

wwPDB X-ray Structure Validation Summary Report (i)

Jan 7, 2024 - 11:07 am GMT

PDB ID	:	6H8K
Title	:	Crystal structure of a variant (Q133C in PSST) of Yarrowia lipolytica complex
		Ι
Authors	:	Wirth, C.; Galemou Yoga, E.; Zickermann, V.; Hunte, C.
Deposited on	:	2018-08-02
Resolution	:	3.79 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 3.79 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	Similar resolution
	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R _{free}	130704	1212 (4.00-3.60)
Clashscore	141614	1288 (4.00-3.60)
Ramachandran outliers	138981	1243 (4.00-3.60)
Sidechain outliers	138945	1237 (4.00-3.60)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Chain	Length	Quality of chain											
1	335	66%	27%	٠	•								
2	434	79%		19%	·								
3	110	60% 17%	•	20%									
4	470	83%		16%	•								
5	616	86%		13%	•								
6	184	46% 14% ·	36%										
А	634	98%			••								
	1 2 3 4 5 6 A	Chain Length 1 335 2 434 3 110 4 470 5 616 6 184 A 634	Chain Length Quanty of chain 1 335 66% 2 434 79% 3 110 60% 17% 4 470 83% 17% 5 6616 86% 14% A 634 46% 14%	Chain Length General Cuanty of chain 1 335 66% 27% 2 434 79% 27% 3 110 60% 17% 4 470 83% 27% 5 616 86% 36% A 634 46% 14% 36%	Chain Length Chain Quanty of chain 1 335 66% 27% . 2 434 79% 19% . 3 110 60% 17% . 20% 4 470 60% 17% . 20% 5 616 83% 16% . 6 184 46% 14% . 36% A 634 634 . . .								

Chain Length Quality of chain Mol 8 В . . 37096% 9 \mathbf{C} 383• • 68% 26% 10 Ε 195100% G 11 13392% 8% . 12Η 15498% 13Ι 14086% 10% ••• 14Κ 14775% 20% •••• . L 791576% 23% Ζ 1617100% 1617r 100% AF 1740 95% 5% Y 4017100% 18 U 10 100% Х 195796% • W 2054100% 21V 63 100% 22AI 20100% Т 2022100% 2220m 100% 23AJ 19100% 23AL19100% \mathbf{S} 2319100% 24R 50100% Q 2570100% 26Ρ 28100%

Continued from previous page...

Mol	Chain	Length	Quality of chain
27	AC	18	100%
27	AH	18	100%
27	AM	18	100%
27	F	18	100%
27	f	18	100%
28	О	25	100%
28	1	25	100%
29	М	51	100%
30	D	30	100%
31	J	69	100%
32	Ν	15	100%
33	a	26	100%
33	i	26	100%
34	b	22	100%
35	AE	9	100%
35	AK	9	100%
35	AO	9	100%
35	с	9	100%
35	g	9	100%
36	AB	16	100%
36	AN	16	100%
36	d	16	100%
36	О	16	100%
37	е	13	100%
37	W	13	100%

Mol	Chain	Length	Quality of chain
37	Z	13	100%
38	h	47	100%
39	j	48	100%
40	k	23	100%
40	s	23	100%
41	n	36	100%
41	q	36	100%
42	р	76	100%
43	t	45	100%
44	u	32	100%
45	v	11	100%
45	У	11	100%
46	AG	8	100%
46	x	8	100%
47	AA	58	100%
48	AD	39	100%

2 Entry composition (i)

There are 50 unique types of molecules in this entry. The entry contains 35631 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called NADH-ubiquinone oxidoreductase chain 1.

Mol	Chain	Residues		Ate	oms		ZeroOcc	AltConf	Trace	
1	1	325	Total 2581	C 1758	N 375	0 441	${ m S} 7$	0	0	0

• Molecule 2 is a protein called NADH-ubiquinone oxidoreductase chain 2,NADH dehydrogenase subunit 2.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
2	2	434	Total 3122	C 2080	N 478	O 552	S 12	0	0	0

• Molecule 3 is a protein called NADH-ubiquinone oxidoreductase chain 3.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
3	3	88	Total 685	C 475	N 94	0 113	${ m S} { m 3}$	0	0	0

• Molecule 4 is a protein called NADH-ubiquinone oxidoreductase chain 4.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
4	4	470	Total 3017	C 1952	N 507	0 546	S 12	0	0	0

• Molecule 5 is a protein called NADH-ubiquinone oxidoreductase chain 5.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
5	5	616	Total 4050	C 2627	N 674	0 724	S 25	0	0	0

• Molecule 6 is a protein called NADH-ubiquinone oxidoreductase chain 6.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
6	6	118	Total 870	C 597	N 124	O 143	S 6	0	0	0

• Molecule 7 is a protein called NUAM protein.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
7	А	628	Total 3221	C 1929	N 639	O 639	S 14	0	0	0

• Molecule 8 is a protein called NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
8	В	367	Total 1997	C 1204	N 388	O 396	S 9	0	0	0

• Molecule 9 is a protein called NUCM protein.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
9	С	369	Total 2882	C 1845	N 486	O 530	S 21	0	0	0

• Molecule 10 is a protein called NUEM protein.

Mol	Chain	Residues		Ato	ms		ZeroOcc	AltConf	Trace
10	Е	195	Total 975	$\begin{array}{c} \mathrm{C} \\ 585 \end{array}$	N 195	O 195	0	0	0

• Molecule 11 is a protein called NUGM protein.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
11	G	133	Total 880	$\begin{array}{c} \mathrm{C} \\ 558 \end{array}$	N 154	O 164	$\frac{S}{4}$	0	0	0

• Molecule 12 is a protein called Subunit NUHM of NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
12	Н	154	Total 803	C 476	N 156	0 164	${f S}7$	0	0	0

• Molecule 13 is a protein called Subunit NUIM of NADH:Ubiquinone Oxidoreductase (Com-

plex I).

Mol	Chain	Residues		A	toms		ZeroOcc	AltConf	Trace	
13	Ι	137	Total 857	C 533	N 145	O 169	S 10	0	0	0

• Molecule 14 is a protein called Subunit NUKM of protein NADH:Ubiquinone Oxidoreductase (Complex I).

Mol	Chain	Residues		A	toms		ZeroOcc	AltConf	Trace	
14	K	143	Total	С	Ν	Ο	\mathbf{S}	5	Ο	0
11	11	140	1069	675	187	193	14	0	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
K	133	CYS	GLN	engineered mutation	UNP Q9UUT7

• Molecule 15 is a protein called NADH-ubiquinone oxidoreductase chain 4L.

Mol	Chain	Residues		Ate	\mathbf{oms}			ZeroOcc	AltConf	Trace
15	L	79	Total 612	C 412	N 95	0 102	${ m S} { m 3}$	6	0	0

• Molecule 16 is a protein called Unknown polypeptide.

Mol	Chain	Residues	L	Ator	\mathbf{ns}		ZeroOcc	AltConf	Trace
16	7	17	Total	С	Ν	0	0	0	Ο
10		11	85	51	17	17	0	0	0
16		17	Total	С	Ν	0	0	0	0
10	1	17	85	51	17	17	0	0	0

• Molecule 17 is a protein called Unknown polypeptide.

Mol	Chain	Residues		Aton	ıs		ZeroOcc	AltConf	Trace
17	V	40	Total	С	Ν	0	0	0	0
11	1	40	200	120	40	40	0	0	0
17	٨F	40	Total	С	Ν	0	0	0	0
11	АГ	40	200	120	40	40	0	U	U

• Molecule 18 is a protein called Unknown polypeptide.

Mol	Chain	Residues	-	Ator	\mathbf{ns}		ZeroOcc	AltConf	Trace
18	U	10	Total 50	C 30	N 10	O 10	0	0	0

• Molecule 19 is a protein called Unknown polypeptide.

Mol	Chain	Residues		Aton	ns		ZeroOcc	AltConf	Trace
19	Х	57	Total 285	C 171	N 57	O 57	0	0	0

• Molecule 20 is a protein called Unknown polypeptide.

Mol	Chain	Residues		Aton	ns		ZeroOcc	AltConf	Trace
20	W	54	Total 270	C 162	N 54	O 54	0	0	0

• Molecule 21 is a protein called Unknown polypeptide.

Mol	Chain	Residues		Aton	ns		ZeroOcc	AltConf	Trace
21	V	63	Total 315	C 189	N 63	O 63	0	0	0

• Molecule 22 is a protein called Unknown polypeptide.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
22	Т	20	Total C N O 100 60 20 20	0	0	0
22	m	20	Total C N O 100 60 20 20	0	0	0
22	AI	20	Total C N O 100 60 20 20	0	0	0

• Molecule 23 is a protein called Unknown polypeptide.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
23	S	19	Total C N O 95 57 19 19	0	0	0
23	AJ	19	Total C N O 95 57 19 19	0	0	0
23	AL	19	Total C N O 95 57 19 19	0	0	0

• Molecule 24 is a protein called Unknown polypeptide.

Mol	Chain	Residues		Aton	ns		ZeroOcc	AltConf	Trace
24	R	50	Total 250	C 150	N 50	O 50	0	0	0

• Molecule 25 is a protein called Unknown polypeptide.

Mol	Chain	Residues		Aton	ıs		ZeroOcc	AltConf	Trace
25	Q	70	Total 350	C 210	N 70	O 70	0	0	0

• Molecule 26 is a protein called Unknown polypeptide.

Mol	Chain	Residues	L	Ator	ns		ZeroOcc	AltConf	Trace
26	Р	28	Total 140	C 84	N 28	O 28	0	0	0

• Molecule 27 is a protein called Unknown polypeptide.

Mol	Chain	Residues	1	Ator	ns		ZeroOcc	AltConf	Trace
27	F	18	Total	С	Ν	Ο	0	0	0
21	T	10	90	54	18	18	0	0	0
97	f	19	Total	С	Ν	0	0	0	0
21	1	10	90	54	18	18	0	0	0
97	27 ΛC	AC 18	Total	С	Ν	0	0	0	0
21	AU		90	54	18	18	0	0	0
97	ΛЦ	10	Total	С	Ν	0	0	0	0
21	АП	10	90	54	18	18	0	0	0
97	АМ	19	Total	С	Ν	0	0	0	0
27	AM	18	90	54	18	18	0	0	0

• Molecule 28 is a protein called Unknown polypeptide.

Mol	Chain	Residues	1	Ator	ns		ZeroOcc	AltConf	Trace
28	8 0 25	Total	С	Ν	0	0	0	0	
20	0	20	125	75	25	25	0	0	0
20	3 1 25	25	Total	С	Ν	0	0	0	0
28		1 25	125	75	25	25	0	0	0

• Molecule 29 is a protein called Unknown polypeptide.

Mol	Chain	Residues		Aton	ns		ZeroOcc	AltConf	Trace
29	М	51	Total 255	C 153	N 51	O 51	0	0	0

• Molecule 30 is a protein called Unknown polypeptide.

Mol	Chain	Residues	1	Ator	ns		ZeroOcc	AltConf	Trace
30	D	30	Total 150	C 90	N 30	O 30	0	0	0

• Molecule 31 is a protein called Unknown polypeptide.

Mol	Chain	Residues		Atom	ıs		ZeroOcc	AltConf	Trace
31	J	69	Total 345	C 207	N 69	O 69	0	0	0

• Molecule 32 is a protein called Unknown polypeptide.

Mol	Chain	Residues	Ĺ	Ator	ns		ZeroOcc	AltConf	Trace
32	N	15	Total 75	C 45	N 15	O 15	0	0	0

• Molecule 33 is a protein called Unknown polypeptide.

Mol	Chain	Residues	Ato	\mathbf{ms}		ZeroOcc	AltConf	Trace
33	a	26	Total C 130 78	N 26	O 26	0	0	0
33	i	26	Total C 130 78	N 26	0 26	0	0	0

• Molecule 34 is a protein called Unknown polypeptide.

Mol	Chain	Residues		Ator	\mathbf{ns}		ZeroOcc	AltConf	Trace
34	b	22	Total 110	C 66	N 22	O 22	0	0	0

• Molecule 35 is a protein called Unknown polypeptide.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
35	C	0	Total C N O	0	0	0
- 55	C	9	45 27 9 9	0	0	0
35	ď	0	Total C N O	0	0	0
- 55	g	9	45 27 9 9	0	0	0
35	٨F	0	Total C N O	0	0	0
- 55	AĽ	9	45 27 9 9	0	0	0
35	ΛK	0	Total C N O	0	0	0
35	АК	АК 9	45 27 9 9	U	U	

Continued from previous page...

Mol	Chain	Residues	A	Aton	ıs		ZeroOcc	AltConf	Trace
35	AO	9	Total 45	C 27	N 9	O 9	0	0	0

• Molecule 36 is a protein called Unknown polypeptide.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace	
36	d	16	Total C N O	0	0	0	
		_	80 48 16 16	_	_		
36	0	16	Total C N O	0	0	0	
- 30	0	10	80 48 16 16	0	0	0	
26	٨D	16	Total C N O	0	0	0	
- 30	AD	10	80 48 16 16	0	0	0	
36	ΛN	16	Total C N O	0	0	0	
36	AN	AN 16	80 48 16 16	0	0	U	

• Molecule 37 is a protein called Unknown polypeptide.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
37	е	13	Total C N O	0	0	0
			00 39 13 13			
37	W	13	Total C N O	0	0	0
	**	10	65 39 13 13	0	0	0
27	_	10	Total C N O	0	0	0
37	Z	z 13	65 39 13 13	0	U	U

• Molecule 38 is a protein called Unknown polypeptide.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
38	h	47	Total 235	C 141	N 47	0 47	0	0	0

• Molecule 39 is a protein called Unknown polypeptide.

Mol	Chain	Residues		Aton	ns		ZeroOcc	AltConf	Trace
39	j	48	Total 240	C 144	N 48	O 48	0	0	0

• Molecule 40 is a protein called Unknown polypeptide.

Mol	Chain	Residues	1	Aton	ns		ZeroOcc	AltConf	Trace
40	k	23	Total 115	C 69	N 23	O 23	0	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace		
40	s	23	Total 115	C 69	N 23	O 23	0	0	0

• Molecule 41 is a protein called Unknown polypeptide.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace	
41	n	36	Total	С	Ν	0	0	0	0
41	11	- 50	180	108	36	36	0	0	0
41		26	Total	С	Ν	0	0	0	0
41	q	- 50	180	108	36	36	0	0	0

• Molecule 42 is a protein called Unknown polypeptide.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace	
42	р	76	Total 380	C 228	N 76	O 76	0	0	0

• Molecule 43 is a protein called Unknown polypeptide.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace	
43	t	45	Total 225	C 135	N 45	O 45	0	0	0

• Molecule 44 is a protein called Unknown polypeptide.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
44	u	32	Total 160	C 96	N 32	O 32	0	0	0

• Molecule 45 is a protein called Unknown polypeptide.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
45	V	11	Total 55	C 33	N 11	O 11	0	0	0
45	У	11	Total 54	C 32	N 11	0 11	0	0	0

• Molecule 46 is a protein called Unknown polypeptide.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
46	V	8	Total	С	Ν	Ο	0	0	0
40	X	8	40	24	8	8	0	0	0
46		0	Total	С	Ν	0	0	0	0
46	AG	AG 8	40	24	8	8	0	0	0

• Molecule 47 is a protein called Unknown polypeptide.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace	
47	AA	58	Total 290	C 174	N 58	O 58	0	0	0

• Molecule 48 is a protein called Unknown polypeptide.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace	
48	AD	39	Total 195	C 117	N 39	O 39	0	0	0

• Molecule 49 is FE2/S2 (INORGANIC) CLUSTER (three-letter code: FES) (formula: Fe_2S_2).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
49	А	1	TotalFeS422	0	0
49	Н	1	TotalFeS422	0	0

• Molecule 50 is IRON/SULFUR CLUSTER (three-letter code: SF4) (formula: Fe_4S_4).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
50	А	1	TotalFeS844	0	0
50	А	1	TotalFeS844	0	0
50	В	1	TotalFeS844	0	0
50	Ι	1	TotalFeS844	0	0
50	Ι	1	TotalFeS844	0	0
50	K	1	TotalFeS844	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: NADH-ubiquinone oxidoreductase chain 1

• Molecule 2: NADH-ubiquinone oxidoreductase chain 2,NADH dehydrogenase subunit 2

• Molecule 3: NADH-ubiquinone oxidoreductase chain 3

 \bullet Molecule 4: NADH-ubiquinone oxidore
ductase chain 4

 \bullet Molecule 5: NADH-ubiquinone oxidore
ductase chain 5

x43 P103 P103 C139 C139 C139 C139 C139 C139 C139 C144 C144 C144 C141 C1414 C14

• Molecule 9: NUCM protein

Chain C:	68%	26%	• •
F83 F87 G88 G96 G96 G96 G96 C100 C1100	4100 1100 1100 1110 1110 1111 1111 1111	D1 40 D1 43 Y1 44 Y1 45 S1 46 C1 52 Y1 52 Y1 53 S1 55 S1 55 S1 55 S1 55 S1 55	1181 1181 1182 1185 0196 0196 0198
A199 202 7203 7204 7204 7204 7204 7204 7204 7204 7204	1223 1233 1233 1234 1244 1258 1224 1261 1261 1264 1264 1264 1264 1264	1280 4283 4284 1284 1284 1284 1284 1284 1284 1284	PHE 1304 1306 1306 1306 1306 1306 1306 1312
D315 K316 K316 F319 F319 F319 D328 D328 D328 C329 C329 C329 C329 C329 C329 C329 C329	E340 E346 A356 A356 A356 A356 A356 A356 B355 A356 B355 B356 B356 B356 B356 B356 B356 B	L373 M374 M375 M376 M376 F365 F365 F365 F366 F366 F366 F366 F36	P406 V412 V413 V414 V414 V415 V415 V415 V423
K426 K426 H434 L435 G436 G436 G436 F441 F447 F447 F448 P448 D449	M457 M457 L458 L458 L456 C465 E465 E465 D465		
• Molecule 10: NU	JEM protein		
Chain E:	100%		
There are no outli	er residues recorded for this	chain.	
• Molecule 11: NI	ICM protoin		
• Molecule 11. Ive	am protein		
Chain G:	92%		8%
889 887 897 8167 8167 8167 8167 8180	F190 E191 1197 1199 P209		
• Molecule 12: Sul	bunit NUHM of NADH:Ubiq	uinone Oxidoreductas	e (Complex I)
Chain H:	98%		·
X48 1130 8137 1140 X224			
• Molecule 13: Sul	bunit NUIM of NADH:Ubiqu	uinone Oxidoreductase	(Complex I)
Chain I:	86%	109	% ••
872 474 474 778 878 88 88 88 88 8130 1131 1131 1132	1139 1145 1145 1145 1145 1145 1145 1159 1159 1159 1164 1164 1164 1167 1167	V 1431 D 182 V 190 X 250	
• Molecule 14: Sul	bunit NUKM of protein NAI	OH:Ubiquinone Oxidor	reductase (Complex I)

Chain K: 75% 20% ...

GLY GLY TYR TYR • Molecule 15: NADH-ubiquinone oxidoreductase chain 4L Chain L: 76% 23% • Molecule 16: Unknown polypeptide Chain Z: 100% There are no outlier residues recorded for this chain. • Molecule 16: Unknown polypeptide Chain r: 100% There are no outlier residues recorded for this chain. • Molecule 17: Unknown polypeptide Chain Y: 100% There are no outlier residues recorded for this chain. • Molecule 17: Unknown polypeptide Chain AF: 95% 5%

- X300 X320 X321 X321 X339
- Molecule 18: Unknown polypeptide

Chain U:

100%

There are no outlier residues recorded for this chain.

• Molecule 19: Unknown polypeptide

Chain X:

96%

• Molecule 20: Unknown polypeptide

Chain W: 100%
There are no outlier residues recorded for this chain.
• Molecule 21: Unknown polypeptide
Chain V: 100%
There are no outlier residues recorded for this chain.
• Molecule 22: Unknown polypeptide
Chain T: 100%
There are no outlier residues recorded for this chain.
• Molecule 22: Unknown polypeptide
Chain m: 100%
There are no outlier residues recorded for this chain.
• Molecule 22: Unknown polypeptide
Chain AI: 100%
There are no outlier residues recorded for this chain.
• Molecule 23: Unknown polypeptide
Chain S:
There are no outlier residues recorded for this chain
• Molecule 22: Unknown polymentide
• Molecule 25. Olikilowii polypeptide
Chain AJ: 100%
There are no outlier residues recorded for this chain.
• Molecule 23: Unknown polypeptide
Chain AL: 100%
There are no outlier residues recorded for this chain.
• Molecule 24: Unknown polypeptide
Chain R: 100%
There are no outlier residues recorded for this chain.
• Molecule 25: Unknown polypeptide

Chain Q: 100%
There are no outlier residues recorded for this chain.
• Molecule 26: Unknown polypeptide
Chain P: 100%
There are no outlier residues recorded for this chain.
• Molecule 27: Unknown polypeptide
Chain F: 100%
There are no outlier residues recorded for this chain.
• Molecule 27: Unknown polypeptide
Chain f: 100%
There are no outlier residues recorded for this chain.
• Molecule 27: Unknown polypeptide
Chain AC: 100%
There are no outlier residues recorded for this chain.
• Molecule 27: Unknown polypeptide
Chain AH: 100%
There are no outlier residues recorded for this chain.
• Molecule 27: Unknown polypeptide
Chain AM: 100%
There are no outlier residues recorded for this chain.
• Molecule 28: Unknown polypeptide
Chain O: 100%
There are no outlier residues recorded for this chain.
• Molecule 28: Unknown polypeptide
Chain l: 100%
There are no outlier residues recorded for this chain.
• Molecule 29: Unknown polypeptide

Chain M: 100%
There are no outlier residues recorded for this chain.
• Molecule 30: Unknown polypeptide
Chain D: 100%
There are no outlier residues recorded for this chain.
• Molecule 31: Unknown polypeptide
Chain J: 100%
There are no outlier residues recorded for this chain.
• Molecule 32: Unknown polypeptide
Chain N: 100%
There are no outlier residues recorded for this chain.
• Molecule 33: Unknown polypeptide
Chain a: 100%
There are no outlier residues recorded for this chain.
• Molecule 33: Unknown polypeptide
Chain i: 100%
There are no outlier residues recorded for this chain.
• Molecule 34: Unknown polypeptide
Chain b: 100%
There are no outlier residues recorded for this chain.
\bullet Molecule 35: Unknown polypeptide
Chain c: 100%
There are no outlier residues recorded for this chain.
• Molecule 35: Unknown polypeptide
Chain g: 100%
There are no outlier residues recorded for this chain.
• Molecule 35: Unknown polypeptide

Chain AE:	100%
There are no outlier residues recorded for	this chain.
\bullet Molecule 35: Unknown polypeptide	
Chain AK:	1000/
There are no outlier residues recorded for	this chain.
• Molecule 35: Unknown polypeptide	
Chain AO:	100%
There are no outlier residues recorded for	this chain.
• Molecule 36: Unknown polypeptide	
	0%
There are no outlier residues recorded for t	this chain.
• Molecule 36: Unknown polypeptide	
Chain o: 100	0%
There are no outlier residues recorded for	this chain.
• Molecule 36: Unknown polypeptide	
Chain AB:	100%
There are no outlier residues recorded for	this chain.
• Molecule 36: Unknown polypeptide	
Chain AN:	100%
There are no outlier residues recorded for	this chain.
• Molecule 37: Unknown polypeptide	
Chain e: 100	0%
There are no outlier residues recorded for	this chain.
• Molecule 37: Unknown polypeptide	
Chain w:	0%
There are no outlier residues recorded for	this chain.
• Molecule 37: Unknown polypeptide	

Chain z: 100%
There are no outlier residues recorded for this chain.
• Molecule 38: Unknown polypeptide
Chain h: 100%
There are no outlier residues recorded for this chain.
• Molecule 39: Unknown polypeptide
Chain j: 100%
There are no outlier residues recorded for this chain.
• Molecule 40: Unknown polypeptide
Chain k: 100%
There are no outlier residues recorded for this chain.
• Molecule 40: Unknown polypeptide
Chain s: 100%
There are no outlier residues recorded for this chain.
• Molecule 41: Unknown polypeptide
Chain n: 100%
There are no outlier residues recorded for this chain.
• Molecule 41: Unknown polypeptide
Chain q: 100%
There are no outlier residues recorded for this chain.
• Molecule 42: Unknown polypeptide
Chain p: 100%
There are no outlier residues recorded for this chain.
• Molecule 43: Unknown polypeptide
Chain t: 100%
There are no outlier residues recorded for this chain.
• Molecule 44: Unknown polypeptide

Chain u: 100%
There are no outlier residues recorded for this chain.
• Molecule 45: Unknown polypeptide
Chain V: 100%
There are no outlier residues recorded for this chain.
• Molecule 45: Unknown polypeptide
Chain an
Unam y. 100%
There are no outlier residues recorded for this chain.
• Molecule 46: Unknown polypeptide
Chain X: 100%
There are no outlier residues recorded for this chain.
• Molecule 46: Unknown polypeptide
Chain AC:
There are no outlier residues recorded for this chain.
• Molecule 47: Unknown polypeptide
Chain AA:
There are no outlier residues recorded for this chain.
• Molecule 48: Unknown polypeptide
Chain AD:
Unam AD. 100%

There are no outlier residues recorded for this chain.

4 Data and refinement statistics (i)

Property	Value	Source
Space group	H 3 2	Depositor
Cell constants	316.31Å 316.31Å 819.18Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 120.00°	Depositor
Bosolution(A)	40.00 - 3.79	Depositor
Resolution (A)	49.18 - 3.79	EDS
% Data completeness	77.1 (40.00-3.79)	Depositor
(in resolution range)	77.4 (49.18-3.79)	EDS
R_{merge}	0.20	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.57 (at 3.77 \text{\AA})$	Xtriage
Refinement program	BUSTER 2.10.2	Depositor
P. P.	0.361 , 0.363	Depositor
n, n_{free}	0.412 , 0.419	DCC
R_{free} test set	5835 reflections $(4.86%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	142.0	Xtriage
Anisotropy	0.042	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.23, 238.0	EDS
L-test for $twinning^2$	$ < L >=0.45, < L^2>=0.28$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.77	EDS
Total number of atoms	35631	wwPDB-VP
Average B, all atoms $(Å^2)$	164.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 1.73% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: SF4, FES

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	lengths	Bond angles		
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	1	0.46	0/2648	0.70	0/3616	
2	2	0.42	0/2699	0.64	0/3672	
3	3	0.48	0/699	0.74	0/954	
4	4	0.45	0/1991	0.66	0/2716	
5	5	0.43	0/2797	0.62	0/3796	
6	6	0.45	0/836	0.70	0/1141	
7	А	0.43	0/547	0.71	3/740~(0.4%)	
8	В	0.41	0/670	0.62	2/901~(0.2%)	
9	С	0.42	0/2946	0.66	0/3989	
11	G	0.39	0/581	0.55	0/787	
12	Н	0.39	0/172	0.63	0/210	
13	Ι	0.45	0/614	0.69	0/836	
14	K	0.44	0/1092	0.66	0/1489	
15	L	0.44	0/620	0.71	0/839	
All	All	0.44	0/18912	0.66	5/25686~(0.0%)	

There are no bond length outliers.

All (5) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$\operatorname{Ideal}(^{o})$
7	А	134	PRO	N-CA-CB	6.84	111.50	103.30
8	В	104	PRO	N-CA-CB	5.92	110.40	103.30
8	В	103	PRO	N-CA-CB	5.83	110.29	103.30
7	А	91	PRO	N-CA-CB	5.73	110.18	103.30
7	А	100	PRO	N-CA-CB	5.67	110.10	103.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	1	2581	0	2675	53	0
2	2	3122	0	2880	48	0
3	3	685	0	719	16	0
4	4	3017	0	2290	38	0
5	5	4050	0	3162	40	0
6	6	870	0	916	25	0
7	А	3221	0	1001	2	0
8	В	1997	0	856	4	0
9	С	2882	0	2825	50	0
10	Е	975	0	228	0	0
11	G	880	0	582	5	0
12	Н	803	0	299	1	0
13	Ι	857	0	582	6	0
14	K	1069	0	1038	20	0
15	L	612	0	664	14	0
16	Ζ	85	0	19	0	0
16	r	85	0	20	0	0
17	AF	200	0	46	1	0
17	Y	200	0	43	0	0
18	U	50	0	13	0	0
19	Х	285	0	64	1	0
20	W	270	0	59	0	0
21	V	315	0	69	0	0
22	AI	100	0	22	0	0
22	Т	100	0	22	0	0
22	m	100	0	22	0	0
23	AJ	95	0	22	0	0
23	AL	95	0	21	0	0
23	S	95	0	21	0	0
24	R	250	0	53	0	0
25	Q	350	0	75	0	0
26	Р	140	0	32	0	0
27	AC	90	0	22	0	0
27	AH	90	0	20	0	0
27	AM	90	0	21	0	0
27	F	90	0	20	0	0
27	f	90	0	20	0	0

	Chain	Non H	$\mathbf{H}(\mathbf{modol})$	H(addad)	Clashos	Symm Clashos
200		195		$\frac{11(auueu)}{27}$	Olasties	Symm-Clashes
20		120	0	21	0	0
$\frac{20}{20}$	I M	255	0	56	0	0
29		200 150	0	20	0	0
21	I I	245	0	<u> </u>	0	0
20	J	75	0	14	0	0
	N	120	0	20	0	0
23	a i	130	0	29	0	0
34	l h	110	0	24	0	0
34		45	0	11	0	0
25		45	0	11	0	0
35		45	0	11	0	0
25	AU	45	0	11	0	0
25	C	45	0	11	0	0
- 30 - 26	g A D	40	0	12	0	0
	AD	80	0	19	0	0
	AN	80	0	10	0	0
	a	80	0	19	0	0
30	0	00 65	0	19	0	0
31	e	65 65	0	10	0	0
37	W	00	0	17	0	0
31	Z	00	0	10	0	0
30		230	0	49	0	0
39]]-	240	0		0	0
40	K	110	0	20	0	0
40	S	110	0	20	0	0
41	n	180	0	38	0	0
41	q	100	0	44	0	0
42	p +	- 380 - 295	0	10	0	0
45	U	220	0	41	0	0
44	u	100	0		0	0
40	V	50	0	14	0	0
40	y AC		0	14	0	0
40	AG	40	0	10	0	0
40		200	0	64	0	0
47	AA	290	0	04	0	0
40	AD	190	0	40	0	0
49	A	4	0	0		0
49 50		4	0	0	0	0
50	A D	01	0	0		0
50	В	8 16	0	U		0
50		10	0	0	0	0
50	К	8	0	0	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
All	All	35631	0	22486	279	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

The worst 5 of 279 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
4:4:225:PHE:H	4:4:284:THR:HG22	1.39	0.86
1:1:142:GLN:HG3	1:1:308:LEU:HD23	1.62	0.82
2:2:125:THR:HA	6:6:161:ILE:HD11	1.70	0.73
5:5:126:TRP:CZ3	5:5:146:ILE:HG12	2.24	0.72
6:6:167:ILE:HA	6:6:170:LEU:HG	1.70	0.71

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Per	centiles
1	1	319/335~(95%)	274 (86%)	29 (9%)	16 (5%)	2	23
2	2	337/434~(78%)	309~(92%)	24 (7%)	4 (1%)	1	3 50
3	3	82/110~(74%)	68~(83%)	12 (15%)	2(2%)	6	37
4	4	257/470~(55%)	228 (89%)	24 (9%)	5 (2%)	8	8 42
5	5	353/616~(57%)	315 (89%)	31 (9%)	7 (2%)	7	41
6	6	104/184~(56%)	89~(86%)	10 (10%)	5(5%)	2	24
7	А	84/634~(13%)	72 (86%)	9 (11%)	3~(4%)	ст.	30
8	В	95/370~(26%)	90 (95%)	4 (4%)	1 (1%)	1	4 51
9	С	361/383~(94%)	296 (82%)	41 (11%)	24 (7%)	1	19

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perc	entiles
11	G	67/133~(50%)	58~(87%)	7~(10%)	2(3%)	4	33
12	Н	29/154~(19%)	27~(93%)	2(7%)	0	100	100
13	Ι	82/140~(59%)	63~(77%)	13~(16%)	6~(7%)	1	16
14	Κ	139/147~(95%)	122 (88%)	11 (8%)	6 (4%)	2	26
15	L	77/79~(98%)	69~(90%)	5~(6%)	3~(4%)	3	28
All	All	2386/4189~(57%)	2080 (87%)	222 (9%)	84 (4%)	3	31

5 of 84 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	1	60	LYS
1	1	269	VAL
2	2	62	ASN
5	5	346	ALA
7	А	133	CYS

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	1	286/296~(97%)	252~(88%)	34~(12%)	5 26
2	2	291/308~(94%)	266~(91%)	25~(9%)	10 40
3	3	75/96~(78%)	68~(91%)	7~(9%)	9 35
4	4	215/229~(94%)	198~(92%)	17 (8%)	12 42
5	5	301/302~(100%)	277~(92%)	24 (8%)	12 42
6	6	90/157~(57%)	81 (90%)	9 (10%)	7 32
7	А	37/83~(45%)	37~(100%)	0	100 100
8	В	53/83~(64%)	50 (94%)	3~(6%)	20 52
9	\mathbf{C}	305/324~(94%)	278~(91%)	27~(9%)	9 38
11	G	$5\overline{5}/58~(95\%)$	$5\overline{5}$ (100%)	0	100 100
12	Н	19/19~(100%)	18 (95%)	1 (5%)	22 54

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
13	Ι	55/78~(70%)	49 (89%)	6 (11%)	6 29
14	Κ	114/125~(91%)	107 (94%)	7~(6%)	18 50
15	L	68/69~(99%)	66~(97%)	2(3%)	42 67
All	All	1964/2227~(88%)	1802 (92%)	162 (8%)	11 40

Continued from previous page...

5 of 162 residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
6	6	174	ILE
9	С	403	ILE
9	С	98	LEU
9	С	305	ILE
13	Ι	135	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 13 such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
9	С	95	HIS
9	С	150	ASN
14	Κ	195	GLN
9	С	288	ASN
9	С	434	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

8 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	B	ond leng	gths	E	ond angles
	туре	Unain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ # Z > 2
50	SF4	В	500	8	0,12,12	-	-	-	
50	SF4	Ι	500	13	0,12,12	-	-	-	
49	FES	А	900	7	0,4,4	-	-	-	
50	SF4	Ι	501	13	0,12,12	-	-	-	
50	SF4	А	901	7	0,12,12	-	-	-	
50	SF4	А	902	7	0,12,12	-	-	-	
50	SF4	K	500	14	0,12,12	-	-	-	
49	FES	Н	300	12	0,4,4	-	-	-	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
50	SF4	В	500	8	-	-	0/6/5/5
50	SF4	Ι	500	13	-	-	0/6/5/5
49	FES	А	900	7	-	-	0/1/1/1
50	SF4	Ι	501	13	-	-	0/6/5/5
50	SF4	А	901	7	-	-	0/6/5/5
50	SF4	А	902	7	-	-	0/6/5/5
50	SF4	K	500	14	-	-	0/6/5/5
49	FES	Н	300	12	-	-	0/1/1/1

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
7	А	27
10	Ε	10
8	В	10
5	5	8
12	Н	5
13	Ι	4
2	2	4
4	4	4
11	G	2
41	q	1
25	Q	1

The worst 5 of 76 chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	Е	422:UNK	С	499:UNK	N	48.59
1	В	270:UNK	С	279:UNK	N	26.48
1	А	148:SER	С	152:UNK	N	24.96
1	Е	513:UNK	С	604:UNK	N	24.71
1	Ι	92:GLU	С	103:UNK	N	24.13

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.3 Carbohydrates (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.4 Ligands (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.5 Other polymers (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

