:PHE:CD1	0.48	2.43	6	1		
3:A:52:ARG:NH2	3:A:56:SER:OG	0.48	2.46	10	1		
3:A:11:LEU:HD13	3:A:37:PHE:CE2	0.48	2.43	19	1		
3:A:12:ILE:HD13	3:A:54:ASN:HB3	0.48	1.84	4	1		
2:C:358:DT:H2'	2:C:359:DT:C7	0.48	2.38	15	4		
3:A:24:LEU:HD12	3:A:29:ILE:CD1	0.48	2.38	7	1		
3:A:36:ARG:C	3:A:37:PHE:CD1	0.48	2.86	8	1		
3:A:39:TYR:CE1	3:A:40:TYR:CD1	0.48	3.01	11	1		
3:A:13:THR:HG21	3:A:87:PHE:CG	0.48	2.43	14	1		
2:C:352:DT:O5'	3:A:72:GLY:O	0.48	2.32	8	6		
1:B:249:DG:C2'	1:B:250:DC:O5'	0.48	2.62	19	1		
3:A:37:PHE:CG	3:A:40:TYR:CD2	0.48	3.02	1	3		
3:A:45:PRO:HD2	3:A:47:TRP:CD1	0.48	2.44	1	3		
2:C:353:DT:O3'	3:A:64:ILE:O	0.48	2.31	8	1		
2:C:354:DG:OP1	3:A:64:ILE:N	0.48	2.46	11	1		
1:B:253:DA:H2"	1:B:254:DA:OP2	0.48	2.08	10	1		
1:B:264:DA:C1'	1:B:265:DC:O5'	0.48	2.62	15	3		
2:C:354:DG:N9	2:C:355:DT:H71	0.48	2.23	11	1		
3:A:26:LEU:HD23	3:A:26:LEU:O	0.48	2.08	11	1		
3:A:9:ILE:HD12	3:A:10:ALA:N	0.48	2.23	12	2		
3:A:70:ASN:N	3:A:70:ASN:OD1	0.48	2.46	1	2		
1:B:256:DA:N6	3:A:53:HIS:CE1	0.48	2.82	5	3		
3:A:24:LEU:O	3:A:25:THR:CG2	0.48	2.62	4	2		
3:A:14:MET:O	3:A:18:GLN:CG	0.48	2.62	7	2		
3:A:33:ILE:O	3:A:36:ARG:N	0.48	2.42	15	2		
3:A:82:GLN:O	3:A:86:MET:CB	0.48	2.62	10	1		
3:A:24:LEU:N	3:A:24:LEU:HD23	0.48	2.24	14	2		
3:A:63:LYS:CE	3:A:77:TRP:CH2	0.48	2.97	19	1		
3:A:63:LYS:HG2	3:A:77:TRP:CD2	0.48	2.44	9	5		
3:A:64:ILE:CG1	3:A:76:TYR:O	0.48	2.62	19	2		
3:A:65:PRO:O	3:A:67:GLU:OE1	0.48	2.30	4	1		
3:A:8:TYR:CE1	3:A:33:ILE:HG13	0.48	2.44	6	1		
3:A:11:LEU:HD13	3:A:33:ILE:HD12	0.48	1.86	12	1		
1:B:249:DG:C1'	1:B:250:DC:OP1	0.47	2.62	1	3		
2:C:349:DG:H2"	2:C:350:DT:OP2	0.47	2.10	12	14		
3:A:18:GLN:O	3:A:20:PRO:HD3	0.47	2.09	9	2		
3:A:62:VAL:O	3:A:78:THR:O	0.47	2.33	4	6		
3:A:8:TYR:OH	3:A:44:PHE:CE2	0.47	2.60	10	2		

			\mathbf{D}	Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
1:B:257:DT:O4	3:A:53:HIS:ND1	0.47	2.47	13	5	
3:A:8:TYR:CZ	3:A:51:ILE:HB	0.47	2.43	6	1	
3:A:59:ASP:OD1	3:A:79:LEU:CD1	0.47	2.62	12	2	
2:C:349:DG:C8	2:C:350:DT:H72	0.47	2.44	12	3	
3:A:11:LEU:CD1	3:A:37:PHE:CE2	0.47	2.97	11	1	
2:C:359:DT:C2'	2:C:360:DT:O5'	0.47	2.62	17	1	
3:A:32:PHE:CE1	3:A:33:ILE:HG13	0.47	2.44	19	1	
3:A:48:GLN:OE1	3:A:49:ASN:OD1	0.47	2.32	2	6	
3:A:8:TYR:CE2	3:A:51:ILE:HG23	0.47	2.44	5	1	
3:A:44:PHE:CD2	3:A:47:TRP:HB2	0.47	2.44	6	1	
3:A:13:THR:O	3:A:17:LEU:CD1	0.47	2.62	9	1	
3:A:63:LYS:HB3	3:A:77:TRP:CE2	0.47	2.44	14	2	
2:C:352:DT:H2'	2:C:353:DT:C7	0.47	2.38	2	2	
2:C:359:DT:C2'	2:C:360:DT:C7	0.47	2.93	18	2	
3:A:13:THR:HG22	3:A:87:PHE:CE1	0.47	2.44	15	1	
3:A:52:ARG:CD	3:A:52:ARG:C	0.47	2.83	17	1	
3:A:52:ARG:CD	3:A:52:ARG:O	0.47	2.63	17	1	
3:A:8:TYR:O	3:A:12:ILE:HB	0.47	2.09	8	1	
1:B:250:DC:H2"	1:B:251:DT:OP2	0.47	2.07	16	2	
2:C:358:DT:C6	2:C:359:DT:H72	0.47	2.45	19	1	
1:B:258:DA:C2	2:C:357:DA:N1	0.47	2.82	11	3	
3:A:15:ALA:CB	3:A:32:PHE:CE2	0.47	2.97	1	1	
1:B:258:DA:N6	2:C:357:DA:N6	0.47	2.62	3	1	
3:A:13:THR:HG22	3:A:87:PHE:CZ	0.47	2.45	4	2	
3:A:24:LEU:HD12	3:A:29:ILE:CG1	0.47	2.39	14	1	
2:C:351:DA:C2'	2:C:352:DT:H71	0.47	2.38	8	5	
3:A:48:GLN:HG2	3:A:52:ARG:CZ	0.47	2.40	7	4	
1:B:256:DA:N6	3:A:53:HIS:NE2	0.47	2.62	4	2	
3:A:11:LEU:HG	3:A:37:PHE:CE1	0.47	2.45	4	1	
3:A:52:ARG:O	3:A:52:ARG:HD2	0.47	2.09	10	4	
3:A:11:LEU:O	3:A:14:MET:CG	0.47	2.62	11	2	
1:B:257:DT:C2'	1:B:258:DA:OP2	0.47	2.62	13	1	
3:A:8:TYR:CD2	3:A:51:ILE:HG22	0.47	2.44	15	1	
3:A:48:GLN:CD	3:A:49:ASN:OD1	0.47	2.53	10	5	
3:A:36:ARG:HB3	3:A:37:PHE:CE1	0.47	2.44	6	3	
1:B:256:DA:H2"	1:B:257:DT:O5'	0.47	2.10	20	3	
3:A:40:TYR:O	3:A:44:PHE:CB	0.47	2.62	10	1	
3:A:15:ALA:HB1	3:A:29:ILE:HG13	0.47	1.87	18	1	
3:A:15:ALA:HB2	3:A:32:PHE:CE1	0.47	2.45	19	1	
2:C:356:DT:H72	3:A:52:ARG:NH2	0.47	2.25	4	1	
3:A:75:ASN:ND2	3:A:77:TRP:NE1	0.47	2.63	11	2	

OTI	DC	
2Π	DU	

				Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
3:A:13:THR:HG21	3:A:87:PHE:HE1	0.47	1.62	12	1	
3:A:81:PRO:O	3:A:82:GLN:CB	0.47	2.63	6	8	
3:A:48:GLN:NE2	3:A:48:GLN:C	0.47	2.68	6	1	
3:A:8:TYR:OH	3:A:44:PHE:CZ	0.47	2.66	10	1	
3:A:9:ILE:HG13	3:A:10:ALA:N	0.47	2.24	13	2	
3:A:67:GLU:CB	3:A:68:PRO:CD	0.46	2.93	7	1	
3:A:32:PHE:CE1	3:A:36:ARG:HG3	0.46	2.45	9	2	
1:B:256:DA:OP2	3:A:7:SER:HB2	0.46	2.10	11	1	
3:A:19:SER:CB	3:A:23:LYS:O	0.46	2.63	11	1	
3:A:70:ASN:N	3:A:70:ASN:HD22	0.46	2.08	14	1	
1:B:256:DA:C1'	1:B:257:DT:O5'	0.46	2.64	10	4	
3:A:12:ILE:HG23	3:A:16:ILE:HD13	0.46	1.86	8	1	
3:A:21:GLN:O	3:A:22:LYS:CB	0.46	2.63	17	1	
3:A:46:ALA:O	3:A:50:SER:OG	0.46	2.32	20	1	
3:A:7:SER:OG	3:A:8:TYR:N	0.46	2.49	12	2	
3:A:40:TYR:CE2	3:A:47:TRP:CZ2	0.46	3.03	7	1	
3:A:24:LEU:O	3:A:77:TRP:O	0.46	2.33	9	2	
1:B:261:DA:C2'	1:B:262:DA:O5'	0.46	2.63	12	1	
2:C:359:DT:H1'	2:C:360:DT:C5'	0.46	2.40	15	1	
1:B:254:DA:H2"	1:B:255:DA:O5'	0.46	2.11	4	11	
3:A:57:LEU:O	3:A:58:ASN:ND2	0.46	2.48	1	6	
2:C:352:DT:C2'	2:C:353:DT:O5'	0.46	2.64	8	2	
2:C:359:DT:C2	2:C:360:DT:C5	0.46	3.03	2	3	
3:A:26:LEU:HD11	3:A:51:ILE:HD11	0.46	1.88	6	1	
3:A:11:LEU:HB3	3:A:33:ILE:HD11	0.46	1.87	7	1	
1:B:262:DA:H2'	1:B:263:DT:H72	0.46	1.87	12	2	
2:C:351:DA:H2"	2:C:352:DT:H71	0.46	1.87	8	5	
2:C:358:DT:C2'	2:C:359:DT:C7	0.46	2.94	2	2	
3:A:48:GLN:NE2	3:A:49:ASN:OD1	0.46	2.49	4	4	
1:B:253:DA:C2'	1:B:254:DA:O5'	0.46	2.62	19	2	
3:A:8:TYR:OH	3:A:47:TRP:NE1	0.46	2.48	10	1	
3:A:15:ALA:O	3:A:18:GLN:CB	0.46	2.63	11	1	
3:A:59:ASP:O	3:A:60:CYS:SG	0.46	2.74	11	1	
2:C:359:DT:H2'	2:C:360:DT:C7	0.46	2.39	17	3	
3:A:69:GLY:C	3:A:70:ASN:OD1	0.46	2.54	16	1	
3:A:11:LEU:CD1	3:A:37:PHE:CE1	0.46	2.99	18	2	
3:A:26:LEU:HG	3:A:27:SER:N	0.46	2.26	1	4	
2:C:354:DG:C4	2:C:355:DT:C7	0.46	2.99	11	2	
2:C:352:DT:O4'	3:A:66:ARG:CD	0.46	2.63	9	1	
3:A:16:ILE:HG13	3:A:24:LEU:HD11	0.46	1.86	4	1	
1:B:257:DT:H3'	3:A:44:PHE:CZ	0.46	2.46	10	1	

911	T D	\mathbf{C}
2Π	\mathbf{D}	U

			\mathbf{D}	Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
3:A:32:PHE:CE1	3:A:33:ILE:CD1	0.46	2.99	11	1	
3:A:64:ILE:HB	3:A:76:TYR:O	0.46	2.11	11	1	
1:B:254:DA:C4'	1:B:255:DA:OP1	0.46	2.64	13	2	
1:B:254:DA:C2'	1:B:255:DA:OP2	0.46	2.63	17	1	
3:A:33:ILE:HG23	3:A:37:PHE:CD2	0.46	2.46	19	1	
2:C:352:DT:O3'	3:A:73:LYS:HA	0.45	2.11	2	2	
3:A:9:ILE:HD13	3:A:9:ILE:O	0.45	2.11	7	1	
3:A:8:TYR:O	3:A:12:ILE:HG12	0.45	2.11	8	2	
3:A:8:TYR:HA	3:A:11:LEU:CG	0.45	2.41	8	1	
1:B:257:DT:OP2	3:A:8:TYR:CE2	0.45	2.69	11	2	
2:C:359:DT:H2'	2:C:360:DT:H71	0.45	1.88	1	1	
3:A:39:TYR:CG	3:A:40:TYR:N	0.45	2.84	2	1	
3:A:47:TRP:O	3:A:49:ASN:N	0.45	2.50	5	1	
2:C:357:DA:H62	3:A:53:HIS:CD2	0.45	2.28	7	5	
3:A:52:ARG:HG2	3:A:77:TRP:CH2	0.45	2.45	13	1	
1:B:258:DA:N7	3:A:49:ASN:OD1	0.45	2.49	14	2	
3:A:32:PHE:CD1	3:A:33:ILE:HG13	0.45	2.46	19	1	
3:A:24:LEU:C	3:A:25:THR:HG23	0.45	2.32	17	2	
3:A:25:THR:HG23	3:A:75:ASN:OD1	0.45	2.11	6	1	
1:B:249:DG:O5'	1:B:249:DG:O3'	0.45	2.34	7	1	
3:A:49:ASN:O	3:A:53:HIS:N	0.45	2.49	9	2	
1:B:264:DA:H5'	3:A:66:ARG:CZ	0.45	2.41	16	1	
1:B:258:DA:OP2	3:A:46:ALA:CB	0.45	2.64	19	1	
1:B:249:DG:H4'	1:B:250:DC:OP1	0.45	2.11	5	3	
2:C:357:DA:H2'	2:C:358:DT:C7	0.45	2.41	3	3	
3:A:8:TYR:C	3:A:10:ALA:N	0.45	2.70	4	2	
3:A:16:ILE:HD13	3:A:24:LEU:HD21	0.45	1.88	7	1	
3:A:55:LEU:C	3:A:61:PHE:CZ	0.45	2.90	17	4	
3:A:63:LYS:HB3	3:A:77:TRP:CD2	0.45	2.46	14	1	
3:A:13:THR:HG22	3:A:17:LEU:HD22	0.45	1.88	2	1	
3:A:25:THR:HG22	3:A:75:ASN:O	0.45	2.12	12	1	
3:A:12:ILE:CG1	3:A:55:LEU:HD13	0.45	2.41	17	1	
3:A:41:ARG:O	3:A:41:ARG:NH1	0.45	2.49	3	1	
2:C:355:DT:H2'	2:C:356:DT:C7	0.45	2.42	8	2	
3:A:11:LEU:HD11	3:A:37:PHE:CZ	0.45	2.47	20	2	
1:B:251:DT:C6	1:B:252:DT:H72	0.45	2.47	13	7	
2:C:357:DA:C2'	2:C:358:DT:O5'	0.45	2.65	3	1	
1:B:257:DT:C7	3:A:50:SER:HA	0.45	2.42	5	1	
1:B:258:DA:C2	1:B:259:DA:C6	0.45	3.05	14	1	
3:A:26:LEU:CD1	3:A:52:ARG:NH2	0.45	2.75	15	1	
3:A:70:ASN:N	3:A:71:PRO:HD3	0.45	2.27	19	1	

OTT	
2Π	$\mathcal{D}\mathcal{C}$

		D1 (8)	Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
3:A:65:PRO:HB2	3:A:66:ARG:NH2	0.44	2.27	3	1
3:A:32:PHE:CD1	3:A:32:PHE:O	0.44	2.71	2	1
3:A:70:ASN:CG	3:A:74:GLY:O	0.44	2.56	7	4
3:A:86:MET:HE3	3:A:87:PHE:CD2	0.44	2.47	5	1
3:A:11:LEU:HD21	3:A:37:PHE:CE2	0.44	2.46	12	1
2:C:355:DT:C7	3:A:52:ARG:HD3	0.44	2.43	19	1
3:A:64:ILE:HD12	3:A:65:PRO:O	0.44	2.13	19	1
3:A:55:LEU:O	3:A:55:LEU:HD12	0.44	2.12	2	1
1:B:250:DC:C2'	1:B:251:DT:O5'	0.44	2.65	17	3
2:C:354:DG:OP2	3:A:52:ARG:HD3	0.44	2.12	14	1
3:A:44:PHE:CE1	3:A:47:TRP:NE1	0.44	2.86	16	1
3:A:44:PHE:CE1	3:A:47:TRP:CD1	0.44	3.05	16	1
1:B:256:DA:OP2	3:A:7:SER:CA	0.44	2.65	1	2
1:B:255:DA:C4'	1:B:256:DA:OP1	0.44	2.64	9	2
2:C:354:DG:C5'	3:A:65:PRO:HB3	0.44	2.42	16	2
1:B:256:DA:H2"	1:B:257:DT:OP2	0.44	2.12	14	1
3:A:49:ASN:O	3:A:53:HIS:HB3	0.44	2.12	16	1
3:A:51:ILE:HG23	3:A:52:ARG:H	0.44	1.72	16	1
2:C:358:DT:C2'	2:C:359:DT:H72	0.44	2.43	2	2
2:C:354:DG:OP1	3:A:64:ILE:O	0.44	2.35	8	5
3:A:48:GLN:CG	3:A:52:ARG:CZ	0.44	2.96	6	1
2:C:352:DT:C5'	3:A:72:GLY:O	0.44	2.66	8	1
1:B:249:DG:H4'	1:B:250:DC:H5"	0.44	1.90	12	2
1:B:256:DA:C8	1:B:257:DT:H71	0.44	2.48	10	1
3:A:11:LEU:O	3:A:14:MET:HG2	0.44	2.13	19	1
3:A:24:LEU:HD22	3:A:29:ILE:HD11	0.44	1.89	4	1
2:C:354:DG:OP1	3:A:77:TRP:CE2	0.44	2.70	14	1
2:C:359:DT:C1'	2:C:360:DT:O5'	0.44	2.66	17	1
3:A:61:PHE:C	3:A:61:PHE:HD1	0.44	2.16	2	1
3:A:19:SER:OG	3:A:23:LYS:O	0.44	2.33	11	1
3:A:29:ILE:CG2	3:A:30:CYS:N	0.44	2.80	11	2
3:A:65:PRO:HB2	3:A:66:ARG:CZ	0.43	2.43	5	1
3:A:12:ILE:CD1	3:A:55:LEU:HD22	0.43	2.42	8	1
3:A:37:PHE:HB3	3:A:40:TYR:CG	0.43	2.49	11	1
3:A:61:PHE:CD1	3:A:61:PHE:N	0.43	2.82	16	1
3:A:53:HIS:ND1	3:A:54:ASN:N	0.43	2.66	20	1
3:A:47:TRP:C	3:A:51:ILE:HG23	0.43	2.32	6	1
3:A:37:PHE:HB2	3:A:40:TYR:HB2	0.43	1.89	14	1
3:A:46:ALA:O	3:A:50:SER:HB3	0.43	2.13	14	1
1:B:249:DG:C4	1:B:250:DC:C5	0.43	3.06	18	1
3:A:8:TYR:O	3:A:10:ALA:N	0.43	2.51	5	2

911	T D	\mathbf{C}
2Π	\mathbf{D}	U

			Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
1:B:250:DC:H2"	1:B:251:DT:C7	0.43	2.43	8	2
3:A:13:THR:O	3:A:17:LEU:CD2	0.43	2.59	16	1
3:A:16:ILE:HG12	3:A:79:LEU:CD1	0.43	2.43	17	1
1:B:259:DA:H1'	1:B:260:DC:O5'	0.43	2.13	4	1
3:A:11:LEU:HD11	3:A:37:PHE:HE2	0.43	1.72	12	1
1:B:251:DT:C2'	1:B:252:DT:H72	0.43	2.44	13	1
3:A:12:ILE:CD1	3:A:51:ILE:CD1	0.43	2.95	16	1
3:A:9:ILE:CD1	3:A:58:ASN:OD1	0.43	2.62	18	1
3:A:52:ARG:NE	3:A:52:ARG:O	0.43	2.51	4	1
3:A:8:TYR:HE2	3:A:51:ILE:HG23	0.43	1.73	5	1
3:A:52:ARG:HG3	3:A:77:TRP:CH2	0.43	2.49	6	1
3:A:22:LYS:O	3:A:22:LYS:CG	0.43	2.65	9	1
1:B:262:DA:C2'	1:B:263:DT:H72	0.43	2.43	11	1
3:A:86:MET:CE	3:A:87:PHE:CZ	0.43	3.01	11	1
3:A:38:PRO:O	3:A:41:ARG:CG	0.43	2.67	14	1
3:A:52:ARG:CZ	3:A:56:SER:HB3	0.43	2.43	17	1
3:A:47:TRP:O	3:A:51:ILE:HB	0.43	2.14	18	1
3:A:37:PHE:CD2	3:A:40:TYR:CD2	0.43	3.06	1	1
3:A:64:ILE:HG12	3:A:76:TYR:HB2	0.43	1.89	1	1
3:A:11:LEU:HD23	3:A:33:ILE:HG23	0.43	1.90	4	1
3:A:8:TYR:CG	3:A:51:ILE:HG22	0.43	2.49	15	1
2:C:352:DT:C2'	2:C:353:DT:H72	0.43	2.43	16	1
3:A:13:THR:O	3:A:17:LEU:HD13	0.43	2.14	18	1
2:C:351:DA:C2'	2:C:352:DT:C7	0.43	2.96	2	1
3:A:16:ILE:CG2	3:A:79:LEU:HD13	0.43	2.35	9	1
3:A:13:THR:HG21	3:A:87:PHE:CD2	0.43	2.49	13	1
1:B:263:DT:H4'	1:B:264:DA:OP1	0.43	2.14	11	1
2:C:353:DT:H2"	2:C:354:DG:OP2	0.43	2.13	14	1
3:A:53:HIS:O	3:A:57:LEU:HB2	0.43	2.14	4	2
3:A:16:ILE:HD13	3:A:24:LEU:CD1	0.43	2.43	9	1
3:A:11:LEU:HD13	3:A:37:PHE:CZ	0.43	2.48	19	1
3:A:52:ARG:CG	3:A:53:HIS:N	0.43	2.82	19	1
3:A:70:ASN:ND2	3:A:74:GLY:O	0.43	2.52	5	2
3:A:8:TYR:O	3:A:9:ILE:C	0.43	2.58	18	5
1:B:256:DA:H4'	1:B:257:DT:OP1	0.43	2.14	13	1
3:A:43:LYS:O	3:A:45:PRO:HD3	0.43	2.14	16	1
3:A:18:GLN:C	3:A:20:PRO:HD3	0.43	2.34	17	2
1:B:250:DC:C2'	1:B:251:DT:C7	0.43	2.96	19	1
3:A:34:SER:CB	3:A:41:ARG:HB3	0.43	2.43	19	1
3:A:24:LEU:HD11	3:A:29:ILE:CD1	0.42	2.43	1	1
3:A:79:LEU:C	3:A:79:LEU:HD23	0.42	2.34	1	1

OTT	
2Π	$\mathcal{D}\mathcal{C}$

			$\mathbf{D}^{\mathbf{i}}$	Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
3:A:8:TYR:CD1	3:A:47:TRP:CH2	0.42	3.07	5	1	
3:A:16:ILE:CD1	3:A:24:LEU:CD2	0.42	2.97	9	1	
2:C:354:DG:H2"	3:A:52:ARG:NH1	0.42	2.28	16	1	
2:C:356:DT:H71	3:A:52:ARG:NH2	0.42	2.28	17	1	
1:B:249:DG:H1'	1:B:250:DC:C6	0.42	2.49	18	1	
3:A:17:LEU:HD11	3:A:84:GLU:HB2	0.42	1.91	19	1	
3:A:12:ILE:HG23	3:A:55:LEU:CD1	0.42	2.44	9	1	
3:A:13:THR:HB	3:A:87:PHE:CE2	0.42	2.50	9	1	
3:A:64:ILE:HD12	3:A:67:GLU:OE1	0.42	2.14	9	1	
1:B:257:DT:O2	1:B:258:DA:N9	0.42	2.51	10	1	
3:A:8:TYR:CD2	3:A:51:ILE:HD12	0.42	2.49	10	1	
3:A:47:TRP:HA	3:A:47:TRP:CE3	0.42	2.49	13	1	
2:C:352:DT:O2	3:A:66:ARG:HG3	0.42	2.13	4	1	
3:A:55:LEU:HD12	3:A:61:PHE:CZ	0.42	2.49	6	1	
3:A:64:ILE:HG21	3:A:76:TYR:HD1	0.42	1.75	6	1	
1:B:255:DA:O4'	1:B:256:DA:OP1	0.42	2.37	7	1	
3:A:15:ALA:O	3:A:18:GLN:HG2	0.42	2.14	11	2	
1:B:257:DT:H1'	1:B:258:DA:C8	0.42	2.49	13	1	
2:C:360:DT:C1'	2:C:361:DT:O5'	0.42	2.68	15	1	
3:A:12:ILE:N	3:A:12:ILE:HD13	0.42	2.29	16	1	
2:C:354:DG:N3	2:C:355:DT:C5	0.42	2.87	4	1	
3:A:11:LEU:CD2	3:A:33:ILE:HG23	0.42	2.42	5	1	
3:A:11:LEU:N	3:A:11:LEU:HD22	0.42	2.29	7	1	
3:A:18:GLN:C	3:A:18:GLN:OE1	0.42	2.58	9	2	
3:A:75:ASN:OD1	3:A:75:ASN:C	0.42	2.57	8	1	
1:B:257:DT:C1'	1:B:258:DA:O5'	0.42	2.67	11	1	
3:A:83:SER:O	3:A:86:MET:CG	0.42	2.68	20	1	
1:B:265:DC:OP1	3:A:67:GLU:O	0.42	2.37	2	1	
2:C:355:DT:C2'	2:C:356:DT:H71	0.42	2.45	9	1	
1:B:263:DT:C1'	1:B:264:DA:O5'	0.42	2.68	11	1	
3:A:81:PRO:O	3:A:82:GLN:CG	0.42	2.67	12	1	
3:A:8:TYR:HB2	3:A:54:ASN:CG	0.42	2.35	7	2	
3:A:8:TYR:CE2	3:A:51:ILE:HG12	0.42	2.50	5	1	
3:A:13:THR:OG1	3:A:87:PHE:CZ	0.42	2.72	5	1	
3:A:17:LEU:CD2	3:A:87:PHE:CE2	0.42	3.03	10	1	
3:A:44:PHE:CG	3:A:47:TRP:HB2	0.42	2.50	19	1	
3:A:9:ILE:HD13	3:A:58:ASN:OD1	0.42	2.15	5	1	
3:A:47:TRP:O	3:A:48:GLN:C	0.42	2.57	5	1	
3:A:8:TYR:CD2	3:A:12:ILE:CG1	0.42	3.02	6	1	
2:C:360:DT:C2'	2:C:361:DT:H71	0.42	2.44	8	1	
3:A:40:TYR:O	3:A:47:TRP:CD1	0.42	2.72	13	1	

OTI	DC	
2Π	DU	

		$O_{1} = 1 \left(\begin{pmatrix} \delta \\ \delta \end{pmatrix} \right)$	$\mathbf{D}^{\mathbf{i}}_{\mathbf{i}}$	Mod	lels
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
1:B:258:DA:C4	1:B:259:DA:N7	0.42	2.88	14	1
3:A:86:MET:HE1	3:A:87:PHE:CE2	0.42	2.50	15	1
2:C:359:DT:H2"	2:C:360:DT:O5'	0.42	2.15	17	1
3:A:57:LEU:O	3:A:58:ASN:HB2	0.42	2.13	17	2
3:A:76:TYR:C	3:A:77:TRP:HD1	0.42	2.18	18	1
3:A:75:ASN:O	3:A:76:TYR:CG	0.42	2.72	19	1
3:A:40:TYR:HB3	3:A:47:TRP:CH2	0.42	2.50	20	1
3:A:44:PHE:CD2	3:A:47:TRP:CD1	0.42	3.07	6	1
1:B:257:DT:O4	3:A:53:HIS:NE2	0.42	2.52	20	1
3:A:44:PHE:CE2	3:A:47:TRP:HB3	0.42	2.50	2	1
1:B:257:DT:H72	3:A:50:SER:O	0.42	2.14	14	2
3:A:11:LEU:CD1	3:A:40:TYR:CE2	0.42	3.03	6	1
3:A:48:GLN:O	3:A:52:ARG:HB3	0.42	2.15	10	1
1:B:258:DA:C4'	1:B:259:DA:OP1	0.42	2.67	13	1
2:C:355:DT:H72	3:A:52:ARG:HD3	0.42	1.92	17	1
3:A:22:LYS:CD	3:A:79:LEU:O	0.42	2.67	19	1
3:A:12:ILE:CD1	3:A:55:LEU:HG	0.42	2.45	5	1
3:A:34:SER:O	3:A:37:PHE:O	0.42	2.37	6	2
2:C:355:DT:C2'	2:C:356:DT:O5'	0.42	2.68	10	1
3:A:19:SER:OG	3:A:24:LEU:HD11	0.41	2.14	19	2
3:A:62:VAL:CG2	3:A:78:THR:HB	0.41	2.45	4	1
3:A:8:TYR:CZ	3:A:33:ILE:HG13	0.41	2.50	6	1
3:A:52:ARG:NH2	3:A:56:SER:HB3	0.41	2.30	16	2
3:A:47:TRP:HZ3	3:A:51:ILE:HD13	0.41	1.69	19	1
3:A:67:GLU:O	3:A:70:ASN:OD1	0.41	2.37	4	2
2:C:353:DT:H2"	3:A:52:ARG:CZ	0.41	2.44	5	1
2:C:353:DT:H2'	3:A:52:ARG:NH2	0.41	2.30	5	1
3:A:52:ARG:O	3:A:52:ARG:CD	0.41	2.69	10	1
2:C:354:DG:OP1	3:A:77:TRP:CZ2	0.41	2.73	14	1
1:B:258:DA:N7	3:A:49:ASN:HB2	0.41	2.30	18	1
1:B:256:DA:C4	1:B:257:DT:C5	0.41	3.09	19	1
3:A:9:ILE:HG22	3:A:54:ASN:CG	0.41	2.35	20	1
2:C:351:DA:C4	2:C:352:DT:C4	0.41	3.08	2	1
2:C:353:DT:O3'	3:A:65:PRO:HA	0.41	2.14	12	2
3:A:25:THR:O	3:A:29:ILE:N	0.41	2.49	4	2
3:A:50:SER:O	3:A:54:ASN:OD1	0.41	2.38	19	3
3:A:12:ILE:HG22	3:A:13:THR:N	0.41	2.31	1	1
1:B:251:DT:H2'	1:B:252:DT:H72	0.41	1.92	6	1
1:B:257:DT:H2"	1:B:258:DA:O5'	0.41	2.14	11	1
3:A:37:PHE:HB3	3:A:39:TYR:CE1	0.41	2.50	14	1
3:A:39:TYR:HE2	3:A:40:TYR:CE1	0.41	2.33	14	1

OTT	
2Π	$\mathcal{D}\mathcal{C}$

	tio as page			Mod	dels
Atom-1	Atom-2	om-2 Clash(A) SER HB2 0.41		Worst	Total
1:B:256:DA:P	3:A:7:SER:HB2	0.41	2.56	15	1
3:A:33:ILE:HD13	3:A:51:ILE:HD13	0.41	1.92	16	1
1:B:256:DA:OP2	3:A:7:SER:HB3	0.41	2.15	20	2
1:B:256:DA:OP2	3:A:7:SER:OG	0.41	2.30	9	2
3:A:47:TRP:C	3:A:49:ASN:N	0.41	2.72	5	1
3:A:12:ILE:HG23	3:A:55:LEU:CD2	0.41	2.44	12	1
3:A:14:MET:O	3:A:18:GLN:CB	0.41	2.68	15	1
1:B:255:DA:OP2	1:B:255:DA:C4'	0.41	2.69	17	1
3:A:55:LEU:HG	3:A:61:PHE:CZ	0.41	2.51	17	1
2:C:352:DT:C2'	2:C:353:DT:H71	0.41	2.45	3	1
3:A:16:ILE:HD13	3:A:24:LEU:HD11	0.41	1.93	5	1
3:A:67:GLU:CG	3:A:68:PRO:HD2	0.41	2.45	11	1
1:B:261:DA:H4'	1:B:262:DA:OP1	0.41	2.15	12	1
3:A:44:PHE:C	3:A:46:ALA:H	0.41	2.19	8	1
3:A:44:PHE:CG	3:A:47:TRP:CD1	0.41	3.09	10	1
1:B:261:DA:H3'	1:B:261:DA:OP2	0.41	2.16	12	1
3:A:44:PHE:CD1	3:A:47:TRP:CG	0.41	3.08	19	1
3:A:47:TRP:HA	3:A:51:ILE:HD13	0.41	1.92	20	1
3:A:12:ILE:HG23	3:A:55:LEU:HD12	0.41	1.93	10	1
3:A:86:MET:CE	3:A:87:PHE:CE2	0.41	3.03	11	1
3:A:59:ASP:OD1	3:A:79:LEU:HD11	0.41	2.15	12	1
3:A:21:GLN:O	3:A:22:LYS:HG3	0.41	2.16	16	1
3:A:38:PRO:O	3:A:41:ARG:HG3	0.41	2.16	19	1
1:B:249:DG:O4'	1:B:250:DC:H5"	0.41	2.16	20	1
3:A:13:THR:O	3:A:17:LEU:HD22	0.41	2.16	2	1
3:A:33:ILE:HG22	3:A:47:TRP:CH2	0.41	2.50	4	1
3:A:52:ARG:NH1	3:A:56:SER:HB3	0.41	2.30	4	1
2:C:354:DG:OP1	3:A:63:LYS:CB	0.41	2.69	11	1
2:C:355:DT:C7	3:A:52:ARG:CZ	0.41	2.97	11	1
2:C:358:DT:C1'	2:C:359:DT:O5'	0.41	2.69	17	2
1:B:258:DA:C6	2:C:357:DA:N1	0.41	2.88	13	1
3:A:55:LEU:O	3:A:59:ASP:OD1	0.41	2.38	17	1
3:A:49:ASN:HA	3:A:52:ARG:CD	0.41	2.45	19	1
2:C:353:DT:O2	3:A:66:ARG:NH2	0.41	2.54	4	1
2:C:353:DT:H2'	3:A:52:ARG:NH1	0.41	2.31	7	1
3:A:12:ILE:CG1	3:A:51:ILE:HD11	0.41	2.46	8	1
1:B:262:DA:H2"	1:B:263:DT:OP2	0.41	2.15	12	1
2:C:354:DG:C8	2:C:355:DT:C7	0.40	3.04	10	1
3:A:14:MET:HG3	3:A:15:ALA:N	0.40	2.30	10	1
3:A:40:TYR:O	3:A:44:PHE:N	0.40	2.54	10	1
3:A:32:PHE:CD1	3:A:32:PHE:C	0.40	2.91	16	1

DC
~ ~

	<u> </u>	$C \ln a \ln (\hat{\lambda})$	\mathbf{D} : \mathbf{D}	Mo	dels
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
1:B:256:DA:OP2	1:B:256:DA:H2'	0.40	2.17	19	1
1:B:249:DG:O4'	1:B:250:DC:C5'	0.40	2.69	20	1
2:C:355:DT:OP2	2:C:355:DT:H3'	0.40	2.16	20	1
3:A:79:LEU:HD21	3:A:83:SER:HB2	0.40	1.93	5	1
3:A:12:ILE:HD11	3:A:51:ILE:HG13	0.40	1.92	9	1
1:B:255:DA:H2"	1:B:256:DA:O5'	0.40	2.16	10	1
3:A:17:LEU:HD21	3:A:87:PHE:CD2	0.40	2.51	10	1
3:A:17:LEU:O	3:A:20:PRO:HD3	0.40	2.16	18	1
3:A:51:ILE:HG22	3:A:55:LEU:HD12	0.40	1.92	18	1
2:C:354:DG:N7	3:A:52:ARG:CZ	0.40	2.85	19	1
1:B:258:DA:OP2	3:A:45:PRO:O	0.40	2.39	1	1
3:A:8:TYR:O	3:A:12:ILE:CB	0.40	2.70	8	1
3:A:82:GLN:O	3:A:82:GLN:CG	0.40	2.69	10	1
3:A:33:ILE:HG13	3:A:51:ILE:CD1	0.40	2.46	11	1
1:B:251:DT:C2'	1:B:252:DT:C7	0.40	2.99	13	1
3:A:8:TYR:CD2	3:A:50:SER:HB3	0.40	2.51	18	1
3:A:29:ILE:O	3:A:32:PHE:N	0.40	2.54	5	1
2:C:357:DA:H62	3:A:53:HIS:CE1	0.40	2.34	9	1
3:A:12:ILE:HD11	3:A:51:ILE:CG1	0.40	2.46	12	1
3:A:82:GLN:O	3:A:86:MET:SD	0.40	2.79	12	1
3:A:17:LEU:HD21	3:A:87:PHE:CG	0.40	2.51	20	1
3:A:70:ASN:OD1	3:A:70:ASN:N	0.40	2.54	20	1
3:A:24:LEU:N	3:A:77:TRP:O	0.40	2.54	2	1
1:B:256:DA:O5'	3:A:7:SER:HB2	0.40	2.17	6	1
3:A:13:THR:OG1	3:A:87:PHE:CE1	0.40	2.59	11	1
3:A:9:ILE:HD12	3:A:9:ILE:C	0.40	2.37	12	1
3:A:8:TYR:CE1	3:A:47:TRP:HB2	0.40	2.52	16	1
3:A:26:LEU:HD23	3:A:75:ASN:ND2	0.40	2.31	19	1
3:A:46:ALA:O	3:A:50:SER:HB2	0.40	2.17	20	1

6.3 Torsion angles (i)

6.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the backbone conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
3	А	81/97~(84%)	62 ± 2 (77±3%)	$13\pm2~(16\pm2\%)$	$6\pm1~(7\pm2\%)$	2 16

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
All	All	1620/1940~(84%)	1244 (77%)	260~(16%)	116 (7%)	2 16

All 16 unique Ramachandran outliers are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Models (Total)
3	А	58	ASN	20
3	А	82	GLN	17
3	А	46	ALA	14
3	А	66	ARG	14
3	А	60	CYS	13
3	А	69	GLY	11
3	А	22	LYS	6
3	А	23	LYS	6
3	А	21	GLN	4
3	А	71	PRO	3
3	А	72	GLY	3
3	А	25	THR	1
3	А	65	PRO	1
3	А	48	GLN	1
3	А	68	PRO	1
3	А	44	PHE	1

6.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the side chain conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
3	А	74/89~(83%)	$53 \pm 4 \ (71 \pm 5\%)$	$21 \pm 4 \ (29 \pm 5\%)$	2 18
All	All	1480/1780~(83%)	1051 (71%)	429 (29%)	2 18

All 61 unique residues with a non-rotameric sidechain are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Models (Total)
3	А	32	PHE	19
3	А	63	LYS	18
3	А	61	PHE	16

Mol	Chain	Res	Type	Models (Total)
3	А	55	LEU	14
3	А	21	GLN	13
3	А	58	ASN	13
3	А	73	LYS	13
3	А	80	ASP	13
3	А	22	LYS	13
3	А	66	ARG	12
3	А	23	LYS	12
3	А	18	GLN	11
3	А	41	ARG	11
3	А	76	TYR	11
3	А	26	LEU	10
3	А	70	ASN	10
3	А	42	GLU	10
3	А	56	SER	10
3	А	29	ILE	9
3	А	57	LEU	9
3	А	87	PHE	9
3	А	24	LEU	9
3	А	52	ARG	9
3	А	43	LYS	8
3	А	49	ASN	8
3	А	79	LEU	8
3	А	67	GLU	8
3	А	40	TYR	8
3	А	60	CYS	8
3	А	82	GLN	7
3	А	31	GLU	7
3	A	48	GLN	7
3	А	84	GLU	7
3	A	9	ILE	6
3	A	59	ASP	6
3	А	37	PHE	6
3	A	44	PHE	6
3	A	86	MET	5
3	A	50	SER	4
3	A	35	ASN	4
3	A	85	ASP	4
3	A	39	TYR	3
3	A	64	ILE	3
3	A	$\overline{17}$	LEU	3
3	A	27	SER	3

Mol	Chain	Res	Type	Models (Total)
3	А	51	ILE	3
3	А	30	CYS	3
3	А	19	SER	2
3	А	47	TRP	2
3	А	83	SER	2
3	А	75	ASN	2
3	А	36	ARG	2
3	А	11	LEU	2
3	А	14	MET	1
3	А	25	THR	1
3	А	54	ASN	1
3	А	34	SER	1
3	А	7	SER	1
3	А	12	ILE	1
3	А	16	ILE	1
3	А	53	HIS	1

Continued from previous page...

6.3.3 RNA (i)

There are no RNA molecules in this entry.

6.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.5 Carbohydrates (i)

There are no monosaccharides in this entry.

6.6 Ligand geometry (i)

There are no ligands in this entry.

6.7 Other polymers (i)

There are no such molecules in this entry.

6.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

7 Chemical shift validation (i)

No chemical shift data were provided

