

Full wwPDB X-ray Structure Validation Report (i)

Oct 16, 2023 – 08:27 PM JST

PDB ID	:	8GYY
Title	:	Bifunctional xylosidase/glucosidase LXYL with intermediate substrate xylose,
		120 seconds
Authors	:	Yang, L.Y.
Deposited on	:	2022-09-24
Resolution	:	2.07 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 2.07 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$			
R_{free}	130704	2684 (2.08-2.04)			
Clashscore	141614	2801 (2.08-2.04)			
Ramachandran outliers	138981	2768 (2.08-2.04)			
Sidechain outliers	138945	2768 (2.08-2.04)			
RSRZ outliers	127900	2646 (2.08-2.04)			

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	803	80%	12%	• 6%
1	В	803	81%	11%	• 6%
1	С	803	3% 75%	17%	• 6%
1	D	803	73%	19%	• 6%
2	Е	2	100%		
2	Н	2	50%	50%	

Mol	Chain	Length	Q	uality of chain	
2	L	2		100%	
2	0	2	50%		50%
2	Р	2		100%	
3	F	5	20%	80%	
4	G	2	50%		50%
5	Ι	3		100%	
6	J	5	60%		40%
7	K	3	33%	33%	33%
7	М	3	33%	67%	
7	Ν	3	33%	67%	

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
10	MAN	А	901	-	-	Х	-
10	MAN	А	903	-	-	Х	-
10	MAN	А	904	-	-	-	Х
10	MAN	В	904	-	-	Х	-
10	MAN	В	906	-	-	Х	-
10	MAN	В	910	-	-	Х	-
10	MAN	С	903	-	-	Х	-
10	MAN	С	904	-	-	Х	-
11	NAG	В	916	-	-	-	Х
11	NAG	С	901	-	-	Х	-
11	NAG	С	911	-	-	-	Х
12	BMA	D	901	-	-	Х	-
2	NAG	Н	2	-	-	Х	-
2	NAG	Р	1	_	_	Х	-
4	MAN	G	1	-	-	Х	Х
4	BMA	G	2	-	-	Х	-

2 Entry composition (i)

There are 13 unique types of molecules in this entry. The entry contains 25439 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		A	toms			ZeroOcc	AltConf	Trace
1	В	756	Total	С	Ν	Ο	\mathbf{S}	0	2	0
1	D	150	5738	3636	958	1127	17	0	5	0
1	Δ	757	Total	С	Ν	Ο	\mathbf{S}	0	1	0
	1 A	151	5721	3625	957	1122	17			
1	C	756	Total	С	Ν	Ο	S	0	0	0
	700	5717	3621	956	1123	17	0		0	
1	1 D '	756	Total	С	Ν	Ο	\mathbf{S}	0	2	0
	(50	5720	3624	956	1123	17	0		0	

• Molecule 1 is a protein called Beta-D-xylosidase/beta-D-glucosidase.

• Molecule 2 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	A	Aton	ns		ZeroOcc	AltConf	Trace
9	F	9	Total	С	Ν	0	0	0	0
	2	28	16	2	10	0	0	0	
2	н	9	Total	С	Ν	0	0	0	0
	2	28	16	2	10	0	0	0	
9	т	9	Total	С	Ν	0	0	0	0
		2	28	16	2	10	0	0	0
0	0	2	Total	С	Ν	0	0	0	0
	0	Δ	28	16	2	10	0	0	0
0	D	2	Total	С	Ν	0	0	0	0
2	Р	2	28	16	2	10	0	0	0

• Molecule 3 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyran ose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
3	F	5	Total 61	С 34	N 2	O 25	0	0	0

• Molecule 4 is an oligosaccharide called beta-D-mannopyranose-(1-3)-alpha-D-mannopyranos e.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace
4	G	2	Total 23	C 12	0 11	0	0	0

• Molecule 5 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
5	Ι	3	Total 42	C 24	N 3	O 15	0	0	0

• Molecule 6 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-beta-D-mannopyranos e-(1-3)-1-deoxy-alpha-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
6	J	5	Total 61	С 34	N 2	O 25	0	0	0

• Molecule 7 is an oligosaccharide called alpha-D-mannopyranose-(1-4)-2-acetamido-2-deoxybeta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
7	K	3	Total C N O 39 22 2 15	0	0	0
7	М	3	Total C N O 39 22 2 15	0	0	0
7	Ν	3	Total C N O 39 22 2 15	0	0	0

• Molecule 8 is Deacetyltaxol (three-letter code: BKR) (formula: $C_{45}H_{49}NO_{13}$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	
8	В	1	Total	С	Ν	0	0	0	
0	D	T	59	45	1	13	0	0	
8	Δ	1	Total	С	Ν	0	0	0	
0	Π		59	45	1	13	0		
8	С	1	Total	С	Ν	0	0	0	
0	U	T	59	45	1	13	0	0	
8	Л	1	Total	С	Ν	Ο	0	0	
8	D	T	59	45	1	13	0	0	

• Molecule 9 is D-xylose (three-letter code: XLS) (formula: $C_5H_{10}O_5$) (labeled as "Ligand of

Interest" by depositor).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
9	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 9 5 4 \end{array}$	0	0
9	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 9 5 4 \end{array}$	0	0

• Molecule 10 is alpha-D-mannopyranose (three-letter code: MAN) (formula: $C_6H_{12}O_6$).

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	
10	В	1	Total 11	С 6	O 5	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
10	В	1	Total C O 11 6 5	0	0
10	В	1	Total C O 11 6 5	0	0
10	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 11 6 5 \end{array}$	0	0
10	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 11 6 5 \end{array}$	0	0
10	В	1	Total C O 12 6 6	0	0
10	В	1	Total C O 11 6 5	0	0
10	А	1	Total C O 11 6 5	0	0
10	А	1	Total C O 11 6 5	0	0
10	А	1	Total C O 11 6 5	0	0
10	А	1	Total C O 11 6 5	0	0
10	А	1	Total C O 12 6 6	0	0
10	А	1	Total C O 11 6 5	0	0
10	С	1	Total C O 11 6 5	0	0
10	С	1	Total C O 11 6 5	0	0
10	С	1	Total C O 11 6 5	0	0
10	С	1	Total C O 11 6 5	0	0
10	С	1	Total C O 11 6 5	0	0
10	D	1	Total C O 11 6 5	0	0
10	D	1	Total C O 11 6 5	0	0
10	D	1	Total C O 11 6 5	0	0
10	D	1	Total C O 11 6 5	0	0

• Molecule 11 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
11	р	1	Total C N O	0	0
	D	1	14 8 1 5	0	0
11	В	1	Total C N O	0	0
11	D	T	14 8 1 5	0	0
11	В	1	Total C N O	0	0
11	D	1	$15 \ 8 \ 1 \ 6$	0	0
11	В	1	Total C N O	0	0
	Б	Ŧ	14 8 1 5	0	0
11	В	1	Total C N O	0	0
	D	1	14 8 1 5		
11	В	1	Total C N O	0	0
		-	15 8 1 6		
11	В	1	Total C N O	0	0
		1	14 8 1 5		
11	А	1	Total C N O	0	0
		-	14 8 1 5		<u> </u>
11	А	1	Total C N O	0	0
		-	14 8 1 5		<u> </u>
11	А	1	Total C N O	0	0
		-	14 8 1 5		<u> </u>
11	11 A	1	Total C N O	0	0
	**	*	14 8 1 5		
11	С	1	Total C N O	0	0
**			14 8 1 5		

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
11	С	1	Total C N O 14 8 1 5	0	0
11	С	1	Total C N O 14 8 1 5	0	0
11	С	1	Total C N O 14 8 1 5	0	0
11	С	1	Total C N O 14 8 1 5	0	0
11	С	1	Total C N O 14 8 1 5	0	0
11	D	1	Total C N O 14 8 1 5	0	0
11	D	1	Total C N O 14 8 1 5	0	0
11	D	1	Total C N O 14 8 1 5	0	0
11	D	1	Total C N O 14 8 1 5	0	0

• Molecule 12 is beta-D-mannopyranose (three-letter code: BMA) (formula: $C_6H_{12}O_6$).

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	
12	D	1	Total 11	$\begin{array}{c} \mathrm{C} \\ \mathrm{6} \end{array}$	O 5	0	0

• Molecule 13 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
13	В	479	Total O 479 479	0	0
13	А	436	Total O 436 436	0	0
13	С	198	Total O 198 198	0	0
13	D	181	Total O 181 181	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• 6%

- S80
 III
 S10

 288
 III
 III

 288
 III
 III

 288
 III
 III

 377
 III
 III

 388
 III
 III

 377
 III
 III

 377
 III
 III

 376
 III
 III

 377
 III
 III

 376
 III
 III

 377
 III
 III

 376
 III
 III

 377
 III
 III

 388
 III
 III

 389
 III
 III

 380
 III
 III

 381
 III
 III

 41
 III
 III

 42
 III
 III

 43
 III
 III

 43
 III
 III

 44
 III
 III

 44
 III
 III

 44
 III
 III

 44
 III
 III

 45
 III
 III

 45
 III
 III

 45
 III
 III

 45
 IIII
 IIII

 45
 IIII

 46
- Molecule 1: Beta-D-xylosidase/beta-D-glucosidase

 \bullet Molecule 1: Beta-D-xylosidase/beta-D-glucosidase

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

Chain E:	100	%	
NAG1 NAG2			
• Molecule 2: opyranose	2-acetamido-2-deoxy-beta-D	-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
Chain H:	50%	50%	
NGC1 NGC2			
• Molecule 2: opyranose	2-acetamido-2-deoxy-beta-D	-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
Chain L:	100'	%	
NAG1 NAG2			
• Molecule 2: opyranose	2-acetamido-2-deoxy-beta-D-	-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
Chain O:	50%	50%	
NAG1 NAG2			
• Molecule 2: opyranose	2-acetamido-2-deoxy-beta-D-	-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
Chain P:	100	%	
NAG1 NAG2			
• Molecule 3: se-(1-4)-2-ace nose	alpha-D-mannopyranose-(1-2 tamido-2-deoxy-beta-D-gluco	2)-alpha-D-mannopyranose-(1-3) pyranose-(1-4)-2-acetamido-2-de	-beta-D-mannopyrano eoxy-beta-D-glucopyra
Chain F:	20%	80%	
NAG1 NAG2 BMA3 MAN4 MAN5			
• Molecule 4:	beta-D-mannopyranose-(1-3)	-alpha-D-mannopyranose	
Chain G:	50%	50%	
MAN1 BMA2			

 $\bullet \ Molecule \ 5: \ 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose$

Chain I:

100%

NAG1 NAG2 NAG3 NAG3

 \bullet Molecule 6: alpha-D-mannopyranose-(1-2)-beta-D-mannopyranose-(1-3)-1-deoxy-alpha-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain J:	60%	40%

NAG1 NAG2 AH23 BM44 MAN5

• Molecule 7: alpha-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain K:	33%	33%	33%
NAG2 MAN3 MAN3			

• Molecule 7: alpha-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain M:	33%	67%
NAG1 NAG2 MAN3		

• Molecule 7: alpha-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain N:	33%	67%

NAG1 NAG2 MAN3

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 2	Depositor
Cell constants	228.43Å 89.23Å 218.09Å	Deperitor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
$\mathbf{P}_{\text{acclution}}(\hat{\mathbf{A}})$	35.97 - 2.07	Depositor
Resolution (A)	35.94 - 2.07	EDS
% Data completeness	95.0 (35.97-2.07)	Depositor
(in resolution range)	95.1 (35.94-2.07)	EDS
R _{merge}	0.11	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.43 (at 2.06 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.8.0411	Depositor
D D.	0.219 , 0.259	Depositor
Λ, Λ_{free}	0.231 , 0.269	DCC
R_{free} test set	12691 reflections (4.93%)	wwPDB-VP
Wilson B-factor $(Å^2)$	30.2	Xtriage
Anisotropy	0.203	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.33 , 41.5	EDS
L-test for twinning ²	$< L >=0.48, < L^2>=0.31$	Xtriage
Estimated twinning fraction	0.008 for l,-k,h	Xtriage
F_o, F_c correlation	0.94	EDS
Total number of atoms	25439	wwPDB-VP
Average B, all atoms $(Å^2)$	42.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.31% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: AH2, BKR, NAG, BMA, MAN, XLS

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles	
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.42	0/5865	0.74	0/8025
1	В	0.44	0/5883	0.75	0/8049
1	С	0.38	0/5864	0.72	0/8023
1	D	0.39	0/5867	0.75	0/8027
All	All	0.41	0/23479	0.74	0/32124

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	3
1	В	0	6
1	D	0	1
All	All	0	10

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (10) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	А	391	ARG	Sidechain
1	А	678	ARG	Sidechain
1	А	764	ARG	Sidechain
1	В	168	ARG	Sidechain
1	В	218	ARG	Sidechain
1	В	270	ARG	Sidechain

Continued from previous page					
Mol	Chain	\mathbf{Res}	Type	Group	

IVIOI	Unam	nes	Type	Group
1	В	391	ARG	Sidechain
1	В	484	ARG	Sidechain
1	В	655	ARG	Sidechain
1	D	678	ARG	Sidechain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	5721	0	5518	72	0
1	В	5738	0	5526	85	0
1	С	5717	0	5510	100	0
1	D	5720	0	5519	119	0
2	Е	28	0	24	4	0
2	Н	28	0	25	10	0
2	L	28	0	25	0	0
2	0	28	0	25	6	0
2	Р	28	0	26	14	0
3	F	61	0	51	6	0
4	G	23	0	21	28	0
5	Ι	42	0	38	4	0
6	J	61	0	43	5	0
7	Κ	39	0	34	2	0
7	М	39	0	34	0	0
7	N	39	0	34	0	0
8	А	59	0	0	1	0
8	В	59	0	0	1	0
8	С	59	0	0	2	0
8	D	59	0	0	2	0
9	А	9	0	9	1	0
9	В	9	0	9	1	0
10	А	67	0	62	18	0
10	В	78	0	72	28	0
10	С	55	0	50	14	0
10	D	44	0	39	7	0
11	A	56	0	52	1	0
11	В	100	0	95	7	0
11	С	84	0	78	11	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
11	D	56	0	52	1	0
12	D	11	0	10	9	0
13	А	436	0	0	8	0
13	В	479	0	0	14	0
13	С	198	0	0	4	0
13	D	181	0	0	11	0
All	All	25439	0	22981	474	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 10.

All (474) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom_1	Atom_2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:272:ASN:HD21	11:C:901:NAG:C1	1.31	1.40
10:B:904:MAN:O6	10:B:906:MAN:C1	1.70	1.38
1:D:272:ASN:HD21	2:P:1:NAG:C1	1.39	1.33
10:B:906:MAN:O2	10:B:907:MAN:C1	1.76	1.32
10:B:904:MAN:O3	10:B:905:MAN:C1	1.76	1.30
1:B:798:ASN:HD21	11:B:916:NAG:C1	1.53	1.21
1:C:272:ASN:ND2	11:C:901:NAG:C1	2.05	1.20
12:D:901:BMA:O6	10:D:902:MAN:C1	1.88	1.20
11:C:901:NAG:O4	11:C:902:NAG:C1	1.91	1.18
10:A:901:MAN:C1	6:J:3:AH2:O6	1.92	1.18
4:G:2:BMA:H5	2:H:2:NAG:O4	1.41	1.17
12:D:901:BMA:O3	10:D:904:MAN:C1	1.95	1.13
1:D:272:ASN:ND2	2:P:1:NAG:C1	2.12	1.10
12:D:901:BMA:C1	2:P:2:NAG:O4	1.98	1.10
10:A:901:MAN:O6	10:A:903:MAN:H2	1.51	1.10
2:O:1:NAG:C4	2:O:2:NAG:C1	2.30	1.10
10:A:901:MAN:O3	10:A:902:MAN:C1	2.04	1.05
10:C:903:MAN:O6	10:C:904:MAN:C1	2.07	1.02
10:A:901:MAN:O6	10:A:903:MAN:C2	2.14	0.95
10:C:903:MAN:O6	10:C:904:MAN:H2	1.67	0.94
1:C:346:SER:HB3	13:C:1051:HOH:O	1.67	0.94
10:B:910:MAN:H1	4:G:1:MAN:H61	1.49	0.93
10:B:903:MAN:C1	2:E:2:NAG:O4	2.16	0.93
12:D:901:BMA:O3	10:D:904:MAN:C2	2.17	0.93
1:D:272:ASN:HD21	2:P:1:NAG:C2	1.82	0.93
10:B:912:MAN:C1	4:G:1:MAN:H2	1.99	0.92
10:C:903:MAN:HO3	10:C:906:MAN:HO2	1.09	0.91

	all pagetti	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:798:ASN:ND2	11:B:916:NAG:C1	2.33	0.91
10:C:903:MAN:O6	10:C:904:MAN:C2	2.20	0.90
4:G:2:BMA:C5	2:H:2:NAG:HO4	1.85	0.89
4:G:2:BMA:H5	2:H:2:NAG:HO4	1.35	0.89
10:A:901:MAN:O6	10:A:903:MAN:C1	2.22	0.88
10:B:910:MAN:O1	4:G:1:MAN:O5	1.93	0.87
3:F:2:NAG:C4	3:F:3:BMA:C1	2.53	0.86
4:G:2:BMA:C5	2:H:2:NAG:O4	2.22	0.86
1:B:226:GLY:O	13:B:1001:HOH:O	1.93	0.85
10:B:904:MAN:HO6	10:B:906:MAN:C1	1.86	0.85
10:B:910:MAN:O1	4:G:1:MAN:H4	1.78	0.83
11:C:902:NAG:O4	10:C:903:MAN:C1	2.27	0.82
10:B:912:MAN:C1	4:G:1:MAN:C2	2.57	0.81
10:A:901:MAN:HO6	10:A:903:MAN:H2	1.42	0.81
3:F:2:NAG:O4	3:F:3:BMA:C2	2.27	0.81
2:O:1:NAG:O4	2:O:2:NAG:C2	2.28	0.81
1:A:442:ASN:HD21	1:A:471:SER:H	1.28	0.81
1:D:565:VAL:HG23	13:D:1052:HOH:O	1.80	0.80
10:B:910:MAN:O1	4:G:1:MAN:C5	2.29	0.80
10:B:910:MAN:C1	4:G:1:MAN:H61	2.10	0.80
2:O:1:NAG:H4	2:O:2:NAG:C1	2.10	0.80
1:D:676:HIS:ND1	13:D:1001:HOH:O	2.15	0.79
4:G:2:BMA:O4	2:H:2:NAG:O4	1.98	0.79
4:G:2:BMA:O4	2:H:2:NAG:O3	1.99	0.79
10:B:910:MAN:O2	11:B:911:NAG:H1	1.81	0.79
1:C:52:PRO:HG3	1:C:289:THR:OG1	1.84	0.78
1:A:421:LEU:HD11	1:A:520:PHE:HZ	1.49	0.78
1:D:373:PRO:O	1:D:391:ARG:NH2	2.17	0.77
10:C:903:MAN:HO6	10:C:904:MAN:C1	1.98	0.77
10:A:907:MAN:O5	7:K:3:MAN:O3	2.02	0.77
1:B:272:ASN:ND2	3:F:1:NAG:C2	2.48	0.76
1:A:272:ASN:CG	6:J:1:NAG:C1	2.52	0.76
11:C:902:NAG:O4	10:C:903:MAN:C2	2.33	0.76
12:D:901:BMA:O3	10:D:904:MAN:H2	1.84	0.75
1:A:110:GLY:HA2	13:A:1171:HOH:O	1.85	0.75
1:B:474:THR:HG21	13:B:1376:HOH:O	1.87	0.75
1:D:109:ASP:OD2	1:D:466:SER:HB2	1.86	0.74
1:B:442:ASN:HD21	1:B:471:SER:H	1.34	0.74
1:B:731:ILE:O	1:B:736:GLN:HG2	1.86	0.74
1:A:521:VAL:HG11	1:A:546:MET:CE	2.17	0.74
11:C:902:NAG:O4	10:C:903:MAN:H2	1.86	0.74

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	$ ext{overlap}(ext{\AA})$
1:D:246:HIS:HE1	1:D:290:GLU:OE2	1.71	0.74
2:P:1:NAG:O4	2:P:2:NAG:O7	2.06	0.74
10:B:910:MAN:O1	4:G:1:MAN:C4	2.34	0.74
10:B:904:MAN:C3	10:B:905:MAN:C1	2.65	0.73
10:A:901:MAN:C1	6:J:3:AH2:C6	2.67	0.73
1:D:78:GLU:OE2	1:D:99:ARG:NH1	2.21	0.73
4:G:2:BMA:O4	2:H:2:NAG:C4	2.37	0.73
1:B:272:ASN:CG	3:F:1:NAG:C1	2.54	0.73
1:D:311:ALA:O	1:D:349:LEU:HD21	1.88	0.73
1:C:767:VAL:HG22	1:C:784:PHE:CE2	2.23	0.72
1:C:377:ASN:C	1:C:377:ASN:HD22	1.93	0.72
1:B:521:VAL:HB	1:B:546:MET:HE3	1.71	0.72
1:A:172:ASN:HD22	1:A:174:ARG:H	1.38	0.72
10:A:901:MAN:C3	10:A:902:MAN:C1	2.68	0.72
1:D:275:HIS:HB2	1:D:278:SER:OG	1.90	0.72
1:D:317:VAL:HG22	1:D:357:ILE:HD11	1.70	0.72
1:B:204:THR:H	1:B:262:ASN:HD22	1.38	0.71
1:D:109:ASP:OD1	1:D:158:LEU:HD12	1.90	0.71
1:D:759:THR:HG22	13:D:1011:HOH:O	1.90	0.71
1:B:273:ASN:HD21	1:B:633:GLN:HE22	1.37	0.71
1:D:236:ILE:CD1	1:D:625:VAL:HG11	2.22	0.70
1:A:649:LYS:NZ	13:A:1004:HOH:O	2.23	0.70
1:D:98:THR:HB	2:O:2:NAG:O6	1.91	0.70
1:B:521:VAL:HG21	1:B:546:MET:CE	2.22	0.70
1:D:763:ARG:HD3	1:D:766:ASP:OD2	1.91	0.70
1:A:147:GLN:HG2	13:A:1291:HOH:O	1.91	0.70
5:I:2:NAG:HO4	5:I:3:NAG:C1	2.04	0.69
4:G:2:BMA:C4	2:H:2:NAG:HO4	2.04	0.69
10:A:907:MAN:O1	10:A:908:MAN:C1	2.41	0.69
1:C:71:VAL:HG21	1:C:355:VAL:HG23	1.75	0.69
1:D:272:ASN:CG	2:P:1:NAG:C1	2.62	0.68
12:D:901:BMA:C6	10:D:902:MAN:C1	2.71	0.68
10:A:901:MAN:O3	10:A:902:MAN:C2	2.41	0.68
10:C:906:MAN:O2	10:C:907:MAN:C1	2.42	0.68
1:D:236:ILE:HD11	1:D:625:VAL:HG11	1.76	0.68
1:A:425:GLN:NE2	13:A:1002:HOH:O	2.19	0.68
1:A:272:ASN:ND2	6:J:1:NAG:C2	2.57	0.67
1:D:122:GLN:OE1	1:D:461:THR:OG1	2.11	0.67
1:A:111:PRO:HD2	1:A:467:GLY:HA2	1.77	0.67
1:D:776:LEU:C	1:D:776:LEU:HD23	2.15	0.66
1:D:523:LEU:HD11	1:D:546:MET:SD	2.35	0.66

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
12:D:901:BMA:C1	2:P:2:NAG:C4	2.74	0.66	
1:C:442:ASN:HD21	1:C:471:SER:H	1.42	0.65	
1:C:713:ILE:HD11	1:C:747:ILE:HG13	1.79	0.65	
1:A:246:HIS:HE1	1:A:290:GLU:OE2	1.79	0.65	
1:D:272:ASN:HD21	2:P:1:NAG:H2	1.62	0.64	
1:A:421:LEU:HD11	1:A:520:PHE:CZ	2.32	0.64	
1:C:736:GLN:HA	1:C:736:GLN:HE21	1.63	0.64	
4:G:2:BMA:O4	2:H:2:NAG:C3	2.45	0.64	
1:A:521:VAL:HG11	1:A:546:MET:HE2	1.78	0.64	
1:D:151:ASP:HB3	1:D:393:VAL:CG2	2.27	0.64	
1:C:274:THR:HA	13:C:1005:HOH:O	1.97	0.63	
1:A:474:THR:HG21	13:A:1353:HOH:O	1.98	0.63	
1:B:438:VAL:HG23	1:B:439:LEU:HD13	1.81	0.63	
1:D:78:GLU:CD	1:D:99:ARG:HH12	2.02	0.63	
1:B:701:SER:O	1:B:764:ARG:NH1	2.32	0.63	
1:C:474:THR:HG21	13:C:1160:HOH:O	1.99	0.63	
1:C:665:THR:OG1	1:C:717:GLY:HA3	1.99	0.62	
10:B:910:MAN:O2	11:B:911:NAG:H5	1.98	0.62	
1:C:773:VAL:O	10:C:903:MAN:O4	2.13	0.62	
10:C:904:MAN:H3	10:C:905:MAN:C1	2.28	0.62	
1:B:521:VAL:CB	1:B:546:MET:HE3	2.29	0.62	
1:C:421:LEU:HD11	1:C:520:PHE:HZ	1.63	0.62	
1:C:702:LEU:HD22	1:C:765:LYS:HB2	1.82	0.62	
10:B:903:MAN:C1	2:E:2:NAG:HO4	2.11	0.62	
10:A:903:MAN:O2	10:A:904:MAN:C1	2.47	0.62	
1:C:272:ASN:CG	11:C:901:NAG:C1	2.67	0.62	
1:C:71:VAL:HG21	1:C:355:VAL:CG2	2.30	0.62	
11:C:901:NAG:C4	11:C:902:NAG:C1	2.77	0.62	
10:A:903:MAN:O2	10:A:904:MAN:H2	2.00	0.62	
1:A:204:THR:H	1:A:262:ASN:HD22	1.48	0.61	
1:C:347:GLU:OE1	1:C:351:ARG:NH2	2.34	0.61	
1:A:432:ASN:HB2	13:A:1335:HOH:O	2.00	0.60	
10:A:903:MAN:HO2	10:A:904:MAN:C1	2.13	0.60	
1:D:134:ASP:OD1	1:D:136:THR:HB	2.01	0.60	
10:B:906:MAN:C2	10:B:907:MAN:C1	2.77	0.60	
1:C:605[A]:SER:OG	1:C:722:SER:HB2	2.01	0.60	
1:C:272:ASN:HD21	11:C:901:NAG:C2	2.10	0.60	
1:B:759:THR:HG23	13:B:1285:HOH:O	2.01	0.60	
1:A:377:ASN:C	1:A:377:ASN:HD22	2.05	0.60	
12:D:901:BMA:C3	10:D:904:MAN:C1	2.78	0.60	
1:D:98:THR:HG21	2:0:1:NAG:O3	2.03	0.59	

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:D:745:ASP:HB3	1:D:758:VAL:HG22	1.83	0.59	
1:D:272:ASN:OD1	2:P:1:NAG:C1	2.50	0.59	
1:C:377:ASN:HD21	1:C:380:GLY:H	1.49	0.59	
1:A:715:ASN:HB2	1:A:750:LEU:HD13	1.84	0.58	
10:C:904:MAN:C3	10:C:905:MAN:C1	2.81	0.58	
1:B:377:ASN:C	1:B:377:ASN:HD22	2.05	0.58	
1:C:763:ARG:NH1	1:C:766:ASP:OD1	2.35	0.58	
1:D:502:THR:HA	13:D:1103:HOH:O	2.02	0.58	
1:A:300:ASP:OD1	9:A:912:XLS:H3	2.04	0.58	
10:A:907:MAN:C5	7:K:3:MAN:HO3	2.14	0.58	
1:D:272:ASN:ND2	2:P:1:NAG:C2	2.59	0.58	
1:D:421:LEU:HD11	1:D:520:PHE:HZ	1.69	0.58	
1:D:776:LEU:HD23	1:D:776:LEU:O	2.02	0.58	
1:A:152:GLN:HA	1:A:152:GLN:HE21	1.68	0.57	
1:B:628:ASP:HA	11:B:911:NAG:H82	1.86	0.57	
1:C:248:LEU:HD23	1:C:249:TYR:CE2	2.40	0.57	
1:C:679:TRP:HB3	1:C:706:ILE:O	2.04	0.57	
1:D:172:ASN:C	1:D:172:ASN:HD22	2.07	0.57	
1:D:89:LEU:HB3	1:D:376:TYR:O	2.04	0.57	
1:C:705:VAL:HA	1:C:763:ARG:HA	1.87	0.56	
1:B:521:VAL:HG11	1:B:546:MET:HE2	1.85	0.56	
1:D:432:ASN:O	1:D:458:GLY:HA2	2.05	0.56	
1:D:151:ASP:HB3	1:D:393:VAL:HG22	1.88	0.56	
1:A:177:GLU:OE2	1:A:467:GLY:HA3	2.06	0.56	
1:D:524:ASN:HA	1:D:561:HIS:O	2.06	0.56	
1:C:438:VAL:HG23	1:C:439:LEU:HD13	1.88	0.55	
1:D:76:VAL:HG23	13:D:1082:HOH:O	2.06	0.55	
1:B:172:ASN:HD22	1:B:174:ARG:H	1.54	0.55	
1:D:152:GLN:HE21	1:D:152:GLN:HA	1.71	0.55	
1:B:432:ASN:HB2	13:B:1286:HOH:O	2.06	0.55	
1:A:731:ILE:O	1:A:736:GLN:HG2	2.06	0.55	
1:B:716:THR:HG22	1:B:716:THR:O	2.06	0.55	
1:B:421:LEU:HD11	1:B:520:PHE:HZ	1.72	0.54	
1:C:739:ARG:NH2	13:C:1004:HOH:O	2.40	0.54	
1:C:258:ARG:HD2	1:C:703:TYR:CE2	2.42	0.54	
8:A:911:BKR:C20	8:A:911:BKR:C47	2.86	0.54	
1:B:89:LEU:HB3	1:B:376:TYR:O	2.08	0.54	
1:B:702:LEU:HD13	1:B:765:LYS:HD2	1.88	0.54	
1:C:693:PHE:HA	1:C:777:TRP:O	2.08	0.54	
1:C:767:VAL:HG21	1:C:801:TRP:HZ3	1.73	0.54	
1:D:51:ALA:HB2	1:D:284:ASN:HD21	1.72	0.54	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
8:B:901:BKR:C47	8:B:901:BKR:C20	2.86	0.54	
1:B:626:TYR:CE1	4:G:1:MAN:H1	2.43	0.54	
1:B:108:GLN:HG3	1:B:109:ASP:O	2.08	0.53	
1:A:122:GLN:HE21	1:A:587:GLY:HA2	1.73	0.53	
1:A:173:GLY:HA3	1:A:531:ALA:O	2.07	0.53	
1:D:217:SER:HA	1:D:219:ASN:OD1	2.09	0.53	
1:C:108:GLN:HG3	1:C:109:ASP:O	2.07	0.53	
1:D:108:GLN:HG3	1:D:109:ASP:O	2.07	0.53	
1:C:236:ILE:HD13	1:C:625:VAL:HG22	1.89	0.53	
4:G:2:BMA:C4	2:H:2:NAG:O4	2.53	0.53	
1:A:569:GLU:OE1	1:A:655:ARG:NH1	2.42	0.53	
1:D:55:ASN:H	1:D:294:GLN:NE2	2.07	0.53	
1:D:156:LEU:HD21	1:D:263:HIS:CD2	2.44	0.53	
1:B:216:THR:HA	4:G:1:MAN:O6	2.09	0.53	
1:B:515:ASP:N	13:B:1013:HOH:O	2.39	0.53	
1:B:626:TYR:OH	4:G:1:MAN:O1	2.09	0.53	
1:B:442:ASN:HD21	1:B:471:SER:N	2.05	0.52	
1:D:607:LYS:HD2	1:D:724:VAL:HB	1.91	0.52	
1:A:258:ARG:NH2	1:A:685:SER:HB3	2.25	0.52	
2:P:1:NAG:C4	2:P:2:NAG:C1	2.83	0.52	
1:D:347:GLU:OE1	1:D:351:ARG:NH2	2.42	0.52	
1:C:191:TYR:CD2	1:C:259:ALA:HB2	2.45	0.52	
1:C:75:THR:O	1:C:79:LEU:HD12	2.10	0.51	
1:C:728:TYR:CE1	1:C:741:LEU:HB2	2.45	0.51	
10:B:912:MAN:H4	13:B:1392:HOH:O	2.09	0.51	
1:C:255:GLU:OE2	1:C:763:ARG:NH2	2.43	0.51	
1:D:641:PHE:CE2	1:D:649:LYS:HG3	2.45	0.51	
5:I:2:NAG:C4	5:I:3:NAG:C1	2.84	0.51	
1:C:305:TRP:O	1:C:331:PHE:CZ	2.62	0.51	
1:D:49:TRP:CZ3	1:D:281:LYS:HB2	2.46	0.51	
1:B:776:LEU:HD23	1:B:776:LEU:C	2.30	0.51	
1:D:117:VAL:HG22	1:D:376:TYR:CD2	2.46	0.51	
1:A:98:THR:CG2	5:I:1:NAG:O3	2.59	0.51	
1:A:645:ARG:HG2	1:A:645:ARG:HH11	1.76	0.51	
1:D:416:THR:O	1:D:416:THR:HG22	2.11	0.51	
10:C:903:MAN:O3	10:C:906:MAN:O2	1.96	0.51	
1:D:151:ASP:CB	1:D:393:VAL:HG22	2.40	0.51	
1:D:205:VAL:HG22	1:D:263:HIS:HB2	1.92	0.51	
1:B:203:ALA:HA	1:B:262:ASN:ND2	2.25	0.51	
1:B:521:VAL:HG21	1:B:546:MET:HE1	1.93	0.50	
1:A:147:GLN:OE1	1:A:395:LYS:HG3	2.11	0.50	

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:521:VAL:CG1	1:A:546:MET:CE	2.87	0.50
1:D:78:GLU:CD	1:D:99:ARG:NH1	2.65	0.50
1:B:626:TYR:CE1	4:G:1:MAN:C1	2.94	0.50
10:D:904:MAN:O2	10:D:905:MAN:H3	2.11	0.50
1:D:125:ALA:O	1:D:128:THR:N	2.41	0.50
1:D:798:ASN:HB3	13:D:1098:HOH:O	2.12	0.50
1:D:214:GLN:HG2	13:D:1161:HOH:O	2.11	0.50
1:D:253:PHE:O	1:D:257:VAL:HG23	2.11	0.50
1:D:108:GLN:NE2	1:D:378:THR:HG21	2.27	0.50
1:B:227:VAL:HG22	1:B:232:ILE:HD11	1.92	0.50
1:D:147:GLN:NE2	1:D:151:ASP:OD2	2.44	0.50
1:C:377:ASN:C	1:C:377:ASN:ND2	2.64	0.50
1:B:739:ARG:NH2	13:B:1027:HOH:O	2.44	0.49
1:C:191:TYR:CG	1:C:259:ALA:HB2	2.46	0.49
1:B:172:ASN:ND2	1:B:174:ARG:H	2.09	0.49
1:A:98:THR:HG21	5:I:1:NAG:O3	2.12	0.49
1:C:60:TRP:CE3	1:C:359:THR:HG21	2.47	0.49
10:B:910:MAN:O1	4:G:1:MAN:C6	2.61	0.49
1:B:246:HIS:HE1	1:B:290:GLU:OE2	1.96	0.49
1:D:129:VAL:HG13	1:D:141:ARG:HD2	1.94	0.49
1:A:503:THR:HG23	13:A:1208:HOH:O	2.11	0.49
1:D:107:LEU:N	1:D:107:LEU:HD23	2.28	0.49
2:0:1:NAG:O4	2:O:2:NAG:H2	2.09	0.49
10:B:910:MAN:C1	11:B:911:NAG:H5	2.42	0.49
1:A:524:ASN:HA	1:A:561:HIS:O	2.13	0.49
1:D:236:ILE:HD13	1:D:625:VAL:HG11	1.94	0.49
1:D:604:PRO:HD3	1:D:664:TYR:CE2	2.47	0.49
1:C:54:ALA:O	1:C:64:PHE:CE1	2.66	0.49
1:A:262:ASN:O	1:A:295:GLY:HA3	2.12	0.49
1:D:776:LEU:C	1:D:776:LEU:CD2	2.81	0.49
1:C:251:TRP:O	1:C:254:ALA:HB3	2.13	0.49
1:B:170:PRO:HG3	1:B:619:TYR:CD2	2.48	0.49
10:A:903:MAN:O2	10:A:904:MAN:C2	2.60	0.49
1:C:172:ASN:HD22	1:C:174:ARG:H	1.61	0.49
1:D:785:LEU:HD11	1:D:798:ASN:HB2	1.95	0.49
1:B:626:TYR:HE1	4:G:1:MAN:C1	2.26	0.48
1:A:484:ARG:NH1	1:A:599:TYR:HB3	2.28	0.48
1:A:110:GLY:H	1:A:111:PRO:HD3	1.78	0.48
1:A:745:ASP:HB3	1:A:758:VAL:HG22	1.94	0.48
10:A:903:MAN:O2	10:A:904:MAN:O5	2.23	0.48
11:D:907:NAG:H83	13:D:1156:HOH:O	2.13	0.48

	A construction of the second sec	Interatomic	Clash
Atom-1	Atom-1 Atom-2		overlap (Å)
10:B:910:MAN:O1	4:G:1:MAN:H61	2.12	0.48
1:D:272:ASN:ND2	2:P:1:NAG:H2	2.27	0.48
1:B:524:ASN:HA	1:B:561:HIS:O	2.13	0.48
10:B:906:MAN:C1	10:B:907:MAN:O5	2.61	0.48
1:C:170:PRO:HG3	1:C:619:TYR:CD2	2.49	0.48
1:D:248:LEU:HD23	1:D:249:TYR:CZ	2.49	0.48
1:C:324:PHE:CE2	8:C:912:BKR:C14	2.97	0.48
1:B:216:THR:HG23	4:G:1:MAN:O6	2.14	0.47
1:B:300:ASP:OD1	9:B:902:XLS:H3	2.14	0.47
1:A:47:THR:C	1:A:49:TRP:H	2.15	0.47
1:A:107:LEU:HD23	1:A:107:LEU:N	2.29	0.47
12:D:901:BMA:O5	2:P:2:NAG:O3	2.29	0.47
1:B:758:VAL:HG13	1:B:760:PHE:CZ	2.50	0.47
10:B:912:MAN:C1	4:G:1:MAN:O2	2.62	0.47
1:C:288:LYS:NZ	1:C:316:ASP:OD2	2.40	0.47
1:D:107:LEU:HD22	1:D:156:LEU:HB2	1.97	0.47
1:D:284:ASN:OD1	1:D:314:GLY:HA3	2.14	0.47
1:D:771:SER:O	1:D:775:GLN:N	2.44	0.47
1:A:272:ASN:ND2	6:J:1:NAG:O5	2.40	0.47
1:C:50:PRO:O	1:C:52:PRO:HD3	2.15	0.47
1:D:473:TYR:CE1	1:D:475:ILE:CD1	2.97	0.47
1:C:236:ILE:HD11	1:C:634:SER:HB2	1.96	0.47
1:B:172:ASN:HD22	1:B:172:ASN:C	2.18	0.47
1:B:265:MET:HA	1:B:298:VAL:O	2.15	0.47
1:D:397:GLY:O	1:D:400:GLU:HG2	2.15	0.47
1:A:655:ARG:HD3	1:A:656:TYR:CE2	2.50	0.47
1:D:759:THR:CG2	13:D:1011:HOH:O	2.57	0.47
1:B:774:ASP:OD1	3:F:5:MAN:H62	2.15	0.46
1:D:242:ASP:O	1:D:246:HIS:HD2	1.99	0.46
1:D:473:TYR:HE1	1:D:475:ILE:CD1	2.28	0.46
1:A:160:PRO:HG2	1:A:162:THR:CG2	2.46	0.46
1:C:60:TRP:HE3	1:C:359:THR:HG21	1.80	0.46
1:A:203:ALA:HA	1:A:262:ASN:ND2	2.31	0.46
1:D:702:LEU:HD22	1:D:765:LYS:HB2	1.97	0.46
10:B:910:MAN:HO1	4:G:1:MAN:C1	2.22	0.46
1:C:702:LEU:HD13	1:C:765:LYS:HD2	1.97	0.46
1:D:635:ASN:HB3	1:D:637:THR:HG23	1.97	0.46
1:A:134:ASP:OD1	1:A:136:THR:HB	2.16	0.46
1:A:645:ARG:HG2	1:A:645:ARG:NH1	2.30	0.46
1:B:645:ARG:NH1	13:B:1031:HOH:O	2.48	0.46
1:C:316:ASP:OD1	1:C:353:LYS:HA	2.15	0.46

			Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:521:VAL:HG11	1:C:546:MET:CE	2.46	0.46
1:C:595:VAL:N	1:C:596:PRO:CD	2.79	0.46
1:C:521:VAL:HB	1:C:546:MET:HE1	1.97	0.46
1:B:521:VAL:HG11	1:B:546:MET:CE	2.46	0.46
1:D:151:ASP:CB	1:D:393:VAL:CG2	2.93	0.46
1:D:767:VAL:HG22	1:D:784:PHE:CE2	2.51	0.46
1:C:763:ARG:HD3	1:C:766:ASP:OD2	2.16	0.45
1:B:150:HIS:CE1	13:B:1087:HOH:O	2.68	0.45
1:B:645:ARG:NH2	13:B:1036:HOH:O	2.48	0.45
1:C:782:GLY:O	1:C:802:THR:HG23	2.16	0.45
1:C:678:ARG:HB3	1:C:708:THR:HB	1.97	0.45
1:B:107:LEU:N	1:B:107:LEU:HD12	2.32	0.45
1:A:525:ARG:HD2	1:A:525:ARG:C	2.37	0.45
1:C:758:VAL:CG1	1:C:760:PHE:CZ	3.00	0.45
1:D:725:ALA:HB3	1:D:758:VAL:HG21	1.98	0.45
1:A:81:ASN:ND2	1:A:96:ALA:O	2.49	0.45
1:D:248:LEU:HD23	1:D:249:TYR:CE2	2.51	0.45
1:D:705:VAL:HA	1:D:763:ARG:HA	1.99	0.45
1:C:111:PRO:HD2	1:C:467:GLY:HA2	1.98	0.45
1:C:222:ILE:HD12	1:C:327:ALA:O	2.17	0.45
11:C:901:NAG:H61	11:C:902:NAG:H82	1.99	0.45
1:D:324:PHE:CE1	8:D:910:BKR:C14	3.00	0.45
1:C:235:PRO:O	1:C:236:ILE:C	2.55	0.44
1:B:167:GLY:HA2	13:B:1410:HOH:O	2.16	0.44
1:A:176:TRP:CZ2	1:A:463:GLY:HA3	2.52	0.44
1:C:246:HIS:CE1	1:C:770:TRP:CZ2	3.05	0.44
1:C:315:LEU:HD23	1:C:332:TRP:CZ2	2.52	0.44
1:C:317:VAL:HG22	1:C:357:ILE:HD11	1.99	0.44
1:C:713:ILE:HD11	1:C:747:ILE:CG1	2.47	0.44
1:D:93:VAL:HA	1:D:105:PHE:O	2.17	0.44
1:D:170:PRO:HG3	1:D:619:TYR:CD2	2.52	0.44
10:B:907:MAN:H62	10:B:907:MAN:O3	2.18	0.44
1:A:592:ASN:N	1:A:592:ASN:OD1	2.50	0.44
1:D:214:GLN:NE2	1:D:625:VAL:HG12	2.32	0.44
1:B:377:ASN:HD21	1:B:380:GLY:H	1.66	0.44
1:C:107:LEU:HD23	1:C:107:LEU:N	2.32	0.44
1:C:289:THR:O	1:C:690:ALA:HB3	2.17	0.44
1:D:172:ASN:HD21	1:D:174:ARG:HG2	1.83	0.44
1:B:98:THR:HG21	2:E:1:NAG:O3	2.18	0.44
1:B:285:GLN:O	1:B:289:THR:HB	2.18	0.44
1:A:442:ASN:ND2	1:A:471:SER:H	2.04	0.44

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:C:226:GLY:O	1:C:228:SER:N	2.51	0.44	
1:A:176:TRP:CE2	1:A:463:GLY:HA3	2.53	0.43	
1:D:120:SER:HB3	1:D:148:GLU:OE1	2.17	0.43	
1:D:724:VAL:HG23	13:D:1088:HOH:O	2.18	0.43	
1:B:421:LEU:HD11	1:B:520:PHE:CZ	2.52	0.43	
1:A:109:ASP:HA	1:A:158:LEU:HB2	2.00	0.43	
1:A:668:THR:OG1	1:A:716:THR:HG21	2.18	0.43	
1:C:709:VAL:HG13	1:C:760:PHE:HB2	2.00	0.43	
1:A:377:ASN:HD21	1:A:380:GLY:H	1.65	0.43	
1:A:758:VAL:HG13	1:A:760:PHE:CZ	2.54	0.43	
1:C:308:VAL:N	1:C:309:PRO:CD	2.82	0.43	
1:B:235:PRO:HB2	1:B:270:ARG:HG3	1.99	0.43	
1:B:242:ASP:O	1:B:246:HIS:HD2	2.02	0.43	
1:B:758:VAL:CG1	1:B:760:PHE:CE2	3.01	0.43	
1:A:414:LYS:O	1:A:579:ALA:HA	2.19	0.43	
1:D:172:ASN:HD22	1:D:174:ARG:H	1.66	0.43	
10:A:901:MAN:H3	10:A:902:MAN:C1	2.46	0.43	
1:C:157:ALA:O	1:C:159:ALA:N	2.52	0.43	
1:D:442:ASN:HD21	1:D:471:SER:H	1.66	0.43	
10:B:904:MAN:C6	10:B:906:MAN:C1	2.86	0.43	
1:C:107:LEU:HB3	1:C:158:LEU:HD21	2.01	0.43	
1:D:222:ILE:HG13	1:D:327:ALA:O	2.19	0.43	
1:B:798:ASN:HD21	11:B:916:NAG:C2	2.22	0.43	
1:A:433:ASP:HB3	1:A:522:PHE:HB3	2.00	0.43	
1:C:740:GLN:HB3	1:C:742:ARG:HH12	1.84	0.43	
1:D:51:ALA:HB2	1:D:284:ASN:ND2	2.34	0.43	
1:D:248:LEU:HD22	1:D:640:VAL:HA	2.01	0.43	
1:C:118:HIS:O	1:C:376:TYR:CZ	2.72	0.43	
1:D:473:TYR:CE1	1:D:475:ILE:HD11	2.53	0.43	
1:C:235:PRO:HD3	1:C:305:TRP:CZ2	2.54	0.42	
1:C:444:CYS:O	1:C:450:ALA:HB3	2.19	0.42	
8:D:910:BKR:C47	8:D:910:BKR:C20	2.97	0.42	
10:B:904:MAN:O3	10:B:905:MAN:C2	2.58	0.42	
1:B:776:LEU:HD23	1:B:776:LEU:O	2.19	0.42	
1:C:137:LEU:HD12	1:C:137:LEU:HA	1.94	0.42	
1:C:534:PRO:O	1:C:535:ASP:HB3	2.19	0.42	
1:D:693:PHE:HA	1:D:777:TRP:O	2.19	0.42	
1:A:717:GLY:O	1:A:752:VAL:HG13	2.19	0.42	
1:C:248:LEU:HD22	1:C:640:VAL:HA	2.01	0.42	
1:C:270:ARG:HG2	1:C:275:HIS:ND1	2.34	0.42	
1:D:109:ASP:HB3	1:D:110:GLY:CA	2.49	0.42	

	A + O	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:B:693:PHE:HA	1:B:777:TRP:O	2.20	0.42	
1:C:173:GLY:HA3	1:C:531:ALA:O	2.19	0.42	
1:C:411:THR:HG23	1:C:606:GLY:O	2.20	0.42	
1:D:541:ASP:O	1:D:542:GLY:C	2.57	0.42	
1:B:474:THR:HB	13:B:1240:HOH:O	2.20	0.42	
1:C:521:VAL:HG11	1:C:546:MET:HE2	2.00	0.42	
1:D:108:GLN:HE22	1:D:378:THR:HG21	1.84	0.42	
1:A:129:VAL:HG13	1:A:141:ARG:HD2	2.01	0.42	
1:C:702:LEU:HD22	1:C:765:LYS:CB	2.48	0.42	
1:D:257:VAL:O	1:D:687:MET:HB2	2.20	0.42	
1:D:671:ASN:ND2	1:D:673:ILE:HD11	2.34	0.42	
1:C:117:VAL:HG22	1:C:376:TYR:CD2	2.55	0.42	
1:B:683[B]:TYR:HE2	13:B:1260:HOH:O	2.01	0.42	
1:D:258:ARG:HA	1:D:687:MET:O	2.20	0.42	
1:D:595:VAL:N	1:D:596:PRO:CD	2.82	0.42	
1:D:702:LEU:HD13	1:D:765:LYS:HD2	2.01	0.42	
1:B:227:VAL:CG2	1:B:232:ILE:HD11	2.50	0.41	
1:C:340:ILE:HA	1:C:345:VAL:O	2.20	0.41	
1:D:710:PHE:CD1	1:D:759:THR:HB	2.55	0.41	
1:B:767:VAL:HG22	1:B:784:PHE:CE2	2.55	0.41	
1:B:784:PHE:CD1	1:B:784:PHE:N	2.87	0.41	
1:C:351:ARG:HH11	1:C:351:ARG:HG2	1.85	0.41	
1:D:172:ASN:ND2	1:D:174:ARG:H	2.19	0.41	
1:D:625:VAL:HG13	1:D:625:VAL:O	2.21	0.41	
1:D:742:ARG:HD2	1:D:766:ASP:HB3	2.01	0.41	
1:B:377:ASN:C	1:B:377:ASN:ND2	2.73	0.41	
1:C:758:VAL:HG12	1:C:760:PHE:CE2	2.55	0.41	
1:D:787:SER:HB3	13:D:1098:HOH:O	2.20	0.41	
1:B:238:SER:O	1:B:271:ILE:HA	2.21	0.41	
1:A:172:ASN:ND2	1:A:174:ARG:H	2.14	0.41	
1:A:439:LEU:HB3	1:A:443:ALA:CB	2.51	0.41	
1:B:786:ILE:O	1:B:798:ASN:HA	2.21	0.41	
1:D:209:TRP:CG	1:D:210:ILE:HB	2.56	0.41	
1:A:349:LEU:HD12	1:A:349:LEU:HA	1.88	0.41	
1:C:607:LYS:HE3	1:C:724:VAL:HB	2.02	0.41	
1:D:309:PRO:O	1:D:310:ALA:C	2.59	0.41	
1:B:446:LEU:HD12	1:B:446:LEU:HA	1.85	0.41	
1:B:484:ARG:HA	1:B:484:ARG:HD2	1.86	0.41	
1:B:767:VAL:HG22	1:B:784:PHE:CD2	2.56	0.41	
1:B:773:VAL:HA	3:F:3:BMA:H5	2.03	0.41	
1:A:129:VAL:O	1:A:130:ALA:C	2.59	0.41	

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:237:SER:OG	1:A:239:ASN:OD1	2.34	0.41
1:A:767:VAL:O	1:A:767:VAL:HG13	2.21	0.41
1:C:60:TRP:O	1:C:61:ALA:C	2.59	0.41
1:C:272:ASN:OD1	11:C:901:NAG:C1	2.69	0.41
8:C:912:BKR:C20	8:C:912:BKR:C47	2.99	0.41
1:D:190:SER:O	1:D:194:VAL:HG23	2.21	0.41
1:B:129:VAL:HG13	1:B:141:ARG:HD2	2.03	0.41
1:A:438:VAL:HG23	1:A:439:LEU:HD13	2.03	0.41
11:A:910:NAG:O3	13:A:1003:HOH:O	2.22	0.41
1:D:281:LYS:HG2	2:P:1:NAG:O7	2.21	0.41
1:B:98:THR:CG2	2:E:1:NAG:O3	2.69	0.40
1:C:159:ALA:HB1	1:C:160:PRO:HA	2.03	0.40
1:D:308:VAL:N	1:D:309:PRO:CD	2.84	0.40
1:D:324:PHE:O	1:D:325:LEU:HB2	2.21	0.40
1:B:422:LYS:HB2	13:B:1010:HOH:O	2.21	0.40
1:C:521:VAL:HG23	1:C:556:VAL:HG13	2.03	0.40
1:A:112:ILE:HG22	1:A:125:ALA:HA	2.03	0.40
1:A:137:LEU:HD12	1:A:137:LEU:HA	1.96	0.40
1:A:152:GLN:HE21	1:A:152:GLN:CA	2.31	0.40
1:A:377:ASN:HD22	1:A:379:ILE:H	1.69	0.40
1:C:170:PRO:HG3	1:C:619:TYR:CG	2.56	0.40
1:C:442:ASN:HD21	1:C:471:SER:N	2.16	0.40
1:D:786:ILE:O	1:D:798:ASN:HA	2.21	0.40
1:B:159:ALA:HB1	1:B:160:PRO:HA	2.02	0.40
1:B:525:ARG:HD2	1:B:526:TYR:O	2.21	0.40
1:B:748:LYS:HA	1:B:748:LYS:HD2	1.91	0.40
1:A:767:VAL:O	1:A:767:VAL:CG1	2.69	0.40
1:C:776:LEU:HD23	1:C:776:LEU:O	2.22	0.40
10:C:903:MAN:HO6	10:C:904:MAN:C2	2.24	0.40
1:D:207:LYS:HA	1:D:208:HIS:HA	1.82	0.40
1:B:239:ASN:HD21	1:B:633:GLN:HE21	1.70	0.40
1:B:521:VAL:CG2	1:B:546:MET:CE	2.94	0.40
1:B:595:VAL:N	1:B:596:PRO:CD	2.84	0.40
1:C:60:TRP:CD2	1:C:687:MET:HE2	2.56	0.40
1:C:129:VAL:HG11	1:C:141:ARG:HD3	2.04	0.40
1:C:740:GLN:HB3	1:C:742:ARG:NH1	2.35	0.40
1:D:421:LEU:HD11	1:D:520:PHE:CZ	2.53	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	756/803~(94%)	720 (95%)	34~(4%)	2(0%)	41	32
1	В	757/803~(94%)	719~(95%)	37~(5%)	1 (0%)	51	45
1	С	756/803~(94%)	693~(92%)	56 (7%)	7 (1%)	17	8
1	D	756/803~(94%)	685~(91%)	67~(9%)	4 (0%)	29	19
All	All	3025/3212 (94%)	2817 (93%)	194 (6%)	14 (0%)	29	19

All (14) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	С	227	VAL
1	А	110	GLY
1	С	236	ILE
1	С	332	TRP
1	С	422	LYS
1	D	422	LYS
1	D	91	SER
1	D	224	ILE
1	С	357	ILE
1	С	540	GLY
1	А	167	GLY
1	D	309	PRO
1	В	167	GLY
1	С	167	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	610/648~(94%)	567~(93%)	43 (7%)	15 7
1	В	612/648~(94%)	577~(94%)	35~(6%)	20 12
1	С	610/648~(94%)	574 (94%)	36~(6%)	19 11
1	D	611/648~(94%)	565~(92%)	46 (8%)	13 6
All	All	2443/2592~(94%)	2283 (94%)	160 (6%)	17 9

All (160) residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
1	В	68	LYS
1	В	98	THR
1	В	129	VAL
1	В	137	LEU
1	В	147	GLN
1	В	172	ASN
1	В	195	LYS
1	В	225	ASP
1	В	243	LEU
1	В	285	GLN
1	В	301	TRP
1	В	358	LEU
1	В	375	VAL
1	В	377	ASN
1	В	391	ARG
1	В	416	THR
1	В	430	LEU
1	В	439	LEU
1	В	446	LEU
1	В	474	THR
1	В	610	TRP
1	В	625	VAL
1	В	672	LEU
1	В	682	ASP
1	В	688	GLU
1	В	702	LEU
1	В	705	VAL
1	В	736	GLN
1	В	739	ARG
1	В	748	LYS
1	В	750	LEU
1	В	759	THR
1	В	767	VAL

Mol	Chain	Res	Type
1	В	776	LEU
1	В	784	PHE
1	А	48	GLN
1	А	66	LYS
1	А	77	GLU
1	А	98	THR
1	А	107	LEU
1	А	129	VAL
1	А	137	LEU
1	А	147	GLN
1	А	152	GLN
1	А	172	ASN
1	А	195	LYS
1	А	202[A]	VAL
1	А	202[B]	VAL
1	А	285	GLN
1	А	301	TRP
1	А	312	GLU
1	А	377	ASN
1	А	391	ARG
1	А	393	VAL
1	А	430	LEU
1	А	446	LEU
1	А	474	THR
1	А	503	THR
1	А	525	ARG
1	А	554	SER
1	А	610	TRP
1	А	637	THR
1	А	645	ARG
1	А	655	ARG
1	А	672	LEU
1	А	682	ASP
1	А	683	TYR
1	А	684	SER
1	А	702	LEU
1	А	705	VAL
1	А	709	VAL
1	А	716	THR
1	А	739	ARG
1	А	750	LEU
1	А	758	VAL

Mol	Chain	Res	Type
1	А	759	THR
1	А	764	ARG
1	А	776	LEU
1	С	62	SER
1	С	73	GLU
1	С	107	LEU
1	С	117	VAL
1	С	129	VAL
1	С	137	LEU
1	С	147	GLN
1	С	172	ASN
1	С	180	PHE
1	С	285	GLN
1	С	301	TRP
1	С	368	THR
1	С	377	ASN
1	С	393	VAL
1	С	422	LYS
1	С	439	LEU
1	С	471	SER
1	С	474	THR
1	С	503	THR
1	С	610	TRP
1	С	637	THR
1	С	649	LYS
1	С	672	LEU
1	С	678	ARG
1	С	681	LYS
1	С	682	ASP
1	С	684	SER
1	С	702	LEU
1	С	709	VAL
1	С	716	THR
1	С	736	GLN
1	С	750	LEU
1	С	759	THR
1	С	772	VAL
1	С	776	LEU
1	С	798	ASN
1	D	48	GLN
1	D	49	TRP
1	D	72	THR

Mol	Chain	Res	Type
1	D	82	ILE
1	D	98	THR
1	D	107	LEU
1	D	121	SER
1	D	129	VAL
1	D	137	LEU
1	D	147	GLN
1	D	152	GLN
1	D	172	ASN
1	D	195	LYS
1	D	227	VAL
1	D	243	LEU
1	D	285	GLN
1	D	299	SER
1	D	301	TRP
1	D	312	GLU
1	D	358	LEU
1	D	377	ASN
1	D	387	THR
1	D	393	VAL
1	D	407	SER
1	D	422	LYS
1	D	474	THR
1	D	483	LYS
1	D	525	ARG
1	D	568	ILE
1	D	582	VAL
1	D	610	TRP
1	D	658	PHE
1	D	672	LEU
1	D	678	ARG
1	D	681	LYS
1	D	701	SER
1	D	702	LEU
1	D	705	VAL
1	D	709	VAL
1	D	748	LYS
1	D	750	LEU
1	D	758	VAL
1	D	759	THR
1	D	767	VAL
1	D	771	SER

Mol	Chain	Res	Type
1	D	776	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (52) such sidechains are listed below:

Mol	Chain	Res	Type
1	В	48	GLN
1	В	172	ASN
1	В	229	GLN
1	В	246	HIS
1	В	262	ASN
1	В	285	GLN
1	В	377	ASN
1	В	442	ASN
1	В	500	ASN
1	В	633	GLN
1	В	736	GLN
1	В	740	GLN
1	В	798	ASN
1	А	122	GLN
1	А	152	GLN
1	А	172	ASN
1	А	229	GLN
1	А	246	HIS
1	А	262	ASN
1	А	377	ASN
1	А	442	ASN
1	А	676	HIS
1	А	740	GLN
1	С	48	GLN
1	С	118	HIS
1	С	147	GLN
1	С	152	GLN
1	С	172	ASN
1	С	246	HIS
1	С	262	ASN
1	С	263	HIS
1	С	272	ASN
1	С	377	ASN
1	С	442	ASN
1	С	482	GLN
1	С	676	HIS
1	С	736	GLN

Mol	Chain	Res	Type
1	С	740	GLN
1	D	48	GLN
1	D	147	GLN
1	D	152	GLN
1	D	172	ASN
1	D	246	HIS
1	D	262	ASN
1	D	272	ASN
1	D	294	GLN
1	D	377	ASN
1	D	442	ASN
1	D	622	ASN
1	D	671	ASN
1	D	736	GLN
1	D	740	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

34 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	vpo Chain Bos I		Tink	Bond lengths			Bond angles		
MOI	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	NAG	Е	1	2,1	14,14,15	0.66	0	17,19,21	3.18	4 (23%)
2	NAG	Е	2	2	14,14,15	0.51	0	17,19,21	1.13	2 (11%)
3	NAG	F	1	3,1	14,14,15	0.49	0	17,19,21	0.97	2 (11%)

Mal	Trune	Chain	Dec	T in le	Bo	ond leng	$_{\rm sths}$	Bond angles		
	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
3	NAG	F	2	3	14,14,15	0.42	0	17,19,21	1.21	1 (5%)
3	BMA	F	3	3	11,11,12	1.14	1 (9%)	$15,\!15,\!17$	1.59	2 (13%)
3	MAN	F	4	3	11,11,12	0.54	0	$15,\!15,\!17$	1.56	2 (13%)
3	MAN	F	5	3	11,11,12	0.64	0	$15,\!15,\!17$	1.52	2 (13%)
4	MAN	G	1	4	12,12,12	0.34	0	17,17,17	0.50	0
4	BMA	G	2	4	11,11,12	1.06	1 (9%)	$15,\!15,\!17$	1.84	4 (26%)
2	NAG	Н	1	2,1	14,14,15	0.40	0	17,19,21	1.09	2 (11%)
2	NAG	Н	2	2	14,14,15	0.45	0	17,19,21	1.17	2 (11%)
5	NAG	Ι	1	5,1	14,14,15	0.76	1 (7%)	17,19,21	1.60	3 (17%)
5	NAG	Ι	2	5	14,14,15	0.44	0	17,19,21	0.80	1 (5%)
5	NAG	Ι	3	5	14,14,15	0.34	0	17,19,21	1.71	3 (17%)
6	NAG	J	1	6,1	14,14,15	0.47	0	17,19,21	1.13	1 (5%)
6	NAG	J	2	6	14,14,15	0.44	0	17,19,21	1.14	2 (11%)
6	AH2	J	3	6	11,11,11	0.70	0	$15,\!15,\!15$	1.95	6 (40%)
6	BMA	J	4	6	11,11,12	0.49	0	$15,\!15,\!17$	1.44	2 (13%)
6	MAN	J	5	6	11,11,12	0.83	0	$15,\!15,\!17$	1.10	2 (13%)
7	NAG	K	1	7,1	14,14,15	0.41	0	17,19,21	0.69	0
7	NAG	K	2	7	14,14,15	0.38	0	17,19,21	1.33	1 (5%)
7	MAN	K	3	7	11,11,12	0.84	1 (9%)	$15,\!15,\!17$	1.46	2 (13%)
2	NAG	L	1	2,1	14,14,15	0.77	1 (7%)	17,19,21	2.52	4 (23%)
2	NAG	L	2	2	14,14,15	0.52	0	17,19,21	1.35	3 (17%)
7	NAG	М	1	7,1	14,14,15	0.30	0	17,19,21	0.61	0
7	NAG	М	2	7	14,14,15	0.49	0	17,19,21	0.87	1 (5%)
7	MAN	М	3	7	11,11,12	1.06	2 (18%)	$15,\!15,\!17$	1.46	2 (13%)
7	NAG	N	1	7,1	14,14,15	0.28	0	17,19,21	0.93	1 (5%)
7	NAG	N	2	7	14,14,15	0.40	0	17,19,21	0.80	0
7	MAN	N	3	7	11,11,12	0.95	0	15, 15, 17	1.27	3 (20%)
2	NAG	0	1	2,1	14,14,15	0.38	0	17,19,21	0.67	0
2	NAG	Ο	2	2	14,14,15	0.51	0	17,19,21	1.21	2 (11%)
2	NAG	Р	1	2	14,14,15	0.40	0	17,19,21	1.08	0
2	NAG	Р	2	2	14,14,15	0.42	0	17,19,21	1.01	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	NAG	Е	1	2,1	-	2/6/23/26	0/1/1/1
2	NAG	Е	2	2	-	0/6/23/26	0/1/1/1
3	NAG	F	1	3,1	-	0/6/23/26	0/1/1/1
3	NAG	F	2	3	-	0/6/23/26	0/1/1/1
3	BMA	F	3	3	-	0/2/19/22	0/1/1/1
3	MAN	F	4	3	-	0/2/19/22	0/1/1/1
3	MAN	F	5	3	-	0/2/19/22	0/1/1/1
4	MAN	G	1	4	-	0/2/22/22	0/1/1/1
4	BMA	G	2	4	-	2/2/19/22	0/1/1/1
2	NAG	Н	1	2,1	-	0/6/23/26	0/1/1/1
2	NAG	Н	2	2	-	0/6/23/26	0/1/1/1
5	NAG	I	1	5,1	-	0/6/23/26	0/1/1/1
5	NAG	Ι	2	5	-	2/6/23/26	0/1/1/1
5	NAG	Ι	3	5	-	4/6/23/26	0/1/1/1
6	NAG	J	1	6,1	-	2/6/23/26	0/1/1/1
6	NAG	J	2	6	-	2/6/23/26	0/1/1/1
6	AH2	J	3	6	-	0/2/19/19	0/1/1/1
6	BMA	J	4	6	_	0/2/19/22	0/1/1/1
6	MAN	J	5	6	-	0/2/19/22	0/1/1/1
7	NAG	K	1	7,1	-	0/6/23/26	0/1/1/1
7	NAG	K	2	7	-	2/6/23/26	0/1/1/1
7	MAN	K	3	7	-	2/2/19/22	0/1/1/1
2	NAG	L	1	2,1	-	2/6/23/26	0/1/1/1
2	NAG	L	2	2	-	3/6/23/26	0/1/1/1
7	NAG	М	1	7,1	-	0/6/23/26	0/1/1/1
7	NAG	М	2	7	-	0/6/23/26	0/1/1/1
7	MAN	М	3	7	-	2/2/19/22	0/1/1/1
7	NAG	Ν	1	7,1	-	0/6/23/26	0/1/1/1
7	NAG	N	2	7	-	4/6/23/26	0/1/1/1
7	MAN	N	3	7	-	2/2/19/22	0/1/1/1
2	NAG	Ο	1	2,1	-	0/6/23/26	0/1/1/1
2	NAG	0	2	2	-	0/6/23/26	0/1/1/1
2	NAG	Р	1	2	-	4/6/23/26	0/1/1/1
2	NAG	Р	2	2	_	3/6/23/26	0/1/1/1

All (7) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
4	G	2	BMA	C2-C3	-2.54	1.48	1.52
2	L	1	NAG	O4-C4	2.34	1.48	1.43

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
5	Ι	1	NAG	C1-C2	2.32	1.55	1.52
3	F	3	BMA	C4-C5	-2.32	1.48	1.53
7	Κ	3	MAN	O5-C5	2.24	1.48	1.43
7	М	3	MAN	C4-C5	2.08	1.57	1.53
7	М	3	MAN	C2-C3	2.05	1.55	1.52

All (62) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	Е	1	NAG	O4-C4-C5	9.86	133.79	109.30
2	L	1	NAG	O4-C4-C3	7.94	128.70	110.35
2	Е	1	NAG	O5-C1-C2	-5.76	102.20	111.29
7	Κ	2	NAG	C2-N2-C7	4.97	129.98	122.90
3	F	4	MAN	C1-O5-C5	4.91	118.85	112.19
4	G	2	BMA	C3-C4-C5	4.75	118.72	110.24
2	Е	1	NAG	C1-O5-C5	4.41	118.17	112.19
5	Ι	3	NAG	C1-C2-N2	4.39	117.99	110.49
3	F	3	BMA	O5-C1-C2	4.12	117.13	110.77
2	L	1	NAG	C2-N2-C7	4.05	128.67	122.90
6	J	4	BMA	C1-C2-C3	-3.98	104.78	109.67
3	F	5	MAN	C1-O5-C5	3.94	117.53	112.19
5	Ι	1	NAG	O4-C4-C5	3.78	118.68	109.30
7	М	3	MAN	C1-C2-C3	3.68	114.19	109.67
6	J	3	AH2	O5-C1-C2	3.65	116.41	110.77
5	Ι	1	NAG	C1-O5-C5	3.64	117.13	112.19
7	Κ	3	MAN	C1-O5-C5	3.42	116.82	112.19
7	Κ	3	MAN	C1-C2-C3	3.38	113.82	109.67
3	F	3	BMA	C1-C2-C3	3.27	113.68	109.67
2	Е	1	NAG	C1-C2-N2	3.27	116.07	110.49
2	L	1	NAG	O4-C4-C5	3.16	117.15	109.30
2	Н	2	NAG	O3-C3-C2	-3.16	102.93	109.47
3	F	5	MAN	O2-C2-C3	3.14	116.42	110.14
6	J	5	MAN	C1-O5-C5	3.11	116.40	112.19
3	F	2	NAG	O5-C1-C2	-3.09	106.42	111.29
2	0	2	NAG	C4-C3-C2	3.08	115.53	111.02
6	J	3	AH2	O2-C2-C3	3.06	116.27	110.14
2	L	2	NAG	C2-N2-C7	3.01	127.19	122.90
5	Ι	3	NAG	O5-C1-C2	-2.95	106.63	111.29
4	G	2	BMA	O4-C4-C3	-2.93	103.57	110.35
6	J	4	BMA	O2-C2-C3	2.92	115.99	110.14
2	L	2	NAG	C4-C3-C2	2.77	115.07	111.02
7	Ν	3	MAN	C1-C2-C3	2.76	113.06	109.67

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
6	J	3	AH2	C1-C2-C3	2.68	112.96	109.67
6	J	2	NAG	C4-C3-C2	-2.66	107.12	111.02
2	Н	2	NAG	C2-N2-C7	2.55	126.53	122.90
5	Ι	3	NAG	C1-O5-C5	2.54	115.63	112.19
3	F	4	MAN	O2-C2-C3	2.53	115.21	110.14
2	0	2	NAG	C2-N2-C7	2.51	126.48	122.90
5	Ι	1	NAG	C1-C2-N2	2.46	114.69	110.49
2	Е	2	NAG	C4-C3-C2	2.44	114.60	111.02
2	L	1	NAG	C1-O5-C5	2.43	115.49	112.19
6	J	3	AH2	C3-C4-C5	-2.40	105.96	110.24
6	J	3	AH2	O3-C3-C2	2.39	114.56	109.99
6	J	2	NAG	O5-C1-C2	-2.38	107.54	111.29
2	Н	1	NAG	O4-C4-C3	-2.37	104.86	110.35
7	М	3	MAN	C3-C4-C5	2.37	114.46	110.24
4	G	2	BMA	C1-O5-C5	-2.35	109.00	112.19
2	L	2	NAG	O5-C1-C2	-2.34	107.59	111.29
4	G	2	BMA	O2-C2-C1	2.34	113.94	109.15
3	F	1	NAG	O5-C5-C4	-2.33	105.16	110.83
2	Н	1	NAG	C2-N2-C7	2.23	126.08	122.90
6	J	1	NAG	C1-C2-N2	-2.15	106.81	110.49
7	N	3	MAN	C1-O5-C5	2.14	115.10	112.19
7	N	1	NAG	O3-C3-C2	2.13	113.86	109.47
7	N	3	MAN	C3-C4-C5	2.10	113.98	110.24
7	М	2	NAG	O3-C3-C2	-2.08	105.16	109.47
3	F	1	NAG	C1-O5-C5	-2.07	109.38	112.19
6	J	3	AH2	C1-O5-C5	2.02	114.93	112.19
2	Е	2	NAG	O5-C1-C2	-2.01	108.11	111.29
5	Ι	2	NAG	C2-N2-C7	2.01	125.77	122.90
6	J	5	MAN	02-C2-C3	2.00	114.15	110.14

There are no chirality outliers.

All (38) torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
2	L	2	NAG	C8-C7-N2-C2
2	L	2	NAG	O7-C7-N2-C2
5	Ι	3	NAG	C8-C7-N2-C2
5	Ι	3	NAG	O7-C7-N2-C2
4	G	2	BMA	C4-C5-C6-O6
7	Ν	2	NAG	O5-C5-C6-O6
5	Ι	3	NAG	C4-C5-C6-O6
5	Ι	3	NAG	O5-C5-C6-O6

Mol	Chain	Res	Type	Atoms
7	М	3	MAN	O5-C5-C6-O6
4	G	2	BMA	O5-C5-C6-O6
7	Κ	3	MAN	O5-C5-C6-O6
7	Ν	3	MAN	O5-C5-C6-O6
7	K	2	NAG	C4-C5-C6-O6
7	Κ	2	NAG	O5-C5-C6-O6
7	Ν	2	NAG	C4-C5-C6-O6
2	Р	1	NAG	C8-C7-N2-C2
2	Р	2	NAG	C8-C7-N2-C2
5	Ι	2	NAG	C8-C7-N2-C2
5	Ι	2	NAG	O7-C7-N2-C2
7	N	2	NAG	C8-C7-N2-C2
7	N	3	MAN	C4-C5-C6-O6
7	М	3	MAN	C4-C5-C6-O6
2	Р	1	NAG	O7-C7-N2-C2
2	Р	2	NAG	O7-C7-N2-C2
7	N	2	NAG	O7-C7-N2-C2
6	J	1	NAG	C4-C5-C6-O6
7	K	3	MAN	C4-C5-C6-O6
2	Р	1	NAG	C4-C5-C6-O6
2	L	2	NAG	O5-C5-C6-O6
2	Е	1	NAG	C4-C5-C6-O6
6	J	2	NAG	C8-C7-N2-C2
6	J	1	NAG	O5-C5-C6-O6
2	Р	1	NAG	O5-C5-C6-O6
2	Е	1	NAG	O5-C5-C6-O6
2	Р	2	NAG	C3-C2-N2-C7
2	L	1	NAG	C8-C7-N2-C2
6	J	2	NAG	O7-C7-N2-C2
2	L	1	NAG	O7-C7-N2-C2

Continued from previous page...

There are no ring outliers.

19 monomers are involved in 69 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
5	Ι	2	NAG	2	0
2	Р	2	NAG	5	0
3	F	1	NAG	2	0
5	Ι	1	NAG	2	0
4	G	2	BMA	10	0
3	F	5	MAN	1	0
5	Ι	3	NAG	2	0

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	F	2	NAG	2	0
2	Р	1	NAG	11	0
2	Е	1	NAG	2	0
2	0	1	NAG	5	0
3	F	3	BMA	3	0
2	Н	2	NAG	10	0
4	G	1	MAN	18	0
2	Е	2	NAG	2	0
6	J	1	NAG	3	0
2	0	2	NAG	5	0
7	K	3	MAN	2	0
6	J	3	AH2	2	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

50 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	ı Res	Link	Bo	ond leng	ths	Bond angles		
WIOI	туре	Ullalli	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
9	XLS	В	902	-	7,8,9	0.74	0	$7,\!10,\!11$	1.54	1 (14%)
11	NAG	В	909	1	14,14,15	0.43	0	17,19,21	1.01	0
11	NAG	С	901	-	14,14,15	0.42	0	17,19,21	1.05	0
9	XLS	А	912	-	7,8,9	0.74	0	7,10,11	1.53	1 (14%)
11	NAG	D	909	1	14,14,15	0.41	0	17,19,21	1.05	1 (5%)
10	MAN	В	907	-	11,11,12	0.76	1 (9%)	$15,\!15,\!17$	1.10	2 (13%)
11	NAG	D	907	1	14,14,15	0.39	0	17,19,21	1.60	2 (11%)
11	NAG	С	911	1	14,14,15	0.39	0	17,19,21	1.26	2 (11%)

Mal	Turne	Chain	Dec	Tink	Bond lengths		Bond angles			
IVIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
10	MAN	В	912	-	11,11,12	1.24	1 (9%)	$15,\!15,\!17$	1.70	2 (13%)
10	MAN	D	903	-	11,11,12	0.53	0	$15,\!15,\!17$	1.96	3 (20%)
8	BKR	С	912	-	65,65,65	0.53	0	101,101,101	0.84	3 (2%)
10	MAN	С	903	-	11,11,12	0.72	1 (9%)	15,15,17	1.46	2 (13%)
10	MAN	В	906	-	11,11,12	0.95	1 (9%)	15,15,17	1.66	4 (26%)
10	MAN	А	902	-	11,11,12	0.64	0	15,15,17	1.27	2 (13%)
10	MAN	А	904	-	11,11,12	0.70	0	15,15,17	1.07	1 (6%)
10	MAN	В	903	-	11,11,12	0.84	1 (9%)	15,15,17	1.01	1 (6%)
11	NAG	В	915	-	15,15,15	0.17	0	21,21,21	0.60	0
11	NAG	В	916	-	14,14,15	0.38	0	17,19,21	0.67	0
10	MAN	А	908	-	11,11,12	0.58	0	15,15,17	1.11	2 (13%)
10	MAN	D	905	-	11,11,12	0.85	1 (9%)	15,15,17	0.94	1 (6%)
8	BKR	А	911	-	65,65,65	0.68	0	101,101,101	0.92	7 (6%)
10	MAN	D	904	-	11,11,12	0.61	0	15,15,17	1.56	3 (20%)
11	NAG	В	913	1	14,14,15	0.42	0	17,19,21	1.18	1 (5%)
11	NAG	В	908	1	14,14,15	0.39	0	17,19,21	1.01	1 (5%)
11	NAG	А	905	1	14,14,15	0.40	0	17,19,21	1.31	3 (17%)
12	BMA	D	901	-	11,11,12	0.82	0	15,15,17	0.96	1 (6%)
10	MAN	С	907	-	11,11,12	0.59	0	15,15,17	1.18	2 (13%)
10	MAN	В	904	-	11,11,12	0.67	0	15,15,17	1.24	3 (20%)
10	MAN	С	905	-	11,11,12	0.43	0	15,15,17	1.25	1 (6%)
11	NAG	С	902	-	14,14,15	0.44	0	17,19,21	0.71	0
11	NAG	С	909	1	14,14,15	0.44	0	17,19,21	0.95	1 (5%)
10	MAN	С	904	-	11,11,12	0.92	0	15,15,17	2.07	4 (26%)
10	MAN	В	910	-	12,12,12	0.46	0	17,17,17	1.10	1 (5%)
11	NAG	В	911	-	15,15,15	0.21	0	21,21,21	0.41	0
11	NAG	С	910	1	14,14,15	0.47	0	17,19,21	0.79	0
8	BKR	В	901	-	65,65,65	0.68	0	101,101,101	0.92	7 (6%)
10	MAN	С	906	-	11,11,12	0.59	0	15,15,17	1.52	3 (20%)
10	MAN	В	905	-	11,11,12	0.83	0	15,15,17	1.21	2 (13%)
8	BKR	D	910	-	65,65,65	0.51	0	101,101,101	0.88	5 (4%)
11	NAG	А	910	1	14,14,15	0.42	0	17,19,21	1.42	2 (11%)
11	NAG	А	909	1	14,14,15	0.38	0	17,19,21	0.93	2 (11%)
11	NAG	D	906	1	14,14,15	0.47	0	17,19,21	1.08	2 (11%)
11	NAG	А	906	1	14,14,15	0.46	0	17,19,21	1.11	1 (5%)
11	NAG	С	908	1	14,14,15	0.47	0	17,19,21	0.89	0

Mal T	Turne	Chain	Res	es Link	Bo	Bond lengths			Bond angles		
WIOI	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2	
10	MAN	А	903	-	11,11,12	0.77	0	$15,\!15,\!17$	1.21	1 (6%)	
11	NAG	D	908	1	14,14,15	0.86	1 (7%)	17,19,21	2.01	2 (11%)	
11	NAG	В	914	1	14,14,15	0.37	0	17,19,21	1.19	1 (5%)	
10	MAN	А	901	-	11,11,12	0.46	0	$15,\!15,\!17$	1.55	3 (20%)	
10	MAN	D	902	-	11,11,12	1.11	2 (18%)	$15,\!15,\!17$	2.28	2 (13%)	
10	MAN	А	907	-	12,12,12	0.70	0	$17,\!17,\!17$	1.36	3 (17%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
9	XLS	В	902	-	-	7/10/10/12	-
11	NAG	В	909	1	-	2/6/23/26	0/1/1/1
11	NAG	С	901	-	-	3/6/23/26	0/1/1/1
9	XLS	А	912	-	-	7/10/10/12	-
11	NAG	D	909	1	-	2/6/23/26	0/1/1/1
10	MAN	В	907	-	-	2/2/19/22	0/1/1/1
11	NAG	D	907	1	-	4/6/23/26	0/1/1/1
11	NAG	С	911	1	-	4/6/23/26	0/1/1/1
10	MAN	В	912	-	-	0/2/19/22	1/1/1/1
10	MAN	D	903	-	-	2/2/19/22	0/1/1/1
8	BKR	С	912	-	-	7/37/123/123	0/7/7/7
10	MAN	С	903	-	-	0/2/19/22	1/1/1/1
10	MAN	В	906	-	-	2/2/19/22	0/1/1/1
10	MAN	А	902	-	-	0/2/19/22	0/1/1/1
10	MAN	А	904	-	-	2/2/19/22	0/1/1/1
10	MAN	В	903	-	-	2/2/19/22	0/1/1/1
11	NAG	В	915	-	-	0/6/26/26	0/1/1/1
11	NAG	В	916	-	-	0/6/23/26	0/1/1/1
10	MAN	А	908	-	-	0/2/19/22	0/1/1/1
10	MAN	D	905	-	-	2/2/19/22	0/1/1/1
8	BKR	А	911	-	-	4/37/123/123	0/7/7/7
10	MAN	D	904	-	-	2/2/19/22	0/1/1/1
11	NAG	В	913	1	-	0/6/23/26	0/1/1/1
11	NAG	В	908	1	-	$\frac{2}{6}/23/26$	0/1/1/1

Mol	Type	Chain	\mathbf{Res}	Link	Chirals	Torsions	Rings
11	NAG	А	905	1	-	0/6/23/26	0/1/1/1
12	BMA	D	901	-	-	0/2/19/22	0/1/1/1
10	MAN	С	907	-	-	1/2/19/22	0/1/1/1
10	MAN	В	904	-	-	2/2/19/22	0/1/1/1
10	MAN	С	905	-	-	0/2/19/22	0/1/1/1
11	NAG	С	902	-	-	3/6/23/26	0/1/1/1
11	NAG	С	909	1	-	2/6/23/26	0/1/1/1
10	MAN	С	904	-	-	2/2/19/22	0/1/1/1
10	MAN	В	910	-	-	2/2/22/22	0/1/1/1
11	NAG	В	911	-	-	4/6/26/26	0/1/1/1
11	NAG	С	910	1	_	0/6/23/26	0/1/1/1
8	BKR	В	901	-	-	4/37/123/123	0/7/7/7
10	MAN	С	906	-	-	1/2/19/22	0/1/1/1
10	MAN	В	905	-	-	0/2/19/22	0/1/1/1
8	BKR	D	910	-	-	8/37/123/123	0/7/7/7
11	NAG	А	910	1	-	2/6/23/26	0/1/1/1
11	NAG	А	909	1	-	0/6/23/26	0/1/1/1
11	NAG	D	906	1	-	2/6/23/26	0/1/1/1
11	NAG	А	906	1	-	0/6/23/26	0/1/1/1
11	NAG	С	908	1	-	0/6/23/26	0/1/1/1
10	MAN	А	903	-	-	0/2/19/22	0/1/1/1
11	NAG	D	908	1	-	4/6/23/26	0/1/1/1
11	NAG	В	914	1	-	2/6/23/26	0/1/1/1
10	MAN	А	901	-	-	0/2/19/22	0/1/1/1
10	MAN	D	902	-	-	2/2/19/22	0/1/1/1
10	MAN	А	907	-	-	2/2/22/22	0/1/1/1

All (9) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
10	В	912	MAN	O5-C5	3.17	1.49	1.43
11	D	908	NAG	O5-C1	-2.71	1.39	1.43
10	В	906	MAN	C2-C3	-2.51	1.48	1.52
10	D	902	MAN	O5-C5	2.43	1.48	1.43
10	В	903	MAN	O5-C5	2.33	1.48	1.43
10	D	905	MAN	C2-C3	2.23	1.55	1.52
10	В	907	MAN	C2-C3	-2.17	1.49	1.52
10	D	902	MAN	C2-C3	-2.04	1.49	1.52
10	С	903	MAN	C2-C3	2.01	1.55	1.52

|--|

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	Ideal(°)
10	D	902	MAN	C1-O5-C5	7.34	122.14	112.19
11	D	908	NAG	O5-C1-C2	-6.75	100.62	111.29
11	D	907	NAG	O5-C1-C2	-5.54	102.54	111.29
10	В	912	MAN	C1-O5-C5	5.24	119.28	112.19
10	D	903	MAN	C1-O5-C5	4.74	118.62	112.19
10	С	904	MAN	C3-C4-C5	4.53	118.33	110.24
11	А	910	NAG	O5-C1-C2	-4.32	104.46	111.29
10	С	904	MAN	C2-C3-C4	4.23	118.21	110.89
10	D	903	MAN	O5-C1-C2	4.17	117.21	110.77
10	В	906	MAN	C1-C2-C3	4.09	114.70	109.67
11	В	913	NAG	C1-O5-C5	3.84	117.40	112.19
10	С	906	MAN	C3-C4-C5	3.82	117.05	110.24
10	С	905	MAN	C1-C2-C3	3.80	114.34	109.67
10	В	910	MAN	O2-C2-C3	3.78	119.10	110.35
11	В	914	NAG	C1-C2-N2	3.62	116.68	110.49
10	А	903	MAN	C1-O5-C5	3.46	116.88	112.19
10	А	902	MAN	O5-C1-C2	3.44	116.08	110.77
10	С	903	MAN	O3-C3-C2	3.37	116.45	109.99
11	D	908	NAG	C1-O5-C5	-3.36	107.65	112.19
10	С	903	MAN	O2-C2-C3	3.33	116.82	110.14
10	А	901	MAN	C1-O5-C5	3.22	116.56	112.19
10	А	904	MAN	C1-O5-C5	3.21	116.54	112.19
8	D	910	BKR	O9-C21-C24	-3.19	106.33	111.48
11	D	909	NAG	C1-O5-C5	3.18	116.50	112.19
10	D	903	MAN	C1-C2-C3	3.12	113.50	109.67
11	С	911	NAG	C2-N2-C7	3.09	127.30	122.90
10	А	901	MAN	C1-C2-C3	3.07	113.43	109.67
10	А	902	MAN	C1-O5-C5	3.03	116.30	112.19
10	В	903	MAN	C1-O5-C5	3.03	116.30	112.19
8	А	911	BKR	C26-O11-C27	3.00	122.40	116.67
10	В	905	MAN	C1-C2-C3	3.00	113.35	109.67
11	D	906	NAG	C1-C2-N2	2.98	115.58	110.49
8	В	901	BKR	C26-O11-C27	2.98	122.35	116.67
10	D	904	MAN	C1-C2-C3	2.98	113.33	109.67
11	D	907	NAG	C1-C2-N2	2.97	115.56	110.49
10	D	904	MAN	C2-C3-C4	2.92	115.95	110.89
11	С	909	NAG	O5-C1-C2	2.84	115.77	111.29
10	A	901	MAN	O5-C1-C2	2.83	115.14	110.77
10	D	904	MAN	C3-C4-C5	2.83	115.28	110.24
10	D	902	MAN	C3-C4-C5	2.78	115.20	110.24
11	А	906	NAG	C2-N2-C7	2.70	126.75	122.90
10	А	907	MAN	O1-C1-C2	-2.65	101.58	109.03

All (94) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
11	А	905	NAG	C1-C2-N2	2.64	114.99	110.49
10	В	912	MAN	O2-C2-C1	2.63	114.53	109.15
11	А	909	NAG	C1-O5-C5	2.59	115.70	112.19
10	В	904	MAN	C1-C2-C3	2.58	112.84	109.67
9	В	902	XLS	C4-C3-C2	2.57	116.50	112.47
9	А	912	XLS	C4-C3-C2	2.57	116.50	112.47
8	D	910	BKR	C1-C2-C10	2.55	122.08	118.18
10	А	907	MAN	C3-C4-C5	-2.45	105.87	110.24
10	С	906	MAN	C2-C3-C4	2.45	115.13	110.89
10	D	905	MAN	O2-C2-C3	2.45	115.04	110.14
8	D	910	BKR	C45-C1-C2	2.43	114.57	111.91
10	В	907	MAN	C1-C2-C3	-2.42	106.69	109.67
11	А	905	NAG	C4-C3-C2	2.42	114.56	111.02
11	А	905	NAG	O3-C3-C2	-2.41	104.47	109.47
10	С	907	MAN	C1-C2-C3	2.40	112.62	109.67
8	А	911	BKR	O7-C17-C18	2.39	116.82	110.56
8	В	901	BKR	O7-C17-C18	2.37	116.78	110.56
10	С	907	MAN	C1-O5-C5	2.34	115.36	112.19
11	А	910	NAG	C1-O5-C5	2.33	115.35	112.19
10	А	907	MAN	O5-C5-C4	-2.32	105.48	109.69
11	А	909	NAG	O5-C1-C2	2.32	114.95	111.29
8	D	910	BKR	C1-C45-C24	-2.32	102.94	105.22
10	А	908	MAN	C1-C2-C3	2.31	112.50	109.67
11	В	908	NAG	C1-O5-C5	2.30	115.30	112.19
10	В	904	MAN	C2-C3-C4	2.28	114.84	110.89
10	С	904	MAN	C1-C2-C3	2.28	112.47	109.67
10	В	906	MAN	O2-C2-C3	-2.28	105.58	110.14
10	В	906	MAN	O5-C1-C2	2.22	114.20	110.77
12	D	901	BMA	C1-O5-C5	-2.22	109.18	112.19
8	В	901	BKR	C2-O2-C3	2.22	121.99	117.79
8	В	901	BKR	C17-C18-C20	2.21	107.70	102.59
8	А	911	BKR	C17-C18-C20	2.21	107.69	102.59
8	А	911	BKR	C2-O2-C3	2.20	121.96	117.79
8	А	911	BKR	C18-C20-C21	-2.20	119.41	122.69
8	В	901	BKR	C18-C20-C21	-2.18	119.44	122.69
8	С	912	BKR	C18-C20-C21	-2.17	119.45	122.69
8	С	912	BKR	C45-C1-C2	2.17	114.28	111.91
11	D	906	NAG	C1-O5-C5	2.17	115.13	112.19
10	В	905	MAN	C1-O5-C5	2.16	115.11	112.19
8	A	911	BKR	O1-C1-C2	-2.14	100.80	105.49
11	С	911	NAG	C1-C2-N2	2.13	114.12	110.49
8	В	901	BKR	O1-C1-C2	-2.12	100.83	105.49

8GYY	
------	--

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
8	А	911	BKR	C19-C18-C20	-2.12	100.78	106.55
8	D	910	BKR	C10-C18-C17	2.12	110.67	106.54
8	В	901	BKR	C19-C18-C20	-2.12	100.80	106.55
10	С	904	MAN	O4-C4-C3	-2.10	105.50	110.35
10	В	906	MAN	O5-C5-C4	-2.09	105.75	110.83
10	А	908	MAN	C3-C4-C5	2.07	113.94	110.24
10	В	904	MAN	O2-C2-C3	2.04	114.22	110.14
8	С	912	BKR	C45-C24-C21	2.03	121.64	119.52
10	В	907	MAN	C1-O5-C5	2.02	114.93	112.19
10	С	906	MAN	O4-C4-C5	-2.01	104.31	109.30

There are no chirality outliers.

All (99) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
8	В	901	BKR	C37-C29-N1-C30
8	А	911	BKR	C37-C29-N1-C30
9	В	902	XLS	O4-C4-C5-O5
9	А	912	XLS	O4-C4-C5-O5
11	В	914	NAG	C8-C7-N2-C2
11	В	914	NAG	O7-C7-N2-C2
11	А	910	NAG	C8-C7-N2-C2
11	А	910	NAG	O7-C7-N2-C2
11	В	911	NAG	C8-C7-N2-C2
8	D	910	BKR	C31-C30-N1-C29
10	А	904	MAN	O5-C5-C6-O6
10	D	903	MAN	O5-C5-C6-O6
9	В	902	XLS	C3-C4-C5-O5
9	А	912	XLS	C3-C4-C5-O5
11	В	911	NAG	O7-C7-N2-C2
11	С	902	NAG	C8-C7-N2-C2
11	С	902	NAG	O7-C7-N2-C2
11	D	908	NAG	C8-C7-N2-C2
10	С	904	MAN	O5-C5-C6-O6
10	D	904	MAN	O5-C5-C6-O6
10	В	903	MAN	O5-C5-C6-O6
10	А	904	MAN	C4-C5-C6-O6
10	В	904	MAN	O5-C5-C6-O6
10	В	907	MAN	O5-C5-C6-O6
11	D	908	NAG	O5-C5-C6-O6
11	D	909	NAG	O5-C5-C6-O6
11	С	909	NAG	C8-C7-N2-C2

Mol	Chain	Res	Type	Atoms
10	А	907	MAN	O5-C5-C6-O6
10	D	902	MAN	O5-C5-C6-O6
10	D	905	MAN	O5-C5-C6-O6
11	С	911	NAG	C4-C5-C6-O6
11	D	907	NAG	C4-C5-C6-O6
10	D	905	MAN	C4-C5-C6-O6
11	В	909	NAG	O5-C5-C6-O6
10	D	902	MAN	C4-C5-C6-O6
11	С	909	NAG	07-C7-N2-C2
11	С	911	NAG	C8-C7-N2-C2
11	С	911	NAG	07-C7-N2-C2
11	D	908	NAG	07-C7-N2-C2
10	В	903	MAN	C4-C5-C6-O6
10	В	904	MAN	C4-C5-C6-O6
10	D	903	MAN	C4-C5-C6-O6
10	В	907	MAN	C4-C5-C6-O6
10	А	907	MAN	C4-C5-C6-O6
11	В	908	NAG	O5-C5-C6-O6
11	В	909	NAG	C4-C5-C6-O6
11	D	909	NAG	C4-C5-C6-O6
10	В	910	MAN	O5-C5-C6-O6
11	D	908	NAG	C4-C5-C6-O6
11	D	907	NAG	O5-C5-C6-O6
11	D	907	NAG	C8-C7-N2-C2
11	В	908	NAG	C4-C5-C6-O6
11	D	907	NAG	O7-C7-N2-C2
10	В	910	MAN	C4-C5-C6-O6
8	С	912	BKR	O12-C27-C28-O13
8	D	910	BKR	O12-C27-C28-O13
10	С	904	MAN	C4-C5-C6-O6
11	С	911	NAG	O5-C5-C6-O6
8	С	912	BKR	O11-C27-C28-O13
11	С	901	NAG	C8-C7-N2-C2
10	D	904	MAN	C4-C5-C6-O6
8	С	912	BKR	O11-C27-C28-C29
10	С	907	MAN	O5-C5-C6-O6
11	С	901	NAG	O7-C7-N2-C2
10	С	906	MAN	O5-C5-C6-O6
8	D	910	BKR	O14-C30-N1-C29
8	D	910	BKR	O11-C27-C28-O13
9	В	902	XLS	C2-C3-C4-O4
9	А	912	XLS	C2-C3-C4-O4

Continued from previous page...

Mol	Chain	Res	Type	Atoms
11	D	906	NAG	C8-C7-N2-C2
11	В	911	NAG	C4-C5-C6-O6
9	В	902	XLS	O3-C3-C4-O4
9	А	912	XLS	O3-C3-C4-O4
10	В	906	MAN	O5-C5-C6-O6
11	С	902	NAG	C4-C5-C6-O6
11	D	906	NAG	O7-C7-N2-C2
9	В	902	XLS	C1-C2-C3-O3
9	А	912	XLS	C1-C2-C3-O3
8	С	912	BKR	C31-C30-N1-C29
8	С	912	BKR	O12-C27-C28-C29
8	С	912	BKR	O14-C30-N1-C29
9	В	902	XLS	C1-C2-C3-C4
9	А	912	XLS	C1-C2-C3-C4
8	D	910	BKR	C14-C11-O4-C12
9	В	902	XLS	O2-C2-C3-O3
9	А	912	XLS	O2-C2-C3-O3
8	В	901	BKR	O11-C27-C28-O13
8	А	911	BKR	O11-C27-C28-O13
11	С	901	NAG	C4-C5-C6-O6
8	В	901	BKR	O11-C27-C28-C29
8	А	911	BKR	O11-C27-C28-C29
8	D	910	BKR	O12-C27-C28-C29
8	D	910	BKR	O11-C27-C28-C29
11	В	911	NAG	O5-C5-C6-O6
8	С	912	BKR	C28-C27-O11-C26
8	D	910	BKR	C15-C11-O4-C12
8	В	901	BKR	O12-C27-C28-O13
8	А	911	BKR	O12-C27-C28-O13
10	В	906	MAN	C4-C5-C6-O6

Continued from previous page...

All (2) ring outliers are listed below:

Mol	Chain	Res	Type	Atoms
10	В	912	MAN	C1-C2-C3-C4-C5-O5
10	С	903	MAN	C1-C2-C3-C4-C5-O5

34 monomers are involved in 92 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
9	В	902	XLS	1	0
11	С	901	NAG	8	0

Mol	Chain	Res	Type	Clashes	Symm-Clashes
9	А	912	XLS	1	0
10	В	907	MAN	4	0
11	D	907	NAG	1	0
10	В	912	MAN	4	0
8	С	912	BKR	2	0
10	С	903	MAN	11	0
10	В	906	MAN	6	0
10	А	902	MAN	4	0
10	А	904	MAN	5	0
10	В	903	MAN	2	0
11	В	916	NAG	3	0
10	А	908	MAN	1	0
10	D	905	MAN	1	0
8	А	911	BKR	1	0
10	D	904	MAN	5	0
12	D	901	BMA	9	0
10	С	907	MAN	1	0
10	В	904	MAN	6	0
10	С	905	MAN	2	0
11	С	902	NAG	6	0
10	С	904	MAN	7	0
10	В	910	MAN	12	0
11	В	911	NAG	4	0
8	В	901	BKR	1	0
10	С	906	MAN	3	0
10	В	905	MAN	3	0
8	D	910	BKR	2	0
11	А	910	NAG	1	0
10	А	903	MAN	9	0
10	А	901	MAN	10	0
10	D	902	MAN	2	0
10	А	907	MAN	3	0

Continued from previous page...

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier.

The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	757/803~(94%)	-0.39	9 (1%) 79 80	20, 31, 50, 101	0
1	В	756/803~(94%)	-0.50	2 (0%) 94 94	20, 30, 42, 84	0
1	С	756/803~(94%)	0.07	26 (3%) 45 47	28, 50, 73, 121	0
1	D	756/803~(94%)	0.07	23 (3%) 50 53	28, 48, 69, 96	0
All	All	3025/3212~(94%)	-0.19	60 (1%) 65 67	20, 39, 67, 121	0

All (60) RSRZ outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	RSRZ
1	С	226	GLY	5.4
1	С	683	TYR	4.8
1	С	225	ASP	4.1
1	А	683	TYR	4.0
1	А	225	ASP	3.9
1	А	226	GLY	3.8
1	С	227	VAL	3.7
1	D	166	LEU	3.5
1	А	227	VAL	3.5
1	D	683	TYR	3.3
1	D	298	VAL	3.2
1	D	626	TYR	2.9
1	А	47	THR	2.9
1	D	230	ALA	2.9
1	D	696	TRP	2.9
1	D	100	LEU	2.8
1	С	696	TRP	2.7
1	D	387	THR	2.7
1	D	297	VAL	2.7
1	С	166	LEU	2.7
1	D	224	ILE	2.6

Mol	Chain	Res	Type	RSRZ
1	С	161	VAL	2.6
1	С	628	ASP	2.6
1	D	210	ILE	2.6
1	D	628	ASP	2.6
1	С	699	THR	2.6
1	С	76	VAL	2.5
1	D	624	VAL	2.5
1	D	225	ASP	2.5
1	С	626	TYR	2.5
1	D	205	VAL	2.4
1	С	224	ILE	2.4
1	D	48	GLN	2.3
1	А	699	THR	2.3
1	D	627	THR	2.3
1	А	224	ILE	2.3
1	В	166	LEU	2.3
1	С	205	VAL	2.3
1	С	48	GLN	2.3
1	В	224	ILE	2.3
1	С	684	SER	2.2
1	D	264	ILE	2.2
1	А	110	GLY	2.2
1	D	642	ILE	2.1
1	С	234	LEU	2.1
1	С	615	SER	2.1
1	С	165	PRO	2.1
1	С	334	ALA	2.1
1	D	209	TRP	2.1
1	C	232	ILE	2.0
1	D	248	LEU	2.0
1	С	343	GLY	2.0
1	С	340	ILE	2.0
1	С	230	ALA	2.0
1	С	629	ALA	2.0
1	С	773	VAL	2.0
1	D	317	VAL	2.0
1	С	783	ASP	2.0
1	D	699	THR	2.0
1	А	48	GLN	2.0

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q<0.9
4	MAN	G	1	12/12	0.53	0.42	20,20,20,20	0
7	MAN	N	3	11/12	0.69	0.26	80,85,92,94	0
5	NAG	Ι	3	14/15	0.74	0.20	60,73,81,86	0
2	NAG	L	2	14/15	0.74	0.24	70,80,85,91	0
4	BMA	G	2	11/12	0.76	0.14	37,49,56,57	0
7	MAN	М	3	11/12	0.78	0.17	$50,\!63,\!69,\!78$	0
2	NAG	0	1	14/15	0.79	0.29	20,20,20,20	0
2	NAG	0	2	14/15	0.86	0.23	69, 91, 100, 108	0
7	NAG	Ν	2	14/15	0.88	0.14	41,65,82,83	0
2	NAG	Р	1	14/15	0.88	0.14	55,70,80,82	0
6	BMA	J	4	11/12	0.89	0.12	$50,\!60,\!64,\!65$	0
2	NAG	L	1	14/15	0.90	0.14	51,68,73,76	0
7	MAN	K	3	11/12	0.91	0.14	$37,\!43,\!48,\!55$	0
3	MAN	F	4	11/12	0.92	0.11	44,45,54,55	0
3	MAN	F	5	11/12	0.92	0.12	43,50,53,54	0
2	NAG	Р	2	14/15	0.93	0.11	42,46,50,50	0
6	MAN	J	5	11/12	0.94	0.12	$45,\!53,\!63,\!64$	0
6	AH2	J	3	11/11	0.94	0.10	$35,\!45,\!48,\!50$	0
7	NAG	М	2	14/15	0.94	0.09	$33,\!37,\!45,\!56$	0
2	NAG	Н	2	14/15	0.95	0.08	27,31,38,39	0
2	NAG	Е	2	14/15	0.95	0.14	42,52,55,60	0
7	NAG	Ν	1	14/15	0.95	0.09	34,39,47,58	0
2	NAG	Н	1	14/15	0.95	0.07	$25,\!28,\!33,\!34$	0
6	NAG	J	1	14/15	0.95	0.09	$27,\!30,\!36,\!42$	0
7	NAG	K	2	14/15	0.96	0.07	23,29,32,35	0
3	BMA	F	3	11/12	0.96	0.08	24,27,30,31	0
7	NAG	М	1	14/15	0.96	0.06	33,37,38,39	0
6	NAG	J	2	14/15	0.96	0.08	37,40,48,49	0
5	NAG	Ι	1	14/15	0.96	0.07	24,28,30,38	0
5	NAG	Ι	2	14/15	0.96	0.07	$3\overline{8,}44,48,49$	0
2	NAG	E	1	14/15	0.96	0.09	30,35,39,46	0
7	NAG	K	1	14/15	0.96	0.06	$25,\!29,\!\overline{32,\!32}$	0

Continued from previous page...

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
3	NAG	F	1	14/15	0.97	0.08	24,28,31,34	0
3	NAG	F	2	14/15	0.97	0.07	25,29,34,38	0

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
10	MAN	В	912	11/12	0.56	0.18	$52,\!57,\!65,\!66$	0
11	NAG	В	915	15/15	0.66	0.38	20,20,20,20	0
10	MAN	D	905	11/12	0.72	0.20	$65,\!79,\!89,\!98$	0
10	MAN	С	904	11/12	0.72	0.22	70,80,85,90	0
11	NAG	В	911	15/15	0.73	0.34	20,20,20,20	0
9	XLS	А	912	9/10	0.74	0.27	32,44,63,67	0
8	BKR	D	910	59/59	0.74	0.31	82,112,136,139	0
10	MAN	В	903	11/12	0.75	0.16	56,72,79,82	0
10	MAN	D	904	11/12	0.76	0.20	65,73,84,90	0
10	MAN	А	904	11/12	0.76	0.42	83,97,107,110	0
11	NAG	С	911	14/15	0.76	0.46	92,113,120,134	0
8	BKR	С	912	59/59	0.77	0.29	72,104,123,126	0
11	NAG	С	908	14/15	0.78	0.31	88,94,99,100	0
10	MAN	С	906	11/12	0.79	0.17	68,84,94,102	0

Continued on next page...

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
11	NAG	В	916	14/15	0.79	0.41	20,20,20,20	0
8	BKR	A	911	59/59	0.82	0.24	36,47,54,56	0
11	NAG	D	909	14/15	0.82	0.34	68,90,97,104	0
9	XLS	В	902	9/10	0.83	0.19	32,44,63,67	0
10	MAN	В	907	11/12	0.83	0.33	79,88,93,95	0
10	MAN	В	910	12/12	0.83	0.12	33,43,54,57	0
11	NAG	D	907	14/15	0.84	0.28	65,74,85,89	0
11	NAG	D	906	14/15	0.84	0.28	65,73,85,90	0
11	NAG	А	910	14/15	0.85	0.26	74,85,97,103	0
11	NAG	В	914	14/15	0.85	0.28	67,74,84,94	0
10	MAN	D	902	11/12	0.87	0.15	55,60,71,74	0
11	NAG	С	909	14/15	0.88	0.31	61,80,89,91	0
10	MAN	D	903	11/12	0.88	0.12	$55,\!56,\!59,\!67$	0
10	MAN	С	907	11/12	0.88	0.11	$55,\!61,\!72,\!83$	0
11	NAG	С	902	14/15	0.88	0.15	52,67,74,82	0
11	NAG	D	908	14/15	0.88	0.19	54,62,67,71	0
10	MAN	A	908	11/12	0.88	0.18	47,61,65,69	0
10	MAN	А	903	11/12	0.89	0.27	$62,\!70,\!85,\!91$	0
10	MAN	C	905	11/12	0.91	0.12	$56,\!60,\!74,\!80$	0
8	BKR	В	901	59/59	0.91	0.14	$36,\!47,\!54,\!56$	0
10	MAN	A	907	12/12	0.91	0.15	$51,\!58,\!67,\!79$	0
11	NAG	C	901	14/15	0.91	0.14	54,58,65,73	0
11	NAG	В	913	14/15	0.92	0.11	37,44,47,47	0
10	MAN	С	903	11/12	0.92	0.09	52,54,58,59	0
11	NAG	В	909	14/15	0.93	0.19	39,44,53,55	0
10	MAN	В	906	11/12	0.93	0.21	53,59,65,68	0
11	NAG	В	908	14/15	0.94	0.13	39,45,52,60	0
11	NAG	A	906	14/15	0.94	0.19	39,44,46,48	0
10	MAN	A	901	11/12	0.94	0.12	44,47,50,56	0
10	MAN	В	904	11/12	0.94	0.11	37,43,48,52	0
10	MAN	B	905	11/12	0.95	0.09	30,35,42,45	0
11	NAG	A	909	14/15	0.95	0.14	35,39,44,47	0
10	MAN	A	902	11/12	0.95	0.10	45,47,52,53	0
12	BMA	D	901	11/12	0.95	0.08	36,40,45,46	0
11	NAG	A	905	14/15	0.96	0.15	46,50,55,61	0
11	NAG	C	910	14/15	0.96	0.13	41,44,47,48	0

Continued from previous page...

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

