

Nov 20, 2022 - 07:26 am GMT

PDB ID	:	6HA8
EMDB ID	:	EMD-0177
Title	:	Cryo-EM structure of the ABCF protein VmlR bound to the Bacillus subtilis
		ribosome
Authors	:	Crowe-McAuliffe, C.; Graf, M.; Huter, P.; Abdelshahid, M.; Novacek, J.; Wil-
		son, D.N.
Deposited on	:	2018-08-07
Resolution	:	3.50 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 43
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.50 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive (#Entries)	${f EM} {f structures} \ (\#{f Entries})$		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		
RNA backbone	4643	859		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	2928	61% 31%	6% •
2	В	112	• 57% 36%	7%
3	С	277	97%	••
4	D	209	97%	
5	Е	207	<u>6%</u> 96%	
6	F	179	41%	6% ••
7	G	179	46%	·
8	J	145	5% 95%	•••

Continued from previous page...

Mol	Chain	Length	Quality of chain	
9	K	122	7% 99%	·
10	L	146	9%	
11	М	144	93%	• 6%
12	Ν	120	8%	·
13	Ο	120	98%	·
14	Р	115	97%	•
15	Q	119	9 5%	• • •
16	R	102	93%	• ••
17	S	113	94%	••••
18	Т	95	93%	• 5%
19	U	103	97%	••
20	V	548	95%	••
21	W	94	84%	•• 13%
22	Х	62	87%	6% 6%
23	Y	66	98%	·
24	Z	59	97%	• •
25	0	59	85%	• • 8%
26	1	49	96%	
27	2	44	98%	·
28	3	66	94%	• •
29	4	37	100%	
30	6	66	94%	• 5%
31	7	3	67%	33%
32	8	232	91%	9%
33	a	1554	66% 29	9% • •

Mol Chain Length Quality of chain 34 b 246 $\frac{66\%}{82\%}$ $\frac{66\%}{11\%}$ 35 c 218 $\frac{53\%}{92\%}$ $\frac{66\%}{11\%}$ 36 d 200 $\frac{53\%}{7\%}$ $\frac{66\%}{7\%}$ 37 e 166 $\frac{31\%}{7\%}$ $\frac{31\%}{1\%}$ 38 ft 95 $\frac{95\%}{95\%}$ $\frac{1}{1\%}$ 39 g 156 $\frac{55\%}{95\%}$ $\frac{1}{1\%}$ 40 h 132 $\frac{45\%}{95\%}$ $\frac{95\%}{95\%}$ $\frac{1}{1\%}$ 41 i 130 $\frac{45\%}{92\%}$ $\frac{1}{1\%}$ $\frac{1}{1\%}$ 42 j 102 $\frac{55\%}{92\%}$ $\frac{1}{1\%}$ $\frac{1}{1\%}$ 43 k 131 $\frac{55\%}{92\%}$ $\frac{1}{1\%}$ $\frac{1}{1\%}$ 44 11 138 $\frac{60\%}{93\%}$ $\frac{1}{1\%}$ $\frac{1}{1\%}$ 45 m 121 $\frac{60\%}{93\%}$ $\frac{1}{1\%}$ $\frac{1}{1\%}$ 46 m 61 $\frac{9}{$	Conti	nued fron	n previous	page	
34 b 246 $85%$ $6%$ $11%$ 35 c 218 $92%$ $6%$ $11%$ 36 d 200 $93%$ $.6%$ 36 d 200 $93%$ $.6%$ 37 e 166 $71%$ $.6%$ 38 f 95 $93%$ $$ 39 g 156 $55%$ $94%$ $$ 40 h 132 $55%$ $94%$ $$ 41 i 130 $92%$ $$ $$ 41 i 130 $92%$ $$ $$ 42 j 102 $51%$ $92%$ $$ 44 1 138 $60%$ $$ 45 m 121 $85%$ $$ 45 m $61%$ $$ $$ 47 o 89	Mol	Chain	Length	Quality of chain	
34 b 246 62% 6% 13% 35 c 218 33% 6% 77% 36 d 200 93% $$ 37 c 166 97% $$ 38 f 95 95% $$ 39 g 156 39% $$ 40 h 132 45% $$ 41 i 130 92% $$ 42 j 102 61% 92% $$ 43 k 131 85% $$ 44 1 138 57% $$ 45 m 121 85% $$ 46 n 61 93% $$ 47 o 89 92% $$ 48 p 90 92% $$ 48 p 90 66% $$ <td></td> <td></td> <td></td> <td>86%</td> <td></td>				86%	
35 c 218 $33%$ 36 d 200 $77%$ 37 e 166 $93%$ $$ 37 e 166 $97%$ $$ 38 f 95 $95%$ $$ 39 g 156 $95%$ $$ 40 h 132 $95%$ $$ 41 i 130 $92%$ $$ 41 i 130 $92%$ $$ 42 j 102 $92%$ $$ 43 k 131 $85%$ $.13%$ 44 1 138 $93%$ $$ 44 1 138 $93%$ $$ 45 m 121 $85%$ $$ 45 m 216 $85%$ $$ 47 o 89 $92%$ $$ <	34	b	246	82%	6% 11%
35 c 218 $94%$ $.6%$ 36 d 200 $31%$ $93%$ $$ 37 e 166 $97%$ $$ 38 f 95 $95%$ $$ 39 g 156 $94%$ $$ 40 h 132 $95%$ $$ 41 i 130 $92%$ $$ 41 i 130 $92%$ $$ 42 j 102 $92%$ $$ 43 k 131 $85%$ $.13%$ 44 1 138 $60%$ $$ 44 1 138 $57%$ $$ 45 m 121 $85%$ $$ 46 n 61 $93%$ $$ 47 o 89 $92%$ $$ 48 p 90 $92%$ $$ 49 q 87 $92%$ $$				53%	
36 d 200 31% 93% \dots 37 e 166 71% 97% \dots 38 f 95 95% \dots 39 g 156 39% 95% \dots 40 h 132 95% \dots \dots 41 i 130 45% \dots \dots 41 i 130 61% \dots \dots 42 j 102 92% \dots \dots 43 k 131 85% 13% \dots 44 1 138 93% \dots \dots 44 1 138 60% \dots \dots \dots 44 1 138 93% \dots \dots \dots \dots 44 1 138 93% \dots <	35	с	218	94%	• 6%
36 d 200 $33%$ 37 e 166 $31%$ $97%$ 38 f 95 $95%$ 39 g 156 $39%$ $94%$ 40 h 132 $95%$ $95%$ 41 i 130 $55%$ $95%$ 41 i 130 $61%$ $92%$ 42 j 102 $92%$ $7%$ 43 k 131 $85%$ $33%$ 44 1 138 $60%$ $33%$ 44 1 138 $60%$ $33%$ 45 m 121 $60%$ $93%$ $11%$ 46 n 61 $93%$ $56%$ 47 o 89 $66%$ $92%$ $6%$ 49 q 87 <				77%	
37 e 166 $31%$ 38 f 95 $95%$ $5%$ 39 g 156 $55%$ $94%$ $$ 40 h 132 $95%$ $$ 41 i 130 $65%$ $92%$ $$ 42 j 102 $65%$ $92%$ $$ 43 k 131 $85%$ $$ 44 1 138 $60%$ $$ 45 m 121 $85%$ $$ 46 n 61 $$ $$ 47 o 89 $60%$ $$ 48 p 90 $$ $$ 49 q 87 $$ $$ 51% s 92 $$ $$ 52 t 88 $$ $$ 53 x 75 $$ $$	36	d	200	93%	• • •
37 e 100 $71%$ $71%$ 38 f 95 $55%$ $55%$ 39 g 156 $39%$ $95%$ $$ 40 h 132 $95%$ $$ 41 i 130 $61%$ $92%$ $$ 41 i 130 $61%$ $92%$ $$ 42 j 102 $92%$ $$ $$ 43 k 131 $85%$ $$ $$ 44 1 138 $92%$ $$ $$ 44 1 138 $92%$ $$ $$ 44 1 138 $93%$ $$ $$ 45 m 121 $55%$ $93%$ $$ $$ 46 n 61 $93%$ $$ $$ 47 o 89 $66%$ $$ $$ 48 p 90 $64%$ $$ $$	07		1.0.0	31%	
38 f 95 $39%$ 39 g 156 $39%$ $94%$ 40 h 132 $55%$ $95%$ 41 i 130 $55%$ $92%$ 42 j 102 $61%$ $92%$ 43 k 131 $85%$ 44 1 138 $93%$ 44 1 138 $60%$ $93%$ 44 1 138 $60%$ $93%$ 45 m 121 $85%$ $11%$ 46 n 61 $93%$ $5%$ $11%$ 47 o 89 $60%$ $60%$ $60%$ $60%$ 49 q 87 $55%$ $19%$ $55%$ $19%$ 51 s 92 $64%$ $55%$ $19%$ $55%$ $55%$ 51 s 92 $55%$ $55%$	37	е	166	97%	•••
38 1 93 39^{3} 39% 39% 39 g 156 39% 94% \cdot 40 h 132 55% 95% \cdot 41 i 130 45% \cdot \cdot 41 i 130 92% \cdot \cdot 42 j 102 51% 92% \cdot \cdot 43 k 131 51% 92% \cdot 13% 44 l 138 57% 93% \cdot 13% 45 m 121 60% 33% \cdot 11% 46 n 61 55% 51% 5% 5% 5% 47 o 89 66% 66% $ -$ 48 p 90 64% $ -$ 49 q 87 58% 92% $ -$ 51 s 92 58% 55% $-$	20	t	05	/1%	
39 g 156 94% \cdot 40 h 132 55% 95% \cdot 41 i 130 45% 92% \cdot 42 j 102 92% \cdot 7% 43 k 131 51% 92% \cdot 7% 44 1 138 57% 93% \cdot 13% 44 1 138 60% \cdot 11% 45 m 121 60% \cdot 11% 46 n 61 60% 5% 5% 5% 47 o 89 60% 5% 5% 5% 5% 47 o 89 92% 64% $ 6\%$ $ 48$ p 90 64% 92% $ 50$ r 79 75% 58% 19% $ -$	- 30	1	90	95%	• •
35 g 130 34% 1.1 40 h 132 55% 95% $$ 41 i 130 45% $$ $$ 41 i 130 92% $$ 42 j 102 92% $$ 43 k 131 61% 92% $$ 44 1 138 93% $$ 45 m 121 60% $$ 46 n 61 93% $$ 47 o 89 93% $$ 48 p 900 64% $$ 49 q 87 92% $$ 50 r 79 58% 19% 51 s 92 84% $$ 52 t 88 91% $$ 53 x 75 56% 32% 12%	30	ď	156	040/	
40 h 132 45% 41 i 130 92%	- 55	8	100	55%	••
13 112 45% 41 i 130 45% 42 j 102 92% \cdot 43 k 131 85% \cdot 44 1 138 92% \cdot 44 1 138 60% 33% \cdot 44 1 138 60% 33% \cdot 13% 44 1 138 60% 33% \cdot 13% 44 1 138 60% 33% \cdot 13% 45 m 121 85% 0.11% 0.56% 0.11% 46 n 61 56% 93% 5% 0.5% 47 o 89 900 92% $$ $$ 48 p 90 52% 5% 19% $$ 50 r 79 76% 5% 19% $$ 51 s <th< td=""><td>40</td><td>h</td><td>132</td><td>Q5%</td><td></td></th<>	40	h	132	Q5%	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	11	102	45%	
42 j 102 61% 43 k 131 85% 7% 44 1 138 93% 13% 44 1 138 93% 11% 45 m 121 85% 11% 46 n 61 93% 5% 47 o 89 92% 6% 48 p 90 64% 92% 6% 49 q 87 92% 5% 19% 50 r 79 58% 5% 19% 51 s 92 84% 15% 5% 19% 52 t 88 52% 91% 6% 6% 53 x 75 56% 32% 12%	41	i	130	92%	
42 j 102 92% 7% 43 k 131 51% 85% 13% 44 l 138 57% 93% 13% 44 l 138 57% 93% 13% 45 m 121 60% 11% 11% 46 n 61 93% 51% 51% 47 0 89 60% 56% 5% 48 p 90 64% 66% 66% 66% 64% 66% 65% 5% 5% 5% 5% 49 q 87 58% 52% 55% 19% 55% 19% 50 r 79 52% 58% 5% 15% 15% 55% 15% 51 s 92 84% 15% 15% 52% 55% 15% 55% 15% 52 t 88 755 56% 32%				61%	
43 k 131 $51%$ 44 1 138 $57%$ 44 1 138 $93%$ 45 m 121 $85%$.13% 46 n 61 $93%$ 47 o 89 $92%$ 48 p 90 $64%$ $68%$ 49 q 87 $58%$ $5%$ 50 r 79 $76%$ $5%$ 51 s 92 $64%$ $19%$ 51 s 92 $6%$ $15%$ 52 t 88 $52%$ $91%$ $$ 53 x 75 $56%$ $32%$ $12%$	42	j	102	92%	• 7%
43 k 131 85% 13% 44 1 138 57% 57% 44 1 138 93% \cdots 45 m 121 60% 11% 46 n 61 56% 5% 5% 47 o 89 92% 5% 5% 48 p 90 64% 66% 66% 66% 66% 66% 65% 5%		0		51%	
44 1 138 57% 45 m 121 85% \cdot 46 n 61 93% \cdot 46 n 61 93% 5% 47 o 89 92% \cdot 48 p 90 64% 6% 49 q 87 58% 6% 50 r 79 58% 5% 51 s 92 84% \cdot 15% 52 t 88 91% \cdot 6% 53 x 75 56% 32% 12%	43	k	131	85%	• 13%
44 1 138 93% \cdots 45 m 121 60% 46 n 61 56% 47 o 89 60% 47 o 89 60% 47 o 89 60% 47 o 89 66% 47 o 89 66% 47 o 89 66% 49 q 87 68% 50 r 79 76% 5% 50 r 79 52% 19% 51 s 92 84% 15% 52 t 88 91% 66% 52% 52% 56% 32% 12%				57%	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	44	1	138	93%	• ••
45 m 121 $85%$ $11%$ 46 n 61 $93%$ $5%$ 47 o 89 $93%$ $5%$ 47 o 89 $92%$ $$ 48 p 90 $92%$ $$ 48 p 90 $66%$ $6%$ 49 q 87 79 $76%$ $5%$ $19%$ 50 r 79 $76%$ $5%$ $19%$ 51 s 92 $84%$ $$ $15%$ 52 t 88 $91%$ $$ $6%$ 53 x 75 $56%$ $32%$ $12%$				60%	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	45	m	121	85%	• 11%
46 n 61 601 93% 5% 47 o 89 60% 47 o 89 92% \cdot 48 p 90 92% 6% 49 q 87 68% 50 r 79 76% 5% 50 r 79 76% 5% 51 s 92 84% \cdot 52 t 88 52% 53 x 75 56% 32%	10		01	56%	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	46	n	61	93%	5% •
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	47		20	60%	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41	0	- 69	92%	• •
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18	n	90	0.20/	C 0(
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	P	30	68%	0% •
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49	n	87	020/	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	Ч	01	58%	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	r	79	76%	5% 19%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-		52%	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	S	92	84%	• 15%
52 t 88 91% • 6% 53 x 75 56% 32% 12%				52%	
53 x 75 56% 32% 12%	52	t	88	91%	• 6%
53 x 75 56% 32% 12%				41%	
	53	х	75	56% 32%	12%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
54	TEL	А	3001	Х	-	-	-

2 Entry composition (i)

There are 55 unique types of molecules in this entry. The entry contains 146404 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 23S rRNA.

Mol	Chain	Residues				AltConf	Trace		
1	А	2887	Total 61997	C 27661	N 11460	O 19992	Р 2884	0	0

• Molecule 2 is a RNA chain called 5S rRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	В	112	Total 2392	C 1068	N 435	0 778	Р 111	0	0

• Molecule 3 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	С	272	Total 2083	C 1296	N 408	0 373	S 6	0	0

• Molecule 4 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	D	206	Total 1569	C 985	N 289	O 290	${ m S}{ m 5}$	0	0

• Molecule 5 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues	Atoms				AltConf	Trace	
5	Е	205	Total 1561	C 980	N 289	O 290	$\frac{S}{2}$	0	0

• Molecule 6 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues		Atoms					Trace
6	F	176	Total 1386	C 882	N 241	O 256	${f S}7$	0	0

• Molecule 7 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	G	175	Total 1342	C 835	N 248	O 257	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 8 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	oms			AltConf	Trace
8	J	142	Total	C 710	N 206	0	S 5	0	0
			1120	110	200	202	5		

• Molecule 9 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	oms		Atoms				
9	K	122	Total 920	C 571	N 173	0 172	S 4	0	0		

• Molecule 10 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	L	146	Total 1081	C 671	N 207	O 201	${S \over 2}$	0	0

• Molecule 11 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	М	135	Total 1076	C 690	N 205	0 176	${f S}{5}$	0	0

• Molecule 12 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
12	Ν	119	Total 953	C 583	N 186	0 180	${S \atop 4}$	0	0

• Molecule 13 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	О	120	Total 912	C 564	N 176	0 171	S 1	0	0

• Molecule 14 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	Р	115	Total 944	C 600	N 185	0 158	S 1	0	0

• Molecule 15 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	Q	117	Total 940	C 591	N 189	0 156	${S \atop 4}$	0	0

• Molecule 16 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
16	R	101	Total 786	C 501	N 139	O 146	0	0

• Molecule 17 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues		At	oms			AltConf	Trace
17	S	109	Total 842	C 525	N 164	O 150	${ m S} { m 3}$	0	0

• Molecule 18 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		At	AltConf	Trace			
18	Т	90	Total 725	C 452	N 134	O 136	${ m S} { m 3}$	0	0

• Molecule 19 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		At	oms	AltConf	Trace		
19	U	101	Total 762	C 478	N 142	0 138	$\frac{S}{4}$	0	0

• Molecule 20 is a protein called Nucleotide-binding protein ExpZ.

Mol	Chain	Residues	Atoms					AltConf	Trace
20	V	541	Total 4177	C 2637	N 737	0 796	S 7	0	0

There are 66 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
V	-5	MET	-	initiating methionine	UNP P39115
V	-4	HIS	-	expression tag	UNP P39115
V	-3	HIS	-	expression tag	UNP P39115
V	-2	HIS	-	expression tag	UNP P39115
V	-1	HIS	-	expression tag	UNP P39115
V	0	HIS	-	expression tag	UNP P39115
V	1	HIS	-	expression tag	UNP P39115
V	129	GLN	GLU	engineered mutation	UNP P39115
V	432	GLN	GLU	engineered mutation	UNP P39115
V	486	ALA	-	expression tag	UNP P39115
V	487	ALA	-	expression tag	UNP P39115
V	488	ALA	-	expression tag	UNP P39115
V	489	ALA	-	expression tag	UNP P39115
V	490	ALA	-	expression tag	UNP P39115
V	491	ALA	-	expression tag	UNP P39115
V	492	ALA	-	expression tag	UNP P39115
V	493	ALA	-	expression tag	UNP P39115
V	494	ALA	-	expression tag	UNP P39115
V	495	ALA	-	expression tag	UNP P39115
V	496	ALA	-	expression tag	UNP P39115
V	497	ALA	-	expression tag	UNP P39115
V	498	ALA	-	expression tag	UNP P39115
V	499	ALA	-	expression tag	UNP P39115
V	500	ALA	-	expression tag	UNP P39115
V	501	ALA	-	expression tag	UNP P39115
V	502	ALA	-	expression tag	UNP P39115
V	503	ALA	-	expression tag	UNP P39115
V	504	ALA	-	expression tag	UNP P39115
V	505	ALA	-	expression tag	UNP P39115
V	506	ALA	-	expression tag	UNP P39115
V	507	ALA	-	expression tag	UNP P39115
V	508	ALA	-	expression tag	UNP P39115
V	509	ALA	-	expression tag	UNP P39115
V	510	ALA	-	expression tag	UNP P39115
V	511	ALA	-	expression tag	UNP P39115
V	512	ALA	-	expression tag	UNP P39115
V	513	ALA	-	expression tag	UNP P39115
V	514	ALA	-	expression tag	UNP P39115
V	515	ALA	-	expression tag	UNP P39115
V	516	ALA	-	expression tag	UNP P39115
V	517	ALA	-	expression tag	UNP P39115
V	518	ALA	-	expression tag	UNP P39115
V	519	ALA	-	expression tag	UNP P39115

Chain	Residue	Modelled	Actual	Comment	Reference
V	520	ALA	-	expression tag	UNP P39115
V	521	ALA	-	expression tag	UNP P39115
V	522	ALA	-	expression tag	UNP P39115
V	523	ALA	-	expression tag	UNP P39115
V	524	ALA	-	expression tag	UNP P39115
V	525	ALA	-	expression tag	UNP P39115
V	526	ALA	-	expression tag	UNP P39115
V	527	ALA	-	expression tag	UNP P39115
V	528	ALA	-	expression tag	UNP P39115
V	529	ALA	-	expression tag	UNP P39115
V	530	ALA	-	expression tag	UNP P39115
V	531	ALA	-	expression tag	UNP P39115
V	532	ALA	-	expression tag	UNP P39115
V	533	ALA	-	expression tag	UNP P39115
V	534	ALA	-	expression tag	UNP P39115
V	535	ALA	-	expression tag	UNP P39115
V	536	ALA	-	expression tag	UNP P39115
V	537	ALA	-	expression tag	UNP P39115
V	538	ALA	-	expression tag	UNP P39115
V	539	ALA	-	expression tag	UNP P39115
V	540	ALA	-	expression tag	UNP P39115
V	541	ALA	-	expression tag	UNP P39115
V	542	ALA	-	expression tag	UNP P39115

Continued from previous page...

• Molecule 21 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
21	W	82	Total 630	C 390	N 123	0 117	0	0

• Molecule 22 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
22	Х	58	Total 444	C 275	N 92	0 75	$\frac{\mathrm{S}}{2}$	0	0

• Molecule 23 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues	Atoms					AltConf	Trace
23	Y	65	Total 530	C 328	N 102	O 98	${ m S} { m 2}$	0	0

• Molecule 24 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
24	7	59	Total	С	Ν	Ο	\mathbf{S}	0	0
24		90	455	281	89	84	1	0	0

• Molecule 25 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues	Atoms					AltConf	Trace
25	0	54	Total 426	C 262	N 86	0 71	${f S}7$	0	0

• Molecule 26 is a protein called 50S ribosomal protein L33 1.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
26	1	48	Total 401	С 244	N 80	O 73	S 4	0	0

• Molecule 27 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
27 2	4.4	Total	С	Ν	Ο	S	0	0
	Z	44	367	222	89	54	2	0

• Molecule 28 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues		At	oms	AltConf	Trace		
28	3	64	Total 512	C 321	N 107	0 82	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 29 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
29	4	37	Total 296	C 186	N 60	O 45	${ m S}{ m 5}$	0	0

• Molecule 30 is a protein called 50S ribosomal protein L31.

Mol	Chain	Residues		Atc	\mathbf{ms}		AltConf	Trace	
30	6	63	Total 499	C 312	N 91	0 91	${f S}{5}$	0	0

• Molecule 31 is a RNA chain called mRNA.

Mol	Chain	Residues		Atoms					Trace
31	7	3	Total 60	С 27	N 7	O 23	Р 3	0	0

• Molecule 32 is a protein called 50S ribosomal protein L1.

Mol	Chain	Residues		Atoms					Trace
32	8	212	Total 1599	C 1015	N 273	O 306	${ m S}{ m 5}$	0	0

• Molecule 33 is a RNA chain called 16S rRNA.

Mol	Chain	Residues		1	Atoms			AltConf	Trace
33	a	1533	Total 32891	C 14667	N 6034	O 10657	Р 1533	0	0

• Molecule 34 is a protein called 30S ribosomal protein S2.

Mol	Chain	Residues		Ate		AltConf	Trace		
34	b	218	Total 1757	C 1119	N 309	0 323	S 6	0	0

• Molecule 35 is a protein called 30S ribosomal protein S3.

Mol	Chain	Residues		At		AltConf	Trace		
35	с	206	Total 1619	C 1011	N 304	0 301	$\frac{S}{3}$	0	0

• Molecule 36 is a protein called 30S ribosomal protein S4.

Mol	Chain	Residues		At	oms		AltConf	Trace	
36	d	195	Total 1568	C 991	N 291	0 284	${S \over 2}$	0	0

• Molecule 37 is a protein called 30S ribosomal protein S5.

Mol	Chain	Residues		At	oms		AltConf	Trace	
37	е	164	Total 1218	C 767	N 225	0 224	${S \over 2}$	0	0

• Molecule 38 is a protein called 30S ribosomal protein S6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
38	f	92	Total 755	C 476	N 132	0 146	S 1	0	0

• Molecule 39 is a protein called 30S ribosomal protein S7.

Mol	Chain	Residues	Atoms					AltConf	Trace
39	g	149	Total 1181	C 740	N 220	0 215	S 6	0	0

• Molecule 40 is a protein called 30S ribosomal protein S8.

Mol	Chain	Residues		At	oms	AltConf	Trace		
40	h	131	Total 1036	$\begin{array}{c} \mathrm{C} \\ 655 \end{array}$	N 191	0 187	${ m S} { m 3}$	0	0

• Molecule 41 is a protein called 30S ribosomal protein S9.

Mol	Chain	Residues		At	oms			AltConf	Trace
41	i	125	Total 966	C 599	N 191	0 175	S 1	0	0

• Molecule 42 is a protein called 30S ribosomal protein S10.

Mol	Chain	Residues		At	oms	AltConf	Trace		
42	j	95	Total 761	C 479	N 139	0 141	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 43 is a protein called 30S ribosomal protein S11.

Mol	Chain	Residues		At	oms			AltConf	Trace
43	k	114	Total 838	C 516	N 164	0 156	${S \over 2}$	0	0

• Molecule 44 is a protein called 30S ribosomal protein S12.

Mol	Chain	Residues		At	oms	Atoms					
44	1	136	Total 1052	C 653	N 211	0 186	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0		

• Molecule 45 is a protein called 30S ribosomal protein S13.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
45	m	108	Total 868	C 534	N 176	0 158	0	0

• Molecule 46 is a protein called 30S ribosomal protein S14.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
46	n	60	Total 497	C 317	N 98	0 77	${ m S}{ m 5}$	0	0

• Molecule 47 is a protein called 30S ribosomal protein S15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
47	0	85	Total 710	C 436	N 144	0 129	S 1	0	0

• Molecule 48 is a protein called 30S ribosomal protein S16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
48	р	88	Total 695	C 441	N 128	0 124	$\frac{\mathrm{S}}{2}$	0	0

• Molecule 49 is a protein called 30S ribosomal protein S17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
49	q	84	Total 691	C 435	N 128	0 126	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 50 is a protein called 30S ribosomal protein S18.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
50	r	64	Total	С	Ν	0	S	0	0
- 50	1	04	518	332	96	88	2	0	0

• Molecule 51 is a protein called 30S ribosomal protein S19.

Mol	Chain	Residues		At	oms			AltConf	Trace
51	s	78	Total 633	C 409	N 112	0 110	${S \over 2}$	0	0

• Molecule 52 is a protein called 30S ribosomal protein S20.

Mol	Chain	Residues		At	AltConf	Trace			
52	t	83	Total 637	C 390	N 130	0 116	S 1	0	0

• Molecule 53 is a RNA chain called P-tRNA(Leu).

Mol	Chain	Residues		\mathbf{A}^{\dagger}	AltConf	Trace			
53	x	75	Total 1603	C 714	N 284	O 530	Р 75	0	0

• Molecule 54 is TELITHROMYCIN (three-letter code: TEL) (formula: $C_{43}H_{65}N_5O_{10}$).

Mol	Chain	Residues	I	Aton	ns		AltConf
54	А	1	Total 58	C 43	N 5	O 10	0

• Molecule 55 is ADENOSINE-5'-TRIPHOSPHATE (three-letter code: ATP) (formula: $C_{10}H_{16}N_5O_{13}P_3$).

Mol	Chain	Residues		AltConf					
55	V	1	Total	С	Ν	Ο	Р	0	
55	v	L	62	20	10	26	6	0	
55	V	1	Total	С	Ν	Ο	Р	0	
55	v	L	62	20	10	26	6	0	

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 23S rRNA

U954	A957 A958	C959	C962 6963	A964 A965	0960 1	A970	U972	6973 A974	C975 U976	1977 1977	C980	C981	A987	6992	0000	0004	A1003	A1006 61007		C1011	A1019 A1020	A1076	A1027	A1029	G1030 C1031	C1032	A1036 C1037	C1041	A1042	U1045	C1051 C1052	C1053 A1054						
A1055	U1058 A1059	A 1067	G1068 011069	G1071 G1071	A1072 A1073	111079		U1086 U1087	G1088	C1089	U1090	A1092	G1093	A1096	A1097	C1098	C1099	G1101	G1102	A1103	01104 G1105	U1106	U1107 G1108	G1109	C1110		A1113	A1115	A1116	C1118	A1119	C1121	C1122	C1124	C1125	U1127	U1128 U1129	A1130 + A1131 + A1131
A1132	G1133	G1135	01136 G1137	C1138	U1140	A1141	A1142 U1143	A1144	G1145	01146 01147	C1148	A1149	C1150	G1152	G1153	U1154 C1155	G1156	A1157 G1158	U1 159	G1160	C1162	A1172	A1173 A1174	A1175 U1176	G1177 U1178	A1179	C1180 C1181 C1182		C1186	A1188	A1197	C1198 C1199	61200 A1201	61203 61203	A1210	C1216		
n H	с С G1220	A1221 A1222	C1223	U1226	A1235 G1236	C1237 C1237	01239	A1243	A1244 G1245	G1246	G1248 C1248	U1249 G1250	U1251	79719	G1259 41260	C1261	A1266	A 1769	C1270	01274	G1275 G1276	A1277	C1279 C1279	C1281	01282	G1290	A1293 A1294	01295 G1296	A1305	G1306 U1307	G1311	A1312 A1313						
A1314	41323 A1323	G1324 A1325	A1326 U1327	C1328 C1328 C1329	C1330	C1333	A1335	C1330	A1339 A1340	U1341	G1342 C1343	C1344 U1345	A1346	U1350	U1351 11352	C1353	C1354	61362 61363	C1364	U1365 C1366	G1367 U1368	C1369	G1371 G1377	U1373	C1374 A1375	G1376	U1379	C1384 G1385	A1388	C1389 C1390	U1391	G1 <mark>3</mark> 97						
A1404	C1415 G1416	A1417 111418	C1422	A1423 A1424 A1424	C1425 A1426	111435	U1436	C143/	A1442 C1443		01448 C1449	C1450 U1451	C1452	A1453 C1454	111457	U1458	01459		A1464 A1465	U1466	6140 <i>/</i>	G1472 A1473	C1474 G1475	C1476	G1481	U1484	A1485 G1486 G1486	G1488	01469 A1490	A1499	U1500 U1501	G1502	A1506					
U1507	C1508			G1526 G1526 G1526	U1528 01528	G1530	G1531 A1532	A1533 A1534	U1535	AL DOD	C1539 A1540	A1541	A1542 U1543	C1544 C1545		U1549 C1550	C1551 C1552	A1553	U A1555	A1556 G1557	G1558	U1560	G1561 A1562	G1563 C1564	U1565 G1566	U1567 G1568	A1569	G1571	C1573	C1577	G A	A I	n					
A	o ≼ ೮	D N	 G1589	C1597	U1602 U1603	C1604	A1606		C1613	A1614	A1617	C1622		01626 A1627	G1628	A1631	G1632 G1633	U1634	C1644	C1645	A1653 A1654	A1655	C1657 C1657		A1661	G1671 A1672	A1679	A1680	A1691 U1692	C1693 G1694	A1695 G1696	A1697 G1698						
A1699	C1701 C1701 U1702	C1 705	G1706 111707	U1708 A1709	G1712	A1713 A1714	C1715	01/16 C1717	G1718 G1719	C1720	G1726	A1727	C1731	U1738	C1739 C1740		A1745 A1746	G1747 G1748	G1749	G1750 U1751	G1752 C1753	C1 767	U1758	U1759 A1760	G1761 G1762	C1766	A1767 A1768	G1769 C1770	C1771	A1776	A1778	C1780	TOTO					
G1782	C17 03 A1784 G1785	A1789	01790 01790	G1792 G1793	C1794	A1797	C1800	41801 A1802	C1803 U1804	G1805	G1810	C1811 A1812	A1813	A1814 A1815	A1816 C1817		A1820	G1828 C1829	G1830	A1831 A1832	<mark>G1833</mark>	A1839	G1843 A1844	A1845	G1846 U1847	A1848 U1849	A1858	C1867	C1872	A 1076		A1882 A1883	CODTW					
G1884	A1000 G1886 31887	1895			C1903	d.1904	C1922	G1932	61 <mark>935</mark>	A1941	A1942	C1943	A1945	01946	01952	C190	A1956 A1957	G1958	61700	C1963	A1966	01968	C1970	01972	U1973	A1981	01 <mark>984</mark> 01985	21991	C1992	C1994	01996	A1998	A1999 A2000					
G2001	G2004	G2009 42010		G2021 U2022	C2023 U2024	C2025		42033 A2034	C2035	G2050	02051 A2052	C2053 C2054	U2055	A2059	A2060 C2061	A2062	02063 G2064	C2065	G2068	U2069 U2070	A2071 C2072		G2077	C2079	A2080 G2081	C2084	G2085	A2089 G2090	A2091 C2092	C2093 C2094	G2098	G2101						
C2102	U2105	C2114	U2121 G2122	A2123 A2124	U2125 G2126	U2127	U2128 G2129	G2130	U2131	A2132	A2134	G2135	C2136	U2138	G2139	U2140	C2142	A2143	G2144	G2145 A2146		G2149	G2150	A2152	G2153	G2154	G2156	C2158	U2159 U2160	G2161	G2162	A2165	C2167	G2168	A2170	G2171 • C2172 •	G2173 C2174	c2175

• Molecule 16: 50S ribosomal protein L21

• •

13%

6% 6%

A520 A522 A522 A522 A523 A531 A531 A534 A534 A533 A534 A533 A534 A533 A534 A537 A537 A537 A537 A537 A537 A540 A541

- Molecule 21: 50S ribosomal protein L27
 Chain W: 84%
 Molecule 22: 50S ribosomal protein L28
 Chain X: 87%
- \bullet Molecule 23: 50S ribosomal protein L29

• Molecule 24: 50S ribosomal protein L30

•		•		
TM BO	Y.	R24	T48	LYS

• Molecule 27: 50S ri	bosomal protein L34		
Chain 2:	98%		
M1 100 100 100 100 100 100 100 100 100 1			
• Molecule 28: 50S ri	bosomal protein L35		
Chain 3:	94%		-
MET P2 K15 K16 L32 L32 L62 L95 LYS			
• Molecule 29: 50S ri	bosomal protein L36		
Chain 4:	100%		•
M1 E12 K15 E28 G37			
• Molecule 30: 50S ri	bosomal protein L31		
Chain 6:	67% 94%	• 5'	%
M1 K2 A3 G4 K10 K11 A12 A17 C18	d 19 N20 F 22 F 22 E 23 C 23 K 26 E 29 V 31 V 31 V 31 V 33 V 33 V 33 E 30 V 31 V 33 C 39 C 39 C 39 C 39 C 39 C 44	P41 F42 Y43 C45 C45 C45 C45 C45 C45 F49 F49 F49 S51 S51	D53 G54 R55 D57 R56 F59 C17 C17 LEV LVS
• Molecule 31: mRNA	ł		
Chain 7:	67%	33%	-
C25 U26 U27			
• Molecule 32: 50S ri	bosomal protein L1		
	89%		
Chain 8:	91%	9%	
MET ALA LYS LYS LYS GLY GLV VAL ALA ALA ALA ALA ALA ALA ALA ALA A	R17 518 721 721 721 722 722 723 726 726 726 726 726 726 728 728 728 729 729 733 733	T35 A36 K37 F38 F38 D39 A40 T41 V42 E43 E43 A45 A45	R47 148 49 951 952 853 853 853 955 955 955 955 955 853 850
661 A62 V63 V64 V64 P66 N67 C68 C68 C68 C68 C70 C70 C72	973 177 177 177 177 177 177 177 177 177 1	G91 A92 F94 F94 V95 G96 D97 T98 D97 T98 D99 Y100 Y100	K103 1104 q105 q106 f107 K108 F111 D112 V113 V113 V115 A116 A116 P1118 P1118 P1118

• Molecule 53: P-tRNA(Leu)

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	28972	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	1.425	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	FEI FALCON III $(4k \ge 4k)$	Depositor
Maximum map value	0.634	Depositor
Minimum map value	-0.379	Depositor
Average map value	0.003	Depositor
Map value standard deviation	0.027	Depositor
Recommended contour level	0.11	Depositor
Map size (Å)	381.96, 381.96, 381.96	wwPDB
Map dimensions	360, 360, 360	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.061, 1.061, 1.061	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: TEL, ATP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	B	ond lengths	Bond angles				
NIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5			
1	А	1.05	17/69438~(0.0%)	1.31	711/108311~(0.7%)			
2	В	0.79	0/2675	1.34	36/4170~(0.9%)			
3	С	0.59	0/2120	0.76	0/2845			
4	D	0.61	0/1591	0.75	1/2132~(0.0%)			
5	Ε	0.54	0/1580	0.74	2/2132~(0.1%)			
6	F	0.44	0/1405	0.83	4/1887~(0.2%)			
7	G	0.40	0/1360	0.70	0/1832			
8	J	0.57	0/1146	0.78	0/1542			
9	Κ	0.60	0/927	0.79	1/1245~(0.1%)			
10	L	0.53	0/1093	0.77	2/1457~(0.1%)			
11	М	0.55	0/1099	0.76	0/1468			
12	Ν	0.54	0/960	0.74	0/1284			
13	0	0.45	0/921	0.77	0/1236			
14	Р	0.55	0/957	0.77	0/1279			
15	Q	0.62	0/952	0.81	2/1266~(0.2%)			
16	R	0.62	0/797	0.87	4/1070~(0.4%)			
17	S	0.54	0/851	0.78	2/1146~(0.2%)			
18	Т	0.52	0/731	0.71	0/974			
19	U	0.51	1/772~(0.1%)	0.75	0/1032			
20	V	0.41	0/4247	0.72	3/5736~(0.1%)			
21	W	0.62	0/638	0.94	2/847~(0.2%)			
22	Х	0.46	0/448	0.77	1/596~(0.2%)			
23	Y	0.44	0/531	0.70	0/707			
24	Z	0.47	0/457	0.79	0/613			
25	0	0.61	0/433	0.81	0/574			
26	1	0.57	0/406	0.76	1/540~(0.2%)			
27	2	0.58	0/370	0.78	0/483			
28	3	0.55	0/519	0.70	0/680			
29	4	0.47	0/299	0.66	0/393			
30	6	0.42	0/509	0.72	0/678			
31	7	0.61	0/65	1.36	2/98~(2.0%)			
32	8	0.32	0/1624	0.66	0/2192			

Mal	Chain	В	ond lengths		Bond angles
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5
33	a	0.63	1/36826~(0.0%)	1.23	291/57450~(0.5%)
34	b	0.35	0/1782	0.71	3/2392~(0.1%)
35	с	0.38	0/1641	0.67	0/2208
36	d	0.36	0/1598	0.72	0/2147
37	е	0.39	0/1230	0.75	1/1655~(0.1%)
38	f	0.32	0/766	0.61	0/1031
39	g	0.38	0/1196	0.75	0/1604
40	h	0.36	0/1048	0.75	0/1407
41	i	0.38	0/979	0.76	2/1315~(0.2%)
42	j	0.38	0/773	0.70	0/1044
43	k	0.35	0/852	0.70	1/1153~(0.1%)
44	1	0.37	0/1069	0.79	3/1435~(0.2%)
45	m	0.36	0/873	0.76	1/1166~(0.1%)
46	n	0.41	0/507	0.82	1/672~(0.1%)
47	0	0.33	0/718	0.62	0/960
48	р	0.39	0/708	0.73	0/950
49	q	0.40	0/699	0.79	1/933~(0.1%)
50	r	0.33	0/526	0.67	0/705
51	s	0.35	0/649	0.69	0/872
52	t	0.36	0/639	0.65	0/852
53	Х	0.65	0/1790	1.52	28/2787~(1.0%)
All	All	0.81	19/158790~(0.0%)	1.17	1106/237183~(0.5%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
3	С	0	1
4	D	0	1
6	F	0	3
8	J	0	1
10	L	0	2
13	0	0	1
15	Q	0	1
16	R	0	2
17	S	0	1
20	V	0	11
25	0	0	2
30	6	0	1
34	b	0	5

Mol	Chain	#Chirality outliers	#Planarity outliers
36	d	0	5
37	е	0	1
38	f	0	1
39	g	0	2
40	h	0	1
44	1	0	2
45	m	0	3
47	0	0	1
49	q	0	1
50	r	0	2
All	All	0	51

Continued from previous page...

All (19) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
1	А	631	G	N9-C4	-7.63	1.31	1.38
1	А	830	А	N9-C4	-6.90	1.33	1.37
1	А	1067	А	N9-C4	-6.87	1.33	1.37
1	А	574	А	N9-C4	-6.32	1.34	1.37
1	А	631	G	C2-N3	-5.92	1.28	1.32
1	А	776	G	C8-N7	-5.80	1.27	1.30
1	А	1812	А	N9-C4	-5.80	1.34	1.37
1	А	700	U	C1'-N1	5.70	1.57	1.48
1	А	1188	А	N9-C4	-5.57	1.34	1.37
1	А	847	А	N9-C4	-5.52	1.34	1.37
19	U	3	VAL	CB-CG1	-5.48	1.41	1.52
1	А	1820	А	N9-C4	-5.47	1.34	1.37
1	А	776	G	N7-C5	-5.47	1.35	1.39
33	а	993	А	N9-C4	5.43	1.41	1.37
1	А	572	А	N9-C4	-5.38	1.34	1.37
1	А	589	G	N9-C4	-5.37	1.33	1.38
1	A	1054	A	N9-C4	-5.18	1.34	1.37
1	А	374	А	N9-C4	-5.00	1.34	1.37
1	А	589	G	N3-C4	-5.00	1.31	1.35

All (1106) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
33	a	1502	A	C8-N9-C4	-14.51	100.00	105.80
53	Х	6	G	O5'-P-OP2	-14.04	93.07	105.70
1	А	756	U	N3-C2-O2	-12.07	113.75	122.20
1	А	2054	С	C5-C6-N1	12.06	127.03	121.00

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	2243	С	N1-C2-O2	11.98	126.09	118.90
1	А	2334	U	C5-C4-O4	-11.91	118.75	125.90
1	А	2334	U	O4'-C1'-N1	11.30	117.24	108.20
33	a	1502	A	N7-C8-N9	11.27	119.43	113.80
1	А	2334	U	C2-N1-C1'	11.01	130.92	117.70
53	Х	8	U	O5'-P-OP1	10.86	123.73	110.70
1	А	398	U	N3-C2-O2	-10.81	114.63	122.20
1	А	2025	C	N3-C2-O2	-10.76	114.37	121.90
1	А	1943	С	N1-C2-O2	10.51	125.21	118.90
1	А	2243	C	N3-C2-O2	-10.51	114.54	121.90
2	В	24	C	N1-C2-O2	10.51	125.21	118.90
1	А	92	G	C8-N9-C4	10.44	110.58	106.40
1	А	589	G	N3-C4-N9	-10.43	119.74	126.00
1	А	631	G	N3-C4-C5	10.38	133.79	128.60
1	А	2157	C	N1-C2-O2	10.38	125.13	118.90
1	А	631	G	N3-C4-N9	-10.30	119.82	126.00
1	А	483	С	C5-C6-N1	10.07	126.04	121.00
1	А	769	А	N1-C6-N6	-10.07	112.56	118.60
1	А	1527	С	C2-N1-C1'	10.07	129.87	118.80
1	А	2335	U	N3-C2-O2	-9.96	115.23	122.20
33	a	1009	С	C2-N1-C1'	9.92	129.72	118.80
1	А	2695	C	N1-C2-O2	9.74	124.74	118.90
1	А	2334	U	C6-N1-C1'	-9.58	107.78	121.20
33	a	1176	A	O5'-P-OP1	-9.46	97.19	105.70
1	А	1366	С	C5-C6-N1	9.40	125.70	121.00
1	А	631	G	C4-N9-C1'	-9.31	114.40	126.50
1	А	2822	С	C2-N1-C1'	9.25	128.98	118.80
33	a	1009	С	N1-C2-O2	9.21	124.43	118.90
33	a	1076	С	N1-C2-O2	9.07	124.34	118.90
33	a	1046	G	O5'-P-OP1	-9.06	97.54	105.70
1	А	2025	С	N1-C2-O2	9.05	124.33	118.90
2	В	62	U	C2-N1-C1'	9.04	128.54	117.70
1	А	1476	С	C5-C6-N1	9.03	125.51	121.00
1	A	1353	С	C2-N1-C1'	9.01	128.71	118.80
1	А	442	С	C6-N1-C2	-8.99	116.70	120.30
33	a	60	C	C6-N1-C2	-8.92	116.73	120.30
1	A	2350	G	N3-C4-C5	-8.86	124.17	128.60
53	x	19	U	O5'-P-OP2	-8.84	97.75	105.70
33	a	1502	A	C5'-C4'-O4'	-8.71	98.65	109.10
1	A	2334	U	N3-C4-O4	8.70	125.49	119.40
33	a	1076	C	C2-N1-C1'	8.68	128.34	118.80
33	a	1331	C	C2-N1-C1'	8.66	128.33	118.80

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	page
	J	1	1 5

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	2695	С	N3-C2-O2	-8.65	115.84	121.90
33	a	101	С	N1-C2-O2	8.63	124.08	118.90
1	А	442	С	C5-C6-N1	8.62	125.31	121.00
1	А	1943	С	N3-C2-O2	-8.61	115.87	121.90
1	А	272	С	N1-C2-O2	8.54	124.02	118.90
2	В	24	С	C2-N1-C1'	8.51	128.16	118.80
1	А	1872	С	C6-N1-C2	-8.51	116.90	120.30
33	а	101	С	N3-C2-O2	-8.47	115.97	121.90
33	а	989	С	N1-C2-O2	8.46	123.98	118.90
1	А	2918	G	C4-N9-C1'	8.45	137.49	126.50
21	W	28	ARG	NE-CZ-NH2	8.44	124.52	120.30
1	А	75	G	O4'-C1'-N9	8.40	114.92	108.20
1	А	769	А	N1-C2-N3	-8.38	125.11	129.30
1	А	1872	С	C5-C6-N1	8.36	125.18	121.00
1	А	631	G	C8-N9-C1'	8.34	137.84	127.00
1	А	588	С	N1-C2-O2	8.32	123.89	118.90
1	А	1133	G	O4'-C1'-N9	8.27	114.82	108.20
1	А	442	С	O5'-P-OP1	8.26	120.62	110.70
1	А	1707	U	N3-C2-O2	-8.26	116.42	122.20
1	А	1985	U	N3-C2-O2	-8.21	116.45	122.20
1	А	2054	С	C6-N1-C2	-8.19	117.02	120.30
1	А	1343	С	C2-N1-C1'	8.19	127.81	118.80
1	А	1527	С	N1-C2-O2	8.18	123.81	118.90
1	А	508	С	C2-N1-C1'	8.16	127.78	118.80
1	А	442	С	O5'-P-OP2	-8.16	98.36	105.70
53	Х	42	А	P-O3'-C3'	8.16	129.49	119.70
1	А	2335	U	C6-N1-C2	-8.16	116.11	121.00
1	А	398	U	N1-C2-O2	8.14	128.50	122.80
33	a	1170	С	C6-N1-C2	-8.13	117.05	120.30
1	А	397	U	N1-C2-O2	8.09	128.46	122.80
33	a	1076	С	C6-N1-C2	-8.09	117.06	120.30
33	a	620	С	N1-C2-O2	8.08	123.75	118.90
1	А	1343	С	C6-N1-C2	-8.07	117.07	120.30
1	А	2105	U	C2-N1-C1'	8.05	127.36	117.70
1	А	1352	U	C2-N1-C1'	8.03	127.33	117.70
1	А	648	G	O4'-C1'-N9	8.02	114.61	108.20
1	А	483	С	C6-N1-C2	-8.01	117.09	120.30
1	A	756	U	N1-C2-O2	8.01	128.41	122.80
1	A	2350	G	C4-N9-C1'	8.00	136.90	126.50
1	A	719	C	C5-C6-N1	8.00	125.00	121.00
1	A	589	G	$C8-N9-\overline{C1'}$	8.00	$137.4\overline{0}$	127.00
1	А	1527	С	C5-C6-N1	7.94	124.97	121.00

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
33	a	1331	С	N1-C2-O2	7.92	123.65	118.90
1	А	1067	А	C5-N7-C8	-7.92	99.94	103.90
53	X	20	А	P-O3'-C3'	7.91	129.19	119.70
1	А	1476	С	C6-N1-C2	-7.91	117.14	120.30
1	А	2105	U	N1-C2-O2	7.90	128.33	122.80
1	А	573	С	N1-C2-O2	7.88	123.63	118.90
1	А	2296	А	O5'-P-OP1	-7.88	98.61	105.70
1	А	589	G	N9-C4-C5	7.86	108.54	105.40
1	А	1571	G	O5'-P-OP2	-7.86	98.63	105.70
33	a	1439	С	N3-C2-O2	-7.84	116.41	121.90
33	a	1305	С	N3-C2-O2	-7.83	116.42	121.90
1	А	1036	А	C8-N9-C4	-7.83	102.67	105.80
33	a	136	U	N3-C2-O2	-7.80	116.74	122.20
1	А	397	U	N3-C2-O2	-7.80	116.74	122.20
1	А	645	С	C6-N1-C2	-7.80	117.18	120.30
1	А	2768	U	N3-C2-O2	-7.76	116.77	122.20
1	А	2114	С	C2-N1-C1'	7.75	127.33	118.80
33	a	1037	С	N1-C2-O2	7.75	123.55	118.90
1	А	672	С	C6-N1-C2	-7.75	117.20	120.30
1	А	1872	С	C2-N1-C1'	7.74	127.32	118.80
1	А	2485	С	C5-C6-N1	7.74	124.87	121.00
1	А	831	U	N3-C2-O2	-7.73	116.79	122.20
1	А	2388	С	O5'-P-OP2	-7.73	98.75	105.70
33	a	993	A	C2-N3-C4	7.71	114.46	110.60
1	А	2255	С	N1-C2-O2	7.69	123.51	118.90
1	А	1028	С	N1-C2-O2	7.68	123.51	118.90
33	a	143	С	N3-C2-O2	-7.68	116.52	121.90
1	A	1343	С	C5-C6-N1	7.68	124.84	121.00
1	A	272	С	N3-C2-O2	-7.67	116.53	121.90
53	x	21	G	C4-N9-C1'	7.67	136.47	126.50
1	А	1771	С	N1-C2-O2	7.66	123.50	118.90
2	В	24	С	N3-C2-O2	-7.66	116.54	121.90
1	A	1985	U	N1-C2-O2	7.66	128.16	122.80
2	В	79	С	N1-C2-O2	7.65	123.49	118.90
1	А	1374	С	N1-C2-O2	7.65	123.49	118.90
1	А	2356	A	N7-C8-N9	7.62	117.61	113.80
1	A	92	G	N7-C8-N9	-7.62	109.29	113.10
1	A	1963	C	C6-N1-C2	-7.62	117.25	120.30
33	a	60	C	C5-C6-N1	7.61	124.81	121.00
33	a	1009	С	N3-C2-O2	-7.61	116.57	121.90
1	A	2157	C	N3-C2-O2	-7.60	116.58	121.90
1	A	1817	C	C2-N1-C1'	7.58	127.14	118.80

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	page
	J	1	1 5

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	2072	С	N1-C2-O2	7.57	123.44	118.90
33	a	620	С	N3-C2-O2	-7.57	116.60	121.90
33	a	1047	С	C6-N1-C2	-7.56	117.28	120.30
1	А	1831	А	N7-C8-N9	7.55	117.57	113.80
1	А	508	С	N1-C2-O2	7.54	123.42	118.90
2	В	15	С	C5-C6-N1	7.54	124.77	121.00
1	А	1122	С	N1-C2-O2	7.53	123.42	118.90
1	А	589	G	C4-N9-C1'	-7.51	116.74	126.50
33	a	1149	U	C2-N1-C1'	7.48	126.68	117.70
33	a	465	U	N1-C2-O2	7.48	128.03	122.80
1	А	554	U	OP2-P-O3'	7.47	121.64	105.20
2	В	59	U	C2-N1-C1'	7.46	126.66	117.70
33	a	853	С	N1-C2-O2	7.46	123.38	118.90
1	А	1656	С	N1-C2-O2	7.46	123.37	118.90
33	a	1009	С	C6-N1-C1'	-7.45	111.86	120.80
1	А	1366	С	C6-N1-C2	-7.45	117.32	120.30
1	А	2822	С	C5-C6-N1	7.43	124.71	121.00
1	А	1476	С	C2-N1-C1'	7.41	126.95	118.80
1	А	2371	С	C6-N1-C2	-7.41	117.34	120.30
33	a	60	С	C2-N1-C1'	7.40	126.94	118.80
33	a	989	С	N3-C2-O2	-7.40	116.72	121.90
33	a	746	С	C6-N1-C2	-7.40	117.34	120.30
1	А	681	С	C6-N1-C2	-7.39	117.34	120.30
1	А	2334	U	C5-C6-N1	7.39	126.39	122.70
1	А	1067	А	N7-C8-N9	7.38	117.49	113.80
33	a	1331	С	N3-C2-O2	-7.36	116.75	121.90
1	А	2131	U	C2-N1-C1'	7.36	126.53	117.70
53	Х	19	U	O5'-P-OP1	7.35	119.52	110.70
33	a	759	С	C6-N1-C2	-7.35	117.36	120.30
33	a	1076	С	N3-C2-O2	-7.35	116.75	121.90
33	a	1438	С	N3-C2-O2	-7.34	116.76	121.90
6	F	136	LEU	CB-CG-CD1	-7.33	98.55	111.00
33	a	113	G	O5'-P-OP1	-7.31	99.12	105.70
1	А	1942	А	O4'-C1'-N9	7.29	114.03	108.20
1	А	1450	С	C2-N1-C1'	7.29	126.82	118.80
1	А	1817	С	N1-C2-O2	7.28	123.27	118.90
1	А	593	А	C2-N3-C4	7.27	114.24	110.60
1	А	2335	U	C2-N1-C1'	7.27	126.43	117.70
1	А	508	С	C6-N1-C2	-7.27	117.39	120.30
33	a	92	U	P-O3'-C3'	7.27	128.42	119.70
33	a	136	U	N1-C2-O2	7.26	127.88	122.80
1	А	1527	С	OP1-P-O3'	7.26	121.17	105.20

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	2356	А	C8-N9-C4	-7.26	102.90	105.80
1	А	1942	А	N7-C8-N9	-7.26	110.17	113.80
33	a	168	С	N1-C2-O2	7.26	123.25	118.90
1	А	1415	С	N1-C2-O2	7.25	123.25	118.90
43	k	80	GLY	N-CA-C	7.25	131.24	113.10
1	А	576	G	OP2-P-O3'	7.25	121.15	105.20
1	А	1701	С	C6-N1-C2	-7.24	117.40	120.30
2	В	59	U	N1-C2-O2	7.24	127.87	122.80
33	a	465	U	C2-N1-C1'	7.24	126.39	117.70
33	a	1439	С	N1-C2-O2	7.24	123.24	118.90
1	А	2025	С	C2-N1-C1'	7.24	126.76	118.80
1	А	284	C	N3-C2-O2	-7.23	116.84	121.90
1	А	1327	U	N1-C2-O2	7.23	127.86	122.80
33	a	1076	С	C5-C6-N1	7.23	124.61	121.00
1	А	1848	A	O5'-P-OP2	-7.22	99.20	105.70
1	А	2350	G	C2-N3-C4	7.21	115.50	111.90
1	А	1527	С	C6-N1-C2	-7.21	117.42	120.30
33	a	362	G	O5'-P-OP1	-7.20	99.22	105.70
33	a	1070	U	C5-C6-N1	7.19	126.30	122.70
1	А	2386	U	O5'-P-OP1	-7.19	99.23	105.70
33	a	1175	G	OP1-P-O3'	-7.17	89.42	105.20
1	А	8	U	C2-N1-C1'	7.17	126.30	117.70
1	А	1941	A	N7-C8-N9	7.16	117.38	113.80
20	V	393	LEU	CA-CB-CG	7.15	131.74	115.30
1	А	2485	С	C6-N1-C2	-7.13	117.45	120.30
1	А	2323	С	C2-N1-C1'	7.13	126.64	118.80
2	В	41	С	C5-C6-N1	7.13	124.56	121.00
53	Х	62	С	P-O3'-C3'	7.13	128.25	119.70
10	L	79	LEU	CA-CB-CG	7.12	131.68	115.30
1	A	2918	G	C8-N9-C1'	-7.12	117.75	127.00
1	A	1369	С	C2-N1-C1'	7.11	126.62	118.80
1	A	2345	U	C5-C6-N1	7.11	126.26	122.70
53	Х	22	A	P-O3'-C3'	7.10	128.22	119.70
1	А	831	U	N1-C2-O2	7.08	127.76	122.80
1	A	1244	A	OP1-P-O3'	7.08	120.77	105.20
33	a	1421	C	C6-N1-C2	-7.07	117.47	120.30
1	A	1244	A	O4'-C1'-N9	7.07	113.86	108.20
33	a	143	C	N1-C2-O2	7.05	123.13	118.90
1	A	1817	C	C6-N1-C2	-7.05	117.48	120.30
1	A	2094	C	C6-N1-C2	-7.04	117.48	120.30
33	a	271	A	C8-N9-C4	-7.04	102.98	105.80
2	В	28	C	N1-C2-O2	7.04	123.12	118.90

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	page
	J	1	1 5

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	2054	С	C2-N1-C1'	7.03	126.53	118.80
1	А	2105	U	N3-C2-O2	-7.03	117.28	122.20
1	А	284	С	C6-N1-C2	-7.02	117.49	120.30
1	А	2131	U	C5-C6-N1	7.01	126.21	122.70
1	А	1831	А	C8-N9-C4	-7.01	103.00	105.80
2	В	24	С	C6-N1-C2	-6.98	117.51	120.30
33	a	1287	С	N1-C2-O2	6.98	123.09	118.90
46	n	3	LYS	CD-CE-NZ	-6.98	95.65	111.70
53	Х	69	С	C5-C6-N1	6.97	124.49	121.00
1	А	422	С	C2-N1-C1'	6.97	126.47	118.80
1	А	1366	С	C2-N1-C1'	6.96	126.46	118.80
1	А	1559	С	N3-C2-O2	-6.96	117.03	121.90
1	А	1817	С	C5-C6-N1	6.95	124.48	121.00
33	a	143	С	C6-N1-C2	-6.95	117.52	120.30
33	a	486	С	C2-N1-C1'	6.95	126.44	118.80
1	А	1527	С	C6-N1-C1'	-6.94	112.47	120.80
33	a	1463	А	O5'-P-OP2	-6.94	99.46	105.70
1	А	2648	U	N3-C2-O2	-6.93	117.35	122.20
2	В	29	С	C2-N1-C1'	6.93	126.42	118.80
1	А	1028	С	C2-N1-C1'	6.93	126.42	118.80
16	R	48	VAL	CG1-CB-CG2	6.92	121.98	110.90
1	А	2795	G	N3-C4-C5	-6.92	125.14	128.60
33	a	280	С	N1-C2-O2	6.91	123.04	118.90
33	a	1305	С	N1-C2-O2	6.91	123.04	118.90
1	А	2035	С	C6-N1-C2	-6.90	117.54	120.30
33	a	1391	С	N1-C2-O2	6.89	123.04	118.90
1	А	422	С	C5-C6-N1	6.89	124.45	121.00
2	В	24	С	C5-C6-N1	6.89	124.44	121.00
33	a	465	U	N3-C2-O2	-6.88	117.38	122.20
1	А	1545	С	C2-N1-C1'	6.88	126.36	118.80
1	А	8	U	C5-C6-N1	6.87	126.14	122.70
1	А	2822	С	C6-N1-C2	-6.86	117.56	120.30
1	А	1803	С	C6-N1-C2	-6.86	117.56	120.30
1	А	1942	А	C6-C5-N7	6.86	137.10	132.30
1	А	2157	С	C2-N1-C1'	6.86	126.34	118.80
1	А	2503	С	C6-N1-C2	-6.84	117.56	120.30
1	А	2255	С	N3-C2-O2	-6.83	117.12	121.90
2	В	15	C	C2-N1-C1'	6.83	126.31	118.80
1	A	1122	C	C6-N1-C2	-6.82	117.57	120.30
1	А	442	C	C2-N3-C4	6.81	123.30	119.90
33	a	1036	С	C5-C6-N1	6.81	124.40	121.00
33	а	1010	U	N3-C2-O2	-6.80	117.44	122.20

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	1942	А	C8-N9-C4	6.80	108.52	105.80
1	А	924	U	C5-C6-N1	6.79	126.10	122.70
1	А	914	С	C6-N1-C2	-6.78	117.59	120.30
1	А	2471	С	C6-N1-C2	-6.77	117.59	120.30
49	q	76	ARG	NE-CZ-NH2	-6.75	116.92	120.30
33	a	853	С	N3-C2-O2	-6.73	117.19	121.90
1	А	769	A	C5-C6-N6	6.73	129.08	123.70
44	1	44	ARG	CA-CB-CG	6.73	128.20	113.40
1	А	2223	U	N3-C2-O2	-6.72	117.50	122.20
1	А	2350	G	N3-C4-N9	6.71	130.03	126.00
1	А	2432	C	C6-N1-C2	-6.70	117.62	120.30
1	А	92	G	N9-C4-C5	-6.70	102.72	105.40
1	А	631	G	N3-C2-N2	-6.69	115.22	119.90
1	А	1941	A	C4-N9-C1'	6.68	138.32	126.30
1	А	508	С	C5-C6-N1	6.67	124.33	121.00
1	А	633	U	C5-C6-N1	6.67	126.03	122.70
1	А	1247	G	O4'-C1'-N9	6.67	113.53	108.20
1	А	1328	С	N1-C2-O2	6.67	122.90	118.90
21	W	28	ARG	CB-CG-CD	6.66	128.93	111.60
1	А	445	С	C5-C6-N1	6.66	124.33	121.00
1	А	1963	С	N3-C2-O2	-6.65	117.24	121.90
1	А	830	A	C5-N7-C8	-6.65	100.58	103.90
1	А	1559	C	N1-C2-O2	6.64	122.88	118.90
1	А	2092	С	N1-C2-O2	6.64	122.88	118.90
1	А	670	С	C5-C6-N1	6.62	124.31	121.00
1	А	1352	U	N3-C2-O2	-6.62	117.57	122.20
2	В	28	С	N3-C2-O2	-6.61	117.27	121.90
1	А	2316	A	P-O3'-C3'	6.61	127.63	119.70
1	A	2102	С	C6-N1-C2	-6.60	117.66	120.30
53	Х	53	G	N9-C4-C5	-6.60	102.76	105.40
53	Х	69	С	C2-N1-C1'	6.60	126.06	118.80
33	a	1176	A	O5'-C5'-C4'	6.59	124.22	111.70
1	А	1327	U	N3-C2-O2	-6.58	117.59	122.20
1	А	1028	С	N3-C2-O2	-6.58	117.29	121.90
53	x	53	G	C8-N9-C1'	-6.58	118.45	127.00
1	A	1757	G	O4'-C1'-N9	6.57	113.46	108.20
1	А	1570	U	OP2-P-O3'	6.56	119.64	105.20
33	a	1037	C	N3-C2-O2	-6.56	117.31	121.90
1	A	2833	U	N3-C2-O2	-6.56	117.61	122.20
1	А	1339	A	P-O3'-C3'	6.55	127.56	119.70
1	A	430	C	N3-C2-O2	-6.55	117.32	121.90
1	А	554	U	P-O3'-C3'	6.54	127.55	119.70

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
1	А	1712	G	C4-N9-C1'	6.54	135.00	126.50
1	А	933	С	P-O3'-C3'	6.54	127.54	119.70
6	F	136	LEU	CA-CB-CG	6.53	130.32	115.30
1	А	662	U	C5-C6-N1	6.53	125.96	122.70
33	a	39	U	N3-C2-O2	-6.51	117.64	122.20
1	А	2202	А	O4'-C1'-N9	6.50	113.40	108.20
1	А	573	С	C2-N1-C1'	6.50	125.95	118.80
1	А	2752	С	C6-N1-C2	-6.49	117.70	120.30
33	a	1525	С	C5-C6-N1	6.48	124.24	121.00
1	А	62	С	P-O3'-C3'	6.48	127.48	119.70
1	А	1036	А	N7-C8-N9	6.48	117.04	113.80
33	a	1468	С	O5'-P-OP1	-6.48	99.87	105.70
1	А	2295	А	OP2-P-O3'	6.47	119.45	105.20
1	А	1828	G	P-O3'-C3'	6.46	127.46	119.70
1	А	2675	С	C5-C6-N1	6.46	124.23	121.00
33	a	993	А	N3-C4-N9	6.46	132.57	127.40
33	a	1438	С	N1-C2-O2	6.46	122.78	118.90
1	А	2094	С	C5-C6-N1	6.46	124.23	121.00
33	a	459	А	P-O3'-C3'	6.46	127.45	119.70
1	А	1792	G	O5'-P-OP2	-6.45	99.89	105.70
1	А	1237	С	N3-C2-O2	-6.45	117.38	121.90
1	А	1527	С	N3-C2-O2	-6.45	117.39	121.90
1	А	719	С	C6-N1-C2	-6.44	117.72	120.30
1	А	1804	U	N3-C2-O2	-6.44	117.69	122.20
1	А	2371	С	C5-C6-N1	6.43	124.22	121.00
1	А	2765	G	N3-C4-N9	6.43	129.86	126.00
1	А	2254	А	P-O3'-C3'	6.43	127.42	119.70
1	А	2774	С	C2-N1-C1'	6.43	125.87	118.80
1	А	778	С	N1-C2-O2	6.42	122.75	118.90
2	В	61	U	C2-N1-C1'	6.42	125.41	117.70
33	a	1111	А	P-O3'-C3'	6.42	127.40	119.70
33	a	372	А	OP1-P-O3'	6.41	119.30	105.20
15	Q	103	LEU	CA-CB-CG	6.41	130.03	115.30
1	А	2243	С	C2-N1-C1'	6.40	125.84	118.80
1	А	2911	G	N7-C8-N9	6.39	116.30	113.10
1	А	1731	С	N1-C2-O2	6.39	122.74	118.90
1	А	2768	U	N1-C2-O2	6.38	127.27	122.80
33	a	1158	C	C6-N1-C2	-6.38	117.75	120.30
33	a	271	A	N7-C8-N9	6.38	116.99	113.80
1	А	482	С	O4'-C1'-N1	6.37	113.29	108.20
33	a	1149	U	N1-C2-O2	6.36	127.25	122.80
1	А	445	C	C6-N1-C2	-6.36	117.76	120.30

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	2503	С	N3-C2-O2	-6.36	117.45	121.90
1	А	875	U	C2-N1-C1'	6.36	125.33	117.70
31	7	25	С	N1-C2-O2	6.35	122.71	118.90
1	А	1771	С	C2-N1-C1'	6.35	125.78	118.80
1	А	502	С	O5'-P-OP2	-6.34	100.00	105.70
1	А	635	С	C6-N1-C2	-6.34	117.76	120.30
1	А	589	G	C6-C5-N7	6.33	134.20	130.40
1	А	2739	С	C6-N1-C2	-6.33	117.77	120.30
1	А	716	G	C4-N9-C1'	6.33	134.73	126.50
2	В	15	С	C6-N1-C2	-6.33	117.77	120.30
1	А	2350	G	C8-N9-C4	-6.33	103.87	106.40
1	А	2665	U	N3-C2-O2	-6.33	117.77	122.20
1	А	735	U	C5-C4-O4	-6.32	122.11	125.90
1	А	1771	С	C6-N1-C2	-6.32	117.77	120.30
33	a	264	U	C5-C6-N1	6.32	125.86	122.70
1	А	1476	С	N1-C2-O2	6.32	122.69	118.90
1	А	716	G	C8-N9-C1'	-6.31	118.80	127.00
1	А	2695	С	C2-N1-C1'	6.31	125.74	118.80
33	a	747	U	C5-C6-N1	6.31	125.85	122.70
33	a	1460	U	N1-C2-O2	6.29	127.20	122.80
1	А	1450	С	N1-C2-O2	6.29	122.67	118.90
2	В	62	U	C6-N1-C1'	-6.29	112.39	121.20
22	Х	39	LEU	CA-CB-CG	6.29	129.76	115.30
1	А	1353	С	N1-C2-O2	6.29	122.67	118.90
33	a	1438	С	C6-N1-C2	-6.28	117.79	120.30
1	А	299	U	N3-C2-O2	-6.28	117.80	122.20
53	X	69	С	C6-N1-C2	-6.28	117.79	120.30
1	А	1296	G	C4-N9-C1'	6.28	134.66	126.50
1	А	2223	U	N1-C2-O2	6.28	127.19	122.80
33	a	467	С	C6-N1-C2	-6.28	117.79	120.30
33	a	537	С	C2-N1-C1'	6.27	125.69	118.80
1	А	588	С	C2-N1-C1'	6.26	125.69	118.80
1	А	1450	С	C6-N1-C2	-6.26	117.80	120.30
1	А	397	U	C2-N1-C1'	6.26	125.21	117.70
1	А	776	G	C4-N9-C1'	6.25	134.63	126.50
33	a	92	U	OP1-P-O3'	6.25	118.95	105.20
1	A	2157	С	C5-C6-N1	6.25	124.12	121.00
2	B	59	U	N3-C2-O2	-6.25	117.83	122.20
33	a	1391	C	$C2-N1-\overline{C1'}$	$6.2\overline{4}$	125.67	118.80
1	А	2822	С	C6-N1-C1'	-6.24	113.31	120.80
33	a	119	C	O5'-P-OP1	-6.24	100.08	105.70
1	А	1712	G	N9-C1'-C2'	6.24	122.11	114.00

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
33	a	460	А	C2-N3-C4	6.24	113.72	110.60
1	А	2422	U	N1-C2-O2	6.23	127.16	122.80
1	А	589	G	N3-C4-C5	6.23	131.71	128.60
1	А	152	С	C6-N1-C2	-6.23	117.81	120.30
1	А	1352	U	N1-C2-O2	6.23	127.16	122.80
1	А	233	G	O4'-C1'-N9	6.22	113.18	108.20
1	А	1712	G	C8-N9-C1'	-6.22	118.91	127.00
33	a	476	U	C2-N1-C1'	6.22	125.17	117.70
1	А	2207	С	C6-N1-C2	-6.22	117.81	120.30
33	a	1036	C	C6-N1-C2	-6.22	117.81	120.30
1	А	1353	С	C6-N1-C1'	-6.21	113.34	120.80
1	А	2092	С	C2-N1-C1'	6.21	125.64	118.80
1	А	1448	U	N3-C2-O2	-6.21	117.85	122.20
33	a	970	U	C2-N1-C1'	6.21	125.15	117.70
33	a	1210	A	OP2-P-O3'	6.21	118.85	105.20
1	А	975	С	C2-N1-C1'	6.20	125.62	118.80
33	a	1148	G	P-O3'-C3'	6.20	127.14	119.70
33	a	21	C	C6-N1-C2	-6.20	117.82	120.30
33	a	763	С	C2-N1-C1'	6.19	125.61	118.80
1	А	76	C	OP1-P-OP2	-6.18	110.33	119.60
1	А	2805	A	P-O3'-C3'	6.18	127.12	119.70
33	a	1041	С	OP2-P-O3'	6.17	118.78	105.20
1	А	2035	C	C5-C6-N1	6.17	124.09	121.00
1	А	789	С	C6-N1-C2	-6.17	117.83	120.30
33	a	758	А	N7-C8-N9	6.17	116.89	113.80
33	a	1008	С	C2-N1-C1'	6.17	125.59	118.80
2	В	62	U	N1-C2-O2	6.17	127.12	122.80
1	А	1567	U	OP1-P-O3'	6.17	118.76	105.20
1	A	1831	A	O4'-C1'-N9	6.17	113.13	108.20
33	a	1170	С	N3-C2-O2	-6.17	117.58	121.90
1	А	2467	U	OP2-P-O3'	6.16	118.76	105.20
1	А	1671	G	C8-N9-C4	-6.16	103.94	106.40
33	a	319	С	C6-N1-C2	-6.16	117.84	120.30
17	S	38	LEU	C-N-CA	6.15	137.07	121.70
1	А	1634	U	N1-C2-O2	6.14	127.10	122.80
33	a	1210	A	P-O3'-C3'	6.14	127.07	119.70
1	A	1656	C	N3-C2-O2	-6.14	117.60	121.90
1	A	872	C	C6-N1-C2	-6.14	117.84	120.30
1	A	1702	U	O5'-P-OP1	-6.13	100.18	105.70
1	А	1631	A	N7-C8-N9	6.13	116.86	113.80
1	A	2065	C	C5-C6-N1	6.12	124.06	121.00
33	a	336	С	N1-C2-O2	6.12	122.57	118.90

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	page
	J	1	1 5

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	2092	С	C6-N1-C2	-6.12	117.85	120.30
1	А	1527	С	P-O3'-C3'	6.11	127.03	119.70
33	a	942	С	C6-N1-C2	-6.11	117.86	120.30
1	А	1545	С	C5-C6-N1	6.11	124.06	121.00
1	А	2350	G	C8-N9-C1'	-6.11	119.06	127.00
1	А	977	U	C5-C6-N1	6.11	125.75	122.70
1	А	810	G	OP1-P-O3'	6.10	118.63	105.20
1	А	1707	U	N1-C2-O2	6.10	127.07	122.80
1	А	885	С	N1-C2-O2	6.10	122.56	118.90
1	А	2791	U	C5-C6-N1	6.10	125.75	122.70
1	А	2055	U	C5-C6-N1	6.10	125.75	122.70
53	Х	53	G	C4-C5-N7	6.10	113.24	110.80
1	А	1045	U	N3-C2-O2	-6.09	117.94	122.20
1	А	62	С	OP2-P-O3'	6.08	118.58	105.20
1	А	885	С	C6-N1-C2	-6.07	117.87	120.30
1	А	936	С	C2-N1-C1'	6.07	125.48	118.80
1	А	2685	U	C2-N1-C1'	6.07	124.98	117.70
33	a	591	С	N1-C2-O2	6.07	122.54	118.90
53	Х	21	G	N3-C4-C5	-6.07	125.57	128.60
1	А	972	U	C5-C6-N1	6.06	125.73	122.70
1	А	980	С	C5-C6-N1	6.06	124.03	121.00
9	K	89	ASP	CB-CG-OD1	6.05	123.75	118.30
1	А	1067	А	C8-N9-C4	-6.05	103.38	105.80
1	А	2423	С	N1-C2-O2	6.05	122.53	118.90
33	a	1331	С	C6-N1-C2	-6.05	117.88	120.30
33	a	1020	С	C6-N1-C2	-6.05	117.88	120.30
33	a	1110	С	C6-N1-C2	-6.05	117.88	120.30
33	a	468	С	C6-N1-C2	-6.05	117.88	120.30
2	В	59	U	C5-C6-N1	6.04	125.72	122.70
33	a	87	С	N1-C2-O2	6.04	122.52	118.90
1	А	1122	С	N3-C2-O2	-6.03	117.68	121.90
1	А	1307	U	N1-C2-O2	6.03	127.02	122.80
1	А	1771	С	C5-C6-N1	6.03	124.02	121.00
33	a	1457	С	C2-N1-C1'	6.03	125.44	118.80
1	А	2620	С	C6-N1-C2	-6.03	117.89	120.30
33	a	86	G	N7-C8-N9	6.03	116.12	113.10
33	a	85	U	C2-N1-C1'	6.03	124.94	117.70
33	a	1439	C	C6-N1-C2	-6.03	117.89	120.30
33	a	167	G	C6-C5-N7	-6.03	126.78	130.40
1	A	$2\overline{0}23$	C	C6-N1-C2	-6.02	117.89	120.30
53	х	53	G	C4-N9-C1'	6.02	134.33	126.50
53	х	21	G	N3-C4-N9	6.01	129.61	126.00

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	2189	G	C8-N9-C1'	-6.01	119.19	127.00
33	a	1391	С	C6-N1-C2	-6.00	117.90	120.30
33	a	413	U	C5-C6-N1	6.00	125.70	122.70
33	a	171	А	C8-N9-C4	-6.00	103.40	105.80
53	Х	38	U	N3-C2-O2	-5.99	118.00	122.20
53	Х	53	G	C6-C5-N7	-5.99	126.80	130.40
1	А	2503	С	N1-C2-O2	5.99	122.49	118.90
33	a	1463	А	P-O3'-C3'	5.99	126.89	119.70
33	a	1390	U	N1-C2-O2	5.99	126.99	122.80
1	А	1067	A	C2-N3-C4	-5.99	107.61	110.60
1	А	442	С	N1-C2-O2	5.98	122.49	118.90
1	А	2795	G	N3-C4-N9	5.98	129.59	126.00
33	a	856	С	C6-N1-C2	-5.98	117.91	120.30
53	х	21	G	C8-N9-C1'	-5.97	119.24	127.00
1	A	1305	A	P-O3'-C3'	5.97	126.86	119.70
1	А	1339	A	OP2-P-O3'	5.97	118.33	105.20
33	a	537	C	N1-C2-O2	5.97	122.48	118.90
1	А	1353	C	C5-C6-N1	5.96	123.98	121.00
1	А	2749	U	N3-C2-O2	-5.96	118.03	122.20
33	a	632	С	C5-C6-N1	5.96	123.98	121.00
1	А	1237	С	N1-C2-O2	5.95	122.47	118.90
33	a	101	С	C6-N1-C2	-5.95	117.92	120.30
1	А	1450	С	N3-C2-O2	-5.95	117.73	121.90
20	V	389	LEU	CA-CB-CG	5.95	128.98	115.30
1	A	46	С	O5'-P-OP2	-5.95	100.35	105.70
33	a	476	U	N1-C2-O2	5.94	126.96	122.80
1	A	1397	G	OP2-P-O3'	5.94	118.27	105.20
1	A	1631	A	C8-N9-C4	-5.94	103.42	105.80
1	А	2452	U	OP2-P-O3'	5.94	118.27	105.20
1	A	2454	A	OP2-P-O3'	5.94	118.26	105.20
1	A	2114	С	C5-C6-N1	5.93	123.97	121.00
1	A	2604	С	C6-N1-C2	-5.93	117.93	120.30
33	a	1441	G	O5'-P-OP1	-5.93	100.36	105.70
33	a	993	A	N3-C4-C5	-5.92	122.65	126.80
1	A	2155	A	P-O3'-C3'	5.92	126.80	119.70
33	a	1024	A	O5'-P-OP2	-5.91	100.39	105.70
1	A	1353	C	C6-N1-C2	-5.90	117.94	120.30
33	a	537	C	C6-N1-C2	-5.90	117.94	120.30
53	X	38	U	N1-C2-O2	5.90	126.93	122.80
1	A	186	C	O5'-P-OP1	-5.90	100.39	105.70
1	A	1307	U	N3-C2-O2	-5.89	118.07	122.20
1	A	1781	C	C5-C6-N1	5.89	123.95	121.00

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	page
	J	1	1 5

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	2712	С	N1-C2-O2	5.89	122.44	118.90
1	А	783	С	C5-C6-N1	5.88	123.94	121.00
1	А	936	С	N1-C2-O2	5.88	122.43	118.90
33	a	136	U	C2-N1-C1'	5.88	124.75	117.70
33	a	168	С	N3-C2-O2	-5.87	117.79	121.90
1	А	1963	С	N1-C2-O2	5.87	122.42	118.90
1	А	2749	U	N1-C2-O2	5.87	126.91	122.80
33	a	1237	С	N1-C2-O2	5.87	122.42	118.90
1	А	588	С	N3-C2-O2	-5.87	117.79	121.90
1	А	1507	U	OP2-P-O3'	5.87	118.11	105.20
1	А	430	С	N1-C2-O2	5.87	122.42	118.90
1	А	2092	С	N3-C2-O2	-5.86	117.80	121.90
1	А	1883	А	C8-N9-C4	-5.86	103.46	105.80
1	А	1631	А	P-O3'-C3'	5.86	126.73	119.70
1	А	2388	С	C6-N1-C2	-5.86	117.96	120.30
33	a	411	С	C6-N1-C2	-5.86	117.96	120.30
33	a	1331	С	C6-N1-C1'	-5.85	113.78	120.80
1	А	2833	U	N1-C2-O2	5.85	126.89	122.80
1	А	2459	А	O4'-C1'-N9	5.85	112.88	108.20
1	А	1626	U	N3-C2-O2	-5.84	118.11	122.20
1	А	2685	U	N3-C2-O2	-5.84	118.11	122.20
2	В	58	С	C6-N1-C2	-5.84	117.96	120.30
1	А	573	С	N3-C2-O2	-5.84	117.81	121.90
5	Е	38	LEU	CB-CG-CD1	-5.84	101.08	111.00
1	А	2605	G	C4-N9-C1'	5.84	134.09	126.50
1	А	2665	U	N1-C2-O2	5.84	126.89	122.80
1	А	940	G	N7-C8-N9	5.83	116.02	113.10
33	a	591	C	N3-C2-O2	-5.83	117.82	121.90
1	А	1454	С	N3-C2-O2	-5.83	117.82	121.90
1	А	406	G	N3-C4-N9	-5.83	122.50	126.00
1	А	1560	U	C2-N1-C1'	5.83	124.69	117.70
1	А	975	С	C5-C6-N1	5.82	123.91	121.00
1	А	309	U	OP1-P-O3'	5.82	118.00	105.20
1	А	954	U	C5-C6-N1	5.82	125.61	122.70
33	a	260	U	N3-C2-O2	-5.82	118.13	122.20
33	a	1363	С	C6-N1-C2	-5.82	117.97	120.30
1	A	1942	A	C4-C5-C6	-5.82	114.09	117.00
1	A	1981	A	N7-C8-N9	5.81	116.71	113.80
1	A	2911	G	C8-N9-C4	-5.81	104.08	106.40
1	A	113	U	C2-N1-C1'	5.81	124.67	117.70
1	A	2054	C	C4-C5-C6	-5.80	114.50	117.40
1	A	1800	C	C6-N1-C2	-5.80	117.98	120.30

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	page
	J	1	1 5

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
33	a	523	С	C5-C6-N1	5.80	123.90	121.00
1	А	980	С	N1-C2-O2	5.80	122.38	118.90
33	a	1416	С	N1-C2-O2	5.80	122.38	118.90
1	А	810	G	C4-N9-C1'	5.80	134.04	126.50
1	А	2114	С	C6-N1-C2	-5.80	117.98	120.30
1	А	2685	U	C5-C6-N1	5.79	125.60	122.70
1	А	2840	С	C6-N1-C2	-5.79	117.98	120.30
1	А	2813	U	C5-C6-N1	5.79	125.59	122.70
33	a	1150	U	C2-N1-C1'	5.78	124.64	117.70
10	L	18	ARG	CA-CB-CG	5.78	126.12	113.40
33	a	130	С	C5-C6-N1	5.78	123.89	121.00
33	a	1305	С	C6-N1-C2	-5.78	117.99	120.30
1	А	2665	U	C2-N1-C1'	5.77	124.63	117.70
1	А	885	С	N3-C2-O2	-5.77	117.86	121.90
1	А	2591	U	N3-C2-O2	-5.77	118.16	122.20
1	А	2295	А	P-O3'-C3'	5.76	126.62	119.70
33	a	280	С	N3-C2-O2	-5.76	117.86	121.90
1	А	2072	С	C5-C6-N1	5.76	123.88	121.00
33	a	859	С	N3-C2-O2	-5.76	117.87	121.90
1	А	860	U	N3-C2-O2	-5.75	118.17	122.20
33	a	1391	С	C5-C6-N1	5.75	123.88	121.00
1	А	1781	С	C6-N1-C2	-5.75	118.00	120.30
1	А	2105	U	C6-N1-C1'	-5.75	113.15	121.20
1	А	2192	U	N1-C2-O2	5.75	126.83	122.80
1	А	2785	U	O4'-C1'-N1	5.75	112.80	108.20
33	a	448	U	N1-C2-O2	5.75	126.83	122.80
1	А	1156	G	C8-N9-C4	-5.75	104.10	106.40
1	А	1351	U	P-O3'-C3'	5.75	126.60	119.70
1	А	631	G	N1-C2-N2	5.75	121.37	116.20
33	a	970	U	N1-C2-O2	5.75	126.82	122.80
1	А	1770	С	C6-N1-C2	-5.74	118.00	120.30
1	А	576	G	P-O3'-C3'	5.74	126.59	119.70
44	1	44	ARG	N-CA-CB	5.74	120.93	110.60
1	A	1941	A	C8-N9-C1'	-5.74	117.37	127.70
1	А	1942	А	C4-N9-C1'	-5.74	115.97	126.30
1	A	2445	C	C5-C6-N1	5.74	123.87	121.00
33	a	467	С	C2-N1-C1'	5.73	125.11	118.80
33	a	746	С	C5-C6-N1	5.73	123.87	121.00
1	A	211	C	C5-C6-N1	5.73	123.86	121.00
1	A	508	С	N3-C2-O2	-5.73	117.89	121.90
33	a	86	G	C8-N9-C4	-5.72	104.11	106.40
1	A	2605	G	C8-N9-C1'	-5.72	119.56	127.00

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	page
• • • • • • • • • • •	J	P	r ~g ····

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
33	a	1416	С	N3-C2-O2	-5.72	117.90	121.90
1	А	1883	А	N7-C8-N9	5.71	116.66	113.80
33	a	1421	С	C5-C6-N1	5.71	123.85	121.00
53	Х	61	С	C5-C6-N1	5.71	123.85	121.00
1	А	2203	С	N1-C2-O2	5.71	122.32	118.90
1	А	2733	С	C6-N1-C2	-5.71	118.02	120.30
2	В	79	С	N3-C2-O2	-5.70	117.91	121.90
33	a	856	С	C5-C6-N1	5.70	123.85	121.00
1	А	86	С	O4'-C1'-N1	5.69	112.75	108.20
1	А	2126	G	C4-N9-C1'	5.69	133.90	126.50
1	А	842	С	C5-C6-N1	5.69	123.84	121.00
1	А	252	С	OP2-P-O3'	5.68	117.71	105.20
1	А	2765	G	C4-C5-N7	5.68	113.07	110.80
2	В	28	С	C6-N1-C2	-5.68	118.03	120.30
33	a	1398	С	C5-C6-N1	5.68	123.84	121.00
33	a	1502	А	N3-C4-C5	-5.68	122.82	126.80
1	А	966	U	N1-C2-O2	5.68	126.78	122.80
1	А	1415	С	N3-C2-O2	-5.68	117.92	121.90
1	А	924	U	C6-N1-C2	-5.67	117.59	121.00
1	А	212	С	N1-C2-O2	5.67	122.30	118.90
1	А	1339	А	O4'-C1'-N9	-5.67	103.66	108.20
1	А	308	С	C2-N1-C1'	5.67	125.04	118.80
33	a	675	G	O5'-P-OP2	-5.67	100.60	105.70
1	А	1052	С	C6-N1-C2	-5.66	118.03	120.30
1	А	2335	U	N1-C2-O2	5.66	126.76	122.80
33	a	86	G	C6-C5-N7	-5.66	127.00	130.40
1	А	2349	А	C2-N3-C4	5.66	113.43	110.60
1	А	246	U	N1-C2-O2	5.66	126.76	122.80
1	А	716	G	C4-C5-N7	5.66	113.06	110.80
33	a	1045	G	P-O3'-C3'	-5.66	112.91	119.70
1	А	549	А	OP2-P-O3'	5.65	117.64	105.20
1	А	1137	G	C4-N9-C1'	5.65	133.85	126.50
1	А	1631	А	OP1-P-O3'	5.65	117.63	105.20
1	А	1369	С	C6-N1-C2	-5.65	118.04	120.30
1	А	574	А	C5-N7-C8	-5.65	101.08	103.90
1	А	1634	U	N3-C2-O2	-5.64	118.25	122.20
1	А	221	G	N3-C2-N2	-5.64	115.95	119.90
1	А	284	С	C2-N1-C1'	5.64	125.00	118.80
33	a	1237	C	N3-C2-O2	-5.64	117.95	121.90
1	А	1122	С	C5-C6-N1	5.63	123.82	121.00
1	А	1329	С	C5-C6-N1	5.63	123.82	121.00
1	А	586	С	N3-C2-O2	-5.63	117.96	121.90

α \cdot \cdot \cdot	C	•	
Continued	from	previous	page
		1	1 0

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	1771	С	N3-C2-O2	-5.63	117.96	121.90
1	А	2711	G	O5'-P-OP2	-5.63	100.64	105.70
1	А	4	U	C5-C6-N1	5.62	125.51	122.70
1	А	914	С	N3-C2-O2	-5.62	117.96	121.90
1	А	1507	U	P-O3'-C3'	5.62	126.45	119.70
1	А	2801	С	N3-C2-O2	-5.62	117.97	121.90
33	a	1003	G	N3-C4-N9	5.62	129.37	126.00
53	Х	21	G	N7-C8-N9	5.62	115.91	113.10
1	А	506	U	N1-C2-O2	5.61	126.73	122.80
1	А	2791	U	C2-N1-C1'	5.61	124.43	117.70
1	А	977	U	C6-N1-C2	-5.61	117.64	121.00
1	А	1333	С	C2-N1-C1'	5.60	124.96	118.80
1	А	104	С	N3-C2-O2	-5.60	117.98	121.90
1	А	2904	А	OP2-P-O3'	5.60	117.52	105.20
33	a	641	G	C8-N9-C4	-5.60	104.16	106.40
1	А	776	G	C8-N9-C1'	-5.59	119.73	127.00
1	А	1613	С	C6-N1-C2	-5.59	118.06	120.30
1	А	2422	U	N3-C2-O2	-5.59	118.29	122.20
1	А	422	С	C6-N1-C2	-5.59	118.06	120.30
1	А	2189	G	C4-N9-C1'	5.59	133.77	126.50
1	А	2225	С	N1-C2-O2	5.59	122.25	118.90
1	А	686	С	C5-C6-N1	5.59	123.79	121.00
41	i	122	ARG	CB-CG-CD	5.59	126.13	111.60
1	А	895	G	N3-C4-C5	-5.58	125.81	128.60
1	А	966	U	N3-C2-O2	-5.58	118.29	122.20
33	a	735	С	C6-N1-C2	-5.58	118.07	120.30
33	a	1032	С	P-O3'-C3'	5.58	126.40	119.70
1	А	556	С	N1-C2-O2	5.58	122.25	118.90
1	А	1942	А	N1-C6-N6	-5.58	115.25	118.60
33	a	274	G	O4'-C1'-N9	-5.58	103.74	108.20
1	А	1695	A	C8-N9-C4	5.58	108.03	105.80
33	a	56	С	N1-C2-O2	5.58	122.25	118.90
1	А	1365	U	N1-C1'-C2'	-5.57	105.87	112.00
33	a	472	С	C6-N1-C2	-5.57	118.07	120.30
33	a	1460	U	N3-C2-O2	-5.57	118.30	122.20
1	А	88	G	P-O3'-C3'	5.57	126.38	119.70
33	a	829	U	OP2-P-O3'	5.57	117.45	105.20
1	А	63	G	OP1-P-OP2	-5.57	111.25	119.60
1	A	1753	С	C6-N1-C2	-5.57	118.07	120.30
1	A	1296	G	C8-N9-C1'	-5.56	119.77	127.00
33	a	465	U	C5-C6-N1	5.56	125.48	122.70
1	A	1374	С	N3-C2-O2	-5.56	118.01	121.90

α \cdot 1	ſ		
Continued	from	previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	236	А	C3'-C2'-C1'	5.56	105.94	101.50
1	А	464	С	C5-C6-N1	5.56	123.78	121.00
33	a	130	С	N1-C2-O2	5.55	122.23	118.90
33	a	167	G	C4-N9-C1'	5.55	133.72	126.50
1	А	1622	С	C5-C6-N1	5.55	123.78	121.00
1	А	2840	С	C5-C6-N1	5.55	123.77	121.00
1	А	1953	С	C2-N1-C1'	5.54	124.90	118.80
1	А	681	С	C5-C6-N1	5.54	123.77	121.00
1	А	2177	G	C8-N9-C4	-5.54	104.18	106.40
33	a	60	С	N1-C2-O2	5.54	122.23	118.90
33	a	1032	С	C6-N1-C2	-5.54	118.08	120.30
33	a	901	U	N1-C2-O2	5.54	126.68	122.80
33	a	182	U	N1-C2-O2	5.54	126.68	122.80
33	a	1167	С	C2-N1-C1'	5.54	124.89	118.80
53	Х	43	G	N1-C6-O6	-5.54	116.58	119.90
1	А	2323	С	C5-C6-N1	5.53	123.77	121.00
33	a	481	С	C6-N1-C2	-5.53	118.09	120.30
1	А	2821	U	N3-C2-O2	-5.53	118.33	122.20
33	a	1123	С	C6-N1-C2	-5.53	118.09	120.30
1	А	308	С	C6-N1-C2	-5.53	118.09	120.30
1	А	483	С	C2-N1-C1'	5.53	124.88	118.80
1	А	533	С	C6-N1-C2	-5.53	118.09	120.30
33	a	1041	С	P-O3'-C3'	5.53	126.33	119.70
1	А	1369	С	N1-C2-O2	5.53	122.22	118.90
20	V	428	LEU	CA-CB-CG	5.52	128.00	115.30
1	А	1567	U	P-O3'-C3'	5.52	126.32	119.70
5	Е	126	LEU	CB-CG-CD1	-5.52	101.62	111.00
33	a	1016	А	P-O3'-C3'	5.52	126.32	119.70
2	В	72	U	N3-C2-O2	-5.51	118.34	122.20
33	a	143	C	C2-N1-C1'	5.51	124.87	118.80
1	А	66	С	N1-C2-O2	5.51	122.21	118.90
1	А	1352	U	C6-N1-C1'	-5.51	113.48	121.20
1	А	1545	С	C6-N1-C2	-5.51	118.09	120.30
1	А	1328	C	N3-C2-O2	-5.51	118.04	121.90
1	А	1522	U	N1-C2-O2	5.51	126.66	122.80
1	A	211	С	C6-N1-C2	-5.51	118.10	120.30
1	А	1245	G	OP1-P-OP2	-5.51	111.34	119.60
1	A	1052	C	C5-C6-N1	5.51	123.75	121.00
1	A	187	C	O4'-C1'-N1	5.50	112.60	108.20
1	А	2255	C	C6-N1-C2	-5.50	118.10	120.30
1	A	1476	C	N3-C2-O2	-5.50	118.05	121.90
1	А	1379	U	N3-C2-O2	-5.50	118.35	122.20

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	<i>paae</i>
• • • • • • • • • • • • •	J	P	r ~g ····

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	1946	U	C5-C6-N1	5.50	125.45	122.70
34	b	18	HIS	C-N-CA	5.50	135.44	121.70
1	А	1813	А	P-O3'-C3'	5.50	126.30	119.70
1	А	1577	С	N1-C2-O2	5.49	122.19	118.90
1	А	2025	С	C6-N1-C2	-5.49	118.11	120.30
1	А	2155	А	OP2-P-O3'	5.49	117.27	105.20
1	А	1573	С	N1-C2-O2	5.48	122.19	118.90
33	a	248	С	O4'-C1'-N1	5.48	112.58	108.20
1	А	940	G	C8-N9-C4	-5.47	104.21	106.40
1	А	843	С	N1-C2-O2	5.47	122.18	118.90
1	А	2273	U	N3-C4-O4	5.47	123.23	119.40
53	Х	6	G	O5'-P-OP1	5.47	117.26	110.70
33	a	1398	С	C2-N1-C1'	5.47	124.81	118.80
1	А	252	С	P-O3'-C3'	5.46	126.26	119.70
1	А	1325	А	C4-C5-C6	-5.46	114.27	117.00
33	a	989	С	C6-N1-C2	-5.46	118.11	120.30
1	А	2203	С	C5-C6-N1	5.46	123.73	121.00
2	В	61	U	N1-C2-O2	5.46	126.62	122.80
33	a	1287	С	N3-C2-O2	-5.46	118.08	121.90
1	А	2423	С	N3-C2-O2	-5.46	118.08	121.90
1	А	2345	U	C2-N1-C1'	5.46	124.25	117.70
1	А	2795	G	C8-N9-C4	-5.46	104.22	106.40
33	a	670	G	N3-C4-N9	5.46	129.28	126.00
1	А	1306	G	O5'-P-OP1	-5.46	100.79	105.70
1	А	1943	С	C6-N1-C2	-5.46	118.12	120.30
2	В	24	С	C6-N1-C1'	-5.45	114.26	120.80
1	А	2685	U	N1-C2-O2	5.45	126.61	122.80
1	А	1485	А	O4'-C1'-N9	5.45	112.56	108.20
1	А	2765	G	C6-C5-N7	-5.45	127.13	130.40
33	a	1051	G	N3-C4-N9	5.44	129.26	126.00
33	a	1323	С	C6-N1-C2	-5.44	118.12	120.30
1	А	1817	С	N3-C2-O2	-5.44	118.09	121.90
33	a	1438	С	C2-N1-C1'	5.44	124.78	118.80
1	А	270	С	C6-N1-C2	-5.43	118.13	120.30
1	А	1269	А	P-O3'-C3'	5.43	126.22	119.70
1	А	789	С	C5-C6-N1	5.43	123.72	121.00
16	R	75	ARG	NE-CZ-NH1	-5.42	117.59	120.30
1	А	2283	С	N1-C2-O2	5.42	122.15	118.90
15	Q	92	ARG	CA-CB-CG	5.42	125.33	113.40
1	А	614	G	N3-C4-C5	-5.42	125.89	128.60
1	А	1803	С	N3-C2-O2	-5.42	118.11	121.90
1	А	2487	U	N1-C2-O2	5.42	$1\overline{26.59}$	122.80

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	page
	J	1	1 5

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	2915	G	C5-C6-O6	-5.42	125.35	128.60
33	a	633	С	C6-N1-C2	-5.42	118.13	120.30
33	a	1123	С	N1-C2-O2	5.42	122.15	118.90
31	7	25	С	N3-C2-O2	-5.41	118.11	121.90
33	a	994	С	C6-N1-C2	-5.41	118.14	120.30
1	А	2289	С	C6-N1-C2	-5.41	118.14	120.30
1	А	1327	U	C2-N1-C1'	5.41	124.19	117.70
1	А	2825	С	N1-C2-O2	5.41	122.14	118.90
33	a	1123	С	C5-C6-N1	5.40	123.70	121.00
1	А	1872	С	N1-C2-O2	5.40	122.14	118.90
1	А	1137	G	C8-N9-C1'	-5.40	119.98	127.00
1	А	1981	А	C5-N7-C8	-5.40	101.20	103.90
33	a	1018	U	C5-C6-N1	5.40	125.40	122.70
1	А	648	G	N9-C4-C5	-5.40	103.24	105.40
33	a	970	U	N3-C2-O2	-5.40	118.42	122.20
1	А	2904	А	P-O3'-C3'	5.39	126.17	119.70
1	А	2333	G	C4-N9-C1'	5.39	133.51	126.50
33	a	563	U	C5-C6-N1	5.39	125.39	122.70
1	А	1844	А	OP1-P-O3'	5.38	117.05	105.20
33	a	1308	А	C4-N9-C1'	5.38	135.99	126.30
33	a	437	U	OP1-P-O3'	5.38	117.04	105.20
1	А	1274	U	N1-C2-O2	5.38	126.57	122.80
1	А	2823	С	O5'-P-OP2	-5.38	100.86	105.70
33	a	691	С	C5-C6-N1	5.38	123.69	121.00
33	a	1391	С	N3-C2-O2	-5.38	118.14	121.90
1	А	1172	А	P-O3'-C3'	5.38	126.15	119.70
1	А	2910	С	C6-N1-C2	-5.38	118.15	120.30
1	А	1516	А	C8-N9-C4	-5.37	103.65	105.80
1	А	2326	С	C5-C6-N1	5.37	123.69	121.00
1	А	575	A	OP2-P-O3'	5.37	117.01	105.20
1	А	1011	С	C5-C6-N1	5.37	123.69	121.00
1	А	2159	U	C5-C6-N1	5.37	125.38	122.70
1	А	2920	С	C6-N1-C2	-5.37	118.15	120.30
1	А	284	С	N1-C2-O2	5.36	122.12	118.90
33	a	787	G	N7-C8-N9	5.36	115.78	113.10
34	b	137	LEU	CA-CB-CG	5.36	127.64	115.30
1	A	1351	U	OP2-P-O3'	5.36	116.99	105.20
1	А	941	U	C2-N1-C1'	5.36	124.13	117.70
1	A	1484	U	N3-C2-O2	-5.36	118.45	122.20
33	a	1525	С	C6-N1-C2	-5.36	118.16	120.30
1	А	1714	А	C4-N9-C1'	5.35	135.93	126.30
1	A	2296	A	OP1-P-OP2	-5.35	111.57	119.60

$\alpha \cdot \cdot \cdot \cdot$	C	•	
Continued	trom	nremons	naae
Continucu	110110	preduous	pagem
		1	1 0

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
33	a	848	G	P-O3'-C3'	5.35	126.12	119.70
33	a	950	С	C6-N1-C2	-5.35	118.16	120.30
33	a	90	С	C6-N1-C2	-5.35	118.16	120.30
33	a	1308	А	C2-N3-C4	5.35	113.28	110.60
1	А	562	С	C5-C6-N1	5.35	123.67	121.00
1	А	1559	С	C6-N1-C2	-5.35	118.16	120.30
33	a	787	G	C8-N9-C4	-5.35	104.26	106.40
1	А	2432	С	N3-C2-O2	-5.34	118.16	121.90
1	А	1343	С	N1-C2-O2	5.34	122.11	118.90
1	А	1454	С	N1-C2-O2	5.34	122.11	118.90
16	R	22	ILE	CG1-CB-CG2	-5.34	99.65	111.40
33	a	1070	U	C6-N1-C2	-5.34	117.80	121.00
1	А	2503	С	C2-N1-C1'	5.34	124.67	118.80
16	R	75	ARG	NE-CZ-NH2	5.34	122.97	120.30
1	А	1334	С	C6-N1-C2	-5.34	118.17	120.30
1	А	670	С	C6-N1-C2	-5.33	118.17	120.30
1	А	1350	U	N3-C2-O2	-5.33	118.47	122.20
33	a	486	С	C6-N1-C1'	-5.33	114.40	120.80
1	А	1344	С	C6-N1-C2	-5.33	118.17	120.30
1	А	1614	А	N7-C8-N9	5.33	116.47	113.80
1	А	2093	С	C6-N1-C2	-5.33	118.17	120.30
33	a	1170	С	O4'-C1'-N1	5.33	112.46	108.20
1	А	778	С	N3-C2-O2	-5.33	118.17	121.90
1	А	1577	С	C6-N1-C2	-5.33	118.17	120.30
1	А	1941	А	C5-N7-C8	-5.33	101.24	103.90
1	А	2092	С	C5-C6-N1	5.33	123.67	121.00
1	А	1846	G	C8-N9-C4	-5.33	104.27	106.40
1	А	113	U	N1-C2-O2	5.32	126.53	122.80
1	А	1813	А	OP2-P-O3'	5.32	116.90	105.20
1	А	2157	С	C6-N1-C2	-5.32	118.17	120.30
1	А	645	С	C5-C6-N1	5.32	123.66	121.00
33	a	1076	С	C6-N1-C1'	-5.32	114.42	120.80
1	А	980	С	C6-N1-C2	-5.31	118.17	120.30
1	А	1336	С	N3-C2-O2	-5.31	118.18	121.90
1	А	1953	С	C5-C6-N1	5.31	123.66	121.00
1	A	777	C	C5-C6-N1	$5.3\overline{1}$	123.66	121.00
1	A	716	G	C6-C5-N7	-5.31	127.22	130.40
1	A	2287	С	OP2-P-O3'	5.31	116.87	105.20
1	A	2356	A	C3'-C2'-C1'	5.31	105.74	101.50
45	m	80	LEU	CA-CB-CG	5.31	127.50	115.30
1	А	1752	G	N3-C4-N9	5.30	129.18	126.00
1	A	2244	G	O4'-C1'-N9	5.30	112.44	108.20

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	В	14	G	N3-C4-N9	5.30	129.18	126.00
1	А	2273	U	C5-C6-N1	5.30	125.35	122.70
1	А	937	С	C6-N1-C2	-5.30	118.18	120.30
1	А	2795	G	C2-N3-C4	5.30	114.55	111.90
1	А	2323	С	C6-N1-C2	-5.29	118.18	120.30
33	a	226	С	C6-N1-C2	-5.29	118.18	120.30
1	А	894	А	C5-N7-C8	-5.29	101.25	103.90
33	a	155	С	C2-N1-C1'	5.29	124.62	118.80
34	b	17	GLY	N-CA-C	5.29	126.33	113.10
33	a	1149	U	C6-N1-C1'	-5.29	113.80	121.20
1	А	1705	С	C5-C6-N1	5.29	123.64	121.00
1	А	563	С	C6-N1-C2	-5.28	118.19	120.30
1	А	574	А	C2-N3-C4	-5.28	107.96	110.60
1	А	2348	С	C2-N1-C1'	5.28	124.61	118.80
2	В	58	С	C5-C6-N1	5.28	123.64	121.00
33	a	469	G	N7-C8-N9	5.28	115.74	113.10
1	А	163	U	P-O3'-C3'	5.28	126.03	119.70
1	А	2283	С	N3-C2-O2	-5.28	118.21	121.90
1	А	2820	U	C2-N1-C1'	5.28	124.03	117.70
1	А	271	С	C6-N1-C2	-5.28	118.19	120.30
1	А	421	А	N7-C8-N9	5.28	116.44	113.80
33	a	819	С	C2-N1-C1'	5.28	124.60	118.80
1	А	2765	G	C4-N9-C1'	5.27	133.35	126.50
1	А	556	С	C2-N1-C1'	5.27	124.60	118.80
1	A	1699	А	O4'-C1'-N9	5.27	112.42	108.20
1	A	2065	С	C6-N1-C2	-5.27	118.19	120.30
33	a	1175	G	OP2-P-O3'	5.27	116.79	105.20
1	A	2189	G	N9-C4-C5	-5.27	103.29	105.40
33	a	1357	U	C2-N1-C1'	5.27	124.02	117.70
53	x	21	G	C8-N9-C4	-5.27	104.29	106.40
2	В	37	A	P-O3'-C3'	5.26	126.02	119.70
1	A	1379	U	N1-C2-O2	5.26	126.48	122.80
1	A	2131	U	C6-N1-C2	-5.26	117.84	121.00
1	A	1942	A	C5-N7-C8	5.26	106.53	103.90
1	A	2190	С	C6-N1-C2	-5.26	118.20	120.30
1	A	1467	G	C6-C5-N7	-5.26	127.25	130.40
1	A	1604	С	N3-C2-O2	-5.26	118.22	121.90
33	a	523	C	C6-N1-C2	-5.26	118.20	120.30
33	a	1494	U	C5-C6-N1	5.26	125.33	122.70
1	А	732	А	P-O3'-C3'	5.25	126.01	119.70
1	A	445	С	N1-C2-O2	5.25	122.05	118.90
1	A	2093	C	C5-C6-N1	5.25	123.63	121.00

33

1

1

33

1

33

1

1

33

1

33

2

33

1

 \mathbf{a}

А

А

a

А

 \mathbf{a}

А

А

 \mathbf{a}

А

 \mathbf{a}

В

a

А

1286

1448

2189

545

309

901

1804

1437

944

2114

476

49

773

686

С

U

G

С

U

U

U

С

С

С

U

G

С

С

N3-C2-O2

P-O3'-C3'

C6-C5-N7

N1-C2-O2

N3-C2-O2

N3-C2-O2

N1-C2-O2

C6-N1-C2

O4'-C1'-N1

C6-N1-C1'

N3-C2-O2

P-O3'-C3'

C5-C6-N1

C2-N1-C1'

-5.22

5.22

-5.22

5.22

-5.21

-5.21

5.21

-5.21

-5.21

-5.21

-5.21

5.21

5.20

5.20

118.25

125.96

127.27

122.03

118.55

118.55

126.45

118.22

104.03

114.55

118.55

125.95

123.60

124.52

Ideal(°)

115.30

105.20

113.80

117.70

126.50

121.00

118.80

122.70

118.90

122.20

106.40

119.70

118.90

121.00

119.70

120.30

122.80

118.90

121.00

118.80

128.60

122.70

126.00

113.30

118.90

119.70

121.00

118.90

121.90

119.70

130.40

118.90

122.20

122.20

122.80

120.30

108.20

120.80

122.20

119.70

121.00

118.80

Mol	Chain	Res	Type	Atoms	Z	Observed(^o)
37	е	36	LEU	CA-CB-CG	5.25	127.38
1	А	1448	U	OP1-P-O3'	5.25	116.75
33	a	171	А	N7-C8-N9	5.25	116.43
33	a	1460	U	C2-N1-C1'	5.25	124.00
33	a	384	G	C4-N9-C1'	5.25	133.32
1	А	1753	С	C5-C6-N1	5.25	123.62
1	А	1374	С	C2-N1-C1'	5.25	124.57
33	a	1149	U	C5-C6-N1	5.25	125.32
33	a	155	С	N1-C2-O2	5.24	122.05
33	a	1357	U	N3-C2-O2	-5.24	118.53
2	В	52	G	C8-N9-C4	-5.24	104.30
33	a	455	G	P-O3'-C3'	5.24	125.99
1	А	2166	С	N1-C2-O2	5.24	122.04
33	a	537	С	C5-C6-N1	5.24	123.62
1	А	458	G	P-O3'-C3'	5.24	125.98
1	А	2277	С	C6-N1-C2	-5.24	118.20
1	А	2591	U	N1-C2-O2	5.24	126.46
1	А	1336	С	N1-C2-O2	5.23	122.04
1	А	1701	С	C5-C6-N1	5.23	123.62
1	А	1559	С	C2-N1-C1'	5.23	124.56
1	А	1671	G	N3-C4-C5	-5.23	125.98
33	a	1460	U	C5-C6-N1	5.23	125.31
53	X	53	G	N3-C4-N9	5.23	129.14
4	D	12	MET	CA-CB-CG	5.23	122.19
1	А	1970	С	N1-C2-O2	5.22	122.03
33	a	1462	U	P-O3'-C3'	5.22	125.97
1	A	1223	С	C5-C6-N1	5.22	123.61
1	A	2114	C	N1-C2-O2	5.22	122.03

Continued from previous page.

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	179	А	O4'-C1'-N9	-5.20	104.04	108.20
2	В	15	С	N1-C2-O2	5.20	122.02	118.90
1	А	1344	С	N3-C2-O2	-5.20	118.26	121.90
1	А	1922	С	N1-C2-O2	5.20	122.02	118.90
2	В	62	U	N3-C2-O2	-5.20	118.56	122.20
33	a	113	G	P-O3'-C3'	5.20	125.94	119.70
1	А	501	А	OP2-P-O3'	5.20	116.63	105.20
1	А	895	G	N3-C4-N9	5.20	129.12	126.00
1	А	914	С	N1-C2-O2	5.20	122.02	118.90
1	А	83	G	N3-C4-N9	-5.19	122.88	126.00
1	А	1422	С	C6-N1-C2	-5.19	118.22	120.30
33	a	332	G	N3-C4-C5	-5.19	126.00	128.60
1	А	1343	С	C6-N1-C1'	-5.19	114.57	120.80
33	a	746	С	N1-C2-O2	5.19	122.01	118.90
1	А	830	А	C4-C5-N7	5.19	113.30	110.70
1	А	1794	С	C6-N1-C2	-5.19	118.22	120.30
1	А	769	А	C6-N1-C2	5.19	121.71	118.60
1	А	2348	С	N1-C2-O2	5.19	122.01	118.90
33	a	445	U	C5-C6-N1	5.19	125.29	122.70
1	А	2254	А	OP2-P-O3'	5.19	116.61	105.20
1	А	3	U	C5-C6-N1	5.18	125.29	122.70
1	А	93	С	C6-N1-C1'	5.18	127.02	120.80
1	А	2333	G	C8-N9-C1'	-5.18	120.27	127.00
1	А	2712	С	N3-C2-O2	-5.18	118.28	121.90
33	a	989	С	C2-N1-C1'	5.18	124.50	118.80
1	А	284	С	OP2-P-O3'	5.18	116.59	105.20
1	А	1671	G	P-O3'-C3'	5.18	125.91	119.70
1	А	442	С	C2-N1-C1'	5.17	124.49	118.80
1	А	2839	С	N1-C2-O2	5.17	122.00	118.90
33	a	563	U	P-O3'-C3'	5.17	125.91	119.70
33	a	966	U	C5-C6-N1	5.17	125.29	122.70
33	a	981	G	O4'-C1'-N9	5.17	112.34	108.20
1	А	1067	А	C4-C5-N7	5.17	113.28	110.70
1	А	2445	С	C6-N1-C2	-5.17	118.23	120.30
33	a	467	С	C5-C6-N1	5.17	123.58	121.00
2	В	29	С	C6-N1-C1'	-5.17	114.60	120.80
33	a	155	С	C5-C6-N1	5.17	123.58	121.00
33	a	563	U	OP1-P-O3'	5.17	116.56	105.20
1	A	1117	G	N3-C4-C5	-5.16	126.02	128.60
1	A	1156	G	N7-C8-N9	5.16	115.68	113.10
1	A	2454	A	P-O3'-C3'	$5.1\overline{6}$	125.89	119.70
44	1	94	LEU	CA-CB-CG	5.16	127.17	115.30

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	2509	С	C6-N1-C2	-5.16	118.24	120.30
33	a	1018	U	P-O3'-C3'	5.16	125.89	119.70
1	А	2620	C	C5-C6-N1	5.16	123.58	121.00
1	А	195	С	C5-C6-N1	5.15	123.58	121.00
1	А	1759	U	O4'-C1'-N1	5.15	112.32	108.20
33	a	1110	С	N1-C2-O2	5.15	121.99	118.90
33	a	1392	С	C6-N1-C2	-5.15	118.24	120.30
33	a	1469	С	C6-N1-C2	-5.15	118.24	120.30
1	А	177	G	O5'-P-OP2	-5.15	101.06	105.70
33	a	130	C	C6-N1-C2	-5.15	118.24	120.30
1	А	2277	С	C2-N1-C1'	5.15	124.46	118.80
1	А	2675	С	C6-N1-C2	-5.15	118.24	120.30
6	F	79	LEU	CA-CB-CG	5.15	127.14	115.30
1	А	2840	С	C2-N3-C4	5.15	122.47	119.90
1	А	211	С	C2-N3-C4	5.14	122.47	119.90
1	А	2604	С	C5-C6-N1	5.14	123.57	121.00
1	А	1028	С	C6-N1-C2	-5.14	118.24	120.30
1	А	1557	G	N3-C4-C5	-5.14	126.03	128.60
1	А	2523	G	C2-N3-C4	5.14	114.47	111.90
33	a	859	C	N1-C2-O2	5.14	121.98	118.90
33	a	1420	С	N3-C2-O2	-5.14	118.30	121.90
1	А	2827	A	N1-C6-N6	5.13	121.68	118.60
1	А	2920	С	C5-C6-N1	5.13	123.57	121.00
1	А	2323	С	N1-C2-O2	5.13	121.98	118.90
33	a	1398	C	C6-N1-C2	-5.13	118.25	120.30
1	А	1613	С	C2-N1-C1'	5.13	124.44	118.80
33	a	1010	U	N1-C2-O2	5.13	126.39	122.80
1	А	393	U	N1-C2-O2	5.13	126.39	122.80
1	А	1246	G	O4'-C1'-N9	5.13	112.30	108.20
1	А	1831	А	C5-N7-C8	-5.13	101.34	103.90
33	a	167	G	N3-C4-N9	5.13	129.08	126.00
33	a	174	C	N1-C2-O2	5.13	121.98	118.90
33	a	982	С	C6-N1-C2	-5.13	118.25	120.30
33	a	1502	A	C5-N7-C8	-5.13	101.34	103.90
33	a	21	С	C2-N1-C1'	5.12	124.43	118.80
33	a	1390	U	N3-C2-O2	-5.12	118.61	122.20
33	a	439	A	C2-N3-C4	5.12	113.16	110.60
1	A	2126	G	N7-C8-N9	5.11	115.66	113.10
33	a	746	C	N3-C2-O2	-5.11	118.32	121.90
1	А	113	U	N3-C2-O2	-5.11	118.62	122.20
1	A	299	U	N1-C2-N3	5.11	117.97	114.90
33	a	466	G	N1-C6-O6	-5.11	116.83	119.90

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
33	a	1022	A	C2-N3-C4	5.11	113.16	110.60
41	i	87	LEU	CB-CG-CD2	-5.11	102.31	111.00
1	А	1805	G	C4-N9-C1'	5.11	133.14	126.50
2	В	49	G	OP1-P-O3'	5.11	116.44	105.20
33	a	967	U	C2-N1-C1'	5.11	123.83	117.70
1	А	1671	G	C6-C5-N7	-5.11	127.34	130.40
1	А	2822	С	N1-C2-O2	5.11	121.96	118.90
33	a	223	С	O4'-C1'-N1	5.11	112.28	108.20
33	a	361	A	OP2-P-O3'	5.11	116.43	105.20
33	a	521	U	C5-C6-N1	5.11	125.25	122.70
1	А	185	А	P-O5'-C5'	5.10	129.06	120.90
1	А	1644	С	N1-C2-O2	5.10	121.96	118.90
1	А	2617	G	C4-C5-N7	5.10	112.84	110.80
1	А	203	U	N1-C2-O2	5.10	126.37	122.80
1	А	104	С	N1-C2-O2	5.10	121.96	118.90
1	А	1626	U	N1-C2-O2	5.10	126.37	122.80
1	А	1307	U	C2-N1-C1'	5.10	123.82	117.70
1	А	309	U	N1-C2-O2	5.09	126.37	122.80
33	a	363	С	C6-N1-C2	-5.09	118.26	120.30
1	А	136	С	C5-C6-N1	5.09	123.55	121.00
1	А	1597	С	C5-C6-N1	5.09	123.55	121.00
33	a	572	А	O4'-C1'-N9	5.09	112.28	108.20
33	a	934	С	C5-C6-N1	5.09	123.55	121.00
1	А	549	А	P-O3'-C3'	5.09	125.81	119.70
1	А	2072	С	C2-N3-C4	5.09	122.44	119.90
33	a	1420	С	C6-N1-C2	-5.09	118.26	120.30
1	А	136	C	C6-N1-C2	-5.09	118.27	120.30
1	А	1199	C	N1-C2-O2	5.09	121.95	118.90
1	А	2203	C	C2-N1-C1'	5.09	124.40	118.80
1	А	2452	U	N3-C2-O2	-5.09	118.64	122.20
1	А	2711	G	N3-C4-N9	5.09	129.05	126.00
1	A	1779	G	C8-N9-C1'	-5.08	120.39	127.00
1	A	1223	С	C6-N1-C2	-5.08	118.27	120.30
1	A	2774	С	N1-C2-O2	5.08	121.95	118.90
33	a	1501	G	N3-C4-N9	-5.08	122.95	126.00
1	А	8	U	N3-C4-O4	5.08	122.96	119.40
1	A	2468	A	P-O3'-C3'	5.08	125.80	119.70
33	a	338	C	N1-C2-O2	5.08	121.95	118.90
1	A	1452	C	C6-N1-C2	-5.08	118.27	120.30
1	A	237	U	C2-N1-C1'	5.08	123.79	117.70
1	A	393	U	N3-C2-O2	-5.08	118.65	122.20
1	А	1534	А	C8-N9-C4	-5.07	103.77	105.80

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
26	1	2	ARG	NE-CZ-NH1	-5.07	117.76	120.30
33	a	963	G	C4-N9-C1'	5.07	133.09	126.50
33	a	1021	U	C5-C6-N1	5.07	125.23	122.70
33	a	1457	С	C5-C6-N1	5.07	123.53	121.00
1	А	1037	С	C5-C6-N1	5.07	123.53	121.00
33	a	820	С	C2-N1-C1'	5.07	124.37	118.80
33	a	855	G	P-O3'-C3'	5.06	125.78	119.70
1	А	2077	G	C4-N9-C1'	5.06	133.08	126.50
1	А	2648	U	N1-C2-O2	5.06	126.34	122.80
1	А	1998	А	OP1-P-O3'	5.06	116.33	105.20
1	А	981	С	C6-N1-C2	-5.06	118.28	120.30
33	a	369	G	C6-C5-N7	-5.06	127.37	130.40
33	a	854	С	N1-C2-O2	5.06	121.93	118.90
1	А	2076	С	C6-N1-C2	-5.05	118.28	120.30
33	a	1499	G	P-O3'-C3'	5.05	125.76	119.70
1	А	1715	С	C5-C6-N1	5.05	123.52	121.00
1	А	2365	А	N1-C6-N6	5.04	121.63	118.60
1	А	529	С	C5-C6-N1	5.04	123.52	121.00
33	a	336	С	N3-C2-O2	-5.04	118.37	121.90
1	А	624	С	N1-C2-O2	5.04	121.92	118.90
6	F	112	ARG	CA-CB-CG	5.04	124.49	113.40
33	a	982	С	N3-C2-O2	-5.04	118.37	121.90
1	А	508	С	C6-N1-C1'	-5.04	114.75	120.80
1	А	1565	U	P-O3'-C3'	5.04	125.74	119.70
33	a	982	С	N1-C2-O2	5.04	121.92	118.90
1	А	309	U	P-O3'-C3'	5.03	125.74	119.70
33	a	589	С	C6-N1-C2	-5.03	118.29	120.30
1	А	2420	G	O5'-P-OP2	-5.03	101.17	105.70
33	a	1293	С	C6-N1-C2	-5.03	118.29	120.30
1	А	18	C	C5-C6-N1	5.03	123.51	121.00
1	А	1727	A	O5'-P-OP1	-5.03	101.17	105.70
1	А	2733	С	C5-C6-N1	5.03	123.51	121.00
1	А	698	C	O4'-C1'-N1	5.02	112.22	108.20
17	S	40	PRO	N-CA-C	5.02	125.16	112.10
33	а	481	C	C5-C6-N1	5.02	123.51	121.00
1	А	506	U	N3-C2-O2	-5.02	118.69	122.20
1	A	946	G	C4-N9-C1'	5.02	133.02	126.50
33	a	319	C	N3-C2-O2	-5.02	118.39	121.90
1	A	$11\overline{75}$	A	OP2-P-O3'	5.02	116.24	105.20
1	A	1250	G	P-O3'-C3'	5.02	125.72	119.70
1	A	1803	C	C5-C6-N1	5.02	123.51	121.00
1	А	1117	G	C4-N9-C1'	5.01	133.02	126.50

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$Observed(^{o})$	$Ideal(^{o})$
1	А	1529	G	P-O3'-C3'	5.01	125.72	119.70
1	А	2313	С	N1-C2-O2	5.01	121.91	118.90
33	a	1078	G	N3-C4-N9	5.01	129.01	126.00
1	А	2296	А	O5'-P-OP2	5.01	116.71	110.70
1	А	648	G	C5'-C4'-C3'	-5.00	107.99	116.00
1	А	1160	G	O4'-C1'-N9	5.00	112.20	108.20
1	А	1333	С	C6-N1-C2	-5.00	118.30	120.30
33	a	1078	G	C6-C5-N7	-5.00	127.40	130.40
1	А	1239	U	C2-N1-C1'	5.00	123.70	117.70
33	a	182	Ū	C2-N1-C1'	5.00	123.70	117.70

There are no chirality outliers.

All (51) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
25	0	50	ASN	Peptide
25	0	51	GLY	Peptide
30	6	59	PHE	Peptide
3	С	153	GLN	Peptide
4	D	53	PHE	Peptide
6	F	117	VAL	Peptide
6	F	138	PHE	Peptide
6	F	53	ALA	Peptide
8	J	132	PRO	Peptide
10	L	18	ARG	Peptide
10	L	35	HIS	Peptide
13	0	1	MET	Peptide
15	Q	102	ASP	Peptide
16	R	50	ASN	Peptide
16	R	51	PRO	Peptide
17	S	39	THR	Peptide
20	V	15	LYS	Peptide
20	V	19	VAL	Peptide
20	V	278	ARG	Peptide
20	V	279	PHE	Peptide
20	V	281	ILE	Peptide
20	V	342	THR	Peptide
20	V	405	LYS	Peptide
20	V	412	ARG	Peptide
20	V	521	ALA	Peptide
20	V	75	THR	Peptide
20	V	98	LEU	Peptide

Mol	Chain	Res	Type	Group
34	b	148	LEU	Peptide
34	b	16	PHE	Peptide
34	b	18	HIS	Peptide
34	b	65	GLY	Peptide
34	b	66	LYS	Peptide
36	d	117	GLY	Peptide
36	d	192	ALA	Peptide
36	d	31	TYR	Peptide
36	d	32	ALA	Peptide
36	d	33	PRO	Peptide
37	е	20	ARG	Peptide
38	f	33	ASN	Peptide
39	g	114	LYS	Peptide
39	g	129	ASN	Peptide
40	h	98	LEU	Peptide
44	1	34	GLU	Peptide
44	1	57	LYS	Peptide
45	m	104	ASN	Peptide
45	m	3	ARG	Peptide
45	m	65	VAL	Peptide
47	0	24	SER	Peptide
49	q	30	TYR	Peptide
50	r	24	THR	Peptide
50	r	25	HIS	Peptide

Continued from previous page...

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
3	С	270/277 (98%)	253 (94%)	17 (6%)	0	100	100
4	D	204/209~(98%)	195 (96%)	9 (4%)	0	100	100
5	Е	203/207 (98%)	187 (92%)	16 (8%)	0	100	100
6	F	174/179~(97%)	159 (91%)	15 (9%)	0	100	100
7	G	173/179~(97%)	153 (88%)	20 (12%)	0	100	100
8	J	140/145~(97%)	129 (92%)	9 (6%)	2 (1%)	11	46
9	K	120/122 (98%)	110 (92%)	10 (8%)	0	100	100
10	L	144/146~(99%)	137 (95%)	7 (5%)	0	100	100
11	М	133/144 (92%)	125 (94%)	8 (6%)	0	100	100
12	N	117/120 (98%)	108 (92%)	9 (8%)	0	100	100
13	Ο	118/120~(98%)	107 (91%)	11 (9%)	0	100	100
14	Р	113/115 (98%)	105 (93%)	8 (7%)	0	100	100
15	Q	115/119~(97%)	107 (93%)	6 (5%)	2 (2%)	9	42
16	R	99/102~(97%)	83 (84%)	15 (15%)	1 (1%)	15	54
17	S	107/113~(95%)	92 (86%)	13 (12%)	2 (2%)	8	40
18	Т	88/95~(93%)	84 (96%)	4 (4%)	0	100	100
19	U	99/103~(96%)	86 (87%)	13 (13%)	0	100	100
20	V	539/548~(98%)	464 (86%)	73 (14%)	2 (0%)	34	72
21	W	80/94~(85%)	71 (89%)	9 (11%)	0	100	100
22	Х	56/62~(90%)	46 (82%)	10 (18%)	0	100	100
23	Y	63/66~(96%)	60 (95%)	3 (5%)	0	100	100
24	Z	56/59~(95%)	54 (96%)	2 (4%)	0	100	100
25	0	52/59~(88%)	49 (94%)	2 (4%)	1 (2%)	8	40
26	1	46/49~(94%)	43 (94%)	3 (6%)	0	100	100
27	2	42/44~(96%)	41 (98%)	1 (2%)	0	100	100
28	3	62/66~(94%)	60 (97%)	2 (3%)	0	100	100
29	4	35/37~(95%)	32 (91%)	3 (9%)	0	100	100
30	6	61/66~(92%)	53 (87%)	8 (13%)	0	100	100
32	8	210/232~(90%)	192 (91%)	18 (9%)	0	100	100
34	b	216/246~(88%)	188 (87%)	24 (11%)	4 (2%)	8	40

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
35	с	204/218~(94%)	185 (91%)	19 (9%)	0	100	100
36	d	193/200~(96%)	173 (90%)	18 (9%)	2(1%)	15	54
37	е	162/166~(98%)	150 (93%)	12 (7%)	0	100	100
38	f	90/95~(95%)	83 (92%)	7 (8%)	0	100	100
39	g	147/156~(94%)	136 (92%)	11 (8%)	0	100	100
40	h	129/132~(98%)	107 (83%)	20 (16%)	2(2%)	9	43
41	i	123/130~(95%)	104 (85%)	18 (15%)	1 (1%)	19	58
42	j	93/102~(91%)	83 (89%)	9 (10%)	1 (1%)	14	52
43	k	112/131~(86%)	100 (89%)	12 (11%)	0	100	100
44	1	134/138~(97%)	117 (87%)	16 (12%)	1 (1%)	22	61
45	m	106/121~(88%)	94 (89%)	11 (10%)	1 (1%)	17	56
46	n	58/61~(95%)	46 (79%)	11 (19%)	1 (2%)	9	42
47	О	83/89~(93%)	79~(95%)	3~(4%)	1 (1%)	13	50
48	р	86/90~(96%)	76~(88%)	7 (8%)	3~(4%)	3	27
49	q	82/87~(94%)	77 (94%)	5~(6%)	0	100	100
50	r	62/79~(78%)	57 (92%)	5 (8%)	0	100	100
51	S	76/92~(83%)	66 (87%)	10 (13%)	0	100	100
52	t	81/88~(92%)	76 (94%)	3 (4%)	2(2%)	5	34
All	All	5956/6298~(95%)	5382 (90%)	545 (9%)	29 (0%)	32	68

All (29) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
8	J	133	HIS
15	Q	93	LYS
17	S	40	PRO
20	V	280	SER
34	b	18	HIS
34	b	19	GLN
36	d	32	ALA
40	h	99	ASN
48	р	47	ALA
52	t	69	LYS
8	J	132	PRO
15	Q	92	ARG
34	b	67	ILE

Mol	Chain	Res	Type
36	d	33	PRO
40	h	4	THR
46	n	32	SER
34	b	66	LYS
45	m	105	ASN
17	S	39	THR
25	0	51	GLY
44	1	135	PRO
48	р	48	GLU
52	t	68	HIS
16	R	50	ASN
41	i	125	PRO
48	р	46	PRO
20	V	281	ILE
42	j	79	PRO
47	0	25	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
3	С	220/225~(98%)	218~(99%)	2(1%)	78 90
4	D	167/170~(98%)	166~(99%)	1 (1%)	86 94
5	Е	169/170~(99%)	164~(97%)	5(3%)	41 71
6	F	151/154~(98%)	144~(95%)	7~(5%)	27 61
7	G	148/151~(98%)	148 (100%)	0	100 100
8	J	120/123~(98%)	118~(98%)	2(2%)	60 82
9	Κ	101/101~(100%)	101 (100%)	0	100 100
10	L	110/110~(100%)	108~(98%)	2(2%)	59 81
11	М	109/116~(94%)	108~(99%)	1 (1%)	78 90
12	Ν	99/100~(99%)	99 (100%)	0	100 100
13	Ο	93/93~(100%)	91~(98%)	2(2%)	52 78

Mol	Chain	Analysed	Rotameric	Outliers	Perce	\mathbf{ntiles}
14	Р	100/100~(100%)	97~(97%)	3~(3%)	41	71
15	Q	96/98~(98%)	96 (100%)	0	100	100
16	R	83/84~(99%)	81 (98%)	2(2%)	49	76
17	S	90/93~(97%)	90 (100%)	0	100	100
18	Т	81/85~(95%)	79~(98%)	2(2%)	47	75
19	U	85/87~(98%)	85 (100%)	0	100	100
20	V	424/431~(98%)	417 (98%)	7 (2%)	60	82
21	W	64/74~(86%)	61~(95%)	3~(5%)	26	60
22	Х	47/50~(94%)	44 (94%)	3~(6%)	17	50
23	Υ	56/57~(98%)	56 (100%)	0	100	100
24	Ζ	52/53~(98%)	51 (98%)	1 (2%)	57	80
25	0	48/53~(91%)	45 (94%)	3~(6%)	18	51
26	1	46/47~(98%)	46 (100%)	0	100	100
27	2	39/39~(100%)	38~(97%)	1 (3%)	46	74
28	3	54/56~(96%)	52 (96%)	2(4%)	34	65
29	4	35/35~(100%)	35~(100%)	0	100	100
30	6	53/55~(96%)	53~(100%)	0	100	100
32	8	169/185~(91%)	168 (99%)	1 (1%)	86	94
34	b	189/212~(89%)	182~(96%)	7~(4%)	34	65
35	с	168/178~(94%)	166 (99%)	2(1%)	71	87
36	d	169/173~(98%)	165~(98%)	4 (2%)	49	76
37	е	128/130~(98%)	126~(98%)	2(2%)	62	83
38	f	81/84~(96%)	80~(99%)	1 (1%)	71	87
39	g	125/132~(95%)	124 (99%)	1 (1%)	81	91
40	h	111/112~(99%)	109~(98%)	2(2%)	59	81
41	i	98/102~(96%)	96~(98%)	2(2%)	55	79
42	j	86/92~(94%)	86 (100%)	0	100	100
43	k	86/100~(86%)	$85 \ (99\%)$	1 (1%)	71	87
44	1	114/116~(98%)	111 (97%)	3~(3%)	46	74
45	m	94/104~(90%)	94 (100%)	0	100	100
46	n	53/54 (98%)	52 (98%)	1 (2%)	57	80

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
47	О	80/83~(96%)	79~(99%)	1 (1%)	69 86
48	р	74/76~(97%)	72~(97%)	2(3%)	44 73
49	q	77/80~(96%)	74 (96%)	3~(4%)	32 64
50	r	56/64~(88%)	54 (96%)	2(4%)	35 66
51	S	70/81~(86%)	69~(99%)	1 (1%)	67 85
52	t	66/70~(94%)	65~(98%)	1 (2%)	65 84
All	All	5034/5238~(96%)	4948 (98%)	86 (2%)	62 82

All (86) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
3	С	221	ARG
3	С	273	ARG
4	D	199	LEU
5	Е	10	ASN
5	Е	29	ASN
5	Е	188	ASN
5	Е	192	LEU
5	Е	194	ILE
6	F	3	ARG
6	F	4	LEU
6	F	78	ARG
6	F	119	LYS
6	F	133	LYS
6	F	136	LEU
6	F	165	GLU
8	J	26	LEU
8	J	123	LEU
10	L	18	ARG
10	L	47	ARG
11	М	124	LYS
13	0	4	LYS
13	0	61	LYS
14	Р	36	ASN
14	Р	39	ARG
14	Р	51	ARG
16	R	47	LYS
16	R	48	VAL
18	Т	65	ARG
18	Т	68	ARG

Mol	Chain	Res	Type
20	V	14	VAL
20	V	63	ARG
20	V	160	ARG
20	V	182	LYS
20	V	309	ASN
20	V	380	PHE
20	V	388	ASN
21	W	22	ARG
21	W	28	ARG
21	W	79	ARG
22	Х	4	LYS
22	Х	17	ASN
22	Х	27	ARG
24	Z	9	LYS
25	0	22	LEU
25	0	38	LEU
25	0	50	ASN
27	2	28	ARG
28	3	32	LEU
28	3	62	LEU
32	8	121	MET
34	b	24	ASN
34	b	36	ASN
34	b	113	ARG
34	b	123	ASN
34	b	154	MET
34	b	179	LEU
34	b	203	ASN
35	с	71	LYS
35	с	163	ARG
36	d	54	LYS
36	d	147	ASN
36	d	172	LEU
36	d	182	ARG
37	е	36	LEU
37	е	95	LEU
38	f	77	ARG
39	g	9	LYS
40	h	57	GLN
40	h	96	ARG
41	i	12	ARG
41	i	106	ARG

Mol	Chain	Res	Type
43	k	95	ARG
44	1	44	ARG
44	l	56	LYS
44	l	96	ARG
46	n	29	ARG
47	0	54	ARG
48	р	32	ARG
48	р	71	ARG
49	q	32	LYS
49	q	67	ARG
49	q	76	ARG
50	r	29	LYS
50	r	48	ARG
51	s	5	LEU
52	t	78	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (78) such sidechains are listed below:

Mol	Chain	Res	Type
3	С	86	ASN
3	С	177	ASN
3	С	230	HIS
3	С	232	HIS
4	D	33	ASN
5	Е	10	ASN
5	Е	29	ASN
5	Е	188	ASN
6	F	45	GLN
7	G	148	ASN
10	L	126	ASN
12	Ν	27	ASN
12	N	61	GLN
12	Ν	68	ASN
13	0	15	HIS
14	Р	36	ASN
15	Q	29	HIS
15	Q	37	GLN
15	Q	66	ASN
16	R	83	HIS
17	S	102	HIS
19	U	64	HIS
20	V	73	GLN

Mol	Chain	Res	Type
20	V	158	HIS
20	V	207	GLN
20	V	218	ASN
20	V	296	ASN
20	V	309	ASN
20	V	335	ASN
20	V	360	GLN
20	V	388	ASN
20	V	406	HIS
20	V	435	ASN
20	V	461	HIS
21	W	37	GLN
22	Х	17	ASN
22	Х	23	ASN
25	0	40	HIS
25	0	50	ASN
26	1	22	ASN
26	1	26	ASN
28	3	60	GLN
32	8	67	ASN
32	8	106	GLN
32	8	188	ASN
34	b	18	HIS
34	b	24	ASN
34	b	36	ASN
34	b	123	ASN
34	b	203	ASN
35	с	136	GLN
36	d	96	ASN
36	d	112	GLN
36	d	118	HIS
36	d	147	ASN
37	e	83	HIS
38	f	33	ASN
38	f	61	GLN
39	g	84	ASN
39	g	142	HIS
40	h	57	GLN
41	i	81	HIS
41	i	126	GLN
44	1	59	ASN
44	1	85	HIS

Mol	Chain	Res	Type
44	1	90	HIS
44	l	109	HIS
45	m	76	ASN
46	n	10	GLN
47	0	28	GLN
47	0	37	ASN
47	0	42	HIS
47	0	46	HIS
47	0	51	HIS
47	0	83	ASN
49	q	49	HIS
52	t	70	ASN
52	t	84	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	А	2876/2928~(98%)	857~(29%)	90~(3%)
2	В	111/112~(99%)	40 (36%)	3~(2%)
31	7	2/3~(66%)	0	0
33	a	1532/1554~(98%)	411 (26%)	0
53	Х	73/75~(97%)	29~(39%)	0
All	All	4594/4672~(98%)	1337~(29%)	93~(2%)

All (1337) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	А	7	G
1	А	8	U
1	А	10	А
1	А	13	А
1	А	18	С
1	А	26	G
1	А	34	U
1	А	35	G
1	А	36	G
1	А	45	G
1	А	46	С
1	А	55	G
1	А	60	G
1	А	61	А

Mol	Chain	Res	Type
1	А	62	С
1	А	63	G
1	А	64	А
1	А	65	А
1	А	66	С
1	А	71	A
1	А	74	U
1	А	75	G
1	А	76	С
1	А	77	U
1	А	78	U
1	А	79	С
1	А	83	G
1	A	84	A
1	А	85	G
1	A	86	С
1	А	87	U
1	А	89	U
1	А	90	А
1	А	92	G
1	А	93	С
1	А	96	G
1	А	99	U
1	А	100	U
1	А	101	G
1	А	117	А
1	А	118	А
1	А	119	U
1	А	124	А
1	А	125	A
1	A	126	A
1	A	127	С
1	A	134	С
1	A	141	U
1	A	156	A
1	A	162	A
1	A	163	U
1	A	164	U
1	A	167	U
1	A	174	U
1	A	175	G
1	A	176	A

Mol	Chain	Res	Type
1	А	177	G
1	А	178	А
1	А	179	A
1	А	182	С
1	А	187	С
1	А	188	С
1	А	196	U
1	А	199	A
1	А	202	A
1	А	207	A
1	А	216	A
1	А	218	G
1	А	219	A
1	А	225	A
1	А	226	А
1	А	227	G
1	А	229	A
1	А	231	A
1	А	232	U
1	А	233	G
1	А	234	С
1	А	236	А
1	А	237	U
1	А	244	А
1	А	247	А
1	А	248	G
1	А	251	G
1	А	252	С
1	А	253	G
1	A	255	G
1	A	258	A
1	A	266	U
1	А	267	С
1	A	268	A
1	А	269	G
1	A	270	C
1	A	272	С
1	A	275	A
1	A	282	G
1	A	283	G
1	A	284	С
1	А	285	U
	~	-	

1 A 286 U 1 A 290 U 1 A 291 C 1 A 298 U 1 A 299 U 1 A 301 U 1 A 302 A 1 A 302 A 1 A 302 A 1 A 302 A 1 A 309 U 1 A 345 A 1 A 348 U 1 A 352 G 1 A 366 A 1 A 366 A 1 A 367 G 1 A 389 A </th <th>Mol</th> <th>Chain</th> <th>Res</th> <th>Type</th>	Mol	Chain	Res	Type
1 A 290 U 1 A 291 C 1 A 298 U 1 A 299 U 1 A 301 U 1 A 302 A 1 A 309 U 1 A 309 U 1 A 310 C 1 A 345 A 1 A 345 A 1 A 349 C 1 A 352 G 1 A 366 A 1 A 367 G 1 A 373 A 1 A 389 A </td <td>1</td> <td>А</td> <td>286</td> <td>U</td>	1	А	286	U
1 A 291 C 1 A 298 U 1 A 299 U 1 A 301 U 1 A 302 A 1 A 309 U 1 A 309 U 1 A 309 U 1 A 309 U 1 A 345 A 1 A 345 A 1 A 346 G 1 A 352 G 1 A 366 A 1 A 366 A 1 A 367 G 1 A 373 A 1 A 389 A </td <td>1</td> <td>А</td> <td>290</td> <td>U</td>	1	А	290	U
1 A 298 U 1 A 301 U 1 A 302 A 1 A 309 U 1 A 310 C 1 A 345 A 1 A 345 A 1 A 346 G 1 A 346 G 1 A 346 G 1 A 352 G 1 A 366 A 1 A 367 G 1 A 373 A 1 A 375 C 1 A 398 U 1 A 409 U </td <td>1</td> <td>А</td> <td>291</td> <td>С</td>	1	А	291	С
1 A 299 U 1 A 301 U 1 A 302 A 1 A 308 C 1 A 309 U 1 A 309 U 1 A 310 C 1 A 310 C 1 A 345 A 1 A 345 A 1 A 346 G 1 A 348 U 1 A 348 U 1 A 346 G 1 A 352 G 1 A 360 C 1 A 366 A 1 A 367 G 1 A 373 A 1 A 375 C 1 A 398 A 1 A 398 U 1 A 410 G </td <td>1</td> <td>А</td> <td>298</td> <td>U</td>	1	А	298	U
1 A 301 U 1 A 302 A 1 A 308 C 1 A 309 U 1 A 309 U 1 A 310 C 1 A 337 A 1 A 345 A 1 A 345 A 1 A 346 G 1 A 348 U 1 A 346 G 1 A 349 C 1 A 352 G 1 A 360 C 1 A 366 A 1 A 366 A 1 A 367 G 1 A 373 A 1 A 375 C 1 A 398 U 1 A 398 U 1 A 410 G </td <td>1</td> <td>А</td> <td>299</td> <td>U</td>	1	А	299	U
1 A 302 A 1 A 308 C 1 A 309 U 1 A 310 C 1 A 310 C 1 A 345 A 1 A 345 A 1 A 346 G 1 A 344 U 1 A 346 G 1 A 345 A 1 A 346 G 1 A 346 G 1 A 352 G 1 A 366 A 1 A 366 A 1 A 367 G 1 A 373 A 1 A 375 C 1 A 398 U 1 A 398 U 1 A 4109 U 1	1	А	301	U
1 A 308 C 1 A 309 U 1 A 310 C 1 A 337 A 1 A 345 A 1 A 346 G 1 A 348 U 1 A 348 U 1 A 346 G 1 A 352 G 1 A 360 C 1 A 366 A 1 A 367 G 1 A 373 A 1 A 375 C 1 A 395 C 1 A 398 U 1 A 409 U 1 A 410 G </td <td>1</td> <td>А</td> <td>302</td> <td>A</td>	1	А	302	A
1 A 309 U 1 A 310 C 1 A 337 A 1 A 345 A 1 A 346 G 1 A 352 G 1 A 366 A 1 A 366 A 1 A 367 G 1 A 373 A 1 A 375 C 1 A 389 A 1 A 396 G 1 A 409 U 1 A 410 G 1	1	А	308	С
1 A 310 C 1 A 337 A 1 A 345 A 1 A 345 A 1 A 346 G 1 A 348 U 1 A 349 C 1 A 352 G 1 A 354 A 1 A 360 C 1 A 366 A 1 A 366 A 1 A 366 A 1 A 367 G 1 A 373 A 1 A 375 C 1 A 395 C 1 A 398 U 1 A 409 U 1 A 410 G 1 A 412 A 1 A 420 U 1 A 433 G </td <td>1</td> <td>А</td> <td>309</td> <td>U</td>	1	А	309	U
1 A 337 A 1 A 345 A 1 A 346 G 1 A 348 U 1 A 349 C 1 A 352 G 1 A 354 A 1 A 360 C 1 A 366 A 1 A 367 G 1 A 367 G 1 A 373 A 1 A 375 C 1 A 389 A 1 A 395 C 1 A 398 U 1 A 410 U 1 A 412 A 1 A 412 A 1 A 419 G 1 A 420 U 1 A 433 G 1 A 434 U </td <td>1</td> <td>А</td> <td>310</td> <td>С</td>	1	А	310	С
1 A 345 A 1 A 346 G 1 A 348 U 1 A 349 C 1 A 352 G 1 A 352 G 1 A 354 A 1 A 360 C 1 A 366 A 1 A 366 A 1 A 367 G 1 A 373 A 1 A 375 C 1 A 375 C 1 A 395 C 1 A 396 G 1 A 409 U 1 A 411 G 1 A 412 A 1 A 412 A 1 A 419 G 1 A 433 G 1	1	А	337	A
1 A 346 G 1 A 348 U 1 A 349 C 1 A 352 G 1 A 354 A 1 A 360 C 1 A 361 G 1 A 366 A 1 A 367 G 1 A 367 G 1 A 373 A 1 A 375 C 1 A 382 G 1 A 395 C 1 A 398 U 1 A 409 U 1 A 412 A 1 A 413 G 1 A 412 A 1 A 419 G 1 A 420 U 1 A 433 G 1 A 436 A </td <td>1</td> <td>А</td> <td>345</td> <td>A</td>	1	А	345	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	346	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	348	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	349	C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	352	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	354	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	360	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	361	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	366	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	367	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	373	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	374	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	375	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	382	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	389	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	395	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	396	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	398	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	A	409	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	A	411	G
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	A	412	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	418	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	A	419	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	A	420	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	A	421	A
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	A	430	С
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	A	433	G
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	A	434	U
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	A	436	A
1 A 444 Ū	1	A	442	C
	1	А	444	U

Mol	Chain	Res	Type
1	А	445	С
1	А	453	G
1	А	458	G
1	А	459	А
1	А	469	А
1	А	471	G
1	А	482	С
1	А	483	С
1	А	489	G
1	А	490	А
1	А	494	A
1	А	498	U
1	А	502	С
1	А	503	С
1	А	504	A
1	А	506	U
1	А	508	С
1	А	511	U
1	А	524	А
1	А	526	А
1	А	527	А
1	А	528	G
1	А	529	С
1	А	548	А
1	А	550	G
1	А	551	А
1	А	552	G
1	А	554	U
1	А	555	С
1	А	556	С
1	A	558	G
1	A	568	G
1	A	573	С
1	A	575	A
1	A	577	U
1	A	578	A
1	A	583	G
1	A	584	A
1	A	590	U
1	А	591	U
1	A	592	A
1	А	593	A

Mol	Chain	Res	Type
1	А	594	С
1	А	595	G
1	А	599	G
1	А	607	G
1	А	613	U
1	А	617	G
1	А	618	А
1	А	619	А
1	А	622	А
1	А	630	А
1	А	632	U
1	А	646	А
1	А	647	A
1	A	648	G
1	А	649	G
1	A	655	С
1	А	658	А
1	А	659	А
1	А	662	U
1	А	667	А
1	А	668	G
1	А	673	А
1	А	680	G
1	А	683	А
1	А	686	С
1	А	689	А
1	А	690	А
1	А	691	U
1	А	698	С
1	А	699	А
1	A	700	U
1	А	701	G
1	A	703	G
1	А	715	А
1	A	716	G
1	А	717	А
1	А	718	C
1	A	733	U
1	А	741	U
1	А	749	G
1	А	764	С
1	А	765	A

Mol	Chain	Res	Type
1	А	766	С
1	А	777	С
1	А	787	С
1	А	788	G
1	А	790	А
1	А	794	U
1	А	804	G
1	А	810	G
1	А	811	А
1	А	812	G
1	А	822	G
1	А	823	G
1	А	824	G
1	A	829	A
1	А	830	А
1	A	831	U
1	А	832	G
1	А	837	U
1	А	839	G
1	А	847	А
1	А	852	G
1	А	853	С
1	А	858	U
1	А	859	С
1	А	866	А
1	А	874	U
1	А	875	U
1	А	878	G
1	А	890	G
1	A	891	G
1	A	892	U
1	A	893	A
1	А	906	G
1	A	908	A
1	А	913	А
1	A	914	С
1	A	916	G
1	А	919	U
1	A	923	С
1	А	928	G
1	A	929	G
1	А	931	С

Mol	Chain	Res	Type
1	А	933	С
1	А	934	U
1	А	935	А
1	А	936	С
1	А	937	С
1	А	939	G
1	А	940	G
1	А	941	U
1	А	942	U
1	А	943	А
1	А	944	С
1	А	948	А
1	А	953	G
1	А	954	U
1	А	957	А
1	А	958	А
1	А	959	С
1	А	962	С
1	А	964	А
1	А	970	А
1	А	973	G
1	А	975	С
1	А	977	U
1	А	980	С
1	А	987	А
1	А	992	G
1	А	999	А
1	А	1003	А
1	А	1006	А
1	A	1007	G
1	A	1019	A
1	A	1020	A
1	A	1026	А
1	A	1029	А
1	A	1031	С
1	A	1036	A
1	A	1037	С
1	A	1042	A
1	A	1051	C
1	A	1054	A
1	A	1055	А
1	A	1058	U

Mol	Chain	Res	Type
1	А	1059	А
1	А	1067	А
1	А	1068	G
1	А	1069	U
1	А	1070	G
1	А	1071	G
1	А	1072	А
1	А	1073	А
1	А	1079	U
1	A	1086	U
1	A	1091	U
1	A	1101	G
1	А	1102	G
1	A	1103	A
1	А	1106	U
1	A	1110	С
1	A	1111	U
1	А	1116	A
1	A	1117	G
1	A	1118	С
1	A	1119	A
1	A	1120	G
1	A	1121	C
1	A	1122	С
1	A	1123	A
1	A	1124	С
1	A	1125	С
1	A	1127	U
1	A	1128	U
1	A	1134	A
1	A	1142	A
1	A	1143	U
1	A	1145	G
1	A	1146	C
1	A	1157	A
1	A	1158	G
1	A	1159	U
1	A	1160	G
1	A	1161	A
1	A	1173	A
1	A	1174	A
1	A	1176	U

Mol	Chain	Res	Type
1	А	1178	U
1	А	1179	А
1	А	1180	С
1	А	1181	С
1	А	1182	G
1	А	1185	G
1	А	1188	А
1	А	1197	А
1	А	1201	А
1	А	1203	G
1	А	1210	А
1	А	1221	А
1	А	1235	А
1	A	1236	G
1	A	1244	A
1	A	1245	G
1	А	1248	С
1	А	1249	U
1	А	1250	G
1	А	1251	U
1	А	1252	G
1	А	1259	G
1	А	1260	А
1	A	1261	С
1	А	1270	С
1	А	1276	G
1	А	1278	G
1	А	1280	G
1	A	1281	C
1	A	1282	U
1	А	1290	G
1	A	1293	A
1	A	1294	A
1	A	1295	U
1	A	1296	G
1	A	1306	G
1	A	1307	U
1	A	1311	G
1	A	1312	A
1	A	1313	A
1	A	1314	A
1	A	1315	G

Mol	Chain	Res	Type
1	А	1323	А
1	А	1325	А
1	А	1330	С
1	А	1333	С
1	А	1339	А
1	А	1340	А
1	А	1341	U
1	А	1343	С
1	А	1344	С
1	А	1346	А
1	А	1351	U
1	А	1352	U
1	А	1354	С
1	A	1362	G
1	А	1363	G
1	А	1364	С
1	А	1365	U
1	А	1366	С
1	А	1368	U
1	А	1369	С
1	А	1370	С
1	А	1371	G
1	А	1372	С
1	А	1375	А
1	А	1376	G
1	А	1384	С
1	А	1385	G
1	А	1388	А
1	А	1389	С
1	А	1391	U
1	A	1404	A
1	A	1417	A
1	A	1418	U
1	A	1422	C
1	A	1423	A
1	A	1424	A
1	А	1425	С
1	A	1426	A
1	A	1435	U
1	A	1436	U
1	A	1442	A
1	А	1443	С

Mol	Chain	Res	Type
1	А	1448	U
1	А	1449	С
1	А	1451	U
1	А	1457	U
1	А	1459	U
1	А	1460	G
1	А	1465	A
1	А	1467	G
1	А	1472	G
1	А	1473	А
1	А	1475	G
1	А	1481	G
1	А	1487	G
1	A	1489	U
1	А	1490	A
1	A	1499	A
1	А	1500	U
1	А	1502	G
1	А	1506	А
1	А	1507	U
1	А	1508	С
1	А	1516	A
1	А	1522	U
1	А	1525	G
1	А	1526	G
1	А	1527	С
1	А	1528	U
1	А	1529	G
1	А	1530	G
1	А	1531	G
1	A	1532	A
1	A	1536	A
1	А	1539	С
1	A	1540	A
1	А	1542	A
1	A	1543	U
1	A	1544	C
1	A	1545	С
1	A	1549	U
1	A	1550	С
1	A	1551	С
1	A	1553	A

Mol	Chain	Res	Type
1	А	1556	А
1	А	1557	G
1	А	1558	G
1	А	1559	С
1	А	1560	U
1	А	1561	G
1	А	1562	А
1	А	1563	G
1	А	1566	G
1	А	1568	G
1	А	1569	А
1	А	1570	U
1	A	1571	G
1	A	1573	С
1	A	1602	U
1	A	1606	A
1	А	1607	С
1	А	1608	А
1	А	1613	С
1	А	1617	А
1	А	1626	U
1	А	1628	G
1	А	1631	А
1	А	1632	G
1	А	1645	С
1	А	1653	А
1	А	1655	А
1	A	1657	С
1	A	1658	G
1	A	1661	A
1	A	1672	A
1	А	1679	A
1	A	1680	A
1	А	1691	A
1	A	1692	U
1	A	1693	С
1	А	1694	G
1	А	1696	G
1	А	1697	A
1	А	1699	A
1	А	1700	A
1	A	1708	U

main Res	Type
1 A 1709	А
1 A 1712	G
1 A 1717	С
1 A 1719	G
1 A 1720	С
1 A 1727	А
1 A 1738	U
1 A 1740	G
1 A 1745	А
1 A 1746	А
1 A 1748	G
1 A 1750	G
1 A 1752	G
1 A 1753	С
1 A 1757	G
1 A 1758	U
1 A 1759	U
1 A 1760	А
1 A 1762	G
1 A 1766	С
1 A 1768	А
1 A 1771	С
1 A 1776	А
1 A 1777	G
1 A 1778	А
1 A 1779	G
1 A 1781	С
1 A 1782	G
1 A 1783	С
1 A 1785	G
1 A 1789	А
1 A 1790	U
1 A 1792	G
1 A 1793	G
1 A 1797	А
1 A 1802	A
1 A 1810	G
1 A 1811	С
1 A 1812	A
1 A 1813	A
1 A 1814	А
1 A 1815	A

Mol	Chain	Res	Type
1	А	1829	С
1	А	1830	G
1	А	1831	А
1	А	1833	G
1	А	1839	А
1	А	1843	G
1	А	1845	А
1	А	1846	G
1	А	1849	U
1	А	1858	А
1	А	1867	С
1	А	1872	С
1	А	1877	А
1	A	1882	А
1	A	1883	А
1	А	1884	G
1	А	1885	А
1	А	1887	G
1	А	1895	А
1	А	1899	U
1	А	1902	G
1	А	1904	G
1	А	1932	G
1	А	1935	G
1	А	1941	А
1	А	1942	А
1	А	1943	С
1	А	1944	U
1	А	1946	U
1	А	1952	U
1	А	1956	А
1	A	1958	G
1	А	1959	G
1	A	1966	A
1	А	1967	А
1	A	1968	U
1	A	1969	U
1	А	1970	С
1	A	1972	U
1	А	1973	U
1	A	1984	U
1	А	1992	С

Mol	Chain	Res	Type
1	А	1993	G
1	А	1995	А
1	А	1996	С
1	А	1999	А
1	А	2000	А
1	А	2001	G
1	А	2004	G
1	А	2010	А
1	А	2020	U
1	А	2022	U
1	А	2025	С
1	А	2026	А
1	А	2033	G
1	A	2050	G
1	А	2051	U
1	A	2052	A
1	А	2053	С
1	А	2059	А
1	А	2060	А
1	А	2061	G
1	А	2062	А
1	А	2064	G
1	А	2065	С
1	А	2068	G
1	А	2070	U
1	А	2072	С
1	А	2079	С
1	А	2080	А
1	А	2081	G
1	А	2084	С
1	A	2085	G
1	A	2089	А
1	A	2090	G
1	A	2098	G
1	A	2101	G
1	A	2121	U
1	A	2123	А
1	A	2125	U
1	А	2128	U
1	А	2131	U
1	A	2134	A
1	A	2135	G

Mol	Chain	Res	Type
1	А	2136	С
1	А	2139	G
1	А	2140	U
1	А	2145	G
1	А	2146	А
1	А	2147	U
1	А	2149	G
1	А	2156	G
1	А	2160	U
1	А	2161	G
1	А	2162	G
1	А	2166	С
1	А	2174	С
1	А	2175	С
1	А	2176	A
1	А	2177	G
1	А	2185	G
1	А	2187	A
1	А	2198	G
1	А	2200	А
1	А	2201	U
1	А	2202	А
1	А	2203	С
1	А	2205	А
1	А	2206	С
1	А	2208	С
1	А	2210	G
1	А	2212	С
1	А	2213	U
1	А	2217	U
1	А	2219	G
1	А	2228	A
1	А	2232	G
1	А	2233	С
1	А	2240	U
1	А	2241	А
1	А	2242	U
1	А	2244	G
1	А	2245	G
1	А	2246	G
1	А	2249	G
1	А	2252	A
	~	-	

Mol	Chain	Res	Type
1	А	2254	А
1	А	2255	С
1	А	2260	U
1	А	2267	G
1	А	2268	G
1	А	2295	А
1	А	2296	А
1	А	2307	A
1	А	2308	G
1	А	2311	G
1	А	2312	С
1	А	2316	А
1	А	2317	А
1	A	2323	С
1	А	2324	С
1	A	2325	U
1	А	2327	А
1	А	2331	U
1	А	2332	G
1	А	2333	G
1	А	2334	U
1	А	2335	U
1	А	2336	G
1	А	2338	А
1	А	2340	А
1	А	2341	U
1	А	2342	С
1	А	2343	A
1	А	2344	U
1	A	2345	U
1	А	2348	С
1	A	2349	A
1	А	2350	G
1	A	2354	G
1	А	2356	А
1	A	2357	A
1	А	2363	С
1	A	2364	A
1	А	2368	G
1	A	2374	G
1	A	2376	С
1	А	2379	С

Mol	Chain	Res	Type
1	А	2381	А
1	А	2387	А
1	А	2390	А
1	А	2401	G
1	А	2406	А
1	А	2408	G
1	А	2412	G
1	А	2413	G
1	А	2414	С
1	А	2418	G
1	А	2420	G
1	А	2431	U
1	А	2432	С
1	A	2435	С
1	А	2448	U
1	A	2451	С
1	А	2452	U
1	А	2453	С
1	А	2454	А
1	А	2455	А
1	А	2458	G
1	А	2459	А
1	А	2460	U
1	А	2464	А
1	А	2468	А
1	А	2469	С
1	А	2470	С
1	А	2476	G
1	А	2477	А
1	А	2488	А
1	A	2497	A
1	A	2503	C
1	А	2505	А
1	A	2506	C
1	А	2507	А
1	A	2511	A
1	A	2523	G
1	А	2524	G
1	A	2525	С
1	А	2527	С
1	А	2531	G
1	A	2532	A

Mol	Chain	Res	Type
1	А	2533	U
1	А	2534	G
1	А	2547	А
1	А	2554	G
1	А	2558	G
1	А	2563	С
1	А	2564	G
1	А	2570	А
1	А	2583	U
1	А	2593	А
1	А	2595	А
1	А	2596	G
1	Α	2598	G
1	A	$2\overline{601}$	A
1	А	2602	С
1	A	2607	G
1	А	2612	G
1	А	2613	U
1	А	2614	U
1	А	2615	С
1	А	2630	С
1	А	2631	А
1	А	2638	U
1	А	2642	U
1	А	2644	U
1	А	2654	G
1	А	2659	G
1	А	2660	G
1	А	2667	G
1	А	2674	G
1	A	$2\overline{675}$	C
1	А	2689	A
1	A	2692	G
1	A	2696	С
1	A	2702	G
1	A	2711	G
1	А	2714	G
1	A	2718	U
1	A	2720	С
1	A	2743	G
1	A	2747	G
1	А	2753	U

Mol	Chain	Res	Type
1	А	2755	U
1	А	2760	G
1	А	2762	А
1	А	2764	G
1	А	2765	G
1	А	2766	G
1	А	2773	G
1	А	2777	А
1	А	2784	С
1	А	2785	U
1	А	2786	А
1	А	2789	С
1	А	2794	A
1	А	2795	G
1	А	2806	G
1	А	2807	A
1	А	2808	U
1	А	2818	С
1	А	2821	U
1	А	2822	С
1	А	2823	С
1	А	2824	G
1	А	2826	A
1	А	2828	G
1	А	2831	А
1	А	2832	G
1	А	2833	U
1	А	2843	G
1	А	2855	G
1	А	2859	G
1	A	2860	A
1	А	2862	А
1	A	2866	C
1	A	2868	G
1	A	2874	G
1	A	2886	C
1	A	2891	G
1	A	2892	G
1	A	2897	G
1	A	2900	A
1	A	2901	G
1	А	2905	С

Mol	Chain	Res	Type
1	А	2908	А
1	А	2916	А
1	А	2917	G
2	В	10	G
2	В	12	U
2	В	15	С
2	В	22	G
2	В	23	U
2	В	28	С
2	В	31	G
2	В	32	U
2	В	33	U
2	В	34	С
2	В	38	U
2	В	39	A
2	В	40	С
2	В	41	С
2	В	42	G
2	В	47	С
2	В	48	G
2	В	49	G
2	В	50	А
2	В	52	G
2	В	53	U
2	В	54	U
2	В	55	А
2	В	59	U
2	В	60	С
2	В	62	U
2	В	63	С
2	В	64	A
2	В	65	G
2	В	66	С
2	В	85	U
2	В	86	U
2	В	87	U
2	В	88	С
2	В	97	A
2	В	101	U
2	В	106	C
2	В	107	G
2	В	110	G

Mol	Chain	Res	Type
2	В	114	А
33	a	9	G
33	a	10	А
33	a	11	G
33	a	24	G
33	a	32	С
33	a	33	G
33	а	34	А
33	a	41	G
33	a	46	G
33	a	49	С
33	a	50	С
33	a	51	U
33	a	52	A
33	a	53	A
33	a	60	С
33	a	65	С
33	a	66	G
33	a	72	А
33	a	75	G
33	a	77	U
33	a	80	G
33	a	84	U
33	a	85	U
33	a	86	G
33	a	87	С
33	а	88	U
33	a	89	С
33	a	90	С
33	a	92	U
33	a	93	G
33	a	99	A
33	a	114	A
33	a	117	A
33	a	118	A
33	a	119	C
33	a	120	A
33	a	128	A
33	a	129	A
33	a	130	C
33	a	136	U
33	a	137	G

Mol	Chain	Res	Type
33	a	140	А
33	a	141	G
33	a	142	А
33	a	144	U
33	a	153	U
33	a	154	С
33	a	158	G
33	a	162	С
33	a	167	G
33	a	172	U
33	a	176	G
33	a	181	G
33	a	182	U
33	a	189	A
33	a	190	A
33	a	193	G
33	a	194	С
33	a	197	G
33	a	207	U
33	a	208	А
33	a	209	А
33	a	211	А
33	a	218	U
33	a	219	U
33	a	220	С
33	a	221	G
33	a	222	G
33	a	249	G
33	a	253	U
33	a	255	G
33	a	259	G
33	a	262	G
33	a	274	G
33	a	275	С
33	a	277	С
33	a	280	C
33	a	287	А
33	a	288	C
33	a	297	G
33	a	306	A
33	a	314	А
33	a	316	С

Mol	Chain	Res	Type
33	a	321	А
33	a	329	А
33	a	336	С
33	a	337	А
33	a	338	С
33	a	340	G
33	a	352	А
33	a	353	С
33	a	355	G
33	a	357	А
33	a	359	G
33	a	360	С
33	a	362	G
33	a	371	А
33	a	373	U
33	a	375	U
33	a	380	С
33	a	383	U
33	a	385	G
33	a	390	А
33	a	392	G
33	a	396	G
33	a	400	G
33	a	405	А
33	a	406	С
33	a	414	G
33	a	419	А
33	a	420	U
33	a	421	G
33	a	426	U
33	a	429	U
33	a	430	С
33	a	432	G
33	a	436	G
33	a	437	U
33	a	438	A
33	a	439	А
33	a	442	С
33	a	447	U
33	a	456	A
33	a	457	A
33	a	459	A

Mol	Chain	Res	Type
33	a	460	А
33	a	461	С
33	a	465	U
33	a	466	G
33	a	467	С
33	a	473	G
33	a	474	А
33	a	476	U
33	a	477	А
33	a	478	G
33	a	480	G
33	a	483	G
33	a	484	U
33	a	485	А
33	a	487	С
33	a	488	U
33	a	490	G
33	a	491	А
33	a	494	G
33	a	506	А
33	a	508	А
33	a	518	А
33	a	519	А
33	a	520	С
33	a	526	G
33	a	527	С
33	a	530	G
33	a	533	G
33	a	536	G
33	a	539	G
33	a	540	U
33	a	541	A
33	a	542	A
33	a	553	G
33	a	554	С
33	a	556	A
33	a	563	U
33	a	564	С
33	a	568	A
33	a	571	U
33	a	573	U
33	a	581	А

Mol	Chain	Res	Type
33	a	582	А
33	a	585	G
33	a	586	G
33	a	588	U
33	a	591	С
33	a	597	G
33	a	616	А
33	a	627	С
33	a	628	U
33	a	629	С
33	a	641	G
33	a	642	U
33	a	643	C
33	a	648	G
33	a	650	A
33	a	661	U
33	a	662	U
33	a	670	G
33	a	674	А
33	a	694	G
33	a	696	А
33	a	704	А
33	a	727	А
33	a	732	U
33	a	733	G
33	a	740	G
33	a	742	G
33	a	745	U
33	a	756	U
33	a	757	A
33	a	758	A
33	a	762	A
33	a	764	G
33	a	768	A
33	a	787	G
33	a	802	U
33	a	803	A
33	a	806	С
33	a	815	С
33	a	821	G
33	a	824	А
33	a	826	С

33 a 828 A 33 a 829 U	
33 a 829 U	
33 a 841 G	
33 a 845 G	
33 a 849 G	
33 a 853 C	
33 a 855 G	
33 a 856 C	
33 a 861 U	
33 a 880 U	
33 a 884 G	
33 a 885 C	
33 a 895 G	
33 a 899 A	
33 a 909 C	
33 a 924 A	
33 a 932 G	
33 a 936 G	
33 a 944 C	
33 a 945 A	
33 a 952 G	
33 a 964 G	
33 a 966 U	
33 a 967 U	
33 a 968 A	
33 a 970 U	
33 a 975 A	
33 a 976 G	
33 a 978 A	
33 a 979 A	
33 a 981 G	
33 a 984 A	
33 a 985 A	
33 a 986 G	
33 a 987 A	
33 a 992 U	
33 a 993 A	
33 a 999 U	
33 a 1000 C	
33 a 1002 U	
33 a 1003 G	
33 a 1006 A	

Mol	Chain	Res	Type
33	a	1008	С
33	a	1009	С
33	a	1010	U
33	a	1011	С
33	a	1012	U
33	a	1014	А
33	a	1015	С
33	a	1017	А
33	a	1019	С
33	a	1020	С
33	a	1023	G
33	a	1024	А
33	a	1027	U
33	a	1028	A
33	a	1030	G
33	a	1031	A
33	a	1033	G
33	a	1035	С
33	a	1036	С
33	a	1039	U
33	a	1040	U
33	a	1041	С
33	a	1042	G
33	a	1043	G
33	a	1046	G
33	a	1047	С
33	a	1050	А
33	a	1051	G
33	a	1052	U
33	a	1053	G
33	a	1056	A
33	a	1058	G
33	a	1060	G
33	a	1064	C
33	a	1071	G
33	a	1074	G
33	a	1075	U
33	a	1095	U
33	a	1102	A
33	a	1104	G
33	a	1105	U
33	a	1110	С

Mol	Chain	Res	Type
33	a	1111	А
33	a	1112	А
33	a	1114	G
33	a	1118	G
33	a	1124	С
33	a	1128	А
33	a	1134	G
33	a	1136	U
33	a	1140	А
33	a	1141	G
33	a	1142	С
33	a	1143	А
33	a	1145	U
33	a	1148	G
33	a	1149	U
33	a	1150	U
33	a	1151	G
33	a	1153	G
33	a	1155	А
33	a	1163	G
33	a	1166	А
33	a	1167	С
33	a	1168	U
33	a	1169	G
33	a	1170	С
33	a	1176	А
33	a	1177	С
33	a	1178	А
33	a	1180	А
33	a	1190	G
33	a	1192	U
33	a	1193	G
33	a	1205	A
33	a	1206	А
33	a	1209	С
33	a	1211	U
33	a	1214	U
33	a	1221	U
33	a	1222	А
33	a	1224	G
33	a	1233	U
33	a	1235	С

Mol	Chain	Res	Type
33	a	1236	А
33	a	1237	С
33	a	1238	А
33	a	1239	С
33	a	1245	А
33	a	1247	А
33	a	1258	С
33	a	1259	А
33	a	1265	С
33	a	1266	А
33	a	1267	G
33	a	1269	G
33	a	1279	G
33	a	1288	А
33	a	1289	А
33	a	1291	С
33	a	1294	А
33	a	1295	С
33	a	1296	А
33	a	1299	U
33	a	1307	С
33	a	1308	А
33	a	1309	G
33	a	1311	U
33	a	1312	С
33	a	1313	G
33	a	1314	G
33	a	1323	С
33	a	1326	С
33	a	1329	С
33	a	1331	С
33	a	1332	G
33	a	1336	G
33	a	1340	G
33	a	1345	U
33	a	1347	G
33	a	1349	A
33	a	1354	U
33	a	1355	A
33	a	1362	G
33	a	1366	A
33	a	1371	С

Mol	Chain	Res	Type
33	a	1372	А
33	a	1373	U
33	a	1377	G
33	a	1379	G
33	a	1387	С
33	a	1403	А
33	a	1406	С
33	a	1407	А
33	a	1413	С
33	a	1428	G
33	a	1435	А
33	a	1451	А
33	a	1452	G
33	a	1455	А
33	a	1461	U
33	a	1462	U
33	a	1463	А
33	a	1464	G
33	a	1478	А
33	a	1494	U
33	a	1496	G
33	a	1497	G
33	a	1500	U
33	a	1502	А
33	a	1503	А
33	a	1507	G
33	a	1513	А
33	a	1515	G
33	a	1516	U
33	a	1517	А
33	a	1527	G
33	a	1529	А
33	a	1539	G
33	a	1540	G
53	х	6	G
53	x	8	U
53	X	9	G
53	X	13	G
53	X	16	U
53	X	17	U
53	X	17(A)	G
53	x	18	G

	v	1 10		
\mathbf{Mol}	Chain	\mathbf{Res}	Type	
53	Х	19	U	
53	Х	20	А	
53	Х	21	G	
53	Х	22	А	
53	Х	23	С	
53	Х	25	С	
53	Х	26	G	
53	Х	36	G	
53	Х	41	U	
53	Х	43	G	
53	Х	44	U	
53	Х	51	G	
53	Х	52	G	
53	Х	53	G	
53	Х	56	С	
53	Х	60	U	
53	Х	61	С	
53	Х	63	С	
53	Х	70	G	
53	Х	75	С	
53	Х	76	А	

All (93) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	А	62	С
1	А	88	G
1	А	92	G
1	А	118	А
1	А	163	U
1	А	181	G
1	А	199	А
1	А	236	А
1	А	252	С
1	1 A 34		G
1	А	410	G
1	А	411	G
1	А	441	С
1	А	455	G
1	А	458	G
1	А	459	А
1	А	482	С

Mol	Chain	Res	Type
1	А	525	А
1	А	549	А
1	А	554	U
1	А	576	G
1	А	594	С
1	А	666	G
1	А	689	A
1	А	702	A
1	А	732	А
1	А	756	U
1	А	810	G
1	А	831	U
1	А	848	G
1	A	855	G
1	A	933	С
1	A	1028	С
1	А	1032	С
1	А	1036	А
1	А	1041	С
1	А	1172	А
1	А	1176	U
1	А	1187	U
1	А	1210	А
1	А	1226	U
1	А	1243	А
1	А	1250	G
1	А	1260	А
1	А	1266	A
1	А	1269	A
1	A	1294	А
1	A	1305	A
1	А	1325	A
1	A	1339	A
1	A	1351	U
1	A	1365	U
1	A	1448	U
1	А	1464	А
1	A	1507	U
1	A	1525	G
1	A	1529	G
1	A	1530	G
1	А	1535	U

Mol	Chain	Res	Type
1	А	1543	U
1	А	1565	U
1	А	1570	U
1	А	1631	А
1	А	1671	G
1	А	1726	G
1	А	1751	U
1	А	1784	А
1	А	1813	А
1	А	1828	G
1	А	1844	А
1	А	1882	А
1	А	1883	А
1	А	1886	G
1	А	1991	С
1	А	2009	G
1	А	2127	U
1	А	2139	G
1	А	2155	А
1	А	2254	А
1	А	2295	А
1	А	2316	А
1	А	2356	А
1	А	2454	А
1	А	2456	С
1	А	2468	А
1	А	2531	G
1	А	2630	С
1	А	2710	С
1	А	2805	А
1	А	2904	А
2	В	37	А
2	В	48	G
2	В	49	G

Continued from previous page...

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

3 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	I Tuno Chain Bog		Tiple	Bond lengths			Bond angles			
	туре	Unain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
54	TEL	А	3001	-	59,62,62	1.29	4 (6%)	77,92,92	1.97	13 (16%)
55	ATP	V	900	20	26,33,33	0.91	1 (3%)	31,52,52	1.66	6 (19%)
55	ATP	V	901	-	26,33,33	0.98	1 (3%)	31,52,52	1.83	4 (12%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
54	TEL	А	3001	-	1/1/19/19	14/73/108/108	0/4/5/5
55	ATP	V	900	20	-	3/18/38/38	0/3/3/3
55	ATP	V	901	-	-	4/18/38/38	0/3/3/3

All (6) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
54	А	3001	TEL	O5-C10	5.85	1.45	1.35
54	А	3001	TEL	O9-C15	4.91	1.45	1.34
54	А	3001	TEL	C36-N31	-2.79	1.34	1.38
54	А	3001	TEL	O5-C2	-2.74	1.43	1.47
55	V	901	ATP	C5-C4	2.38	1.47	1.40
55	V	900	ATP	C5-C4	2.13	1.46	1.40

All (23) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
54	А	3001	TEL	O9-C15-C21	9.27	120.30	110.88
54	А	3001	TEL	C11-N6-C10	6.88	130.94	122.25
55	V	901	ATP	PB-O3B-PG	-6.13	111.78	132.83
54	А	3001	TEL	C17-C11-N6	-5.42	104.94	113.31
55	V	901	ATP	PA-O3A-PB	-5.15	115.17	132.83
55	V	900	ATP	PA-O3A-PB	-4.69	116.72	132.83
54	А	3001	TEL	C1-C2-C3	-4.60	111.15	116.69
54	А	3001	TEL	C4-O9-C15	-3.65	111.69	118.18
55	V	900	ATP	N3-C2-N1	-3.41	123.35	128.68
54	А	3001	TEL	O20-C15-C21	-3.21	120.55	124.77
55	V	901	ATP	N3-C2-N1	-3.19	123.69	128.68
54	А	3001	TEL	C8-C4-C2	-3.10	110.96	115.23
54	А	3001	TEL	C28-C24-C19	-2.97	111.07	116.11
55	V	900	ATP	PB-O3B-PG	-2.97	122.65	132.83
55	V	900	ATP	C4-C5-N7	-2.75	106.54	109.40
54	А	3001	TEL	O9-C15-O20	-2.56	119.15	123.94
54	А	3001	TEL	C56-N52-C47	2.50	121.17	116.85
54	А	3001	TEL	C42-O39-C34	-2.39	112.10	116.25
54	А	3001	TEL	C24-C19-C13	-2.29	109.38	113.32
55	V	901	ATP	C4-C5-N7	-2.26	107.05	109.40
54	А	3001	TEL	C54-C49-N53	-2.19	109.48	115.67
55	V	900	ATP	O2A-PA-O1A	2.07	122.50	112.24
55	V	900	ATP	O3G-PG-O2G	2.06	115.51	107.64

All (1) chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
54	А	3001	TEL	C21

All (21) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
54	А	3001	TEL	C15-C21-C26-O29
54	А	3001	TEL	C15-C21-C26-C30
55	V	900	ATP	C5'-O5'-PA-O1A
55	V	901	ATP	C5'-O5'-PA-O1A
54	А	3001	TEL	C21-C15-O9-C4
54	А	3001	TEL	O20-C15-O9-C4
54	А	3001	TEL	O9-C4-C8-C14
54	А	3001	TEL	N6-C3-C7-C12
54	А	3001	TEL	C17-C22-C27-N31
54	А	3001	TEL	C17-C11-N6-C10
54	А	3001	TEL	O20-C15-C21-C25

		1	1 0	
Mol	Chain	\mathbf{Res}	Type	Atoms
54	А	3001	TEL	O9-C15-C21-C25
55	V	900	ATP	C5'-O5'-PA-O3A
55	V	901	ATP	C5'-O5'-PA-O3A
55	V	900	ATP	C5'-O5'-PA-O2A
55	V	901	ATP	C5'-O5'-PA-O2A
54	А	3001	TEL	C35-C30-C34-C28
54	А	3001	TEL	C2-C4-C8-C14
55	V	901	ATP	PB-O3A-PA-O1A
54	А	3001	TEL	O20-C15-C21-C26
54	А	3001	TEL	C26-C30-C34-C28

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
1	А	5
53	Х	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	Х	44:U	O3'	47:U	Р	14.81
1	A	182:C	O3'	183:A	Р	6.43
1	А	1449:C	O3'	1450:C	Р	4.34
1	A	1451:U	O3'	1452:C	Р	3.29

Continued on next page...

Continueu from previous page						
Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	А	1452:C	O3'	1453:A	Р	3.25
1	A	183:A	O3'	184:G	Р	3.12

Continued from previous page...

Map visualisation (i) 6

This section contains visualisations of the EMDB entry EMD-0177. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

Orthogonal projections (i) 6.1

6.1.1Primary map

The images above show the map projected in three orthogonal directions.

Central slices (i) 6.2

6.2.1Primary map

X Index: 180

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 177

Y Index: 199

Z Index: 189

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.11. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 793 nm^3 ; this corresponds to an approximate mass of 716 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.286 $\mathrm{\AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-0177 and PDB model 6HA8. Per-residue inclusion information can be found in section 3 on page 16.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.11 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.11).

9.4 Atom inclusion (i)

At the recommended contour level, 71% of all backbone atoms, 66% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.11) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.6582	0.3890
0	0.7191	0.4870
1	0.6744	0.4410
2	0.7362	0.5030
3	0.7255	0.5080
4	0.6138	0.4620
6	0.2945	0.2640
7	0.6667	0.4050
8	0.0760	0.1430
А	0.7959	0.4370
В	0.7847	0.4020
С	0.6757	0.4800
D	0.6958	0.4810
Ε	0.6819	0.4500
F	0.4591	0.3260
G	0.4146	0.3170
J	0.7095	0.4720
Κ	0.6455	0.4620
L	0.6629	0.4490
М	0.6353	0.4500
Ν	0.6838	0.4640
О	0.5468	0.3630
Р	0.6325	0.4500
Q	0.7074	0.4500
R	0.6894	0.4530
S	0.7033	0.4810
Т	0.6136	0.4430
U	0.6146	0.4040
V	0.4241	0.3890
W	0.6486	0.4500
Х	0.5231	0.4500
Y	0.5875	0.3610
Z	0.6360	0.4400
a	0.6450	0.3360
b	0.1212	0.1970

 $Continued \ on \ next \ page...$

Continued from previous page...

Chain	Atom inclusion	Q-score
с	0.3994	0.3340
d	0.2454	0.2270
е	0.4966	0.3750
f	0.2840	0.2490
g	0.4504	0.3240
h	0.3958	0.2870
i	0.4339	0.3220
j	0.3405	0.3210
k	0.3794	0.2970
1	0.3722	0.3080
m	0.3810	0.2880
n	0.3812	0.3480
0	0.3852	0.2490
р	0.3260	0.2690
q	0.2853	0.2390
r	0.3406	0.2730
S	0.3457	0.2600
t	0.3714	0.2630
X	0.4336	0.3210

