

Full wwPDB X-ray Structure Validation Report (i)

Dec 4, 2023 - 05:03 pm GMT

PDB ID	:	1GU6
Title	:	Structure of the Periplasmic Cytochrome c Nitrite Reductase from Escherichia
		coli
Authors	:	Bamford, V.A.; Angove, H.C.; Seward, H.E.; Thomson, A.J.; Cole, J.A.; Butt,
		J.N.; Hemmings, A.M.; Richardson, D.J.
Deposited on	:	2002-01-24
Resolution	:	2.50 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	NOT EXECUTED
EDS	:	NOT EXECUTED
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 2.50 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motria	Whole archive	Similar resolution
wietric	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
Clashscore	141614	$5346\ (2.50-2.50)$
Ramachandran outliers	138981	$5231 \ (2.50-2.50)$
Sidechain outliers	138945	5233(2.50-2.50)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Note EDS was not executed.

Mol	Chain	Length	Quality of chain	Quality of chain											
1	А	452	71%	24%	••										
1	С	452	68%	25%	••										
1	Е	452	71%	23%	•••										
1	G	452	69%	25%											

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
3	GOL	А	1481	-	Х	-	-
3	GOL	С	1481	-	Х	-	-
3	GOL	Е	1481	-	Х	-	-
3	GOL	G	1481	-	Х	-	-

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 15486 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
1	Λ	4.4.1	Total	С	Ν	0	\mathbf{S}	0	0	0
	A	441	3479	2179	620	658	22	0	0	0
1	С	441	Total	С	Ν	0	S	0	0	0
	U	441	3479	2179	620	658	22	0	0	0
1	F	4.4.1	Total	С	Ν	0	S	0	0	0
		441	3479	2179	620	658	22	0	0	0
1	С	4.4.1	Total	С	Ν	0	S	0	0	0
1	G	441	3479	2179	620	658	22	0	0	0

• Molecule 1 is a protein called CYTOCHROME C552.

• Molecule 2 is CALCIUM ION (three-letter code: CA) (formula: Ca).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	2	Total Ca 2 2	0	0
2	С	2	Total Ca 2 2	0	0
2	Ε	2	Total Ca 2 2	0	0
2	G	2	Total Ca 2 2	0	0

• Molecule 3 is GLYCEROL (three-letter code: GOL) (formula: $C_3H_8O_3$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	Е	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	G	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0

• Molecule 4 is HEME C (three-letter code: HEC) (formula: $C_{34}H_{34}FeN_4O_4$).

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mol	Chain	Residues		Ate	oms	ZeroOcc	AltConf		
4 A 1 43 34 1 4 0 0 4 A 1 Total C Fe N 0 0 4 A 1 Total C Fe N 0 0 4 A 1 Total C Fe N 0 0 4 A 1 Total C Fe N 0 0 4 A 1 Total C Fe N 0 0 4 A 1 Total C Fe N 0 0 4 A 1 Total C Fe N 0 0 4 C 1 Total C Fe N 0 0 4 C 1 Total C Fe N 0 0 4 C 1 Total C Fe N 0 0 4 C 1 Total <t< td=""><td>4</td><td>٨</td><td>1</td><td>Total</td><td>С</td><td>Fe</td><td>Ν</td><td>Ο</td><td>0</td><td>0</td></t<>	4	٨	1	Total	С	Fe	Ν	Ο	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	А	1	43	34	1	4	4	0	0
4 A 1 43 34 1 4 4 0 0 4 A 1 Total C Fe N 0 0 4 A 1 Total C Fe N 0 0 4 A 1 Total C Fe N 0 0 4 A 1 Total C Fe N 0 0 4 A 1 Total C Fe N 0 0 4 C 1 Total C Fe N 0 0 4 C 1 Total C Fe N 0 0 4 C 1 Total C Fe N 0 0 4 C 1 Total C Fe N 0 0 4 C 1 Total C Fe N 0 0 4 E 1 To	4	۸	1	Total	С	Fe	Ν	Ο	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	A	1	43	34	1	4	4	0	0
4 A 1 43 34 1 4 4 0 0 4 A 1 Total C Fe N 0 0 4 A 1 Total C Fe N 0 0 4 A 1 Total C Fe N 0 0 4 A 1 Total C Fe N 0 0 4 C 1 Total C Fe N 0 0 4 C 1 Total C Fe N 0 0 4 C 1 Total C Fe N 0 0 4 C 1 Total C Fe N 0 0 0 4 C 1 Total C Fe N 0 0 0 4 E 1 Total C Fe N 0 0 0 4<	4	Δ	1	Total	С	Fe	Ν	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	Λ	L	43	34	1	4	4	0	0
A A <tha< th=""> A <tha< th=""></tha<></tha<>	4	Δ	1	Total	\mathbf{C}	Fe	Ν	Ο	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	43	34	1	4	4	0	0
A A A3 34 1 4 4 0 0 4 C 1 Total C Fe N 0 0 4 C 1 Total C Fe N 0 0 0 4 C 1 Total C Fe N 0 0 0 4 C 1 Total C Fe N 0 0 0 4 C 1 Total C Fe N 0 0 0 4 C 1 Total C Fe N 0 0 0 4 C 1 Total C Fe N 0 0 0 4 E 1 Total C Fe N 0 0 0 4 E 1 Total C Fe N 0 0 0 4 E 1 Total C Fe N <td>4</td> <td>А</td> <td>1</td> <td>Total</td> <td>С</td> <td>Fe</td> <td>Ν</td> <td>Ο</td> <td>0</td> <td>0</td>	4	А	1	Total	С	Fe	Ν	Ο	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	11	1	43	34	1	4	4	Ŭ	0
1 43 34 1 4 4 0 0 4 C 1 Total C Fe N O 0 0 4 C 1 Total C Fe N O 0 0 4 C 1 Total C Fe N O 0 0 4 C 1 Total C Fe N O 0 0 4 C 1 Total C Fe N O 0 0 4 C 1 Total C Fe N O 0 0 4 E 1 Total C Fe N O 0 0 4 E 1 Total C Fe N O 0 0 4 E 1 Total C Fe N O 0 0 4 E 1 Total C Fe N <td>4</td> <td>\mathbf{C}</td> <td>1</td> <td>Total</td> <td>\mathbf{C}</td> <td>Fe</td> <td>Ν</td> <td>Ο</td> <td>0</td> <td>0</td>	4	\mathbf{C}	1	Total	\mathbf{C}	Fe	Ν	Ο	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	43	34	1	4	4	Ŭ	· · · · · ·
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	С	1	Total	С	Fe	N	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			_	43	34	1	4	4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	С	1	Total	C	Fе	N	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				43	34	<u> </u>	4	4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	С	1	Total	C	Fe	N	O 1	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				43	34	<u> </u>	4	4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	С	1	Total	C	Fe	N	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				43	34	1 	4	4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	Ε	1		$\frac{0}{24}$	re 1	IN 4	4	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				45 Total	$\frac{34}{C}$	$\frac{1}{\mathbf{E}_{2}}$	4 N	4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	Ε	1	10tai 42	24	ге 1	1N - 1	4	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				40 Total	$\frac{54}{C}$		4 N	4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	Ε	1	10tai 43	24	ге 1	IN A		0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Total	$\frac{04}{C}$	Fo	N	<u>-</u> О		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	Ε	1	43	34	1	4	$\frac{0}{4}$	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Total	$\frac{01}{C}$	Fe	N	$\overline{0}$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	${ m E}$	1	43	34	1	4	4	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Total	$\frac{01}{C}$	Fe	N	0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	G	1	43	34	1	4	4	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ä		Total	C	Fe	N	0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	G	1	43	$\overline{34}$	1	4	4		0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C		Total	С	Fe	Ν	0	6	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	G	1	43	34	1	4	4	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	C		Total	С	Fe	Ν	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	G		43	34	1	4	4		U
	4	C	1	Total	С	Fe	Ν	0	0	0
	4	G	1	43	34	1	4	4	0	U

• Molecule 5 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	163	Total O 163 163	0	0
5	С	121	Total O 121 121	0	0
5	Е	191	Total O 191 191	0	0
5	G	203	Total O 203 203	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Note EDS was not executed.

• Molecule 1: CYTOCHROME C552

GLU THR GLN ALA ALA ALA ALA VAL VAL VAL VAS E39 E39 E39 Y82 P83 F84 P47 Q48 (41 R74 C212 H213 K226 F227 P228 W229 D230 K234 V235 E236 N237 N237 5239 1240 1241 <u>1279</u> G151 K289 V290 Q291 N292 V280 T281 E294 E344 D345 0346 H427 W381 M406 D407 W466 E467 E468 L446 Q450 1451 1451 E454 K455 Q455 Q455 D457 D457 T460 E428

• Molecule 1: CYTOCHROME C552

Cł	ıa	in	(G:	-								69%										25%								%					•	•	J									
GLN GLN	THR	ALA	ALA	ALA	LYS	PRO VAT	THR	V38		K41 N42	E43		A46	P47	0400 H70	OTI	Q52		Zah	R65		D72	P73	R/ 4	079		F84	D87		R92	T99		E103	T104	L105	00 TY	K111	-	D115		P119	W123	S124	C125		L133	I134
Q135 K136	-	E139		W 14/	G151	TIEA	FOT T	L158		D162	E170		K173	0100	D183	Y184		R187	T192	7611	K198		<mark>0205</mark>	V208		C212	HZ13	Y216		K226 F227	P228	W229	D230		K234 V035	V 235 F/236	N237	M238	E239	Q240	Y241	W250	T251	N252	5253 1054	LZ04 S255	
K261	P265	E266	Y267	E268 T269	W270	T271	1274		N279	V280 T281	C282	1283		K289 1100	1290	N292	A293	E294	6295 K796	N230	T2 <mark>99</mark>		K302	N305	P306	0101	H318 T319	q 320		L325	R332		13 <mark>36</mark>		L339	N340	E344	D345	Q346	C C C H	T363 F364	HO OT	H376		K380		L383
A384 1385	A386	S387	H388	1390 1390	H391	M392	M406	D407	-	R413	L419	L420		1429	D433		E438	0770	1447	L446		E449		44.30 D4.57		K460	1461	W466	E467	E468	R471	K472		S477	N478												

4 Data and refinement statistics (i)

Xtriage (Phenix) and EDS were not executed - this section is therefore incomplete.

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	81.47Å 90.84Å 293.87Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Resolution (Å)	20.00 - 2.50	Depositor
% Data completeness	91.5 (20.00-2.50)	Depositor
(in resolution range)	51.5 (20.00 2.00)	Depositor
R_{merge}	0.09	Depositor
R _{sym}	(Not available)	Depositor
Refinement program	CNS 1.0	Depositor
R, R_{free}	0.203 , 0.243	Depositor
Estimated twinning fraction	No twinning to report.	Xtriage
Total number of atoms	15486	wwPDB-VP
Average B, all atoms $(Å^2)$	35.0	wwPDB-VP

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: HEC, GOL, CA

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bo	nd lengths	Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.75	0/3563	0.73	4/4817~(0.1%)	
1	С	0.82	3/3563~(0.1%)	0.73	3/4817~(0.1%)	
1	Е	0.76	0/3563	0.75	3/4817~(0.1%)	
1	G	0.76	2/3563~(0.1%)	0.74	3/4817~(0.1%)	
All	All	0.77	5/14252~(0.0%)	0.74	13/19268~(0.1%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	1
1	G	0	1
All	All	0	2

All (5) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
1	С	449	GLU	CD-OE1	6.10	1.32	1.25
1	G	449	GLU	CD-OE2	5.87	1.32	1.25
1	С	438	GLU	CG-CD	5.79	1.60	1.51
1	С	449	GLU	CD-OE2	5.29	1.31	1.25
1	G	468	GLU	CG-CD	5.08	1.59	1.51

All (13) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	G	158	LEU	CA-CB-CG	7.84	133.34	115.30
1	Е	158	LEU	CA-CB-CG	7.75	133.12	115.30

1 GU6

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	С	158	LEU	CA-CB-CG	7.44	132.42	115.30
1	А	158	LEU	CA-CB-CG	7.35	132.21	115.30
1	Ε	182	ARG	NE-CZ-NH2	-6.67	116.97	120.30
1	А	187	ARG	NE-CZ-NH1	6.53	123.56	120.30
1	С	182	ARG	NE-CZ-NH2	-6.48	117.06	120.30
1	А	187	ARG	NE-CZ-NH2	-5.98	117.31	120.30
1	С	182	ARG	NE-CZ-NH1	5.60	123.10	120.30
1	G	187	ARG	NE-CZ-NH2	-5.33	117.64	120.30
1	Ε	187	ARG	NE-CZ-NH2	-5.27	117.67	120.30
1	A	182	ARG	NE-CZ-NH2	-5.26	117.67	120.30
1	G	182	ARG	NE-CZ-NH1	5.01	122.80	120.30

There are no chirality outliers.

All (2) planarity outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Group
1	А	216	TYR	Sidechain
1	G	216	TYR	Sidechain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3479	0	3365	134	0
1	С	3479	0	3365	135	0
1	Е	3479	0	3365	130	0
1	G	3479	0	3365	142	0
2	А	2	0	0	0	0
2	С	2	0	0	0	0
2	Е	2	0	0	0	0
2	G	2	0	0	0	0
3	А	6	0	5	3	0
3	С	6	0	5	3	0
3	Е	6	0	4	3	0
3	G	6	0	5	3	0
4	А	215	0	150	18	0
4	С	215	0	150	17	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
4	Е	215	0	150	15	0
4	G	215	0	150	15	0
5	А	163	0	0	15	0
5	С	121	0	0	20	0
5	Е	191	0	0	24	0
5	G	203	0	0	28	0
All	All	15486	0	14079	556	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 19.

All (556) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:A:1481:GOL:O1	3:A:1481:GOL:C1	1.66	1.44
3:G:1481:GOL:C1	3:G:1481:GOL:O1	1.65	1.43
3:E:1481:GOL:O1	3:E:1481:GOL:C1	1.65	1.43
3:C:1481:GOL:O1	3:C:1481:GOL:C1	1.68	1.42
1:E:240:GLN:HB2	5:E:2102:HOH:O	1.54	1.07
1:C:176:PRO:HD2	5:C:2044:HOH:O	1.54	1.06
1:A:456:GLN:HE21	1:A:460:LYS:HE3	1.30	0.96
1:C:456:GLN:HE21	1:C:460:LYS:HE3	1.31	0.95
1:E:456:GLN:HE21	1:E:460:LYS:HE3	1.28	0.94
1:C:52:GLN:H	1:C:52:GLN:NE2	1.66	0.94
1:E:52:GLN:H	1:E:52:GLN:NE2	1.73	0.86
1:E:104:THR:HG23	5:E:2181:HOH:O	1.76	0.86
1:G:456:GLN:HE21	1:G:460:LYS:HE3	1.38	0.85
1:A:234:LYS:HD3	3:A:1481:GOL:H11	1.58	0.84
1:G:390:ILE:HB	5:G:2167:HOH:O	1.77	0.84
1:G:292:ASN:HD22	1:G:296:LYS:HG2	1.42	0.84
1:A:292:ASN:HB3	1:A:294:GLU:H	1.44	0.83
1:E:387:SER:HB3	5:E:2119:HOH:O	1.78	0.83
1:G:292:ASN:HD22	1:G:296:LYS:CG	1.93	0.82
1:G:62:GLN:HE21	1:G:302:LYS:HZ3	1.28	0.82
1:C:236:GLU:O	1:C:240:GLN:HG2	1.79	0.82
1:C:320:GLN:H	1:C:320:GLN:NE2	1.78	0.82
1:A:52:GLN:H	1:A:52:GLN:NE2	1.78	0.81
4:C:1486:HEC:HBA2	4:E:1486:HEC:HBA2	1.60	0.81
1:E:234:LYS:HD3	3:E:1481:GOL:H11	1.61	0.81
1:E:292:ASN:HB3	1:E:294:GLU:H	1.45	0.81
1:G:292:ASN:HB3	1:G:294:GLU:H	1.45	0.81

Atom 1	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:C:52:GLN:H	1:C:52:GLN:HE21	1.28	0.80	
1:C:234:LYS:HD3	3:C:1481:GOL:H11	1.62	0.80	
1:E:236:GLU:O	1:E:240:GLN:HG2	1.81	0.80	
1:G:52:GLN:H	1:G:52:GLN:NE2	1.80	0.79	
1:A:320:GLN:NE2	1:A:320:GLN:H	1.79	0.79	
1:G:234:LYS:HD3	3:G:1481:GOL:H11	1.64	0.79	
1:G:236:GLU:O	1:G:240:GLN:HG2	1.82	0.79	
1:A:236:GLU:O	1:A:240:GLN:HG2	1.82	0.79	
1:A:292:ASN:HD22	1:A:296:LYS:CG	1.96	0.78	
1:C:267:TYR:O	1:C:271:THR:HG23	1.84	0.78	
1:E:320:GLN:H	1:E:320:GLN:NE2	1.81	0.78	
1:G:62:GLN:HE21	1:G:302:LYS:NZ	1.80	0.78	
1:E:267:TYR:O	1:E:271:THR:HG23	1.84	0.78	
1:C:292:ASN:HB2	1:C:296:LYS:H	1.47	0.78	
1:C:64:GLU:HB3	5:C:2007:HOH:O	1.84	0.77	
1:A:292:ASN:HB2	1:A:296:LYS:H	1.48	0.77	
1:C:292:ASN:HB3	1:C:294:GLU:H	1.49	0.77	
1:C:292:ASN:HD22	1:C:296:LYS:CG	1.97	0.77	
1:G:52:GLN:H	1:G:52:GLN:HE21	1.29	0.77	
1:E:292:ASN:HD22	1:E:296:LYS:CG	1.97	0.76	
1:G:340:LYS:HD3	1:G:344:GLU:OE2	1.84	0.76	
1:A:292:ASN:HD22	1:A:296:LYS:HB2	1.50	0.76	
1:E:52:GLN:H	1:E:52:GLN:HE21	1.33	0.76	
1:E:292:ASN:HB2	1:E:296:LYS:H	1.51	0.75	
1:E:320:GLN:H	1:E:320:GLN:HE21	1.35	0.75	
1:E:269:THR:HG21	5:E:2154:HOH:O	1.87	0.75	
1:G:267:TYR:O	1:G:271:THR:HG23	1.87	0.74	
1:A:213:HIS:HB3	1:A:266:GLU:HG2	1.68	0.73	
1:A:62:GLN:HE21	1:A:302:LYS:NZ	1.84	0.73	
1:A:267:TYR:O	1:A:271:THR:HG23	1.88	0.73	
1:A:320:GLN:H	1:A:320:GLN:HE21	1.36	0.73	
1:G:192:ILE:HD13	1:G:229:TRP:HB3	1.71	0.73	
1:C:292:ASN:ND2	1:C:296:LYS:HB2	2.04	0.73	
1:E:386:ALA:HB2	5:E:2149:HOH:O	1.89	0.72	
1:C:62:GLN:HE21	1:C:302:LYS:NZ	1.87	0.72	
1:C:292:ASN:HD22	1:C:296:LYS:HB2	1.53	0.72	
1:E:457:ASP:O	1:E:461:THR:HG23	1.90	0.72	
1:A:340:LYS:HD3	1:A:344:GLU:OE2	1.89	0.72	
1:E:48:GLN:OE1	5:E:2007:HOH:O	2.08	0.72	
1:A:292:ASN:ND2	1:A:296:LYS:HB2	2.05	0.71	
1:G:294:GLU:HB2	1:G:296:LYS:HE2	1.72	0.71	

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:G:292:ASN:HB2	1:G:296:LYS:H	1.56	0.71
1:C:320:GLN:H	1:C:320:GLN:HE21	1.35	0.71
1:A:292:ASN:HD22	1:A:296:LYS:CB	2.03	0.71
1:E:340:LYS:HD3	1:E:344:GLU:OE2	1.90	0.70
1:E:213:HIS:HB3	1:E:266:GLU:HG2	1.74	0.70
1:G:213:HIS:HB3	1:G:266:GLU:HG2	1.73	0.70
1:G:162:ASP:OD2	1:G:182:ARG:NH2	2.24	0.70
1:G:320:GLN:H	1:G:320:GLN:NE2	1.90	0.70
1:G:299:THR:HG23	4:G:1483:HEC:O2A	1.91	0.70
4:A:1482:HEC:HMC1	4:A:1482:HEC:HBC3	1.74	0.70
1:C:132:ARG:HG3	5:C:2001:HOH:O	1.91	0.70
1:C:213:HIS:HB3	1:C:266:GLU:HG2	1.73	0.70
1:A:162:ASP:OD2	1:A:182:ARG:NH2	2.25	0.70
1:C:270:TRP:CE3	1:C:271:THR:HG22	2.27	0.69
1:E:346:GLN:NE2	1:E:413:ARG:HH11	1.91	0.69
1:A:52:GLN:H	1:A:52:GLN:HE21	1.37	0.69
1:E:451:ILE:HG23	5:E:2043:HOH:O	1.93	0.69
1:E:192:ILE:HD13	1:E:229:TRP:HB3	1.75	0.69
1:G:346:GLN:NE2	1:G:413:ARG:HH11	1.91	0.69
1:A:292:ASN:HD22	1:A:296:LYS:HG2	1.58	0.69
4:A:1486:HEC:HBD1	4:G:1486:HEC:HBD1	1.74	0.69
1:C:340:LYS:HD3	1:C:344:GLU:OE2	1.92	0.68
1:E:289:LYS:HD3	1:E:299:THR:HG22	1.74	0.68
1:E:340:LYS:HG3	1:E:385:ILE:HG21	1.75	0.68
1:C:292:ASN:HD22	1:C:296:LYS:CB	2.06	0.68
1:A:334:GLN:NE2	5:A:2109:HOH:O	2.24	0.68
1:G:457:ASP:O	1:G:461:THR:HG23	1.94	0.68
1:A:290:VAL:HG12	1:A:291:GLN:N	2.07	0.68
4:A:1486:HEC:HBA2	4:G:1486:HEC:HBA2	1.74	0.68
1:A:289:LYS:HD3	1:A:299:THR:HG22	1.74	0.68
1:C:162:ASP:OD2	1:C:182:ARG:NH2	2.27	0.68
1:G:104:THR:HG23	5:G:2191:HOH:O	1.93	0.68
1:E:299:THR:HG23	4:E:1483:HEC:O2A	1.93	0.68
1:C:457:ASP:O	1:C:461:THR:HG23	1.94	0.68
1:E:292:ASN:HD22	1:E:296:LYS:HG2	1.59	0.67
1:E:87:ASP:HB2	1:E:105:LEU:HB2	1.75	0.66
1:E:230:ASP:CG	5:E:2101:HOH:O	2.33	0.66
1:A:265:PRO:HG3	1:A:383:LEU:HD22	1.77	0.66
1:C:340:LYS:HG3	1:C:385:ILE:HG21	1.78	0.66
1:G:289:LYS:HD3	1:G:299:THR:HG22	1.78	0.66
1:C:336:ILE:O	1:C:340:LYS:HB2	1.96	0.66

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:252:ASN:ND2	1:C:254:LEU:H	1.94	0.66
1:C:289:LYS:HD3	1:C:299:THR:HG22	1.77	0.66
1:G:43:GLU:OE2	5:G:2004:HOH:O	2.13	0.66
1:C:104:THR:HG23	5:C:2116:HOH:O	1.95	0.66
1:E:456:GLN:NE2	1:E:460:LYS:HE3	2.07	0.65
1:C:290:VAL:HG12	1:C:291:GLN:N	2.11	0.65
1:C:292:ASN:HD22	1:C:296:LYS:HG2	1.60	0.65
1:E:162:ASP:OD2	1:E:182:ARG:NH2	2.29	0.65
1:E:290:VAL:HG12	1:E:291:GLN:N	2.12	0.65
1:A:192:ILE:HD13	1:A:229:TRP:HB3	1.76	0.65
1:C:187:ARG:HD2	5:C:2049:HOH:O	1.94	0.65
1:E:62:GLN:HE21	1:E:302:LYS:NZ	1.94	0.65
1:A:265:PRO:O	1:A:269:THR:HB	1.96	0.65
1:E:104:THR:CG2	5:E:2181:HOH:O	2.39	0.64
1:C:170:GLU:OE1	1:C:173:LYS:HD2	1.97	0.64
4:C:1482:HEC:HMC1	4:C:1482:HEC:HBC3	1.79	0.64
1:A:290:VAL:CG1	1:A:291:GLN:H	2.10	0.64
1:C:299:THR:HG23	4:C:1483:HEC:O2A	1.98	0.64
1:E:265:PRO:O	1:E:269:THR:HB	1.96	0.64
1:A:234:LYS:H	1:A:237:ASN:ND2	1.96	0.64
1:C:234:LYS:H	1:C:237:ASN:ND2	1.96	0.64
1:A:340:LYS:HG3	1:A:385:ILE:HG21	1.79	0.64
1:G:265:PRO:O	1:G:269:THR:HB	1.97	0.64
1:G:346:GLN:HE22	1:G:413:ARG:HH11	1.45	0.64
1:E:346:GLN:HE22	1:E:413:ARG:HH11	1.46	0.64
1:C:290:VAL:CG1	1:C:291:GLN:H	2.10	0.63
1:A:270:TRP:CE3	1:A:271:THR:HG22	2.33	0.63
1:C:192:ILE:HD13	1:C:229:TRP:HB3	1.79	0.63
1:G:43:GLU:CD	5:G:2004:HOH:O	2.36	0.63
1:A:456:GLN:NE2	1:A:460:LYS:HE3	2.10	0.63
1:A:290:VAL:CG1	1:A:291:GLN:N	2.62	0.63
1:C:456:GLN:NE2	1:C:460:LYS:HE3	2.09	0.63
1:G:290:VAL:HG12	1:G:291:GLN:N	2.14	0.63
1:E:289:LYS:CE	1:E:299:THR:HG22	2.29	0.63
1:C:62:GLN:HE21	1:C:302:LYS:HZ3	1.47	0.62
1:E:234:LYS:H	1:E:237:ASN:ND2	1.96	0.62
1:G:340:LYS:HG3	1:G:385:ILE:HG21	1.81	0.62
1:A:299:THR:HG23	4:A:1483:HEC:O2A	1.98	0.62
4:E:1482:HEC:HBC3	4:E:1482:HEC:HMC1	1.81	0.62
1:A:234:LYS:H	1:A:237:ASN:HD22	1.46	0.62
1:C:234:LYS:H	1:C:237:ASN:HD22	1.45	0.62

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:E:62:GLN:HE21	1:E:302:LYS:HZ3	1.47	0.62
1:E:292:ASN:HD22	1:E:296:LYS:HB2	1.64	0.62
1:G:376:HIS:O	1:G:380:ARG:HD3	1.99	0.62
1:C:346:GLN:NE2	1:C:413:ARG:HH11	1.97	0.62
1:A:472:LYS:HD2	1:A:472:LYS:N	2.15	0.62
1:E:139:GLU:CD	1:E:187:ARG:HH22	2.03	0.62
1:E:270:TRP:CE3	1:E:271:THR:HG22	2.34	0.62
1:C:472:LYS:HD2	1:C:472:LYS:N	2.14	0.61
1:G:320:GLN:H	1:G:320:GLN:HE21	1.47	0.61
1:A:139:GLU:CD	1:A:187:ARG:HH22	2.03	0.61
1:C:139:GLU:CD	1:C:187:ARG:HH22	2.02	0.61
1:G:139:GLU:CD	1:G:187:ARG:HH22	2.03	0.61
1:C:265:PRO:O	1:C:269:THR:HB	2.00	0.61
1:A:376:HIS:O	1:A:380:ARG:HD3	2.01	0.61
1:C:265:PRO:HG3	1:C:383:LEU:HD22	1.83	0.61
1:E:292:ASN:HD22	1:E:296:LYS:CB	2.14	0.61
1:A:87:ASP:HB2	1:A:105:LEU:HB2	1.83	0.60
1:A:170:GLU:OE1	1:A:173:LYS:HD2	2.01	0.60
1:A:294:GLU:HB2	1:A:296:LYS:HE2	1.82	0.60
1:E:429:ILE:N	1:E:429:ILE:HD12	2.16	0.60
1:G:290:VAL:CG1	1:G:291:GLN:N	2.64	0.60
4:G:1482:HEC:HBC3	4:G:1482:HEC:HMC1	1.82	0.60
1:E:290:VAL:CG1	1:E:291:GLN:N	2.65	0.60
1:A:48:GLN:OE1	5:A:2007:HOH:O	2.16	0.60
1:C:90:LYS:HD2	5:C:2017:HOH:O	2.01	0.60
1:C:420:LEU:HD13	1:C:429:ILE:HD11	1.83	0.60
1:A:62:GLN:HE21	1:A:302:LYS:HZ3	1.48	0.60
1:A:289:LYS:CE	1:A:299:THR:HG22	2.32	0.60
1:C:292:ASN:HB2	1:C:296:LYS:N	2.15	0.60
1:G:292:ASN:ND2	1:G:296:LYS:HB2	2.16	0.60
1:A:266:GLU:HG3	4:A:1485:HEC:HMB2	1.83	0.59
1:E:386:ALA:HA	5:E:2149:HOH:O	2.01	0.59
1:E:290:VAL:CG1	1:E:291:GLN:H	2.15	0.59
1:E:292:ASN:ND2	1:E:296:LYS:HB2	2.18	0.59
1:G:49:HIS:HE1	5:G:2007:HOH:O	1.84	0.59
1:A:240:GLN:HB2	5:A:2076:HOH:O	2.03	0.59
1:E:176:PRO:HD2	5:E:2081:HOH:O	2.03	0.59
1:E:386:ALA:CB	5:E:2149:HOH:O	2.46	0.59
1:G:266:GLU:HG3	4:G:1485:HEC:HMB2	1.84	0.59
1:G:289:LYS:CE	1:G:299:THR:HG22	2.33	0.59
1:C:290:VAL:HG12	1:C:291:GLN:H	1.66	0.59

Atom_1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:406:MET:CE	1:E:407:ASP:HB2	2.33	0.59
1:G:234:LYS:H	1:G:237:ASN:ND2	2.01	0.59
3:G:1481:GOL:C1	3:G:1481:GOL:HO1	2.09	0.59
1:C:290:VAL:CG1	1:C:291:GLN:N	2.66	0.59
1:A:239:GLU:OE1	1:A:380:ARG:HD2	2.02	0.58
1:A:336:ILE:O	1:A:340:LYS:HB2	2.02	0.58
1:C:376:HIS:O	1:C:380:ARG:HD3	2.03	0.58
1:E:265:PRO:HG3	1:E:383:LEU:HD22	1.85	0.58
1:C:274:ILE:HG21	4:C:1486:HEC:HBA1	1.85	0.58
1:E:294:GLU:HB2	1:E:296:LYS:HE2	1.85	0.58
1:E:472:LYS:HD2	1:E:472:LYS:N	2.18	0.58
1:G:265:PRO:HG3	1:G:383:LEU:HD22	1.85	0.58
1:A:292:ASN:HB2	1:A:296:LYS:N	2.15	0.58
1:E:438:GLU:O	1:E:442:GLN:HG3	2.02	0.58
1:E:158:LEU:O	5:E:2073:HOH:O	2.17	0.58
1:G:292:ASN:HB2	1:G:296:LYS:N	2.19	0.58
1:G:292:ASN:HD22	1:G:296:LYS:CB	2.17	0.58
1:G:336:ILE:O	1:G:340:LYS:HB2	2.03	0.58
1:E:234:LYS:H	1:E:237:ASN:HD22	1.52	0.58
1:A:46:ALA:HB3	1:A:47:PRO:HD3	1.86	0.58
1:A:274:ILE:HG21	4:A:1486:HEC:HBA1	1.86	0.58
1:A:457:ASP:O	1:A:461:THR:HG23	2.03	0.58
1:C:111:LYS:HG2	1:C:115:ASP:OD2	2.04	0.58
1:C:294:GLU:HB2	1:C:296:LYS:HE2	1.84	0.58
1:A:192:ILE:HD12	5:A:2062:HOH:O	2.03	0.58
1:A:346:GLN:NE2	1:A:413:ARG:HH11	2.01	0.58
3:A:1481:GOL:C1	3:A:1481:GOL:HO1	2.10	0.58
1:G:240:GLN:HB2	5:G:2101:HOH:O	2.04	0.57
1:A:290:VAL:HG12	1:A:291:GLN:H	1.68	0.57
1:C:114:GLU:HB2	5:C:2026:HOH:O	2.04	0.57
1:G:270:TRP:CE3	1:G:271:THR:HG22	2.39	0.57
1:E:386:ALA:CA	5:E:2149:HOH:O	2.52	0.57
1:E:292:ASN:HB2	1:E:296:LYS:N	2.20	0.57
4:G:1483:HEC:HMC1	4:G:1483:HEC:HBC3	1.87	0.57
1:A:111:LYS:HG2	1:A:115:ASP:OD2	2.05	0.56
1:A:289:LYS:NZ	1:A:299:THR:HG22	2.21	0.56
1:E:111:LYS:HG2	1:E:115:ASP:OD2	2.05	0.56
1:A:420:LEU:HD13	1:A:429:ILE:HD11	1.86	0.56
1:E:266:GLU:HG3	4:E:1485:HEC:HMB2	1.87	0.56
1:E:376:HIS:O	1:E:380:ARG:HD3	2.05	0.56
1:E:420:LEU:HD13	1:E:429:ILE:HD11	1.88	0.56

A + a 1	A + am - D	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:467:GLU:O	1:C:471:ARG:HG3	2.06	0.56
1:E:289:LYS:CD	1:E:299:THR:HG22	2.35	0.56
1:E:274:ILE:HG21	4:E:1486:HEC:HBA1	1.88	0.56
1:G:87:ASP:HB2	1:G:105:LEU:HB2	1.87	0.56
1:A:226:LYS:NZ	5:A:2075:HOH:O	2.38	0.55
1:A:407:ASP:HB2	1:G:406:MET:CE	2.35	0.55
1:E:64:GLU:HB3	5:E:2016:HOH:O	2.07	0.55
1:C:266:GLU:HG3	4:C:1485:HEC:HMB2	1.87	0.55
1:C:252:ASN:HD21	1:C:254:LEU:HB2	1.71	0.55
1:G:111:LYS:HG2	1:G:115:ASP:OD2	2.05	0.55
1:E:336:ILE:O	1:E:340:LYS:HB2	2.07	0.55
1:G:234:LYS:H	1:G:237:ASN:HD22	1.55	0.55
1:C:270:TRP:CZ3	1:C:271:THR:HG22	2.41	0.55
1:A:104:THR:HB	1:A:106:ARG:H	1.70	0.55
1:C:87:ASP:HB2	1:C:105:LEU:HB2	1.89	0.55
3:E:1481:GOL:C1	3:E:1481:GOL:HO1	2.09	0.55
4:E:1483:HEC:HMC1	4:E:1483:HEC:HBC3	1.89	0.55
1:G:456:GLN:NE2	1:G:460:LYS:HE3	2.16	0.55
1:A:289:LYS:CD	1:A:299:THR:HG22	2.36	0.55
1:G:289:LYS:NZ	1:G:299:THR:HG22	2.22	0.54
1:E:252:ASN:ND2	1:E:254:LEU:H	2.05	0.54
1:G:420:LEU:HD13	1:G:429:ILE:HD11	1.88	0.54
1:C:407:ASP:HB2	1:E:406:MET:CE	2.37	0.54
1:G:292:ASN:HD22	1:G:296:LYS:HB2	1.71	0.54
1:C:205:GLN:HB3	1:C:283:ILE:HD13	1.88	0.54
1:G:236:GLU:HG2	5:G:2104:HOH:O	2.08	0.54
1:C:38:VAL:N	5:C:2002:HOH:O	2.41	0.54
1:G:472:LYS:HD2	1:G:472:LYS:N	2.23	0.54
1:A:124:SER:O	1:A:182:ARG:NH1	2.38	0.54
1:A:252:ASN:ND2	1:A:254:LEU:H	2.06	0.54
1:C:289:LYS:NZ	1:C:299:THR:HG22	2.23	0.54
1:A:74:ARG:HD3	1:A:345:ASP:OD1	2.08	0.54
1:G:52:GLN:NE2	1:G:52:GLN:N	2.55	0.53
1:G:429:ILE:N	1:G:429:ILE:HD12	2.23	0.53
1:C:320:GLN:HE21	1:C:320:GLN:N	2.06	0.53
1:G:274:ILE:HG21	4:G:1486:HEC:HBA1	1.91	0.53
1:C:289:LYS:CE	1:C:299:THR:HG22	2.39	0.53
1:G:235:VAL:HG13	1:G:236:GLU:N	2.24	0.53
1:C:158:LEU:HD22	4:C:1484:HEC:HBC2	1.91	0.53
1:G:48:GLN:HG2	5:G:2005:HOH:O	2.08	0.53
1:G:236:GLU:CG	5:G:2104:HOH:O	2.57	0.53

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:G:104:THR:CG2	5:G:2191:HOH:O	2.52	0.52
1:A:104:THR:HG23	5:A:2023:HOH:O	2.08	0.52
4:C:1483:HEC:HMC1	4:C:1483:HEC:HBC3	1.90	0.52
1:G:252:ASN:HD22	1:G:255:SER:H	1.56	0.52
1:G:290:VAL:CG1	1:G:291:GLN:H	2.22	0.52
1:G:170:GLU:OE1	1:G:173:LYS:HD2	2.10	0.52
1:G:363:THR:HB	5:G:2156:HOH:O	2.09	0.52
1:E:450:GLN:NE2	1:E:454:GLU:OE2	2.36	0.52
1:G:139:GLU:OE1	1:G:187:ARG:NH2	2.42	0.52
1:E:205:GLN:HB3	1:E:283:ILE:HD13	1.91	0.52
1:C:477:SER:HB3	5:C:2005:HOH:O	2.10	0.52
1:G:280:VAL:HG22	4:G:1486:HEC:HBC2	1.92	0.52
1:C:102:ARG:NH1	5:C:2023:HOH:O	2.36	0.51
1:E:292:ASN:C	1:E:294:GLU:H	2.14	0.51
1:C:346:GLN:HE22	1:C:413:ARG:HH11	1.58	0.51
1:G:205:GLN:HB3	1:G:283:ILE:HD13	1.92	0.51
1:E:252:ASN:HD22	1:E:255:SER:H	1.58	0.51
1:E:289:LYS:NZ	1:E:299:THR:HG22	2.26	0.51
1:A:252:ASN:HD21	1:A:254:LEU:HB2	1.76	0.51
1:C:92:ARG:O	4:C:1484:HEC:HBD1	2.11	0.51
1:E:271:THR:HG21	5:E:2118:HOH:O	2.10	0.51
1:C:289:LYS:CD	1:C:299:THR:HG22	2.41	0.51
1:E:170:GLU:OE1	1:E:173:LYS:HD2	2.10	0.51
1:A:227:PHE:N	1:A:227:PHE:CD2	2.77	0.50
1:C:104:THR:CG2	5:C:2116:HOH:O	2.54	0.50
1:C:391:HIS:HE1	4:C:1485:HEC:O2D	1.95	0.50
1:A:429:ILE:HD12	1:A:429:ILE:N	2.25	0.50
1:C:252:ASN:HD22	1:C:255:SER:H	1.60	0.50
3:C:1481:GOL:C1	3:C:1481:GOL:HO1	2.11	0.50
1:G:289:LYS:CD	1:G:299:THR:HG22	2.40	0.50
1:A:406:MET:CE	1:G:407:ASP:HB2	2.41	0.50
1:C:39:GLU:OE1	1:C:41:LYS:HB2	2.12	0.50
1:E:139:GLU:OE1	1:E:187:ARG:NH2	2.44	0.50
1:A:74:ARG:NH2	5:A:2017:HOH:O	2.44	0.50
4:C:1486:HEC:HBD1	4:E:1486:HEC:HBD1	1.92	0.50
1:A:235:VAL:HG13	1:A:236:GLU:N	2.26	0.50
1:A:252:ASN:HD22	1:A:255:SER:H	1.58	0.50
1:A:99:THR:O	1:A:103:GLU:HG3	2.12	0.50
1:E:194:LYS:NZ	5:E:2091:HOH:O	2.42	0.50
1:E:467:GLU:O	1:E:471:ARG:HG3	2.12	0.50
1:C:239:GLU:OE1	1:C:380:ARG:HD2	2.11	0.49

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:G:438:GLU:O	1:G:442:GLN:HG3	2.11	0.49
1:A:52:GLN:HG2	4:A:1483:HEC:C4A	2.43	0.49
1:A:92:ARG:O	4:A:1484:HEC:HBD1	2.12	0.49
1:C:124:SER:O	1:C:182:ARG:NH1	2.42	0.49
1:C:227:PHE:N	1:C:227:PHE:CD2	2.80	0.49
1:A:62:GLN:HE21	1:A:302:LYS:HZ2	1.59	0.49
1:E:46:ALA:HB3	1:E:47:PRO:HD3	1.93	0.49
1:A:139:GLU:OE1	1:A:187:ARG:NH2	2.46	0.49
1:E:124:SER:O	1:E:182:ARG:NH1	2.42	0.49
1:E:239:GLU:OE1	1:E:380:ARG:HD2	2.12	0.49
1:E:281:THR:O	4:E:1485:HEC:HMC3	2.13	0.49
1:E:391:HIS:HE1	4:E:1485:HEC:O2D	1.96	0.49
1:E:235:VAL:HG13	1:E:236:GLU:N	2.28	0.49
1:A:139:GLU:HB2	5:A:2045:HOH:O	2.12	0.49
1:A:391:HIS:HE1	4:A:1485:HEC:O2D	1.96	0.49
1:C:47:PRO:HD2	5:C:2006:HOH:O	2.13	0.48
1:G:119:PRO:HB2	5:G:2097:HOH:O	2.13	0.48
1:C:47:PRO:HB2	5:C:2006:HOH:O	2.12	0.48
1:C:52:GLN:NE2	1:C:52:GLN:N	2.48	0.48
1:C:104:THR:HB	1:C:106:ARG:H	1.79	0.48
1:C:292:ASN:C	1:C:294:GLU:H	2.16	0.48
1:C:429:ILE:HD12	1:C:429:ILE:N	2.29	0.48
1:G:230:ASP:CG	5:G:2100:HOH:O	2.50	0.48
1:A:226:LYS:HE3	1:A:241:TYR:OH	2.12	0.48
1:A:294:GLU:O	1:A:296:LYS:HE2	2.13	0.48
1:C:235:VAL:HG13	1:C:236:GLU:N	2.28	0.48
1:C:406:MET:HE1	1:E:407:ASP:HB2	1.96	0.48
1:E:99:THR:CG2	5:E:2035:HOH:O	2.61	0.48
1:G:227:PHE:N	1:G:227:PHE:CD2	2.81	0.48
1:C:52:GLN:HG2	4:C:1483:HEC:C4A	2.44	0.48
1:E:104:THR:HB	1:E:106:ARG:H	1.77	0.48
1:A:270:TRP:CZ3	1:A:271:THR:HG22	2.48	0.48
1:C:226:LYS:HE3	1:C:241:TYR:OH	2.13	0.48
1:G:252:ASN:ND2	1:G:254:LEU:H	2.11	0.48
1:G:104:THR:HB	1:G:106:ARG:H	1.79	0.48
1:G:391:HIS:HE1	4:G:1485:HEC:O2D	1.97	0.48
1:A:79:TRP:CE3	1:A:84:PHE:HB3	2.49	0.48
1:G:72:ASP:OD2	1:G:344:GLU:OE1	2.31	0.48
1:A:52:GLN:NE2	1:A:52:GLN:N	2.57	0.47
1:C:125:CYS:HB3	1:C:212:CYS:HB3	1.96	0.47
1:A:438:GLU:O	1:A:442:GLN:HG3	2.13	0.47

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:208:VAL:HG23	1:C:209:CYS:N	2.30	0.47
1:C:450:GLN:NE2	1:C:454:GLU:OE2	2.37	0.47
1:E:99:THR:O	1:E:103:GLU:HG3	2.14	0.47
1:G:226:LYS:HE3	1:G:241:TYR:OH	2.14	0.47
1:A:450:GLN:NE2	1:A:454:GLU:HG3	2.28	0.47
1:C:139:GLU:OE1	1:C:187:ARG:NH2	2.47	0.47
1:E:133:LEU:HD12	1:E:133:LEU:HA	1.71	0.47
1:C:442:GLN:HG2	5:C:2111:HOH:O	2.12	0.47
1:E:99:THR:HB	5:E:2040:HOH:O	2.13	0.47
1:G:46:ALA:HB3	1:G:47:PRO:HD3	1.95	0.47
1:A:104:THR:CG2	5:A:2023:HOH:O	2.62	0.47
1:A:62:GLN:NE2	1:A:302:LYS:HZ2	2.12	0.47
1:E:292:ASN:C	1:E:294:GLU:N	2.66	0.47
1:A:182:ARG:HG3	5:A:2070:HOH:O	2.14	0.47
1:A:269:THR:HG21	5:A:2131:HOH:O	2.15	0.47
1:C:406:MET:HE3	1:E:407:ASP:HB2	1.96	0.47
1:G:192:ILE:CD1	1:G:229:TRP:HB3	2.43	0.47
1:G:79:TRP:CE3	1:G:84:PHE:HB3	2.50	0.47
1:G:281:THR:HG22	5:G:2090:HOH:O	2.15	0.47
1:C:269:THR:HG21	5:C:2096:HOH:O	2.14	0.47
1:C:407:ASP:HB2	1:E:406:MET:HE3	1.96	0.47
1:E:79:TRP:CE3	1:E:84:PHE:HB3	2.50	0.47
1:A:406:MET:HG2	1:G:406:MET:HB3	1.97	0.47
1:C:198:LYS:HE3	5:C:2051:HOH:O	2.14	0.47
1:C:450:GLN:NE2	1:C:454:GLU:HG3	2.29	0.47
1:E:194:LYS:NZ	5:E:2092:HOH:O	2.45	0.46
1:A:280:VAL:HG22	4:A:1486:HEC:HBC2	1.97	0.46
1:A:407:ASP:HB2	1:G:406:MET:HE3	1.97	0.46
1:G:151:GLY:HA3	1:G:466:TRP:CD2	2.50	0.46
1:E:205:GLN:O	1:E:208:VAL:HG22	2.15	0.46
1:G:62:GLN:NE2	1:G:302:LYS:NZ	2.58	0.46
1:C:62:GLN:NE2	1:C:302:LYS:NZ	2.61	0.46
1:C:192:ILE:HD12	1:C:192:ILE:HA	1.68	0.46
1:A:125:CYS:HB3	1:A:212:CYS:HB3	1.97	0.46
1:A:230:ASP:CG	5:A:2075:HOH:O	2.52	0.46
1:A:406:MET:HB3	1:G:406:MET:HG2	1.96	0.46
1:A:205:GLN:HB3	1:A:283:ILE:HD13	1.97	0.46
1:A:320:GLN:HE21	1:A:320:GLN:N	2.06	0.46
1:E:227:PHE:CD2	1:E:227:PHE:N	2.83	0.46
1:C:45:PHE:CZ	1:C:166:THR:HB	2.51	0.46
1:C:292:ASN:C	1:C:294:GLU:N	2.68	0.46

A + a 1	A + a	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:444:ILE:HD11	1:C:446:LEU:HD22	1.97	0.46
1:G:205:GLN:O	1:G:208:VAL:HG22	2.15	0.46
1:E:290:VAL:HG12	1:E:291:GLN:H	1.77	0.46
1:G:468:GLU:OE2	1:G:472:LYS:CE	2.63	0.46
1:E:468:GLU:OE2	1:E:472:LYS:CE	2.64	0.45
1:G:65:ARG:HA	5:G:2016:HOH:O	2.17	0.45
1:C:468:GLU:O	1:C:472:LYS:HD3	2.16	0.45
1:A:346:GLN:HE22	1:A:413:ARG:HH11	1.64	0.45
1:C:102:ARG:HB3	1:C:463:ILE:HD11	1.99	0.45
1:G:74:ARG:HD3	1:G:345:ASP:OD1	2.16	0.45
1:C:46:ALA:HB3	1:C:47:PRO:HD3	1.98	0.45
4:A:1483:HEC:HBC3	4:A:1483:HEC:HMC1	1.97	0.45
1:E:74:ARG:HD3	1:E:345:ASP:OD1	2.16	0.45
1:G:388:HIS:HE1	5:G:2193:HOH:O	2.00	0.45
1:C:123:TRP:CG	1:C:154:ILE:HD13	2.52	0.45
1:G:49:HIS:HA	5:G:2009:HOH:O	2.17	0.45
1:G:252:ASN:HD21	1:G:254:LEU:HB2	1.82	0.45
1:A:82:TYR:CG	1:A:83:PRO:HD2	2.52	0.45
4:A:1486:HEC:HMB1	4:A:1486:HEC:HBB3	1.99	0.45
1:C:52:GLN:HE21	1:C:52:GLN:N	2.06	0.45
1:G:124:SER:O	1:G:182:ARG:NH1	2.47	0.45
1:A:99:THR:CG2	5:A:2029:HOH:O	2.64	0.45
1:E:252:ASN:HD21	1:E:254:LEU:HB2	1.82	0.45
1:G:72:ASP:OD1	1:G:74:ARG:HB2	2.17	0.45
1:C:79:TRP:CE3	1:C:84:PHE:HB3	2.52	0.45
1:E:52:GLN:NE2	1:E:52:GLN:N	2.53	0.45
1:E:270:TRP:CZ3	1:E:271:THR:HG22	2.52	0.45
1:C:235:VAL:HG12	1:C:236:GLU:OE2	2.18	0.44
1:E:280:VAL:HG22	4:E:1486:HEC:HBC2	1.98	0.44
4:E:1486:HEC:HBB3	4:E:1486:HEC:HMB1	2.00	0.44
1:A:468:GLU:OE2	1:A:472:LYS:NZ	2.51	0.44
4:A:1486:HEC:HMC1	4:A:1486:HEC:HBC3	1.98	0.44
1:A:192:ILE:HD12	1:A:192:ILE:HA	1.68	0.44
1:A:450:GLN:NE2	1:A:454:GLU:OE2	2.37	0.44
1:C:426:THR:HA	5:C:2103:HOH:O	2.17	0.44
1:E:450:GLN:NE2	1:E:454:GLU:HG3	2.32	0.44
1:C:314:CYS:HA	4:C:1486:HEC:CHC	2.48	0.44
1:G:239:GLU:OE1	1:G:380:ARG:HD2	2.18	0.44
1:C:74:ARG:HD3	1:C:345:ASP:OD1	2.17	0.44
1:G:147:TRP:HB3	5:G:2050:HOH:O	2.16	0.44
1:A:64:GLU:HB3	5:A:2013:HOH:O	2.17	0.44

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:79:TRP:CE2	1:C:261:LYS:HE2	2.53	0.44
1:C:99:THR:O	1:C:103:GLU:HG3	2.17	0.44
1:C:182:ARG:HB3	1:C:184:TYR:CZ	2.53	0.44
1:A:205:GLN:O	1:A:208:VAL:HG22	2.18	0.44
1:C:151:GLY:HA3	1:C:466:TRP:CD2	2.53	0.44
1:E:192:ILE:HD12	1:E:192:ILE:HA	1.69	0.44
1:E:425:ILE:HG23	1:E:427:HIS:CE1	2.53	0.44
1:G:387:SER:HB3	5:G:2167:HOH:O	2.17	0.44
1:A:406:MET:HG3	1:G:406:MET:HG3	2.00	0.44
1:A:72:ASP:OD1	1:A:74:ARG:HB2	2.18	0.43
1:E:79:TRP:HZ2	5:E:2151:HOH:O	1.99	0.43
1:C:314:CYS:HA	4:C:1486:HEC:HHC	1.99	0.43
1:E:125:CYS:HB3	1:E:212:CYS:HB3	2.00	0.43
1:G:381:TRP:O	1:G:385:ILE:HG13	2.19	0.43
4:G:1486:HEC:HBB3	4:G:1486:HEC:HMB1	2.00	0.43
1:A:292:ASN:C	1:A:294:GLU:H	2.22	0.43
4:C:1486:HEC:HMB1	4:C:1486:HEC:HBB3	2.00	0.43
1:G:92:ARG:O	4:G:1484:HEC:HBD1	2.18	0.43
1:G:235:VAL:CG1	1:G:236:GLU:N	2.81	0.43
1:G:340:LYS:CD	1:G:344:GLU:OE2	2.63	0.43
4:A:1485:HEC:HBC3	4:A:1485:HEC:HMC1	2.00	0.43
1:G:446:LEU:HD13	5:G:2182:HOH:O	2.18	0.43
1:A:407:ASP:HB2	1:G:406:MET:HE1	1.99	0.43
1:E:82:TYR:CG	1:E:83:PRO:HD2	2.53	0.43
1:G:125:CYS:HB3	1:G:212:CYS:HB3	2.01	0.43
1:A:468:GLU:O	1:A:472:LYS:HD3	2.18	0.43
1:C:98:VAL:O	1:C:101:VAL:HG12	2.19	0.43
1:C:144:HIS:O	1:C:149:ARG:NH2	2.47	0.43
1:E:41:LYS:NZ	5:E:2004:HOH:O	2.50	0.43
1:E:72:ASP:OD1	1:E:74:ARG:HB2	2.19	0.43
1:G:99:THR:O	1:G:103:GLU:HG3	2.18	0.43
1:G:151:GLY:HA3	1:G:466:TRP:CE2	2.54	0.43
1:G:226:LYS:NZ	5:G:2100:HOH:O	2.51	0.43
1:C:280:VAL:HG13	4:C:1486:HEC:HBC2	2.01	0.43
1:C:99:THR:HG22	5:C:2019:HOH:O	2.19	0.43
1:E:429:ILE:N	1:E:429:ILE:CD1	2.82	0.43
1:G:446:LEU:HD11	5:G:2031:HOH:O	2.19	0.43
1:C:192:ILE:CD1	1:C:229:TRP:HB3	2.48	0.43
1:E:151:GLY:HA3	1:E:466:TRP:CD2	2.53	0.43
1:E:370:ILE:HD13	1:E:416:LEU:HG	2.01	0.43
1:G:182:ARG:HB3	1:G:184:TYR:CZ	2.54	0.43

Atom-1	Atom-2	Interatomic	Clash
1100111-1	1100111-2	distance (Å)	overlap (Å)
1:C:257:THR:HA	1:C:258:PRO:HD3	1.86	0.42
1:E:320:GLN:HE21	1:E:320:GLN:N	2.09	0.42
1:G:213:HIS:CE1	4:G:1482:HEC:HMD1	2.55	0.42
1:A:392:MET:HG2	4:A:1485:HEC:C2D	2.49	0.42
1:A:467:GLU:O	1:A:471:ARG:HG3	2.19	0.42
1:E:226:LYS:HE3	1:E:241:TYR:OH	2.19	0.42
1:E:451:ILE:CG2	5:E:2043:HOH:O	2.61	0.42
1:A:292:ASN:C	1:A:294:GLU:N	2.71	0.42
1:A:406:MET:CG	1:G:406:MET:CG	2.97	0.42
1:A:406:MET:HE3	1:G:407:ASP:HB2	2.01	0.42
1:C:290:VAL:O	1:C:297:LEU:HA	2.19	0.42
1:C:370:ILE:HD13	1:C:416:LEU:CD2	2.50	0.42
1:C:472:LYS:N	1:C:472:LYS:CD	2.82	0.42
1:G:41:LYS:NZ	5:G:2003:HOH:O	2.47	0.42
1:A:62:GLN:NE2	1:A:302:LYS:NZ	2.59	0.42
1:A:136:LYS:HG2	1:A:137:ASP:OD1	2.20	0.42
1:E:151:GLY:HA3	1:E:466:TRP:CE2	2.55	0.42
1:A:72:ASP:OD2	1:A:344:GLU:OE1	2.38	0.42
1:A:289:LYS:HZ2	1:A:299:THR:HG22	1.85	0.42
1:G:198:LYS:NZ	5:G:2087:HOH:O	2.51	0.42
1:G:392:MET:HG2	4:G:1485:HEC:C2D	2.49	0.42
1:A:280:VAL:HG13	4:A:1486:HEC:HBC2	2.01	0.42
1:A:468:GLU:OE2	1:A:472:LYS:CE	2.68	0.42
1:C:72:ASP:OD1	1:C:74:ARG:HB2	2.20	0.42
1:E:381:TRP:O	1:E:385:ILE:HG13	2.20	0.42
1:G:292:ASN:C	1:G:294:GLU:N	2.72	0.42
1:A:133:LEU:HD12	1:A:133:LEU:HA	1.74	0.42
1:G:52:GLN:HE21	1:G:52:GLN:N	2.06	0.42
1:G:192:ILE:HD12	1:G:192:ILE:HA	1.79	0.42
4:G:1486:HEC:HMC1	4:G:1486:HEC:HBC3	2.02	0.42
1:A:385:ILE:HD12	1:A:385:ILE:C	2.41	0.42
1:G:292:ASN:C	1:G:294:GLU:H	2.22	0.42
1:A:123:TRP:CG	1:A:154:ILE:HD13	2.55	0.41
1:C:294:GLU:O	1:C:296:LYS:HE2	2.20	0.41
1:E:52:GLN:HG2	4:E:1483:HEC:C4A	2.50	0.41
1:G:132:ARG:HH11	1:G:132:ARG:HD2	1.70	0.41
1:G:270:TRP:CZ3	1:G:271:THR:HG22	2.55	0.41
1:E:39:GLU:OE1	1:E:41:LYS:HB2	2.20	0.41
1:E:392:MET:HG2	4:E:1485:HEC:C2D	2.50	0.41
1:G:123:TRP:CG	1:G:154:ILE:HD13	2.55	0.41
1:G:289:LYS:NZ	1:G:299:THR:CG2	2.82	0.41

Atom 1	A + a == 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:C:1486:HEC:HBC3	4:C:1486:HEC:HMC1	2.03	0.41
1:A:105:LEU:HD23	1:A:455:LYS:HG2	2.03	0.41
1:A:314:CYS:HA	4:A:1486:HEC:CHC	2.51	0.41
1:C:279:ASN:HD22	1:C:279:ASN:HA	1.67	0.41
1:G:269:THR:HG21	5:G:2170:HOH:O	2.21	0.41
1:A:425:ILE:HG23	1:A:427:HIS:CE1	2.55	0.41
1:C:99:THR:CG2	5:C:2019:HOH:O	2.68	0.41
1:G:52:GLN:HG2	4:G:1483:HEC:C4A	2.51	0.41
1:A:289:LYS:NZ	1:A:299:THR:CG2	2.82	0.41
1:G:135:GLN:HG3	1:G:136:LYS:N	2.36	0.41
1:G:433:ASP:OD2	1:G:433:ASP:C	2.57	0.41
1:A:198:LYS:HE3	5:A:2068:HOH:O	2.21	0.41
1:E:468:GLU:O	1:E:472:LYS:HD3	2.21	0.41
1:G:271:THR:HG21	5:G:2119:HOH:O	2.20	0.41
1:G:364:GLU:HB3	5:G:2155:HOH:O	2.20	0.41
1:A:266:GLU:CG	4:A:1485:HEC:HMB2	2.49	0.41
1:C:62:GLN:NE2	1:C:302:LYS:HZ2	2.19	0.41
1:E:192:ILE:CD1	1:E:229:TRP:HB3	2.47	0.41
1:G:305:ASN:HA	1:G:306:PRO:HD3	1.91	0.41
1:A:208:VAL:HG23	1:A:209:CYS:N	2.36	0.40
1:A:418:ARG:O	1:A:422:THR:HG23	2.21	0.40
1:C:280:VAL:HG22	4:C:1486:HEC:HBC2	2.02	0.40
1:E:99:THR:HG23	5:E:2035:HOH:O	2.19	0.40
1:E:468:GLU:OE2	1:E:472:LYS:NZ	2.54	0.40
1:G:79:TRP:CE2	1:G:261:LYS:HE2	2.56	0.40
1:G:240:GLN:HG2	1:G:240:GLN:H	1.72	0.40
1:G:318:HIS:HB3	1:G:320:GLN:NE2	2.37	0.40
1:G:468:GLU:O	1:G:472:LYS:HD3	2.21	0.40
1:A:54:LEU:HD23	1:A:54:LEU:HA	1.94	0.40
1:C:330:ALA:HB2	5:C:2076:HOH:O	2.21	0.40
1:G:133:LEU:HD12	1:G:133:LEU:HA	1.75	0.40
1:E:266:GLU:CG	4:E:1485:HEC:HMB2	2.52	0.40
1:A:45:PHE:CZ	1:A:166:THR:HB	2.56	0.40
1:G:467:GLU:O	1:G:471:ARG:HG3	2.21	0.40
1:E:72:ASP:OD2	1:E:344:GLU:OE1	2.40	0.40
4:E:1486:HEC:HBC3	4:E:1486:HEC:HMC1	2.03	0.40
1:G:332:ARG:HD3	5:G:2148:HOH:O	2.21	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	439/452~(97%)	421 (96%)	18 (4%)	0	100	100
1	С	439/452~(97%)	421 (96%)	18 (4%)	0	100	100
1	Е	439/452~(97%)	421 (96%)	17 (4%)	1 (0%)	47	68
1	G	439/452~(97%)	419 (95%)	20~(5%)	0	100	100
All	All	1756/1808~(97%)	1682 (96%)	73 (4%)	1 (0%)	51	73

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	Ε	113	ALA

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric Outliers		Percentiles		
1	А	362/370~(98%)	339~(94%)	23~(6%)	17	33	
1	С	362/370~(98%)	338~(93%)	24 (7%)	16	32	
1	Е	362/370~(98%)	338~(93%)	24 (7%)	16	32	
1	G	362/370~(98%)	340 (94%)	22~(6%)	18	36	
All	All	1448/1480 (98%)	1355 (94%)	93 (6%)	17	33	

All (93) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	38	VAL
1	А	52	GLN
1	А	99	THR
1	А	104	THR
1	А	133	LEU
1	А	135	GLN
1	А	158	LEU
1	А	170	GLU
1	А	182	ARG
1	А	192	ILE
1	А	250	TRP
1	А	266	GLU
1	А	269	THR
1	А	279	ASN
1	А	320	GLN
1	А	325	LEU
1	А	339	LEU
1	А	340	LYS
1	А	383	LEU
1	А	419	LEU
1	А	446	LEU
1	А	472	LYS
1	А	477	SER
1	С	38	VAL
1	С	52	GLN
1	С	99	THR
1	С	104	THR
1	С	133	LEU
1	С	135	GLN
1	С	158	LEU
1	С	170	GLU
1	С	182	ARG
1	С	192	ILE
1	С	250	TRP
1	С	252	ASN
1	С	266	GLU
1	С	269	THR
1	С	279	ASN
1	С	320	GLN
1	С	325	LEU
1	C	339	LEU
1	С	340	LYS
1	С	383	LEU

Mol	Chain	Res	Type
1	С	419	LEU
1	С	446	LEU
1	С	472	LYS
1	С	477	SER
1	Е	38	VAL
1	Е	52	GLN
1	Е	99	THR
1	Е	104	THR
1	Е	133	LEU
1	Е	135	GLN
1	Е	158	LEU
1	Е	170	GLU
1	Е	182	ARG
1	Е	192	ILE
1	Е	240	GLN
1	Е	250	TRP
1	Е	266	GLU
1	Е	269	THR
1	Е	279	ASN
1	Е	320	GLN
1	Е	325	LEU
1	Е	339	LEU
1	Ε	383	LEU
1	Ε	419	LEU
1	Ε	446	LEU
1	Ε	461	THR
1	Е	472	LYS
1	Е	477	SER
1	G	38	VAL
1	G	52	GLN
1	G	99	THR
1	G	104	THR
1	G	133	LEU
1	G	135	GLN
1	G	158	LEU
1	G	170	GLU
1	G	182	ARG
1	G	192	ILE
1	G	250	TRP
1	G	266	GLU
1	G	269	THR
1	G	279	ASN

COUU	Continued from previous page									
Mol	Chain	Res	Type							
1	G	320	GLN							
1	G	325	LEU							
1	G	339	LEU							
1	G	383	LEU							
1	G	419	LEU							
1	G	446	LEU							
1	G	472	LYS							
1	G	477	SER							

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (65) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	52	GLN
1	А	62	GLN
1	А	135	GLN
1	А	237	ASN
1	А	252	ASN
1	А	279	ASN
1	А	291	GLN
1	А	292	ASN
1	А	312	GLN
1	А	320	GLN
1	А	326	GLN
1	А	346	GLN
1	А	371	GLN
1	А	388	HIS
1	А	391	HIS
1	А	456	GLN
1	С	52	GLN
1	С	62	GLN
1	С	135	GLN
1	С	237	ASN
1	С	252	ASN
1	С	279	ASN
1	С	291	GLN
1	С	292	ASN
1	С	312	GLN
1	С	320	GLN
1	С	326	GLN
1	С	346	GLN
1	С	371	GLN
1	С	388	HIS

Mol	Chain	Res	Type
1	С	391	HIS
1	С	456	GLN
1	Е	52	GLN
1	Е	62	GLN
1	Е	135	GLN
1	Е	237	ASN
1	Е	252	ASN
1	Е	279	ASN
1	Е	291	GLN
1	Е	292	ASN
1	Е	312	GLN
1	Е	320	GLN
1	Е	326	GLN
1	Е	346	GLN
1	Е	371	GLN
1	Ε	388	HIS
1	Е	391	HIS
1	Ε	456	GLN
1	G	49	HIS
1	G	52	GLN
1	G	62	GLN
1	G	135	GLN
1	G	237	ASN
1	G	252	ASN
1	G	279	ASN
1	G	291	GLN
1	G	292	ASN
1	G	312	GLN
1	G	320	GLN
1	G	326	GLN
1	G	346	GLN
1	G	371	GLN
1	G	388	HIS
1	G	391	HIS
1	G	456	GLN

Continued from previous page...

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 32 ligands modelled in this entry, 8 are monoatomic - leaving 24 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Dog	Link	Bo	Bond lengths			ond ang	gles
	туре	Ullaili	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
4	HEC	G	1486	1	$32,\!50,\!50$	2.20	7 (21%)	24,82,82	1.87	8 (33%)
4	HEC	Е	1486	1	32,50,50	2.16	7 (21%)	24,82,82	1.88	8 (33%)
4	HEC	G	1485	2,1	32,50,50	2.19	7 (21%)	24,82,82	2.11	10 (41%)
4	HEC	Е	1482	5,1	32,50,50	1.97	8 (25%)	24,82,82	2.03	12 (50%)
4	HEC	А	1486	1	32,50,50	2.01	6 (18%)	24,82,82	1.87	8 (33%)
4	HEC	А	1484	2,1	32,50,50	2.17	4 (12%)	24,82,82	1.88	12 (50%)
4	HEC	Е	1483	1	32,50,50	1.95	8 (25%)	24,82,82	2.07	12 (50%)
4	HEC	А	1485	2,1	32,50,50	1.96	8 (25%)	24,82,82	2.07	10 (41%)
3	GOL	Е	1481	-	$5,\!5,\!5$	4.38	4 (80%)	$5,\!5,\!5$	5.84	3 (60%)
4	HEC	С	1486	1	32,50,50	2.04	6 (18%)	24,82,82	1.91	9 (37%)
3	GOL	G	1481	-	$5,\!5,\!5$	4.41	4 (80%)	$5,\!5,\!5$	5.83	3 (60%)
4	HEC	С	1484	2,1	32,50,50	2.00	5 (15%)	24,82,82	1.88	11 (45%)
4	HEC	С	1482	5,1	$32,\!50,\!50$	1.88	7 (21%)	24,82,82	1.97	12 (50%)
4	HEC	G	1482	5,1	$32,\!50,\!50$	1.72	7 (21%)	24,82,82	2.03	11 (45%)
4	HEC	G	1483	1	32,50,50	2.02	9 (28%)	24,82,82	2.05	11 (45%)
4	HEC	А	1482	5,1	32,50,50	2.00	6 (18%)	24,82,82	1.95	11 (45%)
4	HEC	С	1483	1	$32,\!50,\!50$	2.05	8 (25%)	24,82,82	2.06	10 (41%)
4	HEC	С	1485	2,1	$32,\!50,\!50$	2.30	7 (21%)	24,82,82	2.11	12 (50%)

Mal	Turne	Chain	Dec	Tiple	Bo	ond leng	$_{\rm sths}$	B	ond ang	gles
WIOI	туре	Unam	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
4	HEC	Е	1484	2,1	$32,\!50,\!50$	1.97	5 (15%)	24,82,82	1.97	11 (45%)
3	GOL	С	1481	-	$5,\!5,\!5$	4.46	3 (60%)	$5,\!5,\!5$	<mark>5.85</mark>	3 (60%)
4	HEC	Е	1485	2,1	$32,\!50,\!50$	2.04	5 (15%)	24,82,82	2.07	12 (50%)
4	HEC	G	1484	2,1	$32,\!50,\!50$	2.16	5 (15%)	24,82,82	1.97	10 (41%)
3	GOL	А	1481	-	$5,\!5,\!5$	4.39	4 (80%)	5,5,5	5.87	3 (60%)
4	HEC	А	1483	1	32,50,50	2.03	8 (25%)	24,82,82	2.14	11 (45%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	HEC	G	1486	1	-	4/10/54/54	-
4	HEC	Е	1486	1	-	4/10/54/54	-
4	HEC	G	1485	2,1	-	5/10/54/54	-
4	HEC	Е	1482	5,1	-	3/10/54/54	-
4	HEC	А	1486	1	-	4/10/54/54	-
4	HEC	А	1484	2,1	-	2/10/54/54	-
4	HEC	Е	1483	1	-	2/10/54/54	-
4	HEC	А	1485	2,1	-	5/10/54/54	-
3	GOL	Е	1481	-	-	2/4/4/4	-
4	HEC	С	1486	1	-	4/10/54/54	-
3	GOL	G	1481	-	_	3/4/4/4	-
4	HEC	С	1484	2,1	-	0/10/54/54	-
4	HEC	С	1482	5,1	-	3/10/54/54	-
4	HEC	G	1482	5,1	-	3/10/54/54	-
4	HEC	G	1483	1	-	2/10/54/54	-
4	HEC	А	1482	5,1	-	3/10/54/54	-
4	HEC	С	1483	1	-	2/10/54/54	-
4	HEC	С	1485	2,1	_	5/10/54/54	-
4	HEC	Е	1484	2,1	-	0/10/54/54	-
3	GOL	С	1481	-	-	2/4/4/4	-
4	HEC	Е	1485	2,1	-	4/10/54/54	-
4	HEC	G	1484	2,1	-	0/10/54/54	-
3	GOL	А	1481	-	-	2/4/4/4	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	HEC	А	1483	1	-	2/10/54/54	-

All (148) bond length outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	Observed(Å)	Ideal(Å)
4	А	1484	HEC	C3C-C2C	-8.33	1.32	1.40
4	G	1484	HEC	C3C-C2C	-7.42	1.33	1.40
4	А	1482	HEC	C3C-C2C	-7.07	1.33	1.40
4	С	1485	HEC	C3C-C2C	-6.87	1.33	1.40
3	С	1481	GOL	C3-C2	-6.87	1.23	1.51
3	G	1481	GOL	C3-C2	-6.87	1.23	1.51
4	С	1485	HEC	C2B-C3B	-6.86	1.33	1.40
4	G	1485	HEC	C2B-C3B	-6.86	1.33	1.40
4	G	1486	HEC	C3C-C2C	-6.83	1.33	1.40
3	А	1481	GOL	C3-C2	-6.76	1.23	1.51
4	Е	1486	HEC	C3C-C2C	-6.74	1.33	1.40
4	G	1485	HEC	C3C-C2C	-6.67	1.33	1.40
4	С	1484	HEC	C3C-C2C	-6.66	1.33	1.40
3	Е	1481	GOL	C3-C2	-6.63	1.24	1.51
4	Е	1484	HEC	C3C-C2C	-6.51	1.34	1.40
4	G	1484	HEC	C2B-C3B	-6.50	1.34	1.40
4	G	1483	HEC	C3C-C2C	-6.48	1.34	1.40
4	G	1486	HEC	C2B-C3B	-6.46	1.34	1.40
4	С	1486	HEC	C3C-C2C	-6.35	1.34	1.40
4	С	1483	HEC	CBA-CGA	-6.25	1.36	1.50
4	А	1486	HEC	C2B-C3B	-6.24	1.34	1.40
4	А	1483	HEC	CBA-CGA	-6.19	1.36	1.50
4	Е	1485	HEC	C2B-C3B	-6.10	1.34	1.40
3	С	1481	GOL	O1-C1	6.09	1.68	1.42
4	С	1483	HEC	C3C-C2C	-6.04	1.34	1.40
4	Е	1482	HEC	C3C-C2C	-6.02	1.34	1.40
4	Е	1483	HEC	C3C-C2C	-5.92	1.34	1.40
4	А	1486	HEC	C3C-C2C	-5.78	1.34	1.40
4	А	1483	HEC	C3C-C2C	-5.71	1.34	1.40
3	А	1481	GOL	O1-C1	5.68	1.66	1.42
4	С	1482	HEC	C2B-C3B	-5.60	1.34	1.40
3	Ε	1481	GOL	O1-C1	5.54	1.65	1.42
4	А	1484	HEC	C2B-C3B	-5.53	1.35	1.40
4	Е	1486	HEC	C2B-C3B	-5.53	1.35	1.40
3	G	1481	GOL	O1-C1	5.45	1.65	1.42
4	А	1485	HEC	C2B-C3B	-5.38	1.35	1.40
4	Е	1483	HEC	CBA-CGA	-5.34	1.38	1.50

Mol	Chain	Res	Tvpe	Atoms	Z	Observed(Å)	Ideal(Å)
4	E	1484	HEC	C2B-C3B	-5.18	1.35	1.40
4	E	1485	HEC	C3C-C2C	-5.15	1.35	1.40
4	Ā	1485	HEC	C3C-C2C	-5.12	1.35	1.40
4	А	1482	HEC	C2B-C3B	-5.01	1.35	1.40
4	С	1482	HEC	C3C-C2C	-4.99	1.35	1.40
4	С	1486	HEC	CBD-CGD	-4.80	1.39	1.50
4	С	1485	HEC	CBA-CGA	-4.64	1.39	1.50
4	G	1482	HEC	C3C-C2C	-4.59	1.36	1.40
4	Е	1482	HEC	CBA-CGA	-4.57	1.40	1.50
4	С	1484	HEC	C2B-C3B	-4.51	1.36	1.40
4	Е	1485	HEC	CBA-CGA	-4.46	1.40	1.50
4	С	1486	HEC	C2B-C3B	-4.44	1.36	1.40
4	Ε	1486	HEC	CBD-CGD	-4.38	1.40	1.50
4	G	1486	HEC	CBD-CGD	-4.37	1.40	1.50
4	А	1484	HEC	CBD-CGD	-4.24	1.40	1.50
4	G	1486	HEC	O1A-CGA	4.18	1.36	1.22
4	Ε	1482	HEC	C2B-C3B	-4.15	1.36	1.40
4	G	1482	HEC	CBA-CGA	-4.13	1.41	1.50
4	G	1483	HEC	CBA-CGA	-4.08	1.41	1.50
4	G	1485	HEC	CBA-CGA	-4.01	1.41	1.50
4	А	1486	HEC	CBD-CGD	-3.95	1.41	1.50
4	А	1486	HEC	O1A-CGA	3.79	1.34	1.22
4	С	1484	HEC	CBD-CGD	-3.78	1.41	1.50
4	G	1483	HEC	C2B-C3B	-3.76	1.36	1.40
4	G	1482	HEC	C2B-C3B	-3.74	1.36	1.40
4	C	1486	HEC	O1A-CGA	3.72	1.34	1.22
4	E	1484	HEC	CBD-CGD	-3.69	1.42	1.50
3	G	1481	GOL	O3-C3	3.64	1.57	1.42
4	C	1482	HEC	CBA-CGA	-3.56	1.42	1.50
4	A	1482	HEC	CBA-CGA	-3.55	1.42	1.50
3	E	1481	GOL	O3-C3	3.50	1.57	1.42
4	G	1484	HEC	UBA-UGA	-3.50	1.42	1.50
4	A	1483	HEC	C2B-C3B	-3.45	1.37	1.40
4		1484	HEC	UBA-UGA	-3.41	1.42	1.50
4	G	1485	HEC HEC	CBD-CGD	-3.40	1.42	1.50
4	A F	1485	HEC HEC	CDA-CGA	-3.37	1.42	1.50
4	E	1480	HEC	COD COD	-3.37	1.42	1.30
4		1483	HEC HEC	CDD CCD	-3.33 2.00	1.37	1.40
4 9	G	1485	COT	$O^2 C^2$	-3.22	1.45	1.30
<u>ئ</u>	A	1481	GOL	$\frac{03-03}{010}$	3.20	1.00	1.42
4	G F	1482	HEC HEC	OIL-NU	3.17 2.15	1.42	1.50
4	Ľ	1480	HEC	UIA-UGA	J.15	1.32	1.22

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	Observed(Å)	Ideal(Å)
4	Е	1483	HEC	C2B-C3B	-3.11	1.37	1.40
3	С	1481	GOL	O3-C3	3.08	1.55	1.42
4	G	1483	HEC	C1C-NC	3.00	1.42	1.36
4	Е	1485	HEC	CBD-CGD	-2.96	1.43	1.50
4	Е	1483	HEC	C1C-NC	2.92	1.42	1.36
4	С	1482	HEC	O1A-CGA	2.91	1.31	1.22
4	А	1485	HEC	C1C-NC	2.87	1.42	1.36
4	G	1484	HEC	CBD-CGD	-2.84	1.44	1.50
4	С	1483	HEC	O1D-CGD	2.77	1.31	1.22
4	С	1485	HEC	O1A-CGA	2.77	1.31	1.22
4	Е	1484	HEC	O1A-CGA	2.77	1.31	1.22
4	Е	1484	HEC	CBA-CGA	-2.75	1.44	1.50
4	Е	1482	HEC	CBD-CGD	-2.75	1.44	1.50
4	Е	1482	HEC	C1C-NC	2.75	1.41	1.36
4	Е	1485	HEC	C1C-NC	2.71	1.41	1.36
4	Е	1483	HEC	O1A-CGA	2.65	1.30	1.22
4	А	1483	HEC	C3A-C4A	2.64	1.48	1.42
4	А	1485	HEC	O1A-CGA	2.63	1.30	1.22
4	А	1485	HEC	O1D-CGD	2.60	1.30	1.22
4	Ε	1482	HEC	O1A-CGA	2.56	1.30	1.22
4	А	1482	HEC	C1C-NC	2.56	1.41	1.36
4	Ε	1486	HEC	O1D-CGD	2.52	1.30	1.22
4	А	1483	HEC	C4B-C3B	2.52	1.47	1.43
4	С	1483	HEC	C3A-C4A	2.49	1.48	1.42
4	Е	1482	HEC	O2A-CGA	-2.49	1.22	1.30
4	G	1486	HEC	CBA-CGA	-2.47	1.44	1.50
4	А	1485	HEC	CBD-CGD	-2.46	1.44	1.50
4	С	1485	HEC	CBD-CGD	-2.44	1.44	1.50
4	A	1485	HEC	C2A-C1A	2.44	1.48	1.42
4	E	1486	HEC	C1C-NC	2.43	1.41	1.36
4	G	1482	HEC	O1A-CGA	2.43	1.30	1.22
4	A	1484	HEC	O1A-CGA	2.42	1.30	1.22
4	C	1483	HEC	CBD-CGD	-2.42	1.45	1.50
4	C	1483	HEC	OIA-CGA	2.40	1.30	1.22
4	C	1484	HEC	OIA-CGA	2.39	1.30	1.22
	E	1481	GOL	O2-C2	-2.39	1.36	1.43
4	E	1483	HEC	CBD-CGD	-2.38	1.45	1.50
4		1483	HEC	CIC-NC	2.37	1.41	1.36
4	A	1486	HEC	UBA-CGA	-2.37	1.45	1.50
4	C	1486	HEC	C4B-C3B	2.35	1.47	1.43
4	G	1483	HEC	02D-CGD	-2.32	1.22	1.30
4		1485	HEC	CIC-NC	2.31	1.40	1.36

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	Observed(A)	Ideal(Å)
4	С	1482	HEC	CBD-CGD	-2.31	1.45	1.50
4	G	1483	HEC	O1A-CGA	2.27	1.29	1.22
4	G	1483	HEC	CAA-C2A	2.26	1.56	1.52
4	Е	1482	HEC	C4B-C3B	2.20	1.47	1.43
4	А	1482	HEC	CAD-CBD	2.20	1.63	1.52
4	С	1486	HEC	O1D-CGD	2.19	1.29	1.22
3	А	1481	GOL	O2-C2	-2.18	1.36	1.43
4	G	1483	HEC	C3A-C4A	2.18	1.47	1.42
4	G	1485	HEC	C1C-NC	2.17	1.40	1.36
4	G	1486	HEC	C1C-NC	2.17	1.40	1.36
4	Е	1483	HEC	O1D-CGD	2.16	1.29	1.22
4	G	1484	HEC	O1A-CGA	2.14	1.29	1.22
4	G	1482	HEC	CAD-CBD	2.12	1.63	1.52
4	G	1486	HEC	O1D-CGD	2.11	1.29	1.22
4	G	1485	HEC	O1D-CGD	2.10	1.29	1.22
4	С	1485	HEC	C3C-C4C	2.10	1.46	1.43
4	А	1483	HEC	C1C-NC	2.10	1.40	1.36
3	G	1481	GOL	O2-C2	-2.10	1.37	1.43
4	А	1483	HEC	O1A-CGA	2.10	1.29	1.22
4	А	1482	HEC	CBD-CGD	-2.08	1.45	1.50
4	G	1482	HEC	CBD-CGD	-2.08	1.45	1.50
4	Е	1483	HEC	C4B-C3B	2.07	1.46	1.43
4	А	1486	HEC	O1D-CGD	2.04	1.28	1.22
4	G	1485	HEC	O1A-CGA	2.04	1.28	1.22
4	С	1482	HEC	CAD-CBD	2.03	1.62	1.52
4	А	1483	HEC	CBD-CGD	-2.03	1.45	1.50
4	С	1482	HEC	C1C-NC	2.02	1.40	1.36

Continued from previous page...

All (223) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	А	1481	GOL	O3-C3-C2	10.98	162.85	110.20
3	Е	1481	GOL	O3-C3-C2	10.96	162.75	110.20
3	С	1481	GOL	O3-C3-C2	10.88	162.35	110.20
3	G	1481	GOL	O3-C3-C2	10.85	162.24	110.20
3	А	1481	GOL	O2-C2-C3	6.31	136.90	109.12
3	С	1481	GOL	O2-C2-C3	6.30	136.89	109.12
3	G	1481	GOL	O2-C2-C3	6.26	136.69	109.12
3	Е	1481	GOL	O2-C2-C3	6.20	136.43	109.12
4	Е	1483	HEC	CBD-CAD-C3D	4.04	119.51	112.62
4	А	1483	HEC	CBD-CAD-C3D	4.00	119.45	112.62
4	G	1485	HEC	CMC-C2C-C3C	3.96	130.48	125.82

$\alpha \cdot \cdot \cdot$	c	•	
1 Continued	trom	nromonie	naae
Continucu	110110	problous	puyc
	9	1	1 0

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	G	1483	HEC	CBD-CAD-C3D	3.95	119.37	112.62
4	С	1483	HEC	CBD-CAD-C3D	3.93	119.33	112.62
4	С	1485	HEC	CBA-CAA-C2A	3.81	119.03	112.60
4	С	1486	HEC	CMD-C2D-C1D	-3.80	122.62	128.46
4	G	1482	HEC	CMC-C2C-C3C	3.78	130.26	125.82
4	А	1485	HEC	CBA-CAA-C2A	3.78	118.97	112.60
4	G	1482	HEC	CMB-C2B-C3B	3.77	130.26	125.82
4	С	1485	HEC	CMC-C2C-C3C	3.71	130.18	125.82
4	А	1483	HEC	CMC-C2C-C3C	3.70	130.17	125.82
4	Е	1485	HEC	CBA-CAA-C2A	3.64	118.73	112.60
4	Е	1482	HEC	CMB-C2B-C3B	3.59	130.04	125.82
4	G	1485	HEC	O2A-CGA-CBA	3.56	125.47	114.03
3	С	1481	GOL	O1-C1-C2	3.56	127.27	110.20
4	С	1486	HEC	CMD-C2D-C3D	3.55	131.63	124.94
4	Е	1486	HEC	CMD-C2D-C1D	-3.53	123.03	128.46
3	G	1481	GOL	O1-C1-C2	3.51	127.05	110.20
4	Е	1482	HEC	CMC-C2C-C3C	3.49	129.92	125.82
4	А	1486	HEC	CMD-C2D-C1D	-3.48	123.12	128.46
4	G	1486	HEC	CMD-C2D-C1D	-3.48	123.12	128.46
4	G	1485	HEC	CMC-C2C-C1C	-3.46	123.15	128.46
3	А	1481	GOL	O1-C1-C2	3.42	126.58	110.20
4	Е	1486	HEC	CMD-C2D-C3D	3.40	131.35	124.94
4	С	1482	HEC	CMC-C2C-C3C	3.39	129.81	125.82
3	Ε	1481	GOL	O1-C1-C2	3.39	126.44	110.20
4	G	1486	HEC	CMD-C2D-C3D	3.38	131.31	124.94
4	С	1483	HEC	CMD-C2D-C1D	-3.36	123.31	128.46
4	A	1483	HEC	CMD-C2D-C1D	-3.35	123.31	128.46
4	A	1485	HEC	CMB-C2B-C3B	3.32	129.72	125.82
4	G	1482	HEC	CMB-C2B-C1B	-3.27	123.44	128.46
4	A	1482	HEC	CMB-C2B-C3B	3.27	129.66	125.82
4	E	1484	HEC	CMB-C2B-C3B	3.26	129.65	125.82
4	E	1485	HEC	O2A-CGA-CBA	3.26	124.49	114.03
4	A	1485	HEC	O2A-CGA-CBA	3.24	124.45	114.03
4	A	1482	HEC	CMC-C2C-C3C	3.23	129.62	125.82
4	C	1482	HEC	CMD-C2D-C3D	3.22	131.01	124.94
4	G	1484	HEC	CMD-C2D-C3D	3.19	130.96	124.94
4	A	1482	HEC	O2A-CGA-CBA	3.18	124.24	114.03
4	G	1485	HEC	CBA-CAA-C2A	3.14	117.90	112.60
4	A	1483	HEC	CMD-C2D-C3D	3.13	130.84	124.94
4	E	1485	HEC	CMC-C2C-C1C	-3.13	123.66	128.46
4	E	1486	HEC	O2A-CGA-CBA	3.12	124.04	114.03
4	A	1486	HEC	CMD-C2D-C3D	3.11	130.80	124.94

α \cdot \cdot \cdot	c		
[Continued	trom	nromanic	naae
Continucu	110110		page
	2	1	1 0

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	С	1485	HEC	CMC-C2C-C1C	-3.10	123.70	128.46
4	Е	1482	HEC	CMB-C2B-C1B	-3.10	123.70	128.46
4	С	1483	HEC	CMC-C2C-C3C	3.08	129.45	125.82
4	Е	1485	HEC	CMC-C2C-C3C	3.08	129.45	125.82
4	С	1486	HEC	O2A-CGA-CBA	3.08	123.92	114.03
4	С	1483	HEC	CMD-C2D-C3D	3.08	130.74	124.94
4	С	1485	HEC	CMB-C2B-C3B	3.07	129.43	125.82
4	G	1483	HEC	O2A-CGA-CBA	3.06	123.85	114.03
4	Е	1483	HEC	CMD-C2D-C3D	3.05	130.68	124.94
4	Е	1485	HEC	CMD-C2D-C3D	3.04	130.67	124.94
4	Е	1483	HEC	CMC-C2C-C3C	3.04	129.39	125.82
4	Е	1484	HEC	CMB-C2B-C1B	-3.01	123.83	128.46
4	А	1485	HEC	CMC-C2C-C3C	3.01	129.36	125.82
4	А	1485	HEC	CMD-C2D-C1D	-3.01	123.84	128.46
4	А	1483	HEC	CMC-C2C-C1C	-3.01	123.84	128.46
4	Е	1485	HEC	CMD-C2D-C1D	-3.01	123.84	128.46
4	Е	1483	HEC	C1D-C2D-C3D	-2.99	104.92	107.00
4	С	1485	HEC	CMD-C2D-C3D	2.93	130.47	124.94
4	С	1482	HEC	CMD-C2D-C1D	-2.93	123.96	128.46
4	С	1484	HEC	CMC-C2C-C3C	2.92	129.26	125.82
4	G	1484	HEC	CMD-C2D-C1D	-2.91	124.00	128.46
4	А	1483	HEC	O1A-CGA-CBA	-2.90	113.77	123.08
4	G	1484	HEC	CMC-C2C-C3C	2.89	129.22	125.82
4	А	1483	HEC	O2A-CGA-CBA	2.89	123.32	114.03
4	G	1485	HEC	CMD-C2D-C1D	-2.89	124.03	128.46
4	С	1485	HEC	CMD-C2D-C1D	-2.88	124.04	128.46
4	G	1483	HEC	CMC-C2C-C3C	2.87	129.20	125.82
4	С	1483	HEC	O1A-CGA-CBA	-2.87	113.86	123.08
4	Е	1484	HEC	CMC-C2C-C3C	2.86	129.19	125.82
4	С	1484	HEC	CMB-C2B-C3B	2.86	129.19	125.82
4	A	1482	HEC	CMB-C2B-C1B	-2.86	124.07	128.46
4	A	1485	HEC	CMD-C2D-C3D	2.86	130.33	124.94
4	G	1482	HEC	O2A-CGA-CBA	2.86	123.21	114.03
4	G	1485	HEC	O1A-CGA-CBA	-2.85	113.92	123.08
4	А	1484	HEC	CMD-C2D-C3D	2.85	130.31	124.94
4	С	1482	HEC	C1D-C2D-C3D	-2.84	105.02	107.00
4	G	1484	HEC	CMB-C2B-C3B	2.83	129.15	125.82
4	Е	1484	HEC	CMD-C2D-C3D	2.83	130.29	124.94
4	Е	1482	HEC	O2A-CGA-CBA	2.83	123.11	114.03
4	А	1484	HEC	O2A-CGA-CBA	2.83	123.11	114.03
4	G	$14\overline{83}$	HEC	CMD-C2D-C3D	2.81	130.24	124.94
4	G	1484	HEC	C1D-C2D-C3D	-2.81	105.04	107.00

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$Observed(^{o})$	$ $ Ideal(o)
4	А	1486	HEC	O2A-CGA-CBA	2.81	123.05	114.03
4	С	1485	HEC	O2A-CGA-CBA	2.79	123.01	114.03
4	С	1484	HEC	CMD-C2D-C3D	2.79	130.20	124.94
4	G	1486	HEC	CMC-C2C-C3C	2.78	129.09	125.82
4	G	1485	HEC	CMD-C2D-C3D	2.78	130.19	124.94
4	G	1483	HEC	CMB-C2B-C1B	-2.77	124.21	128.46
4	С	1482	HEC	O2A-CGA-CBA	2.76	122.91	114.03
4	С	1482	HEC	CMB-C2B-C3B	2.75	129.05	125.82
4	G	1486	HEC	O2A-CGA-CBA	2.74	122.85	114.03
4	С	1483	HEC	CMB-C2B-C3B	2.72	129.02	125.82
4	G	1484	HEC	CMC-C2C-C1C	-2.72	124.29	128.46
4	А	1486	HEC	CMB-C2B-C1B	-2.70	124.31	128.46
4	G	1483	HEC	CMB-C2B-C3B	2.70	128.99	125.82
4	E	1483	HEC	O2A-CGA-CBA	2.70	122.70	114.03
4	Е	1484	HEC	CMD-C2D-C1D	-2.69	124.33	128.46
4	А	1484	HEC	CAA-CBA-CGA	2.69	121.29	113.76
4	С	1484	HEC	O2A-CGA-CBA	2.67	122.61	114.03
4	Ε	1485	HEC	CMB-C2B-C3B	2.66	128.94	125.82
4	E	1482	HEC	CMC-C2C-C1C	-2.65	124.39	128.46
4	Ε	1483	HEC	CMD-C2D-C1D	-2.64	124.40	128.46
4	G	1484	HEC	O2A-CGA-CBA	2.64	122.52	114.03
4	С	1484	HEC	CMD-C2D-C1D	-2.64	124.41	128.46
4	С	1483	HEC	O2A-CGA-CBA	2.64	122.50	114.03
4	А	1486	HEC	CMC-C2C-C3C	2.63	128.91	125.82
4	А	1482	HEC	CMD-C2D-C3D	2.62	129.88	124.94
4	А	1482	HEC	C1D-C2D-C3D	-2.62	105.17	107.00
4	G	1484	HEC	CMB-C2B-C1B	-2.62	124.44	128.46
4	А	1484	HEC	CMD-C2D-C1D	-2.60	124.47	128.46
4	Ε	1485	HEC	O1A-CGA-CBA	-2.60	114.74	123.08
4	Ε	1484	HEC	CMC-C2C-C1C	-2.59	124.48	128.46
4	G	1483	HEC	CMD-C2D-C1D	-2.59	124.49	128.46
4	С	1483	HEC	CMB-C2B-C1B	-2.58	124.49	128.46
4	E	1486	HEC	CMC-C2C-C3C	2.58	128.86	125.82
4	С	1483	HEC	CMC-C2C-C1C	-2.58	124.50	128.46
4	G	1482	HEC	CMC-C2C-C1C	-2.58	124.50	128.46
4	А	1484	HEC	CMC-C2C-C3C	2.58	128.85	125.82
4	А	1486	HEC	CMB-C2B-C3B	2.57	128.85	125.82
4	E	1482	HEC	O2D-CGD-CBD	2.57	122.30	114.03
4	А	1484	HEC	C1D-C2D-C3D	-2.56	105.22	107.00
4	G	1482	HEC	CMD-C2D-C3D	2.55	129.75	124.94
4	А	1485	HEC	CMB-C2B-C1B	-2.55	124.55	128.46
4	Е	1484	HEC	CAA-CBA-CGA	2.54	120.89	113.76

Conti	nued fron	n previo	ous page.				
Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	С	1486	HEC	CMB-C2B-C3B	2.54	128.81	125.82
4	С	1482	HEC	CMC-C2C-C1C	-2.54	124.56	128.46
4	С	1482	HEC	O2D-CGD-O1D	-2.53	116.99	123.30
4	Е	1483	HEC	CMB-C2B-C3B	2.53	128.79	125.82
4	Е	1482	HEC	CMA-C3A-C2A	2.51	129.68	124.94
4	А	1482	HEC	CMC-C2C-C1C	-2.50	124.62	128.46
4	Е	1482	HEC	O2D-CGD-O1D	-2.50	117.08	123.30
4	А	1485	HEC	CMC-C2C-C1C	-2.49	124.63	128.46
4	G	1483	HEC	C1D-C2D-C3D	-2.48	105.27	107.00
4	Е	1486	HEC	O1A-CGA-CBA	-2.48	115.12	123.08
4	Е	1483	HEC	CMC-C2C-C1C	-2.48	124.66	128.46
4	Е	1484	HEC	O2A-CGA-CBA	2.47	121.98	114.03
4	G	1485	HEC	CMB-C2B-C1B	-2.47	124.67	128.46
4	Е	1482	HEC	CMD-C2D-C3D	2.46	129.58	124.94
4	С	1486	HEC	CMC-C2C-C3C	2.46	128.71	125.82
4	С	1485	HEC	CMB-C2B-C1B	-2.46	124.68	128.46
4	С	1484	HEC	CBA-CAA-C2A	-2.46	108.46	112.60
4	Е	1486	HEC	CMB-C2B-C3B	2.46	128.71	125.82
4	G	1482	HEC	O1A-CGA-CBA	-2.45	115.21	123.08
4	А	1483	HEC	CMB-C2B-C3B	2.45	128.70	125.82
4	С	1482	HEC	CMA-C3A-C2A	2.44	129.55	124.94
4	G	1486	HEC	CMB-C2B-C1B	-2.44	124.72	128.46
4	G	1485	HEC	CMB-C2B-C3B	2.43	128.68	125.82
4	Е	1484	HEC	CMA-C3A-C2A	2.43	129.53	124.94
4	Е	1483	HEC	CMB-C2B-C1B	-2.43	124.73	128.46
4	С	1482	HEC	O2D-CGD-CBD	2.42	121.82	114.03
4	А	1486	HEC	O2D-CGD-CBD	2.40	121.75	114.03
4	С	1485	HEC	O2D-CGD-CBD	2.39	121.70	114.03
4	Е	1483	HEC	O1A-CGA-CBA	-2.39	115.42	123.08
4	G	1486	HEC	CMB-C2B-C3B	2.38	128.62	125.82
4	Е	1485	HEC	O2D-CGD-CBD	2.36	121.62	114.03
4	Е	1485	HEC	CMB-C2B-C1B	-2.36	124.83	128.46
4	A	1485	HEC	O1A-CGA-CBA	-2.35	115.52	123.08
4	G	1482	HEC	CMD-C2D-C1D	-2.34	124.86	128.46
4	A	1483	HEC	CBA-CAA-C2A	2.34	116.54	112.60
4	G	1482	HEC	C1D-C2D-C3D	-2.32	105.38	107.00
4	Е	1484	HEC	C1D-C2D-C3D	-2.32	105.38	107.00
4	А	1482	HEC	O1A-CGA-CBA	-2.32	115.63	123.08
4	А	1482	HEC	O2D-CGD-O1D	-2.31	117.54	123.30
4	С	1484	HEC	C1D-C2D-C3D	-2.31	105.39	107.00
4	G	1485	HEC	O2D-CGD-CBD	2.31	121.44	114.03
4	А	1482	HEC	CMD-C2D-C1D	-2.30	124.92	128.46

1	G	U	6

α \cdot \cdot \cdot	c	•	
[Continued	trom	nromanic	naae
Communaca	110116	$p_{1}c_{0}a_{0}a_{0}$	page
	9	1	1 0

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$Observed(^{o})$	$Ideal(^{o})$
4	G	1483	HEC	CMC-C2C-C1C	-2.30	124.93	128.46
4	Е	1482	HEC	C1D-C2D-C3D	-2.30	105.40	107.00
4	G	1484	HEC	CAA-CBA-CGA	2.29	120.19	113.76
4	А	1483	HEC	CMB-C2B-C1B	-2.29	124.94	128.46
4	Е	1486	HEC	CMB-C2B-C1B	-2.28	124.96	128.46
4	А	1484	HEC	CBA-CAA-C2A	-2.28	108.76	112.60
4	С	1486	HEC	CMA-C3A-C2A	2.28	129.23	124.94
4	А	1484	HEC	CMA-C3A-C2A	2.27	129.22	124.94
4	G	1486	HEC	O1A-CGA-CBA	-2.26	115.83	123.08
4	А	1484	HEC	CMB-C2B-C3B	2.26	128.47	125.82
4	С	1484	HEC	CMC-C2C-C1C	-2.25	125.00	128.46
4	Е	1482	HEC	CMD-C2D-C1D	-2.25	125.01	128.46
4	С	1482	HEC	CMB-C2B-C1B	-2.24	125.02	128.46
4	Е	1483	HEC	CBA-CAA-C2A	2.24	116.38	112.60
4	С	1486	HEC	CMC-C2C-C1C	-2.23	125.04	128.46
4	А	1482	HEC	O2D-CGD-CBD	2.23	121.18	114.03
4	G	1482	HEC	CMA-C3A-C2A	2.21	129.11	124.94
4	G	1483	HEC	CBA-CAA-C2A	2.21	116.33	112.60
4	А	1485	HEC	O2D-CGD-CBD	2.21	121.13	114.03
4	С	1484	HEC	CMB-C2B-C1B	-2.21	125.07	128.46
4	А	1484	HEC	CMB-C2B-C1B	-2.19	125.10	128.46
4	Е	1482	HEC	O1A-CGA-CBA	-2.19	116.05	123.08
4	С	1484	HEC	CAA-CBA-CGA	2.19	119.89	113.76
4	С	1485	HEC	O1A-CGA-CBA	-2.19	116.06	123.08
4	G	1482	HEC	O2D-CGD-CBD	2.18	121.04	114.03
4	Е	1485	HEC	C1D-C2D-C3D	-2.17	105.49	107.00
4	С	1485	HEC	C1D-C2D-C3D	-2.16	105.49	107.00
4	С	1486	HEC	CMB-C2B-C1B	-2.16	125.15	128.46
4	G	1483	HEC	O1A-CGA-CBA	-2.13	116.25	123.08
4	А	1483	HEC	O2D-CGD-O1D	-2.11	118.05	123.30
4	С	1483	HEC	CMA-C3A-C2A	2.08	128.86	124.94
4	С	1482	HEC	O1A-CGA-CBA	-2.08	116.41	123.08
4	А	1486	HEC	CMC-C2C-C1C	-2.07	125.28	128.46
4	E	1486	HEC	CMA-C3A-C2A	2.07	128.85	124.94
4	G	1484	HEC	CBA-CAA-C2A	-2.07	109.12	112.60
4	Е	1484	HEC	CBA-CAA-C2A	-2.07	109.12	112.60
4	А	1484	HEC	CMC-C2C-C1C	-2.06	125.30	128.46
4	Е	1485	HEC	O2D-CGD-O1D	-2.05	118.19	123.30
4	G	1486	HEC	C1D-C2D-C3D	-2.05	$1\overline{05.57}$	107.00
4	С	1486	HEC	O1A-CGA-CBA	-2.05	116.50	123.08
4	A	1484	HEC	O2D-CGD-CBD	2.03	120.56	114.03
4	С	1484	HEC	CMA-C3A-C2A	2.03	128.76	124.94

Continued from prettous page								
Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$ $ Ideal(o)	
4	Е	1483	HEC	O2D-CGD-O1D	-2.03	118.25	123.30	
4	С	1485	HEC	CMA-C3A-C2A	2.01	128.74	124.94	

There are no chirality outliers.

All (66) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	А	1481	GOL	C1-C2-C3-O3
3	С	1481	GOL	C1-C2-C3-O3
3	Е	1481	GOL	C1-C2-C3-O3
3	G	1481	GOL	C1-C2-C3-O3
4	А	1485	HEC	C1A-C2A-CAA-CBA
4	А	1485	HEC	C3A-C2A-CAA-CBA
4	С	1485	HEC	C1A-C2A-CAA-CBA
4	С	1485	HEC	C3A-C2A-CAA-CBA
4	Е	1485	HEC	C1A-C2A-CAA-CBA
4	G	1485	HEC	C1A-C2A-CAA-CBA
4	G	1485	HEC	C3A-C2A-CAA-CBA
3	А	1481	GOL	O1-C1-C2-O2
3	С	1481	GOL	O1-C1-C2-O2
3	Е	1481	GOL	O1-C1-C2-O2
3	G	1481	GOL	O1-C1-C2-O2
4	Е	1485	HEC	C3A-C2A-CAA-CBA
4	Е	1483	HEC	CAA-CBA-CGA-O1A
4	А	1486	HEC	CAA-CBA-CGA-O1A
4	С	1483	HEC	CAA-CBA-CGA-O1A
4	G	1486	HEC	CAD-CBD-CGD-O2D
4	А	1486	HEC	CAD-CBD-CGD-O2D
4	Е	1483	HEC	CAA-CBA-CGA-O2A
4	Е	1486	HEC	CAA-CBA-CGA-O1A
4	А	1483	HEC	CAA-CBA-CGA-O1A
4	G	1483	HEC	CAA-CBA-CGA-O1A
4	А	1482	HEC	CAA-CBA-CGA-O1A
4	Е	1482	HEC	CAA-CBA-CGA-O1A
4	G	1486	HEC	CAA-CBA-CGA-O1A
4	С	1483	HEC	CAA-CBA-CGA-O2A
4	G	1483	HEC	CAA-CBA-CGA-O2A
4	А	1483	HEC	CAA-CBA-CGA-O2A
4	С	1482	HEC	CAA-CBA-CGA-O1A
4	С	1486	HEC	CAA-CBA-CGA-O1A
4	G	1486	HEC	CAD-CBD-CGD-O1D
4	Е	1486	HEC	CAA-CBA-CGA-O2A

Mol	Chain	Res	Type	Atoms
4	G	1482	HEC	CAA-CBA-CGA-O2A
4	С	1486	HEC	CAA-CBA-CGA-O2A
4	G	1482	HEC	CAA-CBA-CGA-O1A
4	А	1486	HEC	CAD-CBD-CGD-O1D
4	G	1486	HEC	CAA-CBA-CGA-O2A
4	А	1486	HEC	CAA-CBA-CGA-O2A
4	С	1485	HEC	CAA-CBA-CGA-O1A
4	Е	1482	HEC	CAA-CBA-CGA-O2A
4	А	1482	HEC	CAA-CBA-CGA-O2A
4	С	1482	HEC	CAA-CBA-CGA-O2A
4	Е	1486	HEC	CAD-CBD-CGD-O2D
4	С	1486	HEC	CAD-CBD-CGD-O2D
4	А	1485	HEC	CAA-CBA-CGA-O1A
4	Е	1486	HEC	CAD-CBD-CGD-O1D
4	Е	1485	HEC	CAA-CBA-CGA-O1A
4	G	1485	HEC	CAA-CBA-CGA-O1A
4	С	1486	HEC	CAD-CBD-CGD-O1D
4	А	1485	HEC	CAA-CBA-CGA-O2A
4	А	1482	HEC	C2A-CAA-CBA-CGA
4	С	1482	HEC	C2A-CAA-CBA-CGA
4	С	1485	HEC	C3D-CAD-CBD-CGD
4	Е	1482	HEC	C2A-CAA-CBA-CGA
4	G	1482	HEC	C2A-CAA-CBA-CGA
4	G	1485	HEC	C3D-CAD-CBD-CGD
4	Е	1485	HEC	CAA-CBA-CGA-O2A
4	G	1485	HEC	CAA-CBA-CGA-O2A
3	G	1481	GOL	O1-C1-C2-C3
4	С	1485	HEC	CAA-CBA-CGA-O2A
4	А	1484	HEC	CAD-CBD-CGD-O2D
4	А	1484	HEC	CAD-CBD-CGD-O1D
4	А	1485	HEC	C3D-CAD-CBD-CGD

Continued from previous page...

There are no ring outliers.

23 monomers are involved in 73 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	G	1486	HEC	6	0
4	Е	1486	HEC	6	0
4	G	1485	HEC	3	0
4	Е	1482	HEC	1	0
4	А	1486	HEC	8	0
4	А	1484	HEC	1	0

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	Е	1483	HEC	3	0
4	А	1485	HEC	5	0
3	Е	1481	GOL	3	0
4	С	1486	HEC	9	0
3	G	1481	GOL	3	0
4	С	1484	HEC	2	0
4	С	1482	HEC	1	0
4	G	1482	HEC	2	0
4	G	1483	HEC	3	0
4	А	1482	HEC	1	0
4	С	1483	HEC	3	0
4	С	1485	HEC	2	0
3	С	1481	GOL	3	0
4	Е	1485	HEC	5	0
4	G	1484	HEC	1	0
3	A	1481	GOL	3	0
4	А	1483	HEC	3	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

EDS was not executed - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS was not executed - this section is therefore empty.

6.3 Carbohydrates (i)

EDS was not executed - this section is therefore empty.

6.4 Ligands (i)

EDS was not executed - this section is therefore empty.

6.5 Other polymers (i)

EDS was not executed - this section is therefore empty.

