

# Full wwPDB X-ray Structure Validation Report (i)

#### Aug 8, 2020 – 01:28 PM BST

| : | 5GTI                                                        |
|---|-------------------------------------------------------------|
| : | Native XFEL structure of photosystem II (two flash dataset) |
| : | Suga, M.; Shen, J.R.                                        |
| : | 2016-08-20                                                  |
| : | 2.50  Å(reported)                                           |
|   |                                                             |

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

| MolProbity                     | ÷ | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          |   | 1.8.5 (274361), CSD as541be (2020)                                 |
| Xtriage (Phenix)               | : | 1.13                                                               |
| EDS                            | : | 2.13.1                                                             |
| buster-report                  | : | 1.1.7 (2018)                                                       |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| $\operatorname{Refmac}$        | : | 5.8.0158                                                           |
| CCP4                           | : | 7.0.044  (Gargrove)                                                |
| Ideal geometry (proteins)      | : | Engh & Huber $(2001)$                                              |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.13.1                                                             |

## 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 2.50 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | $egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$ | ${f Similar\ resolution}\ (\#{ m Entries}, { m resolution\ range}({ m \AA}))$ |  |  |
|-----------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|
| $R_{free}$            | 130704                                                               | 4661(2.50-2.50)                                                               |  |  |
| Ramachandran outliers | 138981                                                               | 5231(2.50-2.50)                                                               |  |  |
| Sidechain outliers    | 138945                                                               | 5233(2.50-2.50)                                                               |  |  |
| RSRZ outliers         | 127900                                                               | 4559(2.50-2.50)                                                               |  |  |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain |
|-----|-------|--------|------------------|
|     |       | 244    | 3%               |
|     | A     | 344    | 97% •            |
|     |       |        | 4%               |
| 1   | a     | 344    | 97% •••          |
|     |       |        | 11%              |
| 2   | В     | 505    | 98% •            |
|     |       |        | 14%              |
| 2   | b     | 505    | 97% •            |
|     |       |        | 16%              |
| 3   | C     | 455    | 98%              |
|     |       |        | 13%              |
| 3   | с     | 455    | 98% •            |
|     | _     |        | 5%               |
| 4   | D     | 342    | 100%             |



| Mol | Chain | Length | Quality of chain |       |
|-----|-------|--------|------------------|-------|
| 4   | d     | 342    | 8%               |       |
| 5   | E     | 84     | 8%               |       |
| 5   |       | 01     | 23%              |       |
| O   | e     | 84     | 90%<br>2%        | • 6%  |
| 6   | F     | 44     | 77%              | 23%   |
| 6   | f     | 44     | 68% •            | 30%   |
| 7   | Н     | 65     | 94%              | 5% •  |
| 7   | h     | 65     | 97%              | •     |
| 8   | Ι     | 38     | 95%              | 5%    |
| 8   | i     | 38     | <u>8%</u><br>92% | 5% •  |
| 0   | т     | 20     | 15%              |       |
| 9   | J     |        | 92%<br>          | 5% •  |
| 9   | j     | 39     | 100%             |       |
| 10  | К     | 37     | 92%              | 8%    |
| 10  | k     | 37     | 92%              | 8%    |
| 11  | L     | 37     | 97%              |       |
| 11  | 1     | 37     | 97%              |       |
| 10  | M     | 26     | 3%               | 01/   |
|     | 111   |        | 8%               | • 8%  |
| 12  | m     | 36     | <u> </u>         | 6% 6% |
| 13  | Ο     | 244    | 98%              | ·     |
| 13  | 0     | 244    | 98%              | ·     |
| 14  | Т     | 32     | 3%<br>91%        | • 6%  |
| 14  | t     | 32     | 88%              | 6% 6% |
| 15  | U     | 104    | 13%              | • 8%  |
| 15  | u     | 104    | <u>4%</u><br>91% | • 7%  |
| 16  | V     | 137    | 4%               |       |
| 10  | v     | 101    | 100%             |       |
| 16  | V     | 137    | 100%             |       |



| Mol | Chain | Length | Quality of chain |      |
|-----|-------|--------|------------------|------|
| 17  | Х     | 40     | 93%              | • 5% |
| 17  | х     | 40     | 95%              | 5%   |
| 18  | Y     | 30     | 40%              | •    |
| 18  | у     | 30     | 93%              | • •  |
| 19  | Z     | 62     | 37% 94%          | 6%   |
| 19  | Z     | 62     | 92%              | 8%   |
| 20  | R     | 34     | 100%             |      |

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

| Mol | Type | Chain | Res | Chirality | Geometry | Clashes | Electron density |
|-----|------|-------|-----|-----------|----------|---------|------------------|
| 23  | CLA  | А     | 404 | Х         | -        | -       | -                |
| 23  | CLA  | А     | 405 | Х         | -        | -       | -                |
| 23  | CLA  | А     | 407 | Х         | -        | -       | -                |
| 23  | CLA  | В     | 602 | Х         | -        | -       | -                |
| 23  | CLA  | В     | 603 | X         | -        | -       | -                |
| 23  | CLA  | В     | 604 | Х         | _        | -       | _                |
| 23  | CLA  | В     | 605 | X         | -        | -       | -                |
| 23  | CLA  | В     | 606 | Х         | -        | -       | _                |
| 23  | CLA  | В     | 607 | X         | -        | -       | -                |
| 23  | CLA  | В     | 608 | Х         | _        | -       | _                |
| 23  | CLA  | В     | 609 | Х         | _        | -       | _                |
| 23  | CLA  | В     | 610 | X         | -        | -       | -                |
| 23  | CLA  | В     | 611 | Х         | _        | -       | _                |
| 23  | CLA  | В     | 612 | Х         | -        | -       | -                |
| 23  | CLA  | В     | 613 | Х         | _        | -       | _                |
| 23  | CLA  | В     | 614 | Х         | _        | -       | _                |
| 23  | CLA  | В     | 615 | Х         | -        | -       | _                |
| 23  | CLA  | В     | 616 | Х         | _        | -       | _                |
| 23  | CLA  | В     | 617 | Х         | -        | -       | -                |
| 23  | CLA  | С     | 502 | Х         | -        | -       | _                |
| 23  | CLA  | С     | 503 | X         | -        | -       | -                |
| 23  | CLA  | C     | 504 | X         | -        | -       | -                |
| 23  | CLA  | C     | 505 | X         | -        | -       | -                |
| 23  | CLA  | C     | 506 | X         | -        | -       | -                |
| 23  | CLA  | C     | 507 | X         |          | _       | -                |



| Conti | Continued from previous page |       |                |           |          |         |                  |  |  |  |  |
|-------|------------------------------|-------|----------------|-----------|----------|---------|------------------|--|--|--|--|
| Mol   | Type                         | Chain | $\mathbf{Res}$ | Chirality | Geometry | Clashes | Electron density |  |  |  |  |
| 23    | CLA                          | С     | 508            | Х         | -        | -       | -                |  |  |  |  |
| 23    | CLA                          | С     | 509            | Х         | -        | -       | -                |  |  |  |  |
| 23    | CLA                          | С     | 510            | Х         | -        | -       | -                |  |  |  |  |
| 23    | CLA                          | С     | 511            | Х         | -        | -       | -                |  |  |  |  |
| 23    | CLA                          | С     | 512            | Х         | -        | -       | -                |  |  |  |  |
| 23    | CLA                          | С     | 513            | Х         | -        | -       | -                |  |  |  |  |
| 23    | CLA                          | С     | 514            | Х         | -        | -       | -                |  |  |  |  |
| 23    | CLA                          | D     | 401            | Х         | -        | -       | -                |  |  |  |  |
| 23    | CLA                          | D     | 404            | Х         | -        | -       | -                |  |  |  |  |
| 23    | CLA                          | D     | 405            | Х         | -        | -       | -                |  |  |  |  |
| 23    | CLA                          | a     | 404            | Х         | -        | -       | -                |  |  |  |  |
| 23    | CLA                          | a     | 405            | Х         | -        | -       | -                |  |  |  |  |
| 23    | CLA                          | a     | 406            | Х         | _        | -       | -                |  |  |  |  |
| 23    | CLA                          | a     | 409            | Х         | _        | -       | _                |  |  |  |  |
| 23    | CLA                          | b     | 601            | Х         | _        | -       | -                |  |  |  |  |
| 23    | CLA                          | b     | 602            | Х         | _        | -       | _                |  |  |  |  |
| 23    | CLA                          | b     | 603            | Х         | _        | -       | -                |  |  |  |  |
| 23    | CLA                          | b     | 604            | Х         | _        | -       | _                |  |  |  |  |
| 23    | CLA                          | b     | 605            | Х         | -        | -       | -                |  |  |  |  |
| 23    | CLA                          | b     | 606            | Х         | -        | -       | -                |  |  |  |  |
| 23    | CLA                          | b     | 607            | Х         | -        | -       | -                |  |  |  |  |
| 23    | CLA                          | b     | 608            | Х         | -        | -       | -                |  |  |  |  |
| 23    | CLA                          | b     | 609            | X         | -        | -       | -                |  |  |  |  |
| 23    | CLA                          | b     | 610            | X         | -        | -       | -                |  |  |  |  |
| 23    | CLA                          | b     | 611            | X         | -        | -       | -                |  |  |  |  |
| 23    | CLA                          | b     | 612            | X         | -        | _       | -                |  |  |  |  |
| 23    | CLA                          | b     | 613            | X         | -        | -       | -                |  |  |  |  |
| 23    | CLA                          | b     | 614            | X         | -        | _       | -                |  |  |  |  |
| 23    | CLA                          | b     | 615            | X         | -        | _       | -                |  |  |  |  |
| 23    | CLA                          | b     | 616            | X         | -        | _       | -                |  |  |  |  |
| 23    | CLA                          | с     | 501            | X         | -        | _       | -                |  |  |  |  |
| 23    | CLA                          | с     | 502            | X         | -        | _       | -                |  |  |  |  |
| 23    | CLA                          | с     | 503            | X         | -        | _       | -                |  |  |  |  |
| 23    | CLA                          | с     | 504            | X         | -        | _       | _                |  |  |  |  |
| 23    | CLA                          | с     | 505            | X         | _        | _       | _                |  |  |  |  |
| 23    | CLA                          | с     | 506            | X         | _        | _       | -                |  |  |  |  |
| 23    | CLA                          | с     | 507            | X         | _        | -       | _                |  |  |  |  |
| 23    | CLA                          | с     | 508            | X         | _        | -       | _                |  |  |  |  |
| 23    | CLA                          | с     | 509            | X         | _        | -       | _                |  |  |  |  |
| 23    | CLA                          | с     | 510            | X         | _        | -       | _                |  |  |  |  |
| 23    | CLA                          | c     | 511            | X         | _        | -       | _                |  |  |  |  |
| 23    | CLA                          | с     | 512            | X         | _        | _       | _                |  |  |  |  |
| -     |                              | -     |                |           |          |         |                  |  |  |  |  |



|                 |      | Chain  | <b>Bes</b> | Chirality | Geometry | Clashes | Electron density |
|-----------------|------|--------|------------|-----------|----------|---------|------------------|
| 23              | CLA  | chain  | 513        | X         | Geometry | -       |                  |
| 20              |      | d      | 402        | X<br>V    |          | _       |                  |
| 20              |      | u<br>d | 402        |           |          | -       | -                |
| 20              | COLA | u<br>J | 403        | Λ         | -        | -       | -<br>V           |
| 21              | GOL  |        | 401        | -         | -        | _       | Λ<br>Υ           |
| 30              | UNL  | A      | 414        | -         | -        | -       | <u>Х</u>         |
| 30              | UNL  | J      | 102        | -         | -        | -       | Х                |
| 30              | UNL  | a      | 416        | -         | -        | -       | Х                |
| 30              | UNL  | b      | 627        | -         | _        | -       | Х                |
| 31              | LHG  | е      | 101        | -         | -        | -       | Х                |
| 34              | LMG  | С      | 521        | -         | -        | -       | Х                |
| 34              | LMG  | с      | 520        | -         | -        | -       | Х                |
| 35              | LMT  | В      | 633        | -         | -        | -       | Х                |
| 35              | LMT  | С      | 522        | _         | _        | -       | Х                |
| 35              | LMT  | Ε      | 102        | -         | _        | -       | Х                |
| 35              | LMT  | е      | 102        | -         | _        | -       | Х                |
| 35              | LMT  | m      | 103        | -         | -        | -       | Х                |
| 36              | HTG  | В      | 625        | _         | _        | -       | Х                |
| 36              | HTG  | В      | 626        | -         | -        | -       | Х                |
| $\overline{36}$ | HTG  | C      | 524        | _         | _        | -       | Х                |
| 36              | HTG  | b      | 622        |           |          | -       | Х                |
| 36              | HTG  | b      | 623        | -         | -        | -       | X                |
| 36              | HTG  | с      | 522        |           | _        | -       | X                |



#### 2 Entry composition (i)

There are 41 unique types of molecules in this entry. The entry contains 52752 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Photosystem II D1 protein.

| Mol | Chain | Residues | Atoms         |           |          |          |             | ZeroOcc | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|-------------|---------|---------|-------|
| 1   | А     | 334      | Total<br>2620 | C<br>1716 | N<br>431 | O<br>458 | ${ m S}$ 15 | 0       | 0       | 0     |
| 1   | a     | 334      | Total<br>2620 | C<br>1716 | N<br>431 | O<br>458 | S<br>15     | 0       | 0       | 0     |

• Molecule 2 is a protein called Photosystem II CP47 reaction center protein.

| Mol | Chain | Residues |       | At   | oms |     |              | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|------|-----|-----|--------------|---------|---------|-------|
| 2   | В     | 504      | Total | С    | Ν   | Ο   | S            | 0       | Ο       | 0     |
|     | D     | 001      | 3969  | 2605 | 661 | 690 | 13           | 0       | 0       | 0     |
| 0   | h     | 504      | Total | С    | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
|     | D     | 504      | 3969  | 2605 | 661 | 690 | 13           | 0       | 0       | 0     |

• Molecule 3 is a protein called Photosystem II CP43 protein.

| Mol | Chain | Residues |               | At        | oms      |          |         | ZeroOcc | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|---------|-------|
| 3   | С     | 451      | Total<br>3486 | C<br>2281 | N<br>584 | O<br>608 | S<br>13 | 0       | 0       | 0     |
| 3   | с     | 455      | Total<br>3519 | C<br>2303 | N<br>589 | O<br>614 | S<br>13 | 0       | 0       | 0     |

• Molecule 4 is a protein called Photosystem II D2 protein.

| Mol | Chain | Residues |               | At        | oms      |          |         | ZeroOcc | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|---------|-------|
| 4   | D     | 342      | Total<br>2726 | C<br>1805 | N<br>445 | O<br>464 | S<br>12 | 0       | 0       | 0     |
| 4   | d     | 341      | Total<br>2717 | C<br>1800 | N<br>444 | O<br>461 | S<br>12 | 0       | 0       | 0     |

• Molecule 5 is a protein called Cytochrome b559 subunit alpha.



| Mol | Chain | Residues |       | Ato | ms  |     | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|-----|-----|-----|---------|---------|-------|
| 5   | F     | 81       | Total | С   | Ν   | Ο   | 0       | 0       | 0     |
| 0   |       | 01       | 662   | 432 | 107 | 123 | 0       | 0       | 0     |
| 5   | 0     | 70       | Total | С   | Ν   | Ο   | 0       | 0       | 0     |
| 5   | е     | 19       | 648   | 424 | 105 | 119 | 0       | 0       | 0     |

• Molecule 6 is a protein called Cytochrome b559 subunit beta.

| Mol | Chain | Residues |       | Atc | $\mathbf{ms}$ |    |   | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|-----|---------------|----|---|---------|---------|-------|
| 6   | F     | 3.4      | Total | С   | Ν             | Ο  | S | 0       | 0       | 0     |
| 0   | Г     | 04       | 275   | 187 | 45            | 42 | 1 | 0       | 0       | 0     |
| G   | f     | 21       | Total | С   | Ν             | Ο  | S | 0       | 0       | 0     |
| 0   | I     | 10       | 250   | 170 | 42            | 37 | 1 |         | 0       | 0     |

• Molecule 7 is a protein called Photosystem II reaction center protein H.

| Mol | Chain | Residues |       | Ato | $\mathbf{ms}$ |    |   | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|-----|---------------|----|---|---------|---------|-------|
| 7   | н     | 64       | Total | С   | Ν             | Ο  | S | 0       | 0       | Ο     |
| 1   | 11    | 04       | 506   | 339 | 81            | 84 | 2 | 0       | 0       | 0     |
| 7   | h     | 65       | Total | С   | Ν             | Ο  | S | 0       | 0       | 0     |
| 1   | 11    | 05       | 511   | 341 | 82            | 86 | 2 | 0       | 0       | 0     |

• Molecule 8 is a protein called Photosystem II reaction center protein I.

| Mol | Chain | Residues |       | Ato | $\mathbf{ms}$ |    |              | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|-----|---------------|----|--------------|---------|---------|-------|
| Q   | т     | 38       | Total | С   | Ν             | Ο  | $\mathbf{S}$ | 0       | 0       | 0     |
| 0   | L     |          | 314   | 211 | 48            | 54 | 1            | 0       | 0       | 0     |
| 0   | ;     | 20       | Total | С   | Ν             | Ο  | S            | 0       | 0       | 0     |
| 0   |       | 50       | 314   | 211 | 48            | 54 | 1            |         | U       |       |

• Molecule 9 is a protein called Photosystem II reaction center protein J.

| Mol | Chain | Residues |       | Atc | $\mathbf{ms}$ |    |   | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|-----|---------------|----|---|---------|---------|-------|
| 0   | т     | 20       | Total | С   | Ν             | Ο  | S | 0       | 0       | 0     |
| 9   | 1     |          | 272   | 182 | 42            | 47 | 1 | 0       | 0       | 0     |
| 0   | ;     | 20       | Total | С   | Ν             | Ο  | S | 0       | 0       | 0     |
| 9   | J     |          | 277   | 185 | 43            | 48 | 1 | 0       | 0       | 0     |

• Molecule 10 is a protein called Photosystem II PsbK protein.

| Mol | Chain | Residues |              | Aton                                             | ıs      |         | ZeroOcc | AltConf | Trace |
|-----|-------|----------|--------------|--------------------------------------------------|---------|---------|---------|---------|-------|
| 10  | K     | 37       | Total<br>293 | $\begin{array}{c} \mathrm{C} \\ 204 \end{array}$ | N<br>43 | O<br>46 | 0       | 0       | 0     |



Continued from previous page...

| Mol | Chain | Residues |              | Aton     | ıs      |         | ZeroOcc | AltConf | Trace |
|-----|-------|----------|--------------|----------|---------|---------|---------|---------|-------|
| 10  | k     | 37       | Total<br>293 | C<br>204 | N<br>43 | O<br>46 | 0       | 0       | 0     |

• Molecule 11 is a protein called Photosystem II reaction center protein L.

| Mol | Chain | Residues |       | Aton         | ns      |                | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|--------------|---------|----------------|---------|---------|-------|
| 11  | L     | 36       | Total | C<br>107     | N<br>47 | 0<br>52        | 0       | 0       | 0     |
|     | 1     | 20       | Total | - 197<br>- C | 47<br>N | $\frac{32}{0}$ | 0       | 0       | 0     |
|     |       | 30       | 296   | 197          | 47      | 52             | 0       | U       |       |

• Molecule 12 is a protein called Photosystem II PsbM protein.

| Mol | Chain | Residues |       | Atc | $\mathbf{ms}$ |    |   | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|-----|---------------|----|---|---------|---------|-------|
| 10  | М     | 22       | Total | С   | Ν             | Ο  | S | 0       | 0       | 0     |
|     | IVI   |          | 260   | 173 | 38            | 48 | 1 | 0       | 0       | 0     |
| 10  |       | 24       | Total | С   | Ν             | Ο  | S | 0       | 0       | 0     |
|     | 111   | 04       | 269   | 179 | 40            | 49 | 1 | 0       | 0       | 0     |

• Molecule 13 is a protein called Photosystem II manganese-stabilizing polypeptide.

| Mol | Chain | Residues | Atoms |      |     |     |   | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|------|-----|-----|---|---------|---------|-------|
| 12  | 0     | 242      | Total | С    | Ν   | Ο   | S | 0       | 0       | 0     |
| 10  | 0     | 240      | 1865  | 1165 | 315 | 381 | 4 | 0       | 0       | 0     |
| 19  |       | 942      | Total | С    | Ν   | Ο   | S | 0       | 0       | 0     |
| 10  | 0     |          | 1865  | 1165 | 315 | 381 | 4 | 0       | 0       | 0     |

• Molecule 14 is a protein called Photosystem II reaction center protein T.

| Mol | Chain | Residues | Atoms |     |    |    |   | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|-----|----|----|---|---------|---------|-------|
| 14  | т     | 30       | Total | С   | Ν  | Ο  | S | 0       | 0       | 0     |
| 14  |       | 50       | 258   | 181 | 36 | 39 | 2 | 0       | 0       | 0     |
| 14  | +     | 20       | Total | С   | Ν  | Ο  | S | 0       | 0       | 0     |
| 14  | L L   |          | 258   | 181 | 36 | 39 | 2 | 0       | 0       | U     |

• Molecule 15 is a protein called Photosystem II 12 kDa extrinsic protein.

| Mol | Chain | Residues | Atoms |     |     |     | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|-----|-----|-----|---------|---------|-------|
| 15  | II    | 06       | Total | С   | Ν   | Ο   | 0       | 0       | 0     |
| 10  | U     | 90       | 765   | 486 | 128 | 151 | 0       | 0       | 0     |
| 15  | 11    | 07       | Total | С   | Ν   | Ο   | 0       | 0       | 0     |
| 10  | u     | u 97     | 774   | 491 | 129 | 154 | 0       | 0       | 0     |



• Molecule 16 is a protein called Cytochrome c-550.

| Mol | Chain | Residues |       | At  | oms |     |   | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|-----|-----|-----|---|---------|---------|-------|
| 16  | v     | 197      | Total | С   | Ν   | Ο   | S | 0       | 0       | 0     |
| 10  | 10 V  | 137      | 1064  | 675 | 177 | 208 | 4 | 0       | 0       | 0     |
| 16  |       | 127      | Total | С   | Ν   | Ο   | S | 0       | 0       | 0     |
| 10  | V     | 197      | 1064  | 675 | 177 | 208 | 4 | 0       | 0       | 0     |

• Molecule 17 is a protein called Photosystem II reaction center protein X.

| Mol | Chain | Residues | Atoms |     |    |    | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|-----|----|----|---------|---------|-------|
| 17  | v     | 38       | Total | С   | Ν  | Ο  | 0       | 0       | 0     |
| 17  | Λ     |          | 281   | 188 | 45 | 48 | 0       | 0       | 0     |
| 17  | v     | 20       | Total | С   | Ν  | Ο  | 0       | 0       | 0     |
| 11  | А     | 30       | 281   | 188 | 45 | 48 |         | U       | 0     |

• Molecule 18 is a protein called Photosystem II reaction center protein Ycf12.

| Mol | Chain | Residues | Atoms |     |    |    |   | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|-----|----|----|---|---------|---------|-------|
| 18  | V     | 20       | Total | С   | Ν  | Ο  | S | 0       | 0       | 0     |
| 10  | 1     | 29       | 215   | 142 | 37 | 33 | 3 | 0       | 0       | 0     |
| 18  | Ţ     | 20       | Total | С   | Ν  | Ο  | S | 0       | 0       | 0     |
| 10  | У     | 29       | 215   | 142 | 37 | 33 | 3 | 0       | 0       |       |

• Molecule 19 is a protein called Photosystem II reaction center protein Z.

| Mol | Chain | Residues | Atoms |     |    |    |              | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|-----|----|----|--------------|---------|---------|-------|
| 10  | 7     | 62       | Total | С   | Ν  | Ο  | $\mathbf{S}$ | 0       | 0       | 0     |
| 19  | 2     | 02       | 479   | 328 | 72 | 77 | 2            | 0       | 0       | 0     |
| 10  | 7     | 62       | Total | С   | Ν  | Ο  | S            | 0       | 0       | 0     |
| 19  | z     | 02       | 479   | 328 | 72 | 77 | 2            | 0       | 0       | 0     |

• Molecule 20 is a protein called Photosystem II protein Y.

| Mol | Chain | Residues | Atoms        |          |         |         | ZeroOcc | AltConf | Trace |
|-----|-------|----------|--------------|----------|---------|---------|---------|---------|-------|
| 20  | R     | 34       | Total<br>273 | C<br>186 | N<br>47 | O<br>40 | 0       | 0       | 0     |

• Molecule 21 is FE (II) ION (three-letter code: FE2) (formula: Fe).

| Mol | Chain | Residues | Atoms           | ZeroOcc | AltConf |
|-----|-------|----------|-----------------|---------|---------|
| 21  | А     | 1        | Total Fe<br>1 1 | 0       | 0       |



Continued from previous page...

| Mol | Chain | Residues | Atoms           | ZeroOcc | AltConf |
|-----|-------|----------|-----------------|---------|---------|
| 21  | a     | 1        | Total Fe<br>1 1 | 0       | 0       |

• Molecule 22 is CHLORIDE ION (three-letter code: CL) (formula: Cl).

| Mol | Chain | Residues | Atoms           | ZeroOcc | AltConf |
|-----|-------|----------|-----------------|---------|---------|
| 22  | А     | 2        | Total Cl<br>2 2 | 0       | 0       |
| 22  | a     | 2        | Total Cl<br>2 2 | 0       | 0       |

• Molecule 23 is CHLOROPHYLL A (three-letter code: CLA) (formula:  $C_{55}H_{72}MgN_4O_5$ ).



| Mol | Chain | Residues |       | At | $\mathbf{oms}$ |   |   | ZeroOcc | AltConf |  |  |
|-----|-------|----------|-------|----|----------------|---|---|---------|---------|--|--|
| 23  | Δ     | 1        | Total | С  | Mg             | Ν | Ο | Ο       | 0       |  |  |
| 20  | 11    | I        | 65    | 55 | 1              | 4 | 5 | 0       | 0       |  |  |
| 23  | Δ     | 1        | Total | С  | Mg             | Ν | Ο | 0       | 0       |  |  |
| 20  | Л     | T        | 65    | 55 | 1              | 4 | 5 | 0       | 0       |  |  |
| 23  | Δ     | 1        | Total | С  | Mg             | Ν | Ο | 0       | 0       |  |  |
| 20  | Л     | Л        |       | 65 | 55             | 1 | 4 | 5       | 0       |  |  |
| 23  | В     | 1        | Total | С  | Mg             | Ν | Ο | 0       | 0       |  |  |
| 20  | D     | I        | 65    | 55 | 1              | 4 | 5 | 0       | 0       |  |  |
| 23  | В     | 1        | Total | С  | Mg             | Ν | Ο | 0       | 0       |  |  |
| 20  | D     | T        | 65    | 55 | 1              | 4 | 5 | 0       | 0       |  |  |
| 02  | D     | 1        | Total | С  | Mg             | Ν | Ο | 0       | 0       |  |  |
|     | D     |          | 65    | 55 | 1              | 4 | 5 | U       |         |  |  |



| Mol         | Chain | Residues | 5-    | At           | oms |   |   | ZeroOcc | AltConf |
|-------------|-------|----------|-------|--------------|-----|---|---|---------|---------|
|             | р     |          | Total | С            | Mg  | Ν | Ο | 0       | 0       |
| 23          | В     | 1        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
|             | р     |          | Total | С            | Mg  | Ν | Ο | 0       | 0       |
| 23          | В     | 1        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
|             | Б     | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
| 23          | В     | 1        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
| 0.2         | р     | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
| 23          | В     | 1        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
| 0.2         | р     | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
| 23          | В     | 1        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
|             | р     | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
| 23          | D     | 1        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
| - 12        | D     | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
| 20          | D     | 1        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
| - 12        | D     | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
| 20          | D     | 1        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
| - 72        | В     | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
| 20          | D     | 1        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
| - 0.2       | D     | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
| 23          | D     | 1        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
| 2           | D     | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
| 20          | D     | 1        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
| - <u>72</u> | В     | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
| 20          | D     | L        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
| 23          | В     | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
| 2.5         | D     | I        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
| 23          | С     | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
| 20          | U     | T        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
| 23          | С     | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
|             | 0     | L        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
| 23          | С     | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
|             | 0     | L        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
| 23          | С     | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
|             | 0     | 1        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
| 23          | C     | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
|             |       | L        | 65    | 55           | 1   | 4 | 5 | 0       |         |
| 23          | C     | 1        | Total | $\mathbf{C}$ | Mg  | Ν | Ο | 0       | 0       |
|             |       | 1        | 65    | 55           | 1   | 4 | 5 |         |         |
| 23          | C     | 1        | Total | $\mathbf{C}$ | Mg  | Ν | Ο | 0       | 0       |
|             |       | L        | 65    | 55           | 1   | 4 | 5 | 0       |         |
| 23          | C     | 1        | Total | $\mathbf{C}$ | Mg  | Ν | Ο | 0       | 0       |
|             |       |          | 65    | 55           | 1   | 4 | 5 | U U     |         |



| Mol   | Chain | Residues | 5-    | At                      | oms |   |   | ZeroOcc | AltConf |
|-------|-------|----------|-------|-------------------------|-----|---|---|---------|---------|
|       | a     |          | Total | С                       | Mg  | Ν | 0 | 0       | 0       |
| 23    | C     | 1        | 65    | 55                      | 1   | 4 | 5 | 0       | 0       |
|       | a     |          | Total | С                       | Mg  | Ν | Ο | 0       | 0       |
| 23    | C     | 1        | 65    | 55                      | 1   | 4 | 5 | 0       | 0       |
|       | a     | 1        | Total | С                       | Mg  | Ν | Ο | 0       | 0       |
| 23    | C     | 1        | 65    | 55                      | 1   | 4 | 5 | 0       | 0       |
| 0.2   | a     | 1        | Total | С                       | Mg  | Ν | Ο | 0       | 0       |
| 23    | U     | 1        | 65    | 55                      | 1   | 4 | 5 | 0       | 0       |
| 0.2   | C     | 1        | Total | С                       | Mg  | Ν | Ο | 0       | 0       |
| 23    | U     | 1        | 65    | 55                      | 1   | 4 | 5 | 0       | 0       |
| - 02  | р     | 1        | Total | С                       | Mg  | Ν | Ο | 0       | 0       |
| 20    | D     | 1        | 65    | 55                      | 1   | 4 | 5 | 0       | 0       |
| - 12  | р     | 1        | Total | С                       | Mg  | Ν | Ο | 0       | 0       |
| 20    | D     | 1        | 65    | 55                      | 1   | 4 | 5 | 0       | 0       |
| - 12  | п     | 1        | Total | С                       | Mg  | Ν | Ο | 0       | 0       |
| 20    | D     | 1        | 65    | 55                      | 1   | 4 | 5 | 0       | 0       |
| 2     |       | 1        | Total | С                       | Mg  | Ν | Ο | 0       | 0       |
| 20    | a     | 1        | 65    | 55                      | 1   | 4 | 5 | 0       | 0       |
| - 0.2 | -     | 1        | Total | С                       | Mg  | Ν | Ο | 0       | 0       |
| 20    | a     | 1        | 65    | 55                      | 1   | 4 | 5 | 0       | 0       |
| 2     | 0     | 1        | Total | С                       | Mg  | Ν | Ο | 0       | 0       |
| 20    | a     | 1        | 65    | 55                      | 1   | 4 | 5 | 0       | 0       |
| - 12  |       | 1        | Total | С                       | Mg  | Ν | Ο | 0       | 0       |
| 20    | a     | 1        | 65    | 55                      | 1   | 4 | 5 | 0       | 0       |
| 02    | Ь     | 1        | Total | С                       | Mg  | Ν | Ο | 0       | 0       |
| 2.5   | U     | I        | 65    | 55                      | 1   | 4 | 5 | 0       | 0       |
| 23    | h     | 1        | Total | С                       | Mg  | Ν | Ο | 0       | 0       |
| 20    | U     | T        | 65    | 55                      | 1   | 4 | 5 | 0       | 0       |
| 23    | h     | 1        | Total | С                       | Mg  | Ν | Ο | 0       | 0       |
| 20    | U     | L        | 65    | 55                      | 1   | 4 | 5 | 0       | 0       |
| 23    | h     | 1        | Total | С                       | Mg  | Ν | Ο | 0       | 0       |
|       | U U   | L        | 65    | 55                      | 1   | 4 | 5 | 0       | 0       |
| 23    | h     | 1        | Total | С                       | Mg  | Ν | Ο | 0       | 0       |
|       | 0     | L        | 65    | 55                      | 1   | 4 | 5 | 0       | 0       |
| 23    | h     | 1        | Total | С                       | Mg  | Ν | Ο | 0       | 0       |
|       |       | L        | 65    | 55                      | 1   | 4 | 5 | 0       |         |
| 23    | h     | 1        | Total | $\mathbf{C}$            | Mg  | Ν | Ο | 0       |         |
|       |       | ±        | 65    | 55                      | 1   | 4 | 5 | V       |         |
| 23    | h     | 1        | Total | $\mathbf{C}$            | Mg  | Ν | 0 | 0       | 0       |
|       | U     | L        | 65    | 55                      | 1   | 4 | 5 | 0       |         |
| 23    | h     | 1        | Total | $\overline{\mathrm{C}}$ | Mg  | N | 0 | 0       | 0       |
|       |       |          | 65    | 55                      | 1   | 4 | 5 |         |         |



| Mol         | Chain | Residues | 5-    | At           | oms |   |   | ZeroOcc | AltConf |
|-------------|-------|----------|-------|--------------|-----|---|---|---------|---------|
|             | 1     |          | Total | С            | Mg  | Ν | Ο | 0       | 0       |
| 23          | b     | 1        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
|             | 1     |          | Total | С            | Mg  | Ν | Ο | 0       | 0       |
| 23          | D     | 1        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
| 0.2         | 1.    | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
| 23          | D     | 1        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
| 0.2         | 1.    | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
| 23          | D     | 1        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
|             | 1.    | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
| 23          | D     | 1        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
|             | 1.    | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
| 20          | D     | 1        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
| - 12        | h     | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
| 20          | D     | 1        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
| - 12        |       | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
| 20          | C     | 1        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
| - 02        |       | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
| 20          | C     | 1        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
| - 0.2       | _     | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
| 20          | С     | 1        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
| 2           | 0     | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
| 20          | C     | 1        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
| - <u>72</u> |       | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
| 20          | C     | L        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
| 23          | 0     | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
| 2.5         | C     | I        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
| 93          | C     | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
| _ 20        | C     | T        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
| - 23        | C     | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
|             | Č.    | L        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
| 23          | C     | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
|             | C C   | L        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
| 23          | C     | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
|             | Č     | 1        | 65    | 55           | 1   | 4 | 5 | 0       | 0       |
| 23          | c     | 1        | Total | С            | Mg  | Ν | Ο | 0       | 0       |
|             |       | L        | 65    | 55           | 1   | 4 | 5 | U       |         |
| 23          | C     | 1        | Total | $\mathbf{C}$ | Mg  | Ν | Ο | 0       | 0       |
|             | Ŭ     | 1        | 65    | 55           | 1   | 4 | 5 |         |         |
| 23          | c     | 1        | Total | $\mathbf{C}$ | Mg  | Ν | Ο | 0       | 0       |
|             |       | L        | 65    | 55           | 1   | 4 | 5 | U       |         |
| 23          | d     | 1        | Total | $\mathbf{C}$ | Mg  | Ν | Ο | 0       | 0       |
|             | u     |          | 65    | 55           | 1   | 4 | 5 |         |         |



| Mol | Chain | Residues | Atoms       |             |         |        |        | ZeroOcc | AltConf |
|-----|-------|----------|-------------|-------------|---------|--------|--------|---------|---------|
| 23  | d     | 1        | Total<br>65 | ${ m C} 55$ | Mg<br>1 | N<br>4 | O<br>5 | 0       | 0       |

• Molecule 24 is PHEOPHYTIN A (three-letter code: PHO) (formula:  $C_{55}H_{74}N_4O_5$ ).

| РНО |  |
|-----|--|
|     |  |

| Mol | Chain | Residues | A     | Aton | ns |   | ZeroOcc | AltConf |
|-----|-------|----------|-------|------|----|---|---------|---------|
| 24  | 24 A  | 1        | Total | С    | Ν  | Ο | 0       | 0       |
| 24  |       |          | 64    | 55   | 4  | 5 | 0       |         |
| 94  | Л     | 1        | Total | С    | Ν  | Ο | 0       | 0       |
| 24  | D     | L        | 64    | 55   | 4  | 5 | 0       | 0       |
| 94  | 2     | 1        | Total | С    | Ν  | Ο | 0       | 0       |
| 24  | a     | L        | 64    | 55   | 4  | 5 | 0       |         |
| 94  | 0     | 1        | Total | С    | Ν  | Ο | 0       | 0       |
|     | a     |          | 64    | 55   | 4  | 5 | 0       | U       |

• Molecule 25 is BETA-CAROTENE (three-letter code: BCR) (formula:  $C_{40}H_{56}$ ).





| Mol | Chain | Residues | Atoms                                                                        | ZeroOcc | AltConf |
|-----|-------|----------|------------------------------------------------------------------------------|---------|---------|
| 25  | А     | 1        | Total C<br>40 40                                                             | 0       | 0       |
| 25  | В     | 1        | Total         C           40         40                                      | 0       | 0       |
| 25  | В     | 1        | Total         C           40         40                                      | 0       | 0       |
| 25  | В     | 1        | $\begin{array}{cc} {\rm Total} & {\rm C} \\ {\rm 40} & {\rm 40} \end{array}$ | 0       | 0       |
| 25  | С     | 1        | $\begin{array}{cc} {\rm Total} & {\rm C} \\ {\rm 40} & {\rm 40} \end{array}$ | 0       | 0       |
| 25  | С     | 1        | $\begin{array}{cc} {\rm Total} & {\rm C} \\ {\rm 40} & {\rm 40} \end{array}$ | 0       | 0       |
| 25  | С     | 1        | $\begin{array}{cc} {\rm Total} & {\rm C} \\ 40 & 40 \end{array}$             | 0       | 0       |
| 25  | D     | 1        | Total         C           40         40                                      | 0       | 0       |
| 25  | Н     | 1        | $\begin{array}{cc} {\rm Total} & {\rm C} \\ 40 & 40 \end{array}$             | 0       | 0       |
| 25  | Т     | 1        | $\begin{array}{cc} {\rm Total} & {\rm C} \\ 40 & 40 \end{array}$             | 0       | 0       |
| 25  | Y     | 1        | $\begin{array}{cc} {\rm Total} & {\rm C} \\ 40 & 40 \end{array}$             | 0       | 0       |
| 25  | a     | 1        | $\begin{array}{cc} {\rm Total} & {\rm C} \\ {\rm 40} & {\rm 40} \end{array}$ | 0       | 0       |
| 25  | b     | 1        | $\begin{array}{cc} \text{Total} & \text{C} \\ 40 & 40 \end{array}$           | 0       | 0       |
| 25  | b     | 1        | $\begin{array}{c c} \hline Total & C \\ 40 & 40 \end{array}$                 | 0       | 0       |



Continued from previous page...

| Mol | Chain | Residues | Atoms                                                                        | ZeroOcc | AltConf |
|-----|-------|----------|------------------------------------------------------------------------------|---------|---------|
| 25  | b     | 1        | Total         C           40         40                                      | 0       | 0       |
| 25  | С     | 1        | $\begin{array}{cc} {\rm Total} & {\rm C} \\ {\rm 40} & {\rm 40} \end{array}$ | 0       | 0       |
| 25  | С     | 1        | $\begin{array}{cc} {\rm Total} & {\rm C} \\ {\rm 40} & {\rm 40} \end{array}$ | 0       | 0       |
| 25  | d     | 1        | $\begin{array}{cc} {\rm Total} & {\rm C} \\ {\rm 40} & {\rm 40} \end{array}$ | 0       | 0       |
| 25  | h     | 1        | $\begin{array}{cc} {\rm Total} & {\rm C} \\ {\rm 40} & {\rm 40} \end{array}$ | 0       | 0       |
| 25  | k     | 1        | $\begin{array}{cc} {\rm Total} & {\rm C} \\ {\rm 40} & {\rm 40} \end{array}$ | 0       | 0       |
| 25  | t     | 1        | Total         C           40         40                                      | 0       | 0       |
| 25  | У     | 1        | Total         C           40         40                                      | 0       | 0       |

• Molecule 26 is 1,2-DI-O-ACYL-3-O-[6-DEOXY-6-SULFO-ALPHA-D-GLUCOPYRANOSY L]-SN-GLYCEROL (three-letter code: SQD) (formula:  $C_{41}H_{78}O_{12}S$ ).



| Mol | Chain | Residues | Atoms |    |    |   | ZeroOcc | AltConf |
|-----|-------|----------|-------|----|----|---|---------|---------|
| 26  | Δ     | 1        | Total | С  | Ο  | S | 0       | Ο       |
| 20  | Л     | I        | 54    | 41 | 12 | 1 | 0       | 0       |
| 26  | Λ     | 1        | Total | С  | Ο  | S | 0       | 0       |
| 20  | Л     | I        | 54    | 41 | 12 | 1 | 0       | 0       |
| 26  | В     | 1        | Total | С  | Ο  | S | 0       | 0       |
| 20  | D     |          | 54    | 41 | 12 | 1 | 0       | U       |



| Mol  | Chain | Residues | A     | ton | ıs |              | ZeroOcc | AltConf |
|------|-------|----------|-------|-----|----|--------------|---------|---------|
| 26 D | п     | 1        | Total | С   | Ο  | $\mathbf{S}$ | 0       | 0       |
|      | D     |          | 43    | 30  | 12 | 1            | 0       |         |
| 26   | T     | 1        | Total | С   | Ο  | $\mathbf{S}$ | 0       | 0       |
| 20   | L     | T        | 54    | 41  | 12 | 1            | 0       | 0       |
| 26   | 9     | a 1      | Total | С   | Ο  | $\mathbf{S}$ | 0       | 0       |
| 20   | a     |          | 54    | 41  | 12 | 1            | 0       |         |
| 26   |       | 1        | Total | С   | Ο  | $\mathbf{S}$ | 0       | 0       |
| 20   | a     | I        | 54    | 41  | 12 | 1            | 0       | 0       |
| 26   | f     | 1        | Total | С   | Ō  | S            | 0       | 0       |
|      |       |          | 43    | 30  | 12 | 1            |         |         |

Continued from previous page...

• Molecule 27 is GLYCEROL (three-letter code: GOL) (formula:  $C_3H_8O_3$ ).



| Mol | Chain | Residues | Atoms                                                                         | ZeroOcc | AltConf |
|-----|-------|----------|-------------------------------------------------------------------------------|---------|---------|
| 27  | А     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$  | 0       | 0       |
| 27  | В     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$  | 0       | 0       |
| 27  | В     | 1        | $\begin{array}{ccc} {\rm Total} & {\rm C} & {\rm O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 27  | С     | 1        | $\begin{array}{ccc} {\rm Total} & {\rm C} & {\rm O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 27  | О     | 1        | $\begin{array}{ccc} {\rm Total} & {\rm C} & {\rm O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 27  | a     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$  | 0       | 0       |



Continued from previous page...

| Mol | Chain | Residues | Atoms                                                                         | ZeroOcc | AltConf |
|-----|-------|----------|-------------------------------------------------------------------------------|---------|---------|
| 27  | b     | 1        | $\begin{array}{ccc} {\rm Total} & {\rm C} & {\rm O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 27  | d     | 1        | $\begin{array}{ccc} {\rm Total} & {\rm C} & {\rm O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |

• Molecule 28 is CA-MN4-O5 CLUSTER (three-letter code: OEX) (formula: CaMn<sub>4</sub>O<sub>5</sub>).



| Mol | Chain | Residues | Atoms |    |    | ZeroOcc | AltConf |   |
|-----|-------|----------|-------|----|----|---------|---------|---|
| 28  | А     | 1        | Total | Ca | Mn | Ο       | 0       | 0 |
|     | 11    | 1        | 10    | 1  | 4  | 5       | 0       | 0 |
| 20  |       | . 1      | Total | Ca | Mn | Ο       | 0       | 0 |
| 20  | a     | L        | 10    | 1  | 4  | 5       | 0       | 0 |

• Molecule 29 is 2,3-DIMETHYL-5-(3,7,11,15,19,23,27,31,35-NONAMETHYL-2,6,10,14,18,22,26,30,34-HEXATRIACONTANONAENYL-2,5-CYCLOHEXADIENE-1,4-DIONE-2,3-DIMETHYL-5-SOLANESYL-1,4-BENZOQUINONE (three-letter code: PL9) (formula:  $C_{53}H_{80}O_2$ ).





| Mol | Chain | Residues | Atoms                                                       | ZeroOcc | AltConf |
|-----|-------|----------|-------------------------------------------------------------|---------|---------|
| 29  | А     | 1        | Total         C         O           55         53         2 | 0       | 0       |
| 29  | D     | 1        | Total         C         O           55         53         2 | 0       | 0       |
| 29  | a     | 1        | Total         C         O           55         53         2 | 0       | 0       |
| 29  | d     | 1        | Total         C         O           55         53         2 | 0       | 0       |

• Molecule 30 is UNKNOWN LIGAND (three-letter code: UNL) (formula: ).

| Mol | Chain | Residues | Atoms                                                                                    | ZeroOcc | AltConf |
|-----|-------|----------|------------------------------------------------------------------------------------------|---------|---------|
| 30  | J     | 1        | Total C<br>10 10                                                                         | 0       | 0       |
| 30  | i     | 1        | $\begin{array}{ccc} \mathrm{Total} & \mathrm{C} & \mathrm{O} \\ 40 & 35 & 5 \end{array}$ | 0       | 0       |
| 30  | D     | 2        | Total C O<br>57 51 6                                                                     | 0       | 0       |
| 30  | K     | 1        | Total C O<br>34 29 5                                                                     | 0       | 0       |
| 30  | В     | 1        | Total C O<br>33 28 5                                                                     | 0       | 0       |
| 30  | Ι     | 1        | Total C O<br>40 35 5                                                                     | 0       | 0       |
| 30  | С     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 32 & 27 & 5 \end{array}$       | 0       | 0       |
| 30  | a     | 1        | Total C O<br>30 25 5                                                                     | 0       | 0       |



30

30

b

М

2

1

0

0

0

0

0

0

0

0

69

59 10

10

Total C

10

• Molecule 31 is 1,2-DIPALMITOYL-PHOSPHATIDYL-GLYCEROLE (three-letter code: LHG) (formula:  $C_{38}H_{75}O_{10}P$ ).

0

0



| Mol | Chain | Residues | Atoms |    |    |   | ZeroOcc | AltConf |
|-----|-------|----------|-------|----|----|---|---------|---------|
| 21  | Λ     | 1        | Total | С  | Ο  | Р | 0       | 0       |
| 101 | Л     | T        | 49    | 38 | 10 | 1 | 0       | 0       |
| 21  | п     | 1        | Total | С  | Ο  | Р | 0       | 0       |
| 101 | D     | T        | 49    | 38 | 10 | 1 | 0       | 0       |
| 21  | п     | 1        | Total | С  | Ο  | Р | 0       | 0       |
|     | D     | L        | 49    | 38 | 10 | 1 |         |         |



Chain Residues Atoms ZeroOcc AltConf Mol Total С Ο 0 301 Х 18 16 2Total С Ο 30А 1 0 28235Total C j 301 0 1010Total С Ο Х 1 0 3016 218Total С Ο 30d 1 0 17161 Total С 301 0 m 1010Total C O

Continued from previous page...

• Molecule 32 is BICARBONATE ION (three-letter code: BCT) (formula: CHO<sub>3</sub>).



| Mol | Chain | Residues | Atoms                                                                        | ZeroOcc | AltConf |
|-----|-------|----------|------------------------------------------------------------------------------|---------|---------|
| 32  | А     | 1        | Total         C         O           4         1         3                    | 0       | 0       |
| 32  | a     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 4  1  3 \end{array}$ | 0       | 0       |

• Molecule 33 is CALCIUM ION (three-letter code: CA) (formula: Ca).



Chain Residues ZeroOcc AltConf Mol Atoms С Total Р Ο Е 0 310 1 4231101 Total С Ο Р 31 $\mathbf{L}$ 1 0 0 4938101 Total С Р Ο 31b 1 0 0 4938101 Total С Ο Р d 1 0 0 314938101 Total С Ο Р 31d 1 0 0 4938101 Total С Ο Ρ 0 0 31d 1 4938101 С Р Total Ο 0 311 0е 4231101

Continued from previous page...

| Mol | Chain | Residues | Atoms           | ZeroOcc | AltConf |
|-----|-------|----------|-----------------|---------|---------|
| 33  | В     | 1        | Total Ca<br>1 1 | 0       | 0       |
| 33  | С     | 1        | Total Ca<br>1 1 | 0       | 0       |
| 33  | V     | 1        | Total Ca<br>1 1 | 0       | 0       |
| 33  | с     | 2        | Total Ca<br>2 2 | 0       | 0       |
| 33  | Ο     | 1        | Total Ca<br>1 1 | 0       | 0       |
| 33  | О     | 1        | Total Ca<br>1 1 | 0       | 0       |

• Molecule 34 is 1,2-DISTEAROYL-MONOGALACTOSYL-DIGLYCERIDE (three-letter code: LMG) (formula:  $C_{45}H_{86}O_{10}$ ).



| Mol  | Chain | Residues | Atoms        | ZeroOcc | AltConf |
|------|-------|----------|--------------|---------|---------|
| 34   | В     | 1        | Total C O    | 0       | 0       |
|      |       |          | 51 $41$ $10$ |         |         |
| 34   | C     | 1        | Total C O    | 0       | 0       |
| - 54 | U     | L        | 51  41  10   | 0       | 0       |
| 34   | С     | 1        | Total C O    | 0       | 0       |
| - 54 | U     | T        | 51  41  10   | 0       |         |
| 3/   | С     | 1        | Total C O    | 0       | 0       |
| 04   | U     | T        | 51  41  10   | 0       |         |
| 34   | T     | 1        | Total C O    | 0       | 0       |
| J4   | J     | J L      | 51  41  10   |         | U       |



Continued from previous page...

| Mol | Chain | Residues | Atoms                                                        | ZeroOcc | AltConf |
|-----|-------|----------|--------------------------------------------------------------|---------|---------|
| 34  | Ζ     | 1        | Total C O<br>37 27 10                                        | 0       | 0       |
| 34  | a     | 1        | Total C O<br>51 41 10                                        | 0       | 0       |
| 34  | с     | 1        | Total         C         O           51         41         10 | 0       | 0       |
| 34  | с     | 1        | Total         C         O           51         41         10 | 0       | 0       |
| 34  | j     | 1        | Total         C         O           51         41         10 | 0       | 0       |
| 34  | m     | 1        | Total         C         O           51         41         10 | 0       | 0       |
| 34  | Z     | 1        | Total         C         O           39         29         10 | 0       | 0       |

• Molecule 35 is DODECYL-BETA-D-MALTOSIDE (three-letter code: LMT) (formula:  $\rm C_{24}H_{46}O_{11}).$ 



| Mol | Chain | Residues | Atoms                                                                            | ZeroOcc | AltConf |
|-----|-------|----------|----------------------------------------------------------------------------------|---------|---------|
| 35  | В     | 1        | $\begin{array}{ccc} {\rm Total} & {\rm C} & {\rm O} \\ 35 & 24 & 11 \end{array}$ | 0       | 0       |
| 35  | В     | 1        | Total         C         O           25         19         6                      | 0       | 0       |
| 35  | В     | 1        | $\begin{array}{ccc} {\rm Total} & {\rm C} & {\rm O} \\ 35 & 24 & 11 \end{array}$ | 0       | 0       |
| 35  | В     | 1        | $\begin{array}{ccc} {\rm Total} & {\rm C} & {\rm O} \\ 26 & 19 & 7 \end{array}$  | 0       | 0       |



| Mol | Chain | Residues | Atoms      | ZeroOcc | AltConf |
|-----|-------|----------|------------|---------|---------|
| 35  | С     | 1        | Total C O  | 0       | 0       |
|     |       | -        | 35  24  11 |         |         |
| 35  | П     | 1        | Total C O  | 0       | 0       |
| 00  | D     | 1        | 35  24  11 | 0       | 0       |
| 35  | F     | 1        | Total C O  | 0       | 0       |
| 00  | Ľ     | T        | 35  24  11 | 0       | 0       |
| 35  | М     | 1        | Total C O  | 0       | 0       |
| 00  | 111   | T        | 35  24  11 | 0       | 0       |
| 25  | М     | 1        | Total C O  | 0       | 0       |
| 00  | IVI   | L        | 35  24  11 | 0       |         |
| 25  |       | o 1      | Total C O  | 0       | 0       |
| 00  | a     | L        | 35  24  11 |         |         |
| 25  | h     | 1        | Total C O  | 0       | 0       |
| 00  | U     | T        | 25 19 6    | 0       | 0       |
| 35  | Ь     | 1        | Total C O  | 0       | 0       |
| 00  | U     | T        | 25 19 6    | 0       | 0       |
| 35  | 0     | 1        | Total C O  | 0       | 0       |
| 00  | e     |          | 35  24  11 |         | 0       |
| 25  | m     | 1        | Total C O  | 0       | 0       |
| 30  |       |          | 35  24  11 |         | U       |

• Molecule 36 is heptyl 1-thio-beta-D-glucopyranoside (three-letter code: HTG) (formula:  $C_{13}H_{26}O_5S$ ).



| Mol | Chain | Residues | Atoms       |         |        |            | ZeroOcc | AltConf |
|-----|-------|----------|-------------|---------|--------|------------|---------|---------|
| 36  | В     | 1        | Total<br>19 | C<br>13 | O<br>5 | ${ m S}$ 1 | 0       | 0       |



| Mol | Chain | Residues | Atoms                                                                           | ZeroOcc | AltConf |
|-----|-------|----------|---------------------------------------------------------------------------------|---------|---------|
| 36  | В     | 1        | Total C O S<br>19 13 5 1                                                        | 0       | 0       |
| 36  | В     | 1        | Total         C         O         S           19         13         5         1 | 0       | 0       |
| 36  | В     | 1        | Total         C         O         S           19         13         5         1 | 0       | 0       |
| 36  | В     | 1        | Total C O S<br>19 13 5 1                                                        | 0       | 0       |
| 36  | С     | 1        | Total C O S<br>19 13 5 1                                                        | 0       | 0       |
| 36  | С     | 1        | $\begin{array}{ccc} {\rm Total} & {\rm C} & {\rm S} \\ 9 & 8 & 1 \end{array}$   | 0       | 0       |
| 36  | D     | 1        | Total C O S<br>16 10 5 1                                                        | 0       | 0       |
| 36  | V     | 1        | $\begin{array}{ccc} {\rm Total} & {\rm C} & {\rm O} \\ 11 & 6 & 5 \end{array}$  | 0       | 0       |
| 36  | b     | 1        | Total C O S<br>19 13 5 1                                                        | 0       | 0       |
| 36  | b     | 1        | Total         C         O         S           19         13         5         1 | 0       | 0       |
| 36  | b     | 1        | Total         C         O         S           19         13         5         1 | 0       | 0       |
| 36  | b     | 1        | Total         C         O         S           19         13         5         1 | 0       | 0       |
| 36  | b     | 1        | Total C O S<br>19 13 5 1                                                        | 0       | 0       |
| 36  | с     | 1        | Total         C         O         S           19         13         5         1 | 0       | 0       |
| 36  | с     | 1        | Total         C         O         S           19         13         5         1 | 0       | 0       |
| 36  | h     | 1        | Total         C         O         S           16         10         5         1 | 0       | 0       |

Continued from previous page...

• Molecule 37 is DIGALACTOSYL DIACYL GLYCEROL (DGDG) (three-letter code: DGD) (formula:  $C_{51}H_{96}O_{15}$ ).





| Mol  | Chain | Residues | Atoms        | ZeroOcc | AltConf |
|------|-------|----------|--------------|---------|---------|
| 37   | С     | 1        | Total C O    | 0       | 0       |
| 57   | U     | T        | 62  47  15   | 0       | 0       |
| 37   | С     | 1        | Total C O    | 0       | 0       |
| - 57 | U     | I        | 62  47  15   | 0       | 0       |
| 37   | С     | 1        | Total C O    | 0       | 0       |
| - 57 | U     | I        | 62  47  15   | 0       | 0       |
| 37   | н     | 1        | Total C O    | 0       | 0       |
| - 57 | 11    | I        | 62  47  15   | 0       | 0       |
| 37   | c     | 1        | Total C O    | 0       | Ο       |
|      | Č.    | , I      | 62 47 15     | 0       | 0       |
| 37   | c     | 1        | Total C O    | 0       | 0       |
|      | Č.    | , I      | 62 47 15     | 0       | 0       |
| 37   | С     | 1        | Total C O    | 0       | 0       |
|      | U     |          | 62 47 15     |         | 0       |
| 37   | h     | 1        | Total C O    | 0       | 0       |
| 01   | 11    | 1        | 62 	 47 	 15 |         | U       |

 Molecule 38 is PROTOPORPHYRIN IX CONTAINING FE (three-letter code: HEM) (formula: C<sub>34</sub>H<sub>32</sub>FeN<sub>4</sub>O<sub>4</sub>).





| Mol  | Chain | Residues | Atoms |    |               |   | ZeroOcc | AltConf |   |
|------|-------|----------|-------|----|---------------|---|---------|---------|---|
| 28   | F     | 1        | Total | С  | Fe            | Ν | Ο       | 0       | 0 |
| 00   | 30 E  | T        | 43    | 34 | 1             | 4 | 4       | 0       | 0 |
| 20   | 0     | 1        | Total | С  | $\mathrm{Fe}$ | Ν | Ο       | 0       | 0 |
| 38 e | L     | 43       | 34    | 1  | 4             | 4 | 0       | 0       |   |

• Molecule 39 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

| Mol | Chain | Residues | Atoms           | ZeroOcc | AltConf |
|-----|-------|----------|-----------------|---------|---------|
| 39  | J     | 1        | Total Mg<br>1 1 | 0       | 0       |
| 39  | j     | 1        | Total Mg<br>1 1 | 0       | 0       |

• Molecule 40 is HEME C (three-letter code: HEC) (formula:  $C_{34}H_{34}FeN_4O_4$ ).





| Mol  | Chain | Residues |       | At | oms |   |   | ZeroOcc | AltConf |
|------|-------|----------|-------|----|-----|---|---|---------|---------|
| 40   | V     | 1        | Total | С  | Fe  | Ν | Ο | 0       | 0       |
| 40   | 40 1  | 1        | 43    | 34 | 1   | 4 | 4 | 0       | 0       |
| 40   |       | 1        | Total | С  | Fe  | Ν | Ο | 0       | 0       |
| 40 V | v     | L        | 43    | 34 | 1   | 4 | 4 |         | 0       |

• Molecule 41 is water.

| Mol | Chain | Residues | Atoms              | ZeroOcc | AltConf |
|-----|-------|----------|--------------------|---------|---------|
| 41  | А     | 135      | Total O<br>135 135 | 0       | 0       |
| 41  | В     | 195      | Total O<br>195 195 | 0       | 0       |
| 41  | С     | 151      | Total O<br>151 151 | 0       | 0       |
| 41  | D     | 118      | Total O<br>118 118 | 0       | 0       |
| 41  | Е     | 25       | TotalO2525         | 0       | 0       |
| 41  | F     | 5        | Total O<br>5 5     | 0       | 0       |
| 41  | Н     | 22       | TotalO2222         | 0       | 0       |
| 41  | Ι     | 6        | Total O<br>6 6     | 0       | 0       |
| 41  | J     | 4        | Total O<br>4 4     | 0       | 0       |
| 41  | K     | 6        | Total O<br>6 6     | 0       | 0       |



Continued from previous page...

| Mol | Chain | Residues | Atoms                                                            | ZeroOcc | AltConf |
|-----|-------|----------|------------------------------------------------------------------|---------|---------|
| 41  | L     | 6        | Total O<br>6 6                                                   | 0       | 0       |
| 41  | М     | 15       | Total O<br>15 15                                                 | 0       | 0       |
| 41  | О     | 105      | Total O<br>105 105                                               | 0       | 0       |
| 41  | Т     | 13       | Total O<br>13 13                                                 | 0       | 0       |
| 41  | U     | 51       | $\begin{array}{cc} {\rm Total} & {\rm O} \\ 51 & 51 \end{array}$ | 0       | 0       |
| 41  | V     | 81       | Total O<br>81 81                                                 | 0       | 0       |
| 41  | Х     | 4        | Total O<br>4 4                                                   | 0       | 0       |
| 41  | Y     | 1        | Total O<br>1 1                                                   | 0       | 0       |
| 41  | Z     | 1        | Total O<br>1 1                                                   | 0       | 0       |
| 41  | R     | 1        | Total O<br>1 1                                                   | 0       | 0       |
| 41  | a     | 132      | Total         O           132         132                        | 0       | 0       |
| 41  | b     | 206      | Total O<br>206 206                                               | 0       | 0       |
| 41  | с     | 153      | Total O<br>153 153                                               | 0       | 0       |
| 41  | d     | 115      | Total O<br>115 115                                               | 0       | 0       |
| 41  | е     | 16       | Total O<br>16 16                                                 | 0       | 0       |
| 41  | f     | 5        | Total O<br>5 5                                                   | 0       | 0       |
| 41  | h     | 27       | Total O<br>27 27                                                 | 0       | 0       |
| 41  | i     | 3        | Total O<br>3 3                                                   | 0       | 0       |
| 41  | j     | 3        | Total O<br>3 3                                                   | 0       | 0       |
| 41  | k     | 6        | TotalO66                                                         | 0       | 0       |
| 41  | l     | 9        | Total O<br>9 9                                                   | 0       | 0       |



Continued from previous page...

| Mol | Chain | Residues | Atoms                                                              | ZeroOcc | AltConf |
|-----|-------|----------|--------------------------------------------------------------------|---------|---------|
| 41  | m     | 18       | Total O<br>18 18                                                   | 0       | 0       |
| 41  | О     | 115      | Total O<br>115 115                                                 | 0       | 0       |
| 41  | t     | 9        | Total O<br>9 9                                                     | 0       | 0       |
| 41  | u     | 62       | $\begin{array}{cc} \text{Total} & \text{O} \\ 62 & 62 \end{array}$ | 0       | 0       |
| 41  | V     | 78       | Total O<br>78 78                                                   | 0       | 0       |
| 41  | х     | 8        | Total O<br>8 8                                                     | 0       | 0       |
| 41  | Z     | 1        | Total O<br>1 1                                                     | 0       | 0       |



## 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Photosystem II D1 protein



• Molecule 3: Photosystem II CP43 protein



| 5GTI    |
|---------|
| O O I I |



• Molecule 6: Cytochrome b559 subunit beta Chain F: 77% 23% THR SER ASN THR PRO GLN GLN GLU • Molecule 6: Cytochrome b559 subunit beta Chain f: 68% 30% THR SER ASN ASN PRO GLU GLU PRO GLU VAL SER TYR PRO • Molecule 7: Photosystem II reaction center protein H 12% Chain H: 94% 5%• W6 L7 G8 G8 D9 L11 L11 • Molecule 7: Photosystem II reaction center protein H 29% Chain h: 97% A2 R3 T5 W6 W6 G8 G8 D9 I10 R12 R12 V21 A22 10 T • Molecule 8: Photosystem II reaction center protein I 18% Chain I: 95% 5% K35 L37 L37 • Molecule 8: Photosystem II reaction center protein I Chain i: 92% 5%• • Molecule 9: Photosystem II reaction center protein J 15% Chain J: 92% 5% •



| MET<br>S2<br>64<br>64<br>11<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>139             |                                   |      |
|------------------------------------------------------------------------------------------|-----------------------------------|------|
| • Molecule 9: Photosys                                                                   | tem II reaction center protein J  |      |
| Chain it                                                                                 |                                   |      |
| Unain J:                                                                                 | 100%                              |      |
| M1<br>83<br>64<br>65<br>65<br>71<br>18<br>19<br>13<br>14<br>14<br>13                     |                                   |      |
| • Molecule 10: Photosy                                                                   | stem II PsbK protein              |      |
| Chain K:                                                                                 | 020/                              | 01/  |
|                                                                                          | 92%                               | 8%   |
| K10<br>A14<br>117<br>F118<br>P19<br>D19<br>D19<br>D19<br>D19<br>C20<br>V30<br>V30<br>R46 |                                   |      |
| • Molecule 10: Photosy                                                                   | stem II PsbK protein              |      |
| Chain k:                                                                                 | 92%                               | 8%   |
| K10<br>117<br>118<br>118<br>119<br>119<br>119                                            |                                   |      |
| • Molecule 11: Photosy                                                                   | stem II reaction center protein L |      |
| 14%                                                                                      |                                   |      |
| Chain L:                                                                                 | 97%                               | ٠    |
| MET<br>E2<br>E2<br>69<br>99<br>V10<br>N37                                                |                                   |      |
| • Molecule 11: Photosy                                                                   | stem II reaction center protein L |      |
| Chain l:                                                                                 | 0706                              |      |
|                                                                                          | 5170                              |      |
| MET<br>82 89<br>99 98<br>1137                                                            |                                   |      |
| • Molecule 12: Photosy                                                                   | stem II PsbM protein              |      |
| Chain M:                                                                                 | 0004                              | 00/  |
|                                                                                          | 03.40                             | • 8% |
| ■<br>SER<br>SER                                                                          |                                   |      |

• Molecule 12: Photosystem II PsbM protein



| Chain m.                                             | 8%                                                                                                                                     | 201                                                                |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Unann m.                                             | 89%                                                                                                                                    | 6% 6%                                                              |
| M1<br>831<br>033<br>133<br>133<br>133<br>133         | ы<br>ы<br>ы<br>ы<br>ы<br>ы<br>ы<br>ы<br>ы<br>ы<br>ы<br>ы<br>ы<br>ы<br>ы<br>ы<br>ы<br>ы<br>ы                                            |                                                                    |
| • Molecule                                           | e 13: Photosystem II manganese-stabilizing polypeptide                                                                                 |                                                                    |
| Chain O:                                             | 98%                                                                                                                                    |                                                                    |
|                                                      | <sup>4</sup> ω ω μ α α α α α α α α α α α α α α α α α                                                                                   | <b>4</b>                                                           |
| 13<br>15<br>12<br>12<br>12<br>12<br>12<br>12<br>12   | 22 23 25 26 28 28 28 28 28 28 28 28 28 28 28 28 28                                                                                     |                                                                    |
| • Molecule                                           | e 13: Photosystem II manganese-stabilizing polypeptide                                                                                 |                                                                    |
| Chain o:                                             | 98%                                                                                                                                    |                                                                    |
| GLN<br>T4<br>L5<br>10<br>10<br>22<br>D22             | 225<br>226<br>A26<br>A26<br>A26<br>A26<br>A26<br>A26<br>A26<br>A26<br>A26                                                              | F142 •<br>L199 •<br>V204 •<br>T208 •<br>C209 •<br>C209 •<br>C209 • |
| 1211<br>6226<br>7241<br>5242<br>1243<br>1243         | 2246<br>69                                                                                                                             |                                                                    |
| • Molecule                                           | e 14: Photosystem II reaction center protein T                                                                                         |                                                                    |
| Chain T:                                             | 91%                                                                                                                                    | • 6%                                                               |
|                                                      | 0170                                                                                                                                   |                                                                    |
| M1<br>E2<br>T30<br>LYS<br>LYS                        |                                                                                                                                        |                                                                    |
| • Molecule                                           | e 14: Photosystem II reaction center protein T                                                                                         |                                                                    |
| Chain t:                                             | 88%                                                                                                                                    | 6% 6%                                                              |
| HI<br>HI<br>LINS<br>LINS                             |                                                                                                                                        |                                                                    |
| • Molecule                                           | e 15: Photosystem II 12 kDa extrinsic protein                                                                                          |                                                                    |
| Chain U:                                             | 13%                                                                                                                                    | • 8%                                                               |
|                                                      |                                                                                                                                        |                                                                    |
| ALA<br>THR<br>ALA<br>SER<br>SER<br>CLU<br>GLU<br>GLU | L62<br>L62<br>L62<br>L62<br>L62<br>L75<br>L75<br>L75<br>C17<br>L75<br>C17<br>L75<br>C17<br>L75<br>C101<br>L102<br>V103<br>V103<br>V104 |                                                                    |
| • Molecule                                           | e 15: Photosystem II 12 kDa extrinsic protein                                                                                          |                                                                    |
| Chain u:                                             | 01%                                                                                                                                    | . 70⁄2                                                             |
| Juan u.                                              | 5170                                                                                                                                   | - 170                                                              |

L D W I D E


• Molecule 19: Photosystem II reaction center protein Z



|                                                                                                                                                                                                                | 37%                                                                                     |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----|
| Chain Z:                                                                                                                                                                                                       | 94%                                                                                     | 6%  |
| M1<br>13<br>13<br>13<br>14<br>17<br>17<br>17<br>17<br>17<br>17<br>12<br>13<br>12<br>13<br>13<br>13<br>13<br>13<br>13<br>14<br>13<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14 | 031<br>032<br>032<br>033<br>034<br>033<br>033<br>033<br>033<br>033<br>033<br>033<br>033 |     |
| • Molecule 19: Ph                                                                                                                                                                                              | notosystem II reaction center protein                                                   | Z   |
| Chain z:                                                                                                                                                                                                       | 29%                                                                                     | 804 |
|                                                                                                                                                                                                                | 32.70                                                                                   | 070 |
| M1<br>12<br>13<br>13<br>14<br>13<br>14<br>13<br>13<br>13<br>132                                                                                                                                                | N33<br>158<br>158<br>158<br>158<br>158<br>158<br>159<br>159<br>159<br>159<br>159        |     |
| • Molecule 20: Ph                                                                                                                                                                                              | notosystem II protein Y                                                                 |     |
|                                                                                                                                                                                                                | 100%                                                                                    |     |
| Chain R:                                                                                                                                                                                                       | 100%                                                                                    |     |
|                                                                                                                                                                                                                |                                                                                         |     |
| D2<br>W3<br>V5<br>V5<br>V5<br>V7<br>V7<br>V12<br>V12<br>V12<br>V12<br>V12<br>V12<br>V12<br>V12<br>V12<br>V12                                                                                                   | A16<br>416<br>416<br>416<br>416<br>416<br>416<br>416<br>416<br>416<br>4                 |     |



# 4 Data and refinement statistics (i)

| Property                                                  | Value                                           | Source    |
|-----------------------------------------------------------|-------------------------------------------------|-----------|
| Space group                                               | P 21 21 21                                      | Depositor |
| Cell constants                                            | 126.52Å $231.23$ Å $287.46$ Å                   | Depositor |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$                    | $90.00^{\circ}$ $90.00^{\circ}$ $90.00^{\circ}$ | Depositor |
| $\mathbf{P}_{\text{assolution}}\left(\mathring{A}\right)$ | 19.98 - 2.50                                    | Depositor |
| Resolution (A)                                            | 46.51 - 2.50                                    | EDS       |
| % Data completeness                                       | 100.0 (19.98-2.50)                              | Depositor |
| (in resolution range)                                     | $100.0 \ (46.51 - 2.50)$                        | EDS       |
| $R_{merge}$                                               | (Not available)                                 | Depositor |
| $R_{sym}$                                                 | (Not available)                                 | Depositor |
| $< I/\sigma(I) > 1$                                       | $1.56 (at 2.51 \text{\AA})$                     | Xtriage   |
| Refinement program                                        | PHENIX 1.8_1069                                 | Depositor |
| D D.                                                      | 0.139 , $0.187$                                 | Depositor |
| $\mathbf{n}, \mathbf{n}_{free}$                           | 0.142 , $0.189$                                 | DCC       |
| $R_{free}$ test set                                       | 14614  reflections  (5.04%)                     | wwPDB-VP  |
| Wilson B-factor $(Å^2)$                                   | 71.4                                            | Xtriage   |
| Anisotropy                                                | 0.612                                           | Xtriage   |
| Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$               | 0.33, 68.2                                      | EDS       |
| L-test for $twinning^2$                                   | $ < L >=0.46, < L^2>=0.29$                      | Xtriage   |
| Estimated twinning fraction                               | No twinning to report.                          | Xtriage   |
| $F_o, F_c$ correlation                                    | 0.97                                            | EDS       |
| Total number of atoms                                     | 52752                                           | wwPDB-VP  |
| Average B, all atoms $(Å^2)$                              | 51.0                                            | wwPDB-VP  |

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 1.74% of the height of the origin peak. No significant pseudotranslation is detected.

<sup>&</sup>lt;sup>2</sup>Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

# 5 Model quality (i)

# 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: LHG, GOL, MG, OEX, PHO, DGD, CL, CA, LMT, CLA, PL9, LMG, FE2, HEC, BCT, HEM, FME, UNL, HTG, BCR, SQD

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | Chain | Bond | lengths  | Bond | angles   |
|-----|-------|------|----------|------|----------|
|     | Unam  | RMSZ | # Z  > 5 | RMSZ | # Z  > 5 |
| 1   | А     | 0.44 | 0/2705   | 0.56 | 0/3689   |
| 1   | a     | 0.43 | 0/2705   | 0.54 | 0/3689   |
| 2   | В     | 0.42 | 0/4109   | 0.54 | 0/5600   |
| 2   | b     | 0.41 | 0/4109   | 0.54 | 0/5600   |
| 3   | С     | 0.39 | 0/3599   | 0.51 | 0/4900   |
| 3   | с     | 0.39 | 0/3633   | 0.53 | 0/4946   |
| 4   | D     | 0.43 | 0/2821   | 0.54 | 0/3844   |
| 4   | d     | 0.43 | 0/2812   | 0.54 | 0/3832   |
| 5   | Е     | 0.35 | 0/681    | 0.53 | 0/928    |
| 5   | е     | 0.37 | 0/667    | 0.49 | 0/908    |
| 6   | F     | 0.34 | 0/284    | 0.48 | 0/387    |
| 6   | f     | 0.40 | 0/257    | 0.49 | 0/349    |
| 7   | Н     | 0.36 | 0/519    | 0.53 | 0/708    |
| 7   | h     | 0.35 | 0/524    | 0.49 | 0/713    |
| 8   | Ι     | 0.37 | 0/311    | 0.51 | 0/419    |
| 8   | i     | 0.36 | 0/311    | 0.54 | 0/419    |
| 9   | J     | 0.36 | 0/278    | 0.46 | 0/376    |
| 9   | j     | 0.35 | 0/283    | 0.47 | 0/383    |
| 10  | K     | 0.35 | 0/303    | 0.53 | 0/416    |
| 10  | k     | 0.32 | 0/303    | 0.51 | 0/416    |
| 11  | L     | 0.42 | 0/303    | 0.51 | 0/412    |
| 11  | 1     | 0.38 | 0/303    | 0.53 | 0/412    |
| 12  | М     | 0.44 | 0/253    | 0.58 | 0/346    |
| 12  | m     | 0.42 | 0/262    | 0.58 | 0/357    |
| 13  | 0     | 0.38 | 0/1896   | 0.58 | 0/2571   |
| 13  | 0     | 0.39 | 0/1896   | 0.58 | 0/2571   |
| 14  | Т     | 0.54 | 0/257    | 0.56 | 0/349    |
| 14  | t     | 0.52 | 0/257    | 0.52 | 0/349    |
| 15  | U     | 0.40 | 0/776    | 0.57 | 0/1052   |
| 15  | u     | 0.41 | 0/785    | 0.57 | 0/1064   |
| 16  | V     | 0.37 | 0/1085   | 0.52 | 0/1473   |



| Mal | Chain | Bond | lengths  | Bond angles |          |
|-----|-------|------|----------|-------------|----------|
|     | Unam  | RMSZ | # Z  > 5 | RMSZ        | # Z  > 5 |
| 16  | V     | 0.37 | 0/1085   | 0.53        | 0/1473   |
| 17  | Х     | 0.33 | 0/284    | 0.49        | 0/384    |
| 17  | х     | 0.31 | 0/284    | 0.46        | 0/384    |
| 18  | Y     | 0.30 | 0/216    | 0.44        | 0/289    |
| 18  | у     | 0.31 | 0/216    | 0.50        | 0/289    |
| 19  | Ζ     | 0.32 | 0/490    | 0.46        | 0/669    |
| 19  | Z     | 0.32 | 0/490    | 0.43        | 0/669    |
| 20  | R     | 0.27 | 0/279    | 0.43        | 0/383    |
| All | All   | 0.40 | 0/42631  | 0.53        | 0/58018  |

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

### 5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed       | Favoured  | Allowed | Outliers | Percen | $\mathbf{tiles}$ |
|-----|-------|----------------|-----------|---------|----------|--------|------------------|
| 1   | А     | 332/344~(96%)  | 326~(98%) | 5 (2%)  | 1 (0%)   | 41     | 61               |
| 1   | a     | 332/344~(96%)  | 327~(98%) | 4 (1%)  | 1 (0%)   | 41     | 61               |
| 2   | В     | 502/505~(99%)  | 498 (99%) | 4 (1%)  | 0        | 100    | 100              |
| 2   | b     | 502/505~(99%)  | 494 (98%) | 8 (2%)  | 0        | 100    | 100              |
| 3   | С     | 449/455~(99%)  | 440 (98%) | 8 (2%)  | 1 (0%)   | 47     | 68               |
| 3   | с     | 453/455~(100%) | 442 (98%) | 10 (2%) | 1 (0%)   | 47     | 68               |



| $\alpha \cdot \cdot \cdot$ | C     |          |      |
|----------------------------|-------|----------|------|
| Continued                  | trom  | previous | naae |
| Contracta                  | JIONE | precious | pagc |

| Mol | Chain | Analysed                  | Favoured  | Allowed | Outliers | Perce | entiles |
|-----|-------|---------------------------|-----------|---------|----------|-------|---------|
| 4   | D     | 340/342~(99%)             | 330~(97%) | 10 (3%) | 0        | 100   | 100     |
| 4   | d     | 339/342~(99%)             | 333~(98%) | 6(2%)   | 0        | 100   | 100     |
| 5   | Ε     | 79/84~(94%)               | 78~(99%)  | 1 (1%)  | 0        | 100   | 100     |
| 5   | е     | 77/84~(92%)               | 76~(99%)  | 1 (1%)  | 0        | 100   | 100     |
| 6   | F     | 32/44~(73%)               | 32 (100%) | 0       | 0        | 100   | 100     |
| 6   | f     | 29/44~(66%)               | 29 (100%) | 0       | 0        | 100   | 100     |
| 7   | Н     | 62/65~(95%)               | 60 (97%)  | 2(3%)   | 0        | 100   | 100     |
| 7   | h     | 63/65~(97%)               | 59 (94%)  | 4 (6%)  | 0        | 100   | 100     |
| 8   | Ι     | 36/38~(95%)               | 33 (92%)  | 3 (8%)  | 0        | 100   | 100     |
| 8   | i     | 36/38~(95%)               | 31 (86%)  | 4 (11%) | 1 (3%)   | 5     | 7       |
| 9   | J     | 36/39~(92%)               | 36 (100%) | 0       | 0        | 100   | 100     |
| 9   | j     | 37/39~(95%)               | 36 (97%)  | 1 (3%)  | 0        | 100   | 100     |
| 10  | К     | 35/37~(95%)               | 35 (100%) | 0       | 0        | 100   | 100     |
| 10  | k     | 35/37~(95%)               | 35 (100%) | 0       | 0        | 100   | 100     |
| 11  | L     | 34/37~(92%)               | 34 (100%) | 0       | 0        | 100   | 100     |
| 11  | 1     | 34/37~(92%)               | 34 (100%) | 0       | 0        | 100   | 100     |
| 12  | М     | 31/36~(86%)               | 31 (100%) | 0       | 0        | 100   | 100     |
| 12  | m     | 32/36~(89%)               | 31 (97%)  | 1 (3%)  | 0        | 100   | 100     |
| 13  | Ο     | 241/244~(99%)             | 232~(96%) | 9 (4%)  | 0        | 100   | 100     |
| 13  | О     | 241/244~(99%)             | 232~(96%) | 9 (4%)  | 0        | 100   | 100     |
| 14  | Т     | 28/32~(88%)               | 28 (100%) | 0       | 0        | 100   | 100     |
| 14  | t     | 28/32~(88%)               | 28 (100%) | 0       | 0        | 100   | 100     |
| 15  | U     | 94/104~(90%)              | 89 (95%)  | 5 (5%)  | 0        | 100   | 100     |
| 15  | u     | 95/104~(91%)              | 91 (96%)  | 4 (4%)  | 0        | 100   | 100     |
| 16  | V     | 135/137~(98%)             | 132 (98%) | 3 (2%)  | 0        | 100   | 100     |
| 16  | v     | 135/137~(98%)             | 132 (98%) | 3 (2%)  | 0        | 100   | 100     |
| 17  | X     | 36/40~(90%)               | 36 (100%) | 0       | 0        | 100   | 100     |
| 17  | X     | $\overline{36/40}~(90\%)$ | 36 (100%) | 0       | 0        | 100   | 100     |
| 18  | Y     | 27/30~(90%)               | 26 (96%)  | 1 (4%)  | 0        | 100   | 100     |
| 18  | у     | 27/30~(90%)               | 25 (93%)  | 1 (4%)  | 1 (4%)   | 3     | 4       |
| 19  | Z     | 60/62~(97%)               | 59 (98%)  | 0       | 1 (2%)   | 9     | 16      |



| Mol | Chain | Analysed        | Favoured   | Allowed  | Outliers | Perce | entiles |
|-----|-------|-----------------|------------|----------|----------|-------|---------|
| 19  | Z     | 60/62~(97%)     | 59~(98%)   | 0        | 1 (2%)   | 9     | 16      |
| 20  | R     | 32/34~(94%)     | 32~(100%)  | 0        | 0        | 100   | 100     |
| All | All   | 5212/5384~(97%) | 5097 (98%) | 107 (2%) | 8 (0%)   | 47    | 68      |

All (8) Ramachandran outliers are listed below:

| Mol | Chain | $\mathbf{Res}$ | $\mathbf{Type}$ |
|-----|-------|----------------|-----------------|
| 8   | i     | 36             | ASP             |
| 3   | С     | 416            | SER             |
| 3   | с     | 416            | SER             |
| 19  | Ζ     | 30             | PRO             |
| 1   | a     | 259            | ILE             |
| 19  | Z     | 30             | PRO             |
| 18  | у     | 45             | ASN             |
| 1   | А     | 259            | ILE             |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed       | Rotameric  | Outliers | Percer | ntiles |
|-----|-------|----------------|------------|----------|--------|--------|
| 1   | А     | 269/279~(96%)  | 269~(100%) | 0        | 100    | 100    |
| 1   | a     | 269/279~(96%)  | 268~(100%) | 1 (0%)   | 91     | 97     |
| 2   | В     | 402/403~(100%) | 395~(98%)  | 7(2%)    | 60     | 82     |
| 2   | b     | 402/403~(100%) | 390~(97%)  | 12 (3%)  | 41     | 68     |
| 3   | С     | 352/356~(99%)  | 349~(99%)  | 3~(1%)   | 78     | 92     |
| 3   | с     | 356/356~(100%) | 348~(98%)  | 8 (2%)   | 52     | 77     |
| 4   | D     | 277/277~(100%) | 276~(100%) | 1 (0%)   | 91     | 97     |
| 4   | d     | 276/277~(100%) | 275~(100%) | 1 (0%)   | 91     | 97     |
| 5   | Ε     | 72/73~(99%)    | 71~(99%)   | 1 (1%)   | 67     | 86     |
| 5   | е     | 70/73~(96%)    | 67~(96%)   | 3 (4%)   | 29     | 53     |
| 6   | F     | 28/38~(74%)    | 28 (100%)  | 0        | 100    | 100    |



| $\alpha$ $\beta$ $\beta$ | •          |      |
|--------------------------|------------|------|
| Continued from           | n previous | page |

| Mol | Chain | Analysed                    | Rotameric  | Outliers | Perce | ntiles |
|-----|-------|-----------------------------|------------|----------|-------|--------|
| 6   | f     | 25/38~(66%)                 | 24~(96%)   | 1 (4%)   | 31    | 56     |
| 7   | Н     | 54/54~(100%)                | 51~(94%)   | 3~(6%)   | 21    | 40     |
| 7   | h     | 54/54~(100%)                | 52~(96%)   | 2(4%)    | 34    | 60     |
| 8   | Ι     | 34/34~(100%)                | 33~(97%)   | 1 (3%)   | 42    | 69     |
| 8   | i     | 34/34~(100%)                | 32~(94%)   | 2~(6%)   | 19    | 37     |
| 9   | J     | 26/27~(96%)                 | 24 (92%)   | 2 (8%)   | 13    | 25     |
| 9   | j     | 26/27~(96%)                 | 26~(100%)  | 0        | 100   | 100    |
| 10  | K     | 30/30~(100%)                | 27~(90%)   | 3~(10%)  | 7     | 15     |
| 10  | k     | 30/30~(100%)                | 27~(90%)   | 3~(10%)  | 7     | 15     |
| 11  | L     | 34/35~(97%)                 | 34 (100%)  | 0        | 100   | 100    |
| 11  | l     | 34/35~(97%)                 | 34 (100%)  | 0        | 100   | 100    |
| 12  | М     | 29/32~(91%)                 | 29~(100%)  | 0        | 100   | 100    |
| 12  | m     | 30/32~(94%)                 | 29~(97%)   | 1 (3%)   | 38    | 64     |
| 13  | О     | 206/207~(100%)              | 201 (98%)  | 5 (2%)   | 49    | 74     |
| 13  | О     | 206/207~(100%)              | 203~(98%)  | 3 (2%)   | 65    | 85     |
| 14  | Т     | 26/28~(93%)                 | 25~(96%)   | 1 (4%)   | 33    | 58     |
| 14  | t     | 26/28~(93%)                 | 25~(96%)   | 1 (4%)   | 33    | 58     |
| 15  | U     | 83/89~(93%)                 | 82~(99%)   | 1 (1%)   | 71    | 88     |
| 15  | u     | 84/89~(94%)                 | 82~(98%)   | 2(2%)    | 49    | 74     |
| 16  | V     | 117/117~(100%)              | 117~(100%) | 0        | 100   | 100    |
| 16  | v     | 117/117~(100%)              | 117 (100%) | 0        | 100   | 100    |
| 17  | Х     | 31/33~(94%)                 | 30 (97%)   | 1 (3%)   | 39    | 65     |
| 17  | х     | 31/33~(94%)                 | 31~(100%)  | 0        | 100   | 100    |
| 18  | Y     | 22/23~(96%)                 | 22~(100%)  | 0        | 100   | 100    |
| 18  | у     | 22/23~(96%)                 | 22 (100%)  | 0        | 100   | 100    |
| 19  | Ζ     | $\overline{52/52}\ (100\%)$ | 49 (94%)   | 3 (6%)   | 20    | 38     |
| 19  | Z     | 52/52~(100%)                | 48 (92%)   | 4 (8%)   | 13    | 25     |
| 20  | R     | 29/29~(100%)                | 29 (100%)  | 0        | 100   | 100    |
| All | All   | 4317/4403~(98%)             | 4241 (98%) | 76 (2%)  | 59    | 81     |

All (76) residues with a non-rotameric sidechain are listed below:



| Mol | Chain | Res | Type |  |  |
|-----|-------|-----|------|--|--|
| 2   | В     | 53  | ASN  |  |  |
| 2   | В     | 161 | LEU  |  |  |
| 2   | В     | 223 | GLN  |  |  |
| 2   | В     | 362 | PHE  |  |  |
| 2   | В     | 472 | ARG  |  |  |
| 2   | В     | 495 | PHE  |  |  |
| 2   | В     | 505 | ARG  |  |  |
| 3   | С     | 289 | PHE  |  |  |
| 3   | С     | 315 | MET  |  |  |
| 3   | С     | 416 | SER  |  |  |
| 4   | D     | 180 | ARG  |  |  |
| 5   | Е     | 54  | SER  |  |  |
| 7   | Н     | 12  | ARG  |  |  |
| 7   | Н     | 49  | TYR  |  |  |
| 7   | Н     | 56  | ASP  |  |  |
| 8   | Ι     | 33  | LYS  |  |  |
| 9   | J     | 3   | GLU  |  |  |
| 9   | J     | 6   | ARG  |  |  |
| 10  | K     | 10  | LYS  |  |  |
| 10  | K     | 17  | ILE  |  |  |
| 10  | K     | 19  | ASP  |  |  |
| 13  | 0     | 24  | ASP  |  |  |
| 13  | 0     | 118 | LEU  |  |  |
| 13  | 0     | 135 | SER  |  |  |
| 13  | 0     | 219 | GLN  |  |  |
| 13  | 0     | 234 | LYS  |  |  |
| 14  | Т     | 2   | GLU  |  |  |
| 15  | U     | 70  | ARG  |  |  |
| 17  | Х     | 2   | THR  |  |  |
| 19  | Z     | 4   | LEU  |  |  |
| 19  | Z     | 6   | GLN  |  |  |
| 19  | Z     | 7   | LEU  |  |  |
| 1   | a     | 12  | ASN  |  |  |
| 2   | b     | 53  | ASN  |  |  |
| 2   | b     | 121 | GLU  |  |  |
| 2   | b     | 128 | THR  |  |  |
| 2   | b     | 161 | LEU  |  |  |
| 2   | b     | 223 | GLN  |  |  |
| 2   | b     | 362 | PHE  |  |  |
| 2   | b     | 472 | ARG  |  |  |
| 2   | b     | 477 | ASP  |  |  |
| 2   | b     | 485 | GLU  |  |  |
| 2   | b     | 486 | LEU  |  |  |
|     | 1     | L   |      |  |  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | b     | 491 | VAL  |
| 2   | b     | 505 | ARG  |
| 3   | с     | 19  | ASN  |
| 3   | с     | 24  | THR  |
| 3   | с     | 240 | ILE  |
| 3   | с     | 279 | LEU  |
| 3   | с     | 289 | PHE  |
| 3   | с     | 315 | MET  |
| 3   | с     | 355 | THR  |
| 3   | с     | 416 | SER  |
| 4   | d     | 180 | ARG  |
| 5   | е     | 16  | SER  |
| 5   | е     | 54  | SER  |
| 5   | е     | 74  | GLN  |
| 6   | f     | 15  | ILE  |
| 7   | h     | 49  | TYR  |
| 7   | h     | 56  | ASP  |
| 8   | i     | 33  | LYS  |
| 8   | i     | 36  | ASP  |
| 10  | k     | 10  | LYS  |
| 10  | k     | 17  | ILE  |
| 10  | k     | 19  | ASP  |
| 12  | m     | 5   | GLN  |
| 13  | 0     | 37  | THR  |
| 13  | 0     | 118 | LEU  |
| 13  | 0     | 132 | ASN  |
| 14  | t     | 2   | GLU  |
| 15  | u     | 15  | GLU  |
| 15  | u     | 61  | VAL  |
| 19  | Z     | 4   | LEU  |
| 19  | Z     | 6   | GLN  |
| 19  | Z     | 7   | LEU  |
| 19  | Z     | 32  | ASP  |

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (25) such sidechains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | В     | 53  | ASN  |
| 2   | В     | 331 | ASN  |
| 3   | С     | 201 | ASN  |
| 4   | D     | 61  | HIS  |
| 4   | D     | 83  | ASN  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 4   | D     | 142 | ASN  |
| 5   | Е     | 60  | GLN  |
| 6   | F     | 44  | GLN  |
| 13  | 0     | 124 | ASN  |
| 13  | 0     | 130 | GLN  |
| 15  | U     | 73  | GLN  |
| 19  | Z     | 58  | ASN  |
| 2   | b     | 53  | ASN  |
| 2   | b     | 223 | GLN  |
| 2   | b     | 331 | ASN  |
| 3   | с     | 201 | ASN  |
| 4   | d     | 83  | ASN  |
| 4   | d     | 142 | ASN  |
| 5   | е     | 60  | GLN  |
| 5   | е     | 75  | GLN  |
| 6   | f     | 44  | GLN  |
| 12  | m     | 5   | GLN  |
| 13  | 0     | 124 | ASN  |
| 13  | 0     | 130 | GLN  |
| 19  | Z     | 58  | ASN  |

### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

## 5.4 Non-standard residues in protein, DNA, RNA chains (i)

6 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol Tyn | Tune | Chain | Dec | Dec | Dec    | Dec  | Dog      | Dog          | Rog  | Tink     | B | ond leng | $\operatorname{gths}$ | E | Bond ang | gles |
|---------|------|-------|-----|-----|--------|------|----------|--------------|------|----------|---|----------|-----------------------|---|----------|------|
|         | Type | Chain | nes |     | Counts | RMSZ | # Z  > 2 | Counts       | RMSZ | # Z  > 2 |   |          |                       |   |          |      |
| 8       | FME  | i     | 1   | 8   | 8,9,10 | 0.61 | 0        | $7,\!9,\!11$ | 1.26 | 1 (14%)  |   |          |                       |   |          |      |
| 12      | FME  | М     | 1   | 12  | 8,9,10 | 0.55 | 0        | 7,9,11       | 1.35 | 1 (14%)  |   |          |                       |   |          |      |
| 12      | FME  | m     | 1   | 12  | 8,9,10 | 0.61 | 0        | 7,9,11       | 1.64 | 3 (42%)  |   |          |                       |   |          |      |



| Mol Type Chain | Tune   | Chain | Dog | Tink   | B      | Bond lengths |        |              | Bond angles |         |  |
|----------------|--------|-------|-----|--------|--------|--------------|--------|--------------|-------------|---------|--|
|                | Ullain | 1105  |     | Counts | RMSZ   | # Z  > 2     | Counts | RMSZ         | # Z >2      |         |  |
| 14             | FME    | Т     | 1   | 14     | 8,9,10 | 0.64         | 0      | $7,\!9,\!11$ | 1.22        | 0       |  |
| 8              | FME    | Ι     | 1   | 8      | 8,9,10 | 0.64         | 0      | $7,\!9,\!11$ | 1.00        | 1 (14%) |  |
| 14             | FME    | t     | 1   | 14     | 8,9,10 | 0.68         | 0      | $7,\!9,\!11$ | 1.72        | 2 (28%) |  |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res | Link | Chirals | Torsions | Rings |
|-----|------|-------|-----|------|---------|----------|-------|
| 8   | FME  | i     | 1   | 8    | -       | 2/7/9/11 | -     |
| 12  | FME  | М     | 1   | 12   | -       | 0/7/9/11 | -     |
| 12  | FME  | m     | 1   | 12   | -       | 2/7/9/11 | -     |
| 14  | FME  | Т     | 1   | 14   | -       | 3/7/9/11 | -     |
| 8   | FME  | Ι     | 1   | 8    | -       | 0/7/9/11 | -     |
| 14  | FME  | t     | 1   | 14   | -       | 0/7/9/11 | -     |

There are no bond length outliers.

All (8) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms   | Z     | $\mathbf{Observed}(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|---------|-------|---------------------------|---------------|
| 14  | t     | 1   | FME  | CA-N-CN | -2.74 | 118.61                    | 122.82        |
| 14  | t     | 1   | FME  | O-C-CA  | -2.68 | 117.76                    | 124.78        |
| 12  | М     | 1   | FME  | O-C-CA  | -2.52 | 118.17                    | 124.78        |
| 12  | m     | 1   | FME  | CA-N-CN | -2.39 | 119.15                    | 122.82        |
| 8   | i     | 1   | FME  | O-C-CA  | -2.30 | 118.75                    | 124.78        |
| 12  | m     | 1   | FME  | O1-CN-N | -2.26 | 119.33                    | 125.27        |
| 12  | m     | 1   | FME  | C-CA-N  | 2.20  | 113.70                    | 109.73        |
| 8   | Ι     | 1   | FME  | O-C-CA  | -2.01 | 119.51                    | 124.78        |

There are no chirality outliers.

All (7) torsion outliers are listed below:

| Mol | Chain | Res | Type | Atoms       |
|-----|-------|-----|------|-------------|
| 12  | m     | 1   | FME  | O1-CN-N-CA  |
| 12  | m     | 1   | FME  | CB-CA-N-CN  |
| 14  | Т     | 1   | FME  | O1-CN-N-CA  |
| 14  | Т     | 1   | FME  | C-CA-CB-CG  |
| 14  | Т     | 1   | FME  | N-CA-CB-CG  |
| 8   | i     | 1   | FME  | CA-CB-CG-SD |



Continued from previous page...

| Mol | Chain | Res | Type | Atoms      |
|-----|-------|-----|------|------------|
| 8   | i     | 1   | FME  | C-CA-CB-CG |

There are no ring outliers.

No monomer is involved in short contacts.

## 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

## 5.6 Ligand geometry (i)

Of 218 ligands modelled in this entry, 18 are unknown and 15 are monoatomic - leaving 185 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol | Type | Chain | Bog | Link | B              | ond leng | gths     | Bo             | ond angl | es       |
|-----|------|-------|-----|------|----------------|----------|----------|----------------|----------|----------|
|     | туре | Chain | nes |      | Counts         | RMSZ     | # Z >2   | Counts         | RMSZ     | # Z  > 2 |
| 34  | LMG  | с     | 520 | -    | $51,\!51,\!55$ | 0.97     | 2 (3%)   | $59,\!59,\!63$ | 1.21     | 7 (11%)  |
| 25  | BCR  | d     | 404 | -    | 41,41,41       | 1.12     | 1 (2%)   | 56, 56, 56     | 1.68     | 13 (23%) |
| 36  | HTG  | b     | 623 | -    | 19,19,19       | 1.08     | 2 (10%)  | 23,24,24       | 1.63     | 3 (13%)  |
| 27  | GOL  | А     | 410 | -    | 5, 5, 5        | 0.37     | 0        | 5, 5, 5        | 0.25     | 0        |
| 29  | PL9  | d     | 405 | -    | 55, 55, 55     | 0.64     | 2 (3%)   | $68,\!69,\!69$ | 1.86     | 22 (32%) |
| 23  | CLA  | с     | 502 | 3    | 59,73,73       | 2.04     | 12 (20%) | 67,113,113     | 2.19     | 20 (29%) |
| 37  | DGD  | С     | 517 | -    | $63,\!63,\!67$ | 0.85     | 2 (3%)   | 77,77,81       | 1.19     | 7 (9%)   |
| 24  | PHO  | a     | 408 | -    | 67,69,69       | 2.23     | 15 (22%) | 85,99,99       | 1.87     | 22 (25%) |
| 23  | CLA  | В     | 608 | 41   | 59,73,73       | 2.05     | 14 (23%) | 67,113,113     | 2.19     | 23 (34%) |
| 23  | CLA  | b     | 605 | 2    | 59,73,73       | 2.00     | 13 (22%) | 67,113,113     | 2.24     | 23 (34%) |
| 23  | CLA  | b     | 611 | 2    | 59,73,73       | 2.01     | 12 (20%) | 67,113,113     | 2.33     | 22 (32%) |
| 25  | BCR  | Н     | 101 | -    | 41,41,41       | 1.08     | 1 (2%)   | 56, 56, 56     | 1.59     | 11 (19%) |
| 23  | CLA  | В     | 606 | 2    | 59,73,73       | 1.99     | 14 (23%) | 67,113,113     | 2.17     | 24 (35%) |
| 25  | BCR  | Т     | 101 | -    | 41,41,41       | 1.04     | 1 (2%)   | 56, 56, 56     | 1.85     | 10 (17%) |



| Mal | Tune | Type Chain Res Link |     | Link     | B          | ond leng | gths     | Bond angles      |      |                     |
|-----|------|---------------------|-----|----------|------------|----------|----------|------------------|------|---------------------|
|     | туре | Chan                | nes |          | Counts     | RMSZ     | # Z >2   | Counts           | RMSZ | # Z  > 2            |
| 25  | BCR  | у                   | 101 | -        | 41,41,41   | 1.09     | 1 (2%)   | $56,\!56,\!56$   | 1.66 | 12 (21%)            |
| 29  | PL9  | a                   | 415 | -        | 55, 55, 55 | 0.65     | 1 (1%)   | $68,\!69,\!69$   | 2.00 | 20 (29%)            |
| 24  | PHO  | a                   | 407 | -        | 67,69,69   | 2.13     | 17 (25%) | $85,\!99,\!99$   | 2.02 | 25 (29%)            |
| 23  | CLA  | А                   | 405 | 41       | 59,73,73   | 2.03     | 14 (23%) | 67,113,113       | 2.11 | 23 (34%)            |
| 35  | LMT  | D                   | 403 | -        | 36,36,36   | 0.57     | 1 (2%)   | 47,47,47         | 1.20 | 4 (8%)              |
| 23  | CLA  | с                   | 508 | 3        | 59,73,73   | 2.07     | 13 (22%) | 67,113,113       | 2.23 | 21 (31%)            |
| 26  | SQD  | L                   | 102 | -        | 53,54,54   | 1.03     | 3 (5%)   | 62,65,65         | 1.53 | 10 (16%)            |
| 27  | GOL  | b                   | 624 | -        | 5, 5, 5    | 0.36     | 0        | 5, 5, 5          | 0.41 | 0                   |
| 27  | GOL  | 0                   | 302 | -        | 5, 5, 5    | 0.34     | 0        | 5, 5, 5          | 0.34 | 0                   |
| 25  | BCR  | А                   | 408 | _        | 41,41,41   | 0.99     | 1 (2%)   | $56,\!56,\!56$   | 1.65 | 16 (28%)            |
| 23  | CLA  | D                   | 404 | 4        | 59,73,73   | 2.04     | 13 (22%) | $67,\!113,\!113$ | 2.23 | 22 (32%)            |
| 35  | LMT  | М                   | 101 | -        | 36,36,36   | 0.56     | 0        | 47,47,47         | 1.10 | 3 (6%)              |
| 38  | HEM  | Е                   | 103 | $^{5,6}$ | 27,50,50   | 0.83     | 1 (3%)   | 17,82,82         | 2.28 | 4 (23%)             |
| 34  | LMG  | Z                   | 101 | -        | 39,39,55   | 1.09     | 2 (5%)   | 47,47,63         | 1.12 | 4 (8%)              |
| 31  | LHG  | d                   | 406 | _        | 48,48,48   | 0.87     | 3 (6%)   | 51,54,54         | 1.09 | <mark>5 (9%)</mark> |
| 23  | CLA  | с                   | 511 | 3        | 59,73,73   | 2.03     | 13 (22%) | 67,113,113       | 2.06 | 20 (29%)            |
| 36  | HTG  | С                   | 524 | _        | 8,8,19     | 0.39     | 0        | 7,7,24           | 1.15 | 1 (14%)             |
| 36  | HTG  | В                   | 629 | -        | 19,19,19   | 0.97     | 2(10%)   | 23,24,24         | 1.35 | 3 (13%)             |
| 27  | GOL  | a                   | 412 | -        | 5, 5, 5    | 0.43     | 0        | 5, 5, 5          | 0.27 | 0                   |
| 23  | CLA  | С                   | 504 | 3        | 59,73,73   | 1.97     | 13 (22%) | 67,113,113       | 2.08 | 19 (28%)            |
| 25  | BCR  | С                   | 516 | _        | 41,41,41   | 1.05     | 1 (2%)   | $56,\!56,\!56$   | 1.50 | 11 (19%)            |
| 27  | GOL  | В                   | 627 | -        | 5, 5, 5    | 0.35     | 0        | 5, 5, 5          | 0.37 | 0                   |
| 35  | LMT  | b                   | 628 | -        | 25,25,36   | 0.54     | 1 (4%)   | $30,\!30,\!47$   | 1.21 | 4 (13%)             |
| 23  | CLA  | a                   | 406 | 41       | 59,73,73   | 2.00     | 10 (16%) | 67,113,113       | 2.19 | 23 (34%)            |
| 23  | CLA  | В                   | 602 | 41       | 59,73,73   | 2.05     | 13 (22%) | 67,113,113       | 2.12 | 23 (34%)            |
| 23  | CLA  | С                   | 507 | 3        | 59,73,73   | 2.01     | 13 (22%) | 67,113,113       | 2.21 | 23 (34%)            |
| 23  | CLA  | С                   | 502 | 3        | 59,73,73   | 1.98     | 13 (22%) | 67,113,113       | 2.31 | 24 (35%)            |
| 23  | CLA  | a                   | 404 | 1        | 59,73,73   | 2.00     | 12 (20%) | 67,113,113       | 2.24 | 27 (40%)            |
| 34  | LMG  | a                   | 417 | _        | 51,51,55   | 0.96     | 3(5%)    | $59,\!59,\!63$   | 1.11 | 4 (6%)              |
| 36  | HTG  | В                   | 630 | -        | 19,19,19   | 1.01     | 2 (10%)  | 23,24,24         | 1.33 | 1 (4%)              |
| 34  | LMG  | j                   | 101 | 39       | 51,51,55   | 0.91     | 2 (3%)   | 59,59,63         | 1.08 | 6 (10%)             |
| 40  | HEC  | V                   | 202 | 16       | 26,50,50   | 1.53     | 4 (15%)  | 18,82,82         | 1.52 | 6 (33%)             |
| 23  | CLA  | D                   | 401 | 41       | 59,73,73   | 2.02     | 12 (20%) | 67,113,113       | 2.17 | 24 (35%)            |
| 23  | CLA  | с                   | 509 | 3        | 59,73,73   | 2.05     | 14 (23%) | 67,113,113       | 2.19 | 22 (32%)            |
| 36  | HTG  | b                   | 625 | -        | 19,19,19   | 0.99     | 2(10%)   | 23,24,24         | 1.48 | 3 (13%)             |



| Mal | Tune | Chain | Dog  | Link | B          | ond leng | gths     | Bo               | nd angl | es       |
|-----|------|-------|------|------|------------|----------|----------|------------------|---------|----------|
|     | туре | Chan  | ites |      | Counts     | RMSZ     | # Z >2   | Counts           | RMSZ    | # Z >2   |
| 23  | CLA  | с     | 512  | 3    | 59,73,73   | 2.00     | 13 (22%) | $67,\!113,\!113$ | 2.27    | 23 (34%) |
| 26  | SQD  | А     | 411  | -    | 53, 54, 54 | 1.03     | 3(5%)    | $62,\!65,\!65$   | 1.11    | 4 (6%)   |
| 23  | CLA  | d     | 402  | 4    | 59,73,73   | 1.99     | 14 (23%) | $67,\!113,\!113$ | 2.16    | 22 (32%) |
| 24  | PHO  | D     | 402  | -    | 67,69,69   | 2.14     | 17 (25%) | 85,99,99         | 2.01    | 23 (27%) |
| 23  | CLA  | с     | 506  | 3    | 59,73,73   | 1.98     | 14 (23%) | 67,113,113       | 2.14    | 23 (34%) |
| 23  | CLA  | с     | 503  | 3    | 59,73,73   | 1.99     | 13 (22%) | 67,113,113       | 2.17    | 21 (31%) |
| 23  | CLA  | В     | 610  | 2    | 59,73,73   | 2.00     | 13 (22%) | 67,113,113       | 2.11    | 17 (25%) |
| 35  | LMT  | Е     | 102  | -    | 36,36,36   | 0.51     | 1 (2%)   | 47,47,47         | 0.86    | 0        |
| 23  | CLA  | В     | 609  | 2    | 59,73,73   | 1.93     | 13 (22%) | 67,113,113       | 2.19    | 22 (32%) |
| 23  | CLA  | А     | 407  | 1    | 59,73,73   | 2.03     | 13 (22%) | 67,113,113       | 2.09    | 21 (31%) |
| 37  | DGD  | С     | 519  | -    | 63,63,67   | 0.83     | 2 (3%)   | 77,77,81         | 0.99    | 4 (5%)   |
| 29  | PL9  | А     | 413  | _    | 55,55,55   | 0.63     | 2 (3%)   | 68,69,69         | 1.96    | 22 (32%) |
| 31  | LHG  | D     | 408  | _    | 48,48,48   | 0.90     | 2 (4%)   | 51,54,54         | 1.00    | 3 (5%)   |
| 24  | PHO  | А     | 406  | -    | 67,69,69   | 2.18     | 17 (25%) | 85,99,99         | 2.00    | 23 (27%) |
| 23  | CLA  | С     | 510  | 3    | 59,73,73   | 2.04     | 14 (23%) | 67,113,113       | 2.19    | 21 (31%) |
| 32  | BCT  | А     | 416  | 21   | 0,3,3      | 0.00     | -        | 0,3,3            | 0.00    |          |
| 23  | CLA  | С     | 514  | 3    | 59,73,73   | 2.01     | 13 (22%) | 67,113,113       | 2.16    | 24 (35%) |
| 25  | BCR  | С     | 515  | -    | 41,41,41   | 1.03     | 1 (2%)   | $56,\!56,\!56$   | 1.54    | 7 (12%)  |
| 34  | LMG  | с     | 519  | -    | 51,51,55   | 0.96     | 3 (5%)   | $59,\!59,\!63$   | 1.05    | 5 (8%)   |
| 31  | LHG  | b     | 630  | _    | 48,48,48   | 0.93     | 2 (4%)   | 51,54,54         | 1.06    | 2 (3%)   |
| 27  | GOL  | С     | 525  | -    | 5, 5, 5    | 0.39     | 0        | 5, 5, 5          | 0.20    | 0        |
| 23  | CLA  | В     | 604  | 2    | 59,73,73   | 2.01     | 13 (22%) | $67,\!113,\!113$ | 2.27    | 23 (34%) |
| 26  | SQD  | а     | 413  | -    | 53, 54, 54 | 1.09     | 4 (7%)   | $62,\!65,\!65$   | 1.23    | 8 (12%)  |
| 23  | CLA  | В     | 605  | 2    | 59,73,73   | 1.98     | 12 (20%) | $67,\!113,\!113$ | 2.20    | 22 (32%) |
| 35  | LMT  | В     | 633  | -    | 36,36,36   | 0.56     | 1 (2%)   | 47,47,47         | 0.97    | 1(2%)    |
| 23  | CLA  | с     | 505  | 3    | 59,73,73   | 1.97     | 13 (22%) | 67,113,113       | 2.09    | 19 (28%) |
| 23  | CLA  | b     | 615  | 2    | 59,73,73   | 1.96     | 13 (22%) | 67,113,113       | 2.15    | 23 (34%) |
| 36  | HTG  | b     | 621  | -    | 19,19,19   | 1.24     | 2(10%)   | 23,24,24         | 1.76    | 5 (21%)  |
| 25  | BCR  | В     | 618  | _    | 41,41,41   | 1.04     | 1 (2%)   | $56,\!56,\!56$   | 1.63    | 10 (17%) |
| 36  | HTG  | В     | 624  | -    | 19,19,19   | 0.98     | 1 (5%)   | 23,24,24         | 1.38    | 4 (17%)  |
| 34  | LMG  | Z     | 101  | -    | 37,37,55   | 0.99     | 3 (8%)   | 45,45,63         | 1.54    | 8 (17%)  |
| 23  | CLA  | b     | 602  | 2    | 59,73,73   | 2.04     | 13 (22%) | 67,113,113       | 2.30    | 27 (40%) |
| 26  | SQD  | a     | 411  | -    | 53,54,54   | 0.98     | 3 (5%)   | 62,65,65         | 1.60    | 11 (17%) |
| 23  | CLA  | b     | 607  | 41   | 59,73,73   | 1.95     | 14 (23%) | 67,113,113       | 2.19    | 22 (32%) |
| 31  | LHG  | е     | 101  | -    | 41,41,48   | 1.03     | 2 (4%)   | 44,47,54         | 0.94    | 2 (4%)   |



| Mal | Tune | Chain | Dog | Link     | Bond lengths |      |          | Bond angles      |      |          |
|-----|------|-------|-----|----------|--------------|------|----------|------------------|------|----------|
|     | туре | Chain | nes |          | Counts       | RMSZ | # Z  > 2 | Counts           | RMSZ | # Z >2   |
| 23  | CLA  | b     | 612 | 2        | 59,73,73     | 2.04 | 13 (22%) | $67,\!113,\!113$ | 2.22 | 21 (31%) |
| 32  | BCT  | a     | 419 | 21       | 0,3,3        | 0.00 | -        | 0,3,3            | 0.00 | -        |
| 29  | PL9  | D     | 407 | -        | 55,55,55     | 0.67 | 2 (3%)   | 68,69,69         | 1.66 | 19 (27%) |
| 23  | CLA  | с     | 501 | 3        | 59,73,73     | 2.00 | 13 (22%) | $67,\!113,\!113$ | 2.21 | 23 (34%) |
| 25  | BCR  | h     | 102 | -        | 41,41,41     | 1.05 | 1 (2%)   | $56,\!56,\!56$   | 1.47 | 10 (17%) |
| 27  | GOL  | В     | 628 | -        | 5, 5, 5      | 0.54 | 0        | 5, 5, 5          | 0.49 | 0        |
| 37  | DGD  | с     | 517 | -        | 63,63,67     | 0.91 | 3 (4%)   | 77,77,81         | 0.98 | 4 (5%)   |
| 36  | HTG  | h     | 101 | _        | 16, 16, 19   | 1.09 | 2 (12%)  | $20,\!21,\!24$   | 1.30 | 1(5%)    |
| 31  | LHG  | Е     | 101 | -        | 41,41,48     | 1.02 | 2(4%)    | 44,47,54         | 1.09 | 3(6%)    |
| 23  | CLA  | b     | 608 | 2        | 59,73,73     | 2.03 | 13 (22%) | 67,113,113       | 2.17 | 24 (35%) |
| 36  | HTG  | с     | 522 | -        | 19,19,19     | 1.00 | 2(10%)   | 23,24,24         | 1.47 | 3 (13%)  |
| 36  | HTG  | b     | 626 | _        | 19,19,19     | 1.08 | 2(10%)   | 23,24,24         | 1.28 | 2 (8%)   |
| 36  | HTG  | С     | 523 | -        | 19,19,19     | 0.96 | 1(5%)    | 23,24,24         | 1.50 | 3 (13%)  |
| 23  | CLA  | b     | 606 | 2        | 59,73,73     | 1.92 | 13 (22%) | 67,113,113       | 2.20 | 20 (29%) |
| 25  | BCR  | t     | 101 | -        | 41,41,41     | 1.01 | 1 (2%)   | 56,56,56         | 1.84 | 13 (23%) |
| 23  | CLA  | С     | 508 | 41       | 59,73,73     | 1.99 | 12 (20%) | 67,113,113       | 2.19 | 23 (34%) |
| 36  | HTG  | В     | 626 | -        | 19,19,19     | 0.96 | 1 (5%)   | 23,24,24         | 1.59 | 2 (8%)   |
| 23  | CLA  | b     | 604 | 2        | 59,73,73     | 1.92 | 12 (20%) | 67,113,113       | 2.23 | 22 (32%) |
| 28  | OEX  | a     | 414 | 1,3,41   | 0,15,15      | 0.00 | -        | -                |      |          |
| 38  | HEM  | е     | 103 | $^{5,6}$ | 27,50,50     | 0.88 | 1(3%)    | 17,82,82         | 1.93 | 3 (17%)  |
| 34  | LMG  | С     | 520 | -        | 51, 51, 55   | 0.94 | 2 (3%)   | 59,59,63         | 1.08 | 3 (5%)   |
| 25  | BCR  | b     | 618 | -        | 41,41,41     | 0.98 | 1 (2%)   | $56,\!56,\!56$   | 1.53 | 12 (21%) |
| 23  | CLA  | С     | 511 | 3        | 59,73,73     | 2.01 | 11 (18%) | 67,113,113       | 2.21 | 20 (29%) |
| 23  | CLA  | С     | 505 | 41       | 59,73,73     | 2.06 | 13 (22%) | 67,113,113       | 2.16 | 24 (35%) |
| 35  | LMT  | В     | 632 | -        | 25,25,36     | 0.45 | 0        | $30,\!30,\!47$   | 0.71 | 0        |
| 35  | LMT  | a     | 418 | -        | 36,36,36     | 0.49 | 1 (2%)   | 47,47,47         | 0.74 | 1 (2%)   |
| 26  | SQD  | f     | 101 | -        | 42,43,54     | 1.18 | 3 (7%)   | 51,54,65         | 1.53 | 8 (15%)  |
| 26  | SQD  | А     | 409 | -        | 53,54,54     | 0.98 | 3 (5%)   | 62,65,65         | 1.84 | 13 (20%) |
| 37  | DGD  | С     | 518 | _        | 63,63,67     | 0.86 | 2 (3%)   | 77,77,81         | 0.98 | 5(6%)    |
| 36  | HTG  | D     | 412 | -        | 16,16,19     | 1.03 | 2 (12%)  | 20,21,24         | 1.40 | 1 (5%)   |
| 23  | CLA  | b     | 610 | 41       | 59,73,73     | 2.06 | 13 (22%) | 67,113,113       | 2.24 | 22 (32%) |
| 36  | HTG  | с     | 521 | -        | 19,19,19     | 0.93 | 1(5%)    | 23,24,24         | 1.46 | 1 (4%)   |
| 23  | CLA  | с     | 510 | 3        | 59,73,73     | 1.96 | 13 (22%) | 67,113,113       | 2.23 | 25 (37%) |
| 25  | BCR  | Y     | 101 | -        | 41,41,41     | 0.98 | 1 (2%)   | 56,56,56         | 1.82 | 17 (30%) |
| 25  | BCR  | a     | 410 | -        | 41,41,41     | 0.99 | 1 (2%)   | 56, 56, 56       | 1.57 | 13 (23%) |



| Mol | Type | Chain | Bog  | Link   | B        | ond leng | gths     | Bo               | ond angl | es       |
|-----|------|-------|------|--------|----------|----------|----------|------------------|----------|----------|
|     | туре | Cham  | Ites |        | Counts   | RMSZ     | # Z >2   | Counts           | RMSZ     | # Z  > 2 |
| 23  | CLA  | В     | 613  | 2      | 59,73,73 | 2.02     | 14 (23%) | 67,113,113       | 2.28     | 23 (34%) |
| 25  | BCR  | В     | 619  | -      | 41,41,41 | 0.97     | 1 (2%)   | $56,\!56,\!56$   | 1.56     | 13 (23%) |
| 23  | CLA  | А     | 404  | 1      | 59,73,73 | 2.04     | 12 (20%) | $67,\!113,\!113$ | 2.29     | 24 (35%) |
| 35  | LMT  | М     | 103  | -      | 36,36,36 | 0.46     | 0        | $47,\!47,\!47$   | 0.78     | 1 (2%)   |
| 26  | SQD  | D     | 413  | -      | 42,43,54 | 1.14     | 3 (7%)   | $51,\!54,\!65$   | 1.63     | 12 (23%) |
| 23  | CLA  | В     | 616  | 2      | 59,73,73 | 1.98     | 11 (18%) | $67,\!113,\!113$ | 2.19     | 24 (35%) |
| 23  | CLA  | С     | 509  | 3      | 59,73,73 | 2.09     | 13 (22%) | $67,\!113,\!113$ | 2.27     | 24 (35%) |
| 25  | BCR  | k     | 101  | -      | 41,41,41 | 1.03     | 1 (2%)   | $56,\!56,\!56$   | 1.61     | 13 (23%) |
| 27  | GOL  | d     | 401  | -      | 5, 5, 5  | 0.35     | 0        | 5, 5, 5          | 0.52     | 0        |
| 23  | CLA  | С     | 512  | 3      | 59,73,73 | 2.06     | 14 (23%) | $67,\!113,\!113$ | 2.06     | 21 (31%) |
| 28  | OEX  | А     | 412  | 1,3,41 | 0,15,15  | 0.00     | -        | -                |          |          |
| 40  | HEC  | V     | 201  | 16     | 26,50,50 | 1.55     | 4 (15%)  | $18,\!82,\!82$   | 1.61     | 5 (27%)  |
| 23  | CLA  | С     | 503  | 3      | 59,73,73 | 1.98     | 13 (22%) | $67,\!113,\!113$ | 2.08     | 19(28%)  |
| 23  | CLA  | В     | 607  | 2      | 59,73,73 | 1.94     | 12 (20%) | $67,\!113,\!113$ | 2.18     | 22 (32%) |
| 35  | LMT  | m     | 103  | -      | 36,36,36 | 0.50     | 0        | 47,47,47         | 0.93     | 1 (2%)   |
| 23  | CLA  | b     | 603  | 2      | 59,73,73 | 1.99     | 12 (20%) | $67,\!113,\!113$ | 2.26     | 21 (31%) |
| 23  | CLA  | b     | 609  | 2      | 59,73,73 | 2.03     | 13 (22%) | $67,\!113,\!113$ | 2.21     | 20 (29%) |
| 36  | HTG  | b     | 622  | -      | 19,19,19 | 1.01     | 2(10%)   | 23,24,24         | 1.39     | 2 (8%)   |
| 25  | BCR  | С     | 514  | -      | 41,41,41 | 1.01     | 1 (2%)   | $56,\!56,\!56$   | 1.87     | 15 (26%) |
| 34  | LMG  | С     | 521  | -      | 51,51,55 | 0.98     | 3 (5%)   | $59,\!59,\!63$   | 1.21     | 4 (6%)   |
| 23  | CLA  | С     | 507  | 41     | 59,73,73 | 2.02     | 13 (22%) | $67,\!113,\!113$ | 2.18     | 22 (32%) |
| 31  | LHG  | А     | 415  | -      | 48,48,48 | 0.86     | 2 (4%)   | 51,54,54         | 1.18     | 6 (11%)  |
| 23  | CLA  | b     | 614  | 2      | 59,73,73 | 2.03     | 13 (22%) | 67,113,113       | 2.15     | 21 (31%) |
| 35  | LMT  | b     | 620  | _      | 25,25,36 | 0.46     | 0        | $30,\!30,\!47$   | 0.66     | 0        |
| 25  | BCR  | В     | 620  | -      | 41,41,41 | 1.06     | 1 (2%)   | $56,\!56,\!56$   | 1.50     | 12 (21%) |
| 23  | CLA  | В     | 603  | 2      | 59,73,73 | 2.07     | 13 (22%) | $67,\!113,\!113$ | 2.25     | 21 (31%) |
| 23  | CLA  | С     | 513  | 3      | 59,73,73 | 2.01     | 12 (20%) | 67,113,113       | 2.20     | 23 (34%) |
| 35  | LMT  | С     | 522  | -      | 36,36,36 | 0.53     | 1 (2%)   | 47,47,47         | 1.02     | 4 (8%)   |
| 31  | LHG  | d     | 408  | -      | 48,48,48 | 0.96     | 2 (4%)   | 51,54,54         | 0.99     | 3 (5%)   |
| 37  | DGD  | с     | 518  | _      | 63,63,67 | 0.86     | 3 (4%)   | 77,77,81         | 1.09     | 4 (5%)   |
| 23  | CLA  | В     | 614  | 2      | 59,73,73 | 2.05     | 13 (22%) | 67,113,113       | 2.11     | 21 (31%) |
| 25  | BCR  | С     | 527  | -      | 41,41,41 | 1.01     | 1 (2%)   | $56,\!56,\!56$   | 1.57     | 12 (21%) |
| 23  | CLA  | b     | 613  | 2      | 59,73,73 | 2.08     | 13 (22%) | 67,113,113       | 2.14     | 23 (34%) |
| 25  | BCR  | b     | 619  | -      | 41,41,41 | 1.08     | 2 (4%)   | 56,56,56         | 1.81     | 12 (21%) |
| 35  | LMT  | e     | 102  | -      | 36,36,36 | 0.48     | 0        | 47,47,47         | 0.84     | 3 (6%)   |



| Mol | Type | Chain | Bos  | Link | Bond lengths   |      |          | Bond angles      |                   |                     |
|-----|------|-------|------|------|----------------|------|----------|------------------|-------------------|---------------------|
|     | туре | Chan  | 1105 |      | Counts         | RMSZ | # Z >2   | Counts           | RMSZ              | # Z  > 2            |
| 31  | LHG  | D     | 409  | -    | 48,48,48       | 0.94 | 2 (4%)   | $51,\!54,\!54$   | 1.06              | 3 (5%)              |
| 23  | CLA  | с     | 513  | 3    | 59,73,73       | 2.03 | 13 (22%) | $67,\!113,\!113$ | 2.19              | 22 (32%)            |
| 23  | CLA  | b     | 616  | 2    | 59,73,73       | 2.03 | 13 (22%) | $67,\!113,\!113$ | 2.30              | 24 (35%)            |
| 23  | CLA  | а     | 409  | 1    | 59,73,73       | 2.02 | 14 (23%) | $67,\!113,\!113$ | 2.22              | 27 (40%)            |
| 23  | CLA  | В     | 611  | 41   | 59,73,73       | 2.05 | 13 (22%) | $67,\!113,\!113$ | 2.26              | 24 (35%)            |
| 23  | CLA  | D     | 405  | 4    | 59,73,73       | 2.01 | 12 (20%) | $67,\!113,\!113$ | 2.14              | 22 (32%)            |
| 31  | LHG  | d     | 407  | -    | 48,48,48       | 0.91 | 2 (4%)   | 51,54,54         | 0.93              | 3 (5%)              |
| 37  | DGD  | с     | 516  | -    | 63,63,67       | 0.85 | 2 (3%)   | 77,77,81         | 1.08              | 6 (7%)              |
| 35  | LMT  | В     | 634  | -    | 26,26,36       | 0.49 | 0        | 31,31,47         | 0.90              | 1 (3%)              |
| 37  | DGD  | Н     | 102  | _    | 63,63,67       | 0.89 | 2 (3%)   | 77,77,81         | 0.98              | <mark>3 (3%)</mark> |
| 23  | CLA  | a     | 405  | 41   | 59,73,73       | 2.07 | 12 (20%) | 67,113,113       | 2.20              | 26 (38%)            |
| 25  | BCR  | с     | 515  | _    | 41,41,41       | 0.98 | 1 (2%)   | $56,\!56,\!56$   | 1.67              | 14 (25%)            |
| 23  | CLA  | В     | 617  | 2    | 59,73,73       | 2.03 | 13 (22%) | 67,113,113       | 2.27              | 22 (32%)            |
| 34  | LMG  | В     | 622  | _    | 51, 51, 55     | 0.90 | 2 (3%)   | $59,\!59,\!63$   | 1.15              | 5 (8%)              |
| 37  | DGD  | h     | 103  | _    | 63,63,67       | 0.89 | 3(4%)    | 77,77,81         | 0.96              | 3 (3%)              |
| 34  | LMG  | J     | 101  | 39   | 51, 51, 55     | 0.91 | 3 (5%)   | $59,\!59,\!63$   | 1.07              | <mark>5 (8%)</mark> |
| 31  | LHG  | L     | 101  | -    | 48,48,48       | 0.91 | 2 (4%)   | 51,54,54         | 1.17              | 4 (7%)              |
| 26  | SQD  | В     | 621  | _    | 53,54,54       | 1.04 | 3 (5%)   | $62,\!65,\!65$   | 1.45              | 8 (12%)             |
| 23  | CLA  | b     | 601  | 41   | 59,73,73       | 2.06 | 12 (20%) | 67,113,113       | 2.12              | 20 (29%)            |
| 36  | HTG  | В     | 625  | -    | 19,19,19       | 0.83 | 1 (5%)   | 23,24,24         | 1.60              | 1 (4%)              |
| 23  | CLA  | В     | 615  | 2    | 59,73,73       | 1.96 | 13 (22%) | 67,113,113       | 2.24              | 21 (31%)            |
| 34  | LMG  | С     | 501  | -    | 51, 51, 55     | 0.95 | 2 (3%)   | $59,\!59,\!63$   | 1.26              | 6(10%)              |
| 23  | CLA  | d     | 403  | 4    | 59,73,73       | 2.02 | 12 (20%) | 67,113,113       | 2.18              | 22 (32%)            |
| 23  | CLA  | С     | 506  | 3    | 59,73,73       | 1.96 | 13 (22%) | 67,113,113       | 2.18              | 20 (29%)            |
| 34  | LMG  | m     | 101  | -    | $51,\!51,\!55$ | 0.89 | 2 (3%)   | $59,\!59,\!63$   | 1.17              | 6 (10%)             |
| 36  | HTG  | V     | 203  | _    | 11,11,19       | 0.28 | 0        | $15,\!15,\!24$   | 1.35              | 1(6%)               |
| 35  | LMT  | В     | 623  | -    | 36,36,36       | 0.42 | 0        | 47,47,47         | 1.14              | 4 (8%)              |
| 23  | CLA  | В     | 612  | 2    | 59,73,73       | 2.02 | 12 (20%) | 67,113,113       | 2.25              | 23 (34%)            |
| 25  | BCR  | D     | 406  | -    | 41,41,41       | 1.03 | 1 (2%)   | $56,\!56,\!56$   | 1.77              | 13 (23%)            |
| 23  | CLA  | с     | 504  | 41   | 59,73,73       | 2.07 | 14 (23%) | 67,113,113       | <mark>2.13</mark> | 23 (34%)            |
| 25  | BCR  | b     | 617  | -    | 41,41,41       | 1.06 | 1 (2%)   | 56, 56, 56       | 1.39              | 6 (10%)             |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.



| 5G <sup>-</sup> | ГΙ |
|-----------------|----|
|                 |    |

| Mol                                           | Type       | Chain  | Res        | Link | Chirals               | Torsions                      | Rings   |
|-----------------------------------------------|------------|--------|------------|------|-----------------------|-------------------------------|---------|
| 34                                            | LMG        | с      | 520        | -    | -                     | 8/46/66/70                    | 0/1/1/1 |
| 25                                            | BCR        | d      | 404        | _    | -                     | 8/29/63/63                    | 0/2/2/2 |
| 36                                            | HTG        | b      | 623        | -    | -                     | 2/10/30/30                    | 0/1/1/1 |
| 27                                            | GOL        | А      | 410        | -    | -                     | 4/4/4/4                       | -       |
| 29                                            | PL9        | d      | 405        | -    | -                     | $\frac{6}{53}$                | 0/1/1/1 |
| 23                                            | CLA        | с      | 502        | 3    | 3/3/20/25             | 8/37/135/135                  | -       |
| 37                                            | DGD        | С      | 517        | -    | -                     | 15/51/91/95                   | 0/2/2/2 |
| 24                                            | PHO        | a      | 408        | _    | -                     | 3/53/103/103                  | 0/5/6/6 |
| 23                                            | CLA        | В      | 608        | 41   | 3/3/20/25             | 3/37/135/135                  | -       |
| 27                                            | GOL        | a      | 412        | _    | -                     | 2/4/4/4                       | -       |
| 23                                            | CLA        | b      | 605        | 2    | 3/3/20/25             | 13/37/135/135                 | -       |
| 23                                            | CLA        | b      | 611        | 2    | 3/3/20/25             | 10/37/135/135                 | -       |
| 25                                            | BCR        | Н      | 101        | _    | -                     | 4/29/63/63                    | 0/2/2/2 |
| 23                                            | CLA        | В      | 606        | 2    | 3/3/20/25             | 11/37/135/135                 | -       |
| 25                                            | BCR        | Т      | 101        | -    | -                     | 5/29/63/63                    | 0/2/2/2 |
| 25                                            | BCR        | у      | 101        | -    | -                     | 4/29/63/63                    | 0/2/2/2 |
| 29                                            | PL9        | a      | 415        | -    | -                     | 16/53/73/73                   | 0/1/1/1 |
| 24                                            | PHO        | a      | 407        | -    | -                     | 4/53/103/103                  | 0/5/6/6 |
| 23                                            | CLA        | А      | 405        | 41   | 2/2/20/25             | 8/37/135/135                  | -       |
| 35                                            | LMT        | D      | 403        | -    | -                     | 8/21/61/61                    | 0/2/2/2 |
| 23                                            | CLA        | с      | 508        | 3    | 3/3/20/25             | 6/37/135/135                  | -       |
| 26                                            | SQD        | L      | 102        | _    | -                     | 22/49/69/69                   | 0/1/1/1 |
| 27                                            | GOL        | b      | 624        | -    | -                     | 2/4/4/4                       | -       |
| 27                                            | GOL        | Ο      | 302        | -    | -                     | 2/4/4/4                       | -       |
| 25                                            | BCR        | А      | 408        | -    | -                     | 1/29/63/63                    | 0/2/2/2 |
| 23                                            | CLA        | D      | 404        | 4    | 1/1/20/25             | 2/37/135/135                  | -       |
| 35                                            | LMT        | М      | 101        | -    | -                     | 2/21/61/61                    | 0/2/2/2 |
| 38                                            | HEM        | E      | 103        | 5,6  | -                     | 0/6/54/54                     | -       |
| 34                                            | LMG        | Z      | 101        | -    | -                     | 15/34/54/70                   | 0/1/1/1 |
| 31                                            | LHG        | d      | 406        | -    | -                     | 12/53/53/53                   | -       |
| 23                                            | CLA        | c      | 511        | 3    | 3/3/20/25             | 5/37/135/135                  | -       |
| $\frac{36}{36}$                               | HTG<br>HTC | C<br>B | 524<br>620 | -    | -                     | $\frac{1/6/6/30}{1/10/30/30}$ | -       |
| 23                                            | CLA        | а<br>Ь | 403        |      | $\frac{-}{3/3/20/25}$ | 6/37/135/135                  |         |
| 20                                            | CLA        | C      | 504        | 3    | 3/3/20/25             | 3/37/135/135                  | _       |
| $\boxed{\begin{array}{c} 20\\ 25\end{array}}$ | BCR        | C      | 516        | -    | -                     | 1/29/63/63                    | 0/2/2/2 |



| $5 \mathrm{GTI}$ |
|------------------|
|------------------|

| Mol | Type | Chain | $\frac{10 \text{ page}}{\text{Res}}$ | Link | Chirals   | Torsions                  | Rings   |
|-----|------|-------|--------------------------------------|------|-----------|---------------------------|---------|
| 27  | GOL  | В     | 627                                  | -    | _         | $\frac{4}{4}/\frac{4}{4}$ | -       |
| 35  | LMT  | b     | 628                                  | -    | _         | 9/17/37/61                | 0/1/1/2 |
| 23  | CLA  | a     | 406                                  | 41   | 2/2/20/25 | 8/37/135/135              | -       |
| 23  | CLA  | В     | 602                                  | 41   | 3/3/20/25 | 13/37/135/135             | -       |
| 23  | CLA  | С     | 507                                  | 3    | 3/3/20/25 | 14/37/135/135             | -       |
| 23  | CLA  | С     | 502                                  | 3    | 3/3/20/25 | 5/37/135/135              | -       |
| 38  | HEM  | е     | 103                                  | 5,6  | -         | 0/6/54/54                 | -       |
| 23  | CLA  | a     | 404                                  | 1    | 3/3/20/25 | 5/37/135/135              | -       |
| 34  | LMG  | a     | 417                                  | -    | -         | 14/46/66/70               | 0/1/1/1 |
| 36  | HTG  | В     | 630                                  | -    | -         | 1/10/30/30                | 0/1/1/1 |
| 34  | LMG  | j     | 101                                  | 39   | -         | 8/46/66/70                | 0/1/1/1 |
| 40  | HEC  | V     | 202                                  | 16   | -         | 0/6/54/54                 | -       |
| 23  | CLA  | D     | 401                                  | 41   | 3/3/20/25 | 8/37/135/135              | -       |
| 23  | CLA  | с     | 509                                  | 3    | 3/3/20/25 | 15/37/135/135             | -       |
| 36  | HTG  | b     | 625                                  | -    | -         | 5/10/30/30                | 0/1/1/1 |
| 23  | CLA  | с     | 512                                  | 3    | 3/3/20/25 | 9/37/135/135              | -       |
| 26  | SQD  | А     | 411                                  | -    | -         | 14/49/69/69               | 0/1/1/1 |
| 23  | CLA  | d     | 402                                  | 4    | 1/1/20/25 | 3/37/135/135              | -       |
| 24  | PHO  | D     | 402                                  | -    | -         | 6/53/103/103              | 0/5/6/6 |
| 23  | CLA  | с     | 506                                  | 3    | 3/3/20/25 | 12/37/135/135             | -       |
| 23  | CLA  | с     | 503                                  | 3    | 3/3/20/25 | 3/37/135/135              | -       |
| 35  | LMT  | Е     | 102                                  | -    | -         | 10/21/61/61               | 0/2/2/2 |
| 23  | CLA  | В     | 609                                  | 2    | 3/3/20/25 | 4/37/135/135              | -       |
| 23  | CLA  | А     | 407                                  | 1    | 3/3/20/25 | 8/37/135/135              | -       |
| 37  | DGD  | С     | 519                                  | -    | -         | 7/51/91/95                | 0/2/2/2 |
| 29  | PL9  | А     | 413                                  | -    | _         | 11/53/73/73               | 0/1/1/1 |
| 31  | LHG  | D     | 408                                  | -    | -         | 18/53/53/53               | -       |
| 24  | PHO  | А     | 406                                  | -    | -         | 4/53/103/103              | 0/5/6/6 |
| 23  | CLA  | С     | 510                                  | 3    | 3/3/20/25 | 14/37/135/135             | -       |
| 23  | CLA  | С     | 514                                  | 3    | 2/2/20/25 | 8/37/135/135              | -       |
| 25  | BCR  | С     | 515                                  | -    | -         | 1/29/63/63                | 0/2/2/2 |
| 34  | LMG  | с     | 519                                  | -    | -         | 13/46/66/70               | 0/1/1/1 |
| 31  | LHG  | b     | 630                                  | -    | -         | 19/53/53/53               | -       |
| 27  | GOL  | C     | 525                                  | -    | _         | 2/4/4/4                   | -       |
| 23  | CLA  | В     | 604                                  | 2    | 3/3/20/25 | 6/37/135/135              | -       |



| Mol | Type | Chain | Res | Link | Chirals   | Torsions      | Rings   |
|-----|------|-------|-----|------|-----------|---------------|---------|
| 26  | SQD  | a     | 413 | -    | -         | 16/49/69/69   | 0/1/1/1 |
| 23  | CLA  | В     | 605 | 2    | 3/3/20/25 | 13/37/135/135 | -       |
| 35  | LMT  | В     | 633 | -    | -         | 5/21/61/61    | 0/2/2/2 |
| 23  | CLA  | с     | 505 | 3    | 1/1/20/25 | 7/37/135/135  | -       |
| 23  | CLA  | b     | 615 | 2    | 3/3/20/25 | 7/37/135/135  | -       |
| 36  | HTG  | b     | 621 | -    | -         | 2/10/30/30    | 0/1/1/1 |
| 25  | BCR  | В     | 618 | -    | -         | 2/29/63/63    | 0/2/2/2 |
| 36  | HTG  | В     | 624 | -    | -         | 4/10/30/30    | 0/1/1/1 |
| 34  | LMG  | Z     | 101 | -    | -         | 14/31/51/70   | 0/1/1/1 |
| 23  | CLA  | b     | 602 | 2    | 2/2/20/25 | 4/37/135/135  | -       |
| 26  | SQD  | a     | 411 | -    | -         | 14/49/69/69   | 0/1/1/1 |
| 23  | CLA  | b     | 607 | 41   | 3/3/20/25 | 9/37/135/135  | -       |
| 31  | LHG  | е     | 101 | -    | -         | 14/46/46/53   | -       |
| 23  | CLA  | b     | 612 | 2    | 3/3/20/25 | 5/37/135/135  | -       |
| 29  | PL9  | D     | 407 | -    | -         | 7/53/73/73    | 0/1/1/1 |
| 23  | CLA  | с     | 501 | 3    | 3/3/20/25 | 8/37/135/135  | -       |
| 25  | BCR  | h     | 102 | _    | -         | 0/29/63/63    | 0/2/2/2 |
| 27  | GOL  | В     | 628 | -    | -         | 4/4/4/4       | -       |
| 37  | DGD  | с     | 517 | -    | -         | 14/51/91/95   | 0/2/2/2 |
| 36  | HTG  | h     | 101 | -    | -         | 3/7/27/30     | 0/1/1/1 |
| 31  | LHG  | Е     | 101 | -    | -         | 17/46/46/53   | -       |
| 23  | CLA  | b     | 608 | 2    | 2/2/20/25 | 5/37/135/135  | -       |
| 36  | HTG  | с     | 522 | -    | -         | 2/10/30/30    | 0/1/1/1 |
| 36  | HTG  | b     | 626 | -    | -         | 0/10/30/30    | 0/1/1/1 |
| 36  | HTG  | С     | 523 | -    | -         | 0/10/30/30    | 0/1/1/1 |
| 23  | CLA  | b     | 606 | 2    | 3/3/20/25 | 10/37/135/135 | -       |
| 25  | BCR  | t     | 101 | -    | -         | 1/29/63/63    | 0/2/2/2 |
| 23  | CLA  | С     | 508 | 41   | 3/3/20/25 | 7/37/135/135  | -       |
| 36  | HTG  | В     | 626 | -    | -         | 4/10/30/30    | 0/1/1/1 |
| 23  | CLA  | b     | 604 | 2    | 3/3/20/25 | 9/37/135/135  | -       |
| 23  | CLA  | С     | 505 | 41   | 3/3/20/25 | 6/37/135/135  | -       |
| 34  | LMG  | С     | 520 | _    | -         | 16/46/66/70   | 0/1/1/1 |
| 25  | BCR  | b     | 618 | _    | -         | 2/29/63/63    | 0/2/2/2 |
| 23  | CLA  | С     | 511 | 3    | 3/3/20/25 | 13/37/135/135 | -       |
| 35  | LMT  | B     | 632 | _    | -         | 7/17/37/61    | 0/1/1/2 |



| $5 \mathrm{GTI}$ |
|------------------|
|------------------|

| Mol | Type | Chain | Res | Link | Chirals   | Torsions      | Rings   |
|-----|------|-------|-----|------|-----------|---------------|---------|
| 35  | LMT  | a     | 418 | -    | _         | 3/21/61/61    | 0/2/2/2 |
| 26  | SQD  | f     | 101 | -    | _         | 16/38/58/69   | 0/1/1/1 |
| 26  | SQD  | А     | 409 | -    | -         | 14/49/69/69   | 0/1/1/1 |
| 37  | DGD  | С     | 518 | -    | _         | 15/51/91/95   | 0/2/2/2 |
| 36  | HTG  | D     | 412 | -    | -         | 1/7/27/30     | 0/1/1/1 |
| 23  | CLA  | b     | 610 | 41   | 3/3/20/25 | 7/37/135/135  | -       |
| 36  | HTG  | с     | 521 | -    | -         | 3/10/30/30    | 0/1/1/1 |
| 23  | CLA  | с     | 510 | 3    | 3/3/20/25 | 8/37/135/135  | -       |
| 25  | BCR  | Y     | 101 | -    | -         | 3/29/63/63    | 0/2/2/2 |
| 25  | BCR  | a     | 410 | -    | -         | 0/29/63/63    | 0/2/2/2 |
| 23  | CLA  | В     | 613 | 2    | 3/3/20/25 | 4/37/135/135  | -       |
| 25  | BCR  | В     | 619 | -    | -         | 0/29/63/63    | 0/2/2/2 |
| 23  | CLA  | А     | 404 | 1    | 3/3/20/25 | 3/37/135/135  | -       |
| 35  | LMT  | М     | 103 | -    | -         | 14/21/61/61   | 0/2/2/2 |
| 26  | SQD  | D     | 413 | -    | -         | 14/38/58/69   | 0/1/1/1 |
| 23  | CLA  | В     | 616 | 2    | 3/3/20/25 | 10/37/135/135 | -       |
| 23  | CLA  | С     | 509 | 3    | 3/3/20/25 | 6/37/135/135  | -       |
| 25  | BCR  | k     | 101 | -    | -         | 1/29/63/63    | 0/2/2/2 |
| 27  | GOL  | d     | 401 | -    | -         | 2/4/4/4       | -       |
| 23  | CLA  | С     | 512 | 3    | 3/3/20/25 | 6/37/135/135  | -       |
| 40  | HEC  | V     | 201 | 16   | -         | 0/6/54/54     | -       |
| 23  | CLA  | С     | 503 | 3    | 3/3/20/25 | 9/37/135/135  | -       |
| 23  | CLA  | В     | 607 | 2    | 3/3/20/25 | 5/37/135/135  | -       |
| 35  | LMT  | m     | 103 | -    | -         | 8/21/61/61    | 0/2/2/2 |
| 23  | CLA  | b     | 603 | 2    | 2/2/20/25 | 4/37/135/135  | -       |
| 23  | CLA  | b     | 609 | 2    | 3/3/20/25 | 8/37/135/135  | -       |
| 36  | HTG  | b     | 622 | _    | -         | 1/10/30/30    | 0/1/1/1 |
| 34  | LMG  | m     | 101 | -    | -         | 16/46/66/70   | 0/1/1/1 |
| 25  | BCR  | с     | 514 | -    | -         | 2/29/63/63    | 0/2/2/2 |
| 34  | LMG  | С     | 521 | -    | -         | 9/46/66/70    | 0/1/1/1 |
| 23  | CLA  | с     | 507 | 41   | 3/3/20/25 | 8/37/135/135  | -       |
| 31  | LHG  | А     | 415 | -    | -         | 11/53/53/53   | -       |
| 23  | CLA  | b     | 614 | 2    | 3/3/20/25 | 15/37/135/135 | -       |
| 35  | LMT  | b     | 620 | -    | -         | 5/17/37/61    | 0/1/1/2 |
| 25  | BCR  | В     | 620 | _    | -         | 0/29/63/63    | 0/2/2/2 |



| Mol | Type | Chain | $\overline{\mathbf{Res}}$ | Link | Chirals   | Torsions      | Rings   |
|-----|------|-------|---------------------------|------|-----------|---------------|---------|
| 23  | CLA  | В     | 603                       | 2    | 3/3/20/25 | 8/37/135/135  | -       |
| 23  | CLA  | C     | 513                       | 3    | 3/3/20/25 | 7/37/135/135  | _       |
| 35  | LMT  | C     | 522                       |      |           | 9/21/61/61    | 0/2/2/2 |
| 31  | LHG  | d     | 408                       | -    | _         | 17/53/53/53   | -       |
| 37  | DGD  | с     | 518                       | _    | _         | 6/51/91/95    | 0/2/2/2 |
| 23  | CLA  | В     | 614                       | 2    | 3/3/20/25 | 5/37/135/135  | _       |
| 25  | BCR  | С     | 527                       | _    | -         | 1/29/63/63    | 0/2/2/2 |
| 23  | CLA  | b     | 613                       | 2    | 3/3/20/25 | 7/37/135/135  | -       |
| 25  | BCR  | b     | 619                       | -    | -         | 0/29/63/63    | 0/2/2/2 |
| 35  | LMT  | е     | 102                       | -    | -         | 8/21/61/61    | 0/2/2/2 |
| 31  | LHG  | D     | 409                       | -    | -         | 14/53/53/53   | _       |
| 23  | CLA  | с     | 513                       | 3    | 2/2/20/25 | 6/37/135/135  | -       |
| 23  | CLA  | b     | 616                       | 2    | 3/3/20/25 | 12/37/135/135 | -       |
| 23  | CLA  | a     | 409                       | 1    | 3/3/20/25 | 7/37/135/135  | -       |
| 23  | CLA  | В     | 611                       | 41   | 3/3/20/25 | 7/37/135/135  | -       |
| 23  | CLA  | D     | 405                       | 4    | 3/3/20/25 | 7/37/135/135  | -       |
| 31  | LHG  | d     | 407                       | -    | -         | 23/53/53/53   | -       |
| 37  | DGD  | с     | 516                       | _    | -         | 15/51/91/95   | 0/2/2/2 |
| 35  | LMT  | В     | 634                       | -    | -         | 6/17/38/61    | 0/1/1/2 |
| 37  | DGD  | Н     | 102                       | -    | -         | 10/51/91/95   | 0/2/2/2 |
| 23  | CLA  | a     | 405                       | 41   | 3/3/20/25 | 5/37/135/135  | -       |
| 25  | BCR  | с     | 515                       | -    | -         | 0/29/63/63    | 0/2/2/2 |
| 23  | CLA  | В     | 617                       | 2    | 3/3/20/25 | 7/37/135/135  | -       |
| 34  | LMG  | В     | 622                       | -    | -         | 12/46/66/70   | 0/1/1/1 |
| 37  | DGD  | h     | 103                       | -    | -         | 11/51/91/95   | 0/2/2/2 |
| 34  | LMG  | J     | 101                       | 39   | -         | 10/46/66/70   | 0/1/1/1 |
| 31  | LHG  | L     | 101                       | -    | -         | 16/53/53/53   | -       |
| 26  | SQD  | В     | 621                       | -    | -         | 21/49/69/69   | 0/1/1/1 |
| 23  | CLA  | b     | 601                       | 41   | 2/2/20/25 | 19/37/135/135 | -       |
| 36  | HTG  | В     | 625                       | -    | -         | 5/10/30/30    | 0/1/1/1 |
| 23  | CLA  | В     | 615                       | 2    | 3/3/20/25 | 12/37/135/135 | -       |
| 34  | LMG  | С     | 501                       | -    | -         | 11/46/66/70   | 0/1/1/1 |
| 23  | CLA  | С     | 506                       | 3    | 1/1/20/25 | 7/37/135/135  | -       |
| 23  | CLA  | В     | 610                       | 2    | 3/3/20/25 | 9/37/135/135  | -       |
| 36  | HTG  | V     | 203                       | -    | -         | 0/2/19/30     | 0/1/1/1 |

 $\alpha$ J f m tin



| Mol | Type | Chain | Res | Link | Chirals   | Torsions      | Rings   |
|-----|------|-------|-----|------|-----------|---------------|---------|
| 35  | LMT  | В     | 623 | -    | -         | 8/21/61/61    | 0/2/2/2 |
| 23  | CLA  | В     | 612 | 2    | 3/3/20/25 | 4/37/135/135  | -       |
| 25  | BCR  | D     | 406 | -    | -         | 7/29/63/63    | 0/2/2/2 |
| 23  | CLA  | с     | 504 | 41   | 3/3/20/25 | 12/37/135/135 | -       |
| 25  | BCR  | b     | 617 | -    | -         | 2/29/63/63    | 0/2/2/2 |

All (1130) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms                | Z    | $Observed(\text{\AA})$ | Ideal(Å) |
|-----|-------|-----|------|----------------------|------|------------------------|----------|
| 23  | с     | 502 | CLA  | C3B-C2B              | 6.96 | 1.50                   | 1.40     |
| 23  | В     | 614 | CLA  | C3B-C2B              | 6.74 | 1.49                   | 1.40     |
| 23  | А     | 404 | CLA  | C3B-C2B              | 6.65 | 1.49                   | 1.40     |
| 23  | С     | 509 | CLA  | C3B-C2B              | 6.56 | 1.49                   | 1.40     |
| 23  | b     | 613 | CLA  | C3B-C2B              | 6.54 | 1.49                   | 1.40     |
| 23  | D     | 404 | CLA  | C3B-C2B              | 6.49 | 1.49                   | 1.40     |
| 23  | с     | 504 | CLA  | C3B-C2B              | 6.48 | 1.49                   | 1.40     |
| 23  | b     | 612 | CLA  | C3B-C2B              | 6.45 | 1.49                   | 1.40     |
| 23  | b     | 611 | CLA  | C3B-C2B              | 6.44 | 1.49                   | 1.40     |
| 23  | С     | 505 | CLA  | C3B-C2B              | 6.41 | 1.49                   | 1.40     |
| 23  | b     | 614 | CLA  | C3B-C2B              | 6.37 | 1.49                   | 1.40     |
| 23  | С     | 512 | CLA  | C3B-C2B              | 6.36 | 1.49                   | 1.40     |
| 23  | В     | 613 | CLA  | C3B-C2B              | 6.31 | 1.49                   | 1.40     |
| 23  | С     | 502 | CLA  | C3B-C2B              | 6.31 | 1.49                   | 1.40     |
| 23  | b     | 602 | CLA  | C3B-C2B              | 6.29 | 1.49                   | 1.40     |
| 23  | В     | 616 | CLA  | C3D-C2D              | 6.28 | 1.50                   | 1.39     |
| 23  | а     | 404 | CLA  | C3B-C2B              | 6.28 | 1.49                   | 1.40     |
| 23  | b     | 608 | CLA  | C3B-C2B              | 6.26 | 1.49                   | 1.40     |
| 23  | b     | 610 | CLA  | C3B-C2B              | 6.24 | 1.49                   | 1.40     |
| 23  | В     | 612 | CLA  | C3B-C2B              | 6.22 | 1.49                   | 1.40     |
| 23  | с     | 508 | CLA  | C3B-C2B              | 6.22 | 1.49                   | 1.40     |
| 23  | а     | 405 | CLA  | C3D-C2D              | 6.21 | 1.50                   | 1.39     |
| 23  | b     | 616 | CLA  | C3D-C2D              | 6.17 | 1.50                   | 1.39     |
| 23  | а     | 405 | CLA  | C3B-C2B              | 6.15 | 1.48                   | 1.40     |
| 23  | С     | 510 | CLA  | C3B-C2B              | 6.14 | 1.48                   | 1.40     |
| 24  | а     | 407 | PHO  | C3B-C2B              | 6.12 | 1.49                   | 1.37     |
| 23  | с     | 511 | CLA  | C3B-C2B              | 6.12 | 1.48                   | 1.40     |
| 24  | A     | 406 | PHO  | C3B-C2B              | 6.10 | 1.49                   | 1.37     |
| 23  | В     | 604 | CLA  | $C3B-C2\overline{B}$ | 6.09 | 1.48                   | 1.40     |
| 23  | a     | 406 | CLA  | C3B-C2B              | 6.07 | 1.48                   | 1.40     |
| 24  | a     | 408 | PHO  | C3B-C2B              | 6.06 | 1.49                   | 1.37     |
| 23  | В     | 617 | CLA  | C3B-C2B              | 6.06 | 1.48                   | 1.40     |



| Mol | Chain | Res | Type | Atoms   | Z    | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|------|-------------|----------|
| 23  | b     | 613 | CLA  | C3D-C2D | 6.05 | 1.50        | 1.39     |
| 23  | с     | 509 | CLA  | C3B-C2B | 6.05 | 1.48        | 1.40     |
| 23  | b     | 616 | CLA  | C3B-C2B | 6.04 | 1.48        | 1.40     |
| 23  | с     | 512 | CLA  | C3D-C2D | 5.98 | 1.50        | 1.39     |
| 23  | с     | 508 | CLA  | C3D-C2D | 5.97 | 1.50        | 1.39     |
| 23  | В     | 603 | CLA  | C3D-C2D | 5.95 | 1.50        | 1.39     |
| 23  | В     | 602 | CLA  | C3B-C2B | 5.94 | 1.48        | 1.40     |
| 23  | b     | 601 | CLA  | C3B-C2B | 5.93 | 1.48        | 1.40     |
| 23  | с     | 501 | CLA  | C3B-C2B | 5.93 | 1.48        | 1.40     |
| 23  | В     | 613 | CLA  | C3D-C2D | 5.92 | 1.50        | 1.39     |
| 23  | В     | 617 | CLA  | C3D-C2D | 5.91 | 1.50        | 1.39     |
| 23  | С     | 509 | CLA  | C3D-C2D | 5.91 | 1.50        | 1.39     |
| 23  | В     | 611 | CLA  | C3B-C2B | 5.90 | 1.48        | 1.40     |
| 23  | d     | 403 | CLA  | C3B-C2B | 5.90 | 1.48        | 1.40     |
| 23  | d     | 403 | CLA  | C3D-C2D | 5.89 | 1.50        | 1.39     |
| 23  | С     | 508 | CLA  | C3D-C2D | 5.89 | 1.50        | 1.39     |
| 23  | В     | 606 | CLA  | C3D-C2D | 5.88 | 1.50        | 1.39     |
| 23  | С     | 513 | CLA  | C3B-C2B | 5.88 | 1.48        | 1.40     |
| 23  | a     | 406 | CLA  | C3D-C2D | 5.88 | 1.50        | 1.39     |
| 23  | В     | 610 | CLA  | C3D-C2D | 5.88 | 1.50        | 1.39     |
| 23  | с     | 501 | CLA  | C3D-C2D | 5.87 | 1.50        | 1.39     |
| 23  | С     | 512 | CLA  | C3D-C2D | 5.87 | 1.50        | 1.39     |
| 23  | С     | 514 | CLA  | C3D-C2D | 5.87 | 1.50        | 1.39     |
| 23  | b     | 609 | CLA  | C3B-C2B | 5.86 | 1.48        | 1.40     |
| 23  | В     | 603 | CLA  | C3B-C2B | 5.84 | 1.48        | 1.40     |
| 24  | a     | 407 | PHO  | C3C-C2C | 5.84 | 1.49        | 1.36     |
| 24  | a     | 408 | PHO  | C3C-C2C | 5.83 | 1.49        | 1.36     |
| 23  | A     | 407 | CLA  | C3B-C2B | 5.82 | 1.48        | 1.40     |
| 23  | b     | 601 | CLA  | C3D-C2D | 5.81 | 1.49        | 1.39     |
| 23  | В     | 614 | CLA  | C3D-C2D | 5.81 | 1.49        | 1.39     |
| 23  | С     | 509 | CLA  | C3C-C2C | 5.80 | 1.49        | 1.36     |
| 23  | с     | 504 | CLA  | C3D-C2D | 5.80 | 1.49        | 1.39     |
| 23  | В     | 611 | CLA  | C3D-C2D | 5.80 | 1.49        | 1.39     |
| 23  | В     | 607 | CLA  | C3D-C2D | 5.78 | 1.49        | 1.39     |
| 23  | с     | 510 | CLA  | C3B-C2B | 5.77 | 1.48        | 1.40     |
| 23  | C     | 514 | CLA  | C3B-C2B | 5.77 | 1.48        | 1.40     |
| 23  | b     | 605 | CLA  | C3B-C2B | 5.77 | 1.48        | 1.40     |
| 23  | В     | 615 | CLA  | C3D-C2D | 5.76 | 1.49        | 1.39     |
| 23  | С     | 513 | CLA  | C3B-C2B | 5.75 | 1.48        | 1.40     |
| 23  | b     | 605 | CLA  | C3D-C2D | 5.75 | 1.49        | 1.39     |
| 23  | B     | 605 | CLA  | C3B-C2B | 5.74 | 1.48        | 1.40     |
| 23  | В     | 602 | CLA  | C3D-C2D | 5.73 | 1.49        | 1.39     |



| Mol | Chain | Res | Type | Atoms   | Z    | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|------|-------------|----------|
| 23  | b     | 611 | CLA  | C3D-C2D | 5.72 | 1.49        | 1.39     |
| 23  | b     | 602 | CLA  | C3D-C2D | 5.71 | 1.49        | 1.39     |
| 23  | В     | 604 | CLA  | C3D-C2D | 5.70 | 1.49        | 1.39     |
| 23  | с     | 503 | CLA  | C3D-C2D | 5.70 | 1.49        | 1.39     |
| 23  | С     | 511 | CLA  | C3D-C2D | 5.70 | 1.49        | 1.39     |
| 23  | D     | 404 | CLA  | C3C-C2C | 5.69 | 1.48        | 1.36     |
| 23  | с     | 506 | CLA  | C3D-C2D | 5.69 | 1.49        | 1.39     |
| 23  | А     | 404 | CLA  | C3D-C2D | 5.67 | 1.49        | 1.39     |
| 23  | d     | 402 | CLA  | C3B-C2B | 5.67 | 1.48        | 1.40     |
| 23  | С     | 506 | CLA  | C3B-C2B | 5.67 | 1.48        | 1.40     |
| 23  | С     | 507 | CLA  | C3D-C2D | 5.67 | 1.49        | 1.39     |
| 23  | b     | 608 | CLA  | C3D-C2D | 5.67 | 1.49        | 1.39     |
| 23  | А     | 405 | CLA  | CHC-C1C | 5.65 | 1.49        | 1.35     |
| 23  | с     | 507 | CLA  | C3D-C2D | 5.65 | 1.49        | 1.39     |
| 23  | b     | 604 | CLA  | C3B-C2B | 5.65 | 1.48        | 1.40     |
| 23  | b     | 610 | CLA  | C3C-C2C | 5.65 | 1.48        | 1.36     |
| 23  | с     | 513 | CLA  | C3D-C2D | 5.65 | 1.49        | 1.39     |
| 23  | b     | 609 | CLA  | C3D-C2D | 5.64 | 1.49        | 1.39     |
| 23  | А     | 405 | CLA  | C3D-C2D | 5.64 | 1.49        | 1.39     |
| 23  | a     | 409 | CLA  | C3D-C2D | 5.64 | 1.49        | 1.39     |
| 23  | D     | 401 | CLA  | C3D-C2D | 5.63 | 1.49        | 1.39     |
| 23  | С     | 505 | CLA  | C3D-C2D | 5.62 | 1.49        | 1.39     |
| 23  | b     | 610 | CLA  | C3D-C2D | 5.62 | 1.49        | 1.39     |
| 23  | А     | 407 | CLA  | C3D-C2D | 5.62 | 1.49        | 1.39     |
| 23  | a     | 404 | CLA  | C3D-C2D | 5.60 | 1.49        | 1.39     |
| 23  | С     | 502 | CLA  | C3D-C2D | 5.59 | 1.49        | 1.39     |
| 23  | В     | 617 | CLA  | C3C-C2C | 5.59 | 1.48        | 1.36     |
| 23  | С     | 513 | CLA  | C3D-C2D | 5.59 | 1.49        | 1.39     |
| 23  | с     | 503 | CLA  | C3B-C2B | 5.59 | 1.48        | 1.40     |
| 23  | С     | 507 | CLA  | C3B-C2B | 5.58 | 1.48        | 1.40     |
| 23  | В     | 612 | CLA  | C3D-C2D | 5.58 | 1.49        | 1.39     |
| 23  | В     | 602 | CLA  | C3C-C2C | 5.58 | 1.48        | 1.36     |
| 23  | b     | 612 | CLA  | C3D-C2D | 5.57 | 1.49        | 1.39     |
| 23  | С     | 503 | CLA  | C3D-C2D | 5.57 | 1.49        | 1.39     |
| 23  | d     | 402 | CLA  | C3D-C2D | 5.56 | 1.49        | 1.39     |
| 23  | С     | 510 | CLA  | C3D-C2D | 5.56 | 1.49        | 1.39     |
| 23  | b     | 607 | CLA  | C3D-C2D | 5.55 | 1.49        | 1.39     |
| 23  | C     | 508 | CLA  | C3C-C2C | 5.54 | 1.48        | 1.36     |
| 24  | D     | 402 | PHO  | C3B-C2B | 5.54 | 1.48        | 1.37     |
| 23  | b     | 613 | CLA  | C3C-C2C | 5.54 | 1.48        | 1.36     |
| 23  | B     | 608 | CLA  | C3B-C2B | 5.53 | 1.48        | 1.40     |
| 23  | C     | 511 | CLA  | C3B-C2B | 5.53 | 1.48        | 1.40     |



| Mol | Chain | Res | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|-------|-------------|----------|
| 23  | b     | 615 | CLA  | C3C-C2C | 5.53  | 1.48        | 1.36     |
| 23  | с     | 508 | CLA  | C3C-C2C | 5.53  | 1.48        | 1.36     |
| 23  | В     | 603 | CLA  | C3C-C2C | 5.53  | 1.48        | 1.36     |
| 23  | В     | 609 | CLA  | C3D-C2D | 5.52  | 1.49        | 1.39     |
| 25  | d     | 404 | BCR  | C23-C22 | -5.52 | 1.34        | 1.45     |
| 23  | с     | 512 | CLA  | C3C-C2C | 5.51  | 1.48        | 1.36     |
| 23  | b     | 606 | CLA  | C3B-C2B | 5.50  | 1.48        | 1.40     |
| 23  | А     | 407 | CLA  | C3C-C2C | 5.50  | 1.48        | 1.36     |
| 23  | с     | 502 | CLA  | C3D-C2D | 5.50  | 1.49        | 1.39     |
| 23  | a     | 406 | CLA  | C3C-C2C | 5.49  | 1.48        | 1.36     |
| 23  | b     | 615 | CLA  | C3D-C2D | 5.49  | 1.49        | 1.39     |
| 24  | А     | 406 | PHO  | CHC-C1C | 5.49  | 1.49        | 1.38     |
| 23  | a     | 405 | CLA  | C3C-C2C | 5.48  | 1.48        | 1.36     |
| 23  | В     | 608 | CLA  | C3D-C2D | 5.48  | 1.49        | 1.39     |
| 24  | a     | 408 | PHO  | CHB-C1B | 5.47  | 1.49        | 1.38     |
| 23  | с     | 509 | CLA  | C3D-C2D | 5.47  | 1.49        | 1.39     |
| 23  | a     | 409 | CLA  | C3B-C2B | 5.46  | 1.47        | 1.40     |
| 23  | d     | 403 | CLA  | CHC-C1C | 5.46  | 1.49        | 1.35     |
| 23  | А     | 404 | CLA  | CHC-C1C | 5.44  | 1.48        | 1.35     |
| 23  | В     | 611 | CLA  | C3C-C2C | 5.44  | 1.48        | 1.36     |
| 23  | с     | 511 | CLA  | C3C-C2C | 5.43  | 1.48        | 1.36     |
| 24  | А     | 406 | PHO  | CHB-C1B | 5.43  | 1.49        | 1.38     |
| 23  | D     | 405 | CLA  | C3C-C2C | 5.43  | 1.48        | 1.36     |
| 23  | b     | 616 | CLA  | C3C-C2C | 5.43  | 1.48        | 1.36     |
| 23  | С     | 504 | CLA  | C3D-C2D | 5.42  | 1.49        | 1.39     |
| 23  | С     | 504 | CLA  | C3C-C2C | 5.42  | 1.48        | 1.36     |
| 23  | В     | 609 | CLA  | C3B-C2B | 5.42  | 1.47        | 1.40     |
| 23  | В     | 615 | CLA  | C3B-C2B | 5.41  | 1.47        | 1.40     |
| 23  | С     | 513 | CLA  | CHC-C1C | 5.41  | 1.48        | 1.35     |
| 23  | С     | 504 | CLA  | C3B-C2B | 5.41  | 1.47        | 1.40     |
| 23  | b     | 612 | CLA  | C3C-C2C | 5.41  | 1.48        | 1.36     |
| 23  | с     | 501 | CLA  | C3C-C2C | 5.40  | 1.48        | 1.36     |
| 23  | b     | 611 | CLA  | C3C-C2C | 5.40  | 1.48        | 1.36     |
| 24  | D     | 402 | PHO  | C3C-C2C | 5.40  | 1.48        | 1.36     |
| 23  | D     | 405 | CLA  | CHC-C1C | 5.39  | 1.48        | 1.35     |
| 23  | b     | 603 | CLA  | C3C-C2C | 5.39  | 1.48        | 1.36     |
| 24  | a     | 408 | PHO  | CHC-C1C | 5.39  | 1.49        | 1.38     |
| 23  | b     | 606 | CLA  | C3C-C2C | 5.39  | 1.48        | 1.36     |
| 23  | D     | 404 | CLA  | C3D-C2D | 5.38  | 1.49        | 1.39     |
| 23  | с     | 505 | CLA  | C3C-C2C | 5.37  | 1.48        | 1.36     |
| 23  | C     | 505 | CLA  | C3C-C2C | 5.37  | 1.48        | 1.36     |
| 23  | с     | 513 | CLA  | C3C-C2C | 5.36  | 1.48        | 1.36     |



| Mol | Chain | Res | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|-------|-------------|----------|
| 23  | b     | 603 | CLA  | C3D-C2D | 5.36  | 1.49        | 1.39     |
| 23  | с     | 507 | CLA  | C3B-C2B | 5.36  | 1.47        | 1.40     |
| 23  | b     | 609 | CLA  | CHC-C1C | 5.36  | 1.48        | 1.35     |
| 23  | с     | 507 | CLA  | CHC-C1C | 5.35  | 1.48        | 1.35     |
| 23  | В     | 605 | CLA  | CHC-C1C | 5.35  | 1.48        | 1.35     |
| 23  | с     | 506 | CLA  | C3B-C2B | 5.35  | 1.47        | 1.40     |
| 23  | с     | 502 | CLA  | C3C-C2C | 5.34  | 1.48        | 1.36     |
| 23  | А     | 405 | CLA  | C3B-C2B | 5.34  | 1.47        | 1.40     |
| 23  | С     | 514 | CLA  | CHC-C1C | 5.34  | 1.48        | 1.35     |
| 23  | b     | 603 | CLA  | C3B-C2B | 5.33  | 1.47        | 1.40     |
| 23  | b     | 606 | CLA  | C3D-C2D | 5.33  | 1.49        | 1.39     |
| 23  | А     | 407 | CLA  | CHC-C1C | 5.33  | 1.48        | 1.35     |
| 23  | В     | 611 | CLA  | CHC-C1C | 5.32  | 1.48        | 1.35     |
| 23  | b     | 614 | CLA  | C3D-C2D | 5.32  | 1.49        | 1.39     |
| 23  | с     | 505 | CLA  | C3B-C2B | 5.32  | 1.47        | 1.40     |
| 23  | a     | 409 | CLA  | CHC-C1C | 5.31  | 1.48        | 1.35     |
| 23  | D     | 401 | CLA  | CHC-C1C | 5.31  | 1.48        | 1.35     |
| 23  | С     | 512 | CLA  | CHC-C1C | 5.31  | 1.48        | 1.35     |
| 23  | В     | 604 | CLA  | C3C-C2C | 5.31  | 1.48        | 1.36     |
| 23  | В     | 612 | CLA  | O2D-CGD | 5.31  | 1.46        | 1.33     |
| 23  | b     | 615 | CLA  | C3B-C2B | 5.31  | 1.47        | 1.40     |
| 23  | В     | 607 | CLA  | C3C-C2C | 5.30  | 1.48        | 1.36     |
| 23  | d     | 403 | CLA  | C3C-C2C | 5.29  | 1.48        | 1.36     |
| 23  | В     | 608 | CLA  | C3C-C2C | 5.29  | 1.48        | 1.36     |
| 23  | b     | 614 | CLA  | C3C-C2C | 5.28  | 1.48        | 1.36     |
| 23  | С     | 513 | CLA  | C3C-C2C | 5.28  | 1.48        | 1.36     |
| 23  | b     | 601 | CLA  | C3C-C2C | 5.28  | 1.48        | 1.36     |
| 23  | с     | 510 | CLA  | O2D-CGD | 5.28  | 1.46        | 1.33     |
| 23  | D     | 405 | CLA  | C3D-C2D | 5.28  | 1.48        | 1.39     |
| 23  | В     | 609 | CLA  | C3C-C2C | 5.27  | 1.47        | 1.36     |
| 23  | С     | 511 | CLA  | C3C-C2C | 5.26  | 1.47        | 1.36     |
| 23  | С     | 503 | CLA  | CHC-C1C | 5.26  | 1.48        | 1.35     |
| 23  | D     | 405 | CLA  | C3B-C2B | 5.26  | 1.47        | 1.40     |
| 23  | В     | 608 | CLA  | CHC-C1C | 5.26  | 1.48        | 1.35     |
| 23  | D     | 401 | CLA  | C3C-C2C | 5.26  | 1.47        | 1.36     |
| 23  | С     | 503 | CLA  | C3B-C2B | 5.26  | 1.47        | 1.40     |
| 24  | a     | 408 | PHO  | O2D-CGD | 5.26  | 1.46        | 1.33     |
| 23  | с     | 512 | CLA  | C3B-C2B | 5.25  | 1.47        | 1.40     |
| 23  | В     | 606 | CLA  | CHC-C1C | 5.25  | 1.48        | 1.35     |
| 23  | b     | 605 | CLA  | C3C-C2C | 5.25  | 1.47        | 1.36     |
| 23  | b     | 602 | CLA  | CHC-C1C | 5.24  | 1.48        | 1.35     |
| 25  | У     | 101 | BCR  | C23-C22 | -5.24 | 1.34        | 1.45     |



| Mol | Chain | Res              | Type | Atoms   | Z                 | Observed(Å) | Ideal(Å) |
|-----|-------|------------------|------|---------|-------------------|-------------|----------|
| 23  | В     | 603              | CLA  | CHC-C1C | 5.24              | 1.48        | 1.35     |
| 23  | а     | 409              | CLA  | C3C-C2C | 5.23              | 1.47        | 1.36     |
| 23  | с     | 509              | CLA  | C3C-C2C | 5.23              | 1.47        | 1.36     |
| 23  | b     | 602              | CLA  | C3C-C2C | 5.23              | 1.47        | 1.36     |
| 23  | с     | 505              | CLA  | CHC-C1C | 5.23              | 1.48        | 1.35     |
| 23  | В     | 615              | CLA  | C3C-C2C | 5.23              | 1.47        | 1.36     |
| 23  | В     | 606              | CLA  | C3C-C2C | 5.23              | 1.47        | 1.36     |
| 23  | b     | 608              | CLA  | C3C-C2C | 5.23              | 1.47        | 1.36     |
| 23  | с     | 511              | CLA  | C3D-C2D | 5.22              | 1.48        | 1.39     |
| 23  | с     | 507              | CLA  | C3C-C2C | 5.22              | 1.47        | 1.36     |
| 23  | с     | 504              | CLA  | O2D-CGD | 5.21              | 1.45        | 1.33     |
| 23  | С     | 507              | CLA  | O2D-CGD | 5.21              | 1.45        | 1.33     |
| 23  | b     | 601              | CLA  | CHC-C1C | 5.20              | 1.48        | 1.35     |
| 23  | b     | 610              | CLA  | CHC-C1C | 5.20              | 1.48        | 1.35     |
| 24  | a     | 407              | PHO  | CHB-C1B | 5.20              | 1.48        | 1.38     |
| 23  | С     | 502              | CLA  | C3C-C2C | 5.20              | 1.47        | 1.36     |
| 23  | А     | 404              | CLA  | C3C-C2C | 5.20              | 1.47        | 1.36     |
| 23  | с     | 512              | CLA  | CHC-C1C | 5.19              | 1.48        | 1.35     |
| 23  | с     | 508              | CLA  | CHC-C1C | 5.19              | 1.48        | 1.35     |
| 23  | В     | 604              | CLA  | CHC-C1C | 5.19              | 1.48        | 1.35     |
| 24  | D     | 402              | PHO  | CHC-C1C | 5.19              | 1.48        | 1.38     |
| 23  | В     | 607              | CLA  | C3B-C2B | 5.19              | 1.47        | 1.40     |
| 23  | С     | 506              | CLA  | CHC-C1C | 5.19              | 1.48        | 1.35     |
| 23  | b     | 607              | CLA  | C3B-C2B | 5.19              | 1.47        | 1.40     |
| 23  | А     | 405              | CLA  | C3C-C2C | 5.18              | 1.47        | 1.36     |
| 23  | С     | 506              | CLA  | C3C-C2C | 5.18              | 1.47        | 1.36     |
| 24  | А     | 406              | PHO  | C3C-C2C | 5.18              | 1.47        | 1.36     |
| 25  | b     | 619              | BCR  | C23-C22 | -5.17             | 1.34        | 1.45     |
| 23  | С     | 507              | CLA  | C3C-C2C | 5.17              | 1.47        | 1.36     |
| 25  | k     | 101              | BCR  | C23-C22 | -5.16             | 1.34        | 1.45     |
| 23  | В     | 616              | CLA  | OBD-CAD | 5.16              | 1.29        | 1.22     |
| 23  | b     | 612              | CLA  | CHC-C1C | 5.16              | 1.48        | 1.35     |
| 24  | А     | 406              | PHO  | CHD-C1D | 5.16              | 1.48        | 1.38     |
| 23  | С     | 510              | CLA  | C3C-C2C | 5.15              | 1.47        | 1.36     |
| 23  | b     | 604              | CLA  | CHC-C1C | 5.15              | 1.48        | 1.35     |
| 23  | В     | 616              | CLA  | C3B-C2B | 5.15              | 1.47        | 1.40     |
| 23  | b     | $60\overline{2}$ | CLA  | O2D-CGD | $5.1\overline{4}$ | 1.45        | 1.33     |
| 23  | a     | 404              | CLA  | C3C-C2C | 5.14              | 1.47        | 1.36     |
| 23  | В     | 610              | CLA  | C3B-C2B | 5.14              | 1.47        | 1.40     |
| 23  | В     | 613              | CLA  | C3C-C2C | 5.14              | 1.47        | 1.36     |
| 23  | с     | 509              | CLA  | O2D-CGD | 5.14              | 1.45        | 1.33     |
| 23  | с     | 506              | CLA  | O2D-CGD | 5.14              | 1.45        | 1.33     |



| Mol | Chain | Res | Type | Atoms                                             | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------------------------------------------------|-------|-------------|----------|
| 23  | В     | 610 | CLA  | C3C-C2C                                           | 5.13  | 1.47        | 1.36     |
| 23  | b     | 614 | CLA  | CHC-C1C                                           | 5.13  | 1.48        | 1.35     |
| 23  | С     | 502 | CLA  | CHC-C1C                                           | 5.13  | 1.48        | 1.35     |
| 23  | D     | 401 | CLA  | C3B-C2B                                           | 5.13  | 1.47        | 1.40     |
| 23  | D     | 401 | CLA  | O2D-CGD                                           | 5.13  | 1.45        | 1.33     |
| 23  | С     | 508 | CLA  | CHC-C1C                                           | 5.13  | 1.48        | 1.35     |
| 23  | b     | 601 | CLA  | O2D-CGD                                           | 5.13  | 1.45        | 1.33     |
| 23  | с     | 511 | CLA  | CHC-C1C                                           | 5.13  | 1.48        | 1.35     |
| 23  | В     | 614 | CLA  | O2D-CGD                                           | 5.13  | 1.45        | 1.33     |
| 23  | В     | 610 | CLA  | O2D-CGD                                           | 5.12  | 1.45        | 1.33     |
| 23  | с     | 502 | CLA  | CHC-C1C                                           | 5.11  | 1.48        | 1.35     |
| 23  | С     | 503 | CLA  | C3C-C2C                                           | 5.11  | 1.47        | 1.36     |
| 23  | С     | 514 | CLA  | C3C-C2C                                           | 5.11  | 1.47        | 1.36     |
| 23  | С     | 512 | CLA  | O2D-CGD                                           | 5.10  | 1.45        | 1.33     |
| 23  | В     | 611 | CLA  | OBD-CAD                                           | 5.10  | 1.29        | 1.22     |
| 23  | d     | 402 | CLA  | CHC-C1C                                           | 5.10  | 1.48        | 1.35     |
| 24  | D     | 402 | PHO  | CHB-C1B                                           | 5.10  | 1.48        | 1.38     |
| 23  | В     | 616 | CLA  | O2D-CGD                                           | 5.09  | 1.45        | 1.33     |
| 23  | с     | 513 | CLA  | CHC-C1C                                           | 5.09  | 1.48        | 1.35     |
| 23  | с     | 505 | CLA  | C3D-C2D                                           | 5.09  | 1.48        | 1.39     |
| 23  | В     | 605 | CLA  | C3C-C2C                                           | 5.09  | 1.47        | 1.36     |
| 23  | В     | 610 | CLA  | CHC-C1C                                           | 5.09  | 1.48        | 1.35     |
| 23  | С     | 504 | CLA  | CHC-C1C                                           | 5.08  | 1.48        | 1.35     |
| 23  | a     | 404 | CLA  | CHC-C1C                                           | 5.08  | 1.48        | 1.35     |
| 23  | b     | 603 | CLA  | CHC-C1C                                           | 5.08  | 1.48        | 1.35     |
| 23  | С     | 508 | CLA  | C3B-C2B                                           | 5.08  | 1.47        | 1.40     |
| 23  | b     | 604 | CLA  | C3C-C2C                                           | 5.08  | 1.47        | 1.36     |
| 23  | b     | 616 | CLA  | O2D-CGD                                           | 5.08  | 1.45        | 1.33     |
| 23  | с     | 503 | CLA  | C3C-C2C                                           | 5.07  | 1.47        | 1.36     |
| 23  | с     | 503 | CLA  | CHC-C1C                                           | 5.07  | 1.48        | 1.35     |
| 23  | А     | 407 | CLA  | O2D-CGD                                           | 5.07  | 1.45        | 1.33     |
| 23  | В     | 617 | CLA  | CHC-C1C                                           | 5.07  | 1.48        | 1.35     |
| 23  | с     | 504 | CLA  | C3C-C2C                                           | 5.06  | 1.47        | 1.36     |
| 23  | В     | 614 | CLA  | C3C-C2C                                           | 5.05  | 1.47        | 1.36     |
| 25  | В     | 620 | BCR  | C23-C22                                           | -5.04 | 1.35        | 1.45     |
| 23  | С     | 507 | CLA  | CHC-C1C                                           | 5.04  | 1.47        | 1.35     |
| 25  | Т     | 101 | BCR  | C23-C22                                           | -5.03 | 1.35        | 1.45     |
| 23  | В     | 616 | CLA  | C3C-C2C                                           | 5.03  | 1.47        | 1.36     |
| 23  | С     | 510 | CLA  | CHC-C1C                                           | 5.03  | 1.47        | 1.35     |
| 23  | с     | 501 | CLA  | CHC-C1C                                           | 5.03  | 1.47        | 1.35     |
| 25  | Н     | 101 | BCR  | C23-C22                                           | -5.02 | 1.35        | 1.45     |
| 23  | a     | 406 | CLA  | $\overline{\mathrm{CH}}\overline{\mathrm{C-C1C}}$ | 5.02  | 1.47        | 1.35     |



| Mol | Chain | Res | Type | Atoms   | Z                 | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|-------------------|-------------|----------|
| 23  | b     | 614 | CLA  | O2D-CGD | 5.02              | 1.45        | 1.33     |
| 23  | В     | 602 | CLA  | O2D-CGD | 5.01              | 1.45        | 1.33     |
| 23  | с     | 510 | CLA  | C3C-C2C | 5.01              | 1.47        | 1.36     |
| 23  | b     | 613 | CLA  | CHC-C1C | 5.01              | 1.47        | 1.35     |
| 23  | В     | 602 | CLA  | CHC-C1C | 5.01              | 1.47        | 1.35     |
| 23  | с     | 509 | CLA  | CHC-C1C | 5.01              | 1.47        | 1.35     |
| 25  | С     | 527 | BCR  | C23-C22 | -5.01             | 1.35        | 1.45     |
| 23  | b     | 609 | CLA  | O2D-CGD | 5.01              | 1.45        | 1.33     |
| 23  | D     | 404 | CLA  | O2D-CGD | 5.01              | 1.45        | 1.33     |
| 23  | В     | 606 | CLA  | O2D-CGD | 5.00              | 1.45        | 1.33     |
| 23  | с     | 511 | CLA  | OBD-CAD | 5.00              | 1.29        | 1.22     |
| 23  | С     | 509 | CLA  | OBD-CAD | 5.00              | 1.29        | 1.22     |
| 23  | с     | 510 | CLA  | C3D-C2D | 5.00              | 1.48        | 1.39     |
| 23  | b     | 603 | CLA  | O2D-CGD | 5.00              | 1.45        | 1.33     |
| 23  | b     | 608 | CLA  | CHC-C1C | 4.99              | 1.47        | 1.35     |
| 23  | В     | 608 | CLA  | O2D-CGD | 4.99              | 1.45        | 1.33     |
| 25  | С     | 516 | BCR  | C23-C22 | -4.99             | 1.35        | 1.45     |
| 23  | b     | 609 | CLA  | C3C-C2C | 4.99              | 1.47        | 1.36     |
| 23  | В     | 607 | CLA  | CHC-C1C | 4.99              | 1.47        | 1.35     |
| 23  | D     | 405 | CLA  | O2D-CGD | 4.99              | 1.45        | 1.33     |
| 23  | В     | 605 | CLA  | OBD-CAD | 4.99              | 1.29        | 1.22     |
| 23  | С     | 505 | CLA  | O2D-CGD | 4.99              | 1.45        | 1.33     |
| 23  | а     | 405 | CLA  | CHC-C1C | 4.98              | 1.47        | 1.35     |
| 23  | b     | 606 | CLA  | CHC-C1C | 4.98              | 1.47        | 1.35     |
| 23  | b     | 604 | CLA  | C3D-C2D | 4.97              | 1.48        | 1.39     |
| 23  | С     | 510 | CLA  | O2D-CGD | 4.97              | 1.45        | 1.33     |
| 23  | С     | 511 | CLA  | OBD-CAD | 4.97              | 1.29        | 1.22     |
| 23  | В     | 612 | CLA  | CHC-C1C | 4.96              | 1.47        | 1.35     |
| 23  | С     | 511 | CLA  | CHC-C1C | 4.96              | 1.47        | 1.35     |
| 23  | с     | 502 | CLA  | O2D-CGD | 4.95              | 1.45        | 1.33     |
| 23  | В     | 605 | CLA  | C3D-C2D | 4.95              | 1.48        | 1.39     |
| 23  | В     | 603 | CLA  | O2D-CGD | 4.95              | 1.45        | 1.33     |
| 23  | В     | 606 | CLA  | C3B-C2B | 4.94              | 1.47        | 1.40     |
| 23  | с     | 506 | CLA  | C3C-C2C | 4.94              | 1.47        | 1.36     |
| 23  | B     | 615 | CLA  | CHC-C1C | 4.93              | 1.47        | 1.35     |
| 23  | В     | 613 | CLA  | CHC-C1C | 4.93              | 1.47        | 1.35     |
| 23  | a     | 405 | CLA  | O2D-CGD | 4.93              | 1.45        | 1.33     |
| 24  | A     | 406 | PHO  | O2D-CGD | $4.9\overline{2}$ | 1.45        | 1.33     |
| 23  | В     | 616 | CLA  | CHC-C1C | 4.92              | 1.47        | 1.35     |
| 23  | с     | 505 | CLA  | O2D-CGD | 4.92              | 1.45        | 1.33     |
| 23  | b     | 603 | CLA  | OBD-CAD | 4.92              | 1.29        | 1.22     |
| 23  | b     | 601 | CLA  | OBD-CAD | 4.91              | 1.29        | 1.22     |



| Mol | Chain | Res | Type | Atoms                       | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|-----------------------------|-------|-------------|----------|
| 23  | В     | 605 | CLA  | O2D-CGD                     | 4.91  | 1.45        | 1.33     |
| 23  | D     | 404 | CLA  | CHC-C1C                     | 4.91  | 1.47        | 1.35     |
| 23  | b     | 613 | CLA  | O2D-CGD                     | 4.90  | 1.45        | 1.33     |
| 23  | b     | 616 | CLA  | CHC-C1C                     | 4.90  | 1.47        | 1.35     |
| 23  | b     | 614 | CLA  | OBD-CAD                     | 4.90  | 1.29        | 1.22     |
| 23  | В     | 613 | CLA  | O2D-CGD                     | 4.90  | 1.45        | 1.33     |
| 23  | В     | 615 | CLA  | O2D-CGD                     | 4.90  | 1.45        | 1.33     |
| 23  | С     | 512 | CLA  | C3C-C2C                     | 4.89  | 1.47        | 1.36     |
| 23  | С     | 505 | CLA  | CHC-C1C                     | 4.89  | 1.47        | 1.35     |
| 23  | a     | 409 | CLA  | O2D-CGD                     | 4.89  | 1.45        | 1.33     |
| 23  | b     | 612 | CLA  | O2D-CGD                     | 4.89  | 1.45        | 1.33     |
| 25  | С     | 515 | BCR  | C23-C22                     | -4.88 | 1.35        | 1.45     |
| 23  | В     | 612 | CLA  | C3C-C2C                     | 4.88  | 1.47        | 1.36     |
| 23  | b     | 615 | CLA  | CHC-C1C                     | 4.88  | 1.47        | 1.35     |
| 23  | b     | 604 | CLA  | O2D-CGD                     | 4.87  | 1.45        | 1.33     |
| 23  | С     | 503 | CLA  | O2D-CGD                     | 4.87  | 1.45        | 1.33     |
| 23  | b     | 607 | CLA  | O2D-CGD                     | 4.87  | 1.45        | 1.33     |
| 23  | В     | 612 | CLA  | OBD-CAD                     | 4.87  | 1.29        | 1.22     |
| 23  | b     | 615 | CLA  | O2D-CGD                     | 4.86  | 1.45        | 1.33     |
| 23  | С     | 509 | CLA  | CHC-C1C                     | 4.86  | 1.47        | 1.35     |
| 23  | с     | 510 | CLA  | CHC-C1C                     | 4.86  | 1.47        | 1.35     |
| 25  | D     | 406 | BCR  | C23-C22                     | -4.85 | 1.35        | 1.45     |
| 23  | b     | 605 | CLA  | O2D-CGD                     | 4.85  | 1.45        | 1.33     |
| 24  | a     | 407 | PHO  | O2D-CGD                     | 4.84  | 1.45        | 1.33     |
| 23  | b     | 607 | CLA  | C3C-C2C                     | 4.84  | 1.47        | 1.36     |
| 23  | b     | 610 | CLA  | O2D-CGD                     | 4.84  | 1.45        | 1.33     |
| 23  | В     | 602 | CLA  | OBD-CAD                     | 4.84  | 1.29        | 1.22     |
| 23  | с     | 513 | CLA  | O2D-CGD                     | 4.83  | 1.45        | 1.33     |
| 23  | А     | 405 | CLA  | O2D-CGD                     | 4.83  | 1.45        | 1.33     |
| 24  | а     | 408 | PHO  | CHD-C1D                     | 4.83  | 1.48        | 1.38     |
| 23  | В     | 609 | CLA  | O2D-CGD                     | 4.83  | 1.45        | 1.33     |
| 23  | С     | 509 | CLA  | O2D-CGD                     | 4.83  | 1.45        | 1.33     |
| 25  | с     | 514 | BCR  | C23-C22                     | -4.83 | 1.35        | 1.45     |
| 23  | b     | 607 | CLA  | CHC-C1C                     | 4.83  | 1.47        | 1.35     |
| 23  | b     | 608 | CLA  | O2D-CGD                     | 4.82  | 1.45        | 1.33     |
| 25  | В     | 618 | BCR  | C23-C22                     | -4.82 | 1.35        | 1.45     |
| 23  | d     | 402 | CLA  | $\overline{\text{C3C-C2C}}$ | 4.82  | 1.47        | 1.36     |
| 23  | В     | 603 | CLA  | OBD-CAD                     | 4.82  | 1.29        | 1.22     |
| 23  | В     | 617 | CLA  | O2D-CGD                     | 4.82  | 1.45        | 1.33     |
| 23  | b     | 609 | CLA  | OBD-CAD                     | 4.81  | 1.29        | 1.22     |
| 23  | с     | 512 | CLA  | O2D-CGD                     | 4.81  | 1.44        | 1.33     |
| 23  | В     | 611 | CLA  | O2D-CGD                     | 4.81  | 1.44        | 1.33     |



| Mol    | Chain | Res | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|--------|-------|-----|------|---------|-------|-------------|----------|
| 24     | D     | 402 | PHO  | O2D-CGD | 4.80  | 1.44        | 1.33     |
| ${23}$ | B     | 604 | CLA  | O2D-CGD | 4.80  | 1.44        | 1.33     |
| 23     | a     | 404 | CLA  | O2D-CGD | 4.80  | 1.44        | 1.33     |
| 23     | D     | 405 | CLA  | OBD-CAD | 4.80  | 1.29        | 1.22     |
| 23     | b     | 605 | CLA  | OBD-CAD | 4.80  | 1.29        | 1.22     |
| 23     | С     | 512 | CLA  | OBD-CAD | 4.79  | 1.29        | 1.22     |
| 25     | A     | 408 | BCR  | C23-C22 | -4.79 | 1.35        | 1.45     |
| 25     | h     | 102 | BCR  | C23-C22 | -4.79 | 1.35        | 1.45     |
| 23     | С     | 510 | CLA  | OBD-CAD | 4.79  | 1.29        | 1.22     |
| 24     | a     | 407 | PHO  | CHC-C1C | 4.78  | 1.48        | 1.38     |
| 23     | С     | 511 | CLA  | O2D-CGD | 4.78  | 1.44        | 1.33     |
| 23     | с     | 507 | CLA  | O2D-CGD | 4.77  | 1.44        | 1.33     |
| 25     | t     | 101 | BCR  | C23-C22 | -4.77 | 1.35        | 1.45     |
| 23     | b     | 608 | CLA  | OBD-CAD | 4.76  | 1.29        | 1.22     |
| 23     | a     | 406 | CLA  | O2D-CGD | 4.76  | 1.44        | 1.33     |
| 23     | с     | 501 | CLA  | O2D-CGD | 4.75  | 1.44        | 1.33     |
| 23     | с     | 506 | CLA  | CHC-C1C | 4.74  | 1.47        | 1.35     |
| 23     | b     | 605 | CLA  | CHC-C1C | 4.74  | 1.47        | 1.35     |
| 23     | В     | 614 | CLA  | CHC-C1C | 4.74  | 1.47        | 1.35     |
| 23     | В     | 609 | CLA  | CHC-C1C | 4.73  | 1.47        | 1.35     |
| 23     | с     | 509 | CLA  | OBD-CAD | 4.73  | 1.28        | 1.22     |
| 23     | С     | 506 | CLA  | O2D-CGD | 4.72  | 1.44        | 1.33     |
| 23     | С     | 508 | CLA  | O2D-CGD | 4.72  | 1.44        | 1.33     |
| 25     | b     | 617 | BCR  | C23-C22 | -4.72 | 1.35        | 1.45     |
| 23     | с     | 508 | CLA  | O2D-CGD | 4.72  | 1.44        | 1.33     |
| 23     | с     | 504 | CLA  | CHC-C1C | 4.71  | 1.47        | 1.35     |
| 23     | С     | 506 | CLA  | C3D-C2D | 4.70  | 1.47        | 1.39     |
| 23     | В     | 614 | CLA  | OBD-CAD | 4.69  | 1.28        | 1.22     |
| 23     | a     | 405 | CLA  | OBD-CAD | 4.69  | 1.28        | 1.22     |
| 23     | С     | 513 | CLA  | O2D-CGD | 4.69  | 1.44        | 1.33     |
| 23     | b     | 610 | CLA  | OBD-CAD | 4.68  | 1.28        | 1.22     |
| 23     | с     | 503 | CLA  | OBD-CAD | 4.67  | 1.28        | 1.22     |
| 24     | a     | 407 | PHO  | CHD-C1D | 4.67  | 1.47        | 1.38     |
| 23     | C     | 506 | CLA  | OBD-CAD | 4.67  | 1.28        | 1.22     |
| 25     | a     | 410 | BCR  | C23-C22 | -4.67 | 1.35        | 1.45     |
| 23     | d     | 402 | CLA  | O2D-CGD | 4.67  | 1.44        | 1.33     |
| 23     | c     | 504 | CLA  | OBD-CAD | 4.67  | 1.28        | 1.22     |
| 23     | C     | 503 | CLA  | OBD-CAD | 4.66  | 1.28        | 1.22     |
| 23     | с     | 507 | CLA  | OBD-CAD | 4.64  | 1.28        | 1.22     |
| 26     | a     | 413 | SQD  | 048-C23 | 4.64  | 1.46        | 1.33     |
| 23     | a     | 404 | CLA  | OBD-CAD | 4.64  | 1.28        | 1.22     |
| 23     | b     | 611 | CLA  | O2D-CGD | 4.63  | 1.44        | 1.33     |



| Mol | Chain | Res |     | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|-----|---------|-------|-------------|----------|
| 23  | С     | 505 | CLA | OBD-CAD | 4.62  | 1.28        | 1.22     |
| 23  | с     | 506 | CLA | OBD-CAD | 4.62  | 1.28        | 1.22     |
| 23  | А     | 405 | CLA | OBD-CAD | 4.62  | 1.28        | 1.22     |
| 23  | В     | 607 | CLA | O2D-CGD | 4.62  | 1.44        | 1.33     |
| 23  | b     | 616 | CLA | OBD-CAD | 4.61  | 1.28        | 1.22     |
| 23  | D     | 401 | CLA | OBD-CAD | 4.61  | 1.28        | 1.22     |
| 23  | А     | 404 | CLA | O2D-CGD | 4.61  | 1.44        | 1.33     |
| 25  | b     | 618 | BCR | C23-C22 | -4.61 | 1.36        | 1.45     |
| 23  | С     | 502 | CLA | O2D-CGD | 4.61  | 1.44        | 1.33     |
| 23  | С     | 513 | CLA | OBD-CAD | 4.59  | 1.28        | 1.22     |
| 23  | d     | 402 | CLA | OBD-CAD | 4.59  | 1.28        | 1.22     |
| 23  | с     | 513 | CLA | OBD-CAD | 4.59  | 1.28        | 1.22     |
| 23  | А     | 407 | CLA | OBD-CAD | 4.58  | 1.28        | 1.22     |
| 36  | b     | 621 | HTG | C1'-S1  | -4.57 | 1.75        | 1.81     |
| 23  | D     | 404 | CLA | OBD-CAD | 4.55  | 1.28        | 1.22     |
| 25  | с     | 515 | BCR | C23-C22 | -4.55 | 1.36        | 1.45     |
| 23  | с     | 508 | CLA | OBD-CAD | 4.55  | 1.28        | 1.22     |
| 23  | С     | 514 | CLA | O2D-CGD | 4.54  | 1.44        | 1.33     |
| 23  | с     | 503 | CLA | O2D-CGD | 4.54  | 1.44        | 1.33     |
| 23  | с     | 511 | CLA | O2D-CGD | 4.54  | 1.44        | 1.33     |
| 34  | Z     | 101 | LMG | O8-C28  | 4.53  | 1.46        | 1.33     |
| 23  | В     | 617 | CLA | OBD-CAD | 4.53  | 1.28        | 1.22     |
| 23  | с     | 510 | CLA | OBD-CAD | 4.52  | 1.28        | 1.22     |
| 24  | D     | 402 | PHO | CHD-C1D | 4.52  | 1.47        | 1.38     |
| 23  | с     | 512 | CLA | OBD-CAD | 4.51  | 1.28        | 1.22     |
| 23  | b     | 601 | CLA | O2A-CGA | 4.50  | 1.46        | 1.33     |
| 23  | b     | 613 | CLA | OBD-CAD | 4.49  | 1.28        | 1.22     |
| 23  | В     | 602 | CLA | O2A-CGA | 4.48  | 1.46        | 1.33     |
| 23  | b     | 602 | CLA | OBD-CAD | 4.48  | 1.28        | 1.22     |
| 23  | a     | 406 | CLA | OBD-CAD | 4.47  | 1.28        | 1.22     |
| 23  | A     | 404 | CLA | OBD-CAD | 4.47  | 1.28        | 1.22     |
| 23  | В     | 608 | CLA | OBD-CAD | 4.47  | 1.28        | 1.22     |
| 23  | b     | 608 | CLA | O2A-CGA | 4.47  | 1.46        | 1.33     |
| 23  | d     | 403 | CLA | O2D-CGD | 4.46  | 1.44        | 1.33     |
| 23  | b     | 604 | CLA | OBD-CAD | 4.45  | 1.28        | 1.22     |
| 23  | С     | 504 | CLA | O2D-CGD | 4.45  | 1.44        | 1.33     |
| 26  | D     | 413 | SQD | O47-C7  | 4.45  | 1.46        | 1.34     |
| 23  | d     | 402 | CLA | O2A-CGA | 4.44  | 1.46        | 1.33     |
| 23  | В     | 608 | CLA | O2A-CGA | 4.44  | 1.46        | 1.33     |
| 23  | b     | 606 | CLA | O2D-CGD | 4.44  | 1.44        | 1.33     |
| 23  | b     | 611 | CLA | CHC-C1C | 4.44  | 1.46        | 1.35     |
| 23  | с     | 505 | CLA | OBD-CAD | 4.43  | 1.28        | 1.22     |



| Mol | Chain | Res | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|-------|-------------|----------|
| 23  | В     | 610 | CLA  | OBD-CAD | 4.43  | 1.28        | 1.22     |
| 23  | В     | 613 | CLA  | OBD-CAD | 4.43  | 1.28        | 1.22     |
| 23  | с     | 502 | CLA  | OBD-CAD | 4.42  | 1.28        | 1.22     |
| 23  | b     | 615 | CLA  | OBD-CAD | 4.41  | 1.28        | 1.22     |
| 23  | С     | 507 | CLA  | OBD-CAD | 4.41  | 1.28        | 1.22     |
| 26  | f     | 101 | SQD  | O47-C7  | 4.40  | 1.46        | 1.34     |
| 23  | С     | 504 | CLA  | OBD-CAD | 4.40  | 1.28        | 1.22     |
| 23  | b     | 611 | CLA  | O2A-CGA | 4.40  | 1.46        | 1.33     |
| 31  | d     | 408 | LHG  | O7-C7   | 4.39  | 1.46        | 1.34     |
| 26  | А     | 411 | SQD  | O48-C23 | 4.39  | 1.46        | 1.33     |
| 23  | В     | 604 | CLA  | OBD-CAD | 4.38  | 1.28        | 1.22     |
| 23  | с     | 507 | CLA  | O2A-CGA | 4.38  | 1.46        | 1.33     |
| 23  | С     | 503 | CLA  | O2A-CGA | 4.38  | 1.46        | 1.33     |
| 26  | В     | 621 | SQD  | O47-C7  | 4.38  | 1.46        | 1.34     |
| 23  | С     | 508 | CLA  | O2A-CGA | 4.37  | 1.46        | 1.33     |
| 25  | Y     | 101 | BCR  | C23-C22 | -4.37 | 1.36        | 1.45     |
| 23  | a     | 405 | CLA  | O2A-CGA | 4.37  | 1.46        | 1.33     |
| 23  | В     | 610 | CLA  | O2A-CGA | 4.36  | 1.46        | 1.33     |
| 34  | С     | 521 | LMG  | O8-C28  | 4.36  | 1.46        | 1.33     |
| 23  | b     | 612 | CLA  | OBD-CAD | 4.36  | 1.28        | 1.22     |
| 26  | a     | 413 | SQD  | O47-C7  | 4.36  | 1.46        | 1.34     |
| 23  | с     | 513 | CLA  | O2A-CGA | 4.35  | 1.46        | 1.33     |
| 23  | с     | 512 | CLA  | O2A-CGA | 4.35  | 1.46        | 1.33     |
| 23  | b     | 615 | CLA  | O2A-CGA | 4.35  | 1.46        | 1.33     |
| 34  | с     | 520 | LMG  | O7-C10  | 4.34  | 1.46        | 1.34     |
| 23  | А     | 405 | CLA  | O2A-CGA | 4.34  | 1.46        | 1.33     |
| 24  | a     | 408 | PHO  | O2A-CGA | 4.34  | 1.46        | 1.33     |
| 23  | с     | 509 | CLA  | O2A-CGA | 4.34  | 1.46        | 1.33     |
| 31  | Ε     | 101 | LHG  | O8-C23  | 4.33  | 1.46        | 1.33     |
| 37  | Н     | 102 | DGD  | O1G-C1A | 4.33  | 1.46        | 1.33     |
| 34  | С     | 521 | LMG  | O7-C10  | 4.33  | 1.46        | 1.34     |
| 23  | b     | 611 | CLA  | OBD-CAD | 4.33  | 1.28        | 1.22     |
| 23  | с     | 508 | CLA  | O2A-CGA | 4.33  | 1.46        | 1.33     |
| 31  | е     | 101 | LHG  | O8-C23  | 4.32  | 1.46        | 1.33     |
| 23  | С     | 504 | CLA  | O2A-CGA | 4.32  | 1.46        | 1.33     |
| 23  | В     | 607 | CLA  | O2A-CGA | 4.32  | 1.46        | 1.33     |
| 26  | В     | 621 | SQD  | O48-C23 | 4.32  | 1.46        | 1.33     |
| 26  | L     | 102 | SQD  | O47-C7  | 4.31  | 1.46        | 1.34     |
| 34  | с     | 519 | LMG  | O8-C28  | 4.30  | 1.45        | 1.33     |
| 23  | С     | 512 | CLA  | O2A-CGA | 4.30  | 1.45        | 1.33     |
| 23  | d     | 403 | CLA  | O2A-CGA | 4.30  | 1.45        | 1.33     |
| 23  | C     | 505 | CLA  | O2A-CGA | 4.30  | 1.45        | 1.33     |



| Mol | Chain | Res | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|-------|-------------|----------|
| 37  | с     | 517 | DGD  | O1G-C1A | 4.29  | 1.45        | 1.33     |
| 23  | С     | 514 | CLA  | O2A-CGA | 4.29  | 1.45        | 1.33     |
| 23  | С     | 508 | CLA  | OBD-CAD | 4.28  | 1.28        | 1.22     |
| 23  | В     | 603 | CLA  | O2A-CGA | 4.28  | 1.45        | 1.33     |
| 23  | d     | 403 | CLA  | OBD-CAD | 4.27  | 1.28        | 1.22     |
| 23  | b     | 612 | CLA  | O2A-CGA | 4.27  | 1.45        | 1.33     |
| 23  | В     | 614 | CLA  | O2A-CGA | 4.26  | 1.45        | 1.33     |
| 34  | j     | 101 | LMG  | O8-C28  | 4.26  | 1.45        | 1.33     |
| 31  | L     | 101 | LHG  | O8-C23  | 4.26  | 1.45        | 1.33     |
| 34  | С     | 501 | LMG  | O7-C10  | 4.26  | 1.46        | 1.34     |
| 23  | D     | 401 | CLA  | O2A-CGA | 4.25  | 1.45        | 1.33     |
| 34  | С     | 501 | LMG  | O8-C28  | 4.25  | 1.45        | 1.33     |
| 23  | a     | 409 | CLA  | OBD-CAD | 4.25  | 1.28        | 1.22     |
| 26  | L     | 102 | SQD  | O48-C23 | 4.25  | 1.45        | 1.33     |
| 23  | с     | 502 | CLA  | O2A-CGA | 4.24  | 1.45        | 1.33     |
| 26  | f     | 101 | SQD  | O48-C23 | 4.24  | 1.45        | 1.33     |
| 34  | с     | 520 | LMG  | O8-C28  | 4.24  | 1.45        | 1.33     |
| 23  | С     | 513 | CLA  | O2A-CGA | 4.24  | 1.45        | 1.33     |
| 37  | С     | 517 | DGD  | O2G-C1B | 4.23  | 1.46        | 1.34     |
| 26  | А     | 409 | SQD  | O48-C23 | 4.23  | 1.45        | 1.33     |
| 23  | с     | 511 | CLA  | O2A-CGA | 4.22  | 1.45        | 1.33     |
| 34  | а     | 417 | LMG  | O7-C10  | 4.22  | 1.46        | 1.34     |
| 23  | В     | 609 | CLA  | OBD-CAD | 4.22  | 1.28        | 1.22     |
| 34  | С     | 520 | LMG  | O8-C28  | 4.22  | 1.45        | 1.33     |
| 23  | b     | 607 | CLA  | OBD-CAD | 4.22  | 1.28        | 1.22     |
| 26  | А     | 411 | SQD  | O47-C7  | 4.22  | 1.46        | 1.34     |
| 23  | с     | 506 | CLA  | O2A-CGA | 4.21  | 1.45        | 1.33     |
| 40  | V     | 202 | HEC  | CBB-CAB | -4.21 | 1.33        | 1.49     |
| 40  | V     | 202 | HEC  | CBC-CAC | -4.21 | 1.33        | 1.49     |
| 34  | m     | 101 | LMG  | O8-C28  | 4.21  | 1.45        | 1.33     |
| 34  | В     | 622 | LMG  | O8-C28  | 4.20  | 1.45        | 1.33     |
| 23  | С     | 507 | CLA  | O2A-CGA | 4.20  | 1.45        | 1.33     |
| 23  | с     | 503 | CLA  | O2A-CGA | 4.19  | 1.45        | 1.33     |
| 40  | V     | 201 | HEC  | CBC-CAC | -4.19 | 1.33        | 1.49     |
| 23  | b     | 614 | CLA  | O2A-CGA | 4.19  | 1.45        | 1.33     |
| 23  | В     | 605 | CLA  | O2A-CGA | 4.19  | 1.45        | 1.33     |
| 23  | а     | 409 | CLA  | O2A-CGA | 4.19  | 1.45        | 1.33     |
| 23  | С     | 511 | CLA  | O2A-CGA | 4.18  | 1.45        | 1.33     |
| 25  | В     | 619 | BCR  | C23-C22 | -4.18 | 1.37        | 1.45     |
| 37  | с     | 516 | DGD  | O1G-C1A | 4.18  | 1.45        | 1.33     |
| 31  | b     | 630 | LHG  | O8-C23  | 4.18  | 1.45        | 1.33     |
| 23  | C     | 514 | CLA  | OBD-CAD | 4.17  | 1.28        | 1.22     |


| Mol | Chain | Res       | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----------|------|---------|-------|-------------|----------|
| 31  | е     | 101       | LHG  | O7-C7   | 4.17  | 1.46        | 1.34     |
| 23  | b     | 606       | CLA  | OBD-CAD | 4.16  | 1.28        | 1.22     |
| 31  | D     | 409       | LHG  | O7-C7   | 4.16  | 1.46        | 1.34     |
| 23  | В     | 616       | CLA  | O2A-CGA | 4.16  | 1.45        | 1.33     |
| 34  | J     | 101       | LMG  | O8-C28  | 4.16  | 1.45        | 1.33     |
| 40  | V     | 201       | HEC  | CBB-CAB | -4.16 | 1.33        | 1.49     |
| 34  | a     | 417       | LMG  | O8-C28  | 4.15  | 1.45        | 1.33     |
| 26  | a     | 411       | SQD  | O48-C23 | 4.15  | 1.45        | 1.33     |
| 23  | В     | 606       | CLA  | OBD-CAD | 4.14  | 1.28        | 1.22     |
| 23  | С     | 502       | CLA  | O2A-CGA | 4.14  | 1.45        | 1.33     |
| 23  | В     | 606       | CLA  | O2A-CGA | 4.13  | 1.45        | 1.33     |
| 23  | В     | 612       | CLA  | O2A-CGA | 4.13  | 1.45        | 1.33     |
| 24  | А     | 406       | PHO  | O2A-CGA | 4.13  | 1.45        | 1.33     |
| 23  | D     | 405       | CLA  | O2A-CGA | 4.13  | 1.45        | 1.33     |
| 23  | b     | 609       | CLA  | O2A-CGA | 4.13  | 1.45        | 1.33     |
| 34  | Ζ     | 101       | LMG  | O7-C10  | 4.13  | 1.46        | 1.34     |
| 23  | В     | 615       | CLA  | OBD-CAD | 4.12  | 1.28        | 1.22     |
| 31  | Е     | 101       | LHG  | O7-C7   | 4.12  | 1.45        | 1.34     |
| 23  | В     | 607       | CLA  | OBD-CAD | 4.12  | 1.28        | 1.22     |
| 23  | b     | 613       | CLA  | O2A-CGA | 4.12  | 1.45        | 1.33     |
| 31  | d     | 408       | LHG  | O8-C23  | 4.12  | 1.45        | 1.33     |
| 23  | В     | 617       | CLA  | O2A-CGA | 4.12  | 1.45        | 1.33     |
| 23  | с     | 505       | CLA  | O2A-CGA | 4.11  | 1.45        | 1.33     |
| 31  | D     | 409       | LHG  | O8-C23  | 4.11  | 1.45        | 1.33     |
| 23  | b     | 602       | CLA  | O2A-CGA | 4.11  | 1.45        | 1.33     |
| 23  | С     | 502       | CLA  | OBD-CAD | 4.10  | 1.28        | 1.22     |
| 24  | D     | 402       | PHO  | OBD-CAD | 4.10  | 1.29        | 1.22     |
| 34  | С     | 520       | LMG  | O7-C10  | 4.10  | 1.45        | 1.34     |
| 31  | b     | 630       | LHG  | O7-C7   | 4.09  | 1.45        | 1.34     |
| 34  | с     | 519       | LMG  | O7-C10  | 4.08  | 1.45        | 1.34     |
| 23  | b     | 606       | CLA  | O2A-CGA | 4.08  | 1.45        | 1.33     |
| 24  | a     | 408       | PHO  | CHC-C4B | 4.08  | 1.50        | 1.40     |
| 26  | a     | 411       | SQD  | O47-C7  | 4.07  | 1.45        | 1.34     |
| 37  | С     | 518       | DGD  | O1G-C1A | 4.07  | 1.45        | 1.33     |
| 23  | A     | 407       | CLA  | O2A-CGA | 4.07  | 1.45        | 1.33     |
| 37  | Н     | 102       | DGD  | O2G-C1B | 4.06  | 1.45        | 1.34     |
| 23  | В     | 615       | CLA  | O2A-CGA | 4.06  | 1.45        | 1.33     |
| 23  | b     | 607       | CLA  | O2A-CGA | 4.05  | 1.45        | 1.33     |
| 23  | В     | 611       | CLA  | O2A-CGA | 4.05  | 1.45        | 1.33     |
| 23  | С     | 506       | CLA  | O2A-CGA | 4.05  | 1.45        | 1.33     |
| 31  | D     | 408       | LHG  | O7-C7   | 4.05  | 1.45        | 1.34     |
| 31  | d     | $407^{-}$ | LHG  | O7-C7   | 4.04  | 1.45        | 1.34     |



| Mol | Chain | Res | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|-------|-------------|----------|
| 37  | с     | 518 | DGD  | O1G-C1A | 4.04  | 1.45        | 1.33     |
| 23  | b     | 616 | CLA  | O2A-CGA | 4.04  | 1.45        | 1.33     |
| 23  | В     | 609 | CLA  | O2A-CGA | 4.04  | 1.45        | 1.33     |
| 23  | С     | 510 | CLA  | O2A-CGA | 4.04  | 1.45        | 1.33     |
| 23  | С     | 509 | CLA  | O2A-CGA | 4.03  | 1.45        | 1.33     |
| 23  | с     | 501 | CLA  | OBD-CAD | 4.03  | 1.27        | 1.22     |
| 37  | h     | 103 | DGD  | O2G-C1B | 4.02  | 1.45        | 1.34     |
| 23  | с     | 504 | CLA  | O2A-CGA | 4.02  | 1.45        | 1.33     |
| 34  | Z     | 101 | LMG  | O7-C10  | 4.02  | 1.45        | 1.34     |
| 24  | a     | 408 | PHO  | OBD-CAD | 4.01  | 1.29        | 1.22     |
| 23  | b     | 605 | CLA  | O2A-CGA | 4.00  | 1.45        | 1.33     |
| 37  | С     | 519 | DGD  | O1G-C1A | 4.00  | 1.45        | 1.33     |
| 23  | В     | 613 | CLA  | O2A-CGA | 3.99  | 1.45        | 1.33     |
| 23  | a     | 406 | CLA  | O2A-CGA | 3.97  | 1.45        | 1.33     |
| 26  | D     | 413 | SQD  | O48-C23 | 3.95  | 1.44        | 1.33     |
| 23  | с     | 510 | CLA  | O2A-CGA | 3.94  | 1.44        | 1.33     |
| 23  | с     | 501 | CLA  | O2A-CGA | 3.93  | 1.44        | 1.33     |
| 37  | с     | 516 | DGD  | O2G-C1B | 3.93  | 1.45        | 1.34     |
| 23  | В     | 604 | CLA  | O2A-CGA | 3.91  | 1.44        | 1.33     |
| 37  | С     | 519 | DGD  | O2G-C1B | 3.90  | 1.45        | 1.34     |
| 34  | В     | 622 | LMG  | O7-C10  | 3.89  | 1.45        | 1.34     |
| 23  | D     | 404 | CLA  | O2A-CGA | 3.87  | 1.44        | 1.33     |
| 34  | m     | 101 | LMG  | O7-C10  | 3.86  | 1.45        | 1.34     |
| 23  | b     | 604 | CLA  | O2A-CGA | 3.86  | 1.44        | 1.33     |
| 24  | А     | 406 | PHO  | CHD-C4C | 3.85  | 1.49        | 1.40     |
| 37  | с     | 518 | DGD  | O2G-C1B | 3.85  | 1.45        | 1.34     |
| 37  | С     | 518 | DGD  | O2G-C1B | 3.85  | 1.45        | 1.34     |
| 37  | h     | 103 | DGD  | O1G-C1A | 3.85  | 1.44        | 1.33     |
| 37  | с     | 517 | DGD  | O2G-C1B | 3.83  | 1.45        | 1.34     |
| 36  | b     | 623 | HTG  | C1'-S1  | -3.83 | 1.76        | 1.81     |
| 31  | d     | 407 | LHG  | O8-C23  | 3.82  | 1.44        | 1.33     |
| 23  | b     | 603 | CLA  | O2A-CGA | 3.80  | 1.44        | 1.33     |
| 36  | b     | 626 | HTG  | C1'-S1  | -3.79 | 1.76        | 1.81     |
| 26  | A     | 409 | SQD  | O47-C7  | 3.78  | 1.45        | 1.34     |
| 36  | В     | 624 | HTG  | C1'-S1  | -3.76 | 1.76        | 1.81     |
| 24  | A     | 406 | PHO  | C3D-C2D | 3.76  | 1.49        | 1.39     |
| 24  | a     | 407 | PHO  | C3D-C2D | 3.75  | 1.49        | 1.39     |
| 24  | a     | 407 | PHO  | OBD-CAD | 3.75  | 1.28        | 1.22     |
| 24  | a     | 408 | PHO  | C3D-C2D | 3.75  | 1.49        | 1.39     |
| 31  | L     | 101 | LHG  | 07-C7   | 3.73  | 1.44        | 1.34     |
| 31  | d     | 406 | LHG  | O8-C23  | 3.73  | 1.44        | 1.33     |
| 24  | D     | 402 | PHO  | CHC-C4B | 3.72  | 1.49        | 1.40     |



| Mol | Chain | Res | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|-------|-------------|----------|
| 24  | D     | 402 | PHO  | C3D-C2D | 3.72  | 1.49        | 1.39     |
| 34  | j     | 101 | LMG  | O7-C10  | 3.69  | 1.44        | 1.34     |
| 31  | Ă     | 415 | LHG  | O7-C7   | 3.68  | 1.44        | 1.34     |
| 24  | D     | 402 | PHO  | C4A-NA  | -3.68 | 1.26        | 1.35     |
| 37  | С     | 517 | DGD  | O1G-C1A | 3.67  | 1.44        | 1.33     |
| 23  | b     | 610 | CLA  | O2A-CGA | 3.66  | 1.44        | 1.33     |
| 24  | a     | 407 | PHO  | O2A-CGA | 3.65  | 1.44        | 1.33     |
| 31  | D     | 408 | LHG  | O8-C23  | 3.62  | 1.43        | 1.33     |
| 36  | b     | 622 | HTG  | C1'-S1  | -3.58 | 1.76        | 1.81     |
| 31  | А     | 415 | LHG  | O8-C23  | 3.58  | 1.43        | 1.33     |
| 24  | D     | 402 | PHO  | O2A-CGA | 3.56  | 1.43        | 1.33     |
| 24  | D     | 402 | PHO  | CHD-C4C | 3.56  | 1.48        | 1.40     |
| 36  | В     | 630 | HTG  | C1'-S1  | -3.53 | 1.76        | 1.81     |
| 23  | а     | 404 | CLA  | O2A-CGA | 3.52  | 1.43        | 1.33     |
| 24  | А     | 406 | PHO  | C4A-NA  | -3.51 | 1.26        | 1.35     |
| 36  | h     | 101 | HTG  | C1'-S1  | -3.49 | 1.77        | 1.81     |
| 34  | J     | 101 | LMG  | O7-C10  | 3.49  | 1.44        | 1.34     |
| 36  | с     | 522 | HTG  | C1'-S1  | -3.48 | 1.77        | 1.81     |
| 31  | d     | 406 | LHG  | O7-C7   | 3.47  | 1.44        | 1.34     |
| 40  | V     | 201 | HEC  | C3B-C2B | -3.44 | 1.37        | 1.40     |
| 36  | b     | 625 | HTG  | C1'-S1  | -3.44 | 1.77        | 1.81     |
| 24  | A     | 406 | PHO  | OBD-CAD | 3.42  | 1.28        | 1.22     |
| 24  | a     | 407 | PHO  | CHC-C4B | 3.41  | 1.48        | 1.40     |
| 24  | A     | 406 | PHO  | CHC-C4B | 3.37  | 1.48        | 1.40     |
| 23  | A     | 404 | CLA  | O2A-CGA | 3.35  | 1.43        | 1.33     |
| 36  | С     | 523 | HTG  | C1'-S1  | -3.34 | 1.77        | 1.81     |
| 24  | а     | 408 | PHO  | CHD-C4C | 3.33  | 1.48        | 1.40     |
| 36  | В     | 626 | HTG  | C1'-S1  | -3.32 | 1.77        | 1.81     |
| 24  | a     | 407 | PHO  | CHB-C4A | 3.32  | 1.48        | 1.40     |
| 36  | В     | 629 | HTG  | C1'-S1  | -3.29 | 1.77        | 1.81     |
| 24  | a     | 408 | PHO  | C4A-NA  | -3.27 | 1.27        | 1.35     |
| 24  | D     | 402 | PHO  | C3B-C4B | 3.23  | 1.50        | 1.43     |
| 23  | D     | 401 | CLA  | C1C-C2C | 3.21  | 1.50        | 1.44     |
| 24  | a     | 408 | PHO  | CHB-C4A | 3.21  | 1.48        | 1.40     |
| 23  | С     | 507 | CLA  | C1D-C2D | 3.20  | 1.49        | 1.42     |
| 40  | V .   | 202 | HEC  | C3B-C2B | -3.20 | 1.37        | 1.40     |
| 23  |       | 510 | CLA  | CIC-C2C | 3.16  | 1.50        | 1.44     |
| 36  | D     | 412 | HTG  | C1'-S1  | -3.12 | 1.77        | 1.81     |
| 23  | C     | 507 | CLA  | CID-C2D | 3.11  | 1.49        | 1.42     |
| 36  | С     | 521 | HTG  | C1'-S1  | -3.10 | 1.77        | 1.81     |
| 24  | a     | 408 | PHO  | C3B-C4B | 3.07  | 1.49        | 1.43     |
| 23  | D     | 404 | CLA  | C1C-C2C | 3.05  | 1.50        | 1.44     |



| Mol | Chain | Res | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|-------|-------------|----------|
| 23  | С     | 514 | CLA  | C1D-C2D | 3.05  | 1.49        | 1.42     |
| 23  | В     | 608 | CLA  | C1C-C2C | 3.04  | 1.50        | 1.44     |
| 24  | a     | 407 | PHO  | CHD-C4C | 3.03  | 1.47        | 1.40     |
| 23  | b     | 601 | CLA  | C1D-C2D | 3.02  | 1.49        | 1.42     |
| 23  | В     | 610 | CLA  | C1D-C2D | 3.02  | 1.49        | 1.42     |
| 23  | b     | 609 | CLA  | C1D-C2D | 3.02  | 1.49        | 1.42     |
| 23  | с     | 513 | CLA  | C1D-C2D | 3.01  | 1.49        | 1.42     |
| 23  | А     | 407 | CLA  | C1D-C2D | 3.01  | 1.49        | 1.42     |
| 23  | с     | 504 | CLA  | C1D-C2D | 3.01  | 1.49        | 1.42     |
| 23  | с     | 505 | CLA  | C1B-CHB | 2.99  | 1.49        | 1.41     |
| 23  | D     | 401 | CLA  | C1D-C2D | 2.99  | 1.49        | 1.42     |
| 24  | a     | 407 | PHO  | C4A-NA  | -2.99 | 1.28        | 1.35     |
| 23  | с     | 501 | CLA  | C1D-C2D | 2.98  | 1.49        | 1.42     |
| 23  | В     | 603 | CLA  | C1D-C2D | 2.98  | 1.49        | 1.42     |
| 24  | А     | 406 | PHO  | CHB-C4A | 2.98  | 1.47        | 1.40     |
| 23  | D     | 405 | CLA  | C1C-C2C | 2.98  | 1.50        | 1.44     |
| 36  | В     | 625 | HTG  | C1'-S1  | -2.97 | 1.77        | 1.81     |
| 23  | d     | 403 | CLA  | C1D-C2D | 2.97  | 1.49        | 1.42     |
| 23  | b     | 605 | CLA  | C1D-C2D | 2.97  | 1.49        | 1.42     |
| 23  | С     | 511 | CLA  | C4C-C3C | 2.97  | 1.50        | 1.45     |
| 23  | С     | 514 | CLA  | C1C-C2C | 2.97  | 1.50        | 1.44     |
| 23  | В     | 602 | CLA  | C1D-C2D | 2.95  | 1.49        | 1.42     |
| 23  | а     | 406 | CLA  | C1D-C2D | 2.93  | 1.49        | 1.42     |
| 40  | V     | 201 | HEC  | C3B-C4B | 2.92  | 1.48        | 1.43     |
| 23  | с     | 508 | CLA  | C1C-C2C | 2.88  | 1.50        | 1.44     |
| 23  | а     | 405 | CLA  | C1D-C2D | 2.87  | 1.49        | 1.42     |
| 23  | с     | 511 | CLA  | C1B-CHB | 2.87  | 1.49        | 1.41     |
| 23  | b     | 611 | CLA  | C1B-CHB | 2.87  | 1.49        | 1.41     |
| 23  | a     | 409 | CLA  | C1D-C2D | 2.87  | 1.49        | 1.42     |
| 23  | с     | 503 | CLA  | C4C-C3C | 2.84  | 1.49        | 1.45     |
| 23  | b     | 613 | CLA  | C1C-C2C | 2.84  | 1.50        | 1.44     |
| 23  | a     | 409 | CLA  | CHD-C4C | 2.84  | 1.49        | 1.41     |
| 23  | D     | 405 | CLA  | C1D-C2D | 2.84  | 1.49        | 1.42     |
| 23  | D     | 405 | CLA  | C4B-CHC | 2.84  | 1.48        | 1.41     |
| 23  | C     | 511 | CLA  | C1D-C2D | 2.83  | 1.49        | 1.42     |
| 23  | С     | 513 | CLA  | C1C-C2C | 2.83  | 1.50        | 1.44     |
| 29  | a     | 415 | PL9  | C6-C5   | 2.82  | 1.50        | 1.35     |
| 26  | f     | 101 | SQD  | C6-S    | -2.82 | 1.67        | 1.77     |
| 23  | С     | 510 | CLA  | C1D-C2D | 2.82  | 1.48        | 1.42     |
| 23  | В     | 607 | CLA  | C1D-C2D | 2.81  | 1.48        | 1.42     |
| 23  | С     | 503 | CLA  | C1D-C2D | 2.81  | 1.48        | 1.42     |
| 23  | с     | 511 | CLA  | C1D-C2D | 2.80  | 1.48        | 1.42     |



| Mol | Chain | Res | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|-------|-------------|----------|
| 23  | b     | 604 | CLA  | C1C-C2C | 2.80  | 1.50        | 1.44     |
| 23  | В     | 606 | CLA  | C1D-C2D | 2.80  | 1.48        | 1.42     |
| 23  | b     | 611 | CLA  | C1D-C2D | 2.80  | 1.48        | 1.42     |
| 23  | D     | 401 | CLA  | C4B-CHC | 2.80  | 1.48        | 1.41     |
| 23  | b     | 602 | CLA  | C1D-C2D | 2.80  | 1.48        | 1.42     |
| 23  | с     | 504 | CLA  | C4C-C3C | 2.79  | 1.49        | 1.45     |
| 23  | b     | 603 | CLA  | C1C-C2C | 2.79  | 1.50        | 1.44     |
| 26  | D     | 413 | SQD  | C6-S    | -2.79 | 1.67        | 1.77     |
| 23  | В     | 613 | CLA  | C1C-C2C | 2.79  | 1.50        | 1.44     |
| 23  | b     | 615 | CLA  | C1D-C2D | 2.79  | 1.48        | 1.42     |
| 26  | А     | 411 | SQD  | C6-S    | -2.79 | 1.67        | 1.77     |
| 23  | d     | 403 | CLA  | C4B-CHC | 2.79  | 1.48        | 1.41     |
| 38  | е     | 103 | HEM  | C3B-C2B | -2.78 | 1.36        | 1.40     |
| 23  | В     | 615 | CLA  | C1D-C2D | 2.78  | 1.48        | 1.42     |
| 23  | В     | 612 | CLA  | C1C-C2C | 2.78  | 1.49        | 1.44     |
| 23  | b     | 613 | CLA  | C4B-CHC | 2.78  | 1.48        | 1.41     |
| 23  | В     | 608 | CLA  | C4B-CHC | 2.78  | 1.48        | 1.41     |
| 23  | В     | 615 | CLA  | C4C-C3C | 2.78  | 1.49        | 1.45     |
| 23  | с     | 509 | CLA  | C1D-C2D | 2.77  | 1.48        | 1.42     |
| 23  | с     | 507 | CLA  | C1C-C2C | 2.77  | 1.49        | 1.44     |
| 23  | D     | 404 | CLA  | C4C-C3C | 2.77  | 1.49        | 1.45     |
| 23  | с     | 513 | CLA  | CHD-C4C | 2.77  | 1.49        | 1.41     |
| 23  | a     | 409 | CLA  | C4C-C3C | 2.75  | 1.49        | 1.45     |
| 23  | В     | 608 | CLA  | C1B-NB  | -2.75 | 1.32        | 1.35     |
| 23  | b     | 610 | CLA  | C1D-C2D | 2.75  | 1.48        | 1.42     |
| 23  | с     | 505 | CLA  | C1C-C2C | 2.75  | 1.49        | 1.44     |
| 23  | b     | 610 | CLA  | C4B-CHC | 2.75  | 1.48        | 1.41     |
| 23  | С     | 512 | CLA  | C1C-C2C | 2.74  | 1.49        | 1.44     |
| 29  | А     | 413 | PL9  | C6-C5   | 2.74  | 1.49        | 1.35     |
| 23  | с     | 503 | CLA  | C1D-C2D | 2.74  | 1.48        | 1.42     |
| 23  | A     | 404 | CLA  | C1C-C2C | 2.73  | 1.49        | 1.44     |
| 23  | A     | 404 | CLA  | C4B-CHC | 2.73  | 1.48        | 1.41     |
| 23  | b     | 610 | CLA  | C4C-C3C | 2.73  | 1.49        | 1.45     |
| 26  | L     | 102 | SQD  | C6-S    | -2.72 | 1.67        | 1.77     |
| 23  | В     | 611 | CLA  | C4B-CHC | 2.72  | 1.48        | 1.41     |
| 23  | В     | 605 | CLA  | C1C-C2C | 2.72  | 1.49        | 1.44     |
| 23  | b     | 607 | CLA  | C1C-C2C | 2.72  | 1.49        | 1.44     |
| 23  | C     | 504 | CLA  | C4C-C3C | 2.71  | 1.49        | 1.45     |
| 23  | В     | 606 | CLA  | C1C-C2C | 2.71  | 1.49        | 1.44     |
| 23  | С     | 506 | CLA  | C1C-C2C | 2.71  | 1.49        | 1.44     |
| 23  | C     | 512 | CLA  | C1D-C2D | 2.71  | 1.48        | 1.42     |
| 23  | A     | 405 | CLA  | C1D-C2D | 2.70  | 1.48        | 1.42     |



| Mol | Chain | Res | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|-------|-------------|----------|
| 23  | с     | 506 | CLA  | C1D-C2D | 2.70  | 1.48        | 1.42     |
| 23  | С     | 508 | CLA  | C1C-C2C | 2.70  | 1.49        | 1.44     |
| 23  | С     | 511 | CLA  | CHD-C4C | 2.69  | 1.48        | 1.41     |
| 23  | b     | 609 | CLA  | CHD-C4C | 2.69  | 1.48        | 1.41     |
| 23  | С     | 513 | CLA  | C1D-C2D | 2.68  | 1.48        | 1.42     |
| 23  | с     | 502 | CLA  | C1D-C2D | 2.68  | 1.48        | 1.42     |
| 23  | b     | 603 | CLA  | C1D-C2D | 2.68  | 1.48        | 1.42     |
| 23  | В     | 616 | CLA  | C1D-C2D | 2.68  | 1.48        | 1.42     |
| 26  | А     | 409 | SQD  | C6-S    | -2.68 | 1.67        | 1.77     |
| 23  | b     | 601 | CLA  | CHD-C4C | 2.67  | 1.48        | 1.41     |
| 23  | с     | 507 | CLA  | CHD-C4C | 2.67  | 1.48        | 1.41     |
| 23  | С     | 505 | CLA  | C1B-CHB | 2.67  | 1.48        | 1.41     |
| 23  | с     | 512 | CLA  | C4B-CHC | 2.66  | 1.48        | 1.41     |
| 23  | с     | 510 | CLA  | CHD-C4C | 2.66  | 1.48        | 1.41     |
| 23  | С     | 506 | CLA  | C1B-CHB | 2.66  | 1.48        | 1.41     |
| 23  | С     | 504 | CLA  | C1D-C2D | 2.65  | 1.48        | 1.42     |
| 23  | С     | 505 | CLA  | C1C-C2C | 2.65  | 1.49        | 1.44     |
| 26  | В     | 621 | SQD  | C6-S    | -2.65 | 1.67        | 1.77     |
| 24  | a     | 408 | PHO  | C1A-NA  | -2.65 | 1.32        | 1.37     |
| 23  | a     | 404 | CLA  | C1C-C2C | 2.64  | 1.49        | 1.44     |
| 40  | V     | 202 | HEC  | C3B-C4B | 2.64  | 1.47        | 1.43     |
| 24  | a     | 407 | PHO  | C3B-C4B | 2.64  | 1.48        | 1.43     |
| 23  | С     | 508 | CLA  | CHD-C4C | 2.63  | 1.48        | 1.41     |
| 23  | В     | 603 | CLA  | C4C-C3C | 2.63  | 1.49        | 1.45     |
| 23  | a     | 404 | CLA  | C1D-C2D | 2.62  | 1.48        | 1.42     |
| 23  | В     | 614 | CLA  | C1C-C2C | 2.62  | 1.49        | 1.44     |
| 23  | b     | 602 | CLA  | C1C-C2C | 2.62  | 1.49        | 1.44     |
| 26  | a     | 413 | SQD  | C6-S    | -2.62 | 1.67        | 1.77     |
| 23  | с     | 513 | CLA  | C1C-C2C | 2.61  | 1.49        | 1.44     |
| 23  | С     | 509 | CLA  | C1B-CHB | 2.61  | 1.48        | 1.41     |
| 23  | В     | 611 | CLA  | C1D-C2D | 2.61  | 1.48        | 1.42     |
| 23  | В     | 612 | CLA  | C1B-CHB | 2.61  | 1.48        | 1.41     |
| 23  | В     | 603 | CLA  | CHD-C4C | 2.61  | 1.48        | 1.41     |
| 23  | a     | 409 | CLA  | C1C-C2C | 2.60  | 1.49        | 1.44     |
| 23  | В     | 615 | CLA  | CHD-C4C | 2.60  | 1.48        | 1.41     |
| 23  | с     | 510 | CLA  | C1D-C2D | 2.60  | 1.48        | 1.42     |
| 23  | C _   | 510 | CLA  | CHD-C4C | 2.60  | 1.48        | 1.41     |
| 23  | В     | 608 | CLA  | C1D-C2D | 2.59  | 1.48        | 1.42     |
| 26  | a     | 411 | SQD  | C6-S    | -2.59 | 1.67        | 1.77     |
| 23  | С     | 513 | CLA  | C4B-CHC | 2.59  | 1.48        | 1.41     |
| 23  | C     | 508 | CLA  | C1D-C2D | 2.59  | 1.48        | 1.42     |
| 34  | Z     | 101 | LMG  | O8-C28  | 2.59  | 1.46        | 1.33     |



| Mol | Chain | $\mathbf{Res}$ | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|----------------|------|---------|-------|-------------|----------|
| 23  | В     | 608            | CLA  | C4C-C3C | 2.58  | 1.49        | 1.45     |
| 23  | b     | 610            | CLA  | C1C-C2C | 2.58  | 1.49        | 1.44     |
| 23  | c     | 509            | CLA  | C1B-CHB | 2.58  | 1.48        | 1.41     |
| 23  | с     | 509            | CLA  | C1C-C2C | 2.58  | 1.49        | 1.44     |
| 23  | В     | 602            | CLA  | C1C-C2C | 2.58  | 1.49        | 1.44     |
| 23  | b     | 613            | CLA  | C1B-CHB | 2.58  | 1.48        | 1.41     |
| 23  | В     | 613            | CLA  | C1B-NB  | -2.58 | 1.32        | 1.35     |
| 23  | В     | 617            | CLA  | C1D-C2D | 2.57  | 1.48        | 1.42     |
| 23  | С     | 504            | CLA  | CHD-C4C | 2.57  | 1.48        | 1.41     |
| 23  | с     | 510            | CLA  | C1B-CHB | 2.57  | 1.48        | 1.41     |
| 23  | b     | 609            | CLA  | C1B-CHB | 2.57  | 1.48        | 1.41     |
| 23  | с     | 501            | CLA  | CHD-C4C | 2.57  | 1.48        | 1.41     |
| 23  | b     | 614            | CLA  | C1D-C2D | 2.57  | 1.48        | 1.42     |
| 23  | b     | 612            | CLA  | C1D-C2D | 2.57  | 1.48        | 1.42     |
| 23  | С     | 503            | CLA  | C1B-CHB | 2.57  | 1.48        | 1.41     |
| 23  | с     | 507            | CLA  | C4B-CHC | 2.57  | 1.48        | 1.41     |
| 35  | D     | 403            | LMT  | O1'-C1' | 2.56  | 1.44        | 1.40     |
| 23  | В     | 614            | CLA  | C4C-C3C | 2.56  | 1.49        | 1.45     |
| 23  | с     | 503            | CLA  | CHD-C4C | 2.56  | 1.48        | 1.41     |
| 23  | b     | 610            | CLA  | C1B-CHB | 2.56  | 1.48        | 1.41     |
| 23  | b     | 607            | CLA  | C1B-CHB | 2.56  | 1.48        | 1.41     |
| 23  | с     | 501            | CLA  | C4C-C3C | 2.56  | 1.49        | 1.45     |
| 24  | D     | 402            | PHO  | CHB-C4A | 2.55  | 1.46        | 1.40     |
| 23  | В     | 604            | CLA  | C4C-C3C | 2.55  | 1.49        | 1.45     |
| 23  | С     | 506            | CLA  | C1D-C2D | 2.55  | 1.48        | 1.42     |
| 23  | с     | 508            | CLA  | C1B-CHB | 2.55  | 1.48        | 1.41     |
| 23  | b     | 608            | CLA  | C1D-C2D | 2.55  | 1.48        | 1.42     |
| 23  | b     | 602            | CLA  | C4B-CHC | 2.55  | 1.48        | 1.41     |
| 23  | С     | 507            | CLA  | CHD-C4C | 2.55  | 1.48        | 1.41     |
| 23  | D     | 404            | CLA  | C1B-CHB | 2.54  | 1.48        | 1.41     |
| 23  | С     | 502            | CLA  | C1D-C2D | 2.54  | 1.48        | 1.42     |
| 23  | A     | 404            | CLA  | C1D-C2D | 2.53  | 1.48        | 1.42     |
| 23  | В     | 606            | CLA  | C1B-CHB | 2.53  | 1.48        | 1.41     |
| 29  | D     | 407            | PL9  | C6-C5   | 2.53  | 1.48        | 1.35     |
| 23  | с     | 511            | CLA  | C1C-C2C | 2.53  | 1.49        | 1.44     |
| 23  | с     | 502            | CLA  | C1B-CHB | 2.53  | 1.48        | 1.41     |
| 23  | В     | 610            | CLA  | C1C-C2C | 2.53  | 1.49        | 1.44     |
| 23  | В     | 604            | CLA  | C4B-CHC | 2.53  | 1.48        | 1.41     |
| 23  | С     | 503            | CLA  | CHD-C4C | 2.52  | 1.48        | 1.41     |
| 23  | В     | 611            | CLA  | C1B-CHB | 2.52  | 1.48        | 1.41     |
| 23  | b     | 612            | CLA  | C1C-C2C | 2.52  | 1.49        | 1.44     |
| 23  | b     | 606            | CLA  | C1C-C2C | 2.51  | 1.49        | 1.44     |



| Mol | Chain | Res | Type | Atoms                          | Z                 | $\operatorname{Observed}(\operatorname{\AA})$ | Ideal(Å) |
|-----|-------|-----|------|--------------------------------|-------------------|-----------------------------------------------|----------|
| 23  | A     | 404 | CLA  | CHD-C4C                        | 2.51              | 1.48                                          | 1.41     |
| 29  | d     | 405 | PL9  | C6-C5                          | 2.51              | 1.48                                          | 1.35     |
| 23  | с     | 506 | CLA  | CHD-C4C                        | 2.51              | 1.48                                          | 1.41     |
| 23  | b     | 605 | CLA  | C1B-CHB                        | 2.51              | 1.48                                          | 1.41     |
| 23  | С     | 512 | CLA  | CHD-C4C                        | 2.51              | 1.48                                          | 1.41     |
| 24  | D     | 402 | PHO  | C1A-NA                         | -2.51             | 1.32                                          | 1.37     |
| 23  | d     | 402 | CLA  | C1C-C2C                        | 2.51              | 1.49                                          | 1.44     |
| 23  | С     | 509 | CLA  | C1C-C2C                        | 2.50              | 1.49                                          | 1.44     |
| 23  | А     | 407 | CLA  | C4B-CHC                        | 2.50              | 1.48                                          | 1.41     |
| 23  | В     | 614 | CLA  | C1D-C2D                        | 2.50              | 1.48                                          | 1.42     |
| 23  | с     | 505 | CLA  | C4B-CHC                        | 2.50              | 1.47                                          | 1.41     |
| 23  | b     | 616 | CLA  | C1D-C2D                        | 2.50              | 1.48                                          | 1.42     |
| 23  | А     | 407 | CLA  | CHD-C4C                        | 2.50              | 1.48                                          | 1.41     |
| 23  | С     | 505 | CLA  | C1D-C2D                        | 2.50              | 1.48                                          | 1.42     |
| 23  | b     | 611 | CLA  | C4C-C3C                        | 2.50              | 1.49                                          | 1.45     |
| 23  | С     | 509 | CLA  | C4C-C3C                        | 2.50              | 1.49                                          | 1.45     |
| 23  | D     | 404 | CLA  | CHD-C4C                        | 2.50              | 1.48                                          | 1.41     |
| 23  | С     | 514 | CLA  | CHD-C4C                        | 2.50              | 1.48                                          | 1.41     |
| 23  | d     | 403 | CLA  | C1C-C2C                        | 2.49              | 1.49                                          | 1.44     |
| 23  | В     | 609 | CLA  | C1B-CHB                        | 2.49              | 1.47                                          | 1.41     |
| 23  | D     | 405 | CLA  | C1B-CHB                        | 2.49              | 1.47                                          | 1.41     |
| 23  | b     | 602 | CLA  | CHD-C4C                        | 2.49              | 1.48                                          | 1.41     |
| 23  | А     | 404 | CLA  | C4C-C3C                        | 2.49              | 1.49                                          | 1.45     |
| 23  | a     | 404 | CLA  | CHD-C4C                        | 2.49              | 1.48                                          | 1.41     |
| 23  | b     | 614 | CLA  | C1B-CHB                        | 2.49              | 1.47                                          | 1.41     |
| 23  | В     | 610 | CLA  | C4B-CHC                        | 2.49              | 1.47                                          | 1.41     |
| 23  | С     | 506 | CLA  | CHD-C4C                        | 2.48              | 1.48                                          | 1.41     |
| 23  | b     | 610 | CLA  | CHD-C4C                        | 2.48              | 1.48                                          | 1.41     |
| 23  | b     | 604 | CLA  | C1D-C2D                        | 2.48              | 1.48                                          | 1.42     |
| 23  | D     | 404 | CLA  | C1D-C2D                        | 2.48              | 1.48                                          | 1.42     |
| 23  | C     | 502 | CLA  | C1C-C2C                        | 2.48              | 1.49                                          | 1.44     |
| 23  | с     | 503 | CLA  | C4B-CHC                        | $2.\overline{48}$ | 1.47                                          | 1.41     |
| 23  | В     | 606 | CLA  | C4B-CHC                        | 2.48              | 1.47                                          | 1.41     |
| 23  | В     | 604 | CLA  | C1D-C2D                        | 2.47              | 1.48                                          | 1.42     |
| 23  | В     | 607 | CLA  | C1C-C2C                        | 2.47              | 1.49                                          | 1.44     |
| 23  | b     | 614 | CLA  | C1C-C2C                        | 2.47              | 1.49                                          | 1.44     |
| 23  | С     | 503 | CLA  | C4B-CHC                        | 2.47              | 1.47                                          | 1.41     |
| 23  | В     | 608 | CLA  | CHD-C4C                        | 2.46              | 1.48                                          | 1.41     |
| 23  | C     | 505 | CLA  | $\overline{\mathrm{CHD}}$ -C4C | 2.46              | 1.48                                          | 1.41     |
| 23  | b     | 609 | CLA  | $\overline{\text{C1C-C2C}}$    | 2.46              | 1.49                                          | 1.44     |
| 24  | A     | 406 | PHO  | C4C-C3C                        | 2.46              | 1.49                                          | 1.45     |
| 23  | В     | 607 | CLA  | CHD-C4C                        | 2.46              | 1.48                                          | 1.41     |



| Mol | Chain | Res | Tvpe | Atoms   | Z               | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|-----------------|-------------|----------|
| 23  | С     | 502 | CLA  | CHD-C4C | $\frac{-}{246}$ | 1 48        | 1 41     |
| 23  | C     | 513 | CLA  | CHD-C4C | 2.10<br>2.45    | 1.10        | 1.11     |
| 23  | C     | 514 | CLA  | C1B-CHB | 2.10<br>2.45    | 1.10        | 1 41     |
| 23  | d     | 403 | CLA  | CHD-C4C | 2.10<br>2.45    | 1.11        | 1 41     |
| 23  | c     | 501 | CLA  | C1B-CHB | 2.13<br>2.44    | 1.10        | 1 41     |
| 23  | c     | 512 | CLA  | C1C-C2C | 2.44            | 1.49        | 1.44     |
| 23  | c     | 505 | CLA  | C1D-C2D | 2.44            | 1.48        | 1.42     |
| 23  | C     | 507 | CLA  | C1C-C2C | 2.44            | 1.49        | 1.44     |
| 23  | b     | 606 | CLA  | C1D-C2D | 2.44            | 1.48        | 1.42     |
| 23  | В     | 617 | CLA  | C4B-CHC | 2.44            | 1.47        | 1.41     |
| 23  | b     | 615 | CLA  | CHD-C4C | 2.44            | 1.48        | 1.41     |
| 23  | b     | 615 | CLA  | C1B-CHB | 2.44            | 1.47        | 1.41     |
| 23  | В     | 615 | CLA  | C1B-CHB | 2.44            | 1.47        | 1.41     |
| 23  | с     | 504 | CLA  | C1C-C2C | 2.44            | 1.49        | 1.44     |
| 37  | с     | 518 | DGD  | O2G-C2G | -2.44           | 1.40        | 1.46     |
| 23  | С     | 504 | CLA  | C4B-CHC | 2.44            | 1.47        | 1.41     |
| 23  | В     | 617 | CLA  | C1B-CHB | 2.43            | 1.47        | 1.41     |
| 23  | d     | 402 | CLA  | C1D-C2D | 2.43            | 1.48        | 1.42     |
| 23  | b     | 609 | CLA  | C4B-CHC | 2.43            | 1.47        | 1.41     |
| 23  | С     | 502 | CLA  | C4B-CHC | 2.43            | 1.47        | 1.41     |
| 23  | b     | 616 | CLA  | C4C-C3C | 2.43            | 1.49        | 1.45     |
| 23  | С     | 508 | CLA  | C4B-CHC | 2.43            | 1.47        | 1.41     |
| 23  | С     | 507 | CLA  | C4B-CHC | 2.42            | 1.47        | 1.41     |
| 23  | b     | 613 | CLA  | C1D-C2D | 2.42            | 1.48        | 1.42     |
| 23  | В     | 605 | CLA  | C1B-CHB | 2.42            | 1.47        | 1.41     |
| 23  | b     | 606 | CLA  | CHD-C4C | 2.42            | 1.48        | 1.41     |
| 23  | с     | 509 | CLA  | CHD-C4C | 2.42            | 1.48        | 1.41     |
| 23  | b     | 608 | CLA  | C1C-C2C | 2.42            | 1.49        | 1.44     |
| 23  | с     | 511 | CLA  | CHD-C4C | 2.42            | 1.48        | 1.41     |
| 24  | A     | 406 | PHO  | C3B-C4B | 2.42            | 1.48        | 1.43     |
| 23  | b     | 612 | CLA  | C4B-CHC | 2.42            | 1.47        | 1.41     |
| 23  | B     | 609 | CLA  | C1C-NC  | -2.41           | 1.34        | 1.37     |
| 23  | b     | 614 | CLA  | C4B-CHC | 2.41            | 1.47        | 1.41     |
| 23  | b     | 608 | CLA  | CHD-C4C | 2.41            | 1.48        | 1.41     |
| 23  | с     | 512 | CLA  | CHD-C4C | 2.41            | 1.48        | 1.41     |
| 23  | b     | 607 | CLA  | C1D-C2D | 2.41            | 1.48        | 1.42     |
| 24  | A     | 406 | PHO  | CIA-NA  | -2.41           | 1.32        | 1.37     |
| 23  | B     | 604 | CLA  | CIB-CHB | 2.41            | 1.47        | 1.41     |
| 23  |       | 512 | CLA  | CIB-CHB | 2.40            | 1.47        | 1.41     |
| 23  | В     | 615 | CLA  | C4B-CHC | 2.40            | 1.47        | 1.41     |
| 23  | В     | 613 | CLA  | CIB-CHB | 2.40            | 1.47        | 1.41     |
| 23  | с     | 513 | CLA  | C4B-CHC | 2.40            | 1.47        | 1.41     |



| Mol | Chain | $\mathbf{Res}$ | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|----------------|------|---------|-------|-------------|----------|
| 23  | d     | 402            | CLA  | C4C-C3C | 2.40  | 1.49        | 1.45     |
| 23  | A     | 405            | CLA  | CHD-C4C | 2.40  | 1.48        | 1.41     |
| 23  | с     | 512            | CLA  | C1D-C2D | 2.40  | 1.48        | 1.42     |
| 23  | В     | 603            | CLA  | C1C-C2C | 2.40  | 1.49        | 1.44     |
| 23  | С     | 502            | CLA  | C1B-CHB | 2.40  | 1.47        | 1.41     |
| 23  | a     | 406            | CLA  | CHD-C4C | 2.40  | 1.48        | 1.41     |
| 23  | a     | 404            | CLA  | C1B-CHB | 2.40  | 1.47        | 1.41     |
| 23  | А     | 405            | CLA  | C4C-C3C | 2.40  | 1.49        | 1.45     |
| 23  | В     | 617            | CLA  | C1C-C2C | 2.40  | 1.49        | 1.44     |
| 23  | b     | 606            | CLA  | C1B-CHB | 2.40  | 1.47        | 1.41     |
| 23  | В     | 611            | CLA  | C1C-C2C | 2.40  | 1.49        | 1.44     |
| 23  | В     | 612            | CLA  | C1D-C2D | 2.39  | 1.48        | 1.42     |
| 23  | b     | 603            | CLA  | CHD-C4C | 2.39  | 1.48        | 1.41     |
| 23  | a     | 409            | CLA  | C4B-CHC | 2.39  | 1.47        | 1.41     |
| 23  | b     | 612            | CLA  | C4C-C3C | 2.39  | 1.49        | 1.45     |
| 23  | В     | 610            | CLA  | CHD-C4C | 2.39  | 1.48        | 1.41     |
| 23  | с     | 506            | CLA  | C1B-NB  | -2.39 | 1.33        | 1.35     |
| 23  | В     | 604            | CLA  | C1C-C2C | 2.39  | 1.49        | 1.44     |
| 23  | b     | 601            | CLA  | C4B-CHC | 2.39  | 1.47        | 1.41     |
| 23  | С     | 510            | CLA  | C1B-CHB | 2.39  | 1.47        | 1.41     |
| 23  | С     | 506            | CLA  | C4C-C3C | 2.39  | 1.49        | 1.45     |
| 23  | b     | 616            | CLA  | C1B-CHB | 2.39  | 1.47        | 1.41     |
| 23  | с     | 510            | CLA  | C4C-C3C | 2.39  | 1.49        | 1.45     |
| 23  | a     | 405            | CLA  | CHD-C4C | 2.39  | 1.47        | 1.41     |
| 23  | b     | 608            | CLA  | C4B-CHC | 2.38  | 1.47        | 1.41     |
| 35  | В     | 633            | LMT  | O1'-C1' | 2.38  | 1.44        | 1.40     |
| 23  | В     | 612            | CLA  | C4B-CHC | 2.38  | 1.47        | 1.41     |
| 23  | с     | 504            | CLA  | CHD-C4C | 2.38  | 1.47        | 1.41     |
| 23  | В     | 604            | CLA  | CHD-C4C | 2.38  | 1.47        | 1.41     |
| 23  | b     | 605            | CLA  | CHD-C4C | 2.37  | 1.47        | 1.41     |
| 23  | В     | 610            | CLA  | C1B-CHB | 2.37  | 1.47        | 1.41     |
| 23  | с     | 505            | CLA  | CHD-C4C | 2.37  | 1.47        | 1.41     |
| 23  | с     | 504            | CLA  | C4B-NB  | -2.37 | 1.33        | 1.35     |
| 23  | d     | 402            | CLA  | C4B-CHC | 2.37  | 1.47        | 1.41     |
| 23  | D     | 401            | CLA  | CHD-C4C | 2.37  | 1.47        | 1.41     |
| 23  | d     | 402            | CLA  | C1B-CHB | 2.36  | 1.47        | 1.41     |
| 23  | с     | 503            | CLA  | C1B-CHB | 2.36  | 1.47        | 1.41     |
| 36  | b     | 621            | HTG  | C1-S1   | -2.36 | 1.77        | 1.80     |
| 23  | b     | 606            | CLA  | C4B-CHC | 2.36  | 1.47        | 1.41     |
| 23  | с     | 510            | CLA  | C1C-C2C | 2.36  | 1.49        | 1.44     |
| 23  | b     | 614            | CLA  | CHD-C4C | 2.36  | 1.47        | 1.41     |
| 23  | b     | 603            | CLA  | C4C-C3C | 2.36  | 1.49        | 1.45     |



| Mol | Chain | Res | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|-------|-------------|----------|
| 23  | С     | 512 | CLA  | C4C-C3C | 2.35  | 1.49        | 1.45     |
| 23  | В     | 613 | CLA  | C4C-C3C | 2.35  | 1.49        | 1.45     |
| 23  | с     | 510 | CLA  | C4B-CHC | 2.35  | 1.47        | 1.41     |
| 23  | b     | 611 | CLA  | CHD-C4C | 2.35  | 1.47        | 1.41     |
| 23  | b     | 607 | CLA  | C4C-C3C | 2.35  | 1.49        | 1.45     |
| 23  | с     | 502 | CLA  | CHD-C4C | 2.34  | 1.47        | 1.41     |
| 23  | d     | 402 | CLA  | CHD-C4C | 2.34  | 1.47        | 1.41     |
| 23  | с     | 511 | CLA  | C4B-CHC | 2.34  | 1.47        | 1.41     |
| 23  | с     | 509 | CLA  | C4C-C3C | 2.34  | 1.49        | 1.45     |
| 23  | С     | 514 | CLA  | C4B-CHC | 2.34  | 1.47        | 1.41     |
| 23  | С     | 511 | CLA  | C1B-CHB | 2.34  | 1.47        | 1.41     |
| 23  | В     | 606 | CLA  | C1C-NC  | -2.34 | 1.34        | 1.37     |
| 23  | с     | 508 | CLA  | C4B-CHC | 2.34  | 1.47        | 1.41     |
| 23  | В     | 616 | CLA  | C1C-C2C | 2.34  | 1.49        | 1.44     |
| 23  | А     | 405 | CLA  | C1C-C2C | 2.34  | 1.49        | 1.44     |
| 23  | В     | 605 | CLA  | C4B-CHC | 2.34  | 1.47        | 1.41     |
| 23  | b     | 613 | CLA  | CHD-C4C | 2.34  | 1.47        | 1.41     |
| 23  | В     | 602 | CLA  | C4B-CHC | 2.33  | 1.47        | 1.41     |
| 23  | с     | 504 | CLA  | C1B-CHB | 2.33  | 1.47        | 1.41     |
| 23  | С     | 505 | CLA  | C4C-C3C | 2.33  | 1.49        | 1.45     |
| 23  | В     | 603 | CLA  | C1B-CHB | 2.33  | 1.47        | 1.41     |
| 23  | В     | 607 | CLA  | C4B-CHC | 2.33  | 1.47        | 1.41     |
| 23  | В     | 605 | CLA  | C1D-C2D | 2.33  | 1.47        | 1.42     |
| 23  | D     | 405 | CLA  | CHD-C4C | 2.33  | 1.47        | 1.41     |
| 23  | с     | 503 | CLA  | C1C-C2C | 2.33  | 1.49        | 1.44     |
| 24  | a     | 407 | PHO  | C4D-CHA | 2.33  | 1.50        | 1.43     |
| 23  | с     | 508 | CLA  | C1D-C2D | 2.33  | 1.47        | 1.42     |
| 35  | С     | 522 | LMT  | O1'-C1' | 2.33  | 1.44        | 1.40     |
| 23  | с     | 501 | CLA  | C4B-CHC | 2.33  | 1.47        | 1.41     |
| 23  | С     | 505 | CLA  | C4B-CHC | 2.32  | 1.47        | 1.41     |
| 23  | С     | 510 | CLA  | C4B-CHC | 2.32  | 1.47        | 1.41     |
| 23  | С     | 513 | CLA  | C1B-CHB | 2.32  | 1.47        | 1.41     |
| 36  | B     | 629 | HTG  | C1-S1   | -2.32 | 1.77        | 1.80     |
| 23  | A     | 405 | CLA  | C4B-CHC | 2.32  | 1.47        | 1.41     |
| 23  | B     | 606 | CLA  | CHD-C4C | 2.32  | 1.47        | 1.41     |
| 23  |       | 502 | CLA  | C4C-C3C | 2.32  | 1.49        | 1.45     |
| 23  | В     | 602 | CLA  | CHD-C4C | 2.32  | 1.47        |          |
| 23  | b     | 612 | CLA  | CHD-C4C | 2.31  | 1.47        | 1.41     |
| 23  |       | 504 | UTC  | CIB-CHB | 2.31  | 1.47        | 1.41     |
| 36  | b     | 626 | HIG  | CI-SI   | -2.31 |             | 1.80     |
| 23  | b     | 607 | CLA  | CHD-C4C | 2.31  | 1.47        | 1.41     |
| 23  | b     | 016 | CLA  | UHD-C4C | 2.31  | 1.47        | 1.41     |



| Mol | Chain | $\mathbf{Res}$ | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|----------------|------|---------|-------|-------------|----------|
| 23  | a     | 404            | CLA  | C4B-CHC | 2.31  | 1.47        | 1.41     |
| 23  | b     | 603            | CLA  | C4B-CHC | 2.31  | 1.47        | 1.41     |
| 23  | b     | 602            | CLA  | C1B-CHB | 2.31  | 1.47        | 1.41     |
| 23  | В     | 609            | CLA  | C1C-C2C | 2.30  | 1.49        | 1.44     |
| 23  | В     | 603            | CLA  | C4B-CHC | 2.30  | 1.47        | 1.41     |
| 23  | a     | 406            | CLA  | C1C-NC  | -2.30 | 1.34        | 1.37     |
| 23  | D     | 401            | CLA  | C1B-CHB | 2.30  | 1.47        | 1.41     |
| 23  | b     | 605            | CLA  | C1C-C2C | 2.30  | 1.49        | 1.44     |
| 23  | с     | 502            | CLA  | C1C-C2C | 2.30  | 1.49        | 1.44     |
| 36  | D     | 412            | HTG  | C1-S1   | -2.29 | 1.77        | 1.80     |
| 23  | с     | 506            | CLA  | C1B-CHB | 2.29  | 1.47        | 1.41     |
| 23  | С     | 507            | CLA  | C4C-C3C | 2.29  | 1.49        | 1.45     |
| 23  | В     | 616            | CLA  | CHD-C4C | 2.29  | 1.47        | 1.41     |
| 23  | А     | 405            | CLA  | C1B-CHB | 2.29  | 1.47        | 1.41     |
| 23  | с     | 505            | CLA  | C4C-C3C | 2.29  | 1.49        | 1.45     |
| 23  | А     | 405            | CLA  | C1B-NB  | -2.28 | 1.33        | 1.35     |
| 24  | А     | 406            | PHO  | C4D-CHA | 2.28  | 1.49        | 1.43     |
| 23  | a     | 405            | CLA  | C1B-NB  | -2.28 | 1.33        | 1.35     |
| 23  | А     | 407            | CLA  | C1C-C2C | 2.28  | 1.49        | 1.44     |
| 23  | b     | 601            | CLA  | C1C-C2C | 2.28  | 1.49        | 1.44     |
| 23  | с     | 508            | CLA  | CHD-C4C | 2.27  | 1.47        | 1.41     |
| 23  | b     | 605            | CLA  | C4C-C3C | 2.27  | 1.49        | 1.45     |
| 23  | b     | 601            | CLA  | C1B-CHB | 2.27  | 1.47        | 1.41     |
| 23  | b     | 604            | CLA  | C4B-CHC | 2.27  | 1.47        | 1.41     |
| 23  | b     | 614            | CLA  | C4C-C3C | 2.27  | 1.49        | 1.45     |
| 23  | В     | 614            | CLA  | C1B-CHB | 2.27  | 1.47        | 1.41     |
| 23  | В     | 614            | CLA  | C4B-CHC | 2.27  | 1.47        | 1.41     |
| 23  | с     | 501            | CLA  | C1C-C2C | 2.27  | 1.49        | 1.44     |
| 23  | b     | 604            | CLA  | CHD-C4C | 2.27  | 1.47        | 1.41     |
| 23  | d     | 403            | CLA  | C1B-CHB | 2.27  | 1.47        | 1.41     |
| 23  | b     | 604            | CLA  | C1B-CHB | 2.26  | 1.47        | 1.41     |
| 23  | b     | 615            | CLA  | C4C-C3C | 2.26  | 1.48        | 1.45     |
| 24  | a     | 407            | PHO  | C4C-C3C | 2.26  | 1.49        | 1.45     |
| 23  | В     | 612            | CLA  | CHD-C4C | 2.26  | 1.47        | 1.41     |
| 23  | b     | 605            | CLA  | C4B-CHC | 2.26  | 1.47        | 1.41     |
| 23  | с     | 513            | CLA  | C4C-C3C | 2.26  | 1.48        | 1.45     |
| 23  | В     | 614            | CLA  | CHD-C4C | 2.25  | 1.47        | 1.41     |
| 23  | с     | 512            | CLA  | C1B-CHB | 2.25  | 1.47        | 1.41     |
| 23  | с     | 506            | CLA  | C4C-C3C | 2.25  | 1.48        | 1.45     |
| 23  | С     | 503            | CLA  | C1C-C2C | 2.25  | 1.48        | 1.44     |
| 23  | D     | 404            | CLA  | C4B-CHC | 2.25  | 1.47        | 1.41     |
| 23  | с     | 509            | CLA  | C4B-CHC | 2.25  | 1.47        | 1.41     |



| Mol | Chain | Res | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|-------|-------------|----------|
| 23  | В     | 611 | CLA  | CHD-C4C | 2.24  | 1.47        | 1.41     |
| 23  | В     | 608 | CLA  | C1B-CHB | 2.24  | 1.47        | 1.41     |
| 23  | С     | 509 | CLA  | C4B-CHC | 2.24  | 1.47        | 1.41     |
| 23  | b     | 607 | CLA  | C1B-NB  | -2.23 | 1.33        | 1.35     |
| 23  | В     | 613 | CLA  | C4B-CHC | 2.23  | 1.47        | 1.41     |
| 23  | a     | 409 | CLA  | C1B-CHB | 2.23  | 1.47        | 1.41     |
| 23  | В     | 602 | CLA  | C1B-CHB | 2.23  | 1.47        | 1.41     |
| 36  | с     | 522 | HTG  | C1-S1   | -2.23 | 1.77        | 1.80     |
| 37  | h     | 103 | DGD  | O5D-C1E | 2.22  | 1.44        | 1.40     |
| 23  | В     | 609 | CLA  | C1D-C2D | 2.22  | 1.47        | 1.42     |
| 23  | В     | 602 | CLA  | C4C-C3C | 2.22  | 1.48        | 1.45     |
| 23  | с     | 502 | CLA  | C4B-CHC | 2.22  | 1.47        | 1.41     |
| 23  | В     | 617 | CLA  | CHD-C4C | 2.22  | 1.47        | 1.41     |
| 23  | В     | 613 | CLA  | CHD-C4C | 2.22  | 1.47        | 1.41     |
| 23  | b     | 612 | CLA  | C1B-CHB | 2.21  | 1.47        | 1.41     |
| 23  | а     | 405 | CLA  | C1C-C2C | 2.21  | 1.48        | 1.44     |
| 23  | В     | 613 | CLA  | C1D-C2D | 2.21  | 1.47        | 1.42     |
| 23  | с     | 507 | CLA  | C4C-C3C | 2.21  | 1.48        | 1.45     |
| 24  | D     | 402 | PHO  | C4C-C3C | 2.21  | 1.49        | 1.45     |
| 36  | b     | 623 | HTG  | C1-S1   | -2.20 | 1.77        | 1.80     |
| 23  | с     | 508 | CLA  | C4C-C3C | 2.20  | 1.48        | 1.45     |
| 38  | Ε     | 103 | HEM  | C3B-C2B | -2.20 | 1.37        | 1.40     |
| 23  | А     | 407 | CLA  | C1B-NB  | -2.19 | 1.33        | 1.35     |
| 23  | с     | 509 | CLA  | C4B-NB  | -2.19 | 1.33        | 1.35     |
| 23  | с     | 504 | CLA  | C4B-CHC | 2.19  | 1.47        | 1.41     |
| 23  | b     | 608 | CLA  | C1B-CHB | 2.18  | 1.47        | 1.41     |
| 23  | с     | 511 | CLA  | C4C-C3C | 2.18  | 1.48        | 1.45     |
| 23  | С     | 509 | CLA  | C1C-NC  | -2.18 | 1.34        | 1.37     |
| 34  | Z     | 101 | LMG  | O1-C1   | 2.18  | 1.43        | 1.40     |
| 23  | b     | 616 | CLA  | C4B-CHC | 2.18  | 1.47        | 1.41     |
| 36  | В     | 630 | HTG  | C1-S1   | -2.17 | 1.77        | 1.80     |
| 23  | A     | 407 | CLA  | C1B-CHB | 2.17  | 1.47        | 1.41     |
| 23  | d     | 402 | CLA  | C1B-NB  | -2.17 | 1.33        | 1.35     |
| 24  | D     | 402 | PHO  | C4D-CHA | 2.17  | 1.49        | 1.43     |
| 23  | В     | 615 | CLA  | C1C-C2C | 2.15  | 1.48        | 1.44     |
| 23  | b     | 607 | CLA  | C4B-CHC | 2.15  | 1.47        | 1.41     |
| 36  | b     | 625 | HTG  | C1-S1   | -2.15 | 1.77        | 1.80     |
| 23  | C     | 512 | CLA  | C4C-C3C | 2.15  | 1.48        | 1.45     |
| 23  | C     | 507 | CLA  | C1B-CHB | 2.15  | 1.47        | 1.41     |
| 23  | С     | 513 | CLA  | C1B-CHB | 2.14  | 1.47        | 1.41     |
| 23  | с     | 507 | CLA  | C1B-CHB | 2.14  | 1.46        | 1.41     |
| 34  | a     | 417 | LMG  | O1-C1   | 2.14  | 1.43        | 1.40     |



| Mol | Chain | Res | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|-------|-------------|----------|
| 23  | В     | 617 | CLA  | C1C-NC  | -2.13 | 1.34        | 1.37     |
| 23  | В     | 607 | CLA  | C1B-CHB | 2.13  | 1.46        | 1.41     |
| 23  | b     | 602 | CLA  | C4C-C3C | 2.13  | 1.48        | 1.45     |
| 23  | С     | 506 | CLA  | C4B-CHC | 2.12  | 1.46        | 1.41     |
| 23  | с     | 506 | CLA  | C4B-CHC | 2.12  | 1.46        | 1.41     |
| 23  | В     | 616 | CLA  | C1B-CHB | 2.12  | 1.46        | 1.41     |
| 23  | С     | 512 | CLA  | C4B-CHC | 2.12  | 1.46        | 1.41     |
| 37  | с     | 517 | DGD  | O3G-C1D | 2.11  | 1.43        | 1.40     |
| 23  | В     | 605 | CLA  | CHD-C4C | 2.11  | 1.47        | 1.41     |
| 23  | b     | 608 | CLA  | C1C-NC  | -2.10 | 1.34        | 1.37     |
| 23  | С     | 508 | CLA  | C4C-C3C | 2.10  | 1.48        | 1.45     |
| 23  | с     | 506 | CLA  | C1C-NC  | -2.10 | 1.34        | 1.37     |
| 23  | С     | 510 | CLA  | C4C-C3C | 2.09  | 1.48        | 1.45     |
| 23  | В     | 606 | CLA  | C4C-C3C | 2.09  | 1.48        | 1.45     |
| 23  | а     | 409 | CLA  | C1B-NB  | -2.09 | 1.33        | 1.35     |
| 36  | h     | 101 | HTG  | C1-S1   | -2.08 | 1.77        | 1.80     |
| 34  | с     | 519 | LMG  | O1-C1   | 2.08  | 1.43        | 1.40     |
| 26  | а     | 413 | SQD  | O6-C1   | 2.08  | 1.43        | 1.40     |
| 23  | С     | 512 | CLA  | C1C-NC  | -2.07 | 1.34        | 1.37     |
| 35  | Ε     | 102 | LMT  | O1'-C1' | 2.07  | 1.43        | 1.40     |
| 23  | b     | 615 | CLA  | C4B-CHC | 2.07  | 1.46        | 1.41     |
| 23  | С     | 509 | CLA  | C1D-C2D | 2.07  | 1.47        | 1.42     |
| 23  | С     | 504 | CLA  | C1C-C2C | 2.06  | 1.48        | 1.44     |
| 23  | В     | 611 | CLA  | C4C-C3C | 2.06  | 1.48        | 1.45     |
| 23  | а     | 405 | CLA  | C4B-CHC | 2.06  | 1.46        | 1.41     |
| 29  | D     | 407 | PL9  | C2-C1   | -2.06 | 1.39        | 1.44     |
| 23  | В     | 609 | CLA  | C4B-CHC | 2.05  | 1.46        | 1.41     |
| 34  | С     | 521 | LMG  | O1-C1   | 2.05  | 1.43        | 1.40     |
| 29  | A     | 413 | PL9  | C2-C3   | 2.05  | 1.40        | 1.34     |
| 35  | b     | 628 | LMT  | O1'-C1' | 2.04  | 1.43        | 1.40     |
| 25  | b     | 619 | BCR  | C30-C25 | -2.04 | 1.51        | 1.53     |
| 36  | b     | 622 | HTG  | C1-S1   | -2.04 | 1.77        | 1.80     |
| 23  | b     | 609 | CLA  | C4C-C3C | 2.04  | 1.48        | 1.45     |
| 23  | В     | 610 | CLA  | C1B-NB  | -2.03 | 1.33        | 1.35     |
| 24  | a     | 407 | PHO  | C1A-NA  | -2.03 | 1.33        | 1.37     |
| 23  | В     | 609 | CLA  | CHD-C4C | 2.03  | 1.46        | 1.41     |
| 23  | b     | 615 | CLA  | C1C-NC  | -2.03 | 1.34        | 1.37     |
| 23  | b     | 616 | CLA  | C1C-C2C | 2.03  | 1.48        | 1.44     |
| 23  | b     | 611 | CLA  | C4B-CHC | 2.03  | 1.46        | 1.41     |
| 29  | d     | 405 | PL9  | C2-C3   | 2.02  | 1.40        | 1.34     |
| 34  | J     | 101 | LMG  | O1-C1   | 2.02  | 1.43        | 1.40     |
| 35  | a     | 418 | LMT  | O1'-C1' | 2.02  | 1.43        | 1.40     |



| Mol | Chain | Res | Type | Atoms   | Z     | $\operatorname{Observed}(\operatorname{\AA})$ | Ideal(Å) |
|-----|-------|-----|------|---------|-------|-----------------------------------------------|----------|
| 31  | d     | 406 | LHG  | O7-C5   | -2.02 | 1.41                                          | 1.46     |
| 23  | b     | 613 | CLA  | C4C-C3C | 2.02  | 1.48                                          | 1.45     |
| 23  | С     | 510 | CLA  | C1C-NC  | -2.02 | 1.34                                          | 1.37     |
| 23  | b     | 606 | CLA  | C4C-C3C | 2.01  | 1.48                                          | 1.45     |
| 23  | С     | 514 | CLA  | C4C-C3C | 2.00  | 1.48                                          | 1.45     |
| 23  | С     | 503 | CLA  | C4C-C3C | 2.00  | 1.48                                          | 1.45     |

All (2292) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms       | Z                 | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------------------|------------------|---------------|
| 24  | А     | 406 | PHO  | CMD-C2D-C1D | 8.02              | 137.41           | 125.06        |
| 23  | В     | 608 | CLA  | C4A-NA-C1A  | -7.32             | 103.41           | 106.71        |
| 23  | В     | 612 | CLA  | CHD-C4C-C3C | -6.98             | 114.58           | 124.84        |
| 23  | В     | 609 | CLA  | CHD-C4C-C3C | -6.93             | 114.66           | 124.84        |
| 24  | a     | 407 | PHO  | CMD-C2D-C1D | 6.91              | 135.70           | 125.06        |
| 24  | D     | 402 | PHO  | CMD-C2D-C1D | 6.88              | 135.66           | 125.06        |
| 23  | С     | 507 | CLA  | C4A-NA-C1A  | -6.77             | 103.66           | 106.71        |
| 23  | b     | 609 | CLA  | C4A-NA-C1A  | -6.77             | 103.66           | 106.71        |
| 23  | с     | 507 | CLA  | O2D-CGD-CBD | 6.75              | 123.27           | 111.27        |
| 23  | b     | 611 | CLA  | C2C-C1C-NC  | 6.68              | 116.23           | 109.97        |
| 23  | В     | 617 | CLA  | CHD-C4C-C3C | -6.67             | 115.03           | 124.84        |
| 38  | Е     | 103 | HEM  | CAD-CBD-CGD | 6.67              | 123.86           | 112.67        |
| 23  | В     | 611 | CLA  | CHD-C4C-C3C | -6.67             | 115.04           | 124.84        |
| 23  | D     | 405 | CLA  | CHD-C4C-C3C | -6.62             | 115.11           | 124.84        |
| 23  | b     | 602 | CLA  | C4A-NA-C1A  | -6.53             | 103.77           | 106.71        |
| 23  | В     | 617 | CLA  | O2D-CGD-CBD | 6.52              | 122.85           | 111.27        |
| 23  | b     | 616 | CLA  | C4A-NA-C1A  | -6.51             | 103.78           | 106.71        |
| 23  | b     | 613 | CLA  | CHD-C4C-C3C | -6.48             | 115.31           | 124.84        |
| 24  | a     | 408 | PHO  | CMD-C2D-C1D | 6.47              | 135.03           | 125.06        |
| 23  | с     | 513 | CLA  | C4A-NA-C1A  | -6.47             | 103.80           | 106.71        |
| 23  | с     | 507 | CLA  | C4A-NA-C1A  | -6.46             | 103.80           | 106.71        |
| 23  | В     | 606 | CLA  | CHD-C4C-C3C | -6.43             | 115.39           | 124.84        |
| 23  | А     | 404 | CLA  | C4A-NA-C1A  | -6.38             | 103.84           | 106.71        |
| 23  | D     | 401 | CLA  | CHD-C4C-C3C | -6.38             | 115.47           | 124.84        |
| 25  | D     | 406 | BCR  | C7-C8-C9    | -6.34             | 116.66           | 126.23        |
| 29  | a     | 415 | PL9  | C7-C3-C4    | 6.31              | 122.01           | 116.88        |
| 23  | В     | 603 | CLA  | C4A-NA-C1A  | -6.31             | 103.87           | 106.71        |
| 23  | C     | 505 | CLA  | C2C-C1C-NC  | 6.31              | 115.88           | 109.97        |
| 23  | с     | 512 | CLA  | O2D-CGD-CBD | $6.\overline{30}$ | 122.47           | 111.27        |
| 23  | В     | 610 | CLA  | CHD-C4C-C3C | -6.27             | 115.62           | 124.84        |
| 36  | В     | 625 | HTG  | C1'-S1-C1   | $6.\overline{25}$ | 111.79           | 100.09        |
| 23  | a     | 409 | CLA  | C4A-NA-C1A  | -6.25             | 103.90           | 106.71        |



| Mol | Chain | Res | Type | Atoms       | Z     | $Observed(^{o})$    | $ $ Ideal( $^{o}$ ) $ $ |
|-----|-------|-----|------|-------------|-------|---------------------|-------------------------|
| 23  | b     | 604 | CLA  | O2D-CGD-CBD | 6.25  | 122.37              | 111.27                  |
| 23  | C     | 510 | CLA  | CHD-C4C-C3C | -6.24 | 115.66              | 124.84                  |
| 23  | d     | 402 | CLA  | C2C-C1C-NC  | 6.23  | 115.81              | 109.97                  |
| 23  | с     | 502 | CLA  | CHD-C4C-C3C | -6.22 | 115.69              | 124.84                  |
| 23  | с     | 505 | CLA  | CHD-C4C-C3C | -6.22 | 115.70              | 124.84                  |
| 23  | В     | 617 | CLA  | C4A-NA-C1A  | -6.21 | 103.91              | 106.71                  |
| 23  | В     | 613 | CLA  | O2D-CGD-CBD | 6.21  | 122.31              | 111.27                  |
| 23  | С     | 513 | CLA  | CHD-C4C-C3C | -6.20 | 115.73              | 124.84                  |
| 36  | В     | 626 | HTG  | C1'-S1-C1   | 6.19  | 111.68              | 100.09                  |
| 23  | d     | 403 | CLA  | CHD-C4C-C3C | -6.19 | 115.74              | 124.84                  |
| 23  | С     | 508 | CLA  | O2D-CGD-CBD | 6.17  | 122.24              | 111.27                  |
| 23  | С     | 513 | CLA  | C4A-NA-C1A  | -6.15 | 103.94              | 106.71                  |
| 23  | a     | 406 | CLA  | CHD-C4C-C3C | -6.15 | 115.80              | 124.84                  |
| 23  | b     | 608 | CLA  | CHD-C4C-C3C | -6.15 | 115.80              | 124.84                  |
| 23  | В     | 605 | CLA  | O2D-CGD-CBD | 6.14  | 122.17              | 111.27                  |
| 23  | с     | 503 | CLA  | C4A-NA-C1A  | -6.11 | 103.96              | 106.71                  |
| 23  | В     | 603 | CLA  | O2D-CGD-CBD | 6.11  | 122.13              | 111.27                  |
| 23  | b     | 606 | CLA  | C4A-NA-C1A  | -6.10 | 103.96              | 106.71                  |
| 23  | b     | 611 | CLA  | O2D-CGD-CBD | 6.10  | 122.11              | 111.27                  |
| 23  | С     | 509 | CLA  | CHD-C4C-C3C | -6.10 | 115.87              | 124.84                  |
| 36  | b     | 623 | HTG  | C1'-S1-C1   | 6.08  | 111.47              | 100.09                  |
| 23  | a     | 405 | CLA  | C2C-C1C-NC  | 6.08  | 115.67              | 109.97                  |
| 23  | с     | 512 | CLA  | CHD-C4C-C3C | -6.08 | 115.91              | 124.84                  |
| 23  | b     | 606 | CLA  | CHD-C4C-C3C | -6.07 | 115.92              | 124.84                  |
| 23  | А     | 407 | CLA  | CHD-C4C-C3C | -6.07 | 115.92              | 124.84                  |
| 23  | С     | 506 | CLA  | CHD-C4C-C3C | -6.07 | 115.92              | 124.84                  |
| 23  | В     | 615 | CLA  | O2D-CGD-CBD | 6.06  | 122.05              | 111.27                  |
| 23  | с     | 508 | CLA  | CHD-C4C-C3C | -6.06 | 115.93              | 124.84                  |
| 23  | с     | 511 | CLA  | CHD-C4C-C3C | -6.06 | 115.94              | 124.84                  |
| 23  | С     | 514 | CLA  | CHD-C4C-C3C | -6.05 | 115.94              | 124.84                  |
| 23  | b     | 604 | CLA  | CHD-C4C-C3C | -6.05 | 115.94              | 124.84                  |
| 23  | b     | 615 | CLA  | C2C-C1C-NC  | 6.04  | 115.63              | 109.97                  |
| 23  | b     | 602 | CLA  | CHD-C4C-C3C | -6.04 | 115.96              | 124.84                  |
| 23  | В     | 605 | CLA  | CHD-C4C-C3C | -6.02 | 115.98              | 124.84                  |
| 23  | b     | 610 | CLA  | C4A-NA-C1A  | -6.01 | 104.00              | 106.71                  |
| 23  | b     | 605 | CLA  | CHD-C4C-C3C | -6.00 | 116.01              | 124.84                  |
| 23  | В     | 613 | CLA  | CHD-C4C-C3C | -5.99 | 116.03              | 124.84                  |
| 23  | b     | 614 | CLA  | O2D-CGD-CBD | 5.97  | 121.87              | 111.27                  |
| 23  | a     | 404 | CLA  | C4A-NA-C1A  | -5.96 | 104.03              | 106.71                  |
| 23  | В     | 607 | CLA  | CHD-C4C-C3C | -5.94 | 116.11              | 124.84                  |
| 23  | b     | 607 | CLA  | C2C-C1C-NC  | 5.93  | 115.53              | 109.97                  |
| 23  | D     | 404 | CLA  | C2C-C1C-NC  | 5.92  | $1\overline{15.52}$ | 109.97                  |



| Mol | Chain | $\mathbf{Res}$ | Type | Atoms       |       | $\mathbf{Observed}(^{o})$ | $Ideal(^{o})$ |
|-----|-------|----------------|------|-------------|-------|---------------------------|---------------|
| 36  | с     | 521            | HTG  | C1'-S1-C1   | 5.92  | 111.16                    | 100.09        |
| 24  | a     | 407            | PHO  | O2D-CGD-CBD | 5.91  | 121.77                    | 111.27        |
| 23  | b     | 610            | CLA  | CHD-C4C-C3C | -5.91 | 116.15                    | 124.84        |
| 23  | С     | 511            | CLA  | C2C-C1C-NC  | 5.91  | 115.50                    | 109.97        |
| 23  | В     | 616            | CLA  | CHD-C4C-C3C | -5.88 | 116.19                    | 124.84        |
| 36  | b     | 621            | HTG  | C1'-S1-C1   | 5.87  | 111.08                    | 100.09        |
| 23  | С     | 508            | CLA  | CHD-C4C-C3C | -5.87 | 116.21                    | 124.84        |
| 23  | b     | 603            | CLA  | CHD-C4C-C3C | -5.87 | 116.21                    | 124.84        |
| 23  | с     | 504            | CLA  | C2C-C1C-NC  | 5.86  | 115.46                    | 109.97        |
| 23  | с     | 510            | CLA  | C4A-NA-C1A  | -5.85 | 104.08                    | 106.71        |
| 23  | с     | 508            | CLA  | O2D-CGD-CBD | 5.84  | 121.65                    | 111.27        |
| 23  | В     | 602            | CLA  | CHD-C4C-C3C | -5.84 | 116.25                    | 124.84        |
| 29  | А     | 413            | PL9  | C7-C3-C4    | 5.83  | 121.62                    | 116.88        |
| 23  | В     | 604            | CLA  | CHD-C4C-C3C | -5.83 | 116.28                    | 124.84        |
| 23  | В     | 604            | CLA  | O2D-CGD-CBD | 5.82  | 121.61                    | 111.27        |
| 36  | D     | 412            | HTG  | C1'-S1-C1   | 5.82  | 110.98                    | 100.09        |
| 23  | С     | 502            | CLA  | CHD-C4C-C3C | -5.82 | 116.28                    | 124.84        |
| 23  | b     | 609            | CLA  | CHD-C4C-C3C | -5.82 | 116.29                    | 124.84        |
| 23  | В     | 607            | CLA  | C4A-NA-C1A  | -5.81 | 104.09                    | 106.71        |
| 23  | b     | 601            | CLA  | CHD-C4C-C3C | -5.81 | 116.30                    | 124.84        |
| 23  | D     | 404            | CLA  | CHD-C4C-C3C | -5.81 | 116.30                    | 124.84        |
| 23  | с     | 501            | CLA  | C4A-NA-C1A  | -5.80 | 104.10                    | 106.71        |
| 23  | b     | 607            | CLA  | CHD-C4C-C3C | -5.78 | 116.35                    | 124.84        |
| 23  | В     | 611            | CLA  | O2D-CGD-CBD | 5.77  | 121.52                    | 111.27        |
| 23  | С     | 504            | CLA  | C4A-NA-C1A  | -5.77 | 104.11                    | 106.71        |
| 23  | В     | 615            | CLA  | C2C-C1C-NC  | 5.76  | 115.37                    | 109.97        |
| 23  | b     | 601            | CLA  | O2D-CGD-CBD | 5.76  | 121.50                    | 111.27        |
| 26  | А     | 409            | SQD  | O6-C1-C2    | 5.76  | 117.29                    | 108.30        |
| 23  | В     | 614            | CLA  | C2C-C1C-NC  | 5.75  | 115.36                    | 109.97        |
| 38  | е     | 103            | HEM  | CAD-CBD-CGD | 5.75  | 122.32                    | 112.67        |
| 26  | D     | 413            | SQD  | O47-C7-C8   | 5.74  | 123.88                    | 111.50        |
| 25  | Т     | 101            | BCR  | C15-C16-C17 | -5.72 | 111.75                    | 123.47        |
| 23  | С     | 502            | CLA  | O2D-CGD-CBD | 5.72  | 121.43                    | 111.27        |
| 23  | b     | 612            | CLA  | CHD-C4C-C3C | -5.72 | 116.44                    | 124.84        |
| 23  | b     | 614            | CLA  | CHD-C4C-C3C | -5.72 | 116.44                    | 124.84        |
| 23  | b     | 601            | CLA  | C4A-NA-C1A  | -5.71 | 104.14                    | 106.71        |
| 23  | b     | 616            | CLA  | CHD-C4C-C3C | -5.71 | 116.44                    | 124.84        |
| 23  | с     | 509            | CLA  | CHD-C4C-C3C | -5.71 | 116.45                    | 124.84        |
| 23  | С     | 509            | CLA  | C2C-C1C-NC  | 5.70  | 115.31                    | 109.97        |
| 23  | В     | 604            | CLA  | C4A-NA-C1A  | -5.69 | 104.15                    | 106.71        |
| 23  | В     | 602            | CLA  | O2D-CGD-CBD | 5.69  | 121.37                    | 111.27        |
| 23  | d     | 403            | CLA  | C4A-NA-C1A  | -5.68 | 104.15                    | 106.71        |



|                 | Continued from previous page |                                         |            |                        |              |             |                         |  |  |  |
|-----------------|------------------------------|-----------------------------------------|------------|------------------------|--------------|-------------|-------------------------|--|--|--|
|                 | Uhain                        | Kes                                     | Type       | Atoms                  |              | Ubserved(°) | 100.0 <sup>-</sup>      |  |  |  |
| 23              | c                            | 508                                     | CLA        | C2C-C1C-NC             | 5.68         | 115.29      | 109.97                  |  |  |  |
| 23              | A                            | 404                                     | CLA        | CHD-C4C-C3C            | -5.68        | 116.49      | 124.84                  |  |  |  |
| 23              | С                            | 501                                     | CLA        | O2D-CGD-CBD            | 5.67         | 121.35      | 111.27                  |  |  |  |
| 23              | b                            | 616                                     | CLA        | O2D-CGD-CBD            | 5.67         | 121.34      | 111.27                  |  |  |  |
| 23              | В                            | 608                                     | CLA        | CHD-C4C-C3C            | -5.67        | 116.51      | 124.84                  |  |  |  |
| 23              | с                            | 503                                     | CLA        | C2C-C1C-NC             | 5.67         | 115.28      | 109.97                  |  |  |  |
| 23              | С                            | 511                                     | CLA        | O2D-CGD-CBD            | 5.65         | 121.31      | 111.27                  |  |  |  |
| 23              | В                            | 611                                     | CLA        | C4A-NA-C1A             | -5.65        | 104.17      | 106.71                  |  |  |  |
| 23              | С                            | 503                                     | CLA        | CHD-C4C-C3C            | -5.65        | 116.54      | 124.84                  |  |  |  |
| 23              | a                            | 405                                     | CLA        | CHD-C4C-C3C            | -5.64        | 116.54      | 124.84                  |  |  |  |
| 23              | С                            | 506                                     | CLA        | O2D-CGD-CBD            | 5.64         | 121.29      | 111.27                  |  |  |  |
| 24              | А                            | 406                                     | PHO        | C3D-C2D-C1D            | -5.62        | 97.68       | 105.87                  |  |  |  |
| 23              | b                            | 616                                     | CLA        | C2C-C1C-NC             | 5.61         | 115.23      | 109.97                  |  |  |  |
| 23              | b                            | 612                                     | CLA        | C4A-NA-C1A             | -5.61        | 104.19      | 106.71                  |  |  |  |
| 23              | а                            | 404                                     | CLA        | CHD-C4C-C3C            | -5.59        | 116.62      | 124.84                  |  |  |  |
| 23              | с                            | 506                                     | CLA        | C2C-C1C-NC             | 5.58         | 115.20      | 109.97                  |  |  |  |
| 23              | С                            | 502                                     | CLA        | C2C-C1C-NC             | 5.57         | 115.19      | 109.97                  |  |  |  |
| 24              | a                            | 407                                     | PHO        | C3D-C2D-C1D            | -5.57        | 97.76       | 105.87                  |  |  |  |
| 23              | В                            | 614                                     | CLA        | CHD-C4C-C3C            | -5.56        | 116.66      | 124.84                  |  |  |  |
| 23              | b                            | 611                                     | CLA        | CHD-C4C-C3C            | -5.56        | 116.66      | 124.84                  |  |  |  |
| 23              | В                            | 610                                     | CLA        | C4A-NA-C1A             | -5.55        | 104.21      | 106.71                  |  |  |  |
| 23              | С                            | 509                                     | CLA        | O2D-CGD-CBD            | 5.55         | 121.13      | 111.27                  |  |  |  |
| 25              | Y                            | 101                                     | BCR        | C33-C5-C6              | -5.54        | 118.30      | 124.53                  |  |  |  |
| 23              | b                            | 603                                     | CLA        | O2D-CGD-CBD            | 5.54         | 121.11      | 111.27                  |  |  |  |
| 23              | с                            | 510                                     | CLA        | C1-C2-C3               | -5.54        | 116.46      | 126.04                  |  |  |  |
| 23              | С                            | 512                                     | CLA        | CHD-C4C-C3C            | -5.54        | 116.70      | 124.84                  |  |  |  |
| 23              | b                            | 605                                     | CLA        | C2C-C1C-NC             | 5.54         | 115.16      | 109.97                  |  |  |  |
| 24              | А                            | 406                                     | PHO        | O2D-CGD-CBD            | 5.53         | 121.10      | 111.27                  |  |  |  |
| 23              | b                            | 615                                     | CLA        | C4A-NA-C1A             | -5.53        | 104.22      | 106.71                  |  |  |  |
| 23              | с                            | 507                                     | CLA        | CHD-C4C-C3C            | -5.53        | 116.71      | 124.84                  |  |  |  |
| 23              | с                            | 505                                     | CLA        | O2D-CGD-CBD            | 5.52         | 121.07      | 111.27                  |  |  |  |
| 23              | A                            | 405                                     | CLA        | C4A-NA-C1A             | -5.51        | 104.23      | 106.71                  |  |  |  |
| 23              | С                            | 514                                     | CLA        | C4A-NA-C1A             | -5.51        | 104.23      | 106.71                  |  |  |  |
| 23              | С                            | 503                                     | CLA        | O2D-CGD-CBD            | 5.51         | 121.05      | 111.27                  |  |  |  |
| 23              | С                            | 504                                     | CLA        | CHD-C4C-C3C            | -5.50        | 116.75      | 124.84                  |  |  |  |
| 23              | с                            | 506                                     | CLA        | CHD-C4C-C3C            | -5.49        | 116.76      | 124.84                  |  |  |  |
| 23              | С                            | 506                                     | CLA        | C4A-NA-C1A             | -5.49        | 104.24      | 106.71                  |  |  |  |
| 23              | C                            | 506                                     | CLA        | C2C-C1C-NC             | 5.49         | 115.11      | 109.97                  |  |  |  |
| 23              | C                            | 504                                     | CLA        | C2C-C1C-NC             | 5.48         | 115.10      | 109.97                  |  |  |  |
| -               |                              |                                         |            |                        |              | 110.00      | 100.00                  |  |  |  |
| 36              | В                            | 630                                     | HTG        | C1'-S1-C1              | 5.47         | 110.32      | 100.09                  |  |  |  |
| $\frac{36}{36}$ | B<br>C                       | $\begin{array}{c} 630\\ 523\end{array}$ | HTG<br>HTG | C1'-S1-C1<br>C1'-S1-C1 | 5.47<br>5.47 | 110.32      | $\frac{100.09}{100.09}$ |  |  |  |

J f .....  $\alpha$ m tin



|    | Choin | <i>i previ</i> | Turna      | Atoma                                                                   | 7     | Observed(0) | Ideal(0) |
|----|-------|----------------|------------|-------------------------------------------------------------------------|-------|-------------|----------|
|    | Unain | res<br>519     |            |                                                                         |       | Observed(*) | 10ear(*) |
| 23 | C C   | 513            | CLA        | $\begin{array}{c} \text{CHD-C4C-C3C} \\ \text{CHD-C4C-C3C} \end{array}$ | -5.40 | 116.81      | 124.84   |
| 23 | L L   | 507<br>COF     | CLA        | $\frac{\text{CHD-C4C-C3C}}{\text{CHD-C4C-C3C}}$                         | -5.40 | 110.81      | 124.84   |
| 23 |       | 000<br>C10     | CLA<br>CLA | O2D-CGD-CBD                                                             | 5.40  | 120.97      | 111.27   |
| 23 | D     | 610            | CLA        | 02D-CGD-CBD                                                             | 5.45  | 120.95      | 111.27   |
| 23 | D     | 604            | CLA        | C4A-NA-CIA                                                              | -5.45 | 104.26      | 106.71   |
| 23 | d     | 402            | CLA        | C4A-NA-CIA                                                              | -5.43 | 104.26      | 106.71   |
| 23 | a     | 404            | CLA        | C2C-CIC-NC                                                              | 5.43  | 115.06      | 109.97   |
| 23 | b     | 603            | CLA        | C4A-NA-CIA                                                              | -5.42 | 104.27      | 106.71   |
| 23 | С     | 502            | CLA        | C2C-C1C-NC                                                              | 5.42  | 115.05      | 109.97   |
| 23 | b     | 606            | CLA        | O2D-CGD-CBD                                                             | 5.41  | 120.89      | 111.27   |
| 23 | D     | 404            | CLA        | C4A-NA-C1A                                                              | -5.41 | 104.27      | 106.71   |
| 23 | C     | 505            | CLA        | CHD-C4C-C3C                                                             | -5.41 | 116.89      | 124.84   |
| 23 | В     | 603            | CLA        | C2C-C1C-NC                                                              | 5.40  | 115.03      | 109.97   |
| 24 | D     | 402            | PHO        | C2D-C1D-ND                                                              | 5.39  | 117.93      | 109.79   |
| 24 | D     | 402            | PHO        | C3D-C2D-C1D                                                             | -5.39 | 98.02       | 105.87   |
| 23 | b     | 608            | CLA        | C4A-NA-C1A                                                              | -5.38 | 104.29      | 106.71   |
| 23 | с     | 502            | CLA        | O2D-CGD-CBD                                                             | 5.38  | 120.83      | 111.27   |
| 23 | В     | 607            | CLA        | O2D-CGD-CBD                                                             | 5.37  | 120.82      | 111.27   |
| 24 | a     | 407            | PHO        | C2D-C1D-ND                                                              | 5.37  | 117.90      | 109.79   |
| 23 | A     | 404            | CLA        | C2C-C1C-NC                                                              | 5.36  | 114.99      | 109.97   |
| 23 | b     | 613            | CLA        | C4A-NA-C1A                                                              | -5.36 | 104.30      | 106.71   |
| 23 | В     | 616            | CLA        | C2C-C1C-NC                                                              | 5.35  | 114.98      | 109.97   |
| 23 | с     | 504            | CLA        | CHD-C4C-C3C                                                             | -5.35 | 116.97      | 124.84   |
| 25 | У     | 101            | BCR        | C33-C5-C6                                                               | -5.35 | 118.52      | 124.53   |
| 23 | В     | 615            | CLA        | CHD-C4C-C3C                                                             | -5.35 | 116.98      | 124.84   |
| 23 | С     | 502            | CLA        | C4A-NA-C1A                                                              | -5.34 | 104.30      | 106.71   |
| 23 | с     | 501            | CLA        | C2C-C1C-NC                                                              | 5.31  | 114.95      | 109.97   |
| 23 | a     | 406            | CLA        | C4A-NA-C1A                                                              | -5.30 | 104.32      | 106.71   |
| 23 | с     | 509            | CLA        | C2C-C1C-NC                                                              | 5.30  | 114.94      | 109.97   |
| 26 | a     | 411            | SQD        | O6-C1-C2                                                                | 5.29  | 116.56      | 108.30   |
| 23 | В     | 616            | CLA        | C4A-NA-C1A                                                              | -5.29 | 104.33      | 106.71   |
| 23 | В     | 608            | CLA        | C2C-C1C-NC                                                              | 5.29  | 114.92      | 109.97   |
| 25 | с     | 514            | BCR        | C15-C14-C13                                                             | -5.28 | 119.77      | 127.31   |
| 23 | с     | 510            | CLA        | CHD-C4C-C3C                                                             | -5.27 | 117.09      | 124.84   |
| 23 | С     | 511            | CLA        | C4A-NA-C1A                                                              | -5.25 | 104.34      | 106.71   |
| 23 | b     | 612            | CLA        | O2D-CGD-CBD                                                             | 5.25  | 120.59      | 111.27   |
| 26 | f     | 101            | SQD        | O47-C7-C8                                                               | 5.24  | 122.78      | 111.50   |
| 23 | b     | 603            | CLA        | C2C-C1C-NC                                                              | 5.22  | 114.86      | 109.97   |
| 23 | d     | 403            | CLA        | O2D-CGD-CBD                                                             | 5.22  | 120.55      | 111.27   |
| 23 | В     | 603            | CLA        | CHD-C4C-C3C                                                             | -5.21 | 117.18      | 124.84   |
| 23 | С     | 505            | CLA        | O2D-CGD-CBD                                                             | 5.20  | 120.52      | 111.27   |
| 23 | С     | 509            | CLA        | C3C-C4C-NC                                                              | 5.20  | 116.40      | 110.57   |



| 5            | $C^{-}$ | ΓT |
|--------------|---------|----|
| $\mathbf{o}$ | U.      | LL |
|              |         |    |

| Continued from previous page                                         |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                          |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mol                                                                  | Chain                                                                                                                                                                                                                                                                                                                   | Res                                                                                                                                                                                                                      | Type                                                 | Atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $Observed(^{o})$                                                                                                                                                                                                                                                                                                                           | $Ideal(^{o})$                                                                                                                                                                                                                                                                                                                                    |
| 23                                                                   | d                                                                                                                                                                                                                                                                                                                       | 402                                                                                                                                                                                                                      | CLA                                                  | CHD-C4C-C3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -5.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 117.22                                                                                                                                                                                                                                                                                                                                     | 124.84                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | С                                                                                                                                                                                                                                                                                                                       | 508                                                                                                                                                                                                                      | CLA                                                  | C4A-NA-C1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -5.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 104.38                                                                                                                                                                                                                                                                                                                                     | 106.71                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | В                                                                                                                                                                                                                                                                                                                       | 610                                                                                                                                                                                                                      | CLA                                                  | C2C-C1C-NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114.83                                                                                                                                                                                                                                                                                                                                     | 109.97                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | С                                                                                                                                                                                                                                                                                                                       | 507                                                                                                                                                                                                                      | CLA                                                  | C2C-C1C-NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114.82                                                                                                                                                                                                                                                                                                                                     | 109.97                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | С                                                                                                                                                                                                                                                                                                                       | 513                                                                                                                                                                                                                      | CLA                                                  | O2D-CGD-CBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.46                                                                                                                                                                                                                                                                                                                                     | 111.27                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | b                                                                                                                                                                                                                                                                                                                       | 602                                                                                                                                                                                                                      | CLA                                                  | O2D-CGD-CBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.45                                                                                                                                                                                                                                                                                                                                     | 111.27                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | В                                                                                                                                                                                                                                                                                                                       | 613                                                                                                                                                                                                                      | CLA                                                  | C2C-C1C-NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114.81                                                                                                                                                                                                                                                                                                                                     | 109.97                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | D                                                                                                                                                                                                                                                                                                                       | 405                                                                                                                                                                                                                      | CLA                                                  | O2D-CGD-CBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.44                                                                                                                                                                                                                                                                                                                                     | 111.27                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | с                                                                                                                                                                                                                                                                                                                       | 505                                                                                                                                                                                                                      | CLA                                                  | C2C-C1C-NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114.81                                                                                                                                                                                                                                                                                                                                     | 109.97                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | С                                                                                                                                                                                                                                                                                                                       | 510                                                                                                                                                                                                                      | CLA                                                  | O2D-CGD-CBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.43                                                                                                                                                                                                                                                                                                                                     | 111.27                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | b                                                                                                                                                                                                                                                                                                                       | 604                                                                                                                                                                                                                      | CLA                                                  | C2C-C1C-NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114.80                                                                                                                                                                                                                                                                                                                                     | 109.97                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | с                                                                                                                                                                                                                                                                                                                       | 510                                                                                                                                                                                                                      | CLA                                                  | C2C-C1C-NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114.79                                                                                                                                                                                                                                                                                                                                     | 109.97                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | с                                                                                                                                                                                                                                                                                                                       | 501                                                                                                                                                                                                                      | CLA                                                  | CHD-C4C-C3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -5.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 117.28                                                                                                                                                                                                                                                                                                                                     | 124.84                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | с                                                                                                                                                                                                                                                                                                                       | 513                                                                                                                                                                                                                      | CLA                                                  | C2C-C1C-NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114.79                                                                                                                                                                                                                                                                                                                                     | 109.97                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | с                                                                                                                                                                                                                                                                                                                       | 509                                                                                                                                                                                                                      | CLA                                                  | C4A-NA-C1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -5.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 104.40                                                                                                                                                                                                                                                                                                                                     | 106.71                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | В                                                                                                                                                                                                                                                                                                                       | 609                                                                                                                                                                                                                      | CLA                                                  | C2C-C1C-NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114.78                                                                                                                                                                                                                                                                                                                                     | 109.97                                                                                                                                                                                                                                                                                                                                           |
| 26                                                                   | В                                                                                                                                                                                                                                                                                                                       | 621                                                                                                                                                                                                                      | SQD                                                  | O6-C1-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 116.31                                                                                                                                                                                                                                                                                                                                     | 108.30                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | с                                                                                                                                                                                                                                                                                                                       | 512                                                                                                                                                                                                                      | CLA                                                  | C2C-C1C-NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114.77                                                                                                                                                                                                                                                                                                                                     | 109.97                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | С                                                                                                                                                                                                                                                                                                                       | 508                                                                                                                                                                                                                      | CLA                                                  | C2C-C1C-NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114.77                                                                                                                                                                                                                                                                                                                                     | 109.97                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | a                                                                                                                                                                                                                                                                                                                       | 409                                                                                                                                                                                                                      | CLA                                                  | CHD-C4C-C3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -5.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 117.32                                                                                                                                                                                                                                                                                                                                     | 124.84                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | b                                                                                                                                                                                                                                                                                                                       | 610                                                                                                                                                                                                                      | CLA                                                  | C2C-C1C-NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114.76                                                                                                                                                                                                                                                                                                                                     | 109.97                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | В                                                                                                                                                                                                                                                                                                                       | 605                                                                                                                                                                                                                      | CLA                                                  | C2C-C1C-NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114.75                                                                                                                                                                                                                                                                                                                                     | 109.97                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | В                                                                                                                                                                                                                                                                                                                       | 612                                                                                                                                                                                                                      | CLA                                                  | C2C-C1C-NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114.75                                                                                                                                                                                                                                                                                                                                     | 109.97                                                                                                                                                                                                                                                                                                                                           |
| 25                                                                   | b                                                                                                                                                                                                                                                                                                                       | 619                                                                                                                                                                                                                      | BCR                                                  | C3-C4-C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -5.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 104.97                                                                                                                                                                                                                                                                                                                                     | 114.08                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | С                                                                                                                                                                                                                                                                                                                       | 503                                                                                                                                                                                                                      | CLA                                                  | C2C-C1C-NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114.75                                                                                                                                                                                                                                                                                                                                     | 109.97                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | A                                                                                                                                                                                                                                                                                                                       | 407                                                                                                                                                                                                                      | CLA                                                  | C4A-NA-C1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -5.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 104.42                                                                                                                                                                                                                                                                                                                                     | 106.71                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | b                                                                                                                                                                                                                                                                                                                       | 615                                                                                                                                                                                                                      | CLA                                                  | CHD-C4C-C3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -5.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 117.37                                                                                                                                                                                                                                                                                                                                     | 124.84                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | с                                                                                                                                                                                                                                                                                                                       | 503                                                                                                                                                                                                                      | CLA                                                  | CHD-C4C-C3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -5.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 117.38                                                                                                                                                                                                                                                                                                                                     | 124.84                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | b                                                                                                                                                                                                                                                                                                                       | 609                                                                                                                                                                                                                      | CLA                                                  | O2D-CGD-CBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.28                                                                                                                                                                                                                                                                                                                                     | 111.27                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | A                                                                                                                                                                                                                                                                                                                       | 405                                                                                                                                                                                                                      | CLA                                                  | CHD-C4C-C3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -5.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 117.40                                                                                                                                                                                                                                                                                                                                     | 124.84                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | b                                                                                                                                                                                                                                                                                                                       | 611                                                                                                                                                                                                                      | CLA                                                  | C4A-NA-C1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -5.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 104.44                                                                                                                                                                                                                                                                                                                                     | 106.71                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | b                                                                                                                                                                                                                                                                                                                       | 602                                                                                                                                                                                                                      | CLA                                                  | C2C-C1C-NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114.70                                                                                                                                                                                                                                                                                                                                     | 109.97                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | b                                                                                                                                                                                                                                                                                                                       | 601                                                                                                                                                                                                                      | CLA                                                  | C2C-C1C-NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114.69                                                                                                                                                                                                                                                                                                                                     | 109.97                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | b                                                                                                                                                                                                                                                                                                                       | 613                                                                                                                                                                                                                      | CLA                                                  | C2C-C1C-NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114.68                                                                                                                                                                                                                                                                                                                                     | 109.97                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | С                                                                                                                                                                                                                                                                                                                       | 510                                                                                                                                                                                                                      | CLA                                                  | C4A-NA-C1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -5.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 104.45                                                                                                                                                                                                                                                                                                                                     | 106.71                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | a                                                                                                                                                                                                                                                                                                                       | 405                                                                                                                                                                                                                      | CLA                                                  | C1C-C2C-C3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -5.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 101.68                                                                                                                                                                                                                                                                                                                                     | 106.96                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | c                                                                                                                                                                                                                                                                                                                       | 513                                                                                                                                                                                                                      | CLA                                                  | O2D-CGD-CBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.18                                                                                                                                                                                                                                                                                                                                     | 111.27                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | B                                                                                                                                                                                                                                                                                                                       | 607                                                                                                                                                                                                                      | CLA                                                  | C2C-C1C-NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114.67                                                                                                                                                                                                                                                                                                                                     | 109.97                                                                                                                                                                                                                                                                                                                                           |
| 26                                                                   | L                                                                                                                                                                                                                                                                                                                       | 102                                                                                                                                                                                                                      | SQD                                                  | 047-C7-C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122.29                                                                                                                                                                                                                                                                                                                                     | 111.50                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | b                                                                                                                                                                                                                                                                                                                       | 606                                                                                                                                                                                                                      | CLA                                                  | C2C-C1C-NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114.65                                                                                                                                                                                                                                                                                                                                     | 109.97                                                                                                                                                                                                                                                                                                                                           |
| 29                                                                   | d                                                                                                                                                                                                                                                                                                                       | 405                                                                                                                                                                                                                      | PL9                                                  | C42-C43-C44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -4.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 115.66                                                                                                                                                                                                                                                                                                                                     | 127.66                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                   | b                                                                                                                                                                                                                                                                                                                       | 612                                                                                                                                                                                                                      | CLA                                                  | C2C-C1C-NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114 64                                                                                                                                                                                                                                                                                                                                     | 109.97                                                                                                                                                                                                                                                                                                                                           |
| $\begin{array}{c} 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\$ | B         B         C         a         b         B         B         B         C         A         b         C         A         b         C         b         C         A         b         C         A         b         C         B         C         a         c         B         L         b         d         b | $\begin{array}{c} 509\\ 609\\ 621\\ 512\\ 508\\ 409\\ 610\\ 605\\ 612\\ 619\\ 503\\ 407\\ 615\\ 503\\ 407\\ 615\\ 503\\ 609\\ 405\\ 611\\ 602\\ 601\\ 613\\ 510\\ 405\\ 513\\ 607\\ 102\\ 606\\ 405\\ 612\\ \end{array}$ | CLA<br>CLA<br>CLA<br>CLA<br>CLA<br>CLA<br>CLA<br>CLA | C2C-C1C-NC           O6-C1-C2           C2C-C1C-NC           C4A-NA-C1A           CHD-C4C-C3C           O2D-CGD-CBD           CHD-C4C-C3C           C4A-NA-C1A           C2C-C1C-NC           C2C-C1C-NC           C2C-C1C-NC           C2C-C1C-NC           C4A-NA-C1A           C1C-C2C-C3C           O2D-CGD-CBD           C2C-C1C-NC           C4A-NA-C1A           C1C-C2C-C3C           O2D-CGD-CBD           C2C-C1C-NC           O47-C7-C8           C2C-C1C-NC           O47-C7-C8           C2C-C1C-NC           C42-C43-C44           C2C-C1C-NC | $\begin{array}{r} -5.13\\ \overline{5.13}\\ \overline{5.13}\\ \overline{5.13}\\ \overline{5.13}\\ \overline{5.13}\\ \overline{5.12}\\ -5.12\\ \overline{5.11}\\ \overline{5.11}\\ \overline{5.11}\\ \overline{5.11}\\ \overline{5.11}\\ \overline{5.11}\\ \overline{5.11}\\ \overline{5.11}\\ \overline{5.11}\\ \overline{5.01}\\ \overline{5.04}\\ \overline{5.02}\\ -\overline{5.02}\\ \overline{5.01}\\ \overline{5.01}\\ \overline{5.01}\\ \overline{5.01}\\ \overline{4.99}\\ -4.98\\ \overline{4.98}\\ \overline{4.98}\end{array}$ | $\begin{array}{c} 114.78 \\ 114.78 \\ 116.31 \\ 114.77 \\ 114.77 \\ 117.32 \\ 114.76 \\ 114.75 \\ 104.97 \\ 114.75 \\ 104.97 \\ 114.75 \\ 104.42 \\ 117.37 \\ 117.38 \\ 120.28 \\ 117.30 \\ 104.44 \\ 114.70 \\ 104.44 \\ 114.70 \\ 114.68 \\ 104.45 \\ 101.68 \\ 120.18 \\ 114.67 \\ 122.29 \\ 114.65 \\ 115.66 \\ 114.64 \\ \end{array}$ | $\begin{array}{r} 100.11\\ 109.97\\ 108.30\\ 109.97\\ 109.97\\ 109.97\\ 124.84\\ 109.97\\ 109.97\\ 109.97\\ 109.97\\ 109.97\\ 106.71\\ 124.84\\ 124.84\\ 124.84\\ 111.27\\ 124.84\\ 106.71\\ 109.97\\ 109.97\\ 109.97\\ 109.97\\ 109.97\\ 109.97\\ 109.97\\ 109.97\\ 109.97\\ 111.50\\ 109.97\\ 111.50\\ 109.97\\ 127.66\\ 109.97\\ \end{array}$ |

 $d f_{0}$  $\alpha$ ntin



| 5            | $C^{-}$ | ΓT |
|--------------|---------|----|
| $\mathbf{o}$ | U.      | LL |
|              |         |    |

| Continued from previous page |       |     |      |             |       |                  |          |
|------------------------------|-------|-----|------|-------------|-------|------------------|----------|
| Mol                          | Chain | Res | Type | Atoms       | Z     | $Observed(^{o})$ | Ideal(°) |
| 25                           | В     | 618 | BCR  | C33-C5-C6   | -4.98 | 118.94           | 124.53   |
| 23                           | В     | 602 | CLA  | C2C-C1C-NC  | 4.96  | 114.61           | 109.97   |
| 23                           | с     | 512 | CLA  | C4A-NA-C1A  | -4.95 | 104.48           | 106.71   |
| 23                           | С     | 512 | CLA  | C4A-NA-C1A  | -4.94 | 104.48           | 106.71   |
| 23                           | с     | 511 | CLA  | C2C-C1C-NC  | 4.94  | 114.60           | 109.97   |
| 24                           | a     | 408 | PHO  | O2D-CGD-CBD | 4.94  | 120.04           | 111.27   |
| 23                           | с     | 509 | CLA  | O2D-CGD-CBD | 4.93  | 120.03           | 111.27   |
| 23                           | a     | 409 | CLA  | C2C-C1C-NC  | 4.93  | 114.59           | 109.97   |
| 23                           | а     | 409 | CLA  | O2D-CGD-CBD | 4.93  | 120.02           | 111.27   |
| 23                           | В     | 605 | CLA  | C3C-C4C-NC  | 4.92  | 116.09           | 110.57   |
| 23                           | В     | 606 | CLA  | C4A-NA-C1A  | -4.92 | 104.49           | 106.71   |
| 34                           | С     | 501 | LMG  | O7-C10-C11  | 4.92  | 122.11           | 111.50   |
| 23                           | В     | 604 | CLA  | C2C-C1C-NC  | 4.92  | 114.58           | 109.97   |
| 23                           | В     | 613 | CLA  | C3C-C4C-NC  | 4.91  | 116.07           | 110.57   |
| 23                           | С     | 503 | CLA  | C4A-NA-C1A  | -4.90 | 104.50           | 106.71   |
| 26                           | А     | 409 | SQD  | O47-C7-C8   | 4.90  | 122.06           | 111.50   |
| 24                           | a     | 408 | PHO  | C3D-C2D-C1D | -4.89 | 98.74            | 105.87   |
| 24                           | a     | 408 | PHO  | C1-C2-C3    | -4.89 | 117.59           | 126.04   |
| 23                           | a     | 406 | CLA  | O2D-CGD-CBD | 4.88  | 119.94           | 111.27   |
| 23                           | с     | 505 | CLA  | C3C-C4C-NC  | 4.87  | 116.04           | 110.57   |
| 23                           | С     | 512 | CLA  | C2C-C1C-NC  | 4.87  | 114.53           | 109.97   |
| 23                           | b     | 608 | CLA  | C2C-C1C-NC  | 4.86  | 114.52           | 109.97   |
| 23                           | с     | 504 | CLA  | O2D-CGD-CBD | 4.85  | 119.89           | 111.27   |
| 23                           | А     | 407 | CLA  | C2C-C1C-NC  | 4.84  | 114.51           | 109.97   |
| 24                           | А     | 406 | PHO  | C2D-C1D-ND  | 4.84  | 117.09           | 109.79   |
| 23                           | А     | 405 | CLA  | O2D-CGD-CBD | 4.83  | 119.86           | 111.27   |
| 23                           | b     | 607 | CLA  | C3C-C4C-NC  | 4.83  | 115.99           | 110.57   |
| 23                           | А     | 405 | CLA  | C2C-C1C-NC  | 4.81  | 114.48           | 109.97   |
| 23                           | В     | 612 | CLA  | O2D-CGD-CBD | 4.80  | 119.80           | 111.27   |
| 25                           | Т     | 101 | BCR  | С7-С8-С9    | -4.80 | 118.98           | 126.23   |
| 23                           | b     | 607 | CLA  | O2D-CGD-CBD | 4.79  | 119.78           | 111.27   |
| 23                           | В     | 606 | CLA  | O2D-CGD-CBD | 4.79  | 119.78           | 111.27   |
| 23                           | a     | 406 | CLA  | C2C-C1C-NC  | 4.78  | 114.45           | 109.97   |
| 23                           | В     | 610 | CLA  | C3C-C4C-NC  | 4.77  | 115.92           | 110.57   |
| 23                           | b     | 614 | CLA  | C2C-C1C-NC  | 4.75  | 114.42           | 109.97   |
| 23                           | В     | 606 | CLA  | C2C-C1C-NC  | 4.75  | 114.42           | 109.97   |
| 23                           | В     | 615 | CLA  | C4A-NA-C1A  | -4.75 | 104.57           | 106.71   |
| 23                           | С     | 511 | CLA  | CHD-C4C-C3C | -4.74 | 117.88           | 124.84   |
| 23                           | с     | 508 | CLA  | C4A-NA-C1A  | -4.73 | 104.58           | 106.71   |
| 24                           | a     | 408 | PHO  | C2D-C1D-ND  | 4.71  | 116.90           | 109.79   |
| 23                           | D     | 401 | CLA  | C4A-NA-C1A  | -4.71 | 104.59           | 106.71   |
| 23                           | В     | 613 | CLA  | C4A-NA-C1A  | -4.70 | 104.59           | 106.71   |

 $d f_{a}$ .....  $\alpha$ m tin



| Mol             | Chain | $\mathbf{Res}$ | Tvpe | Atoms       | Z     | Observed( <sup>o</sup> ) | Ideal(°) |
|-----------------|-------|----------------|------|-------------|-------|--------------------------|----------|
| 23              | B     | 608            | CLA  | O2D-CGD-CBD | 4 70  | 119.63                   | 111 27   |
| $\frac{20}{25}$ | c c   | 515            | BCR  | C7-C8-C9    | -4.70 | 119.14                   | 126.23   |
| $\frac{-3}{24}$ | D     | 402            | PHO  | O2D-CGD-CBD | 4.68  | 119.59                   | 111.27   |
| 36              | с     | 522            | HTG  | C1'-S1-C1   | 4.68  | 108.85                   | 100.09   |
| 36              | b     | 622            | HTG  | C1'-S1-C1   | 4.67  | 108.83                   | 100.09   |
| 26              | L     | 102            | SQD  | O6-C1-C2    | 4.67  | 115.59                   | 108.30   |
| 23              | В     | 611            | CLA  | C3C-C4C-NC  | 4.67  | 115.81                   | 110.57   |
| 23              | с     | 507            | CLA  | C2C-C1C-NC  | 4.67  | 114.34                   | 109.97   |
| 25              | Y     | 101            | BCR  | C16-C17-C18 | -4.66 | 120.66                   | 127.31   |
| 23              | В     | 611            | CLA  | C2C-C1C-NC  | 4.66  | 114.33                   | 109.97   |
| 23              | b     | 608            | CLA  | O2D-CGD-CBD | 4.64  | 119.52                   | 111.27   |
| 23              | В     | 609            | CLA  | C3C-C4C-NC  | 4.64  | 115.78                   | 110.57   |
| 36              | h     | 101            | HTG  | C1'-S1-C1   | 4.64  | 108.76                   | 100.09   |
| 23              | с     | 508            | CLA  | C3C-C4C-NC  | 4.63  | 115.76                   | 110.57   |
| 25              | С     | 515            | BCR  | C15-C14-C13 | -4.61 | 120.73                   | 127.31   |
| 23              | D     | 404            | CLA  | C3C-C4C-NC  | 4.61  | 115.74                   | 110.57   |
| 25              | t     | 101            | BCR  | C33-C5-C6   | -4.60 | 119.36                   | 124.53   |
| 23              | d     | 402            | CLA  | O2D-CGD-CBD | 4.59  | 119.42                   | 111.27   |
| 23              | С     | 502            | CLA  | C1D-CHD-C4C | -4.59 | 116.51                   | 122.56   |
| 23              | b     | 613            | CLA  | C3C-C4C-NC  | 4.58  | 115.71                   | 110.57   |
| 23              | С     | 507            | CLA  | O2D-CGD-CBD | 4.58  | 119.41                   | 111.27   |
| 23              | b     | 609            | CLA  | C2C-C1C-NC  | 4.58  | 114.26                   | 109.97   |
| 37              | С     | 517            | DGD  | O2G-C1B-C2B | 4.58  | 121.37                   | 111.50   |
| 23              | С     | 514            | CLA  | C2C-C1C-NC  | 4.57  | 114.25                   | 109.97   |
| 23              | С     | 510            | CLA  | C1-C2-C3    | -4.56 | 118.15                   | 126.04   |
| 23              | b     | 611            | CLA  | O2D-CGD-O1D | -4.56 | 114.93                   | 123.84   |
| 23              | С     | 511            | CLA  | C1-C2-C3    | -4.55 | 118.17                   | 126.04   |
| 23              | С     | 510            | CLA  | C2C-C1C-NC  | 4.54  | 114.23                   | 109.97   |
| 23              | С     | 505            | CLA  | C1C-C2C-C3C | -4.54 | 102.18                   | 106.96   |
| 23              | C     | 513            | CLA  | C2C-C1C-NC  | 4.54  | 114.22                   | 109.97   |
| 23              | D     | 405            | CLA  | C4A-NA-C1A  | -4.53 | 104.67                   | 106.71   |
| 23              | В     | 605            | CLA  | C1-C2-C3    | -4.53 | 118.22                   | 126.04   |
| 23              | D     | 404            | CLA  | O2D-CGD-CBD | 4.52  | 119.30                   | 111.27   |
| 23              | В     | 614            | CLA  | C4A-NA-C1A  | -4.52 | 104.68                   | 106.71   |
| 26              | a     | 411            | SQD  | 047-C7-C8   | 4.51  | 121.23                   | 111.50   |
| 23              | В     | 617            | CLA  | C2C-C1C-NC  | 4.50  | 114.19                   | 109.97   |
| 23              | D     | 401            | CLA  | O2D-CGD-CBD | 4.50  | 119.26                   | 111.27   |
| 23              | с     | 509            | CLA  | C1-C2-C3    | -4.50 | 118.27                   | 126.04   |
| 23              | В     | 612            | CLA  | C4A-NA-C1A  | -4.50 | 104.69                   | 106.71   |
| 23              | b     | 604            | CLA  | C3C-C4C-NC  | 4.48  | 115.59                   | 110.57   |
| 23              | b     | 603            | CLA  | C1D-CHD-C4C | -4.48 | 116.65                   | 122.56   |
| 23              | В     | 617            | CLA  | C3C-C4C-NC  | 4.48  | 115.59                   | 110.57   |

Contin  $d f_{2}$ onic



| Continued from previous page |       |     |      |             |       |                  |          |
|------------------------------|-------|-----|------|-------------|-------|------------------|----------|
| Mol                          | Chain | Res | Type | Atoms       | Z     | $Observed(^{o})$ | Ideal(°) |
| 23                           | a     | 404 | CLA  | C1C-C2C-C3C | -4.47 | 102.26           | 106.96   |
| 23                           | С     | 506 | CLA  | C3C-C4C-NC  | 4.46  | 115.57           | 110.57   |
| 23                           | D     | 405 | CLA  | C3C-C4C-NC  | 4.46  | 115.57           | 110.57   |
| 23                           | В     | 609 | CLA  | O2D-CGD-CBD | 4.45  | 119.18           | 111.27   |
| 23                           | d     | 402 | CLA  | C1C-C2C-C3C | -4.45 | 102.28           | 106.96   |
| 25                           | с     | 514 | BCR  | C20-C21-C22 | -4.45 | 120.96           | 127.31   |
| 23                           | В     | 612 | CLA  | C3C-C4C-NC  | 4.43  | 115.54           | 110.57   |
| 25                           | Т     | 101 | BCR  | C33-C5-C6   | -4.43 | 119.56           | 124.53   |
| 29                           | d     | 405 | PL9  | C10-C9-C11  | 4.42  | 122.71           | 115.27   |
| 26                           | В     | 621 | SQD  | O47-C7-C8   | 4.42  | 121.03           | 111.50   |
| 23                           | В     | 606 | CLA  | C3C-C4C-NC  | 4.41  | 115.52           | 110.57   |
| 36                           | b     | 625 | HTG  | C1'-S1-C1   | 4.41  | 108.33           | 100.09   |
| 23                           | с     | 505 | CLA  | C4A-NA-C1A  | -4.39 | 104.73           | 106.71   |
| 25                           | b     | 617 | BCR  | C7-C8-C9    | -4.39 | 119.60           | 126.23   |
| 23                           | С     | 510 | CLA  | C3C-C4C-NC  | 4.39  | 115.49           | 110.57   |
| 26                           | f     | 101 | SQD  | O7-S-C6     | 4.39  | 112.15           | 106.94   |
| 23                           | С     | 508 | CLA  | C3C-C4C-NC  | 4.38  | 115.49           | 110.57   |
| 23                           | В     | 616 | CLA  | C1D-CHD-C4C | -4.38 | 116.78           | 122.56   |
| 38                           | Е     | 103 | HEM  | CBD-CAD-C3D | -4.38 | 104.42           | 112.48   |
| 23                           | с     | 502 | CLA  | C4A-NA-C1A  | -4.36 | 104.75           | 106.71   |
| 23                           | b     | 614 | CLA  | C4A-NA-C1A  | -4.36 | 104.75           | 106.71   |
| 23                           | b     | 615 | CLA  | O2D-CGD-CBD | 4.35  | 119.00           | 111.27   |
| 29                           | a     | 415 | PL9  | C7-C3-C2    | -4.34 | 117.60           | 123.30   |
| 23                           | с     | 511 | CLA  | O2D-CGD-CBD | 4.33  | 118.97           | 111.27   |
| 25                           | d     | 404 | BCR  | C7-C8-C9    | -4.33 | 119.70           | 126.23   |
| 23                           | с     | 502 | CLA  | C1C-C2C-C3C | -4.33 | 102.41           | 106.96   |
| 23                           | b     | 616 | CLA  | C1D-CHD-C4C | -4.32 | 116.86           | 122.56   |
| 23                           | В     | 606 | CLA  | C1D-CHD-C4C | -4.31 | 116.86           | 122.56   |
| 29                           | А     | 413 | PL9  | C7-C3-C2    | -4.31 | 117.63           | 123.30   |
| 26                           | f     | 101 | SQD  | C1-O5-C5    | 4.30  | 122.13           | 113.69   |
| 25                           | В     | 619 | BCR  | C15-C14-C13 | -4.30 | 121.17           | 127.31   |
| 25                           | t     | 101 | BCR  | C15-C16-C17 | -4.29 | 114.69           | 123.47   |
| 23                           | a     | 404 | CLA  | C1D-CHD-C4C | -4.28 | 116.90           | 122.56   |
| 23                           | d     | 403 | CLA  | C2C-C1C-NC  | 4.28  | 113.98           | 109.97   |
| 25                           | В     | 618 | BCR  | C7-C8-C9    | -4.27 | 119.78           | 126.23   |
| 31                           | Е     | 101 | LHG  | O7-C7-C8    | 4.27  | 120.70           | 111.50   |
| 23                           | b     | 607 | CLA  | C4A-NA-C1A  | -4.27 | 104.79           | 106.71   |
| 26                           | А     | 411 | SQD  | O8-S-C6     | 4.26  | 112.54           | 105.74   |
| 23                           | b     | 611 | CLA  | C3C-C4C-NC  | 4.26  | 115.35           | 110.57   |
| 23                           | С     | 514 | CLA  | O2D-CGD-CBD | 4.26  | 118.84           | 111.27   |
| 23                           | С     | 514 | CLA  | C3C-C4C-NC  | 4.26  | 115.34           | 110.57   |
| 23                           | b     | 606 | CLA  | O2D-CGD-O1D | -4.25 | 115.52           | 123.84   |

 $\alpha$  $d f_{0}$ m tim



|                                                                                       | - / >   / >                                               |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Mol Chain Res Type Atoms Z Observe                                                    | $\operatorname{Pd}(^{o}) \mid \operatorname{Ideal}(^{o})$ |
| 26 A 409 SQD C1-C2-C3 -4.25 101.1                                                     | 5 110.00                                                  |
| 23 b 611 CLA C3B-C4B-NB 4.25 114.7                                                    | 0 109.21                                                  |
| 23         D         404         CLA         C1C-C2C-C3C         -4.25         102.49 | 9 106.96                                                  |
| 23         D         401         CLA         C2C-C1C-NC         4.24         113.94   | 4 109.97                                                  |
| 23 b 616 CLA C3C-C4C-NC 4.24 115.3                                                    | 2 110.57                                                  |
| 23         B         602         CLA         C4A-NA-C1A         -4.22         104.8   | 1 106.71                                                  |
| 23 c 506 CLA C4A-NA-C1A -4.22 104.8                                                   | 1 106.71                                                  |
| 26         A         409         SQD         C1-O5-C5         -4.22         105.4     | 1 113.69                                                  |
| 23 B 616 CLA O2D-CGD-CBD 4.22 118.70                                                  | 6 111.27                                                  |
| 23 c 508 CLA C1C-C2C-C3C -4.21 102.53                                                 | 3 106.96                                                  |
| 23 b 611 CLA C1C-C2C-C3C -4.21 102.53                                                 | 3 106.96                                                  |
| 34         J         101         LMG         O7-C10-C11         4.21         120.53   | 8 111.50                                                  |
| 34         Z         101         LMG         O7-C10-C11         4.21         120.5    | 7 111.50                                                  |
| 23 B 614 CLA C1C-C2C-C3C -4.20 102.54                                                 | 4 106.96                                                  |
| 23 d 402 CLA C3C-C4C-NC 4.20 115.24                                                   | 8 110.57                                                  |
| 23 B 605 CLA C4A-NA-C1A -4.20 104.8                                                   | 2 106.71                                                  |
| 23 c 509 CLA C3C-C4C-NC 4.18 115.20                                                   | 6 110.57                                                  |
| 23 B 612 CLA C1C-C2C-C3C -4.17 102.54                                                 | 8 106.96                                                  |
| 37 c 516 DGD O2G-C1B-C2B 4.16 120.4                                                   | 7 111.50                                                  |
| 36 b 626 HTG C1'-S1-C1 4.16 107.8                                                     | 7 100.09                                                  |
| 31 D 409 LHG 07-C7-C8 4.15 120.4                                                      | 5 111.50                                                  |
| 23 b 614 CLA C3C-C4C-NC 4.15 115.2                                                    | 2 110.57                                                  |
| 24 A 406 PHO CAC-C3C-C4C 4.14 129.74                                                  | 4 125.22                                                  |
| 23 C 505 CLA C3C-C4C-NC 4.13 115.2                                                    | 1 110.57                                                  |
| 23 B 609 CLA C1D-CHD-C4C -4.13 117.10                                                 | 0 122.56                                                  |
| 23 D 401 CLA C1C-C2C-C3C -4.13 102.6                                                  | 2 106.96                                                  |
| 23 a 405 CLA C3B-C4B-NB 4.13 114.5                                                    | 5 109.21                                                  |
| 29 a 415 PL9 C32-C33-C34 -4.12 117.74                                                 | 3 127.66                                                  |
| 25 T 101 BCR C11-C10-C9 -4.11 121.44                                                  | 4 127.31                                                  |
| 23 C 502 CLA O2D-CGD-O1D -4.10 115.8                                                  | 1 123.84                                                  |
| 23 c 512 CLA C3C-C4C-NC 4.10 115.1                                                    | 7 110.57                                                  |
| 23 A 407 CLA C3C-C4C-NC 4.10 115.1                                                    | 7 110.57                                                  |
| 23 B 608 CLA C1C-C2C-C3C -4.10 102.6                                                  | 5 106.96                                                  |
| 36 B 629 HTG C1'-S1-C1 4.09 107.74                                                    | 4 100.09                                                  |
| 23 C 502 CLA C3C-C4C-NC 4.09 115.14                                                   | 6 110.57                                                  |
| 23 B 610 CLA O2D-CGD-CBD 4.09 118.55                                                  | 3 111.27                                                  |
| 23 C 513 CLA C3C-C4C-NC 4.09 115.14                                                   | 6 110.57                                                  |
| 25 b 619 BCR C7-C8-C9 -4.08 120.0                                                     | 7 126.23                                                  |
| 23 B 607 CLA C3C-C4C-NC 4.08 115.1                                                    | 5 110.57                                                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                 | 4 110.57                                                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                 | $\frac{10.57}{3}$                                         |
| 23         B         615         CLA         C1C-C2C-C3C         -4.07         102.65 | 8 106.96                                                  |

 $\alpha$ .1 L.



|     | nuea fron | <u>n previ</u> | ous page |             |       |                  |               |
|-----|-----------|----------------|----------|-------------|-------|------------------|---------------|
| Mol | Chain     | Res            | Type     | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
| 23  | D         | 405            | CLA      | C2C-C1C-NC  | 4.06  | 113.77           | 109.97        |
| 23  | С         | 505            | CLA      | C3B-C4B-NB  | 4.06  | 114.45           | 109.21        |
| 26  | D         | 413            | SQD      | O6-C1-C2    | 4.05  | 114.63           | 108.30        |
| 23  | В         | 617            | CLA      | C1D-CHD-C4C | -4.04 | 117.22           | 122.56        |
| 23  | b         | 605            | CLA      | C4A-NA-C1A  | -4.04 | 104.89           | 106.71        |
| 24  | D         | 402            | PHO      | C1-C2-C3    | -4.03 | 119.06           | 126.04        |
| 23  | В         | 608            | CLA      | C3C-C4C-NC  | 4.03  | 115.09           | 110.57        |
| 23  | b         | 610            | CLA      | C3C-C4C-NC  | 4.02  | 115.08           | 110.57        |
| 23  | В         | 613            | CLA      | C1-C2-C3    | -4.00 | 119.12           | 126.04        |
| 34  | с         | 519            | LMG      | O7-C10-C11  | 4.00  | 120.12           | 111.50        |
| 23  | a         | 405            | CLA      | O2D-CGD-CBD | 4.00  | 118.38           | 111.27        |
| 23  | С         | 505            | CLA      | C1D-CHD-C4C | -4.00 | 117.28           | 122.56        |
| 23  | С         | 512            | CLA      | O2D-CGD-CBD | 3.99  | 118.37           | 111.27        |
| 23  | d         | 403            | CLA      | O2D-CGD-O1D | -3.99 | 116.03           | 123.84        |
| 23  | А         | 404            | CLA      | O2A-CGA-CBA | 3.99  | 124.43           | 111.91        |
| 23  | D         | 404            | CLA      | C1-C2-C3    | -3.99 | 119.15           | 126.04        |
| 23  | с         | 506            | CLA      | O2D-CGD-CBD | 3.99  | 118.35           | 111.27        |
| 23  | с         | 511            | CLA      | C3C-C4C-NC  | 3.98  | 115.04           | 110.57        |
| 23  | с         | 503            | CLA      | C1D-CHD-C4C | -3.98 | 117.31           | 122.56        |
| 23  | b         | 603            | CLA      | C1C-C2C-C3C | -3.97 | 102.78           | 106.96        |
| 23  | A         | 404            | CLA      | C1D-CHD-C4C | -3.97 | 117.32           | 122.56        |
| 23  | b         | 615            | CLA      | C1C-C2C-C3C | -3.97 | 102.78           | 106.96        |
| 23  | с         | 504            | CLA      | C3C-C4C-NC  | 3.97  | 115.02           | 110.57        |
| 23  | с         | 507            | CLA      | C3C-C4C-NC  | 3.96  | 115.02           | 110.57        |
| 23  | b         | 606            | CLA      | C3C-C4C-NC  | 3.96  | 115.01           | 110.57        |
| 23  | d         | 403            | CLA      | C3C-C4C-NC  | 3.96  | 115.01           | 110.57        |
| 23  | С         | 512            | CLA      | CAC-C3C-C4C | 3.96  | 129.94           | 124.81        |
| 23  | с         | 510            | CLA      | O2D-CGD-CBD | 3.95  | 118.29           | 111.27        |
| 23  | b         | 606            | CLA      | C1D-CHD-C4C | -3.95 | 117.34           | 122.56        |
| 23  | С         | 511            | CLA      | C3B-C4B-NB  | 3.95  | 114.32           | 109.21        |
| 23  | С         | 504            | CLA      | O2D-CGD-CBD | 3.95  | 118.29           | 111.27        |
| 24  | a         | 407            | PHO      | C4C-C3C-C2C | -3.94 | 102.42           | 106.78        |
| 23  | С         | 502            | CLA      | C1C-C2C-C3C | -3.94 | 102.81           | 106.96        |
| 25  | b         | 619            | BCR      | C15-C14-C13 | -3.94 | 121.69           | 127.31        |
| 23  | b         | 607            | CLA      | C3B-C4B-NB  | 3.94  | 114.30           | 109.21        |
| 23  | с         | 511            | CLA      | C1-C2-C3    | -3.93 | 119.24           | 126.04        |
| 34  | с         | 520            | LMG      | O6-C5-C4    | 3.93  | 116.84           | 109.69        |
| 25  | C         | 515            | BCR      | C16-C17-C18 | -3.93 | 121.70           | 127.31        |
| 34  | C         | 521            | LMG      | 07-C10-C11  | 3.93  | 119.98           | 111.50        |
| 23  | C         | 509            | CLA      | C4C-C3C-C2C | -3.93 | 101.17           | 106.90        |
| 23  | Ā         | 405            | CLA      | C1C-C2C-C3C | -3.93 | 102.83           | 106.96        |
| 23  | C         | 503            | CLA      | C3C-C4C-NC  | 3.93  | 114.97           | 110.57        |



| 5G | ΤI |
|----|----|
| 90 | ΤT |

| Mal             | nucu 11011 | <b>Previ</b> | Tuno       | Atoms                                                     | 7     | Observed <sup>(0)</sup> | Ideal(0) |
|-----------------|------------|--------------|------------|-----------------------------------------------------------|-------|-------------------------|----------|
| 10101           |            | 1105<br>E 19 | туре       |                                                           | 2.00  | 117.20                  | 100 FC   |
| 25<br>21        |            | 013<br>101   |            | 070702                                                    | -3.92 | 110.05                  |          |
| <u>31</u><br>02 |            | 101          |            | $\begin{array}{c} 01-01-08 \\ 020,040,000 \\ \end{array}$ | 3.92  | 119.90                  | 111.00   |
| <br>            | D<br>c     | 406          |            | CID CUD CAC                                               | 3.92  | 114.97                  | 110.07   |
| 23              | a<br>D     | 400          | CLA<br>CLA | CID-CHD-C4C                                               | -3.92 | 117.39                  | 122.30   |
| 23              | B          | 616          | ULA<br>LUC | $\begin{array}{c} 010-020-030 \\ \hline \end{array}$      | -3.91 | 102.84                  | 100.90   |
| 31              | b          | 630          | LHG        | 07-07-08                                                  | 3.91  | 119.92                  | 111.50   |
| 23              | С          | 504          | CLA        | C3B-C4B-NB                                                | 3.91  | 114.26                  | 109.21   |
| 25              | d          | 404          | BCR        | C38-C26-C25                                               | -3.90 | 120.14                  | 124.53   |
| 23              | C          | 509          | CLA        | C3B-C4B-NB                                                | 3.90  | 114.26                  | 109.21   |
| 23              | C          | 512          | CLA        | C3C-C4C-NC                                                | 3.90  | 114.95                  | 110.57   |
| 23              | С          | 506          | CLA        | C3C-C4C-NC                                                | 3.90  | 114.95                  | 110.57   |
| 25              | С          | 514          | BCR        | C16-C17-C18                                               | -3.90 | 121.74                  | 127.31   |
| 23              | с          | 513          | CLA        | C3C-C4C-NC                                                | 3.90  | 114.94                  | 110.57   |
| 26              | В          | 621          | SQD        | 07-S-C6                                                   | 3.90  | 111.57                  | 106.94   |
| 23              | b          | 602          | CLA        | C3C-C4C-NC                                                | 3.89  | 114.94                  | 110.57   |
| 25              | k          | 101          | BCR        | C11-C10-C9                                                | -3.89 | 121.75                  | 127.31   |
| 23              | b          | 605          | CLA        | C1D-CHD-C4C                                               | -3.89 | 117.42                  | 122.56   |
| 23              | В          | 604          | CLA        | C1D-CHD-C4C                                               | -3.89 | 117.43                  | 122.56   |
| 29              | D          | 407          | PL9        | C42-C43-C44                                               | -3.89 | 118.30                  | 127.66   |
| 23              | b          | 609          | CLA        | C1-C2-C3                                                  | -3.88 | 119.33                  | 126.04   |
| 25              | k          | 101          | BCR        | C24-C23-C22                                               | -3.88 | 120.37                  | 126.23   |
| 23              | А          | 407          | CLA        | O2D-CGD-CBD                                               | 3.88  | 118.16                  | 111.27   |
| 29              | a          | 415          | PL9        | C27-C28-C29                                               | -3.88 | 118.32                  | 127.66   |
| 23              | b          | 605          | CLA        | C3C-C4C-NC                                                | 3.88  | 114.92                  | 110.57   |
| 23              | с          | 503          | CLA        | C3C-C4C-NC                                                | 3.88  | 114.92                  | 110.57   |
| 23              | В          | 602          | CLA        | C3C-C4C-NC                                                | 3.87  | 114.92                  | 110.57   |
| 23              | с          | 510          | CLA        | C1C-C2C-C3C                                               | -3.87 | 102.89                  | 106.96   |
| 23              | D          | 405          | CLA        | C1D-CHD-C4C                                               | -3.87 | 117.46                  | 122.56   |
| 25              | С          | 527          | BCR        | C7-C8-C9                                                  | -3.86 | 120.40                  | 126.23   |
| 25              | Н          | 101          | BCR        | C7-C8-C9                                                  | -3.86 | 120.40                  | 126.23   |
| 23              | с          | 502          | CLA        | C3C-C4C-NC                                                | 3.86  | 114.90                  | 110.57   |
| 23              | b          | 612          | CLA        | C1-C2-C3                                                  | -3.86 | 119.37                  | 126.04   |
| 23              | b          | 611          | CLA        | C1-C2-C3                                                  | -3.85 | 119.38                  | 126.04   |
| 23              | с          | 504          | CLA        | C1C-C2C-C3C                                               | -3.85 | 102.91                  | 106.96   |
| 23              | A          | 407          | CLA        | C4-C3-C5                                                  | 3.85  | 121.74                  | 115.27   |
| 23              | b          | 603          | CLA        | C3C-C4C-NC                                                | 3.84  | 114.88                  | 110.57   |
| 23              | С          | 504          | CLA        | C3C-C4C-NC                                                | 3.84  | 114.88                  | 110.57   |
| 25              | t          | 101          | BCR        | C35-C13-C12                                               | 3.84  | 124.12                  | 118.08   |
| 23              | b          | 610          | CLA        | C1-C2-C3                                                  | -3.83 | 119.42                  | 126.04   |
| 23              | С          | 509          | CLA        | O2D-CGD-O1D                                               | -3.83 | 116.35                  | 123.84   |
| 23              | A          | 404          | CLA        | C3C-C4C-NC                                                | 3.82  | 114.86                  | 110.57   |
| 23              | b          | 602          | CLA        | C1C-C2C-C3C                                               | -3.82 | 102.94                  | 106.96   |

Contin  $d f_{a}$ .....



| 5G | ΤI |
|----|----|
| 90 | ΤT |

| Mol | Chain | Res | Type | Atoms       | Z     | $\mathbf{Observed}(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|---------------------------|---------------|
| 23  | С     | 507 | CLA  | C1C-C2C-C3C | -3.82 | 102.94                    | 106.96        |
| 23  | В     | 615 | CLA  | O2D-CGD-O1D | -3.82 | 116.38                    | 123.84        |
| 25  | Н     | 101 | BCR  | C16-C17-C18 | -3.82 | 121.86                    | 127.31        |
| 23  | b     | 607 | CLA  | C1C-C2C-C3C | -3.81 | 102.95                    | 106.96        |
| 25  | d     | 404 | BCR  | C33-C5-C6   | -3.81 | 120.25                    | 124.53        |
| 23  | b     | 602 | CLA  | C1D-CHD-C4C | -3.81 | 117.53                    | 122.56        |
| 23  | с     | 502 | CLA  | O2D-CGD-O1D | -3.80 | 116.41                    | 123.84        |
| 23  | В     | 604 | CLA  | C3C-C4C-NC  | 3.80  | 114.83                    | 110.57        |
| 23  | b     | 609 | CLA  | C3C-C4C-NC  | 3.80  | 114.83                    | 110.57        |
| 25  | D     | 406 | BCR  | C38-C26-C25 | -3.80 | 120.27                    | 124.53        |
| 25  | k     | 101 | BCR  | C15-C14-C13 | -3.79 | 121.91                    | 127.31        |
| 23  | С     | 511 | CLA  | C1C-C2C-C3C | -3.79 | 102.98                    | 106.96        |
| 23  | В     | 603 | CLA  | C3C-C4C-NC  | 3.78  | 114.81                    | 110.57        |
| 23  | А     | 404 | CLA  | C1C-C2C-C3C | -3.77 | 102.99                    | 106.96        |
| 34  | a     | 417 | LMG  | O7-C10-C11  | 3.77  | 119.63                    | 111.50        |
| 25  | b     | 617 | BCR  | C33-C5-C6   | -3.77 | 120.29                    | 124.53        |
| 35  | D     | 403 | LMT  | O5'-C5'-C4' | 3.77  | 117.70                    | 109.75        |
| 23  | с     | 512 | CLA  | C1D-CHD-C4C | -3.77 | 117.59                    | 122.56        |
| 23  | С     | 509 | CLA  | C4D-C3D-CAD | -3.77 | 106.37                    | 108.47        |
| 23  | В     | 609 | CLA  | C4A-NA-C1A  | -3.77 | 105.01                    | 106.71        |
| 23  | С     | 508 | CLA  | C1D-CHD-C4C | -3.76 | 117.60                    | 122.56        |
| 23  | b     | 605 | CLA  | C1C-C2C-C3C | -3.76 | 103.01                    | 106.96        |
| 23  | В     | 616 | CLA  | C3C-C4C-NC  | 3.76  | 114.78                    | 110.57        |
| 25  | А     | 408 | BCR  | C15-C14-C13 | -3.75 | 121.95                    | 127.31        |
| 23  | b     | 604 | CLA  | C1C-C2C-C3C | -3.75 | 103.01                    | 106.96        |
| 23  | a     | 405 | CLA  | CBC-CAC-C3C | -3.75 | 102.10                    | 112.43        |
| 23  | С     | 504 | CLA  | C1D-CHD-C4C | -3.75 | 117.61                    | 122.56        |
| 23  | В     | 612 | CLA  | C1D-CHD-C4C | -3.74 | 117.62                    | 122.56        |
| 23  | с     | 506 | CLA  | C3B-C4B-NB  | 3.74  | 114.04                    | 109.21        |
| 25  | С     | 516 | BCR  | C11-C10-C9  | -3.74 | 121.98                    | 127.31        |
| 23  | С     | 506 | CLA  | C1D-CHD-C4C | -3.74 | 117.63                    | 122.56        |
| 23  | с     | 503 | CLA  | CAC-C3C-C4C | 3.74  | 129.66                    | 124.81        |
| 23  | В     | 603 | CLA  | C1C-C2C-C3C | -3.74 | 103.03                    | 106.96        |
| 23  | В     | 611 | CLA  | C1-C2-C3    | -3.74 | 119.58                    | 126.04        |
| 23  | с     | 501 | CLA  | O2D-CGD-O1D | -3.73 | 116.54                    | 123.84        |
| 25  | Н     | 101 | BCR  | C24-C23-C22 | -3.73 | 120.60                    | 126.23        |
| 23  | с     | 512 | CLA  | C1C-C2C-C3C | -3.73 | 103.04                    | 106.96        |
| 23  | В     | 605 | CLA  | C1C-C2C-C3C | -3.73 | 103.04                    | 106.96        |
| 23  | с     | 513 | CLA  | C1C-C2C-C3C | -3.73 | 103.04                    | 106.96        |
| 23  | b     | 610 | CLA  | C1D-CHD-C4C | -3.73 | 117.64                    | 122.56        |
| 24  | a     | 408 | PHO  | C4-C3-C5    | 3.72  | 121.54                    | 115.27        |
| 23  | b     | 615 | CLA  | C3B-C4B-NB  | 3.72  | 114.02                    | 109.21        |



| 5GT | די |
|-----|----|
| 001 |    |

|     | Continued from previous page |     |      |             |       |                  |               |  |
|-----|------------------------------|-----|------|-------------|-------|------------------|---------------|--|
| Mol | Chain                        | Res | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |  |
| 23  | с                            | 501 | CLA  | CAC-C3C-C4C | 3.72  | 129.64           | 124.81        |  |
| 23  | В                            | 607 | CLA  | C1C-C2C-C3C | -3.72 | 103.05           | 106.96        |  |
| 23  | В                            | 614 | CLA  | C1-C2-C3    | -3.72 | 119.61           | 126.04        |  |
| 23  | с                            | 501 | CLA  | C3C-C4C-NC  | 3.72  | 114.74           | 110.57        |  |
| 23  | b                            | 608 | CLA  | C1C-C2C-C3C | -3.72 | 103.05           | 106.96        |  |
| 31  | А                            | 415 | LHG  | O7-C7-C8    | 3.72  | 119.51           | 111.50        |  |
| 23  | В                            | 611 | CLA  | C1D-CHD-C4C | -3.72 | 117.65           | 122.56        |  |
| 26  | А                            | 409 | SQD  | C44-O6-C1   | -3.71 | 106.49           | 113.74        |  |
| 23  | С                            | 510 | CLA  | CMC-C2C-C1C | 3.71  | 130.69           | 125.04        |  |
| 40  | V                            | 201 | HEC  | CAD-CBD-CGD | 3.70  | 118.89           | 112.67        |  |
| 34  | В                            | 622 | LMG  | O7-C10-C11  | 3.70  | 119.48           | 111.50        |  |
| 23  | В                            | 606 | CLA  | O2D-CGD-O1D | -3.70 | 116.60           | 123.84        |  |
| 29  | D                            | 407 | PL9  | C10-C9-C11  | 3.70  | 121.50           | 115.27        |  |
| 23  | D                            | 401 | CLA  | CHD-C4C-NC  | 3.70  | 130.03           | 124.20        |  |
| 25  | t                            | 101 | BCR  | С11-С10-С9  | -3.69 | 122.04           | 127.31        |  |
| 23  | В                            | 610 | CLA  | C1C-C2C-C3C | -3.69 | 103.08           | 106.96        |  |
| 23  | А                            | 407 | CLA  | C1C-C2C-C3C | -3.69 | 103.08           | 106.96        |  |
| 23  | a                            | 404 | CLA  | CMB-C2B-C3B | 3.69  | 131.58           | 124.68        |  |
| 23  | a                            | 406 | CLA  | C3C-C4C-NC  | 3.69  | 114.70           | 110.57        |  |
| 23  | С                            | 508 | CLA  | C1C-C2C-C3C | -3.68 | 103.09           | 106.96        |  |
| 23  | С                            | 503 | CLA  | C1C-C2C-C3C | -3.68 | 103.09           | 106.96        |  |
| 23  | С                            | 511 | CLA  | C4-C3-C5    | 3.67  | 121.45           | 115.27        |  |
| 23  | a                            | 405 | CLA  | C1D-CHD-C4C | -3.67 | 117.72           | 122.56        |  |
| 23  | С                            | 502 | CLA  | C1-C2-C3    | -3.66 | 119.70           | 126.04        |  |
| 23  | b                            | 609 | CLA  | O2D-CGD-O1D | -3.66 | 116.67           | 123.84        |  |
| 34  | с                            | 520 | LMG  | O7-C10-C11  | 3.66  | 119.38           | 111.50        |  |
| 23  | b                            | 615 | CLA  | C3C-C4C-NC  | 3.66  | 114.67           | 110.57        |  |
| 25  | D                            | 406 | BCR  | C33-C5-C6   | -3.66 | 120.42           | 124.53        |  |
| 23  | С                            | 508 | CLA  | O2D-CGD-O1D | -3.65 | 116.69           | 123.84        |  |
| 29  | d                            | 405 | PL9  | C25-C24-C26 | 3.65  | 121.42           | 115.27        |  |
| 23  | b                            | 614 | CLA  | C1D-CHD-C4C | -3.65 | 117.74           | 122.56        |  |
| 23  | с                            | 512 | CLA  | C1-C2-C3    | -3.65 | 119.73           | 126.04        |  |
| 23  | С                            | 509 | CLA  | C4A-NA-C1A  | -3.65 | 105.07           | 106.71        |  |
| 37  | С                            | 518 | DGD  | O2G-C1B-C2B | 3.64  | 119.36           | 111.50        |  |
| 35  | М                            | 101 | LMT  | O1'-C1'-C2' | 3.64  | 113.99           | 108.30        |  |
| 23  | В                            | 613 | CLA  | C3B-C4B-NB  | 3.64  | 113.92           | 109.21        |  |
| 23  | b                            | 615 | CLA  | C1D-CHD-C4C | -3.64 | 117.75           | 122.56        |  |
| 26  | L                            | 102 | SQD  | 07-S-C6     | 3.63  | 111.26           | 106.94        |  |
| 23  | b                            | 601 | CLA  | C3C-C4C-NC  | 3.63  | 114.64           | 110.57        |  |
| 35  | В                            | 623 | LMT  | O5'-C5'-C4' | 3.63  | 117.40           | 109.75        |  |
| 23  | b                            | 601 | CLA  | C1C-C2C-C3C | -3.62 | 103.15           | 106.96        |  |
| 23  | с                            | 504 | CLA  | C4A-NA-C1A  | -3.62 | 105.08           | 106.71        |  |

a... .1 L.



| Mol             | Chain | Res | Tvne | Atoms                             | <b>Z</b> | Observed( <sup>o</sup> ) | Ideal(°)         |
|-----------------|-------|-----|------|-----------------------------------|----------|--------------------------|------------------|
| 23              | D     | 401 | -JPC | CMC-C2C-C1C                       | 3.62     | 130.56                   | 125.04           |
| 35              | C     | 522 | LMT  | C1'-05'-C5'                       | 3.02     | 120.80                   | 120.04<br>113.69 |
| $\frac{36}{26}$ | A     | 411 | SOD  | 047-C7-C8                         | 3.62     | 119.30                   | 110.00<br>111.50 |
| 23              | 2     | 404 | CLA  | C3B-C4B-NB                        | 3.62     | 113.89                   | 109.21           |
| $\frac{28}{23}$ | h     | 616 | CLA  | C3B-C4B-NB                        | 3.62     | 113.89                   | 109.21           |
| 23              | b     | 606 | CLA  | C1C-C2C-C3C                       | -3.62    | 103 15                   | 106.96           |
| 29              | a     | 415 | PL9  | C15-C14-C16                       | 3.62     | 121.35                   | 100.00<br>115.27 |
| 23              | B     | 602 | CLA  | <u>C1C-C2C-C3C</u>                | -3.61    | 103 16                   | 106.96           |
| $\frac{23}{24}$ | D     | 402 | PHO  | $\frac{C4C-C3C-C2C}{C4C-C3C-C2C}$ | -3 61    | 102.78                   | 106.78           |
| 23              | b     | 601 | CLA  | C1D-CHD-C4C                       | -3.61    | 117.79                   | 122.56           |
| 23              | b     | 614 | CLA  | C1-C2-C3                          | -3 61    | 119.80                   | 126.04           |
| 31              | d     | 408 | LHG  | 07-C7-C8                          | 3.61     | 119.28                   | 111.50           |
| 37              | Н     | 102 | DGD  | O2G-C1B-C2B                       | 3.61     | 119.28                   | 111.50           |
| 23              | B     | 612 | CLA  | CMC-C2C-C1C                       | 3.61     | 130.53                   | 125.04           |
| 23              | С     | 506 | CLA  | C1C-C2C-C3C                       | -3.61    | 103.16                   | 106.96           |
| 23              | С     | 507 | CLA  | C3C-C4C-NC                        | 3.61     | 114.62                   | 110.57           |
| 34              | C     | 501 | LMG  | C7-O1-C1                          | -3.61    | 106.69                   | 113.74           |
| 23              | В     | 609 | CLA  | C1C-C2C-C3C                       | -3.61    | 103.17                   | 106.96           |
| 26              | a     | 411 | SQD  | C1-C2-C3                          | -3.61    | 102.49                   | 110.00           |
| 23              | С     | 512 | CLA  | C3B-C4B-NB                        | 3.60     | 113.86                   | 109.21           |
| 23              | В     | 612 | CLA  | OBD-CAD-C3D                       | -3.60    | 122.00                   | 127.98           |
| 34              | Ζ     | 101 | LMG  | C1-C2-C3                          | 3.59     | 117.48                   | 110.00           |
| 25              | с     | 514 | BCR  | С11-С10-С9                        | -3.59    | 122.19                   | 127.31           |
| 23              | a     | 404 | CLA  | C3C-C4C-NC                        | 3.59     | 114.59                   | 110.57           |
| 23              | В     | 617 | CLA  | C4C-C3C-C2C                       | -3.59    | 101.67                   | 106.90           |
| 23              | В     | 612 | CLA  | CHD-C4C-NC                        | 3.59     | 129.85                   | 124.20           |
| 25              | С     | 515 | BCR  | C33-C5-C6                         | -3.59    | 120.50                   | 124.53           |
| 25              | Y     | 101 | BCR  | C15-C14-C13                       | -3.58    | 122.20                   | 127.31           |
| 23              | А     | 404 | CLA  | CAA-C2A-C3A                       | -3.58    | 102.98                   | 112.78           |
| 23              | a     | 409 | CLA  | C3B-C4B-NB                        | 3.58     | 113.83                   | 109.21           |
| 23              | В     | 614 | CLA  | CMB-C2B-C3B                       | 3.58     | 131.37                   | 124.68           |
| 23              | a     | 404 | CLA  | CAA-C2A-C3A                       | -3.57    | 102.99                   | 112.78           |
| 23              | с     | 501 | CLA  | C1C-C2C-C3C                       | -3.57    | 103.21                   | 106.96           |
| 23              | b     | 613 | CLA  | C1C-C2C-C3C                       | -3.57    | 103.21                   | 106.96           |
| 23              | В     | 613 | CLA  | O2D-CGD-O1D                       | -3.56    | 116.87                   | 123.84           |
| 23              | b     | 614 | CLA  | O2D-CGD-O1D                       | -3.56    | 116.87                   | 123.84           |
| 26              | А     | 409 | SQD  | O7-S-C6                           | 3.56     | 111.17                   | 106.94           |
| 23              | В     | 613 | CLA  | C1D-CHD-C4C                       | -3.56    | 117.86                   | 122.56           |
| 23              | с     | 507 | CLA  | C1C-C2C-C3C                       | -3.56    | 103.22                   | 106.96           |
| 23              | С     | 507 | CLA  | C1-C2-C3                          | -3.55    | 119.90                   | 126.04           |
| 23              | с     | 509 | CLA  | $\overline{\text{C1C-C2C-C3C}}$   | -3.55    | 103.22                   | 106.96           |
| 23              | b     | 605 | CLA  | O2D-CGD-O1D                       | -3.55    | 116.89                   | 123.84           |



| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mol                          | Chain  | Res                | Tvne       | Atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                   | Observed <sup>(o)</sup> | Ideal(°)         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------|--------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------|------------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23                           | R      | 603                | CLA        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _3 55               |                         | 119.78           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{23}{23}$              | D<br>a | 409                |            | C3C-C4C-NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -3.55               | 105.05<br>114.55        | 112.70<br>110.57 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{20}{23}$              |        | 508                |            | 02D-CGD-01D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -3.55               | 114.90                  | 123.84           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{20}{23}$              | h      | 607                |            | C1D-CHD-C4C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -3.55               | 117.87                  | 120.04<br>122.56 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                           | h      | 612                |            | C1C-C2C-C3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -3.55               | 103.23                  | 106.96           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                           | 0      | 409                |            | $C_{10}^{-0.20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -3.00               | 105.25                  | 100.90<br>115.97 |
| 34         C         344         Decrete 3         3.55         110.31         110.48           25         B         619         BCR         C29-C30-C25         3.55         115.94         110.48           23         b         612         CLA         C1D-CHD-C4C         -3.54         117.89         122.56           23         c         511         CLA         CMC-C2C-C1C         3.53         105.12         106.71           23         c         509         CLA         C1D-CHD-C4C         -3.53         117.90         122.56           23         b         604         CLA         C1D-CHD-C4C         -3.53         117.90         122.56           23         b         614         CLA         C1D-CHD-C4C         -3.53         117.90         122.56           25         b         619         BCR         C24-C23-C22         -3.53         112.27         127.31           35         D         403         LMT         C1'-O5'-C5'         3.52         112.60         113.69           23         d         406         LHG         O'-C7-C8         3.52         119.08         111.50           23         c         510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                           |        | 40 <i>3</i><br>591 | LMG        | $C_{4} C_{2} C_{4} C_{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.55                | 121.24                  | 110.27<br>110.24 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 04<br>- 25                 | B      | 610                | BCB        | $C_{20} C_{30} C_{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.55                | 115.97                  | 110.24<br>110.48 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{20}{23}$              | b      | 612                |            | C1D CHD C4C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.50                | 117.89                  | 110.40<br>122.56 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                           | B      | 614                |            | $\frac{\text{CHC}-\text{CHD}-\text{C4C}}{\text{CMC}-\text{C2C}-\text{C1C}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.04               | 117.09                  | 122.00<br>125.04 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                           |        | 511                |            | $\frac{\text{C4A NA C1A}}{\text{C4A NA C1A}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.53                | 105.42                  | 125.04<br>106 71 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                           | R<br>B | 607                |            | $O^{2}D$ CCD O1D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.00               | 116.03                  | 100.71<br>123.84 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                           |        | 500                |            | C1D CHD C4C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.00               | 117.90                  | 120.04<br>122.56 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20<br>                       | L<br>b | 604                |            | CID-CID-C4C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.00               | 117.90                  | 122.50<br>122.56 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25                           | b<br>b | 610                | BCB        | $\begin{array}{c} \text{C1D-C1D-C4C} \\ \text{C24 C23 C22} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.00               | 117.90                  | 122.00<br>126.23 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              | d d    | 402                |            | C2R C4R NR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.00               | 120.90<br>113.77        | 120.23<br>100.21 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25                           | u<br>P | 618                | BCB        | $\frac{\text{C3D-C4D-IND}}{\text{C16}\text{ C17}\text{ C18}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.52                | 110.77                  | 109.21<br>127.21 |
| 35D405DM1C1+05+C5 $3.52$ $1120.00$ $113.09$ 23B615CLAC3B-C4B-NB $3.52$ $113.76$ $109.21$ 31d406LHGO7-C7-C8 $3.52$ $119.08$ $111.50$ 23c510CLAC1D-CHD-C4C $-3.52$ $117.92$ $122.56$ 23A405CLAC3C-C4C-NC $3.51$ $114.51$ $110.57$ 36V203HTGC1-C2-C3 $3.51$ $113.99$ $109.67$ 25T101BCRC12-C13-C14 $-3.51$ $113.55$ $118.94$ 23b611CLAC1D-CHD-C4C $-3.51$ $117.92$ $122.56$ 23D405CLAO2D-CGD-O1D $-3.51$ $116.98$ $123.84$ 29A413PL9C37-C38-C39 $-3.51$ $119.21$ $127.66$ 23C513CLAC1C-C2C-C3C $-3.51$ $103.27$ $106.96$ 23c506CLACAC-C3C-C4C $3.50$ $112.936$ $124.81$ 23B611CLAC3C-C4C-NC $3.50$ $113.74$ $109.21$ 23D401CLAC3C-C4C-NC $3.50$ $117.94$ $122.56$ 23D401CLAC3C-C4C-NC $3.50$ $117.94$ $122.56$ 23D613CLAC1D-CHD-C4C $-3.50$ $117.94$ $122.56$ 23b613CLAC1D-CHD-C4C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25                           |        | 402                |            | C10-C17-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.00<br>2 50       | 122.27                  | 127.31           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - <u>0</u> 0<br>- <u>0</u> 2 | D<br>B | 403<br>615         |            | C1-03-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.02                | 112.00                  | 110.09           |
| 314400EIRC $O_{1}-C_{1}-C_{3}$ $3.52$ $119.08$ $111.30$ 23c510CLAC1D-CHD-C4C $-3.52$ $117.92$ $122.56$ 23A405CLAC3C-C4C-NC $3.51$ $114.51$ $110.57$ 36V203HTGC1-C2-C3 $3.51$ $113.99$ $109.67$ 25T101BCRC12-C13-C14 $-3.51$ $113.55$ $118.94$ 23b611CLAC1D-CHD-C4C $-3.51$ $117.92$ $122.56$ 23D405CLAO2D-CGD-O1D $-3.51$ $116.98$ $123.84$ 29A413PL9C37-C38-C39 $-3.51$ $119.21$ $127.66$ 23C513CLAC1C-C2C-C3C $-3.51$ $103.27$ $106.96$ 23c506CLACAC-C3C-C4C $3.50$ $1129.36$ $124.81$ 23B611CLAC4C-C3C-C2C $-3.50$ $101.79$ $106.90$ 23B612CLAC3B-C4B-NB $3.50$ $113.74$ $109.21$ 23D401CLAC3C-C4C-NC $3.50$ $117.94$ $122.56$ 23b613CLAC1D-CHD-C4C $-3.50$ $117.94$ $122.56$ 23b613CLAC1D-CHD-C4C $-3.50$ $117.94$ $122.56$ 24a407PHO $02D-CGD-O1D$ $-3.49$ $117.01$ $123.84$ 34z101BCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20<br>21                     | D<br>d | 406                | ULA<br>IHC | $\frac{0.00-0.40-0.00}{0.07-0.02}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{0.02}{2.52}$ | 113.70                  | 109.21<br>111.50 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01<br>02                     | u      | 400<br>510         |            | $\frac{07-07-06}{010}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.52                | 117.00                  | 111.50           |
| 23A $403$ $CLA$ $C3C-C4C-NC$ $3.51$ $114.51$ $110.57$ $36$ V $203$ HTG $C1-C2-C3$ $3.51$ $113.99$ $109.67$ $25$ T $101$ BCR $C12-C13-C14$ $-3.51$ $113.55$ $118.94$ $23$ b $611$ CLA $C1D-CHD-C4C$ $-3.51$ $117.92$ $122.56$ $23$ D $405$ CLA $O2D-CGD-O1D$ $-3.51$ $116.98$ $123.84$ $29$ A $413$ PL9 $C37-C38-C39$ $-3.51$ $119.21$ $127.66$ $23$ C $513$ CLA $C1C-C2C-C3C$ $-3.51$ $103.27$ $106.96$ $23$ c $506$ CLACAC-C3C-C4C $3.50$ $129.36$ $124.81$ $23$ B $611$ CLAC4C-C3C-C2C $-3.50$ $101.79$ $106.90$ $23$ B $612$ CLAC3B-C4B-NB $3.50$ $113.74$ $109.21$ $23$ D $401$ CLAC3C-C4C-NC $3.50$ $114.50$ $110.57$ $23$ B $607$ CLAC1D-CHD-C4C $-3.50$ $117.94$ $122.56$ $23$ b $613$ CLAC1D-CHD-C4C $-3.50$ $117.94$ $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>                       |        | 405                |            | C1D-C1D-C4C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -5.02               | 117.92                  | 122.50<br>110.57 |
| 36 $V$ $203$ $1116$ $C1-C2-C3$ $3.51$ $113.39$ $109.07$ $25$ T101BCR $C12-C13-C14$ $-3.51$ $113.55$ $118.94$ $23$ b $611$ CLA $C1D-CHD-C4C$ $-3.51$ $117.92$ $122.56$ $23$ D $405$ CLA $O2D-CGD-O1D$ $-3.51$ $116.98$ $123.84$ $29$ A $413$ PL9 $C37-C38-C39$ $-3.51$ $119.21$ $127.66$ $23$ C $513$ CLA $C1C-C2C-C3C$ $-3.51$ $103.27$ $106.96$ $23$ c $506$ CLACAC-C3C-C4C $3.50$ $129.36$ $124.81$ $23$ B $611$ CLAC4C-C3C-C2C $-3.50$ $101.79$ $106.90$ $23$ B $612$ CLAC3B-C4B-NB $3.50$ $113.74$ $109.21$ $23$ D $401$ CLAC3C-C4C-NC $3.50$ $117.94$ $122.56$ $23$ b $613$ CLAC1D-CHD-C4C $-3.50$ $117.94$ $122.56$ $23$ b $613$ CLAC1D-CHD-C4C $-3.50$ $117.94$ $122.56$ $24$ a $407$ PHO $02D-CGD-O1D$ $-3.49$ $117.01$ $123.84$ $34$ z $101$ BCR $C12-C13-C14$ $-3.50$ $113.58$ $118.94$ $24$ a $407$ PHO $02D-CGD-O1D$ $-3.49$ $117.01$ $123.84$ $34$ z $101$ LMG $07-C10-C11$ $3.49$ $119.03$ <td>20</td> <td>A<br/>V</td> <td>403</td> <td>ULA<br/>UTC</td> <td><math display="block">\begin{array}{c} 0.00-0.40-0.00\\ \hline 0.100002\\ \hline 0.00002\\ \hline 0.00002\\ \hline 0.0002\\ \hline 0.0002\\</math></td> <td>2.51</td> <td>114.01</td> <td>100.67</td> | 20                           | A<br>V | 403                | ULA<br>UTC | $\begin{array}{c} 0.00-0.40-0.00\\ \hline 0.100002\\ \hline 0.00002\\ \hline 0.00002\\ \hline 0.0002\\ \hline 0.0002\\$ | 2.51                | 114.01                  | 100.67           |
| 25         1         101         Berr         C12-C13-C14         -3.51         113.55         116.54           23         b         611         CLA         C1D-CHD-C4C         -3.51         117.92         122.56           23         D         405         CLA         O2D-CGD-O1D         -3.51         116.98         123.84           29         A         413         PL9         C37-C38-C39         -3.51         119.21         127.66           23         C         513         CLA         C1C-C2C-C3C         -3.51         103.27         106.96           23         c         506         CLA         CAC-C3C-C4C         3.50         129.36         124.81           23         B         611         CLA         C4C-C3C-C2C         -3.50         101.79         106.90           23         B         612         CLA         C3B-C4B-NB         3.50         113.74         109.21           23         D         401         CLA         C3C-C4C-NC         3.50         114.50         110.57           23         D         613         CLA         C1D-CHD-C4C         -3.50         117.94         122.56           23         b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25                           |        | 203                | BCB        | C12 C13 C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.51                | 113.99                  | 109.07           |
| 23 $b$ $611$ $CLA$ $CHD-CHD-C4C$ $-3.51$ $117.92$ $1122.50$ $23$ $D$ $405$ $CLA$ $O2D-CGD-O1D$ $-3.51$ $116.98$ $123.84$ $29$ $A$ $413$ $PL9$ $C37-C38-C39$ $-3.51$ $119.21$ $127.66$ $23$ $C$ $513$ $CLA$ $C1C-C2C-C3C$ $-3.51$ $103.27$ $106.96$ $23$ $c$ $506$ $CLA$ $CAC-C3C-C4C$ $3.50$ $129.36$ $124.81$ $23$ $B$ $611$ $CLA$ $C4C-C3C-C2C$ $-3.50$ $101.79$ $106.90$ $23$ $B$ $612$ $CLA$ $C3B-C4B-NB$ $3.50$ $113.74$ $109.21$ $23$ $D$ $401$ $CLA$ $C3C-C4C-NC$ $3.50$ $114.50$ $110.57$ $23$ $B$ $607$ $CLA$ $C1D-CHD-C4C$ $-3.50$ $117.94$ $122.56$ $23$ $b$ $613$ $CLA$ $C1D-CHD-C4C$ $-3.50$ $117.94$ $122.56$ $23$ $b$ $613$ $CLA$ $C1D-CHD-C4C$ $-3.50$ $117.94$ $122.56$ $24$ $a$ $407$ $PHO$ $O2D-CGD-O1D$ $-3.49$ $117.01$ $123.84$ $34$ $z$ $101$ $LMG$ $O7-C10-C11$ $3.49$ $117.07$ $126.72$ $23$ $b$ $615$ $CLA$ $CHC-C1C-C2C$ $-3.48$ $117.09$ $126.72$ $23$ $b$ $615$ $CLA$ $CHC-C1C-C2C$ $-3.48$ $117.09$ $126.72$ $23$ $b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>02                     | L<br>b | 611                |            | $\frac{\text{C12-C13-C14}}{\text{C1D-C4C}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.01               | 117.00                  | 110.94<br>122.56 |
| 23         D         403         CLA         O2D-CGD-O1D         -3.51         110.33         123.34           29         A         413         PL9         C37-C38-C39         -3.51         119.21         127.66           23         C         513         CLA         C1C-C2C-C3C         -3.51         103.27         106.96           23         c         506         CLA         CAC-C3C-C4C         3.50         129.36         124.81           23         B         611         CLA         CAC-C3C-C2C         -3.50         101.79         106.90           23         B         612         CLA         C3B-C4B-NB         3.50         113.74         109.21           23         D         401         CLA         C3C-C4C-NC         3.50         114.50         110.57           23         B         607         CLA         C1D-CHD-C4C         -3.50         117.94         122.56           23         b         613         CLA         C1D-CHD-C4C         -3.50         117.94         122.56           23         b         613         CLA         C1D-C13-C14         -3.50         113.58         118.94           24         a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20<br>                       |        | 405                |            | O2D CCD O1D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.01               | 117.92                  | 122.00<br>122.84 |
| 29         A         413         1 L9         C37-C38-C39         -3.51         113.21         127.00           23         C         513         CLA         C1C-C2C-C3C         -3.51         103.27         106.96           23         c         506         CLA         CAC-C3C-C4C         3.50         129.36         124.81           23         B         611         CLA         C4C-C3C-C2C         -3.50         101.79         106.90           23         B         612         CLA         C3B-C4B-NB         3.50         113.74         109.21           23         D         401         CLA         C3C-C4C-NC         3.50         114.50         110.57           23         B         607         CLA         C1D-CHD-C4C         -3.50         117.94         122.56           23         b         613         CLA         C1D-CHD-C4C         -3.50         117.94         122.56           24         a         407         PHO         02D-CGD-O1D         -3.49         117.01         123.84           34         z         101         LMG         07-C10-C11         3.49         119.03         111.50           23         b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20                           |        | 400                | DIO        | $C_{2D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{3D}^{-}C_{-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -3.51               | 110.90                  | 125.04<br>127.66 |
| 23       C       513       CHA       CHC-C2C-C3C       -3.51       105.21       106.90         23       c       506       CLA       CAC-C3C-C4C       3.50       129.36       124.81         23       B       611       CLA       C4C-C3C-C2C       -3.50       101.79       106.90         23       B       612       CLA       C3B-C4B-NB       3.50       113.74       109.21         23       D       401       CLA       C3C-C4C-NC       3.50       114.50       110.57         23       B       607       CLA       C1D-CHD-C4C       -3.50       117.94       122.56         23       b       613       CLA       C1D-CHD-C4C       -3.50       117.94       122.56         23       b       613       CLA       C1D-CHD-C4C       -3.50       113.58       118.94         24       a       407       PHO       O2D-CGD-O1D       -3.49       117.01       123.84         34       z       101       LMG       O7-C10-C11       3.49       117.07       126.72         23       b       615       CLA       CHC-C1C-C2C       -3.48       117.09       126.72 <t< td=""><td>29</td><td>A<br/>C</td><td>413<br/>513</td><td></td><td><math display="block">\frac{0.01 - 0.03}{0.000}</math></td><td>-3.51</td><td>119.21</td><td>106.06</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29                           | A<br>C | 413<br>513         |            | $\frac{0.01 - 0.03}{0.000}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -3.51               | 119.21                  | 106.06           |
| 25         C         500         CHA         CACCOSCC4C         5.00         125.00         124.31           23         B         611         CLA         C4C-C3C-C2C         -3.50         101.79         106.90           23         B         612         CLA         C3B-C4B-NB         3.50         113.74         109.21           23         D         401         CLA         C3C-C4C-NC         3.50         114.50         110.57           23         B         607         CLA         C1D-CHD-C4C         -3.50         117.94         122.56           23         b         613         CLA         C1D-CHD-C4C         -3.50         117.94         122.56           23         b         613         CLA         C1D-CHD-C4C         -3.50         117.94         122.56           25         t         101         BCR         C12-C13-C14         -3.50         113.58         118.94           24         a         407         PHO         O2D-CGD-O1D         -3.49         117.01         123.84           34         z         101         LMG         O7-C10-C11         3.49         119.03         111.50           23         b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23                           | C C    | 506                |            | $\frac{C1C-C2C-C3C}{CAC}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -3.51               | 100.27                  | 100.90           |
| 23B611CHAC4C-C3C-C2C-3.30101.19100.9023B612CLAC3B-C4B-NB3.50113.74109.2123D401CLAC3C-C4C-NC3.50114.50110.5723B607CLAC1D-CHD-C4C-3.50117.94122.5623b613CLAC1D-CHD-C4C-3.50117.94122.5625t101BCRC12-C13-C14-3.50113.58118.9424a407PHOO2D-CGD-O1D-3.49117.01123.8434z101LMGO7-C10-C113.49119.03111.5023b611CLACHC-C1C-C2C-3.49117.07126.7223b615CLACHC-C1C-C2C-3.48117.09126.7237c517DGDO2G-C1B-C2B3.48119.00111.5023C506CLAC3B-C4B-NB3.48113.71109.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                           | B      | 611                |            | $\frac{C4C}{C4C} \frac{C3C}{C2C} \frac{C2C}{C2C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.50                | 123.30                  | 106.00           |
| 25D012CHAC3D-C4D-ND3.50113.14103.2123D401CLAC3C-C4C-NC3.50114.50110.5723B607CLAC1D-CHD-C4C-3.50117.94122.5623b613CLAC1D-CHD-C4C-3.50117.94122.5625t101BCRC12-C13-C14-3.50113.58118.9424a407PHOO2D-CGD-O1D-3.49117.01123.8434z101LMGO7-C10-C113.49119.03111.5023b611CLACHC-C1C-C2C-3.49117.07126.7223b615CLACHC-C1C-C2C-3.48117.09126.7237c517DGDO2G-C1B-C2B3.48119.00111.5023C506CLAC3B-C4B-NB3.48113.71109.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                           | B      | 612                |            | C3B C4B NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -3.50               | 101.75                  | 100.50           |
| 23       B       607       CLA       C1D-CHD-C4C       -3.50       114.56       116.57         23       B       607       CLA       C1D-CHD-C4C       -3.50       117.94       122.56         23       b       613       CLA       C1D-CHD-C4C       -3.50       117.94       122.56         25       t       101       BCR       C12-C13-C14       -3.50       113.58       118.94         24       a       407       PHO       O2D-CGD-O1D       -3.49       117.01       123.84         34       z       101       LMG       O7-C10-C11       3.49       119.03       111.50         23       b       611       CLA       CHC-C1C-C2C       -3.49       117.07       126.72         23       b       615       CLA       CHC-C1C-C2C       -3.48       117.09       126.72         23       b       615       CLA       CHC-C1C-C2C       -3.48       117.09       126.72         37       c       517       DGD       O2G-C1B-C2B       3.48       119.00       111.50         23       C       506       CLA       C3B-C4B-NB       3.48       113.71       109.21 <td><math>\frac{20}{23}</math></td> <td></td> <td>401</td> <td></td> <td>C3C-C4C-NC</td> <td>3.50</td> <td>110.74</td> <td>109.21<br/>110.57</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{20}{23}$              |        | 401                |            | C3C-C4C-NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.50                | 110.74                  | 109.21<br>110.57 |
| 23       B       607       CHA       CHD-CHD-C4C       -3.50       111.54       122.50         23       b       613       CLA       C1D-CHD-C4C       -3.50       117.94       122.56         25       t       101       BCR       C12-C13-C14       -3.50       113.58       118.94         24       a       407       PHO       O2D-CGD-O1D       -3.49       117.01       123.84         34       z       101       LMG       O7-C10-C11       3.49       119.03       111.50         23       b       611       CLA       CHC-C1C-C2C       -3.49       117.07       126.72         23       b       615       CLA       CHC-C1C-C2C       -3.48       117.09       126.72         23       b       615       CLA       CHC-C1C-C2C       -3.48       117.09       126.72         37       c       517       DGD       O2G-C1B-C2B       3.48       119.00       111.50         23       C       506       CLA       C3B-C4B-NB       3.48       113.71       109.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                           | B      | 607                |            | C1D CHD C/C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.50                | 117.94                  | 122 56           |
| 25       b       615       CHA       CHD+CHD+C4C       -3.50       111.54       122.50         25       t       101       BCR       C12-C13-C14       -3.50       113.58       118.94         24       a       407       PHO       O2D-CGD-O1D       -3.49       117.01       123.84         34       z       101       LMG       O7-C10-C11       3.49       119.03       111.50         23       b       611       CLA       CHC-C1C-C2C       -3.49       117.07       126.72         23       b       615       CLA       CHC-C1C-C2C       -3.48       117.09       126.72         37       c       517       DGD       O2G-C1B-C2B       3.48       119.00       111.50         23       C       506       CLA       C3B-C4B-NB       3.48       113.71       109.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{20}{23}$              | b<br>b | 613                |            | C1D-CHD-C4C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -3.50               | 117.94                  | 122.00<br>122.56 |
| 23       0       101       BCR       C12-C13-C14       -3.30       115.36       116.94         24       a       407       PHO       O2D-CGD-O1D       -3.49       117.01       123.84         34       z       101       LMG       O7-C10-C11       3.49       119.03       111.50         23       b       611       CLA       CHC-C1C-C2C       -3.49       117.07       126.72         23       b       615       CLA       CHC-C1C-C2C       -3.48       117.09       126.72         37       c       517       DGD       O2G-C1B-C2B       3.48       119.00       111.50         23       C       506       CLA       C3B-C4B-NB       3.48       113.71       109.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{20}{25}$              | t b    | 1013               | BCB        | C12 C13 C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -3.50               | 117.54                  | 118.94           |
| 24         a         407         110         02D-CGD-C1D         -3.49         111.01         125.84           34         z         101         LMG         O7-C10-C11         3.49         119.03         111.50           23         b         611         CLA         CHC-C1C-C2C         -3.49         117.07         126.72           23         b         615         CLA         CHC-C1C-C2C         -3.48         117.09         126.72           37         c         517         DGD         O2G-C1B-C2B         3.48         119.00         111.50           23         C         506         CLA         C3B-C4B-NB         3.48         113.71         109.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{20}{24}$              | U<br>9 | 407                | DUR<br>PHO | $\frac{012-013-014}{020}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -3.00               | 117.01                  | 110.94<br>193.84 |
| 23         b         611         CLA         CHC-C1C-C2C         -3.49         117.07         126.72           23         b         615         CLA         CHC-C1C-C2C         -3.48         117.09         126.72           23         b         615         CLA         CHC-C1C-C2C         -3.48         117.09         126.72           37         c         517         DGD         O2G-C1B-C2B         3.48         119.00         111.50           23         C         506         CLA         C3B-C4B-NB         3.48         113.71         109.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24                           | a      | 101                | LMC        | 02D-03D-01D<br>07-010 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 /0                | 110.03                  | 111 50           |
| 23         b         615         CLA         CHC-C1C-C2C         -3.49         117.07         120.72           23         b         615         CLA         CHC-C1C-C2C         -3.48         117.09         126.72           37         c         517         DGD         O2G-C1B-C2B         3.48         119.00         111.50           23         C         506         CLA         C3B-C4B-NB         3.48         113.71         109.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 04<br>                     | b L    | 611                | CLA        | $CHC_C1C_C2C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -3 40               | 117.07                  | 126 72           |
| 25         0         013         014         010-010-020         -3.48         117.09         120.72           37         c         517         DGD         O2G-C1B-C2B         3.48         119.00         111.50           23         C         506         CLA         C3B-C4B-NB         3.48         113.71         109.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              | b<br>h | 615                |            | CHC C1C C2C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -3.49               |                         | 120.72           |
| 37         C         317         DGD         O2G-C1B-C2B         3.48         119.00         111.30           23         C         506         CLA         C3B-C4B-NB         3.48         113.71         109.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{20}{37}$              | C D    | 517                |            | 010-010-020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 / 2               | 110.00                  | 111 50           |
| 25 0 000 0 A 0 0 - 0 - 0 - 0 - 0 - 0 - 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 01<br>                     | C      | 506                | CLA        | C3B-C4B NR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.40                | 112.00                  | 100.91           |
| 25 T 101 BCB C15 C14 C13 2 49 122 27 127 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20<br>95                     |        | 101                | BCP        | $\begin{array}{c} 03D - 04D - ND \\ \hline 015 \ 014 \ 012 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.40                | 129.97                  | 109.21           |



| 5GT | די |
|-----|----|
| 001 |    |

| eal(°)<br>2.58<br>23.84<br>23.22<br>27.66<br>25.04 |
|----------------------------------------------------|
| 2.58<br>23.84<br>23.22<br>27.66<br>25.04           |
| 23.84<br>23.22<br>27.66<br>25.04                   |
| 23.22<br>27.66<br>25.04                            |
| 27.66                                              |
| 5.04                                               |
| 0.04                                               |
| 22.56                                              |
| 26.04                                              |
| 6.96                                               |
| 6.96                                               |
| 9.21                                               |
| 22.56                                              |
| 27.66                                              |
| 9.69                                               |
| 26.23                                              |
| 26.23                                              |
| 26.04                                              |
| 0.57                                               |
| 9.21                                               |
| 1.91                                               |
| 6.90                                               |
| 6.96                                               |
| 6.96                                               |
| 27.31                                              |
| 4.08                                               |
| 22.56                                              |
| 6.78                                               |
| 5.27                                               |
| 1.50                                               |
| 6.96                                               |
| 9.21                                               |
| 27.31                                              |
| 9.21                                               |
| 5.27                                               |
| 24.53                                              |
| 27.66                                              |
| 22.56                                              |
| 2.78                                               |
| 1.27                                               |
| 22.56                                              |
| 1.27                                               |
| 1.86                                               |
| 6.90                                               |
|                                                    |



| Conti | nued fron | ı previ | ous page. |             |       |                  |               |
|-------|-----------|---------|-----------|-------------|-------|------------------|---------------|
| Mol   | Chain     | Res     | Type      | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
| 23    | В         | 616     | CLA       | C3B-C4B-NB  | 3.42  | 113.63           | 109.21        |
| 26    | a         | 411     | SQD       | O8-S-C6     | 3.42  | 111.19           | 105.74        |
| 23    | a         | 406     | CLA       | C1C-C2C-C3C | -3.42 | 103.36           | 106.96        |
| 23    | a         | 405     | CLA       | C3C-C4C-NC  | 3.42  | 114.40           | 110.57        |
| 23    | С         | 511     | CLA       | C1D-CHD-C4C | -3.42 | 118.05           | 122.56        |
| 25    | t         | 101     | BCR       | C37-C22-C23 | 3.41  | 123.46           | 118.08        |
| 23    | d         | 402     | CLA       | C1-C2-C3    | -3.41 | 120.14           | 126.04        |
| 23    | С         | 512     | CLA       | C1C-C2C-C3C | -3.41 | 103.37           | 106.96        |
| 23    | b         | 603     | CLA       | CAA-C2A-C3A | -3.41 | 103.45           | 112.78        |
| 23    | В         | 609     | CLA       | C3B-C4B-NB  | 3.40  | 113.61           | 109.21        |
| 23    | В         | 614     | CLA       | C3B-C4B-NB  | 3.40  | 113.61           | 109.21        |
| 25    | у         | 101     | BCR       | C15-C14-C13 | -3.40 | 122.45           | 127.31        |
| 23    | В         | 609     | CLA       | CHD-C4C-NC  | 3.40  | 129.56           | 124.20        |
| 23    | с         | 502     | CLA       | C1D-CHD-C4C | -3.40 | 118.07           | 122.56        |
| 24    | a         | 407     | PHO       | O2A-CGA-CBA | 3.40  | 122.58           | 111.91        |
| 23    | С         | 511     | CLA       | CHC-C1C-C2C | -3.40 | 117.32           | 126.72        |
| 23    | В         | 604     | CLA       | C1C-C2C-C3C | -3.40 | 103.38           | 106.96        |
| 23    | a         | 409     | CLA       | C1C-C2C-C3C | -3.40 | 103.39           | 106.96        |
| 23    | с         | 504     | CLA       | CAC-C3C-C4C | 3.39  | 129.21           | 124.81        |
| 23    | b         | 615     | CLA       | C11-C10-C8  | -3.39 | 104.97           | 115.92        |
| 23    | В         | 613     | CLA       | C4C-C3C-C2C | -3.39 | 101.96           | 106.90        |
| 25    | a         | 410     | BCR       | C20-C21-C22 | -3.39 | 122.48           | 127.31        |
| 25    | С         | 527     | BCR       | С11-С10-С9  | -3.39 | 122.48           | 127.31        |
| 23    | b         | 609     | CLA       | C1C-C2C-C3C | -3.38 | 103.40           | 106.96        |
| 23    | с         | 508     | CLA       | C3B-C4B-NB  | 3.38  | 113.58           | 109.21        |
| 34    | С         | 520     | LMG       | O7-C10-C11  | 3.38  | 118.78           | 111.50        |
| 23    | b         | 616     | CLA       | C4C-C3C-C2C | -3.38 | 101.97           | 106.90        |
| 23    | С         | 509     | CLA       | C1D-CHD-C4C | -3.38 | 118.10           | 122.56        |
| 23    | В         | 615     | CLA       | CHC-C1C-C2C | -3.37 | 117.39           | 126.72        |
| 29    | a         | 415     | PL9       | C22-C23-C24 | -3.37 | 119.54           | 127.66        |
| 23    | С         | 503     | CLA       | O2D-CGD-O1D | -3.37 | 117.25           | 123.84        |
| 23    | В         | 604     | CLA       | O2A-CGA-O1A | -3.37 | 115.09           | 123.59        |
| 23    | D         | 401     | CLA       | C1D-CHD-C4C | -3.37 | 118.12           | 122.56        |
| 34    | m         | 101     | LMG       | O7-C10-C11  | 3.37  | 118.75           | 111.50        |
| 23    | b         | 604     | CLA       | CMC-C2C-C1C | 3.37  | 130.16           | 125.04        |
| 23    | b         | 614     | CLA       | C3B-C4B-NB  | 3.36  | 113.56           | 109.21        |
| 23    | с         | 508     | CLA       | CMB-C2B-C3B | 3.36  | 130.97           | 124.68        |
| 23    | С         | 505     | CLA       | C4A-NA-C1A  | -3.36 | 105.19           | 106.71        |
| 23    | А         | 404     | CLA       | O2A-CGA-O1A | -3.36 | 115.11           | 123.59        |
| 23    | a         | 406     | CLA       | CHD-C4C-NC  | 3.36  | 129.50           | 124.20        |
| 23    | В         | 608     | CLA       | CMC-C2C-C1C | 3.36  | 130.15           | 125.04        |
| 23    | С         | 511     | CLA       | C3C-C4C-NC  | 3.35  | 114.33           | 110.57        |



| 5GTI |  |
|------|--|
| 0011 |  |

| Conti | Continued from previous page |     |      |             |       |                  |               |  |
|-------|------------------------------|-----|------|-------------|-------|------------------|---------------|--|
| Mol   | Chain                        | Res | Type | Atoms       |       | $Observed(^{o})$ | $Ideal(^{o})$ |  |
| 23    | b                            | 612 | CLA  | C3B-C4B-NB  | 3.35  | 113.54           | 109.21        |  |
| 23    | b                            | 612 | CLA  | O2A-CGA-CBA | 3.35  | 122.42           | 111.91        |  |
| 23    | A                            | 407 | CLA  | C3B-C4B-NB  | 3.35  | 113.54           | 109.21        |  |
| 23    | С                            | 512 | CLA  | C4-C3-C5    | 3.34  | 120.89           | 115.27        |  |
| 25    | b                            | 618 | BCR  | C37-C22-C21 | -3.34 | 118.24           | 122.92        |  |
| 23    | В                            | 616 | CLA  | CED-O2D-CGD | 3.34  | 123.49           | 115.94        |  |
| 23    | А                            | 404 | CLA  | O2D-CGD-CBD | 3.33  | 117.19           | 111.27        |  |
| 23    | с                            | 510 | CLA  | CBC-CAC-C3C | -3.33 | 103.25           | 112.43        |  |
| 26    | a                            | 413 | SQD  | O48-C23-C24 | 3.33  | 122.36           | 111.91        |  |
| 23    | с                            | 509 | CLA  | C1-O2A-CGA  | 3.33  | 125.18           | 116.44        |  |
| 26    | А                            | 409 | SQD  | C45-O47-C7  | -3.33 | 109.60           | 117.79        |  |
| 25    | h                            | 102 | BCR  | C38-C26-C25 | -3.33 | 120.79           | 124.53        |  |
| 23    | С                            | 504 | CLA  | C4-C3-C5    | 3.32  | 120.85           | 115.27        |  |
| 23    | d                            | 403 | CLA  | C1D-CHD-C4C | -3.32 | 118.18           | 122.56        |  |
| 25    | А                            | 408 | BCR  | C38-C26-C25 | -3.32 | 120.80           | 124.53        |  |
| 23    | с                            | 512 | CLA  | CMA-C3A-C4A | -3.32 | 102.86           | 111.77        |  |
| 23    | С                            | 509 | CLA  | C1C-C2C-C3C | -3.31 | 103.47           | 106.96        |  |
| 23    | с                            | 506 | CLA  | C1D-CHD-C4C | -3.31 | 118.19           | 122.56        |  |
| 23    | С                            | 502 | CLA  | C3B-C4B-NB  | 3.31  | 113.49           | 109.21        |  |
| 29    | А                            | 413 | PL9  | C30-C29-C31 | 3.31  | 120.84           | 115.27        |  |
| 23    | с                            | 502 | CLA  | C3B-C4B-NB  | 3.31  | 113.49           | 109.21        |  |
| 38    | Е                            | 103 | HEM  | CBA-CAA-C2A | -3.31 | 106.39           | 112.49        |  |
| 23    | с                            | 501 | CLA  | C1D-CHD-C4C | -3.31 | 118.19           | 122.56        |  |
| 23    | С                            | 506 | CLA  | C1-C2-C3    | -3.30 | 120.33           | 126.04        |  |
| 23    | с                            | 502 | CLA  | CHD-C4C-NC  | 3.30  | 129.41           | 124.20        |  |
| 23    | b                            | 604 | CLA  | C1-C2-C3    | -3.30 | 120.34           | 126.04        |  |
| 23    | С                            | 514 | CLA  | C1C-C2C-C3C | -3.30 | 103.49           | 106.96        |  |
| 23    | В                            | 609 | CLA  | C4C-C3C-C2C | -3.30 | 102.09           | 106.90        |  |
| 23    | с                            | 510 | CLA  | C3B-C4B-NB  | 3.29  | 113.46           | 109.21        |  |
| 23    | b                            | 607 | CLA  | CAA-C2A-C3A | -3.29 | 103.78           | 112.78        |  |
| 23    | b                            | 609 | CLA  | C1D-CHD-C4C | -3.29 | 118.22           | 122.56        |  |
| 23    | b                            | 609 | CLA  | O2A-CGA-CBA | 3.29  | 122.22           | 111.91        |  |
| 23    | В                            | 617 | CLA  | CHD-C4C-NC  | 3.28  | 129.38           | 124.20        |  |
| 23    | с                            | 509 | CLA  | C3B-C4B-NB  | 3.28  | 113.45           | 109.21        |  |
| 23    | с                            | 505 | CLA  | C1D-CHD-C4C | -3.28 | 118.22           | 122.56        |  |
| 23    | с                            | 506 | CLA  | C1-C2-C3    | -3.28 | 120.37           | 126.04        |  |
| 23    | В                            | 615 | CLA  | CBC-CAC-C3C | -3.28 | 103.39           | 112.43        |  |
| 23    | D                            | 405 | CLA  | C4C-C3C-C2C | -3.28 | 102.12           | 106.90        |  |
| 29    | A                            | 413 | PL9  | C15-C14-C16 | 3.27  | 120.78           | 115.27        |  |
| 23    | b                            | 608 | CLA  | C1D-CHD-C4C | -3.27 | 118.24           | 122.56        |  |
| 23    | С                            | 504 | CLA  | C3B-C4B-NB  | 3.27  | 113.44           | 109.21        |  |
| 23    | С                            | 510 | CLA  | C1C-C2C-C3C | -3.27 | 103.52           | 106.96        |  |

*a*.... .1 f.



| 5GTI |  |
|------|--|
| 0011 |  |

| Conti | Continued from previous page |                |      |             |       |                  |               |  |
|-------|------------------------------|----------------|------|-------------|-------|------------------|---------------|--|
| Mol   | Chain                        | $\mathbf{Res}$ | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |  |
| 23    | с                            | 501            | CLA  | C1-C2-C3    | -3.26 | 120.40           | 126.04        |  |
| 23    | В                            | 605            | CLA  | C3B-C4B-NB  | 3.26  | 113.43           | 109.21        |  |
| 36    | b                            | 625            | HTG  | C1-O5-C5    | 3.26  | 118.59           | 112.58        |  |
| 38    | е                            | 103            | HEM  | CBD-CAD-C3D | -3.26 | 106.47           | 112.48        |  |
| 23    | b                            | 606            | CLA  | C3B-C4B-NB  | 3.26  | 113.42           | 109.21        |  |
| 23    | В                            | 603            | CLA  | O2D-CGD-O1D | -3.26 | 117.47           | 123.84        |  |
| 23    | А                            | 404            | CLA  | CMB-C2B-C3B | 3.26  | 130.77           | 124.68        |  |
| 25    | b                            | 618            | BCR  | C38-C26-C25 | -3.26 | 120.87           | 124.53        |  |
| 23    | с                            | 510            | CLA  | CMC-C2C-C1C | 3.26  | 130.00           | 125.04        |  |
| 23    | В                            | 613            | CLA  | C1C-C2C-C3C | -3.26 | 103.53           | 106.96        |  |
| 23    | d                            | 403            | CLA  | CMC-C2C-C1C | 3.25  | 130.00           | 125.04        |  |
| 25    | В                            | 619            | BCR  | C37-C22-C21 | -3.25 | 118.36           | 122.92        |  |
| 23    | С                            | 510            | CLA  | C1D-CHD-C4C | -3.25 | 118.27           | 122.56        |  |
| 23    | С                            | 502            | CLA  | CBC-CAC-C3C | -3.25 | 103.47           | 112.43        |  |
| 23    | D                            | 405            | CLA  | CHD-C4C-NC  | 3.25  | 129.33           | 124.20        |  |
| 25    | В                            | 620            | BCR  | C38-C26-C25 | -3.25 | 120.88           | 124.53        |  |
| 25    | А                            | 408            | BCR  | C24-C23-C22 | -3.25 | 121.33           | 126.23        |  |
| 23    | b                            | 616            | CLA  | C1C-C2C-C3C | -3.24 | 103.55           | 106.96        |  |
| 23    | А                            | 405            | CLA  | C3B-C4B-NB  | 3.24  | 113.40           | 109.21        |  |
| 23    | с                            | 505            | CLA  | C1C-C2C-C3C | -3.24 | 103.55           | 106.96        |  |
| 23    | В                            | 617            | CLA  | C3B-C4B-NB  | 3.24  | 113.39           | 109.21        |  |
| 23    | с                            | 503            | CLA  | C1-C2-C3    | -3.23 | 120.45           | 126.04        |  |
| 23    | с                            | 504            | CLA  | C1D-CHD-C4C | -3.23 | 118.29           | 122.56        |  |
| 23    | В                            | 602            | CLA  | C1-C2-C3    | -3.23 | 120.46           | 126.04        |  |
| 23    | с                            | 510            | CLA  | C3C-C4C-NC  | 3.23  | 114.19           | 110.57        |  |
| 24    | a                            | 407            | PHO  | C4D-CHA-C1A | -3.23 | 118.10           | 125.37        |  |
| 23    | С                            | 504            | CLA  | CHC-C1C-C2C | -3.23 | 117.79           | 126.72        |  |
| 23    | с                            | 512            | CLA  | O2D-CGD-O1D | -3.23 | 117.53           | 123.84        |  |
| 23    | С                            | 513            | CLA  | O2A-CGA-CBA | 3.23  | 122.03           | 111.91        |  |
| 23    | a                            | 409            | CLA  | CAC-C3C-C4C | 3.22  | 128.99           | 124.81        |  |
| 23    | с                            | 503            | CLA  | O2D-CGD-O1D | -3.22 | 117.54           | 123.84        |  |
| 29    | D                            | 407            | PL9  | C53-C6-C1   | 3.22  | 121.57           | 114.99        |  |
| 23    | b                            | 601            | CLA  | C4-C3-C5    | 3.22  | 120.68           | 115.27        |  |
| 23    | b                            | 612            | CLA  | O2D-CGD-O1D | -3.22 | 117.55           | 123.84        |  |
| 31    | е                            | 101            | LHG  | O7-C7-C8    | 3.22  | 118.43           | 111.50        |  |
| 31    | d                            | 407            | LHG  | O7-C7-C8    | 3.22  | 118.43           | 111.50        |  |
| 23    | В                            | 611            | CLA  | O2A-CGA-CBA | 3.22  | 122.00           | 111.91        |  |
| 23    | С                            | 511            | CLA  | O2D-CGD-O1D | -3.22 | 117.55           | 123.84        |  |
| 23    | с                            | 507            | CLA  | O2D-CGD-O1D | -3.22 | 117.55           | 123.84        |  |
| 23    | с                            | 512            | CLA  | C4-C3-C5    | 3.21  | 120.67           | 115.27        |  |
| 35    | b                            | 628            | LMT  | C1'-O5'-C5' | 3.21  | 119.99           | 113.69        |  |
| 23    | В                            | 605            | CLA  | O2A-CGA-CBA | 3.21  | 121.98           | 111.91        |  |
|       |                              |                |      |             |       | a 1              |               |  |



| 5GTI |  |
|------|--|
| 0011 |  |

| Conti | nued fron | ı previ | ous page |             |       |                  |               |
|-------|-----------|---------|----------|-------------|-------|------------------|---------------|
| Mol   | Chain     | Res     | Type     | Atoms       |       | $Observed(^{o})$ | $Ideal(^{o})$ |
| 23    | В         | 602     | CLA      | C1D-CHD-C4C | -3.21 | 118.33           | 122.56        |
| 23    | В         | 609     | CLA      | C1-C2-C3    | -3.21 | 120.50           | 126.04        |
| 23    | b         | 604     | CLA      | O2A-CGA-CBA | 3.21  | 121.97           | 111.91        |
| 23    | с         | 510     | CLA      | CAC-C3C-C4C | 3.20  | 128.97           | 124.81        |
| 23    | D         | 404     | CLA      | O2A-CGA-CBA | 3.20  | 121.96           | 111.91        |
| 23    | a         | 405     | CLA      | CHC-C1C-C2C | -3.20 | 117.86           | 126.72        |
| 23    | b         | 610     | CLA      | O2A-CGA-CBA | 3.20  | 121.95           | 111.91        |
| 23    | с         | 503     | CLA      | C3B-C4B-NB  | 3.20  | 113.35           | 109.21        |
| 23    | b         | 607     | CLA      | CAC-C3C-C4C | 3.20  | 128.96           | 124.81        |
| 23    | a         | 409     | CLA      | O2D-CGD-O1D | -3.20 | 117.58           | 123.84        |
| 23    | d         | 403     | CLA      | C1C-C2C-C3C | -3.20 | 103.59           | 106.96        |
| 35    | b         | 628     | LMT      | O5'-C1'-C2' | 3.20  | 117.12           | 110.35        |
| 23    | d         | 403     | CLA      | CHD-C4C-NC  | 3.20  | 129.24           | 124.20        |
| 23    | D         | 404     | CLA      | C3B-C4B-NB  | 3.20  | 113.34           | 109.21        |
| 23    | В         | 602     | CLA      | C3B-C4B-NB  | 3.20  | 113.34           | 109.21        |
| 23    | В         | 603     | CLA      | C3B-C4B-NB  | 3.20  | 113.34           | 109.21        |
| 23    | с         | 505     | CLA      | O2D-CGD-O1D | -3.20 | 117.59           | 123.84        |
| 23    | В         | 615     | CLA      | C4-C3-C5    | 3.19  | 120.64           | 115.27        |
| 29    | А         | 413     | PL9      | C27-C28-C29 | -3.19 | 119.97           | 127.66        |
| 23    | С         | 503     | CLA      | C3B-C4B-NB  | 3.19  | 113.34           | 109.21        |
| 23    | b         | 616     | CLA      | CHC-C1C-C2C | -3.19 | 117.90           | 126.72        |
| 23    | b         | 608     | CLA      | CHD-C4C-NC  | 3.19  | 129.23           | 124.20        |
| 23    | b         | 614     | CLA      | O2A-CGA-CBA | 3.19  | 121.91           | 111.91        |
| 25    | t         | 101     | BCR      | C3-C4-C5    | -3.19 | 108.39           | 114.08        |
| 23    | b         | 603     | CLA      | O2D-CGD-O1D | -3.19 | 117.61           | 123.84        |
| 23    | D         | 405     | CLA      | CMC-C2C-C1C | 3.18  | 129.89           | 125.04        |
| 29    | А         | 413     | PL9      | C22-C23-C24 | -3.18 | 120.01           | 127.66        |
| 23    | В         | 615     | CLA      | O2A-CGA-O1A | -3.18 | 115.57           | 123.59        |
| 23    | С         | 507     | CLA      | C4-C3-C5    | 3.17  | 120.61           | 115.27        |
| 23    | b         | 605     | CLA      | CAC-C3C-C4C | 3.17  | 128.92           | 124.81        |
| 23    | В         | 617     | CLA      | O2D-CGD-O1D | -3.17 | 117.64           | 123.84        |
| 34    | Z         | 101     | LMG      | C4-C3-C2    | 3.17  | 116.35           | 110.82        |
| 23    | b         | 607     | CLA      | C4C-C3C-C2C | -3.17 | 102.28           | 106.90        |
| 23    | В         | 610     | CLA      | C4C-C3C-C2C | -3.16 | 102.28           | 106.90        |
| 29    | a         | 415     | PL9      | C37-C38-C39 | -3.16 | 120.04           | 127.66        |
| 23    | с         | 502     | CLA      | CBC-CAC-C3C | -3.16 | 103.71           | 112.43        |
| 23    | D         | 401     | CLA      | CAA-C2A-C3A | -3.16 | 104.12           | 112.78        |
| 23    | b         | 613     | CLA      | CMB-C2B-C3B | 3.16  | 130.59           | 124.68        |
| 23    | С         | 510     | CLA      | C4C-C3C-C2C | -3.15 | 102.30           | 106.90        |
| 23    | В         | 604     | CLA      | O2A-CGA-CBA | 3.15  | 121.80           | 111.91        |
| 23    | b         | 608     | CLA      | O2D-CGD-O1D | -3.15 | 117.68           | 123.84        |
| 23    | с         | 508     | CLA      | C1D-CHD-C4C | -3.15 | 118.40           | 122.56        |



| 5GTI |  |
|------|--|
| 0011 |  |

| Conti                                                                                                                                      | nued fron                  | i previ                                                                           | ous page                                      | · · ·                                                                                             | 77                                                                                    |                                                                                                 | <b>T1</b> 1/0)                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Mol                                                                                                                                        | Chain                      | Kes                                                                               | Type                                          | Atoms                                                                                             | Z                                                                                     | Ubserved( <sup>o</sup> )                                                                        | Ideal(°)                                                                                               |
| 25                                                                                                                                         | k                          | 101                                                                               | BCR                                           | C29-C30-C25                                                                                       | 3.15                                                                                  | 115.33                                                                                          | 110.48                                                                                                 |
| 23                                                                                                                                         | C                          | 514                                                                               | CLA                                           | C2A-C1A-CHA                                                                                       | -3.15                                                                                 | 118.36                                                                                          | 123.86                                                                                                 |
| 23                                                                                                                                         | b                          | 614                                                                               | CLA                                           | C1C-C2C-C3C                                                                                       | -3.14                                                                                 | 103.65                                                                                          | 106.96                                                                                                 |
| 23                                                                                                                                         | a                          | 405                                                                               | CLA                                           | C4A-NA-C1A                                                                                        | -3.14                                                                                 | 105.29                                                                                          | 106.71                                                                                                 |
| 23                                                                                                                                         | В                          | 614                                                                               | CLA                                           | CAC-C3C-C4C                                                                                       | 3.14                                                                                  | 128.89                                                                                          | 124.81                                                                                                 |
| 23                                                                                                                                         | В                          | 611                                                                               | CLA                                           | CHD-C4C-NC                                                                                        | 3.14                                                                                  | 129.15                                                                                          | 124.20                                                                                                 |
| 23                                                                                                                                         | С                          | 507                                                                               | CLA                                           | CAC-C3C-C4C                                                                                       | 3.14                                                                                  | 128.88                                                                                          | 124.81                                                                                                 |
| 26                                                                                                                                         | А                          | 409                                                                               | SQD                                           | O48-C23-C24                                                                                       | 3.14                                                                                  | 121.75                                                                                          | 111.91                                                                                                 |
| 23                                                                                                                                         | с                          | 501                                                                               | CLA                                           | CHC-C1C-C2C                                                                                       | -3.14                                                                                 | 118.05                                                                                          | 126.72                                                                                                 |
| 23                                                                                                                                         | a                          | 406                                                                               | CLA                                           | C4C-C3C-C2C                                                                                       | -3.14                                                                                 | 102.33                                                                                          | 106.90                                                                                                 |
| 23                                                                                                                                         | В                          | 604                                                                               | CLA                                           | C4-C3-C5                                                                                          | 3.13                                                                                  | 120.54                                                                                          | 115.27                                                                                                 |
| 25                                                                                                                                         | Y                          | 101                                                                               | BCR                                           | C16-C15-C14                                                                                       | -3.13                                                                                 | 117.06                                                                                          | 123.47                                                                                                 |
| 23                                                                                                                                         | b                          | 609                                                                               | CLA                                           | CBC-CAC-C3C                                                                                       | -3.12                                                                                 | 103.82                                                                                          | 112.43                                                                                                 |
| 23                                                                                                                                         | С                          | 506                                                                               | CLA                                           | C4C-C3C-C2C                                                                                       | -3.12                                                                                 | 102.34                                                                                          | 106.90                                                                                                 |
| 23                                                                                                                                         | С                          | 503                                                                               | CLA                                           | C1D-CHD-C4C                                                                                       | -3.12                                                                                 | 118.44                                                                                          | 122.56                                                                                                 |
| 23                                                                                                                                         | В                          | 615                                                                               | CLA                                           | O2A-CGA-CBA                                                                                       | 3.12                                                                                  | 121.71                                                                                          | 111.91                                                                                                 |
| 26                                                                                                                                         | a                          | 413                                                                               | SQD                                           | O47-C7-C8                                                                                         | 3.12                                                                                  | 118.23                                                                                          | 111.50                                                                                                 |
| 23                                                                                                                                         | b                          | 613                                                                               | CLA                                           | C4C-C3C-C2C                                                                                       | -3.12                                                                                 | 102.35                                                                                          | 106.90                                                                                                 |
| 23                                                                                                                                         | с                          | 511                                                                               | CLA                                           | C4-C3-C5                                                                                          | 3.12                                                                                  | 120.52                                                                                          | 115.27                                                                                                 |
| 23                                                                                                                                         | С                          | 508                                                                               | CLA                                           | C4C-C3C-C2C                                                                                       | -3.12                                                                                 | 102.35                                                                                          | 106.90                                                                                                 |
| 26                                                                                                                                         | a                          | 411                                                                               | SQD                                           | C45-O47-C7                                                                                        | -3.12                                                                                 | 110.11                                                                                          | 117.79                                                                                                 |
| 34                                                                                                                                         | Ζ                          | 101                                                                               | LMG                                           | C3-C4-C5                                                                                          | 3.12                                                                                  | 115.80                                                                                          | 110.24                                                                                                 |
| 25                                                                                                                                         | у                          | 101                                                                               | BCR                                           | C40-C30-C25                                                                                       | -3.12                                                                                 | 105.25                                                                                          | 110.30                                                                                                 |
| 23                                                                                                                                         | a                          | 409                                                                               | CLA                                           | CAA-C2A-C3A                                                                                       | -3.11                                                                                 | 104.25                                                                                          | 112.78                                                                                                 |
| 23                                                                                                                                         | С                          | 513                                                                               | CLA                                           | CHD-C4C-NC                                                                                        | 3.11                                                                                  | 129.11                                                                                          | 124.20                                                                                                 |
| 25                                                                                                                                         | Н                          | 101                                                                               | BCR                                           | C38-C26-C25                                                                                       | -3.11                                                                                 | 121.03                                                                                          | 124.53                                                                                                 |
| 23                                                                                                                                         | В                          | 611                                                                               | CLA                                           | C1C-C2C-C3C                                                                                       | -3.11                                                                                 | 103.68                                                                                          | 106.96                                                                                                 |
| 34                                                                                                                                         | m                          | 101                                                                               | LMG                                           | O8-C28-C29                                                                                        | 3.11                                                                                  | 121.68                                                                                          | 111.91                                                                                                 |
| 40                                                                                                                                         | V                          | 202                                                                               | HEC                                           | CBA-CAA-C2A                                                                                       | -3.11                                                                                 | 106.74                                                                                          | 112.48                                                                                                 |
| 23                                                                                                                                         | В                          | 616                                                                               | CLA                                           | CMC-C2C-C1C                                                                                       | 3.11                                                                                  | 129.78                                                                                          | 125.04                                                                                                 |
| 23                                                                                                                                         | b                          | 610                                                                               | CLA                                           | C4C-C3C-C2C                                                                                       | -3.11                                                                                 | 102.36                                                                                          | 106.90                                                                                                 |
| 23                                                                                                                                         | В                          | 613                                                                               | CLA                                           | CAC-C3C-C4C                                                                                       | 3.11                                                                                  | 128.84                                                                                          | 124.81                                                                                                 |
| 23                                                                                                                                         | a                          | 404                                                                               | CLA                                           | O2D-CGD-CBD                                                                                       | 3.11                                                                                  | 116.79                                                                                          | 111.27                                                                                                 |
| 23                                                                                                                                         | В                          | 607                                                                               | CLA                                           | C3B-C4B-NB                                                                                        | 3.11                                                                                  | 113.23                                                                                          | 109.21                                                                                                 |
| 29                                                                                                                                         | A                          | 413                                                                               | PL9                                           | C20-C19-C21                                                                                       | 3.11                                                                                  | 120.50                                                                                          | 115.27                                                                                                 |
| 23                                                                                                                                         | D                          | 405                                                                               | CLA                                           | C3B-C4B-NB                                                                                        | 3.11                                                                                  | 113.22                                                                                          | 109.21                                                                                                 |
| 23                                                                                                                                         | с                          | 513                                                                               | CLA                                           | CAA-C2A-C3A                                                                                       | -3.11                                                                                 | 104.27                                                                                          | 112.78                                                                                                 |
| 23                                                                                                                                         | b                          | 602                                                                               | CLA                                           | CHD-C4C-NC                                                                                        | 3.11                                                                                  | 129.10                                                                                          | 124.20                                                                                                 |
| 23                                                                                                                                         | B                          | 606                                                                               | CLA                                           | CHD-C4C-NC                                                                                        | 3.10                                                                                  | 129.09                                                                                          | 124.20                                                                                                 |
| $\frac{-3}{23}$                                                                                                                            | C C                        | 501                                                                               | CLA                                           | C3B-C4B-NB                                                                                        | 3.10                                                                                  | 113.22                                                                                          | 109.21                                                                                                 |
| $\frac{-3}{23}$                                                                                                                            | Č                          | 512                                                                               | CLA                                           | CMC-C2C-C1C                                                                                       | 3.10                                                                                  | 129.76                                                                                          | 125.04                                                                                                 |
| $\frac{-5}{25}$                                                                                                                            | C                          | 527                                                                               | BCR                                           | C24-C23-C22                                                                                       | -3 10                                                                                 | 121.55                                                                                          | 126.23                                                                                                 |
| $     \begin{array}{r}       23 \\       23 \\       23 \\       23 \\       23 \\       23 \\       25 \\       25 \\       \end{array} $ | D<br>c<br>B<br>C<br>C<br>C | $ \begin{array}{r} 405 \\ 513 \\ 602 \\ 606 \\ 501 \\ 512 \\ 527 \\ \end{array} $ | CLA<br>CLA<br>CLA<br>CLA<br>CLA<br>CLA<br>BCR | C3B-C4B-NB<br>CAA-C2A-C3A<br>CHD-C4C-NC<br>CHD-C4C-NC<br>C3B-C4B-NB<br>CMC-C2C-C1C<br>C24-C23-C22 | $\begin{array}{r} 3.11 \\ -3.11 \\ 3.11 \\ 3.10 \\ 3.10 \\ 3.10 \\ -3.10 \end{array}$ | $ \begin{array}{r} 113.22\\ 104.27\\ 129.10\\ 129.09\\ 113.22\\ 129.76\\ 121.55\\ \end{array} $ | $ \begin{array}{r} 109.21 \\ 112.78 \\ 124.20 \\ 124.20 \\ 109.21 \\ 125.04 \\ 126.23 \\ \end{array} $ |

 $d f_{\alpha}$  $\alpha$ ntina


| 5GT | די |
|-----|----|
| 001 |    |

| Conti | nued fron | ı previ | ous page |             |       |                  |               |
|-------|-----------|---------|----------|-------------|-------|------------------|---------------|
| Mol   | Chain     | Res     | Type     | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
| 23    | с         | 505     | CLA      | C3B-C4B-NB  | 3.10  | 113.22           | 109.21        |
| 23    | b         | 608     | CLA      | C3B-C4B-NB  | 3.10  | 113.21           | 109.21        |
| 31    | А         | 415     | LHG      | O8-C23-O10  | -3.09 | 115.79           | 123.59        |
| 23    | b         | 616     | CLA      | CAC-C3C-C4C | 3.09  | 128.82           | 124.81        |
| 23    | b         | 613     | CLA      | O2A-CGA-CBA | 3.09  | 121.61           | 111.91        |
| 23    | С         | 514     | CLA      | C1-C2-C3    | -3.09 | 120.70           | 126.04        |
| 23    | с         | 506     | CLA      | CHC-C1C-C2C | -3.09 | 118.17           | 126.72        |
| 23    | b         | 606     | CLA      | CHD-C4C-NC  | 3.09  | 129.07           | 124.20        |
| 23    | с         | 504     | CLA      | CMB-C2B-C3B | 3.09  | 130.46           | 124.68        |
| 23    | b         | 616     | CLA      | OBD-CAD-C3D | -3.09 | 122.86           | 127.98        |
| 23    | с         | 507     | CLA      | CMC-C2C-C1C | 3.09  | 129.74           | 125.04        |
| 23    | b         | 602     | CLA      | C3B-C4B-NB  | 3.09  | 113.20           | 109.21        |
| 23    | В         | 605     | CLA      | C4C-C3C-C2C | -3.08 | 102.40           | 106.90        |
| 23    | b         | 605     | CLA      | CHD-C4C-NC  | 3.08  | 129.06           | 124.20        |
| 23    | С         | 502     | CLA      | CHC-C1C-C2C | -3.08 | 118.19           | 126.72        |
| 23    | А         | 404     | CLA      | C3B-C4B-NB  | 3.08  | 113.19           | 109.21        |
| 23    | b         | 614     | CLA      | C4C-C3C-C2C | -3.08 | 102.41           | 106.90        |
| 23    | b         | 601     | CLA      | CHD-C4C-NC  | 3.08  | 129.06           | 124.20        |
| 25    | с         | 515     | BCR      | С11-С10-С9  | -3.08 | 122.92           | 127.31        |
| 23    | a         | 405     | CLA      | CHD-C4C-NC  | 3.07  | 129.05           | 124.20        |
| 23    | b         | 603     | CLA      | O2A-CGA-CBA | 3.07  | 121.55           | 111.91        |
| 23    | С         | 510     | CLA      | CAC-C3C-C4C | 3.07  | 128.80           | 124.81        |
| 23    | В         | 615     | CLA      | CAC-C3C-C4C | 3.07  | 128.80           | 124.81        |
| 24    | D         | 402     | PHO      | C2B-C1B-NB  | 3.07  | 114.43           | 109.79        |
| 23    | d         | 402     | CLA      | O2A-CGA-CBA | 3.07  | 121.55           | 111.91        |
| 26    | L         | 102     | SQD      | C3-C4-C5    | 3.07  | 115.72           | 110.24        |
| 23    | С         | 509     | CLA      | C4-C3-C5    | 3.07  | 120.43           | 115.27        |
| 36    | b         | 622     | HTG      | O5-C1-C2    | 3.07  | 114.17           | 110.31        |
| 23    | с         | 509     | CLA      | O2A-CGA-CBA | 3.07  | 121.53           | 111.91        |
| 23    | В         | 605     | CLA      | O2D-CGD-O1D | -3.07 | 117.84           | 123.84        |
| 23    | В         | 610     | CLA      | C3B-C4B-NB  | 3.07  | 113.17           | 109.21        |
| 23    | D         | 404     | CLA      | C2A-C1A-CHA | -3.07 | 118.50           | 123.86        |
| 23    | С         | 507     | CLA      | CMC-C2C-C1C | 3.07  | 129.71           | 125.04        |
| 23    | В         | 606     | CLA      | C1C-C2C-C3C | -3.06 | 103.73           | 106.96        |
| 23    | b         | 612     | CLA      | CMB-C2B-C3B | 3.06  | 130.41           | 124.68        |
| 23    | С         | 514     | CLA      | CMC-C2C-C1C | 3.06  | 129.70           | 125.04        |
| 25    | Y         | 101     | BCR      | C37-C22-C23 | 3.06  | 122.90           | 118.08        |
| 23    | С         | 504     | CLA      | C4C-C3C-C2C | -3.06 | 102.44           | 106.90        |
| 24    | А         | 406     | PHO      | C1-O2A-CGA  | 3.06  | 124.47           | 116.44        |
| 23    | В         | 616     | CLA      | CHD-C4C-NC  | 3.06  | 129.02           | 124.20        |
| 26    | a         | 413     | SQD      | C3-C4-C5    | 3.06  | 115.69           | 110.24        |
| 23    | с         | 511     | CLA      | O2D-CGD-O1D | -3.06 | 117.86           | 123.84        |
|       |           |         |          |             |       | Continued on n   | ext page      |

PROTEIN DATA BANK

| Mol | Chain | Res | Type | Atoms       | Z     | $Observed(^{o})$ | Ideal(°) |
|-----|-------|-----|------|-------------|-------|------------------|----------|
| 29  | A     | 413 | PL9  | C42-C43-C44 | -3.06 | 120.30           | 127.66   |
| 23  | С     | 507 | CLA  | CBC-CAC-C3C | -3.06 | 104.00           | 112.43   |
| 25  | a     | 410 | BCR  | C24-C23-C22 | -3.05 | 121.62           | 126.23   |
| 23  | с     | 509 | CLA  | C4C-C3C-C2C | -3.05 | 102.45           | 106.90   |
| 23  | с     | 506 | CLA  | C4C-C3C-C2C | -3.05 | 102.45           | 106.90   |
| 23  | С     | 512 | CLA  | C1D-CHD-C4C | -3.05 | 118.53           | 122.56   |
| 23  | с     | 511 | CLA  | CHD-C4C-NC  | 3.05  | 129.01           | 124.20   |
| 23  | с     | 513 | CLA  | CAC-C3C-C4C | 3.05  | 128.77           | 124.81   |
| 29  | d     | 405 | PL9  | C35-C34-C36 | 3.05  | 120.40           | 115.27   |
| 23  | с     | 513 | CLA  | CMC-C2C-C1C | 3.05  | 129.68           | 125.04   |
| 25  | с     | 515 | BCR  | C38-C26-C25 | -3.05 | 121.10           | 124.53   |
| 23  | b     | 606 | CLA  | C4-C3-C5    | 3.05  | 120.40           | 115.27   |
| 23  | b     | 612 | CLA  | C4C-C3C-C2C | -3.05 | 102.45           | 106.90   |
| 23  | В     | 603 | CLA  | CHC-C1C-C2C | -3.05 | 118.29           | 126.72   |
| 23  | С     | 512 | CLA  | CMB-C2B-C3B | 3.05  | 130.38           | 124.68   |
| 36  | b     | 621 | HTG  | C1-O5-C5    | 3.04  | 118.19           | 112.58   |
| 23  | С     | 505 | CLA  | O2D-CGD-O1D | -3.04 | 117.89           | 123.84   |
| 23  | D     | 401 | CLA  | C4-C3-C5    | 3.04  | 120.39           | 115.27   |
| 23  | b     | 613 | CLA  | C3B-C4B-NB  | 3.04  | 113.14           | 109.21   |
| 23  | b     | 602 | CLA  | CAA-C2A-C3A | -3.03 | 104.47           | 112.78   |
| 34  | С     | 520 | LMG  | O8-C28-C29  | 3.03  | 121.42           | 111.91   |
| 23  | В     | 612 | CLA  | C1-C2-C3    | -3.03 | 120.80           | 126.04   |
| 23  | b     | 613 | CLA  | CHD-C4C-NC  | 3.03  | 128.98           | 124.20   |
| 23  | С     | 514 | CLA  | C4C-C3C-C2C | -3.03 | 102.48           | 106.90   |
| 23  | А     | 404 | CLA  | CAA-C2A-C1A | -3.03 | 102.05           | 111.97   |
| 26  | a     | 413 | SQD  | O9-S-C6     | 3.03  | 110.54           | 106.94   |
| 23  | В     | 604 | CLA  | O2D-CGD-O1D | -3.03 | 117.92           | 123.84   |
| 23  | a     | 404 | CLA  | O2A-CGA-CBA | 3.03  | 121.41           | 111.91   |
| 23  | b     | 616 | CLA  | O2A-CGA-CBA | 3.03  | 121.41           | 111.91   |
| 23  | С     | 503 | CLA  | C1-C2-C3    | -3.03 | 120.81           | 126.04   |
| 23  | d     | 402 | CLA  | O2D-CGD-O1D | -3.02 | 117.92           | 123.84   |
| 23  | А     | 407 | CLA  | CMB-C2B-C3B | 3.02  | 130.33           | 124.68   |
| 23  | b     | 601 | CLA  | C3B-C4B-NB  | 3.02  | 113.11           | 109.21   |
| 23  | с     | 504 | CLA  | CHC-C1C-C2C | -3.02 | 118.38           | 126.72   |
| 25  | Т     | 101 | BCR  | C35-C13-C12 | 3.02  | 122.83           | 118.08   |
| 25  | d     | 404 | BCR  | C15-C14-C13 | -3.02 | 123.01           | 127.31   |
| 23  | a     | 404 | CLA  | O2A-CGA-O1A | -3.01 | 115.99           | 123.59   |
| 23  | a     | 405 | CLA  | C1-C2-C3    | -3.01 | 120.83           | 126.04   |
| 23  | C     | 509 | CLA  | CHC-C1C-C2C | -3.01 | 118.39           | 126.72   |
| 25  | b     | 618 | BCR  | C20-C21-C22 | -3.01 | 123.01           | 127.31   |
| 23  | С     | 511 | CLA  | O2A-CGA-CBA | 3.01  | 121.36           | 111.91   |
| 23  | b     | 602 | CLA  | CMC-C2C-C1C | 3.01  | 129.62           | 125.04   |

Continued from previous page...



| 5GTL |
|------|
|------|

| Continued from previous page |       |     |      |             |              |             |          |  |
|------------------------------|-------|-----|------|-------------|--------------|-------------|----------|--|
| Mol                          | Chain | Kes | Type | Atoms       |              | Ubserved(°) | Ideal(") |  |
| 23                           | В     | 608 | CLA  | CAA-C2A-C3A | -3.01        | 104.55      | 112.78   |  |
| 23                           | c     | 501 | CLA  | C4D-C3D-CAD | -3.01        | 106.79      | 108.47   |  |
| 25                           | B     | 620 | BCR  | C15-C14-C13 | -3.00        | 123.02      | 127.31   |  |
| 23                           | В     | 605 | CLA  | C1D-CHD-C4C | -3.00        | 118.59      | 122.56   |  |
| 23                           | с     | 502 | CLA  | CMB-C2B-C3B | 3.00         | 130.30      | 124.68   |  |
| 23                           | с     | 506 | CLA  | C4-C3-C5    | 3.00         | 120.32      | 115.27   |  |
| 34                           | с     | 519 | LMG  | O8-C28-C29  | 3.00         | 121.32      | 111.91   |  |
| 23                           | a     | 406 | CLA  | CHC-C1C-C2C | -3.00        | 118.43      | 126.72   |  |
| 25                           | В     | 620 | BCR  | C7-C8-C9    | -3.00        | 121.70      | 126.23   |  |
| 23                           | В     | 604 | CLA  | CAA-C2A-C3A | -3.00        | 104.57      | 112.78   |  |
| 23                           | С     | 513 | CLA  | CMC-C2C-C1C | 2.99         | 129.60      | 125.04   |  |
| 23                           | b     | 604 | CLA  | C3B-C4B-NB  | 2.99         | 113.08      | 109.21   |  |
| 23                           | с     | 512 | CLA  | CHD-C4C-NC  | 2.99         | 128.92      | 124.20   |  |
| 23                           | В     | 604 | CLA  | C3B-C4B-NB  | 2.99         | 113.08      | 109.21   |  |
| 23                           | В     | 614 | CLA  | C1D-CHD-C4C | -2.99        | 118.61      | 122.56   |  |
| 23                           | D     | 404 | CLA  | C4C-C3C-C2C | -2.99        | 102.54      | 106.90   |  |
| 23                           | b     | 603 | CLA  | CHD-C4C-NC  | 2.99         | 128.91      | 124.20   |  |
| 23                           | b     | 605 | CLA  | O2A-CGA-CBA | 2.98         | 121.27      | 111.91   |  |
| 23                           | А     | 407 | CLA  | CHD-C4C-NC  | 2.98         | 128.91      | 124.20   |  |
| 31                           | D     | 408 | LHG  | O8-C23-O10  | -2.98        | 116.07      | 123.59   |  |
| 23                           | с     | 506 | CLA  | O2D-CGD-O1D | -2.98        | 118.01      | 123.84   |  |
| 23                           | b     | 616 | CLA  | O2D-CGD-O1D | -2.98        | 118.01      | 123.84   |  |
| 25                           | с     | 515 | BCR  | C3-C4-C5    | -2.98        | 108.75      | 114.08   |  |
| 23                           | В     | 607 | CLA  | O2A-CGA-CBA | 2.98         | 121.26      | 111.91   |  |
| 37                           | С     | 517 | DGD  | O6D-C1D-O3G | -2.98        | 102.92      | 109.97   |  |
| 23                           | В     | 611 | CLA  | CAA-C2A-C3A | -2.98        | 104.62      | 112.78   |  |
| 24                           | D     | 402 | PHO  | O2D-CGD-O1D | -2.98        | 118.02      | 123.84   |  |
| 23                           | b     | 611 | CLA  | C4C-C3C-C2C | -2.98        | 102.56      | 106.90   |  |
| 23                           | В     | 616 | CLA  | CHC-C1C-C2C | -2.98        | 118.49      | 126.72   |  |
| 23                           | с     | 513 | CLA  | C3B-C4B-NB  | 2.98         | 113.06      | 109.21   |  |
| 36                           | В     | 624 | HTG  | C1'-S1-C1   | 2.98         | 105.66      | 100.09   |  |
| 23                           | В     | 604 | CLA  | CHD-C4C-NC  | 2.97         | 128.89      | 124.20   |  |
| 23                           | В     | 616 | CLA  | CAC-C3C-C4C | 2.97         | 128.67      | 124.81   |  |
| 23                           | С     | 502 | CLA  | C4-C3-C5    | 2.97         | 120.27      | 115.27   |  |
| 23                           | D     | 404 | CLA  | CMC-C2C-C1C | 2.97         | 129.56      | 125.04   |  |
| 25                           | A     | 408 | BCR  | C11-C10-C9  | -2.97        | 123.07      | 127.31   |  |
| 23                           | b     | 610 | CLA  | C4-C3-C5    | 2.97         | 120.27      | 115.27   |  |
| $\frac{-3}{23}$              | B     | 605 | CLA  | 02A-CGA-01A | -2.97        | 116.10      | 123.59   |  |
| $\frac{-3}{23}$              | B     | 603 | CLA  | C4C-C3C-C2C | -2.97        | 102 57      | 106.90   |  |
| $\frac{-20}{35}$             | M     | 101 | LMT  | C1-O1'-C1'  | -2.97        | 108.92      | 113.84   |  |
| 24                           | D     | 402 | PHO  | C4D-ND-C1D  | -2.97        | 101.42      | 106 76   |  |
| 29                           | 2     | 415 | PLO  | C25-C24-C26 | 2.01<br>2.97 | 120.26      | 115 27   |  |
| 29                           | a     | 410 | PL9  | 023-024-026 | 2.97         | 120.20      | 110.27   |  |

Continued for . .



| Continued from previous page |       |     |      |             |       |                  |          |  |
|------------------------------|-------|-----|------|-------------|-------|------------------|----------|--|
| Mol                          | Chain | Res | Type | Atoms       |       | $Observed(^{o})$ | Ideal(°) |  |
| 23                           | b     | 601 | CLA  | O2D-CGD-O1D | -2.97 | 118.04           | 123.84   |  |
| 23                           | D     | 405 | CLA  | C1C-C2C-C3C | -2.97 | 103.84           | 106.96   |  |
| 34                           | m     | 101 | LMG  | C7-O1-C1    | -2.96 | 107.95           | 113.74   |  |
| 25                           | Т     | 101 | BCR  | C16-C15-C14 | 2.96  | 129.54           | 123.47   |  |
| 23                           | b     | 609 | CLA  | CHD-C4C-NC  | 2.96  | 128.87           | 124.20   |  |
| 24                           | D     | 402 | PHO  | CAC-C3C-C4C | 2.96  | 128.45           | 125.22   |  |
| 23                           | d     | 403 | CLA  | C4C-C3C-C2C | -2.96 | 102.58           | 106.90   |  |
| 24                           | D     | 402 | PHO  | C6-C5-C3    | -2.96 | 105.69           | 113.45   |  |
| 23                           | d     | 403 | CLA  | O2A-CGA-CBA | 2.96  | 121.19           | 111.91   |  |
| 23                           | с     | 503 | CLA  | C4C-C3C-C2C | -2.96 | 102.58           | 106.90   |  |
| 25                           | h     | 102 | BCR  | C7-C8-C9    | -2.96 | 121.77           | 126.23   |  |
| 23                           | А     | 405 | CLA  | C1D-CHD-C4C | -2.96 | 118.66           | 122.56   |  |
| 23                           | с     | 501 | CLA  | C4C-C3C-C2C | -2.95 | 102.59           | 106.90   |  |
| 23                           | D     | 404 | CLA  | C4-C3-C5    | 2.95  | 120.24           | 115.27   |  |
| 23                           | с     | 508 | CLA  | C4C-C3C-C2C | -2.95 | 102.60           | 106.90   |  |
| 23                           | В     | 613 | CLA  | C4-C3-C5    | 2.95  | 120.23           | 115.27   |  |
| 23                           | С     | 512 | CLA  | C4C-C3C-C2C | -2.95 | 102.60           | 106.90   |  |
| 25                           | с     | 515 | BCR  | C2-C1-C6    | 2.95  | 115.02           | 110.48   |  |
| 23                           | с     | 508 | CLA  | O2A-CGA-CBA | 2.95  | 121.16           | 111.91   |  |
| 23                           | с     | 504 | CLA  | C4C-C3C-C2C | -2.95 | 102.60           | 106.90   |  |
| 23                           | В     | 614 | CLA  | C4-C3-C5    | 2.95  | 120.23           | 115.27   |  |
| 23                           | a     | 406 | CLA  | CAA-C2A-C3A | -2.94 | 104.71           | 112.78   |  |
| 25                           | a     | 410 | BCR  | C37-C22-C21 | -2.94 | 118.80           | 122.92   |  |
| 23                           | С     | 510 | CLA  | CHD-C4C-NC  | 2.94  | 128.84           | 124.20   |  |
| 23                           | D     | 404 | CLA  | O2D-CGD-O1D | -2.94 | 118.08           | 123.84   |  |
| 23                           | b     | 610 | CLA  | CAA-C2A-C3A | -2.94 | 104.72           | 112.78   |  |
| 23                           | b     | 605 | CLA  | CHC-C1C-C2C | -2.94 | 118.58           | 126.72   |  |
| 23                           | В     | 602 | CLA  | C4C-C3C-C2C | -2.94 | 102.61           | 106.90   |  |
| 23                           | с     | 510 | CLA  | O2A-CGA-CBA | 2.94  | 121.13           | 111.91   |  |
| 23                           | В     | 616 | CLA  | CBC-CAC-C3C | -2.94 | 104.33           | 112.43   |  |
| 23                           | b     | 603 | CLA  | O2A-CGA-O1A | -2.94 | 116.18           | 123.59   |  |
| 23                           | В     | 602 | CLA  | CHD-C4C-NC  | 2.94  | 128.83           | 124.20   |  |
| 23                           | A     | 407 | CLA  | C4C-C3C-C2C | -2.94 | 102.62           | 106.90   |  |
| 23                           | b     | 615 | CLA  | C4C-C3C-C2C | -2.94 | 102.62           | 106.90   |  |
| 23                           | b     | 607 | CLA  | CHC-C1C-C2C | -2.94 | 118.60           | 126.72   |  |
| 25                           | С     | 527 | BCR  | C20-C21-C22 | -2.94 | 123.12           | 127.31   |  |
| 23                           | A     | 405 | CLA  | O2A-CGA-O1A | -2.93 | 116.19           | 123.59   |  |
| 23                           | b     | 605 | CLA  | CMC-C2C-C1C | 2.93  | 129.51           | 125.04   |  |
| 23                           | С     | 514 | CLA  | CAC-C3C-C4C | 2.93  | 128.61           | 124.81   |  |
| 23                           | B     | 603 | CLA  | C1D-CHD-C4C | -2.93 | 118.69           | 122.56   |  |
| 23                           | D     | 404 | CLA  | O2A-CGA-O1A | -2.93 | 116.20           | 123.59   |  |
| 23                           | b     | 602 | CLA  | C1-C2-C3    | -2.93 | 120.98           | 126.04   |  |

Continu d fa . .



| Continued from previous page |   |     |     |             |       |             |          |
|------------------------------|---|-----|-----|-------------|-------|-------------|----------|
|                              |   | res |     | Atoms       |       | Ubserved(°) | 10eai(°) |
| 23                           |   | 505 | CLA | UHU-UIU-U2U | -2.93 | 118.62      | 120.72   |
| 31                           | D | 409 | LHG | 08-C23-C24  | 2.93  | 121.10      | 111.91   |
| 23                           | B | 608 | CLA | CID-CHD-C4C | -2.93 | 118.69      | 122.56   |
| 23                           | В | 610 | CLA | O2A-CGA-CBA | 2.93  | 121.09      | 111.91   |
| 23                           | В | 607 | CLA | C4C-C3C-C2C | -2.93 | 102.63      | 106.90   |
| 23                           | b | 605 | CLA | C2A-C1A-CHA | -2.92 | 118.75      | 123.86   |
| 23                           | С | 510 | CLA | C4-C3-C5    | 2.92  | 120.19      | 115.27   |
| 23                           | d | 403 | CLA | CAC-C3C-C4C | 2.92  | 128.60      | 124.81   |
| 37                           | h | 103 | DGD | O1G-C1A-O1A | -2.92 | 116.22      | 123.59   |
| 23                           | d | 402 | CLA | C1D-CHD-C4C | -2.92 | 118.71      | 122.56   |
| 23                           | A | 405 | CLA | CHC-C1C-C2C | -2.92 | 118.66      | 126.72   |
| 23                           | В | 604 | CLA | C4C-C3C-C2C | -2.92 | 102.65      | 106.90   |
| 23                           | С | 504 | CLA | O2A-CGA-CBA | 2.91  | 121.05      | 111.91   |
| 25                           | С | 516 | BCR | C33-C5-C6   | -2.91 | 121.26      | 124.53   |
| 23                           | с | 512 | CLA | C4C-C3C-C2C | -2.91 | 102.66      | 106.90   |
| 23                           | b | 611 | CLA | O2A-CGA-CBA | 2.91  | 121.04      | 111.91   |
| 23                           | b | 613 | CLA | CMC-C2C-C1C | 2.91  | 129.47      | 125.04   |
| 23                           | с | 510 | CLA | CHC-C1C-C2C | -2.91 | 118.68      | 126.72   |
| 23                           | В | 602 | CLA | O2A-CGA-CBA | 2.91  | 121.03      | 111.91   |
| 34                           | Z | 101 | LMG | O8-C28-C29  | 2.91  | 121.03      | 111.91   |
| 23                           | с | 507 | CLA | C1-C2-C3    | -2.91 | 121.01      | 126.04   |
| 23                           | b | 609 | CLA | CAC-C3C-C4C | 2.91  | 128.58      | 124.81   |
| 23                           | А | 407 | CLA | C1D-CHD-C4C | -2.91 | 118.72      | 122.56   |
| 23                           | В | 603 | CLA | CAC-C3C-C4C | 2.91  | 128.58      | 124.81   |
| 23                           | b | 608 | CLA | C4C-C3C-C2C | -2.90 | 102.66      | 106.90   |
| 23                           | b | 604 | CLA | C4C-C3C-C2C | -2.90 | 102.66      | 106.90   |
| 23                           | С | 509 | CLA | CMB-C2B-C3B | 2.90  | 130.11      | 124.68   |
| 23                           | с | 511 | CLA | C4C-C3C-C2C | -2.90 | 102.67      | 106.90   |
| 23                           | b | 603 | CLA | CMC-C2C-C1C | 2.90  | 129.46      | 125.04   |
| 23                           | b | 605 | CLA | C4C-C3C-C2C | -2.90 | 102.67      | 106.90   |
| 23                           | b | 614 | CLA | O2A-CGA-O1A | -2.90 | 116.27      | 123.59   |
| 24                           | А | 406 | PHO | C4C-C3C-C2C | -2.90 | 103.57      | 106.78   |
| 23                           | с | 503 | CLA | CHC-C1C-C2C | -2.90 | 118.70      | 126.72   |
| 31                           | b | 630 | LHG | O8-C23-C24  | 2.90  | 121.01      | 111.91   |
| 23                           | a | 404 | CLA | CHD-C4C-NC  | 2.90  | 128.77      | 124.20   |
| 23                           | b | 605 | CLA | C4-C3-C5    | 2.90  | 120.15      | 115.27   |
| 25                           | y | 101 | BCR | C23-C24-C25 | -2.90 | 119.06      | 127.20   |
| 23                           | b | 610 | CLA | CHD-C4C-NC  | 2.90  | 128.77      | 124.20   |
| 23                           | с | 507 | CLA | CAC-C3C-C4C | 2.89  | 128.57      | 124.81   |
| 23                           | A | 405 | CLA | O2A-CGA-CBA | 2.89  | 120.99      | 111.91   |
| 23                           | С | 510 | CLA | C3B-C4B-NB  | 2.89  | 112.95      | 109.21   |
| 23                           | b | 612 | CLA | C4-C3-C5    | 2.89  | 120.14      | 115.27   |

Continu d fa 



|       | nucu 11011<br>Chain | i previ    | Type       | Atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7        | Observed <sup>(0)</sup> | Ideal(0) |
|-------|---------------------|------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------|----------|
| 10101 |                     | 105        | туре       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u> |                         | 111 00   |
| 29    |                     | 400        |            | $\begin{array}{c} 0.00 \\ 0.012 \\ 0.012 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ $ | -2.89    | 102.38                  | 111.88   |
| 29    |                     | 407        | PL9<br>CLA | C12-C13-C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.89    | 120.70                  | 127.00   |
| 23    |                     | 003<br>007 | CLA<br>CLA | CBC-CAC-C3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.89    | 104.47                  | 112.43   |
| 23    | d<br>D              | <u>607</u> | DCD        | C4D-C3D-CAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.89    | 100.80                  | 108.47   |
| 25    |                     | 527        | BCR        | C3-C4-C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -2.88    | 108.93                  | 114.08   |
| 23    | D                   | 401        | CLA        | C1-C2-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -2.88    | 121.06                  | 126.04   |
| 36    | b                   | 621        | HIG        | 05-C1-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.88     | 113.94                  | 110.31   |
| 23    | A                   | 405        | CLA        | O2D-CGD-OID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.88    | 118.21                  | 123.84   |
| 29    | D                   | 407        | PL9        | <u>C7-C3-C4</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.88     | 119.22                  | 116.88   |
| 34    | J                   | 101        | LMG        | 08-C28-C29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.88     | 120.94                  | 111.91   |
| 23    | В                   | 607        | CLA        | CHD-C4C-NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.88     | 128.74                  | 124.20   |
| 23    | C                   | 507        | CLA        | C2A-C1A-CHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.88    | 118.83                  | 123.86   |
| 37    | с                   | 516        | DGD        | C2G-O2G-C1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.88    | 110.70                  | 117.79   |
| 23    | b                   | 604        | CLA        | CAC-C3C-C4C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.87     | 128.54                  | 124.81   |
| 23    | с                   | 512        | CLA        | CHB-C4A-NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.87     | 128.49                  | 124.51   |
| 23    | b                   | 614        | CLA        | CAC-C3C-C4C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.87     | 128.54                  | 124.81   |
| 36    | В                   | 626        | HTG        | O5-C1-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.87     | 113.92                  | 110.31   |
| 23    | b                   | 609        | CLA        | CMC-C2C-C1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.87     | 129.41                  | 125.04   |
| 23    | С                   | 507        | CLA        | O2A-CGA-CBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.87     | 120.91                  | 111.91   |
| 23    | А                   | 404        | CLA        | CAA-CBA-CGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.87    | 104.88                  | 113.25   |
| 31    | А                   | 415        | LHG        | C5-O7-C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -2.87    | 110.73                  | 117.79   |
| 23    | С                   | 512        | CLA        | CHC-C1C-C2C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.87    | 118.79                  | 126.72   |
| 23    | b                   | 612        | CLA        | C2A-C1A-CHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.87    | 118.85                  | 123.86   |
| 40    | V                   | 201        | HEC        | CBA-CAA-C2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.86    | 107.20                  | 112.48   |
| 23    | С                   | 514        | CLA        | CHD-C4C-NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.86     | 128.71                  | 124.20   |
| 23    | с                   | 510        | CLA        | CHD-C4C-NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.86     | 128.71                  | 124.20   |
| 25    | b                   | 619        | BCR        | C39-C30-C25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.86    | 105.66                  | 110.30   |
| 23    | С                   | 502        | CLA        | C4D-C3D-CAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.86    | 106.88                  | 108.47   |
| 23    | С                   | 508        | CLA        | CMC-C2C-C1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.86     | 129.39                  | 125.04   |
| 23    | С                   | 502        | CLA        | CAC-C3C-C4C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.86     | 128.52                  | 124.81   |
| 23    | В                   | 617        | CLA        | C1C-C2C-C3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.85    | 103.96                  | 106.96   |
| 36    | С                   | 524        | HTG        | C1-S1-C1'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.85     | 110.19                  | 100.40   |
| 37    | с                   | 518        | DGD        | O2G-C1B-C2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.85     | 117.65                  | 111.50   |
| 23    | с                   | 512        | CLA        | CHC-C1C-C2C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.85    | 118.84                  | 126.72   |
| 29    | A                   | 413        | PL9        | C17-C18-C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.85    | 120.80                  | 127.66   |
| 24    | D                   | 402        | PHO        | CHC-C1C-C2C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.85    | 118.56                  | 125.73   |
| 23    | В                   | 602        | CLA        | CHC-C1C-C2C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.85    | 118.84                  | 126.72   |
| 25    | D                   | 406        | BCR        | C40-C30-C25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.85    | 105.68                  | 110.30   |
| 23    | с                   | 511        | CLA        | O2A-CGA-CBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.85     | 120.84                  | 111.91   |
| 25    | В                   | 620        | BCR        | C20-C21-C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.85    | 123.25                  | 127.31   |
| 23    | b                   | 604        | CLA        | O2D-CGD-O1D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.84    | 118.28                  | 123.84   |
| 23    | С                   | 509        | CLA        | C1-C2-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -2.84    | 121.12                  | 126.04   |

Continu d fa onic



| Conti                                                                                   | Continued from previous page              |                                                                                                                                                               |                                                             |                                                                                                                             |                                                                                                                                                                                                               |                                                                                                                                                                                                |                                                                                                                                 |  |  |
|-----------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|
| Mol                                                                                     | Chain                                     | Res                                                                                                                                                           | Type                                                        | Atoms                                                                                                                       | Z                                                                                                                                                                                                             | $\mathbf{Observed}(^{o})$                                                                                                                                                                      | $Ideal(^{o})$                                                                                                                   |  |  |
| 23                                                                                      | В                                         | 604                                                                                                                                                           | CLA                                                         | CBC-CAC-C3C                                                                                                                 | -2.84                                                                                                                                                                                                         | 104.59                                                                                                                                                                                         | 112.43                                                                                                                          |  |  |
| 34                                                                                      | В                                         | 622                                                                                                                                                           | LMG                                                         | O8-C28-C29                                                                                                                  | 2.84                                                                                                                                                                                                          | 120.83                                                                                                                                                                                         | 111.91                                                                                                                          |  |  |
| 24                                                                                      | a                                         | 407                                                                                                                                                           | PHO                                                         | CBD-CHA-C1A                                                                                                                 | 2.84                                                                                                                                                                                                          | 132.99                                                                                                                                                                                         | 126.40                                                                                                                          |  |  |
| 23                                                                                      | С                                         | 507                                                                                                                                                           | CLA                                                         | C3B-C4B-NB                                                                                                                  | 2.84                                                                                                                                                                                                          | 112.88                                                                                                                                                                                         | 109.21                                                                                                                          |  |  |
| 23                                                                                      | a                                         | 404                                                                                                                                                           | CLA                                                         | CHC-C1C-C2C                                                                                                                 | -2.84                                                                                                                                                                                                         | 118.86                                                                                                                                                                                         | 126.72                                                                                                                          |  |  |
| 25                                                                                      | Н                                         | 101                                                                                                                                                           | BCR                                                         | C11-C10-C9                                                                                                                  | -2.84                                                                                                                                                                                                         | 123.26                                                                                                                                                                                         | 127.31                                                                                                                          |  |  |
| 23                                                                                      | с                                         | 513                                                                                                                                                           | CLA                                                         | C4C-C3C-C2C                                                                                                                 | -2.84                                                                                                                                                                                                         | 102.76                                                                                                                                                                                         | 106.90                                                                                                                          |  |  |
| 23                                                                                      | a                                         | 409                                                                                                                                                           | CLA                                                         | C4C-C3C-C2C                                                                                                                 | -2.84                                                                                                                                                                                                         | 102.76                                                                                                                                                                                         | 106.90                                                                                                                          |  |  |
| 23                                                                                      | b                                         | 608                                                                                                                                                           | CLA                                                         | CMB-C2B-C3B                                                                                                                 | 2.84                                                                                                                                                                                                          | 129.99                                                                                                                                                                                         | 124.68                                                                                                                          |  |  |
| 23                                                                                      | В                                         | 605                                                                                                                                                           | CLA                                                         | C4-C3-C5                                                                                                                    | 2.84                                                                                                                                                                                                          | 120.04                                                                                                                                                                                         | 115.27                                                                                                                          |  |  |
| 26                                                                                      | А                                         | 411                                                                                                                                                           | SQD                                                         | O48-C23-C24                                                                                                                 | 2.84                                                                                                                                                                                                          | 120.81                                                                                                                                                                                         | 111.91                                                                                                                          |  |  |
| 29                                                                                      | D                                         | 407                                                                                                                                                           | PL9                                                         | C37-C38-C39                                                                                                                 | -2.84                                                                                                                                                                                                         | 120.83                                                                                                                                                                                         | 127.66                                                                                                                          |  |  |
| 25                                                                                      | А                                         | 408                                                                                                                                                           | BCR                                                         | C20-C21-C22                                                                                                                 | -2.83                                                                                                                                                                                                         | 123.26                                                                                                                                                                                         | 127.31                                                                                                                          |  |  |
| 34                                                                                      | с                                         | 520                                                                                                                                                           | LMG                                                         | O8-C28-C29                                                                                                                  | 2.83                                                                                                                                                                                                          | 120.80                                                                                                                                                                                         | 111.91                                                                                                                          |  |  |
| 23                                                                                      | с                                         | 505                                                                                                                                                           | CLA                                                         | C1-C2-C3                                                                                                                    | -2.83                                                                                                                                                                                                         | 121.14                                                                                                                                                                                         | 126.04                                                                                                                          |  |  |
| 23                                                                                      | А                                         | 405                                                                                                                                                           | CLA                                                         | CBC-CAC-C3C                                                                                                                 | -2.83                                                                                                                                                                                                         | 104.62                                                                                                                                                                                         | 112.43                                                                                                                          |  |  |
| 25                                                                                      | t                                         | 101                                                                                                                                                           | BCR                                                         | C21-C20-C19                                                                                                                 | -2.83                                                                                                                                                                                                         | 114.38                                                                                                                                                                                         | 123.22                                                                                                                          |  |  |
| 25                                                                                      | с                                         | 514                                                                                                                                                           | BCR                                                         | C37-C22-C21                                                                                                                 | -2.83                                                                                                                                                                                                         | 118.96                                                                                                                                                                                         | 122.92                                                                                                                          |  |  |
| 23                                                                                      | С                                         | 511                                                                                                                                                           | CLA                                                         | C4C-C3C-C2C                                                                                                                 | -2.83                                                                                                                                                                                                         | 102.78                                                                                                                                                                                         | 106.90                                                                                                                          |  |  |
| 23                                                                                      | b                                         | 616                                                                                                                                                           | CLA                                                         | C4-C3-C5                                                                                                                    | 2.83                                                                                                                                                                                                          | 120.03                                                                                                                                                                                         | 115.27                                                                                                                          |  |  |
| 26                                                                                      | A                                         | 409                                                                                                                                                           | SQD                                                         | O9-S-C6                                                                                                                     | 2.83                                                                                                                                                                                                          | 110.30                                                                                                                                                                                         | 106.94                                                                                                                          |  |  |
| 23                                                                                      | В                                         | 605                                                                                                                                                           | CLA                                                         | CMC-C2C-C1C                                                                                                                 | 2.83                                                                                                                                                                                                          | 129.34                                                                                                                                                                                         | 125.04                                                                                                                          |  |  |
| 23                                                                                      | С                                         | 508                                                                                                                                                           | CLA                                                         | C1-C2-C3                                                                                                                    | -2.83                                                                                                                                                                                                         | 121.16                                                                                                                                                                                         | 126.04                                                                                                                          |  |  |
| 23                                                                                      | с                                         | 501                                                                                                                                                           | CLA                                                         | C4-C3-C5                                                                                                                    | 2.82                                                                                                                                                                                                          | 120.02                                                                                                                                                                                         | 115.27                                                                                                                          |  |  |
| 36                                                                                      | b                                         | 625                                                                                                                                                           | HTG                                                         | O5-C5-C4                                                                                                                    | 2.82                                                                                                                                                                                                          | 114.82                                                                                                                                                                                         | 109.69                                                                                                                          |  |  |
| 23                                                                                      | b                                         | 601                                                                                                                                                           | CLA                                                         | CHC-C1C-C2C                                                                                                                 | -2.82                                                                                                                                                                                                         | 118.91                                                                                                                                                                                         | 126.72                                                                                                                          |  |  |
| 34                                                                                      | a                                         | 417                                                                                                                                                           | LMG                                                         | O6-C5-C4                                                                                                                    | 2.82                                                                                                                                                                                                          | 114.82                                                                                                                                                                                         | 109.69                                                                                                                          |  |  |
| 25                                                                                      | D                                         | 406                                                                                                                                                           | BCR                                                         | C28-C27-C26                                                                                                                 | -2.82                                                                                                                                                                                                         | 109.04                                                                                                                                                                                         | 114.08                                                                                                                          |  |  |
| 23                                                                                      | с                                         | 504                                                                                                                                                           | CLA                                                         | C4-C3-C5                                                                                                                    | 2.82                                                                                                                                                                                                          | 120.02                                                                                                                                                                                         | 115.27                                                                                                                          |  |  |
| 23                                                                                      | В                                         | 612                                                                                                                                                           | CLA                                                         | CBC-CAC-C3C                                                                                                                 | -2.82                                                                                                                                                                                                         | 104.65                                                                                                                                                                                         | 112.43                                                                                                                          |  |  |
| 23                                                                                      | b                                         | 608                                                                                                                                                           | CLA                                                         | CMC-C2C-C1C                                                                                                                 | 2.82                                                                                                                                                                                                          | 129.34                                                                                                                                                                                         | 125.04                                                                                                                          |  |  |
| 24                                                                                      | D                                         | 402                                                                                                                                                           | PHO                                                         | C4D-CHA-C1A                                                                                                                 | -2.82                                                                                                                                                                                                         | 119.02                                                                                                                                                                                         | 125.37                                                                                                                          |  |  |
| 23                                                                                      | b                                         | 605                                                                                                                                                           | CLA                                                         | CED-O2D-CGD                                                                                                                 | 2.82                                                                                                                                                                                                          | 122.32                                                                                                                                                                                         | 115.94                                                                                                                          |  |  |
| 25                                                                                      | t                                         | 101                                                                                                                                                           | BCR                                                         | C1-C6-C7                                                                                                                    | 2.82                                                                                                                                                                                                          | 123.76                                                                                                                                                                                         | 115.78                                                                                                                          |  |  |
| 24                                                                                      | A                                         | 406                                                                                                                                                           | PHO                                                         | C1C-C2C-C3C                                                                                                                 | -2.82                                                                                                                                                                                                         | 103.27                                                                                                                                                                                         | 106.51                                                                                                                          |  |  |
| 23                                                                                      | c                                         | 506                                                                                                                                                           | CLA                                                         | CGD-CBD-CAD                                                                                                                 | -2.82                                                                                                                                                                                                         | 101.60                                                                                                                                                                                         | 110.73                                                                                                                          |  |  |
| 23                                                                                      | c                                         | 512                                                                                                                                                           | CLA                                                         | C3B-C4B-NB                                                                                                                  | 2.82                                                                                                                                                                                                          | 112.85                                                                                                                                                                                         | 109.21                                                                                                                          |  |  |
| 37                                                                                      | c                                         | 516                                                                                                                                                           | DGD                                                         | 03G-C3G-C2G                                                                                                                 | -2.82                                                                                                                                                                                                         | 104.10                                                                                                                                                                                         | 110.90                                                                                                                          |  |  |
| 23                                                                                      | Ā                                         | 404                                                                                                                                                           | CLA                                                         | CHD-C4C-NC                                                                                                                  | 2.82                                                                                                                                                                                                          | 128.64                                                                                                                                                                                         | 124.20                                                                                                                          |  |  |
| $\frac{-3}{23}$                                                                         | b                                         | 606                                                                                                                                                           | CLA                                                         | C4C-C3C-C2C                                                                                                                 | -2.82                                                                                                                                                                                                         | 102.79                                                                                                                                                                                         | 106.90                                                                                                                          |  |  |
| 35                                                                                      | Č                                         | 522                                                                                                                                                           | LMT                                                         | 01B-C4'-C3'                                                                                                                 | 2.82                                                                                                                                                                                                          | 114.78                                                                                                                                                                                         | 107.28                                                                                                                          |  |  |
| 23                                                                                      | h                                         | 605                                                                                                                                                           | CLA                                                         | <u>C1-C2-C3</u>                                                                                                             | -2.82                                                                                                                                                                                                         | 121.17                                                                                                                                                                                         | 126.04                                                                                                                          |  |  |
| $ \begin{array}{r} 23\\ 25\\ 24\\ 23\\ 23\\ 37\\ 23\\ 23\\ 35\\ 23\\ 23\\ \end{array} $ | t<br>A<br>c<br>c<br>c<br>A<br>b<br>C<br>b | $     \begin{array}{r}       101 \\       406 \\       506 \\       512 \\       516 \\       404 \\       606 \\       522 \\       605 \\     \end{array} $ | BCR<br>PHO<br>CLA<br>CLA<br>DGD<br>CLA<br>CLA<br>LMT<br>CLA | C1-C6-C7<br>C1C-C2C-C3C<br>CGD-CBD-CAD<br>C3B-C4B-NB<br>O3G-C3G-C2G<br>CHD-C4C-NC<br>C4C-C3C-C2C<br>O1B-C4'-C3'<br>C1-C2-C3 | $\begin{array}{c} 2.82 \\ \hline 2.82 \\ \hline -2.82 \\ \hline 2.82 \\ \hline -2.82 \\ \hline 2.82 \\ \hline 2.82 \\ \hline -2.82 \\ \hline 2.82 \\ \hline 2.82 \\ \hline -2.82 \\ \hline -2.82 \end{array}$ | $\begin{array}{r} 122.52 \\ \hline 123.76 \\ \hline 103.27 \\ \hline 101.60 \\ \hline 112.85 \\ \hline 104.10 \\ \hline 128.64 \\ \hline 102.79 \\ \hline 114.78 \\ \hline 121.17 \end{array}$ | $\begin{array}{r} 115.74 \\ 115.78 \\ 106.51 \\ 110.73 \\ 109.21 \\ 110.90 \\ 124.20 \\ 106.90 \\ 107.28 \\ 126.04 \end{array}$ |  |  |



| 5GT | די |
|-----|----|
| 001 |    |

| Conti                        | nued fron   | n previ           | ous page          |                                           |                                                              |                                          |                                                                                                          |
|------------------------------|-------------|-------------------|-------------------|-------------------------------------------|--------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Mol                          | Chain       | Res               | Type              | Atoms                                     |                                                              | $Observed(^{o})$                         | $Ideal(^{o})$                                                                                            |
| 23                           | С           | 507               | CLA               | C1D-CHD-C4C                               | -2.81                                                        | 118.84                                   | 122.56                                                                                                   |
| 23                           | A           | 404               | CLA               | CAC-C3C-C4C                               | 2.81                                                         | 128.46                                   | 124.81                                                                                                   |
| 25                           | с           | 514               | BCR               | C38-C26-C25                               | -2.81                                                        | 121.37                                   | 124.53                                                                                                   |
| 23                           | В           | 609               | CLA               | O2A-CGA-O1A                               | -2.81                                                        | 116.50                                   | 123.59                                                                                                   |
| 23                           | С           | 503               | CLA               | CHC-C1C-C2C                               | -2.81                                                        | 118.95                                   | 126.72                                                                                                   |
| 23                           | с           | 502               | CLA               | CHC-C1C-C2C                               | -2.81                                                        | 118.95                                   | 126.72                                                                                                   |
| 23                           | С           | 507               | CLA               | O2D-CGD-O1D                               | -2.81                                                        | 118.35                                   | 123.84                                                                                                   |
| 23                           | В           | 614               | CLA               | CHC-C1C-C2C                               | -2.81                                                        | 118.96                                   | 126.72                                                                                                   |
| 23                           | b           | 602               | CLA               | C11-C10-C8                                | -2.80                                                        | 106.86                                   | 115.92                                                                                                   |
| 23                           | d           | 403               | CLA               | O2A-CGA-O1A                               | -2.80                                                        | 116.52                                   | 123.59                                                                                                   |
| 23                           | b           | 610               | CLA               | CMB-C2B-C3B                               | 2.80                                                         | 129.92                                   | 124.68                                                                                                   |
| 23                           | b           | 605               | CLA               | O2A-CGA-O1A                               | -2.80                                                        | 116.53                                   | 123.59                                                                                                   |
| 25                           | у           | 101               | BCR               | C28-C27-C26                               | -2.80                                                        | 109.08                                   | 114.08                                                                                                   |
| 25                           | k           | 101               | BCR               | C3-C4-C5                                  | -2.80                                                        | 109.08                                   | 114.08                                                                                                   |
| 23                           | В           | 613               | CLA               | CMB-C2B-C3B                               | 2.80                                                         | 129.91                                   | 124.68                                                                                                   |
| 23                           | с           | 507               | CLA               | C4C-C3C-C2C                               | -2.80                                                        | 102.82                                   | 106.90                                                                                                   |
| 23                           | b           | 608               | CLA               | C1-C2-C3                                  | -2.80                                                        | 121.21                                   | 126.04                                                                                                   |
| 23                           | с           | 506               | CLA               | C4D-C3D-CAD                               | -2.80                                                        | 106.91                                   | 108.47                                                                                                   |
| 23                           | В           | 609               | CLA               | O2A-CGA-CBA                               | 2.79                                                         | 120.68                                   | 111.91                                                                                                   |
| 23                           | с           | 506               | CLA               | O2A-CGA-CBA                               | 2.79                                                         | 120.67                                   | 111.91                                                                                                   |
| 25                           | А           | 408               | BCR               | C7-C8-C9                                  | -2.79                                                        | 122.02                                   | 126.23                                                                                                   |
| 23                           | С           | 507               | CLA               | CHC-C1C-C2C                               | -2.79                                                        | 119.00                                   | 126.72                                                                                                   |
| 23                           | В           | 617               | CLA               | O2A-CGA-CBA                               | 2.79                                                         | 120.67                                   | 111.91                                                                                                   |
| 23                           | В           | 606               | CLA               | C3B-C4B-NB                                | 2.79                                                         | 112.82                                   | 109.21                                                                                                   |
| 23                           | В           | 607               | CLA               | CHC-C1C-C2C                               | -2.79                                                        | 119.01                                   | 126.72                                                                                                   |
| 36                           | В           | 629               | HTG               | C1-O5-C5                                  | 2.79                                                         | 117.72                                   | 112.58                                                                                                   |
| 31                           | d           | 406               | LHG               | O8-C23-O10                                | -2.78                                                        | 116.56                                   | 123.59                                                                                                   |
| 23                           | b           | 612               | CLA               | O2A-CGA-O1A                               | -2.78                                                        | 116.56                                   | 123.59                                                                                                   |
| 25                           | A           | 408               | BCR               | C8-C7-C6                                  | -2.78                                                        | 119.39                                   | 127.20                                                                                                   |
| 25                           | b           | 618               | BCR               | C29-C30-C25                               | 2.78                                                         | 114.76                                   | 110.48                                                                                                   |
| 25                           | с           | 514               | BCR               | C28-C27-C26                               | -2.78                                                        | 109.11                                   | 114.08                                                                                                   |
| 36                           | b           | 623               | HTG               | O5-C1-C2                                  | 2.78                                                         | 113.81                                   | 110.31                                                                                                   |
| 25                           | С           | 515               | BCR               | C7-C8-C9                                  | -2.78                                                        | 122.04                                   | 126.23                                                                                                   |
| 23                           | В           | 610               | CLA               | C1-C2-C3                                  | -2.78                                                        | 121.24                                   | 126.04                                                                                                   |
| 23                           | В           | 608               | CLA               | CED-O2D-CGD                               | 2.78                                                         | 122.22                                   | 115.94                                                                                                   |
| 23                           | С           | 514               | CLA               | C3B-C4B-NB                                | 2.78                                                         | 112.80                                   | 109.21                                                                                                   |
| 26                           | В           | 621               | SQD               | O48-C23-C24                               | 2.78                                                         | 120.62                                   | 111.91                                                                                                   |
| 23                           | b           | 606               | CLA               | CMC-C2C-C1C                               | 2.78                                                         | 129.27                                   | 125.04                                                                                                   |
| 31                           | D           | 408               | LHG               | 07-C7-C8                                  | 2.77                                                         | 117.48                                   | 111.50                                                                                                   |
| 23                           | C           | 513               | CLA               | C4C-C3C-C2C                               | -2.77                                                        | 102.85                                   | 106.90                                                                                                   |
| 23                           | C           | 511               | CLA               | CAC-C3C-C4C                               | 2.77                                                         | 128.41                                   | 124.81                                                                                                   |
| 23                           | C           | 503               | CLA               | C4C-C3C-C2C                               | -2.77                                                        | 102.86                                   | 106.90                                                                                                   |
| 23           23           23 | C<br>C<br>C | 513<br>511<br>503 | CLA<br>CLA<br>CLA | C4C-C3C-C2C<br>CAC-C3C-C4C<br>C4C-C3C-C2C | $ \begin{array}{r} -2.77\\ 2.77\\ -2.77\\ -2.77\end{array} $ | 102.85           128.41           102.86 | $     \begin{array}{r}       111.00 \\       106.90 \\       124.81 \\       106.90 \\     \end{array} $ |

a... .1 L.



|                 | Chain    | l preui | Uus puye   | Atoms                                                                                    | Z                 | Observed $(^{o})$ | Ideal(°)         |
|-----------------|----------|---------|------------|------------------------------------------------------------------------------------------|-------------------|-------------------|------------------|
| 23              | С        | 507     |            | CHD C4C NC                                                                               | 2 77              | 128 57            | 124.20           |
| $\frac{23}{23}$ | B        | 615     |            | CHD-C4C-NC                                                                               | 2.11<br>2.77      | 128.57<br>128.57  | 124.20<br>124.20 |
| $\frac{20}{26}$ | D<br>D   | 413     | SOD        | 0.17-0.40-100                                                                            | -2.11             | 117.01            | 124.20<br>123.70 |
| $\frac{20}{25}$ | t D      | 101     | BCB        | $C_{20} C_{21} C_{22}$                                                                   | 2.11<br>2.77      | 193.36            | 125.70<br>197.31 |
| $\frac{20}{24}$ |          | 402     | PHO        | $\begin{array}{c} 020 - 021 - 022 \\ \hline 010 \ 020 \ 021 - 022 \\ \hline \end{array}$ | -2.11<br>2.77     | 103 33            | 127.51<br>106 51 |
| 24              | B        | 613     |            | $\frac{010-020-030}{020}$                                                                | -2.11<br>9.77     | 100.50            | 100.01           |
| 20              | D        | 405     |            | $\frac{O2A-CGA-CDA}{C2A-CTA-CHA}$                                                        | 2.11<br>9.77      | 120.09            | 111.91           |
| 20<br>          | d        | 400     |            | CHC C1C C2C                                                                              | -2.11<br>2.77     | 119.02            | 125.00<br>126.72 |
| $\frac{20}{23}$ | u<br>B   | 616     |            | $\frac{C4D}{C4D} \frac{C3D}{C4D} \frac{C4D}{C4D}$                                        | -2.11<br>9.77     | 106.03            | 120.72<br>108.47 |
| 20              | D        | 502     |            | CHD CAC NC                                                                               | -2.11<br>2.76     | 100.95            | 100.47           |
| 20              | b        | 600     |            | C2R C4R NR                                                                               | 2.10              | 112.30            | 124.20<br>100.21 |
| 25              | D        | 618     | BCB        | $\frac{\text{C3D-C4D-IND}}{\text{C3D-C3D-C35}}$                                          | 2.70              | 112.70            | 109.21<br>110.48 |
| 20<br>02        | D        | 604     |            | CUC C1C C20                                                                              | 2.10              | 114.75            | 110.40<br>126.72 |
| 20<br>02        | D        | 606     |            | 000000000000000000000000000000000000                                                     | -2.70             | 119.09            | 120.72           |
| 23              | B<br>D   | 606     |            | OBD-CAD-C3D                                                                              | -2.70             | 123.40            | 127.98           |
| 23              | B        | 500     | CLA<br>CLA | CZA-CIA-CHA                                                                              | -2.70             | 119.04            | 123.80           |
| 23              |          | 503     | DLO        | $\begin{array}{c} CAC-C3C-C4C \\ \hline CAC-C3C-C4C \\ \hline \end{array}$               | 2.75              | 128.38            | 124.81           |
| 29              | <u>a</u> | 405     | PL9<br>CLA | C40-C39-C41                                                                              | 2.75              | 119.90            | 115.27           |
| 23              | D        | 604     | CLA        | 02A-CGA-OIA                                                                              | -2.75             | 110.04            | 123.59           |
| 23              | B        | 608     | CLA        | C3B-C4B-NB                                                                               | 2.75              | 112.77            | 109.21           |
| 23              | b        | 609     | CLA        | $\begin{array}{c} C4C-C3C-C2C \\ \hline C4C-C3C-C2C \\ \hline \end{array}$               | -2.75             | 102.89            | 106.90           |
| 23              | A        | 405     | CLA        | CAC-C3C-C4C                                                                              | 2.75              | 128.38            | 124.81           |
| 25              | b        | 619     | BCR        | C4-C5-C6                                                                                 | -2.75             | 118.74            | 122.73           |
| 23              | В        | 610     | CLA        | CMC-C2C-CIC                                                                              | 2.75              | 129.22            | 125.04           |
| 23              | d        | 403     | CLA        | C2A-CIA-CHA                                                                              | -2.75             | 119.06            | 123.86           |
| 23              | B        | 610     | CLA        | C1D-CHD-C4C                                                                              | -2.75             | 118.94            | 122.56           |
| 23              | C        | 506     | CLA        | C4-C3-C5                                                                                 | 2.75              | 119.89            | 115.27           |
| 26              | f        | 101     | SQD        | C4-C3-C2                                                                                 | -2.74             | 106.03            | 110.82           |
| 23              | В        | 609     | CLA        | CHC-C1C-C2C                                                                              | -2.74             | 119.13            | 126.72           |
| 25              | С        | 514     | BCR        | C35-C13-C14                                                                              | -2.74             | 119.08            | 122.92           |
| 23              | B        | 611     | CLA        | C3B-C4B-NB                                                                               | 2.74              | 112.75            | 109.21           |
| 25              | A        | 408     | BCR        | C37-C22-C21                                                                              | -2.74             | 119.08            | 122.92           |
| 24              | a        | 407     | PHO        | C2B-C1B-NB                                                                               | 2.74              | 113.92            | 109.79           |
| 24              | D        | 402     | PHO        | C2A-C1A-NA                                                                               | 2.74              | 115.00            | 111.86           |
| 23              | b        | 610     | CLA        | O2D-CGD-O1D                                                                              | -2.74             | 118.48            | 123.84           |
| 23              | b        | 603     | CLA        | C4-C3-C5                                                                                 | 2.74              | 119.88            | 115.27           |
| 23              | с        | 511     | CLA        | CHC-C1C-C2C                                                                              | -2.74             | 119.15            | 126.72           |
| 23              | d        | 403     | CLA        | C3B-C4B-NB                                                                               | 2.74              | 112.75            | 109.21           |
| 31              | А        | 415     | LHG        | O8-C23-C24                                                                               | 2.74              | 120.49            | 111.91           |
| 31              | E        | 101     | LHG        | O8-C23-C24                                                                               | $2.7\overline{4}$ | 120.49            | 111.91           |
| 23              | a        | 409     | CLA        | $C1-C2-\overline{C3}$                                                                    | -2.74             | 121.31            | 126.04           |
| 23              | b        | 603     | CLA        | CHC-C1C-C2C                                                                              | -2.73             | 119.16            | 126.72           |
| 29              | d        | 405     | PL9        | C7-C8-C9                                                                                 | -2.73             | 122.24            | 126.79           |

romin Continued fr



|    | nuea fron | n previ | ous page |             | 7     | $\mathbf{O}$ has $\mathbf{n} = \mathbf{d}(0)$ | Idec1(0) |
|----|-----------|---------|----------|-------------|-------|-----------------------------------------------|----------|
|    |           | res     |          | Atoms       |       |                                               | 10eai(°) |
| 23 | C         | 506     | CLA      | CHD-C4C-NC  | 2.73  | 128.51                                        | 124.20   |
| 29 | D         | 407     | PL9      | C51-C49-C50 | 2.73  | 120.64                                        | 114.60   |
| 23 | C         | 512     | CLA      | O2A-CGA-CBA | 2.73  | 120.48                                        | 111.91   |
| 35 | В         | 633     | LMT      | 05'-C5'-C4' | 2.73  | 115.51                                        | 109.75   |
| 25 | d         | 404     | BCR      | C23-C24-C25 | -2.73 | 119.55                                        | 127.20   |
| 31 | d         | 408     | LHG      | O8-C23-C24  | 2.73  | 120.46                                        | 111.91   |
| 25 | A         | 408     | BCR      | C33-C5-C6   | -2.72 | 121.47                                        | 124.53   |
| 23 | D         | 401     | CLA      | CBC-CAC-C3C | -2.72 | 104.93                                        | 112.43   |
| 29 | d         | 405     | PL9      | C37-C38-C39 | -2.72 | 121.11                                        | 127.66   |
| 23 | b         | 611     | CLA      | O2A-CGA-O1A | -2.72 | 116.72                                        | 123.59   |
| 25 | с         | 514     | BCR      | C2-C1-C6    | 2.72  | 114.67                                        | 110.48   |
| 23 | a         | 409     | CLA      | CHC-C1C-C2C | -2.72 | 119.20                                        | 126.72   |
| 23 | b         | 611     | CLA      | CAC-C3C-C4C | 2.72  | 128.34                                        | 124.81   |
| 29 | a         | 415     | PL9      | C35-C34-C36 | 2.72  | 119.84                                        | 115.27   |
| 23 | С         | 503     | CLA      | CHD-C4C-NC  | 2.72  | 128.49                                        | 124.20   |
| 23 | С         | 506     | CLA      | O2D-CGD-O1D | -2.71 | 118.53                                        | 123.84   |
| 23 | d         | 402     | CLA      | CBC-CAC-C3C | -2.71 | 104.95                                        | 112.43   |
| 23 | b         | 602     | CLA      | C4C-C3C-C2C | -2.71 | 102.95                                        | 106.90   |
| 29 | А         | 413     | PL9      | C35-C34-C36 | 2.71  | 119.83                                        | 115.27   |
| 23 | b         | 607     | CLA      | O2A-CGA-O1A | -2.71 | 116.75                                        | 123.59   |
| 23 | В         | 608     | CLA      | CBC-CAC-C3C | -2.71 | 104.96                                        | 112.43   |
| 23 | В         | 606     | CLA      | O2A-CGA-O1A | -2.71 | 116.76                                        | 123.59   |
| 24 | a         | 407     | PHO      | C2C-C1C-NC  | 2.71  | 113.88                                        | 109.79   |
| 29 | a         | 415     | PL9      | C20-C19-C21 | 2.71  | 119.83                                        | 115.27   |
| 23 | b         | 601     | CLA      | C4C-C3C-C2C | -2.71 | 102.95                                        | 106.90   |
| 24 | D         | 402     | PHO      | C3C-C4C-NC  | 2.71  | 114.48                                        | 110.28   |
| 23 | D         | 404     | CLA      | CHC-C1C-C2C | -2.71 | 119.23                                        | 126.72   |
| 23 | с         | 504     | CLA      | CMC-C2C-C1C | 2.71  | 129.16                                        | 125.04   |
| 25 | a         | 410     | BCR      | C38-C26-C25 | -2.71 | 121.49                                        | 124.53   |
| 37 | С         | 517     | DGD      | C4E-C3E-C2E | -2.70 | 106.10                                        | 110.82   |
| 23 | b         | 604     | CLA      | CHD-C4C-NC  | 2.70  | 128.46                                        | 124.20   |
| 23 | С         | 506     | CLA      | CMC-C2C-C1C | 2.70  | 129.16                                        | 125.04   |
| 25 | В         | 619     | BCR      | C36-C18-C19 | 2.70  | 122.33                                        | 118.08   |
| 23 | с         | 508     | CLA      | C2A-C1A-CHA | -2.70 | 119.14                                        | 123.86   |
| 23 | b         | 606     | CLA      | CHC-C1C-C2C | -2.70 | 119.25                                        | 126.72   |
| 29 | A         | 413     | PL9      | C25-C24-C26 | 2.70  | 119.81                                        | 115.27   |
| 23 | В         | 610     | CLA      | CHD-C4C-NC  | 2.70  | 128.46                                        | 124.20   |
| 23 | b         | 603     | CLA      | C4C-C3C-C2C | -2.70 | 102.97                                        | 106.90   |
| 23 | c         | 502     | CLA      | O2A-CGA-CBA | 2.70  | 120.37                                        | 111.91   |
| 26 | D         | 413     | SOD      | O5-C5-C4    | 2.70  | 114.59                                        | 109.69   |
| 23 | A         | 404     | CLA      | C4-C3-C5    | 2.70  | 119.81                                        | 115.27   |
| 23 | A         | 405     | CLA      | CAA-C2A-C3A | -2.70 | 105.39                                        | 112.78   |

Continu d fa 



| 5GT | די |
|-----|----|
| 001 |    |

|     | nuea fron | n previ | ous page | • • •       |       |                  |          |
|-----|-----------|---------|----------|-------------|-------|------------------|----------|
| Mol | Chain     | Res     | Type     | Atoms       | Z     | $Observed(^{o})$ | Ideal(°) |
| 23  | С         | 506     | CLA      | CHC-C1C-C2C | -2.70 | 119.27           | 126.72   |
| 23  | b         | 610     | CLA      | C2A-C1A-CHA | -2.70 | 119.15           | 123.86   |
| 23  | b         | 616     | CLA      | C4D-C3D-CAD | -2.70 | 106.97           | 108.47   |
| 23  | a         | 404     | CLA      | O2D-CGD-O1D | -2.69 | 118.57           | 123.84   |
| 23  | a         | 406     | CLA      | C4-C3-C5    | 2.69  | 119.80           | 115.27   |
| 23  | с         | 506     | CLA      | CAA-C2A-C3A | -2.69 | 105.40           | 112.78   |
| 23  | В         | 602     | CLA      | O2D-CGD-O1D | -2.69 | 118.57           | 123.84   |
| 23  | b         | 607     | CLA      | C4-C3-C5    | 2.69  | 119.80           | 115.27   |
| 23  | В         | 607     | CLA      | C2A-C1A-CHA | -2.69 | 119.15           | 123.86   |
| 29  | а         | 415     | PL9      | C10-C9-C11  | 2.69  | 119.80           | 115.27   |
| 23  | В         | 617     | CLA      | CBC-CAC-C3C | -2.69 | 105.01           | 112.43   |
| 23  | В         | 603     | CLA      | O2A-CGA-CBA | 2.69  | 120.35           | 111.91   |
| 23  | b         | 610     | CLA      | O2A-CGA-O1A | -2.69 | 116.81           | 123.59   |
| 23  | b         | 608     | CLA      | O2A-CGA-CBA | 2.69  | 120.34           | 111.91   |
| 29  | D         | 407     | PL9      | C15-C14-C16 | 2.69  | 119.79           | 115.27   |
| 25  | t         | 101     | BCR      | C7-C6-C5    | -2.69 | 114.95           | 121.46   |
| 24  | А         | 406     | PHO      | C1-C2-C3    | -2.69 | 121.40           | 126.04   |
| 23  | a         | 409     | CLA      | C2A-C1A-CHA | -2.69 | 119.16           | 123.86   |
| 23  | b         | 610     | CLA      | C3B-C4B-NB  | 2.68  | 112.68           | 109.21   |
| 23  | с         | 513     | CLA      | O2A-CGA-CBA | 2.68  | 120.33           | 111.91   |
| 23  | А         | 407     | CLA      | CAA-C2A-C3A | -2.68 | 105.43           | 112.78   |
| 23  | D         | 405     | CLA      | CAC-C3C-C4C | 2.68  | 128.29           | 124.81   |
| 31  | L         | 101     | LHG      | O8-C23-C24  | 2.68  | 120.33           | 111.91   |
| 24  | А         | 406     | PHO      | CHC-C1C-C2C | -2.68 | 118.98           | 125.73   |
| 25  | Н         | 101     | BCR      | C29-C30-C25 | 2.68  | 114.61           | 110.48   |
| 23  | В         | 604     | CLA      | C2A-C1A-CHA | -2.68 | 119.17           | 123.86   |
| 23  | С         | 502     | CLA      | C4C-C3C-C2C | -2.68 | 102.99           | 106.90   |
| 23  | b         | 608     | CLA      | CBC-CAC-C3C | -2.68 | 105.04           | 112.43   |
| 29  | d         | 405     | PL9      | C53-C6-C1   | 2.68  | 120.47           | 114.99   |
| 23  | b         | 612     | CLA      | CHD-C4C-NC  | 2.68  | 128.42           | 124.20   |
| 25  | t         | 101     | BCR      | C37-C22-C21 | -2.68 | 119.17           | 122.92   |
| 24  | A         | 406     | PHO      | C4D-CHA-C1A | -2.67 | 119.35           | 125.37   |
| 23  | В         | 613     | CLA      | CMC-C2C-C1C | 2.67  | 129.11           | 125.04   |
| 23  | a         | 404     | CLA      | C2A-C1A-CHA | -2.67 | 119.19           | 123.86   |
| 23  | С         | 505     | CLA      | C1-C2-C3    | -2.67 | 121.42           | 126.04   |
| 23  | b         | 614     | CLA      | CHC-C1C-C2C | -2.67 | 119.33           | 126.72   |
| 23  | В         | 610     | CLA      | CHC-C1C-C2C | -2.67 | 119.34           | 126.72   |
| 23  | В         | 611     | CLA      | CAC-C3C-C4C | 2.67  | 128.27           | 124.81   |
| 25  | b         | 618     | BCR      | C37-C22-C23 | 2.67  | 122.28           | 118.08   |
| 23  | С         | 505     | CLA      | C4C-C3C-C2C | -2.67 | 103.01           | 106.90   |
| 37  | C         | 519     | DGD      | O1G-C1A-C2A | 2.67  | 120.28           | 111.91   |
| 37  | с         | 518     | DGD      | O1G-C1A-C2A | 2.67  | 120.28           | 111.91   |

Continu od fa onic



| 5GT | די |
|-----|----|
| 001 |    |

| Continued from previous page |       |     |      |             |           |                  |               |  |
|------------------------------|-------|-----|------|-------------|-----------|------------------|---------------|--|
| Mol                          | Chain | Res | Type | Atoms       |           | $Observed(^{o})$ | $Ideal(^{o})$ |  |
| 23                           | b     | 613 | CLA  | O2A-CGA-O1A | -2.67     | 116.86           | 123.59        |  |
| 25                           | В     | 620 | BCR  | C24-C23-C22 | -2.67     | 122.21           | 126.23        |  |
| 23                           | С     | 513 | CLA  | C3B-C4B-NB  | 2.67      | 112.66           | 109.21        |  |
| 25                           | у     | 101 | BCR  | C10-C11-C12 | -2.66     | 114.90           | 123.22        |  |
| 23                           | D     | 401 | CLA  | C2A-C1A-CHA | -2.66     | 119.20           | 123.86        |  |
| 23                           | А     | 404 | CLA  | C4C-C3C-C2C | -2.66     | 103.01           | 106.90        |  |
| 23                           | В     | 608 | CLA  | CHD-C4C-NC  | 2.66      | 128.40           | 124.20        |  |
| 26                           | a     | 411 | SQD  | C1-O5-C5    | -2.66     | 108.46           | 113.69        |  |
| 23                           | с     | 513 | CLA  | C4-C3-C5    | 2.66      | 119.75           | 115.27        |  |
| 25                           | В     | 620 | BCR  | C37-C22-C21 | -2.66     | 119.20           | 122.92        |  |
| 23                           | В     | 606 | CLA  | O2A-CGA-CBA | 2.66      | 120.25           | 111.91        |  |
| 31                           | d     | 407 | LHG  | O8-C23-C24  | 2.66      | 120.25           | 111.91        |  |
| 23                           | b     | 608 | CLA  | CHC-C1C-C2C | -2.66     | 119.37           | 126.72        |  |
| 29                           | А     | 413 | PL9  | C10-C9-C11  | 2.66      | 119.74           | 115.27        |  |
| 23                           | b     | 612 | CLA  | CHC-C1C-C2C | -2.66     | 119.37           | 126.72        |  |
| 26                           | a     | 411 | SQD  | C44-O6-C1   | -2.66     | 108.55           | 113.74        |  |
| 23                           | b     | 609 | CLA  | CHC-C1C-C2C | -2.66     | 119.38           | 126.72        |  |
| 29                           | d     | 405 | PL9  | C17-C18-C19 | -2.65     | 121.27           | 127.66        |  |
| 23                           | В     | 617 | CLA  | CHC-C1C-C2C | -2.65     | 119.39           | 126.72        |  |
| 23                           | С     | 508 | CLA  | C3B-C4B-NB  | 2.65      | 112.64           | 109.21        |  |
| 23                           | В     | 616 | CLA  | C1-C2-C3    | -2.65     | 121.46           | 126.04        |  |
| 23                           | a     | 409 | CLA  | OBD-CAD-C3D | -2.65     | 123.58           | 127.98        |  |
| 23                           | с     | 511 | CLA  | CMB-C2B-C3B | 2.65      | 129.64           | 124.68        |  |
| 37                           | h     | 103 | DGD  | O2G-C1B-C2B | 2.65      | 117.21           | 111.50        |  |
| 24                           | a     | 407 | РНО  | CMB-C2B-C1B | 2.65      | 129.14           | 125.06        |  |
| 23                           | b     | 610 | CLA  | CHC-C1C-C2C | -2.65     | 119.40           | 126.72        |  |
| 23                           | с     | 508 | CLA  | C4D-C3D-CAD | -2.65     | 106.99           | 108.47        |  |
| 23                           | В     | 613 | CLA  | C4D-C3D-CAD | -2.65     | 106.99           | 108.47        |  |
| 25                           | b     | 618 | BCR  | C28-C27-C26 | -2.65     | 109.35           | 114.08        |  |
| 23                           | В     | 602 | CLA  | C2A-C1A-CHA | -2.65     | 119.23           | 123.86        |  |
| 23                           | В     | 606 | CLA  | CAC-C3C-C4C | 2.65      | 128.24           | 124.81        |  |
| 23                           | С     | 507 | CLA  | C4C-C3C-C2C | -2.65     | 103.04           | 106.90        |  |
| 23                           | D     | 401 | CLA  | O2A-CGA-O1A | -2.65     | 116.91           | 123.59        |  |
| 23                           | с     | 513 | CLA  | O2D-CGD-O1D | -2.65     | 118.67           | 123.84        |  |
| 23                           | с     | 513 | CLA  | C1-C2-C3    | -2.64     | 121.47           | 126.04        |  |
| 23                           | b     | 615 | CLA  | C4-C3-C5    | 2.64      | 119.72           | 115.27        |  |
| 23                           | a     | 406 | CLA  | O2D-CGD-O1D | -2.64     | 118.67           | 123.84        |  |
| 23                           | C     | 504 | CLA  | CHD-C4C-NC  | 2.64      | 128.37           | 124.20        |  |
| $\frac{-3}{25}$              | Č     | 516 | BCR  | C15-C14-C13 | -2.64     | 123.54           | 127.31        |  |
| $\frac{-3}{23}$              | B     | 608 | CLA  | C2A-C1A-CHA | -2.64     | 119.24           | 123.86        |  |
| $\frac{-3}{23}$              | b     | 602 | CLA  | O2A-CGA-CBA | 2.64      | 120.19           | 111.91        |  |
| $\frac{-3}{23}$              |       | 510 | CLA  | 02D-CGD-01D | -2.64     | 118 68           | 123.84        |  |
|                              | · · · |     | U    |             | 1 <b></b> |                  |               |  |



| Mol | Chain | Res | Type | Atoms       | Z     | Observed(°) | Ideal(°) |
|-----|-------|-----|------|-------------|-------|-------------|----------|
| 23  | С     | 510 | CLA  | C1-O2A-CGA  | 2.64  | 123.36      | 116.44   |
| 29  | A     | 413 | PL9  | C53-C6-C1   | 2.64  | 120.38      | 114.99   |
| 29  | d     | 405 | PL9  | C31-C32-C33 | -2.64 | 103.22      | 111.88   |
| 23  | С     | 505 | CLA  | CMC-C2C-C1C | 2.63  | 129.05      | 125.04   |
| 23  | D     | 404 | CLA  | OBD-CAD-C3D | -2.63 | 123.61      | 127.98   |
| 23  | D     | 405 | CLA  | CAA-C2A-C3A | -2.63 | 105.56      | 112.78   |
| 23  | b     | 602 | CLA  | CHC-C1C-C2C | -2.63 | 119.44      | 126.72   |
| 24  | D     | 402 | PHO  | C2C-C1C-NC  | 2.63  | 113.77      | 109.79   |
| 23  | С     | 512 | CLA  | CHD-C4C-NC  | 2.63  | 128.35      | 124.20   |
| 23  | D     | 401 | CLA  | O2D-CGD-O1D | -2.63 | 118.69      | 123.84   |
| 23  | с     | 512 | CLA  | CBC-CAC-C3C | -2.63 | 105.17      | 112.43   |
| 23  | С     | 503 | CLA  | CMC-C2C-C1C | 2.63  | 129.05      | 125.04   |
| 24  | a     | 407 | PHO  | C4D-ND-C1D  | -2.63 | 102.03      | 106.76   |
| 23  | D     | 401 | CLA  | CMA-C3A-C2A | -2.63 | 103.21      | 113.83   |
| 34  | с     | 520 | LMG  | C3-C4-C5    | 2.63  | 114.93      | 110.24   |
| 23  | С     | 508 | CLA  | O2A-CGA-CBA | 2.63  | 120.16      | 111.91   |
| 23  | b     | 601 | CLA  | CMB-C2B-C3B | 2.63  | 129.60      | 124.68   |
| 23  | В     | 617 | CLA  | C4-C3-C5    | 2.63  | 119.69      | 115.27   |
| 23  | с     | 505 | CLA  | CAC-C3C-C4C | 2.63  | 128.22      | 124.81   |
| 23  | b     | 614 | CLA  | CHD-C4C-NC  | 2.63  | 128.34      | 124.20   |
| 23  | b     | 602 | CLA  | CMB-C2B-C3B | 2.63  | 129.59      | 124.68   |
| 23  | с     | 507 | CLA  | C3B-C4B-NB  | 2.62  | 112.60      | 109.21   |
| 25  | А     | 408 | BCR  | C16-C17-C18 | -2.62 | 123.56      | 127.31   |
| 26  | L     | 102 | SQD  | O48-C23-C24 | 2.62  | 120.14      | 111.91   |
| 23  | b     | 604 | CLA  | CHC-C1C-C2C | -2.62 | 119.46      | 126.72   |
| 23  | b     | 602 | CLA  | C2A-C1A-CHA | -2.62 | 119.27      | 123.86   |
| 23  | с     | 503 | CLA  | O2A-CGA-CBA | 2.62  | 120.14      | 111.91   |
| 23  | С     | 504 | CLA  | CAC-C3C-C4C | 2.62  | 128.21      | 124.81   |
| 23  | с     | 508 | CLA  | CHC-C1C-C2C | -2.62 | 119.48      | 126.72   |
| 23  | a     | 409 | CLA  | CMA-C3A-C2A | -2.62 | 103.26      | 113.83   |
| 23  | b     | 615 | CLA  | CAC-C3C-C4C | 2.62  | 128.21      | 124.81   |
| 23  | В     | 613 | CLA  | CHC-C1C-C2C | -2.62 | 119.48      | 126.72   |
| 24  | a     | 407 | PHO  | CHD-C1D-C2D | -2.62 | 119.14      | 125.73   |
| 36  | С     | 523 | HTG  | C1-O5-C5    | 2.62  | 117.41      | 112.58   |
| 23  | с     | 509 | CLA  | CHC-C1C-C2C | -2.62 | 119.48      | 126.72   |
| 23  | b     | 615 | CLA  | CBC-CAC-C3C | -2.62 | 105.22      | 112.43   |
| 23  | С     | 511 | CLA  | CBC-CAC-C3C | -2.62 | 105.22      | 112.43   |
| 23  | C     | 506 | CLA  | CAC-C3C-C4C | 2.62  | 128.20      | 124.81   |
| 26  | D     | 413 | SQD  | O48-C23-C24 | 2.61  | 120.11      | 111.91   |
| 23  | C     | 514 | CLA  | O2A-CGA-CBA | 2.61  | 120.11      | 111.91   |
| 23  | В     | 604 | CLA  | CAC-C3C-C4C | 2.61  | 128.20      | 124.81   |
| 25  | d     | 404 | BCR  | C28-C27-C26 | -2.61 | 109.41      | 114.08   |

Continu  $d f_{a}$ a. . . . .



|    | nuea from | i previ | ous page | • • • • • • • • • • • • • • • • • • • | 7        | $\mathbf{O}$ | $\mathbf{T} \mathbf{I} = \mathbf{I}(0)$ |
|----|-----------|---------|----------|---------------------------------------|----------|--------------|-----------------------------------------|
|    | Chain     | Res     | Type     | Atoms                                 | <u>L</u> | Observed(°)  | Ideal(°)                                |
| 37 | C         | 518     | DGD      | C2G-O2G-C1B                           | -2.61    | 111.36       | 117.79                                  |
| 24 | A         | 406     | PHO      | CMC-C2C-CIC                           | 2.61     | 129.09       | 125.06                                  |
| 23 | С         | 505     | CLA      | CHC-CIC-C2C                           | -2.61    | 119.50       | 126.72                                  |
| 23 | с         | 507     | CLA      | OID-CGD-CBD                           | -2.61    | 119.15       | 124.48                                  |
| 29 | D         | 407     | PL9      | C20-C19-C21                           | 2.61     | 119.66       | 115.27                                  |
| 23 | В         | 611     | CLA      | CMC-C2C-C1C                           | 2.61     | 129.01       | 125.04                                  |
| 23 | A         | 407     | CLA      | CHC-C1C-C2C                           | -2.61    | 119.51       | 126.72                                  |
| 29 | A         | 413     | PL9      | C40-C39-C41                           | 2.61     | 119.65       | 115.27                                  |
| 23 | С         | 509     | CLA      | O2A-CGA-CBA                           | 2.61     | 120.08       | 111.91                                  |
| 26 | D         | 413     | SQD      | C3-C4-C5                              | 2.60     | 114.89       | 110.24                                  |
| 23 | с         | 508     | CLA      | CHD-C4C-NC                            | 2.60     | 128.31       | 124.20                                  |
| 23 | В         | 603     | CLA      | C2A-C1A-CHA                           | -2.60    | 119.31       | 123.86                                  |
| 23 | с         | 501     | CLA      | CMB-C2B-C3B                           | 2.60     | 129.54       | 124.68                                  |
| 23 | С         | 513     | CLA      | CBC-CAC-C3C                           | -2.60    | 105.26       | 112.43                                  |
| 23 | a         | 406     | CLA      | C4D-C3D-CAD                           | -2.60    | 107.02       | 108.47                                  |
| 23 | В         | 606     | CLA      | CMC-C2C-C1C                           | 2.60     | 129.00       | 125.04                                  |
| 23 | С         | 504     | CLA      | O2A-CGA-O1A                           | -2.60    | 117.03       | 123.59                                  |
| 23 | В         | 609     | CLA      | C4D-C3D-CAD                           | -2.60    | 107.02       | 108.47                                  |
| 34 | j         | 101     | LMG      | O8-C28-C29                            | 2.60     | 120.06       | 111.91                                  |
| 23 | С         | 513     | CLA      | CHC-C1C-C2C                           | -2.60    | 119.54       | 126.72                                  |
| 25 | В         | 619     | BCR      | C38-C26-C25                           | -2.60    | 121.61       | 124.53                                  |
| 23 | А         | 405     | CLA      | C2A-C1A-CHA                           | -2.60    | 119.32       | 123.86                                  |
| 23 | a         | 405     | CLA      | O2D-CGD-O1D                           | -2.60    | 118.76       | 123.84                                  |
| 23 | А         | 405     | CLA      | C4C-C3C-C2C                           | -2.59    | 103.12       | 106.90                                  |
| 23 | с         | 507     | CLA      | C1D-CHD-C4C                           | -2.59    | 119.14       | 122.56                                  |
| 23 | a         | 409     | CLA      | CMC-C2C-C1C                           | 2.59     | 128.99       | 125.04                                  |
| 26 | А         | 409     | SQD      | O47-C7-O49                            | -2.59    | 117.44       | 123.70                                  |
| 31 | d         | 408     | LHG      | O8-C23-O10                            | -2.59    | 117.05       | 123.59                                  |
| 23 | с         | 506     | CLA      | CHD-C4C-NC                            | 2.59     | 128.29       | 124.20                                  |
| 23 | с         | 509     | CLA      | CHD-C4C-NC                            | 2.59     | 128.28       | 124.20                                  |
| 23 | С         | 508     | CLA      | CHD-C4C-NC                            | 2.59     | 128.28       | 124.20                                  |
| 26 | a         | 413     | SQD      | O5-C5-C4                              | 2.59     | 114.39       | 109.69                                  |
| 23 | с         | 510     | CLA      | O2A-CGA-O1A                           | -2.58    | 117.08       | 123.59                                  |
| 34 | Z         | 101     | LMG      | O6-C1-C2                              | 2.58     | 115.81       | 110.35                                  |
| 23 | b         | 602     | CLA      | C11-C12-C13                           | -2.58    | 107.58       | 115.92                                  |
| 23 | В         | 608     | CLA      | C4C-C3C-C2C                           | -2.58    | 103.14       | 106.90                                  |
| 23 | b         | 614     | CLA      | CMC-C2C-C1C                           | 2.58     | 128.96       | 125.04                                  |
| 25 | Т         | 101     | BCR      | C16-C17-C18                           | -2.58    | 123.63       | 127.31                                  |
| 23 | с         | 505     | CLA      | CHD-C4C-NC                            | 2.58     | 128.26       | 124.20                                  |
| 23 | с         | 507     | CLA      | CHD-C4C-NC                            | 2.58     | 128.26       | 124.20                                  |
| 24 | a         | 408     | PHO      | C2B-C1B-NB                            | 2.58     | 113.68       | 109.79                                  |
| 23 | С         | 514     | CLA      | CAA-C2A-C3A                           | -2.57    | 105.73       | 112.78                                  |

 $d f_{0}$  $\alpha$ ntina



| $\mathbf{Mol}$ | Chain | $\mathbf{Res}$ | Type | Atoms       |       | $Observed(^{o})$ | $ $ Ideal( $^{o}$ ) |
|----------------|-------|----------------|------|-------------|-------|------------------|---------------------|
| 23             | А     | 404            | CLA  | C2A-C1A-CHA | -2.57 | 119.36           | 123.86              |
| 29             | А     | 413            | PL9  | C12-C13-C14 | -2.57 | 121.46           | 127.66              |
| 23             | b     | 605            | CLA  | CBC-CAC-C3C | -2.57 | 105.34           | 112.43              |
| 23             | В     | 611            | CLA  | CHC-C1C-C2C | -2.57 | 119.60           | 126.72              |
| 23             | с     | 507            | CLA  | C4-C3-C5    | 2.57  | 119.60           | 115.27              |
| 25             | D     | 406            | BCR  | C3-C4-C5    | -2.57 | 109.48           | 114.08              |
| 23             | В     | 616            | CLA  | O2A-CGA-CBA | 2.57  | 119.98           | 111.91              |
| 34             | J     | 101            | LMG  | C8-O7-C10   | -2.57 | 111.46           | 117.79              |
| 23             | с     | 513            | CLA  | CMB-C2B-C3B | 2.57  | 129.49           | 124.68              |
| 25             | с     | 515            | BCR  | C33-C5-C6   | -2.57 | 121.64           | 124.53              |
| 23             | с     | 502            | CLA  | C4D-C3D-CAD | -2.57 | 107.04           | 108.47              |
| 23             | В     | 615            | CLA  | C4C-C3C-C2C | -2.57 | 103.15           | 106.90              |
| 23             | В     | 612            | CLA  | C2A-C1A-CHA | -2.57 | 119.37           | 123.86              |
| 23             | с     | 502            | CLA  | CMC-C2C-C1C | 2.57  | 128.95           | 125.04              |
| 24             | a     | 408            | PHO  | C1C-C2C-C3C | -2.57 | 103.56           | 106.51              |
| 35             | D     | 403            | LMT  | O5B-C5B-C4B | 2.57  | 114.36           | 109.69              |
| 23             | с     | 502            | CLA  | C4C-C3C-C2C | -2.57 | 103.16           | 106.90              |
| 23             | С     | 505            | CLA  | C4-C3-C5    | 2.57  | 119.59           | 115.27              |
| 23             | В     | 616            | CLA  | C4C-C3C-C2C | -2.57 | 103.16           | 106.90              |
| 23             | С     | 504            | CLA  | C1-C2-C3    | -2.56 | 121.61           | 126.04              |
| 23             | В     | 606            | CLA  | CMB-C2B-C1B | 2.56  | 132.41           | 128.46              |
| 31             | d     | 406            | LHG  | O8-C23-C24  | 2.56  | 119.95           | 111.91              |
| 24             | a     | 407            | PHO  | CHC-C1C-C2C | -2.56 | 119.28           | 125.73              |
| 29             | D     | 407            | PL9  | C22-C23-C24 | -2.56 | 121.49           | 127.66              |
| 23             | В     | 614            | CLA  | O2A-CGA-CBA | 2.56  | 119.95           | 111.91              |
| 23             | с     | 513            | CLA  | CHD-C4C-NC  | 2.56  | 128.24           | 124.20              |
| 23             | с     | 513            | CLA  | CHC-C1C-C2C | -2.56 | 119.64           | 126.72              |
| 23             | с     | 501            | CLA  | O2A-CGA-O1A | -2.56 | 117.13           | 123.59              |
| 24             | a     | 407            | PHO  | CAC-C3C-C4C | 2.56  | 128.01           | 125.22              |
| 24             | D     | 402            | PHO  | C4-C3-C5    | 2.56  | 119.58           | 115.27              |
| 23             | b     | 604            | CLA  | O1D-CGD-CBD | -2.56 | 119.25           | 124.48              |
| 24             | a     | 407            | PHO  | C1C-C2C-C3C | -2.56 | 103.57           | 106.51              |
| 23             | b     | 616            | CLA  | CHD-C4C-NC  | 2.56  | 128.24           | 124.20              |
| 23             | С     | 509            | CLA  | O2A-CGA-O1A | -2.56 | 117.14           | 123.59              |
| 25             | С     | 527            | BCR  | C38-C26-C25 | -2.56 | 121.66           | 124.53              |
| 23             | с     | 509            | CLA  | CAC-C3C-C4C | 2.56  | 128.13           | 124.81              |
| 23             | A     | 407            | CLA  | C1-C2-C3    | -2.56 | 121.62           | 126.04              |
| 23             | С     | 513            | CLA  | O1D-CGD-CBD | -2.55 | 119.26           | 124.48              |
| 23             | В     | 615            | CLA  | CMC-C2C-C1C | 2.55  | 128.93           | 125.04              |
| 25             | С     | 527            | BCR  | C10-C11-C12 | -2.55 | 115.25           | 123.22              |
| 23             | b     | 601            | CLA  | C2A-C1A-CHA | -2.55 | 119.39           | 123.86              |
| 23             | С     | 513            | CLA  | C4-C3-C5    | 2.55  | 119.56           | 115.27              |



| Continued from previous page |       |     |      |             |       |                           |               |  |
|------------------------------|-------|-----|------|-------------|-------|---------------------------|---------------|--|
| Mol                          | Chain | Res | Type | Atoms       | Z     | $\mathbf{Observed}(^{o})$ | $Ideal(^{o})$ |  |
| 25                           | b     | 618 | BCR  | C24-C23-C22 | -2.55 | 122.38                    | 126.23        |  |
| 23                           | В     | 611 | CLA  | O2D-CGD-O1D | -2.55 | 118.85                    | 123.84        |  |
| 23                           | В     | 615 | CLA  | C2A-C1A-CHA | -2.55 | 119.40                    | 123.86        |  |
| 23                           | b     | 602 | CLA  | C4-C3-C5    | 2.55  | 119.56                    | 115.27        |  |
| 23                           | b     | 615 | CLA  | C11-C12-C13 | -2.55 | 107.68                    | 115.92        |  |
| 24                           | a     | 408 | PHO  | CAC-C3C-C4C | 2.55  | 128.00                    | 125.22        |  |
| 34                           | с     | 520 | LMG  | C1-O6-C5    | 2.55  | 118.69                    | 113.69        |  |
| 23                           | с     | 510 | CLA  | O1D-CGD-CBD | -2.55 | 119.27                    | 124.48        |  |
| 23                           | В     | 605 | CLA  | CHC-C1C-C2C | -2.55 | 119.68                    | 126.72        |  |
| 23                           | с     | 508 | CLA  | CMC-C2C-C1C | 2.55  | 128.92                    | 125.04        |  |
| 26                           | В     | 621 | SQD  | C1-C2-C3    | -2.55 | 104.69                    | 110.00        |  |
| 24                           | a     | 408 | PHO  | C4D-ND-C1D  | -2.54 | 102.19                    | 106.76        |  |
| 23                           | В     | 614 | CLA  | CHD-C4C-NC  | 2.54  | 128.21                    | 124.20        |  |
| 25                           | В     | 620 | BCR  | C21-C20-C19 | -2.54 | 115.28                    | 123.22        |  |
| 23                           | С     | 508 | CLA  | CHC-C1C-C2C | -2.54 | 119.69                    | 126.72        |  |
| 23                           | В     | 614 | CLA  | C4C-C3C-C2C | -2.54 | 103.19                    | 106.90        |  |
| 23                           | С     | 507 | CLA  | CAA-C2A-C3A | -2.54 | 105.82                    | 112.78        |  |
| 23                           | с     | 513 | CLA  | C2A-C1A-CHA | -2.54 | 119.42                    | 123.86        |  |
| 25                           | b     | 618 | BCR  | C3-C4-C5    | -2.54 | 109.54                    | 114.08        |  |
| 36                           | b     | 626 | HTG  | C1-O5-C5    | 2.54  | 117.26                    | 112.58        |  |
| 24                           | a     | 407 | PHO  | O2A-CGA-O1A | -2.54 | 117.19                    | 123.59        |  |
| 37                           | с     | 517 | DGD  | O1G-C1A-C2A | 2.53  | 119.86                    | 111.91        |  |
| 23                           | b     | 611 | CLA  | CBC-CAC-C3C | -2.53 | 105.45                    | 112.43        |  |
| 23                           | В     | 607 | CLA  | O2A-CGA-O1A | -2.53 | 117.20                    | 123.59        |  |
| 25                           | d     | 404 | BCR  | C37-C22-C23 | 2.53  | 122.06                    | 118.08        |  |
| 23                           | В     | 606 | CLA  | C1-C2-C3    | -2.53 | 121.67                    | 126.04        |  |
| 23                           | с     | 501 | CLA  | O2A-CGA-CBA | 2.52  | 119.83                    | 111.91        |  |
| 29                           | a     | 415 | PL9  | C53-C6-C1   | 2.52  | 120.15                    | 114.99        |  |
| 23                           | с     | 511 | CLA  | CMC-C2C-C1C | 2.52  | 128.88                    | 125.04        |  |
| 25                           | у     | 101 | BCR  | C16-C17-C18 | -2.52 | 123.71                    | 127.31        |  |
| 23                           | с     | 503 | CLA  | C4-C3-C5    | 2.52  | 119.51                    | 115.27        |  |
| 25                           | С     | 516 | BCR  | C7-C8-C9    | -2.52 | 122.43                    | 126.23        |  |
| 23                           | с     | 502 | CLA  | C2A-C1A-CHA | -2.52 | 119.45                    | 123.86        |  |
| 25                           | В     | 618 | BCR  | C15-C14-C13 | -2.52 | 123.72                    | 127.31        |  |
| 23                           | b     | 608 | CLA  | OBD-CAD-C3D | -2.52 | 123.80                    | 127.98        |  |
| 24                           | a     | 408 | PHO  | CBA-CAA-C2A | -2.52 | 106.43                    | 113.86        |  |
| 29                           | a     | 415 | PL9  | C17-C18-C19 | -2.52 | 121.60                    | 127.66        |  |
| 23                           | с     | 507 | CLA  | C6-C7-C8    | -2.52 | 107.78                    | 115.92        |  |
| 25                           | k     | 101 | BCR  | C10-C11-C12 | -2.52 | 115.36                    | 123.22        |  |
| 23                           | С     | 502 | CLA  | OBD-CAD-C3D | -2.52 | 123.81                    | 127.98        |  |
| 23                           | B     | 612 | CLA  | C4C-C3C-C2C | -2.51 | 103.23                    | 106.90        |  |
| 23                           | В     | 616 | CLA  | CMB-C2B-C1B | 2.51  | 132.33                    | 128.46        |  |



| 5GT | די |
|-----|----|
| 001 |    |

| Conti      | nuea fron | <i>i previ</i> | ous page |             | <b>7</b>     |                          |          |
|------------|-----------|----------------|----------|-------------|--------------|--------------------------|----------|
| Mol        | Chain     | Res            | Type     | Atoms       |              | Observed( <sup>o</sup> ) | Ideal(°) |
| 23         | C         | 505            | CLA      | CAC-C3C-C4C | 2.51         | 128.07                   | 124.81   |
| 23         | b         | 608            | CLA      | C2A-C1A-CHA | -2.51        | 119.46                   | 123.86   |
| 23         | b         | 616            | CLA      | C1-C2-C3    | -2.51        | 121.70                   | 126.04   |
| 24         | a         | 408            | PHO      | CHC-C1C-C2C | -2.51        | 119.41                   | 125.73   |
| 23         | b         | 603            | CLA      | C2A-C1A-CHA | -2.51        | 119.47                   | 123.86   |
| 23         | d         | 403            | CLA      | CBC-CAC-C3C | -2.51        | 105.51                   | 112.43   |
| 23         | С         | 502            | CLA      | CMC-C2C-C1C | 2.51         | 128.86                   | 125.04   |
| 23         | a         | 409            | CLA      | O2A-CGA-CBA | 2.51         | 119.78                   | 111.91   |
| 29         | d         | 405            | PL9      | C12-C13-C14 | -2.51        | 121.62                   | 127.66   |
| 23         | с         | 507            | CLA      | CHC-C1C-C2C | -2.51        | 119.78                   | 126.72   |
| 23         | b         | 616            | CLA      | O2A-CGA-O1A | -2.51        | 117.26                   | 123.59   |
| 23         | В         | 615            | CLA      | C4D-C3D-CAD | -2.51        | 107.07                   | 108.47   |
| 29         | a         | 415            | PL9      | C51-C49-C50 | 2.51         | 120.14                   | 114.60   |
| 23         | d         | 402            | CLA      | C4-C3-C5    | 2.51         | 119.49                   | 115.27   |
| 23         | В         | 602            | CLA      | CAC-C3C-C4C | 2.51         | 128.06                   | 124.81   |
| 23         | С         | 502            | CLA      | CMB-C2B-C3B | 2.51         | 129.37                   | 124.68   |
| 25         | С         | 527            | BCR      | C15-C14-C13 | -2.50        | 123.73                   | 127.31   |
| 23         | a         | 406            | CLA      | O2A-CGA-CBA | 2.50         | 119.77                   | 111.91   |
| 26         | f         | 101            | SQD      | O5-C5-C4    | 2.50         | 114.24                   | 109.69   |
| 23         | с         | 509            | CLA      | CMC-C2C-C1C | 2.50         | 128.85                   | 125.04   |
| 23         | D         | 401            | CLA      | CHC-C1C-C2C | -2.50        | 119.80                   | 126.72   |
| 29         | D         | 407            | PL9      | C7-C8-C9    | -2.50        | 122.63                   | 126.79   |
| 23         | с         | 505            | CLA      | C4-C3-C5    | 2.50         | 119.48                   | 115.27   |
| 25         | d         | 404            | BCR      | C16-C17-C18 | -2.50        | 123.74                   | 127.31   |
| 23         | В         | 608            | CLA      | CHC-C1C-C2C | -2.50        | 119.81                   | 126.72   |
| 23         | В         | 603            | CLA      | CMB-C2B-C3B | 2.50         | 129.35                   | 124.68   |
| 23         | b         | 610            | CLA      | CAC-C3C-C4C | 2.50         | 128.05                   | 124.81   |
| 26         | A         | 409            | SQD      | O9-S-O7     | -2.50        | 105.30                   | 113.95   |
| 23         | A         | 404            | CLA      | CHC-C1C-C2C | -2.50        | 119.81                   | 126.72   |
| 23         | В         | 602            | CLA      | C4-C3-C5    | 2.50         | 119.47                   | 115.27   |
| 26         | a         | 413            | SQD      | C1-O5-C5    | 2.50         | 118.59                   | 113.69   |
| 23         | D         | 401            | CLA      | C3B-C4B-NB  | 2.50         | 112.44                   | 109.21   |
| 23         | С         | 510            | CLA      | O2A-CGA-CBA | 2.50         | 119.74                   | 111.91   |
| 34         | i         | 101            | LMG      | C8-O7-C10   | -2.50        | 111.65                   | 117.79   |
| 23         | D         | 401            | CLA      | O2A-CGA-CBA | 2.49         | 119.74                   | 111.91   |
| 25         | B         | 618            | BCR      | C11-C10-C9  | -2.49        | 123.75                   | 127.31   |
| 25         | C         | 516            | BCR      | C34-C9-C10  | -2.49        | 119.43                   | 122.92   |
| 26         | a         | 411            | SOD      | 047-C7-049  | -2.49        | 117.68                   | 123.70   |
| 23         | a         | 409            | CLA      | CHD-C4C-NC  | 2.49         | 128.13                   | 124.20   |
| 23         | R         | 612            | CLA      | CHC-C1C-C2C | -2.49        | 119.83                   | 126.72   |
| 29         | D         | 407            | PL9      | C30-C29-C31 | 2.10<br>2.49 | 119.46                   | 115.72   |
| 23         | h         | 604            |          | C4-C3-C5    | 2.10<br>2.49 | 119.46                   | 115.27   |
| <u>ک</u> ې | u u       | 004            | ULA      | 04-03-03    | 2.49         | 119.40                   | 110.27   |

 $d f_{\alpha}$ onic Continu



| Mol      | Chain  | Res        | Type       | Δtoms                                                        | 7     | Observed <sup>(0)</sup> | Ideal(0)              |
|----------|--------|------------|------------|--------------------------------------------------------------|-------|-------------------------|-----------------------|
| 22       | Chain  | 507        |            |                                                              | 2.48  | 110 70                  | $\frac{11101}{11101}$ |
| 20       |        | 101        | I MC       | OZA-CGA-CDA                                                  | 2.40  | 119.70                  | 111.91                |
| 04<br>95 | ј<br>Ц | 101        | BCB        | C7 C6 C5                                                     | -2.40 | 117.70                  | 123.70                |
| 20       | D II   | 101<br>612 | CLA        | 0.00000000000000000000000000000000000                        | 2.40  | 127.40                  | 121.40<br>192.50      |
| 20<br>   | D      | 607        |            | C4 C2 C5                                                     | -2.40 | 117.33                  | 125.09<br>115.97      |
| 20       | D<br>L | 610        |            | $\frac{04-05-05}{04-010}$                                    | 2.40  | 119.44                  | 115.27                |
| 23       |        | 010        | CLA<br>CLA |                                                              | 2.48  | 128.81                  | 125.04                |
| 23       | D      | 405        | DUO        | $\begin{array}{c} C4-C3-C5 \\ \hline C2C C4C NC \end{array}$ | 2.48  | 119.44                  | 115.27                |
| 24       | a      | 407        | PHO        | C3C-C4C-NC                                                   | 2.48  | 114.12                  | 110.28                |
| 23       | D      | 404        | CLA        | CID-CHD-C4C                                                  | -2.48 | 119.29                  | 122.56                |
| 24       | a      | 408        | PHO        | C4D-CHA-CIA                                                  | -2.47 | 119.80                  | 125.37                |
| 25       | С      | 515        | BCR        | C36-C18-C19                                                  | 2.47  | 121.97                  | 118.08                |
| 23       | d      | 402        | CLA        | C4C-C3C-C2C                                                  | -2.47 | 103.29                  | 106.90                |
| 23       | C      | 506        | CLA        | O2A-CGA-CBA                                                  | 2.47  | 119.67                  | 111.91                |
| 25       | a      | 410        | BCR        | C33-C5-C6                                                    | -2.47 | 121.75                  | 124.53                |
| 23       | В      | 607        | CLA        | CBC-CAC-C3C                                                  | -2.47 | 105.62                  | 112.43                |
| 23       | с      | 504        | CLA        | CBC-CAC-C3C                                                  | -2.47 | 105.62                  | 112.43                |
| 25       | с      | 514        | BCR        | C34-C9-C10                                                   | -2.47 | 119.46                  | 122.92                |
| 23       | a      | 404        | CLA        | C1-C2-C3                                                     | -2.47 | 121.77                  | 126.04                |
| 23       | В      | 617        | CLA        | C4D-C3D-CAD                                                  | -2.47 | 107.09                  | 108.47                |
| 31       | е      | 101        | LHG        | O8-C23-C24                                                   | 2.47  | 119.66                  | 111.91                |
| 25       | С      | 515        | BCR        | C38-C26-C25                                                  | -2.47 | 121.76                  | 124.53                |
| 23       | с      | 504        | CLA        | C1-O2A-CGA                                                   | 2.47  | 122.92                  | 116.44                |
| 29       | d      | 405        | PL9        | C51-C49-C50                                                  | 2.47  | 120.05                  | 114.60                |
| 37       | С      | 519        | DGD        | C3G-C2G-C1G                                                  | -2.47 | 105.96                  | 111.79                |
| 29       | D      | 407        | PL9        | C7-C3-C2                                                     | -2.46 | 120.06                  | 123.30                |
| 23       | В      | 607        | CLA        | CMC-C2C-C1C                                                  | 2.46  | 128.79                  | 125.04                |
| 23       | В      | 606        | CLA        | CHC-C1C-C2C                                                  | -2.46 | 119.91                  | 126.72                |
| 23       | С      | 511        | CLA        | C4-C3-C2                                                     | -2.46 | 117.36                  | 123.68                |
| 37       | С      | 518        | DGD        | O1G-C1A-C2A                                                  | 2.46  | 119.63                  | 111.91                |
| 24       | А      | 406        | PHO        | O1D-CGD-CBD                                                  | -2.46 | 119.45                  | 124.48                |
| 26       | f      | 101        | SQD        | O48-C23-C24                                                  | 2.46  | 119.63                  | 111.91                |
| 23       | b      | 606        | CLA        | C2A-C1A-CHA                                                  | -2.46 | 119.56                  | 123.86                |
| 25       | с      | 515        | BCR        | C15-C14-C13                                                  | -2.46 | 123.80                  | 127.31                |
| 31       | d      | 406        | LHG        | C5-O7-C7                                                     | -2.46 | 111.74                  | 117.79                |
| 23       | a      | 404        | CLA        | CHB-C4A-NA                                                   | 2.46  | 127.91                  | 124.51                |
| 25       | b      | 618        | BCR        | C15-C14-C13                                                  | -2.46 | 123.80                  | 127.31                |
| 26       | D      | 413        | SQD        | 07-S-C6                                                      | 2.46  | 109.86                  | 106.94                |
| 23       | С      | 505        | CLA        | C1-O2A-CGA                                                   | 2.46  | 122.89                  | 116.44                |
| 29       | a      | 415        | PL9        | C40-C39-C41                                                  | 2.46  | 119.40                  | 115.27                |
| 35       | В      | 623        | LMT        | C1'-O5'-C5'                                                  | 2.46  | 118.51                  | 113.69                |
| 34       | В      | 622        | LMG        | O1-C1-C2                                                     | -2.45 | 104.47                  | 108.30                |
| 23       | A      | 405        | CLA        | CHD-C4C-NC                                                   | 2.45  | 128.07                  | 124.20                |

Contin  $d f_{2}$ 



| 5GT | די |
|-----|----|
| 001 |    |

| Conti | nued fron | ı previ | ous page |             |       |                  |               |
|-------|-----------|---------|----------|-------------|-------|------------------|---------------|
| Mol   | Chain     | Res     | Type     | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
| 25    | у         | 101     | BCR      | C21-C20-C19 | -2.45 | 115.56           | 123.22        |
| 26    | f         | 101     | SQD      | O47-C7-O49  | -2.45 | 117.78           | 123.70        |
| 26    | L         | 102     | SQD      | O8-S-C6     | 2.45  | 109.64           | 105.74        |
| 23    | С         | 513     | CLA      | O2A-CGA-O1A | -2.45 | 117.41           | 123.59        |
| 23    | с         | 505     | CLA      | O2A-CGA-CBA | 2.45  | 119.59           | 111.91        |
| 37    | с         | 517     | DGD      | O5D-C1E-C2E | 2.45  | 112.12           | 108.30        |
| 23    | b         | 601     | CLA      | O2A-CGA-CBA | 2.45  | 119.59           | 111.91        |
| 23    | a         | 406     | CLA      | O2A-CGA-O1A | -2.45 | 117.42           | 123.59        |
| 37    | С         | 517     | DGD      | C3G-C2G-C1G | -2.45 | 106.00           | 111.79        |
| 36    | В         | 624     | HTG      | C1-O5-C5    | 2.44  | 117.09           | 112.58        |
| 23    | a         | 405     | CLA      | CAA-CBA-CGA | 2.44  | 120.40           | 113.25        |
| 23    | С         | 513     | CLA      | CBA-CAA-C2A | -2.44 | 106.65           | 113.86        |
| 23    | a         | 404     | CLA      | C1B-CHB-C4A | -2.44 | 125.28           | 130.12        |
| 23    | с         | 511     | CLA      | CAC-C3C-C4C | 2.44  | 127.98           | 124.81        |
| 26    | D         | 413     | SQD      | C44-O6-C1   | -2.44 | 108.97           | 113.74        |
| 25    | a         | 410     | BCR      | C2-C1-C6    | 2.44  | 114.23           | 110.48        |
| 23    | d         | 403     | CLA      | CHC-C1C-C2C | -2.44 | 119.98           | 126.72        |
| 25    | Y         | 101     | BCR      | C29-C28-C27 | -2.44 | 105.93           | 111.38        |
| 24    | А         | 406     | PHO      | C2C-C1C-NC  | 2.44  | 113.47           | 109.79        |
| 23    | В         | 616     | CLA      | O2D-CGD-O1D | -2.43 | 119.08           | 123.84        |
| 23    | с         | 506     | CLA      | O2A-CGA-O1A | -2.43 | 117.45           | 123.59        |
| 25    | h         | 102     | BCR      | C16-C15-C14 | -2.43 | 118.49           | 123.47        |
| 24    | a         | 407     | PHO      | CMC-C2C-C1C | 2.43  | 128.81           | 125.06        |
| 23    | С         | 513     | CLA      | CMA-C3A-C4A | -2.43 | 105.24           | 111.77        |
| 23    | В         | 617     | CLA      | O1D-CGD-CBD | -2.43 | 119.51           | 124.48        |
| 23    | С         | 507     | CLA      | CMB-C2B-C3B | 2.43  | 129.22           | 124.68        |
| 23    | b         | 613     | CLA      | CHC-C1C-C2C | -2.43 | 120.01           | 126.72        |
| 29    | D         | 407     | PL9      | C25-C24-C26 | 2.42  | 119.35           | 115.27        |
| 25    | А         | 408     | BCR      | C3-C4-C5    | -2.42 | 109.75           | 114.08        |
| 23    | b         | 603     | CLA      | CAC-C3C-C4C | 2.42  | 127.95           | 124.81        |
| 23    | С         | 507     | CLA      | O2A-CGA-O1A | -2.42 | 117.48           | 123.59        |
| 23    | a         | 405     | CLA      | CMB-C2B-C3B | 2.42  | 129.21           | 124.68        |
| 23    | b         | 602     | CLA      | O2D-CGD-O1D | -2.42 | 119.11           | 123.84        |
| 23    | В         | 613     | CLA      | C2A-C1A-CHA | -2.42 | 119.63           | 123.86        |
| 25    | Y         | 101     | BCR      | C36-C18-C19 | 2.42  | 121.89           | 118.08        |
| 25    | Н         | 101     | BCR      | C15-C14-C13 | -2.42 | 123.86           | 127.31        |
| 23    | В         | 607     | CLA      | C11-C10-C8  | -2.42 | 108.10           | 115.92        |
| 23    | b         | 607     | CLA      | CMC-C2C-C1C | 2.42  | 128.72           | 125.04        |
| 23    | В         | 603     | CLA      | CHD-C4C-NC  | 2.42  | 128.01           | 124.20        |
| 34    | m         | 101     | LMG      | C8-O7-C10   | -2.42 | 111.84           | 117.79        |
| 26    | L         | 102     | SQD      | C44-O6-C1   | -2.42 | 109.02           | 113.74        |
| 25    | С         | 516     | BCR      | C21-C20-C19 | -2.41 | 115.69           | 123.22        |



|     | nuea fron | n previ | ous page |             | 77    |             |          |
|-----|-----------|---------|----------|-------------|-------|-------------|----------|
| Mol | Chain     | Res     | Type     | Atoms       | Z     | Observed(°) | Ideal(°) |
| 23  | d         | 402     | CLA      | CMC-C2C-C1C | 2.41  | 128.71      | 125.04   |
| 23  | с         | 509     | CLA      | O2D-CGD-O1D | -2.41 | 119.12      | 123.84   |
| 23  | с         | 504     | CLA      | CHD-C4C-NC  | 2.41  | 128.00      | 124.20   |
| 23  | b         | 613     | CLA      | CED-O2D-CGD | 2.41  | 121.39      | 115.94   |
| 36  | b         | 623     | HTG      | C1-O5-C5    | 2.41  | 117.02      | 112.58   |
| 25  | b         | 617     | BCR      | C3-C4-C5    | -2.41 | 109.78      | 114.08   |
| 23  | d         | 402     | CLA      | C2A-C1A-CHA | -2.41 | 119.65      | 123.86   |
| 36  | С         | 523     | HTG      | O5-C1-C2    | 2.41  | 113.34      | 110.31   |
| 25  | a         | 410     | BCR      | C11-C10-C9  | -2.41 | 123.88      | 127.31   |
| 23  | С         | 513     | CLA      | CMB-C2B-C3B | 2.41  | 129.18      | 124.68   |
| 24  | а         | 408     | PHO      | O2D-CGD-O1D | -2.41 | 119.14      | 123.84   |
| 23  | с         | 509     | CLA      | CED-O2D-CGD | 2.40  | 121.38      | 115.94   |
| 29  | D         | 407     | PL9      | C40-C39-C41 | 2.40  | 119.31      | 115.27   |
| 26  | D         | 413     | SQD      | C1-C2-C3    | -2.40 | 104.99      | 110.00   |
| 23  | А         | 405     | CLA      | C4-C3-C5    | 2.40  | 119.31      | 115.27   |
| 23  | В         | 608     | CLA      | C1-O2A-CGA  | 2.40  | 122.75      | 116.44   |
| 23  | с         | 509     | CLA      | C2A-C1A-CHA | -2.40 | 119.66      | 123.86   |
| 23  | b         | 603     | CLA      | CBC-CAC-C3C | -2.40 | 105.81      | 112.43   |
| 23  | В         | 604     | CLA      | CMC-C2C-C1C | 2.40  | 128.70      | 125.04   |
| 26  | a         | 411     | SQD      | O48-C23-C24 | 2.40  | 119.44      | 111.91   |
| 23  | a         | 405     | CLA      | O2A-CGA-CBA | 2.40  | 119.44      | 111.91   |
| 23  | b         | 605     | CLA      | C4D-C3D-CAD | -2.40 | 107.13      | 108.47   |
| 23  | b         | 611     | CLA      | CHD-C4C-NC  | 2.40  | 127.98      | 124.20   |
| 23  | С         | 512     | CLA      | O2A-CGA-CBA | 2.40  | 119.44      | 111.91   |
| 23  | b         | 614     | CLA      | CMB-C2B-C3B | 2.40  | 129.16      | 124.68   |
| 23  | с         | 508     | CLA      | CAA-C2A-C3A | -2.40 | 106.21      | 112.78   |
| 23  | b         | 606     | CLA      | CBC-CAC-C3C | -2.40 | 105.82      | 112.43   |
| 23  | с         | 509     | CLA      | C4-C3-C5    | 2.40  | 119.30      | 115.27   |
| 23  | С         | 514     | CLA      | C4-C3-C5    | 2.40  | 119.30      | 115.27   |
| 23  | с         | 501     | CLA      | CHD-C4C-NC  | 2.40  | 127.98      | 124.20   |
| 24  | D         | 402     | PHO      | CHD-C1D-C2D | -2.39 | 119.71      | 125.73   |
| 23  | d         | 402     | CLA      | O2A-CGA-O1A | -2.39 | 117.56      | 123.59   |
| 23  | В         | 608     | CLA      | O2A-CGA-CBA | 2.39  | 119.40      | 111.91   |
| 23  | D         | 404     | CLA      | CHD-C4C-NC  | 2.39  | 127.96      | 124.20   |
| 23  | b         | 615     | CLA      | CHD-C4C-NC  | 2.38  | 127.96      | 124.20   |
| 23  | с         | 506     | CLA      | C2A-C1A-CHA | -2.38 | 119.69      | 123.86   |
| 34  | a         | 417     | LMG      | O8-C28-C29  | 2.38  | 119.38      | 111.91   |
| 25  | h         | 102     | BCR      | C29-C30-C25 | 2.38  | 114.14      | 110.48   |
| 23  | a         | 404     | CLA      | CAA-C2A-C1A | -2.38 | 104.18      | 111.97   |
| 25  | В         | 619     | BCR      | C2-C1-C6    | 2.38  | 114.14      | 110.48   |
| 31  | D         | 408     | LHG      | O8-C23-C24  | 2.38  | 119.37      | 111.91   |
| 23  | b         | 614     | CLA      | C2A-C1A-CHA | -2.38 | 119.70      | 123.86   |

 $d f_{0}$  $\alpha$ ntina



| Conti | nued fron | n previ | ous page |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |               |
|-------|-----------|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|---------------|
| Mol   | Chain     | Res     | Type     | Atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | $Observed(^{o})$ | $Ideal(^{o})$ |
| 23    | С         | 510     | CLA      | CHC-C1C-C2C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.38        | 120.14           | 126.72        |
| 25    | d         | 404     | BCR      | C23-C22-C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.38        | 115.29           | 118.94        |
| 25    | С         | 515     | BCR      | C23-C24-C25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.38        | 120.53           | 127.20        |
| 29    | D         | 407     | PL9      | C36-C37-C38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.38        | 104.07           | 111.88        |
| 23    | b         | 614     | CLA      | CAA-C2A-C3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.38        | 106.27           | 112.78        |
| 40    | V         | 201     | HEC      | CBD-CAD-C3D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.38        | 108.10           | 112.49        |
| 29    | А         | 413     | PL9      | C45-C44-C46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.37         | 119.27           | 115.27        |
| 23    | В         | 611     | CLA      | O1D-CGD-CBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.37        | 119.63           | 124.48        |
| 29    | d         | 405     | PL9      | C27-C28-C29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.37        | 121.94           | 127.66        |
| 34    | J         | 101     | LMG      | O8-C28-O10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2.37        | 117.60           | 123.59        |
| 25    | В         | 620     | BCR      | C10-C11-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.37        | 115.82           | 123.22        |
| 23    | В         | 612     | CLA      | O2D-CGD-O1D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.37        | 119.20           | 123.84        |
| 24    | А         | 406     | PHO      | C4A-NA-C1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2.37        | 106.22           | 108.14        |
| 23    | a         | 405     | CLA      | O2A-CGA-O1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.37        | 117.61           | 123.59        |
| 25    | h         | 102     | BCR      | C37-C22-C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.37        | 119.61           | 122.92        |
| 26    | a         | 411     | SQD      | O9-S-C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.37         | 109.75           | 106.94        |
| 34    | С         | 521     | LMG      | O8-C28-C29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.37         | 119.33           | 111.91        |
| 25    | В         | 618     | BCR      | C36-C18-C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.37        | 119.61           | 122.92        |
| 35    | В         | 634     | LMT      | O1'-C1'-C2'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.36         | 112.00           | 108.30        |
| 34    | m         | 101     | LMG      | O8-C28-O10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2.36        | 117.63           | 123.59        |
| 35    | В         | 623     | LMT      | C3'-C4'-C5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.36         | 116.34           | 110.93        |
| 23    | b         | 612     | CLA      | CMC-C2C-C1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.36         | 128.64           | 125.04        |
| 23    | b         | 602     | CLA      | CAC-C3C-C4C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.36         | 127.87           | 124.81        |
| 23    | A         | 407     | CLA      | CMA-C3A-C2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.36        | 104.30           | 113.83        |
| 25    | k         | 101     | BCR      | C34-C9-C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.36         | 121.80           | 118.08        |
| 23    | a         | 405     | CLA      | C4D-C3D-CAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.36        | 107.15           | 108.47        |
| 23    | a         | 406     | CLA      | CBC-CAC-C3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.36        | 105.92           | 112.43        |
| 25    | Y         | 101     | BCR      | C37-C22-C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.36        | 119.62           | 122.92        |
| 25    | b         | 619     | BCR      | C21-C20-C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.36        | 115.86           | 123.22        |
| 36    | В         | 629     | HTG      | O5-C5-C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.36         | 113.98           | 109.69        |
| 29    | a         | 415     | PL9      | C45-C44-C46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.36         | 119.24           | 115.27        |
| 36    | c         | 522     | HTG      | O5-C5-C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.36         | 113.97           | 109.69        |
| 34    | Z         | 101     | LMG      | C8-O7-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2.36        | 111.99           | 117.79        |
| 23    | b         | 613     | CLA      | C4-C3-C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.36         | 119.23           | 115.27        |
| 24    | A         | 406     | PHO      | C4D-ND-C1D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2.36        | 102 53           | 106.76        |
| 25    | A         | 408     | BCR      | C31-C1-C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2.36        | 106.48           | 110.30        |
| 23    | B         | 605     | CLA      | CHD-C4C-NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.35         | 127.91           | 124 20        |
| 23    | R         | 612     | CLA      | CMA-C3A-C4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.35        | 105 45           | 111 77        |
| 35    | h         | 628     | LMT      | <u>C1'-C2'-C3'</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.00<br>2.35 | 114.89           | 110.00        |
| 37    | с<br>С    | 516     | DGD      | 0.02  G - 0.01 R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.35        | 118.09           | 123 70        |
| 25    |           | 406     | BCB      | C21_C20_C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.35        | 115.88           | 123.10        |
| 25    |           | 597     | BCR      | $\begin{array}{c} 021 \\ 020 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\$ | 2.00         | 11/ 10           | 110.48        |
| 20    |           | 021     | DON      | 02-01-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ⊿.00         | 114.10           | 110.40        |

a... .1 L.



| 5GT | די |
|-----|----|
| 001 |    |

| Conti | Continued from previous page |     |      |             |       |                  |               |  |  |
|-------|------------------------------|-----|------|-------------|-------|------------------|---------------|--|--|
| Mol   | Chain                        | Res | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |  |  |
| 23    | d                            | 403 | CLA  | C4-C3-C5    | 2.35  | 119.22           | 115.27        |  |  |
| 23    | С                            | 503 | CLA  | C4-C3-C5    | 2.35  | 119.22           | 115.27        |  |  |
| 23    | А                            | 404 | CLA  | C16-C15-C13 | -2.35 | 108.33           | 115.92        |  |  |
| 23    | С                            | 505 | CLA  | CHD-C4C-NC  | 2.35  | 127.90           | 124.20        |  |  |
| 23    | D                            | 404 | CLA  | CAC-C3C-C4C | 2.35  | 127.85           | 124.81        |  |  |
| 23    | В                            | 602 | CLA  | CHB-C4A-NA  | 2.35  | 127.75           | 124.51        |  |  |
| 23    | С                            | 512 | CLA  | C11-C10-C8  | -2.34 | 108.34           | 115.92        |  |  |
| 37    | с                            | 518 | DGD  | C3G-C2G-C1G | -2.34 | 106.25           | 111.79        |  |  |
| 23    | В                            | 613 | CLA  | CHD-C4C-NC  | 2.34  | 127.89           | 124.20        |  |  |
| 40    | V                            | 202 | HEC  | CAD-CBD-CGD | 2.34  | 116.60           | 112.67        |  |  |
| 23    | b                            | 613 | CLA  | C4D-C3D-CAD | -2.34 | 107.17           | 108.47        |  |  |
| 25    | Y                            | 101 | BCR  | C34-C9-C8   | 2.34  | 121.76           | 118.08        |  |  |
| 23    | d                            | 403 | CLA  | CAA-C2A-C3A | -2.34 | 106.38           | 112.78        |  |  |
| 23    | С                            | 508 | CLA  | С11-С10-С8  | -2.34 | 108.36           | 115.92        |  |  |
| 25    | h                            | 102 | BCR  | C10-C11-C12 | -2.33 | 115.94           | 123.22        |  |  |
| 23    | d                            | 402 | CLA  | CAA-C2A-C3A | -2.33 | 106.39           | 112.78        |  |  |
| 23    | С                            | 505 | CLA  | CHB-C4A-NA  | 2.33  | 127.74           | 124.51        |  |  |
| 25    | D                            | 406 | BCR  | C16-C17-C18 | -2.33 | 123.98           | 127.31        |  |  |
| 23    | D                            | 405 | CLA  | OBD-CAD-C3D | -2.33 | 124.11           | 127.98        |  |  |
| 24    | А                            | 406 | PHO  | C2B-C1B-NB  | 2.33  | 113.31           | 109.79        |  |  |
| 37    | С                            | 519 | DGD  | O2G-C1B-C2B | 2.33  | 116.52           | 111.50        |  |  |
| 23    | С                            | 510 | CLA  | CMB-C2B-C3B | 2.33  | 129.04           | 124.68        |  |  |
| 37    | С                            | 517 | DGD  | C2G-O2G-C1B | -2.33 | 112.05           | 117.79        |  |  |
| 23    | D                            | 405 | CLA  | CHC-C1C-C2C | -2.33 | 120.28           | 126.72        |  |  |
| 23    | С                            | 514 | CLA  | CHC-C1C-C2C | -2.33 | 120.28           | 126.72        |  |  |
| 23    | b                            | 606 | CLA  | O2A-CGA-CBA | 2.33  | 119.21           | 111.91        |  |  |
| 37    | с                            | 516 | DGD  | C3G-C2G-C1G | -2.33 | 106.29           | 111.79        |  |  |
| 23    | с                            | 504 | CLA  | C2A-C1A-CHA | -2.33 | 119.79           | 123.86        |  |  |
| 26    | f                            | 101 | SQD  | O5-C1-C2    | 2.32  | 115.27           | 110.35        |  |  |
| 31    | A                            | 415 | LHG  | O7-C7-O9    | -2.32 | 118.09           | 123.70        |  |  |
| 31    | d                            | 406 | LHG  | O7-C7-O9    | -2.32 | 118.09           | 123.70        |  |  |
| 23    | С                            | 511 | CLA  | O2A-CGA-O1A | -2.32 | 117.73           | 123.59        |  |  |
| 24    | a                            | 408 | PHO  | C4-C3-C2    | -2.32 | 117.72           | 123.68        |  |  |
| 34    | j                            | 101 | LMG  | O8-C28-O10  | -2.32 | 117.73           | 123.59        |  |  |
| 34    | Z                            | 101 | LMG  | C9-C8-C7    | -2.32 | 106.30           | 111.79        |  |  |
| 23    | b                            | 601 | CLA  | CBC-CAC-C3C | -2.32 | 106.04           | 112.43        |  |  |
| 26    | L                            | 102 | SQD  | C1-C2-C3    | -2.32 | 105.17           | 110.00        |  |  |
| 25    | a                            | 410 | BCR  | C32-C1-C6   | -2.32 | 106.54           | 110.30        |  |  |
| 23    | b                            | 615 | CLA  | O2D-CGD-O1D | -2.31 | 119.31           | 123.84        |  |  |
| 25    | Y                            | 101 | BCR  | C21-C20-C19 | -2.31 | 116.00           | 123.22        |  |  |
| 23    | с                            | 506 | CLA  | CBC-CAC-C3C | -2.31 | 106.05           | 112.43        |  |  |
| 23    | b                            | 607 | CLA  | O2A-CGA-CBA | 2.31  | 119.17           | 111.91        |  |  |

a... .1 L.



| Mol             | Chain | $\mathbf{Res}$ | Tvpe | Atoms                    | Z            | Observed( <sup>o</sup> ) | Ideal(°) |
|-----------------|-------|----------------|------|--------------------------|--------------|--------------------------|----------|
| 23              | B     | 610            | CLA  | 02D-CGD-01D              | -2.31        | 119.32                   | 123.84   |
| $\frac{23}{23}$ | b     | 601            | CLA  | CMC-C2C-C1C              | 2.01<br>2.31 | 128.56                   | 125.04   |
| $\frac{23}{23}$ | C     | 505            | CLA  | CMB-C2B-C3B              | 2.31         | 129.00                   | 124.68   |
| 23              | C     | 508            | CLA  | CAC-C3C-C4C              | 2.31         | 127.81                   | 124.81   |
| 25              | k     | 101            | BCR  | C2-C1-C6                 | 2.31         | 114.04                   | 110.48   |
| 23              | В     | 612            | CLA  | CMB-C2B-C3B              | 2.31         | 129.00                   | 124.68   |
| 23              | С     | 503            | CLA  | C2A-C1A-CHA              | -2.31        | 119.82                   | 123.86   |
| 34              | С     | 501            | LMG  | O1-C1-C2                 | 2.31         | 111.90                   | 108.30   |
| 25              | h     | 102            | BCR  | C36-C18-C17              | -2.31        | 119.69                   | 122.92   |
| 23              | с     | 510            | CLA  | C4-C3-C2                 | -2.31        | 117.76                   | 123.68   |
| 26              | a     | 411            | SQD  | O5-C1-C2                 | -2.30        | 105.47                   | 110.35   |
| 23              | b     | 611            | CLA  | OBD-CAD-C3D              | -2.30        | 124.16                   | 127.98   |
| 23              | В     | 616            | CLA  | C6-C7-C8                 | -2.30        | 108.47                   | 115.92   |
| 23              | С     | 511            | CLA  | C2A-C1A-CHA              | -2.30        | 119.83                   | 123.86   |
| 23              | с     | 508            | CLA  | O2A-CGA-O1A              | -2.30        | 117.78                   | 123.59   |
| 34              | С     | 520            | LMG  | O8-C28-O10               | -2.30        | 117.78                   | 123.59   |
| 23              | a     | 409            | CLA  | O2A-CGA-O1A              | -2.30        | 117.79                   | 123.59   |
| 23              | В     | 611            | CLA  | C6-C7-C8                 | -2.30        | 108.49                   | 115.92   |
| 23              | с     | 506            | CLA  | CMC-C2C-C1C              | 2.30         | 128.54                   | 125.04   |
| 23              | С     | 514            | CLA  | CBC-CAC-C3C              | -2.30        | 106.10                   | 112.43   |
| 26              | В     | 621            | SQD  | C3-C4-C5                 | 2.30         | 114.33                   | 110.24   |
| 23              | с     | 507            | CLA  | C2A-C1A-CHA              | -2.30        | 119.84                   | 123.86   |
| 25              | В     | 620            | BCR  | C3-C4-C5                 | -2.29        | 109.98                   | 114.08   |
| 23              | b     | 612            | CLA  | CAC-C3C-C4C              | 2.29         | 127.79                   | 124.81   |
| 23              | С     | 509            | CLA  | CHB-C4A-NA               | 2.29         | 127.68                   | 124.51   |
| 25              | b     | 619            | BCR  | C33-C5-C4                | 2.29         | 118.02                   | 113.62   |
| 23              | С     | 514            | CLA  | C4D-C3D-CAD              | -2.29        | 107.19                   | 108.47   |
| 35              | m     | 103            | LMT  | O5B-C5B-C4B              | 2.29         | 113.85                   | 109.69   |
| 25              | b     | 618            | BCR  | C21-C20-C19              | -2.29        | 116.07                   | 123.22   |
| 23              | a     | 404            | CLA  | CMC-C2C-C1C              | 2.29         | 128.53                   | 125.04   |
| 23              | С     | 510            | CLA  | CBC-CAC-C3C              | -2.29        | 106.13                   | 112.43   |
| 25              | с     | 514            | BCR  | C3-C4-C5                 | -2.28        | 110.00                   | 114.08   |
| 31              | А     | 415            | LHG  | O8-C6-C5                 | -2.28        | 101.79                   | 108.43   |
| 23              | С     | 506            | CLA  | O2A-CGA-O1A              | -2.28        | 117.83                   | 123.59   |
| 25              | Y     | 101            | BCR  | C28-C27-C26              | -2.28        | 110.00                   | 114.08   |
| 23              | b     | 606            | CLA  | $CAC-C\overline{3C-C4}C$ | 2.28         | 127.77                   | 124.81   |
| 26              | A     | 409            | SQD  | O48-C23-O10              | -2.28        | 117.84                   | 123.59   |
| 23              | B     | 608            | CLA  | $CAC-C\overline{3C-C4C}$ | 2.28         | 127.77                   | 124.81   |
| 23              | с     | 510            | CLA  | C4C-C3C-C2C              | -2.28        | 103.58                   | 106.90   |
| 23              | C     | 511            | CLA  | CHD-C4C-NC               | 2.28         | 127.79                   | 124.20   |
| 23              | B     | 607            | CLA  | CAA-C2A-C3A              | -2.28        | 106.54                   | 112.78   |
| 23              | b     | 616            | CLA  | CMB-C2B-C3B              | 2.28         | 128.94                   | 124.68   |

..... Contin  $d f_{a}$ 



| 5GT | די |
|-----|----|
| 001 |    |

| Conti | Continued from previous page |     |      |             |       |                  |               |  |  |
|-------|------------------------------|-----|------|-------------|-------|------------------|---------------|--|--|
| Mol   | Chain                        | Res | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |  |  |
| 23    | а                            | 404 | CLA  | C4-C3-C5    | 2.28  | 119.10           | 115.27        |  |  |
| 23    | В                            | 609 | CLA  | C4-C3-C5    | 2.28  | 119.10           | 115.27        |  |  |
| 25    | В                            | 620 | BCR  | C2-C3-C4    | -2.28 | 106.29           | 111.38        |  |  |
| 23    | В                            | 609 | CLA  | CMC-C2C-C1C | 2.28  | 128.51           | 125.04        |  |  |
| 25    | Y                            | 101 | BCR  | C10-C11-C12 | -2.28 | 116.11           | 123.22        |  |  |
| 23    | с                            | 504 | CLA  | CHB-C4A-NA  | 2.28  | 127.66           | 124.51        |  |  |
| 23    | D                            | 401 | CLA  | C4D-C3D-CAD | -2.28 | 107.20           | 108.47        |  |  |
| 23    | b                            | 615 | CLA  | C4D-C3D-CAD | -2.28 | 107.20           | 108.47        |  |  |
| 23    | С                            | 506 | CLA  | CBC-CAC-C3C | -2.28 | 106.16           | 112.43        |  |  |
| 23    | В                            | 602 | CLA  | CBC-CAC-C3C | -2.28 | 106.16           | 112.43        |  |  |
| 40    | V                            | 202 | HEC  | CMB-C2B-C3B | 2.27  | 128.50           | 125.82        |  |  |
| 25    | b                            | 619 | BCR  | C16-C17-C18 | -2.27 | 124.06           | 127.31        |  |  |
| 29    | А                            | 413 | PL9  | C51-C49-C50 | 2.27  | 119.63           | 114.60        |  |  |
| 23    | А                            | 405 | CLA  | CMA-C3A-C4A | -2.27 | 105.66           | 111.77        |  |  |
| 25    | А                            | 408 | BCR  | C35-C13-C12 | 2.27  | 121.66           | 118.08        |  |  |
| 37    | Н                            | 102 | DGD  | O1G-C1A-C2A | 2.27  | 119.04           | 111.91        |  |  |
| 23    | b                            | 613 | CLA  | O2D-CGD-O1D | -2.27 | 119.40           | 123.84        |  |  |
| 23    | b                            | 609 | CLA  | C2A-C1A-CHA | -2.27 | 119.89           | 123.86        |  |  |
| 23    | В                            | 617 | CLA  | C2A-C1A-CHA | -2.27 | 119.89           | 123.86        |  |  |
| 23    | С                            | 510 | CLA  | C2A-C1A-CHA | -2.27 | 119.89           | 123.86        |  |  |
| 36    | В                            | 624 | HTG  | O5-C1-C2    | 2.27  | 113.17           | 110.31        |  |  |
| 23    | В                            | 608 | CLA  | O2D-CGD-O1D | -2.27 | 119.41           | 123.84        |  |  |
| 23    | с                            | 505 | CLA  | CMC-C2C-C1C | 2.27  | 128.49           | 125.04        |  |  |
| 25    | у                            | 101 | BCR  | C37-C22-C23 | 2.27  | 121.65           | 118.08        |  |  |
| 34    | Ζ                            | 101 | LMG  | C1-O6-C5    | 2.27  | 118.13           | 113.69        |  |  |
| 29    | d                            | 405 | PL9  | C16-C17-C18 | -2.26 | 104.44           | 111.88        |  |  |
| 23    | С                            | 502 | CLA  | O2A-CGA-CBA | 2.26  | 119.01           | 111.91        |  |  |
| 35    | С                            | 522 | LMT  | O1'-C1'-C2' | 2.26  | 111.83           | 108.30        |  |  |
| 25    | с                            | 514 | BCR  | C7-C8-C9    | -2.26 | 122.82           | 126.23        |  |  |
| 23    | a                            | 406 | CLA  | OBD-CAD-C3D | -2.26 | 124.23           | 127.98        |  |  |
| 23    | С                            | 508 | CLA  | C4D-C3D-CAD | -2.26 | 107.21           | 108.47        |  |  |
| 23    | b                            | 607 | CLA  | C1-O2A-CGA  | 2.26  | 122.37           | 116.44        |  |  |
| 23    | С                            | 508 | CLA  | C4-C3-C5    | 2.26  | 119.07           | 115.27        |  |  |
| 26    | L                            | 102 | SQD  | C1-O5-C5    | -2.26 | 109.26           | 113.69        |  |  |
| 23    | с                            | 503 | CLA  | CMC-C2C-C1C | 2.26  | 128.48           | 125.04        |  |  |
| 36    | b                            | 621 | HTG  | O5-C5-C4    | 2.26  | 113.79           | 109.69        |  |  |
| 23    | b                            | 611 | CLA  | CMB-C2B-C3B | 2.25  | 128.90           | 124.68        |  |  |
| 34    | Ζ                            | 101 | LMG  | O6-C5-C4    | 2.25  | 113.78           | 109.69        |  |  |
| 25    | k                            | 101 | BCR  | C20-C21-C22 | -2.25 | 124.10           | 127.31        |  |  |
| 25    | С                            | 516 | BCR  | C2-C1-C6    | 2.25  | 113.95           | 110.48        |  |  |
| 23    | D                            | 405 | CLA  | CBC-CAC-C3C | -2.25 | 106.23           | 112.43        |  |  |
| 25    | c                            | 515 | BCR  | C37-C22-C21 | -2.25 | 119.77           | 122.92        |  |  |
|       |                              |     |      |             | I     |                  | <b>_</b>      |  |  |

a... .1 L.



| 5GT | די |
|-----|----|
| 001 |    |

| Continued from | previous | page |
|----------------|----------|------|
|----------------|----------|------|

| Mol | Chain | Res | Type | Atoms       | Z                 | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------------------|------------------|---------------|
| 26  | D     | 413 | SQD  | O9-S-C6     | 2.25              | 109.61           | 106.94        |
| 23  | b     | 602 | CLA  | CBC-CAC-C3C | -2.25             | 106.23           | 112.43        |
| 23  | с     | 504 | CLA  | O2A-CGA-CBA | 2.25              | 118.96           | 111.91        |
| 37  | с     | 517 | DGD  | O1G-C1A-O1A | -2.25             | 117.92           | 123.59        |
| 23  | с     | 512 | CLA  | OBD-CAD-C3D | -2.25             | 124.25           | 127.98        |
| 36  | В     | 624 | HTG  | O2-C2-C3    | -2.25             | 105.16           | 110.35        |
| 23  | В     | 609 | CLA  | CHB-C4A-NA  | 2.25              | 127.62           | 124.51        |
| 23  | В     | 609 | CLA  | CBC-CAC-C3C | -2.24             | 106.24           | 112.43        |
| 24  | a     | 407 | PHO  | CBA-CAA-C2A | -2.24             | 107.24           | 113.86        |
| 25  | В     | 620 | BCR  | C37-C22-C23 | 2.24              | 121.61           | 118.08        |
| 24  | А     | 406 | PHO  | O2D-CGD-O1D | -2.24             | 119.45           | 123.84        |
| 25  | В     | 619 | BCR  | C33-C5-C6   | -2.24             | 122.01           | 124.53        |
| 23  | a     | 405 | CLA  | CHB-C4A-NA  | 2.24              | 127.61           | 124.51        |
| 23  | В     | 605 | CLA  | O1D-CGD-CBD | -2.24             | 119.90           | 124.48        |
| 23  | с     | 510 | CLA  | CMB-C2B-C3B | 2.24              | 128.87           | 124.68        |
| 23  | С     | 503 | CLA  | O2A-CGA-CBA | 2.24              | 118.93           | 111.91        |
| 23  | А     | 407 | CLA  | CMA-C3A-C4A | -2.24             | 105.76           | 111.77        |
| 23  | С     | 508 | CLA  | OBD-CAD-C3D | -2.24             | 124.27           | 127.98        |
| 25  | В     | 619 | BCR  | C16-C17-C18 | -2.24             | 124.12           | 127.31        |
| 23  | С     | 509 | CLA  | CHD-C4C-NC  | 2.24              | 127.73           | 124.20        |
| 23  | с     | 504 | CLA  | O1D-CGD-CBD | -2.23             | 119.91           | 124.48        |
| 23  | С     | 504 | CLA  | OBD-CAD-C3D | -2.23             | 124.27           | 127.98        |
| 25  | b     | 619 | BCR  | C37-C22-C23 | 2.23              | 121.59           | 118.08        |
| 23  | D     | 401 | CLA  | C4C-C3C-C2C | -2.23             | 103.64           | 106.90        |
| 25  | t     | 101 | BCR  | C16-C17-C18 | -2.23             | 124.13           | 127.31        |
| 25  | У     | 101 | BCR  | C1-C6-C7    | 2.23              | 122.09           | 115.78        |
| 37  | с     | 516 | DGD  | C6D-O5D-C1E | -2.23             | 109.38           | 113.74        |
| 23  | с     | 511 | CLA  | CAA-CBA-CGA | -2.23             | 106.74           | 113.25        |
| 34  | С     | 501 | LMG  | O7-C10-O9   | -2.23             | 118.32           | 123.70        |
| 29  | d     | 405 | PL9  | C25-C24-C23 | -2.23             | 117.97           | 123.68        |
| 29  | d     | 405 | PL9  | C45-C44-C43 | -2.22             | 117.97           | 123.68        |
| 23  | С     | 509 | CLA  | C2A-C1A-CHA | -2.22             | 119.97           | 123.86        |
| 23  | В     | 602 | CLA  | CMA-C3A-C4A | -2.22             | 105.80           | 111.77        |
| 23  | С     | 505 | CLA  | CBC-CAC-C3C | -2.22             | 106.31           | 112.43        |
| 23  | с     | 503 | CLA  | CBC-CAC-C3C | -2.22             | 106.31           | 112.43        |
| 23  | A     | 407 | CLA  | O2A-CGA-CBA | $2.2\overline{2}$ | 118.87           | 111.91        |
| 26  | D     | 413 | SQD  | O48-C23-O10 | -2.22             | 117.99           | 123.59        |
| 23  | В     | 607 | CLA  | CAC-C3C-C4C | 2.22              | 127.69           | 124.81        |
| 23  | b     | 605 | CLA  | C1-O2A-CGA  | 2.22              | 122.26           | 116.44        |
| 23  | C     | 502 | CLA  | C3D-CAD-CBD | 2.22              | 110.52           | 107.61        |
| 29  | A     | 413 | PL9  | C47-C48-C49 | -2.22             | 120.17           | 127.75        |
| 23  | b     | 613 | CLA  | CHB-C4A-NA  | 2.22              | 127.58           | 124.51        |



| 5GT | די |
|-----|----|
| 001 |    |

| Conti                                           | nued fron        | i previ                                      | ous page                 |                                                       |                                  |                                                          | <b>T 1 1/~</b> )                     |
|-------------------------------------------------|------------------|----------------------------------------------|--------------------------|-------------------------------------------------------|----------------------------------|----------------------------------------------------------|--------------------------------------|
| Mol                                             | Chain            | Res                                          | Type                     | Atoms                                                 | Z                                | $Observed(^{o})$                                         | Ideal(°)                             |
| 25                                              | d                | 404                                          | BCR                      | C11-C10-C9                                            | -2.22                            | 124.15                                                   | 127.31                               |
| 23                                              | с                | 503                                          | CLA                      | CHD-C4C-NC                                            | 2.22                             | 127.70                                                   | 124.20                               |
| 25                                              | Y                | 101                                          | BCR                      | C40-C30-C25                                           | -2.22                            | 106.70                                                   | 110.30                               |
| 25                                              | Н                | 101                                          | BCR                      | C2-C1-C6                                              | 2.22                             | 113.89                                                   | 110.48                               |
| 23                                              | A                | 407                                          | CLA                      | CBC-CAC-C3C                                           | -2.22                            | 106.32                                                   | 112.43                               |
| 23                                              | С                | 508                                          | CLA                      | O2A-CGA-O1A                                           | -2.22                            | 118.00                                                   | 123.59                               |
| 31                                              | L                | 101                                          | LHG                      | O4-P-O5                                               | 2.22                             | 123.19                                                   | 112.24                               |
| 23                                              | a                | 406                                          | CLA                      | CHB-C4A-NA                                            | 2.21                             | 127.57                                                   | 124.51                               |
| 23                                              | с                | 505                                          | CLA                      | C2A-C1A-CHA                                           | -2.21                            | 119.99                                                   | 123.86                               |
| 25                                              | k                | 101                                          | BCR                      | C28-C27-C26                                           | -2.21                            | 110.13                                                   | 114.08                               |
| 23                                              | a                | 409                                          | CLA                      | CMB-C2B-C3B                                           | 2.21                             | 128.81                                                   | 124.68                               |
| 24                                              | a                | 407                                          | PHO                      | C3A-C4A-CHB                                           | -2.21                            | 118.01                                                   | 121.83                               |
| 26                                              | А                | 409                                          | SQD                      | O8-S-C6                                               | 2.21                             | 109.26                                                   | 105.74                               |
| 23                                              | С                | 507                                          | CLA                      | OBD-CAD-C3D                                           | -2.21                            | 124.31                                                   | 127.98                               |
| 29                                              | d                | 405                                          | PL9                      | C36-C34-C33                                           | -2.20                            | 116.66                                                   | 121.12                               |
| 23                                              | В                | 611                                          | CLA                      | OBD-CAD-C3D                                           | -2.20                            | 124.32                                                   | 127.98                               |
| 23                                              | А                | 407                                          | CLA                      | C4D-C3D-CAD                                           | -2.20                            | 107.24                                                   | 108.47                               |
| 23                                              | b                | 610                                          | CLA                      | CMA-C3A-C2A                                           | -2.20                            | 104.95                                                   | 113.83                               |
| 23                                              | С                | 513                                          | CLA                      | CHB-C4A-NA                                            | 2.20                             | 127.55                                                   | 124.51                               |
| 25                                              | с                | 515                                          | BCR                      | C37-C22-C23                                           | 2.20                             | 121.54                                                   | 118.08                               |
| 23                                              | В                | 606                                          | CLA                      | CHB-C4A-NA                                            | 2.20                             | 127.55                                                   | 124.51                               |
| 31                                              | D                | 409                                          | LHG                      | O8-C23-O10                                            | -2.20                            | 118.05                                                   | 123.59                               |
| 23                                              | b                | 604                                          | CLA                      | CHA-C1A-NA                                            | -2.20                            | 121.37                                                   | 126.40                               |
| 23                                              | С                | 513                                          | CLA                      | C1-C2-C3                                              | -2.20                            | 122.24                                                   | 126.04                               |
| 23                                              | b                | 607                                          | CLA                      | CHD-C4C-NC                                            | 2.20                             | 127.66                                                   | 124.20                               |
| 24                                              | a                | 408                                          | PHO                      | C2A-C1A-NA                                            | 2.20                             | 114.38                                                   | 111.86                               |
| 34                                              | j                | 101                                          | LMG                      | O7-C10-O9                                             | -2.20                            | 118.40                                                   | 123.70                               |
| 25                                              | D                | 406                                          | BCR                      | C29-C30-C25                                           | 2.19                             | 113.86                                                   | 110.48                               |
| 29                                              | a                | 415                                          | PL9                      | C47-C48-C49                                           | -2.19                            | 120.25                                                   | 127.75                               |
| 23                                              | В                | 612                                          | CLA                      | O2A-CGA-CBA                                           | 2.19                             | 118.79                                                   | 111.91                               |
| 25                                              | В                | 618                                          | BCR                      | C31-C1-C6                                             | -2.19                            | 106.75                                                   | 110.30                               |
| 23                                              | с                | 501                                          | CLA                      | CBC-CAC-C3C                                           | -2.19                            | 106.39                                                   | 112.43                               |
| 23                                              | b                | 609                                          | CLA                      | O2A-CGA-O1A                                           | -2.19                            | 118.06                                                   | 123.59                               |
| 23                                              | В                | 617                                          | CLA                      | C1-C2-C3                                              | -2.19                            | 122.25                                                   | 126.04                               |
| 23                                              | с                | 512                                          | CLA                      | O1D-CGD-CBD                                           | -2.19                            | 120.01                                                   | 124.48                               |
| 23                                              | B                | 613                                          | CLA                      | C11-C12-C13                                           | -2.18                            | 108.86                                                   | 115.92                               |
| 29                                              | A                | 413                                          | PL9                      | C37-C36-C34                                           | -2.18                            | 105.80                                                   | 112.98                               |
| $\frac{-3}{23}$                                 | D                | 405                                          | CLA                      | C1-C2-C3                                              | -2.18                            | 122.27                                                   | 126.04                               |
| 25                                              | C C              | 515                                          | BCR                      | C15-C16-C17                                           | -2.18                            | 119.01                                                   | 123.01<br>123.47                     |
| $\frac{-20}{34}$                                | 7                | 101                                          | LMG                      | C7-01-C1                                              | -2.18                            | 109.48                                                   | 113 74                               |
| 23                                              | h h              | 602                                          | CLA                      | C4D-C3D-CAD                                           | -2.18                            | 107.10                                                   | 108 47                               |
| 20                                              | h                | 602                                          |                          | C4D-C3D-CAD                                           | _2.10                            | 107.25                                                   | 108.47                               |
| $\begin{array}{r} 25\\ 34\\ 23\\ 23\end{array}$ | c<br>z<br>b<br>b | $     515 \\     101 \\     602 \\     608 $ | BCR<br>LMG<br>CLA<br>CLA | C15-C16-C17<br>C7-O1-C1<br>C4D-C3D-CAD<br>C4D-C3D-CAD | -2.18<br>-2.18<br>-2.18<br>-2.18 | $     119.01 \\     109.48 \\     107.25 \\     107.25 $ | 123.47<br>113.74<br>108.47<br>108.47 |

a... .1 f.



|    | Choir | <i>previ</i> | Trees | Atoma       | 7     | Obcom-rod(0) | Ideel(0) |
|----|-------|--------------|-------|-------------|-------|--------------|----------|
|    |       | res          |       | Atoms       |       | Ubserved(°)  | 100.47   |
| 23 | d     | 403          | CLA   | C4D-C3D-CAD | -2.18 | 107.26       | 108.47   |
| 23 | C     | 504          | CLA   | CMB-C2B-C3B | 2.18  | 128.75       | 124.68   |
| 23 | a     | 405          | CLA   | C4-C3-C5    | 2.18  | 118.93       | 115.27   |
| 23 | C     | 509          | CLA   | CAC-C3C-C4C | 2.17  | 127.63       | 124.81   |
| 23 | C     | 513          | CLA   | CAC-C3C-C4C | 2.17  | 127.63       | 124.81   |
| 23 | a     | 404          | CLA   | CED-O2D-CGD | 2.17  | 120.85       | 115.94   |
| 23 | с     | 501          | CLA   | CMC-C2C-C1C | 2.17  | 128.34       | 125.04   |
| 25 | C     | 527          | BCR   | C37-C22-C21 | -2.17 | 119.88       | 122.92   |
| 26 | L     | 102          | SQD   | O47-C7-O49  | -2.17 | 118.46       | 123.70   |
| 25 | В     | 620          | BCR   | C29-C30-C25 | 2.17  | 113.82       | 110.48   |
| 23 | b     | 603          | CLA   | CHB-C4A-NA  | 2.17  | 127.51       | 124.51   |
| 23 | с     | 511          | CLA   | CBC-CAC-C3C | -2.17 | 106.45       | 112.43   |
| 25 | с     | 515          | BCR   | C21-C20-C19 | -2.17 | 116.45       | 123.22   |
| 25 | С     | 516          | BCR   | C24-C23-C22 | -2.17 | 122.96       | 126.23   |
| 23 | В     | 602          | CLA   | O1D-CGD-CBD | -2.16 | 120.06       | 124.48   |
| 25 | k     | 101          | BCR   | C7-C8-C9    | -2.16 | 122.97       | 126.23   |
| 23 | a     | 405          | CLA   | OBD-CAD-C3D | -2.16 | 124.39       | 127.98   |
| 23 | b     | 613          | CLA   | C2A-C1A-CHA | -2.16 | 120.08       | 123.86   |
| 23 | В     | 606          | CLA   | C4D-C3D-CAD | -2.16 | 107.26       | 108.47   |
| 25 | С     | 527          | BCR   | C36-C18-C19 | 2.16  | 121.48       | 118.08   |
| 23 | С     | 508          | CLA   | C6-C7-C8    | -2.16 | 108.93       | 115.92   |
| 25 | d     | 404          | BCR   | C21-C20-C19 | -2.16 | 116.47       | 123.22   |
| 25 | a     | 410          | BCR   | C36-C18-C19 | 2.16  | 121.48       | 118.08   |
| 24 | a     | 408          | PHO   | CBD-CHA-C1A | 2.16  | 131.41       | 126.40   |
| 23 | D     | 404          | CLA   | CMB-C2B-C3B | 2.16  | 128.72       | 124.68   |
| 24 | a     | 407          | PHO   | C4-C3-C5    | 2.16  | 118.91       | 115.27   |
| 40 | V     | 202          | HEC   | C3B-C4B-NB  | -2.16 | 106.86       | 110.94   |
| 23 | С     | 502          | CLA   | C2A-C1A-CHA | -2.16 | 120.08       | 123.86   |
| 23 | a     | 404          | CLA   | CBC-CAC-C3C | -2.16 | 106.48       | 112.43   |
| 23 | с     | 513          | CLA   | CBC-CAC-C3C | -2.16 | 106.48       | 112.43   |
| 25 | h     | 102          | BCR   | C35-C13-C12 | 2.16  | 121.48       | 118.08   |
| 23 | с     | 504          | CLA   | CED-O2D-CGD | 2.16  | 120.82       | 115.94   |
| 37 | С     | 518          | DGD   | O1G-C1A-O1A | -2.16 | 118.14       | 123.59   |
| 24 | D     | 402          | PHO   | O2A-CGA-CBA | 2.16  | 118.68       | 111.91   |
| 23 | В     | 605          | CLA   | CHB-C4A-NA  | 2.16  | 127.50       | 124.51   |
| 23 | b     | 615          | CLA   | O2A-CGA-CBA | 2.16  | 118.68       | 111.91   |
| 23 | b     | 616          | CLA   | C2A-C1A-CHA | -2.16 | 120.09       | 123.86   |
| 23 | В     | 614          | CLA   | O2D-CGD-O1D | -2.16 | 119.62       | 123.84   |
| 25 | d     | 404          | BCR   | C40-C30-C25 | -2.16 | 106.80       | 110.30   |
| 23 | B     | 609          | CLA   | C2A-C1A-CHA | -2.16 | 120.09       | 123.86   |
| 23 | B     | 611          | CLA   | CAA-CBA-CGA | -2.16 | 106.95       | 113.25   |
| 23 | b     | 607          | CLA   | CBC-CAC-C3C | -2.15 | 106.49       | 112.43   |

Continu d fa 



| Mol | Chain | Res | Type | Atoms       |       | $\mathbf{Observed}(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|---------------------------|---------------|
| 23  | В     | 617 | CLA  | CMB-C2B-C3B | 2.15  | 128.71                    | 124.68        |
| 38  | е     | 103 | HEM  | C3C-C4C-NC  | -2.15 | 106.88                    | 110.94        |
| 40  | v     | 201 | HEC  | C3B-C4B-NB  | -2.15 | 106.88                    | 110.94        |
| 23  | В     | 611 | CLA  | CMB-C2B-C3B | 2.15  | 128.70                    | 124.68        |
| 23  | с     | 513 | CLA  | O2A-CGA-O1A | -2.15 | 118.17                    | 123.59        |
| 23  | d     | 403 | CLA  | C1-C2-C3    | -2.15 | 122.33                    | 126.04        |
| 25  | k     | 101 | BCR  | C34-C9-C10  | -2.15 | 119.92                    | 122.92        |
| 23  | В     | 608 | CLA  | C4-C3-C5    | 2.15  | 118.88                    | 115.27        |
| 31  | L     | 101 | LHG  | C5-O7-C7    | -2.15 | 112.51                    | 117.79        |
| 23  | с     | 509 | CLA  | CMB-C2B-C3B | 2.15  | 128.69                    | 124.68        |
| 23  | b     | 601 | CLA  | CAA-C2A-C3A | -2.15 | 106.90                    | 112.78        |
| 23  | a     | 409 | CLA  | CBC-CAC-C3C | -2.15 | 106.52                    | 112.43        |
| 23  | В     | 605 | CLA  | CMB-C2B-C3B | 2.14  | 128.69                    | 124.68        |
| 25  | Н     | 101 | BCR  | C31-C1-C6   | -2.14 | 106.82                    | 110.30        |
| 23  | D     | 405 | CLA  | CHB-C4A-NA  | 2.14  | 127.48                    | 124.51        |
| 25  | А     | 408 | BCR  | C36-C18-C19 | 2.14  | 121.45                    | 118.08        |
| 23  | С     | 504 | CLA  | CBC-CAC-C3C | -2.14 | 106.53                    | 112.43        |
| 23  | С     | 509 | CLA  | CAC-C3C-C2C | 2.14  | 131.19                    | 127.53        |
| 23  | С     | 505 | CLA  | C2A-C1A-CHA | -2.14 | 120.12                    | 123.86        |
| 34  | m     | 101 | LMG  | C1-C2-C3    | -2.14 | 105.54                    | 110.00        |
| 29  | d     | 405 | PL9  | C42-C41-C39 | -2.14 | 105.94                    | 112.98        |
| 23  | В     | 614 | CLA  | CBC-CAC-C3C | -2.14 | 106.54                    | 112.43        |
| 23  | b     | 608 | CLA  | C11-C10-C8  | -2.14 | 109.01                    | 115.92        |
| 25  | b     | 617 | BCR  | C16-C17-C18 | -2.14 | 124.26                    | 127.31        |
| 23  | b     | 611 | CLA  | C2A-C1A-CHA | -2.14 | 120.12                    | 123.86        |
| 23  | В     | 609 | CLA  | O2D-CGD-O1D | -2.14 | 119.66                    | 123.84        |
| 23  | b     | 614 | CLA  | CBC-CAC-C3C | -2.13 | 106.55                    | 112.43        |
| 23  | В     | 614 | CLA  | C7-C6-C5    | -2.13 | 107.56                    | 113.36        |
| 25  | В     | 619 | BCR  | C37-C22-C23 | 2.13  | 121.44                    | 118.08        |
| 23  | В     | 609 | CLA  | CAC-C3C-C2C | 2.13  | 131.18                    | 127.53        |
| 23  | a     | 405 | CLA  | C4C-C3C-C2C | -2.13 | 103.79                    | 106.90        |
| 23  | a     | 409 | CLA  | C4D-C3D-CAD | -2.13 | 107.28                    | 108.47        |
| 23  | a     | 404 | CLA  | OBD-CAD-C3D | -2.13 | 124.45                    | 127.98        |
| 31  | Е     | 101 | LHG  | O8-C23-O10  | -2.13 | 118.22                    | 123.59        |
| 23  | В     | 611 | CLA  | C2A-C1A-CHA | -2.13 | 120.14                    | 123.86        |
| 23  | В     | 607 | CLA  | CMB-C2B-C3B | 2.13  | 128.66                    | 124.68        |
| 23  | с     | 509 | CLA  | OBD-CAD-C3D | -2.13 | 124.45                    | 127.98        |
| 23  | D     | 401 | CLA  | CAA-CBA-CGA | 2.12  | 119.46                    | 113.25        |
| 23  | с     | 502 | CLA  | O2A-CGA-O1A | -2.12 | 118.23                    | 123.59        |
| 23  | с     | 512 | CLA  | C4D-C3D-CAD | -2.12 | 107.29                    | 108.47        |
| 23  | В     | 603 | CLA  | CBC-CAC-C3C | -2.12 | 106.59                    | 112.43        |
| 23  | a     | 404 | CLA  | C4C-C3C-C2C | -2.12 | 103.81                    | 106.90        |

Continued from previous page...



|     | nueu jion | i previ | ous page |             | 7     |                  |          |
|-----|-----------|---------|----------|-------------|-------|------------------|----------|
| Mol | Chain     | Res     | Type     | Atoms       | Z     | $Observed(^{o})$ | Ideal(°) |
| 24  | a         | 408     | PHO      | CHD-C1D-C2D | -2.12 | 120.40           | 125.73   |
| 23  | В         | 603     | CLA      | O2A-CGA-O1A | -2.12 | 118.24           | 123.59   |
| 23  | с         | 504     | CLA      | C4D-C3D-CAD | -2.12 | 107.29           | 108.47   |
| 26  | a         | 413     | SQD      | O7-S-C6     | 2.12  | 109.46           | 106.94   |
| 34  | с         | 519     | LMG      | O7-C10-O9   | -2.12 | 118.58           | 123.70   |
| 23  | с         | 501     | CLA      | C2A-C1A-CHA | -2.12 | 120.16           | 123.86   |
| 23  | С         | 502     | CLA      | CAA-C2A-C3A | -2.12 | 106.98           | 112.78   |
| 23  | b         | 615     | CLA      | C6-C7-C8    | -2.12 | 109.08           | 115.92   |
| 23  | В         | 604     | CLA      | C4D-C3D-CAD | -2.12 | 107.29           | 108.47   |
| 23  | a         | 406     | CLA      | CMB-C2B-C3B | 2.12  | 128.64           | 124.68   |
| 23  | С         | 505     | CLA      | CAA-C2A-C3A | -2.12 | 106.98           | 112.78   |
| 23  | b         | 608     | CLA      | C4-C3-C5    | 2.12  | 118.83           | 115.27   |
| 25  | b         | 617     | BCR      | C37-C22-C21 | -2.11 | 119.96           | 122.92   |
| 23  | В         | 606     | CLA      | C4-C3-C5    | 2.11  | 118.83           | 115.27   |
| 23  | b         | 602     | CLA      | O2A-CGA-O1A | -2.11 | 118.26           | 123.59   |
| 23  | С         | 506     | CLA      | O1D-CGD-CBD | -2.11 | 120.17           | 124.48   |
| 23  | В         | 616     | CLA      | O2A-CGA-O1A | -2.11 | 118.27           | 123.59   |
| 25  | k         | 101     | BCR      | C36-C18-C19 | 2.11  | 121.40           | 118.08   |
| 24  | a         | 407     | PHO      | C1-C2-C3    | -2.11 | 122.40           | 126.04   |
| 25  | Y         | 101     | BCR      | C36-C18-C17 | -2.11 | 119.97           | 122.92   |
| 23  | с         | 510     | CLA      | C6-C7-C8    | -2.11 | 109.11           | 115.92   |
| 24  | А         | 406     | PHO      | CBA-CAA-C2A | -2.11 | 107.64           | 113.86   |
| 25  | с         | 514     | BCR      | C15-C16-C17 | -2.11 | 119.16           | 123.47   |
| 24  | a         | 407     | PHO      | OBD-CAD-C3D | -2.11 | 123.45           | 128.52   |
| 23  | В         | 616     | CLA      | C2A-C1A-CHA | -2.11 | 120.18           | 123.86   |
| 35  | b         | 628     | LMT      | C3'-C4'-C5' | -2.11 | 106.10           | 110.93   |
| 23  | b         | 604     | CLA      | OBD-CAD-C3D | -2.10 | 124.49           | 127.98   |
| 23  | с         | 512     | CLA      | CMC-C2C-C1C | 2.10  | 128.24           | 125.04   |
| 23  | b         | 613     | CLA      | C1-C2-C3    | -2.10 | 122.41           | 126.04   |
| 23  | b         | 607     | CLA      | O1D-CGD-CBD | -2.10 | 120.18           | 124.48   |
| 23  | С         | 505     | CLA      | OBD-CAD-C3D | -2.10 | 124.49           | 127.98   |
| 23  | В         | 604     | CLA      | C1-C2-C3    | -2.10 | 122.41           | 126.04   |
| 23  | b         | 606     | CLA      | O2A-CGA-O1A | -2.10 | 118.29           | 123.59   |
| 23  | b         | 615     | CLA      | C1-O2A-CGA  | 2.10  | 121.95           | 116.44   |
| 25  | Y         | 101     | BCR      | C38-C26-C25 | -2.10 | 122.17           | 124.53   |
| 25  | A         | 408     | BCR      | C37-C22-C23 | 2.10  | 121.38           | 118.08   |
| 34  | с         | 519     | LMG      | O8-C28-O10  | -2.10 | 118.30           | 123.59   |
| 23  | a         | 404     | CLA      | CMA-C3A-C4A | -2.10 | 106.14           | 111.77   |
| 26  | a         | 413     | SQD      | O8-S-C6     | 2.10  | 109.08           | 105.74   |
| 23  | В         | 602     | CLA      | CMC-C2C-C1C | 2.10  | 128.23           | 125.04   |
| 25  | Y         | 101     | BCR      | C11-C10-C9  | -2.10 | 124.32           | 127.31   |
| 34  | с         | 520     | LMG      | C9-C8-C7    | -2.09 | 106.83           | 111.79   |

d fa onic Continu



| 5GTL |
|------|
|------|

| $\alpha \cdot \cdot \cdot$ | e     | •                      |          |
|----------------------------|-------|------------------------|----------|
| L'antinuod                 | trom  | nromanie               | naao     |
| Continuou                  | 11011 | $p_{1}c_{0}c_{0}a_{0}$ | $p_{uy}$ |
|                            |       | 1                      | 1 0      |

| Mol | Chain | $\mathbf{Res}$ | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|----------------|------|-------------|-------|------------------|---------------|
| 23  | В     | 614            | CLA  | CED-O2D-CGD | 2.09  | 120.67           | 115.94        |
| 23  | с     | 510            | CLA  | C2A-C1A-CHA | -2.09 | 120.20           | 123.86        |
| 37  | С     | 517            | DGD  | O2G-C1B-O1B | -2.09 | 118.64           | 123.70        |
| 31  | d     | 407            | LHG  | O8-C23-O10  | -2.09 | 118.31           | 123.59        |
| 23  | b     | 611            | CLA  | C7-C6-C5    | -2.09 | 107.67           | 113.36        |
| 23  | d     | 402            | CLA  | CHD-C4C-NC  | 2.09  | 127.50           | 124.20        |
| 23  | А     | 405            | CLA  | CMC-C2C-C1C | 2.09  | 128.22           | 125.04        |
| 26  | А     | 411            | SQD  | O48-C23-O10 | -2.09 | 118.31           | 123.59        |
| 23  | В     | 612            | CLA  | C1-O2A-CGA  | 2.09  | 121.93           | 116.44        |
| 23  | В     | 617            | CLA  | O2A-CGA-O1A | -2.09 | 118.32           | 123.59        |
| 23  | С     | 505            | CLA  | O2A-CGA-CBA | 2.09  | 118.47           | 111.91        |
| 23  | С     | 512            | CLA  | CBC-CAC-C3C | -2.09 | 106.67           | 112.43        |
| 23  | В     | 604            | CLA  | C5-C3-C2    | -2.09 | 116.89           | 121.12        |
| 23  | С     | 508            | CLA  | C2A-C1A-CHA | -2.09 | 120.21           | 123.86        |
| 35  | е     | 102            | LMT  | O1B-C1B-C2B | 2.09  | 113.51           | 108.10        |
| 23  | В     | 612            | CLA  | O2A-CGA-O1A | -2.09 | 118.33           | 123.59        |
| 25  | с     | 515            | BCR  | C29-C30-C25 | 2.09  | 113.69           | 110.48        |
| 26  | D     | 413            | SQD  | C46-C45-C44 | -2.09 | 106.85           | 111.79        |
| 23  | С     | 514            | CLA  | CMB-C2B-C3B | 2.09  | 128.58           | 124.68        |
| 40  | V     | 202            | HEC  | CMB-C2B-C1B | -2.09 | 125.26           | 128.46        |
| 35  | е     | 102            | LMT  | C1B-C2B-C3B | 2.08  | 114.34           | 110.00        |
| 34  | с     | 520            | LMG  | O8-C28-O10  | -2.08 | 118.33           | 123.59        |
| 25  | h     | 102            | BCR  | C20-C21-C22 | -2.08 | 124.34           | 127.31        |
| 25  | с     | 515            | BCR  | C16-C17-C18 | -2.08 | 124.34           | 127.31        |
| 25  | В     | 618            | BCR  | C33-C5-C4   | 2.08  | 117.62           | 113.62        |
| 23  | b     | 604            | CLA  | CBC-CAC-C3C | -2.08 | 106.69           | 112.43        |
| 23  | D     | 404            | CLA  | C11-C12-C13 | -2.08 | 109.19           | 115.92        |
| 23  | С     | 512            | CLA  | C2A-C1A-CHA | -2.08 | 120.22           | 123.86        |
| 25  | Т     | 101            | BCR  | C7-C6-C5    | -2.08 | 116.43           | 121.46        |
| 24  | a     | 408            | PHO  | C2C-C1C-NC  | 2.08  | 112.93           | 109.79        |
| 35  | М     | 101            | LMT  | O1B-C1B-C2B | 2.08  | 113.48           | 108.10        |
| 26  | В     | 621            | SQD  | O48-C23-O10 | -2.08 | 118.35           | 123.59        |
| 29  | D     | 407            | PL9  | C42-C41-C39 | -2.08 | 106.15           | 112.98        |
| 24  | D     | 402            | PHO  | CMB-C2B-C1B | 2.08  | 128.26           | 125.06        |
| 34  | j     | 101            | LMG  | C7-O1-C1    | -2.07 | 109.69           | 113.74        |
| 37  | Н     | 102            | DGD  | C3G-O3G-C1D | -2.07 | 109.69           | 113.74        |
| 24  | D     | 402            | PHO  | CBD-CHA-C1A | 2.07  | 131.21           | 126.40        |
| 23  | b     | 602            | CLA  | C1B-CHB-C4A | -2.07 | 126.01           | 130.12        |
| 23  | b     | 615            | CLA  | C2A-C1A-CHA | -2.07 | 120.24           | 123.86        |
| 23  | a     | 405            | CLA  | C2A-C1A-CHA | -2.07 | 120.24           | 123.86        |
| 25  | Y     | 101            | BCR  | C33-C5-C4   | 2.07  | 117.59           | 113.62        |
| 29  | d     | 405            | PL9  | C7-C3-C4    | 2.07  | 118.56           | 116.88        |



| Mol | Chain | Res |     | Atoms       | Z     | $Observed(^{o})$ | Ideal(°) |
|-----|-------|-----|-----|-------------|-------|------------------|----------|
| 23  | с     | 512 | CLA | O2A-CGA-O1A | -2.07 | 118.38           | 123.59   |
| 25  | D     | 406 | BCR | C32-C1-C6   | -2.07 | 106.95           | 110.30   |
| 24  | A     | 406 | PHO | C7-C6-C5    | -2.07 | 107.75           | 113.36   |
| 24  | a     | 408 | PHO | O2A-CGA-CBA | 2.07  | 118.39           | 111.91   |
| 25  | у     | 101 | BCR | C7-C6-C5    | -2.07 | 116.46           | 121.46   |
| 23  | D     | 401 | CLA | CMA-C3A-C4A | -2.07 | 106.22           | 111.77   |
| 23  | А     | 407 | CLA | O2D-CGD-O1D | -2.06 | 119.80           | 123.84   |
| 25  | С     | 516 | BCR | C15-C16-C17 | -2.06 | 119.25           | 123.47   |
| 25  | а     | 410 | BCR | C3-C4-C5    | -2.06 | 110.40           | 114.08   |
| 23  | с     | 503 | CLA | C1-O2A-CGA  | 2.06  | 121.85           | 116.44   |
| 25  | D     | 406 | BCR | C37-C22-C23 | 2.06  | 121.32           | 118.08   |
| 23  | с     | 505 | CLA | C1-O2A-CGA  | 2.06  | 121.85           | 116.44   |
| 24  | А     | 406 | PHO | CBD-CHA-C1A | 2.06  | 131.18           | 126.40   |
| 23  | a     | 406 | CLA | C2A-C1A-CHA | -2.06 | 120.26           | 123.86   |
| 25  | a     | 410 | BCR | C15-C16-C17 | -2.06 | 119.26           | 123.47   |
| 38  | Е     | 103 | HEM | C3C-C4C-NC  | -2.06 | 107.06           | 110.94   |
| 34  | В     | 622 | LMG | C8-O7-C10   | -2.06 | 112.72           | 117.79   |
| 23  | С     | 510 | CLA | C16-C15-C13 | -2.06 | 109.27           | 115.92   |
| 40  | V     | 201 | HEC | CMB-C2B-C1B | -2.06 | 125.30           | 128.46   |
| 23  | d     | 402 | CLA | CAC-C3C-C4C | 2.06  | 127.48           | 124.81   |
| 23  | b     | 601 | CLA | CAC-C3C-C4C | 2.05  | 127.48           | 124.81   |
| 25  | А     | 408 | BCR | C35-C13-C14 | -2.05 | 120.05           | 122.92   |
| 23  | С     | 512 | CLA | O2D-CGD-O1D | -2.05 | 119.83           | 123.84   |
| 37  | С     | 517 | DGD | O1G-C1A-O1A | -2.05 | 118.42           | 123.59   |
| 25  | С     | 516 | BCR | C38-C26-C25 | -2.05 | 122.22           | 124.53   |
| 23  | с     | 510 | CLA | CED-O2D-CGD | 2.05  | 120.58           | 115.94   |
| 26  | В     | 621 | SQD | O9-S-C6     | 2.05  | 109.38           | 106.94   |
| 23  | В     | 612 | CLA | CED-O2D-CGD | 2.05  | 120.57           | 115.94   |
| 25  | а     | 410 | BCR | C10-C11-C12 | -2.05 | 116.82           | 123.22   |
| 23  | С     | 509 | CLA | CAA-C2A-C3A | -2.05 | 107.17           | 112.78   |
| 35  | С     | 522 | LMT | O5'-C5'-C4' | 2.05  | 114.06           | 109.75   |
| 23  | с     | 508 | CLA | OBD-CAD-C3D | -2.05 | 124.58           | 127.98   |
| 23  | с     | 507 | CLA | O2A-CGA-O1A | -2.04 | 118.43           | 123.59   |
| 23  | b     | 607 | CLA | C1B-CHB-C4A | -2.04 | 126.07           | 130.12   |
| 23  | D     | 405 | CLA | CMB-C2B-C1B | 2.04  | 131.60           | 128.46   |
| 23  | b     | 613 | CLA | CBC-CAC-C3C | -2.04 | 106.80           | 112.43   |
| 35  | М     | 103 | LMT | O5'-C5'-C4' | 2.04  | 114.06           | 109.75   |
| 25  | D     | 406 | BCR | C10-C11-C12 | -2.04 | 116.84           | 123.22   |
| 36  | b     | 621 | HTG | C3-C4-C5    | 2.04  | 113.88           | 110.24   |
| 23  | В     | 616 | CLA | CHB-C4A-NA  | 2.04  | 127.33           | 124.51   |
| 35  | a     | 418 | LMT | C1B-O1B-C4' | -2.04 | 112.92           | 117.96   |
| 23  | b     | 602 | CLA | CMA-C3A-C2A | -2.04 | 105.60           | 113.83   |



| MolChainResTypeAtomsZObserved( $^{o}$ )Ideal23c501CLAC3D-CAD-CBD2.04110.29107.623b616CLACED-O2D-CGD2.04120.55115.923B603CLAC11-C10-C8-2.04109.34115.929A413PL9C7-C8-C9-2.04123.40126.723b608CLAC11-C12-C13-2.04109.34115.924c519LMGC8-O7-C10-2.04112.78117.735e102LMTO5'-C5'-C4'2.03114.04109.725d404BCRC29-C30-C252.03113.61110.423b608CLACAC-C3C-C4C2.03127.45124.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c cccccccccccc} 23 & B & 603 & CLA & C11-C10-C8 & -2.04 & 109.34 & 115.9 \\ \hline 29 & A & 413 & PL9 & C7-C8-C9 & -2.04 & 123.40 & 126.7 \\ \hline 23 & b & 608 & CLA & C11-C12-C13 & -2.04 & 109.34 & 115.9 \\ \hline 34 & c & 519 & LMG & C8-O7-C10 & -2.04 & 112.78 & 117.7 \\ \hline 35 & e & 102 & LMT & O5'-C5'-C4' & 2.03 & 114.04 & 109.7 \\ \hline 25 & d & 404 & BCR & C29-C30-C25 & 2.03 & 113.61 & 110.4 \\ \hline 23 & b & 608 & CLA & CAC-C3C-C4C & 2.03 & 127.45 & 124.8 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 34         c         519         LMG         C8-O7-C10         -2.04         112.78         117.7           35         e         102         LMT         O5'-C5'-C4'         2.03         114.04         109.7           25         d         404         BCR         C29-C30-C25         2.03         113.61         110.4           23         b         608         CLA         CAC-C3C-C4C         2.03         127.45         124.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 35         e         102         LMT         O5'-C5'-C4'         2.03         114.04         109.7           25         d         404         BCR         C29-C30-C25         2.03         113.61         110.4           23         b         608         CLA         CAC-C3C-C4C         2.03         127.45         124.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 25         d         404         BCR         C29-C30-C25         2.03         113.61         110.4           23         b         608         CLA         CAC-C3C-C4C         2.03         127.45         124.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 23         b         608         CLA         CAC-C3C-C4C         2.03         127.45         124.8           20         415         PLO         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606         606 <td< td=""></td<> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 29   a   415   PL9   C7-C8-C9   -2.03   123.41   126.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 23 B 611 CLA O2A-CGA-O1A -2.03 118.47 123.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 23 B 605 CLA C6-C7-C8 -2.03 109.36 115.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 23 b 615 CLA CHC-C1C-NC 2.03 127.28 124.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 23 C 514 CLA CMA-C3A-C2A -2.03 105.64 113.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 23 c 507 CLA C11-C10-C8 -2.03 109.36 115.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 34 B 622 LMG C12-C11-C10 -2.03 106.25 113.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 23 a 405 CLA CMC-C2C-C1C 2.03 128.13 125.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23 B 608 CLA O2A-CGA-O1A -2.03 118.47 123.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 25 B 619 BCR C10-C11-C12 -2.03 116.89 123.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 37 C 519 DGD O1G-C1A-O1A -2.03 118.48 123.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 25 B 619 BCR C28-C27-C26 -2.03 110.46 114.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 35 D 403 LMT O1B-C1B-C2B 2.02 113.34 108.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24 a 408 PHO C3C-C4C-NC 2.02 113.42 110.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 23 b 616 CLA CBC-CAC-C3C -2.02 106.85 112.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 23 a 409 CLA CMA-C3A-C4A -2.02 106.33 111.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 23 b 612 CLA C6-C7-C8 -2.02 109.38 115.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 25 B 619 BCR C35-C13-C14 -2.02 120.09 122.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 34 C 501 LMG O8-C28-C29 2.02 118.25 111.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 23 B 610 CLA C1-O2A-CGA 2.02 121.75 116.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 23 C 512 CLA C1-C2-C3 -2.02 122.55 126.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 25 B 619 BCR C36-C18-C17 -2.02 120.09 122.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 23 C 514 CLA OBD-CAD-C3D -2.02 124.63 127.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 23 A 404 CLA OBD-CAD-C3D -2.02 124.63 127.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 23 a 409 CLA CHB-C4A-NA 2.02 127.31 124.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 23 a 405 CLA CMA-C3A-C2A -2.02 105.68 113.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 37 c 518 DGD O6E-C1E-O5D -2.02 105.19 109.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 34 a 417 LMG 01-C1-C2 2.02 111.45 108.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 23 B 617 CLA CAC-C3C-C4C 2.02 127.43 124.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 34         C         501         LMG         C30-C29-C28         -2.02         106.29         113.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 23 c 503 CLA O2A-CGA-O1A -2.02 118.50 123 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 25 b 617 BCR C38-C26-C25 -2.02 122.27 124 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 25 H 101 BCR C39-C30-C25 -2.01 107.03 110.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

a... .1 f.



| 5GTI |
|------|
|------|

|                      | Chain  | Res        | Type        | Δtoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7     | Observed $(^{o})$ | Ideal(°)         |
|----------------------|--------|------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|------------------|
| - 1 <b>1101</b><br>  |        | 405        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.01  | 105 71            | 112.82           |
| 25                   | A<br>C | 400<br>516 | BCB         | $\begin{array}{c} \text{CMA-CJA-CJA} \\ \text{C27 C22 C22} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2.01 | 105.71            | 119.00           |
| 20                   | C      | 510        | CLA         | $\begin{array}{c} 0.37 + 0.22 + 0.23 \\ \hline 0.1 \\ 0.24 \\ \hline 0.2$ | 2.01  | 121.20<br>101.70  | 116.00           |
| 20                   | C      | 101        |             | CI-OZA-CGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.01  | 121.72            | 110.44<br>102.47 |
| 20                   | У      | 101        | BUR<br>I MT | 010-010-014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.01 | 119.30            | 123.47           |
| - <u>3</u> 5<br>- 99 | B      | 023        |             | UIB-04-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.01  | 112.04            | 107.28           |
| 23                   | A      | 405        | CLA         | CMB-C2B-C3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.01  | 128.44            | 124.08           |
| 23                   | b      | 609        | CLA         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.01 | 107.89            | 113.36           |
| 29                   | D      | 407        | PL9         | C47-C48-C49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.01 | 120.88            | 127.75           |
| 37                   | C      | 518        | DGD         | C3G-O3G-C1D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.01 | 109.81            | 113.74           |
| 40                   | V      | 202        | HEC         | CBD-CAD-C3D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.01 | 108.78            | 112.49           |
| 23                   | A      | 404        | CLA         | C1B-CHB-C4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.01 | 126.14            | 130.12           |
| 23                   | В      | 608        | CLA         | CMB-C2B-C3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.01  | 128.44            | 124.68           |
| 23                   | В      | 610        | CLA         | C2A-C1A-CHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.01 | 120.34            | 123.86           |
| 23                   | b      | 606        | CLA         | C1-C2-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.01 | 122.57            | 126.04           |
| 23                   | b      | 616        | CLA         | CHA-C1A-NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -2.01 | 121.80            | 126.40           |
| 29                   | D      | 407        | PL9         | C17-C18-C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.01 | 122.82            | 127.66           |
| 23                   | С      | 509        | CLA         | CMD-C2D-C3D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.01  | 128.43            | 124.68           |
| 25                   | С      | 527        | BCR         | C33-C5-C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2.01 | 122.27            | 124.53           |
| 23                   | В      | 613        | CLA         | C6-C5-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.01 | 108.19            | 113.45           |
| 25                   | с      | 514        | BCR         | C29-C28-C27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.01 | 106.89            | 111.38           |
| 23                   | с      | 510        | CLA         | CAA-C2A-C3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.01 | 107.28            | 112.78           |
| 23                   | В      | 602        | CLA         | CMB-C2B-C3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.00  | 128.43            | 124.68           |
| 25                   | С      | 515        | BCR         | C21-C20-C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.00 | 116.96            | 123.22           |
| 25                   | b      | 618        | BCR         | C8-C7-C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.00 | 121.57            | 127.20           |
| 23                   | d      | 402        | CLA         | CHB-C4A-NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.00  | 127.28            | 124.51           |
| 23                   | с      | 503        | CLA         | C2A-C1A-CHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.00 | 120.35            | 123.86           |
| 24                   | D      | 402        | PHO         | CAA-CBA-CGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.00 | 107.40            | 113.25           |
| 25                   | с      | 514        | BCR         | C37-C22-C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.00  | 121.23            | 118.08           |
| 24                   | А      | 406        | PHO         | C4-C3-C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.00  | 118.64            | 115.27           |
| 23                   | В      | 603        | CLA         | C11-C12-C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.00 | 109.45            | 115.92           |
| 23                   | В      | 605        | CLA         | C11-C10-C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -2.00 | 109.45            | 115.92           |
| 23                   | В      | 615        | CLA         | CHC-C1C-NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.00  | 127.24            | 124.20           |
| 23                   | В      | 606        | CLA         | CAA-C2A-C3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.00 | 107.30            | 112.78           |
| 23                   | b      | 611        | CLA         | C11-C12-C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.00 | 109.45            | 115.92           |

+:- $\alpha$ 1 1

All (194) chirality outliers are listed below:

| Mol | Chain | Res | Type | Atom |
|-----|-------|-----|------|------|
| 23  | с     | 502 | CLA  | NC   |
| 23  | с     | 502 | CLA  | ND   |
| 23  | с     | 502 | CLA  | NA   |
| 23  | В     | 608 | CLA  | NC   |



| Mol | Chain | Res | Type | Atom |
|-----|-------|-----|------|------|
| 23  | В     | 608 | CLA  | ND   |
| 23  | В     | 608 | CLA  | NA   |
| 23  | b     | 605 | CLA  | NC   |
| 23  | b     | 605 | CLA  | ND   |
| 23  | b     | 605 | CLA  | NA   |
| 23  | b     | 611 | CLA  | NC   |
| 23  | b     | 611 | CLA  | ND   |
| 23  | b     | 611 | CLA  | NA   |
| 23  | В     | 606 | CLA  | NC   |
| 23  | В     | 606 | CLA  | ND   |
| 23  | В     | 606 | CLA  | NA   |
| 23  | А     | 405 | CLA  | NC   |
| 23  | А     | 405 | CLA  | NA   |
| 23  | с     | 508 | CLA  | NC   |
| 23  | с     | 508 | CLA  | ND   |
| 23  | с     | 508 | CLA  | NA   |
| 23  | D     | 404 | CLA  | ND   |
| 23  | с     | 511 | CLA  | NC   |
| 23  | с     | 511 | CLA  | ND   |
| 23  | с     | 511 | CLA  | NA   |
| 23  | d     | 403 | CLA  | NC   |
| 23  | d     | 403 | CLA  | ND   |
| 23  | d     | 403 | CLA  | NA   |
| 23  | С     | 504 | CLA  | NC   |
| 23  | С     | 504 | CLA  | ND   |
| 23  | С     | 504 | CLA  | NA   |
| 23  | a     | 406 | CLA  | NC   |
| 23  | a     | 406 | CLA  | NA   |
| 23  | В     | 602 | CLA  | NC   |
| 23  | В     | 602 | CLA  | ND   |
| 23  | В     | 602 | CLA  | NA   |
| 23  | С     | 507 | CLA  | NC   |
| 23  | С     | 507 | CLA  | ND   |
| 23  | С     | 507 | CLA  | NA   |
| 23  | C     | 502 | CLA  | NC   |
| 23  | С     | 502 | CLA  | ND   |
| 23  | С     | 502 | CLA  | NA   |
| 23  | a     | 404 | CLA  | NC   |
| 23  | a     | 404 | CLA  | ND   |
| 23  | a     | 404 | CLA  | NA   |
| 23  | D     | 401 | CLA  | NC   |
| 23  | D     | 401 | CLA  | ND   |

Continued from previous page...



| Mol | Chain | Res | Type | Atom |
|-----|-------|-----|------|------|
| 23  | D     | 401 | CLA  | NA   |
| 23  | с     | 509 | CLA  | NC   |
| 23  | с     | 509 | CLA  | ND   |
| 23  | с     | 509 | CLA  | NA   |
| 23  | с     | 512 | CLA  | NC   |
| 23  | с     | 512 | CLA  | ND   |
| 23  | с     | 512 | CLA  | NA   |
| 23  | d     | 402 | CLA  | ND   |
| 23  | с     | 506 | CLA  | NC   |
| 23  | с     | 506 | CLA  | ND   |
| 23  | с     | 506 | CLA  | NA   |
| 23  | с     | 503 | CLA  | NC   |
| 23  | с     | 503 | CLA  | ND   |
| 23  | с     | 503 | CLA  | NA   |
| 23  | В     | 609 | CLA  | NC   |
| 23  | В     | 609 | CLA  | ND   |
| 23  | В     | 609 | CLA  | NA   |
| 23  | А     | 407 | CLA  | NC   |
| 23  | А     | 407 | CLA  | ND   |
| 23  | А     | 407 | CLA  | NA   |
| 23  | С     | 510 | CLA  | NC   |
| 23  | С     | 510 | CLA  | ND   |
| 23  | С     | 510 | CLA  | NA   |
| 23  | С     | 514 | CLA  | NC   |
| 23  | С     | 514 | CLA  | NA   |
| 23  | В     | 604 | CLA  | NC   |
| 23  | В     | 604 | CLA  | ND   |
| 23  | В     | 604 | CLA  | NA   |
| 23  | В     | 605 | CLA  | NC   |
| 23  | В     | 605 | CLA  | ND   |
| 23  | В     | 605 | CLA  | NA   |
| 23  | с     | 505 | CLA  | ND   |
| 23  | b     | 615 | CLA  | NC   |
| 23  | b     | 615 | CLA  | ND   |
| 23  | b     | 615 | CLA  | NA   |
| 23  | b     | 602 | CLA  | NC   |
| 23  | b     | 602 | CLA  | ND   |
| 23  | b     | 607 | CLA  | NC   |
| 23  | b     | 607 | CLA  | ND   |
| 23  | b     | 607 | CLA  | NA   |
| 23  | b     | 612 | CLA  | NC   |
| 23  | b     | 612 | CLA  | ND   |

Continued from previous page...



| 5GTI |
|------|
|------|

| Mol             | Chain  | Res        |     | Atom     |
|-----------------|--------|------------|-----|----------|
|                 | h      | 619        |     | NA       |
| $\frac{20}{23}$ | 0      | 501        |     | NC NC    |
| 20<br>          | C      | 501        |     | ND       |
|                 | C      | 501        |     | ND<br>NA |
| <u></u><br>     | C b    | 608        | CLA | NA<br>NC |
| 20<br>          | D<br>L | 008<br>C08 |     | NO<br>NA |
| 23              | D      | 608        | CLA | NA       |
| 23              | D      | 606        | CLA | NC       |
| 23              | b      | 606        | CLA | ND       |
| 23              | b      | 606        | CLA | NA       |
| 23              | C      | 508        | CLA | NC       |
| 23              | C      | 508        | CLA | ND       |
| 23              | C      | 508        | CLA | NA       |
| 23              | b      | 604        | CLA | NC       |
| 23              | b      | 604        | CLA | ND       |
| 23              | b      | 604        | CLA | NA       |
| 23              | C      | 505        | CLA | NC       |
| 23              | С      | 505        | CLA | ND       |
| 23              | С      | 505        | CLA | NA       |
| 23              | С      | 511        | CLA | NC       |
| 23              | С      | 511        | CLA | ND       |
| 23              | С      | 511        | CLA | NA       |
| 23              | b      | 610        | CLA | NC       |
| 23              | b      | 610        | CLA | ND       |
| 23              | b      | 610        | CLA | NA       |
| 23              | с      | 510        | CLA | NC       |
| 23              | с      | 510        | CLA | ND       |
| 23              | с      | 510        | CLA | NA       |
| 23              | В      | 613        | CLA | NC       |
| 23              | В      | 613        | CLA | ND       |
| 23              | В      | 613        | CLA | NA       |
| 23              | A      | 404        | CLA | NC       |
| 23              | A      | 404        | CLA | ND       |
| 23              | A      | 404        | CLA | NA       |
| 23              | В      | 616        | CLA | NA       |
| 23              | В      | 616        | CLA | NC       |
| 23              | В      | 616        | CLA | ND       |
| 23              | C      | 509        | CLA | NC       |
| 23              | C      | 509        | CLA | ND       |
| 23              | C      | 509        | CLA | NA       |
| 23              | C      | 512        | CLA | NC       |
| 23              | C      | 512        | CLA | ND       |
| 23              | C      | 512        | CLA | NA       |
| 20              |        |            |     | 1111     |

Continued from previous page...


| $5 \mathrm{GTI}$ |
|------------------|
|------------------|

| Mol | Chain | Res | Type | Atom |
|-----|-------|-----|------|------|
| 23  | С     | 503 | CLA  | NC   |
| 23  | С     | 503 | CLA  | ND   |
| 23  | С     | 503 | CLA  | NA   |
| 23  | В     | 607 | CLA  | NC   |
| 23  | В     | 607 | CLA  | ND   |
| 23  | В     | 607 | CLA  | NA   |
| 23  | b     | 603 | CLA  | NC   |
| 23  | b     | 603 | CLA  | ND   |
| 23  | b     | 609 | CLA  | NC   |
| 23  | b     | 609 | CLA  | ND   |
| 23  | b     | 609 | CLA  | NA   |
| 23  | с     | 507 | CLA  | NC   |
| 23  | с     | 507 | CLA  | ND   |
| 23  | с     | 507 | CLA  | NA   |
| 23  | b     | 614 | CLA  | NC   |
| 23  | b     | 614 | CLA  | ND   |
| 23  | b     | 614 | CLA  | NA   |
| 23  | В     | 603 | CLA  | NC   |
| 23  | В     | 603 | CLA  | ND   |
| 23  | В     | 603 | CLA  | NA   |
| 23  | С     | 513 | CLA  | NC   |
| 23  | С     | 513 | CLA  | ND   |
| 23  | С     | 513 | CLA  | NA   |
| 23  | В     | 614 | CLA  | NC   |
| 23  | В     | 614 | CLA  | ND   |
| 23  | В     | 614 | CLA  | NA   |
| 23  | b     | 613 | CLA  | NC   |
| 23  | b     | 613 | CLA  | ND   |
| 23  | b     | 613 | CLA  | NA   |
| 23  | с     | 513 | CLA  | NC   |
| 23  | с     | 513 | CLA  | NA   |
| 23  | b     | 616 | CLA  | NA   |
| 23  | b     | 616 | CLA  | NC   |
| 23  | b     | 616 | CLA  | ND   |
| 23  | a     | 409 | CLA  | NC   |
| 23  | a     | 409 | CLA  | ND   |
| 23  | a     | 409 | CLA  | NA   |
| 23  | В     | 611 | CLA  | NC   |
| 23  | В     | 611 | CLA  | ND   |
| 23  | В     | 611 | CLA  | NA   |
| 23  | D     | 405 | CLA  | NC   |
| 23  | D     | 405 | CLA  | ND   |

Continued from previous page...



| Mol | Chain | Res | Type | Atom |
|-----|-------|-----|------|------|
| 23  | D     | 405 | CLA  | NA   |
| 23  | a     | 405 | CLA  | NC   |
| 23  | a     | 405 | CLA  | ND   |
| 23  | a     | 405 | CLA  | NA   |
| 23  | В     | 617 | CLA  | NA   |
| 23  | В     | 617 | CLA  | NC   |
| 23  | В     | 617 | CLA  | ND   |
| 23  | b     | 601 | CLA  | ND   |
| 23  | b     | 601 | CLA  | NA   |
| 23  | В     | 615 | CLA  | NC   |
| 23  | В     | 615 | CLA  | ND   |
| 23  | В     | 615 | CLA  | NA   |
| 23  | С     | 506 | CLA  | ND   |
| 23  | В     | 610 | CLA  | NC   |
| 23  | В     | 610 | CLA  | ND   |
| 23  | В     | 610 | CLA  | NA   |
| 23  | В     | 612 | CLA  | NC   |
| 23  | В     | 612 | CLA  | ND   |
| 23  | В     | 612 | CLA  | NA   |
| 23  | с     | 504 | CLA  | NC   |
| 23  | с     | 504 | CLA  | ND   |
| 23  | с     | 504 | CLA  | NA   |

Continued from previous page...

All (1339) torsion outliers are listed below:

| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 34  | с     | 520 | LMG  | O9-C10-O7-C8    |
| 34  | с     | 520 | LMG  | C11-C10-O7-C8   |
| 23  | с     | 502 | CLA  | C14-C13-C15-C16 |
| 25  | d     | 404 | BCR  | C7-C8-C9-C10    |
| 25  | d     | 404 | BCR  | C7-C8-C9-C34    |
| 25  | d     | 404 | BCR  | C21-C22-C23-C24 |
| 25  | d     | 404 | BCR  | C37-C22-C23-C24 |
| 25  | d     | 404 | BCR  | C23-C24-C25-C30 |
| 27  | a     | 412 | GOL  | O1-C1-C2-O2     |
| 27  | а     | 412 | GOL  | O1-C1-C2-C3     |
| 25  | Н     | 101 | BCR  | C5-C6-C7-C8     |
| 25  | Н     | 101 | BCR  | C7-C8-C9-C34    |
| 25  | Т     | 101 | BCR  | C7-C8-C9-C10    |
| 25  | Т     | 101 | BCR  | C7-C8-C9-C34    |
| 25  | Т     | 101 | BCR  | C13-C14-C15-C16 |
| 25  | у     | 101 | BCR  | C1-C6-C7-C8     |



| Mol             | Chain | Res | Type | Atoms           |
|-----------------|-------|-----|------|-----------------|
| 25              | v     | 101 | BCR  | C5-C6-C7-C8     |
| 29              | a     | 415 | PL9  | C14-C16-C17-C18 |
| 29              | a     | 415 | PL9  | C28-C29-C31-C32 |
| 29              | а     | 415 | PL9  | C30-C29-C31-C32 |
| 35              | D     | 403 | LMT  | C2'-C1'-O1'-C1  |
| 35              | D     | 403 | LMT  | O5'-C1'-O1'-C1  |
| 23              | с     | 508 | CLA  | CHA-CBD-CGD-O1D |
| 23              | с     | 508 | CLA  | CHA-CBD-CGD-O2D |
| 26              | L     | 102 | SQD  | O49-C7-O47-C45  |
| 26              | L     | 102 | SQD  | C8-C7-O47-C45   |
| 26              | L     | 102 | SQD  | C5-C6-S-O7      |
| 26              | L     | 102 | SQD  | C5-C6-S-O8      |
| 26              | L     | 102 | SQD  | C5-C6-S-O9      |
| 27              | 0     | 302 | GOL  | O1-C1-C2-C3     |
| 36              | В     | 626 | HTG  | O5-C1-S1-C1'    |
| 34              | Z     | 101 | LMG  | O6-C1-O1-C7     |
| 34              | Z     | 101 | LMG  | O9-C10-O7-C8    |
| 34              | Z     | 101 | LMG  | C11-C10-O7-C8   |
| 31              | d     | 406 | LHG  | C3-O3-P-O4      |
| 23              | d     | 403 | CLA  | C4-C3-C5-C6     |
| 23              | С     | 504 | CLA  | CBD-CGD-O2D-CED |
| 27              | В     | 627 | GOL  | O1-C1-C2-C3     |
| 35              | b     | 628 | LMT  | O5'-C1'-O1'-C1  |
| 23              | С     | 507 | CLA  | C2-C3-C5-C6     |
| 23              | С     | 507 | CLA  | C4-C3-C5-C6     |
| 23              | D     | 401 | CLA  | CHA-CBD-CGD-O2D |
| 23              | с     | 509 | CLA  | C2-C1-O2A-CGA   |
| 26              | А     | 411 | SQD  | C5-C6-S-O7      |
| 26              | А     | 411 | SQD  | C5-C6-S-O8      |
| 35              | Ε     | 102 | LMT  | C2'-C1'-O1'-C1  |
| $\overline{35}$ | Е     | 102 | LMT  | O5'-C1'-O1'-C1  |
| 29              | А     | 413 | PL9  | C15-C14-C16-C17 |
| 29              | A     | 413 | PL9  | C23-C24-C26-C27 |
| 29              | А     | 413 | PL9  | C25-C24-C26-C27 |
| 31              | D     | 408 | LHG  | C4-O6-P-O4      |
| 31              | D     | 408 | LHG  | C4-O6-P-O5      |
| 23              | С     | 510 | CLA  | C2-C1-O2A-CGA   |
| 23              | С     | 510 | CLA  | C6-C7-C8-C9     |
| 31              | b     | 630 | LHG  | C4-O6-P-O3      |
| 31              | b     | 630 | LHG  | C4-O6-P-O4      |
| 31              | b     | 630 | LHG  | C4-O6-P-O5      |
| 27              | С     | 525 | GOL  | O1-C1-C2-O2     |

Continued from previous page...



| 001000 | <u></u> | <u> </u> | <u> </u> |                 |
|--------|---------|----------|----------|-----------------|
| Mol    | Chain   | Res      | Type     | Atoms           |
| 27     | С       | 525      | GOL      | O1-C1-C2-C3     |
| 23     | В       | 604      | CLA      | C2-C3-C5-C6     |
| 23     | В       | 604      | CLA      | C4-C3-C5-C6     |
| 26     | a       | 413      | SQD      | C5-C6-S-O7      |
| 26     | a       | 413      | SQD      | C5-C6-S-O8      |
| 26     | a       | 413      | SQD      | C5-C6-S-O9      |
| 35     | В       | 633      | LMT      | C2'-C1'-O1'-C1  |
| 35     | В       | 633      | LMT      | O5'-C1'-O1'-C1  |
| 36     | В       | 624      | HTG      | C2'-C1'-S1-C1   |
| 34     | Z       | 101      | LMG      | C2-C1-O1-C7     |
| 34     | Z       | 101      | LMG      | O9-C10-O7-C8    |
| 34     | Z       | 101      | LMG      | C11-C10-O7-C8   |
| 31     | е       | 101      | LHG      | C3-O3-P-O5      |
| 31     | е       | 101      | LHG      | O10-C23-O8-C6   |
| 31     | е       | 101      | LHG      | C24-C23-O8-C6   |
| 27     | b       | 624      | GOL      | O1-C1-C2-C3     |
| 27     | В       | 628      | GOL      | C1-C2-C3-O3     |
| 27     | В       | 628      | GOL      | O2-C2-C3-O3     |
| 31     | Е       | 101      | LHG      | C3-O3-P-O4      |
| 31     | Е       | 101      | LHG      | C3-O3-P-O5      |
| 31     | Е       | 101      | LHG      | C3-O3-P-O6      |
| 31     | Е       | 101      | LHG      | O10-C23-O8-C6   |
| 31     | Е       | 101      | LHG      | C24-C23-O8-C6   |
| 23     | b       | 608      | CLA      | CBD-CGD-O2D-CED |
| 23     | b       | 604      | CLA      | C2-C3-C5-C6     |
| 23     | b       | 604      | CLA      | C4-C3-C5-C6     |
| 23     | С       | 505      | CLA      | C2-C3-C5-C6     |
| 23     | С       | 505      | CLA      | C4-C3-C5-C6     |
| 35     | В       | 632      | LMT      | C2'-C1'-O1'-C1  |
| 35     | В       | 632      | LMT      | O5'-C1'-O1'-C1  |
| 35     | a       | 418      | LMT      | C2'-C1'-O1'-C1  |
| 35     | a       | 418      | LMT      | O5'-C1'-O1'-C1  |
| 26     | f       | 101      | SQD      | O49-C7-O47-C45  |
| 26     | f       | 101      | SQD      | C8-C7-O47-C45   |
| 26     | f       | 101      | SQD      | C5-C6-S-O7      |
| 26     | f       | 101      | SQD      | C5-C6-S-O8      |
| 26     | f       | 101      | SQD      | C5-C6-S-O9      |
| 31     | d       | 408      | LHG      | C4-O6-P-O4      |
| 23     | b       | 610      | CLA      | C11-C12-C13-C14 |
| 25     | Y       | 101      | BCR      | C1-C6-C7-C8     |
| 25     | Y       | 101      | BCR      | C5-C6-C7-C8     |
| 35     | М       | 103      | LMT      | C2'-C1'-O1'-C1  |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 35  | М     | 103 | LMT  | O5'-C1'-O1'-C1  |
| 26  | D     | 413 | SQD  | O49-C7-O47-C45  |
| 26  | D     | 413 | SQD  | C8-C7-O47-C45   |
| 26  | D     | 413 | SQD  | C5-C6-S-O7      |
| 26  | D     | 413 | SQD  | C5-C6-S-O8      |
| 26  | D     | 413 | SQD  | C5-C6-S-O9      |
| 27  | d     | 401 | GOL  | O1-C1-C2-O2     |
| 27  | d     | 401 | GOL  | O1-C1-C2-C3     |
| 23  | В     | 607 | CLA  | CHA-CBD-CGD-O1D |
| 23  | В     | 607 | CLA  | CHA-CBD-CGD-O2D |
| 35  | m     | 103 | LMT  | C2'-C1'-O1'-C1  |
| 23  | b     | 603 | CLA  | C4-C3-C5-C6     |
| 23  | b     | 614 | CLA  | CHA-CBD-CGD-O1D |
| 23  | b     | 614 | CLA  | CHA-CBD-CGD-O2D |
| 23  | b     | 614 | CLA  | CAD-CBD-CGD-O1D |
| 23  | b     | 614 | CLA  | C4-C3-C5-C6     |
| 35  | b     | 620 | LMT  | C2'-C1'-O1'-C1  |
| 35  | b     | 620 | LMT  | O5'-C1'-O1'-C1  |
| 35  | С     | 522 | LMT  | O5'-C1'-O1'-C1  |
| 35  | е     | 102 | LMT  | C2'-C1'-O1'-C1  |
| 35  | е     | 102 | LMT  | O5'-C1'-O1'-C1  |
| 31  | d     | 407 | LHG  | O2-C2-C3-O3     |
| 31  | d     | 407 | LHG  | C3-O3-P-O5      |
| 31  | d     | 407 | LHG  | C4-O6-P-O4      |
| 31  | d     | 407 | LHG  | C4-O6-P-O5      |
| 35  | В     | 634 | LMT  | O5'-C1'-O1'-C1  |
| 35  | В     | 634 | LMT  | C2-C1-O1'-C1'   |
| 31  | L     | 101 | LHG  | C4-O6-P-O4      |
| 26  | В     | 621 | SQD  | O49-C7-O47-C45  |
| 26  | В     | 621 | SQD  | C8-C7-O47-C45   |
| 26  | В     | 621 | SQD  | C5-C6-S-O7      |
| 36  | В     | 625 | HTG  | C2'-C1'-S1-C1   |
| 23  | В     | 615 | CLA  | CAD-CBD-CGD-O1D |
| 23  | В     | 615 | CLA  | CAD-CBD-CGD-O2D |
| 23  | В     | 615 | CLA  | C2-C3-C5-C6     |
| 23  | B     | 615 | CLA  | C4-C3-C5-C6     |
| 34  | C     | 501 | LMG  | O9-C10-O7-C8    |
| 25  | D     | 406 | BCR  | C7-C8-C9-C10    |
| 25  | D     | 406 | BCR  | C7-C8-C9-C34    |
| 25  | D     | 406 | BCR  | C21-C22-C23-C24 |
| 25  | D     | 406 | BCR  | C37-C22-C23-C24 |
| 25  | b     | 617 | BCR  | C1-C6-C7-C8     |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms                                          |
|-----|-------|-----|------|------------------------------------------------|
| 23  | b     | 608 | CLA  | O1D-CGD-O2D-CED                                |
| 35  | С     | 522 | LMT  | C3'-C4'-O1B-C1B                                |
| 23  | с     | 501 | CLA  | CBD-CGD-O2D-CED                                |
| 23  | С     | 504 | CLA  | O1D-CGD-O2D-CED                                |
| 23  | d     | 403 | CLA  | C3-C5-C6-C7                                    |
| 23  | b     | 614 | CLA  | C3-C5-C6-C7                                    |
| 23  | В     | 615 | CLA  | C3-C5-C6-C7                                    |
| 34  | С     | 501 | LMG  | C11-C10-O7-C8                                  |
| 23  | с     | 509 | CLA  | CBD-CGD-O2D-CED                                |
| 29  | a     | 415 | PL9  | C25-C24-C26-C27                                |
| 23  | с     | 507 | CLA  | C4-C3-C5-C6                                    |
| 29  | А     | 413 | PL9  | C13-C14-C16-C17                                |
| 23  | b     | 603 | CLA  | C2-C3-C5-C6                                    |
| 23  | с     | 507 | CLA  | C2A-CAA-CBA-CGA                                |
| 23  | с     | 506 | CLA  | C3-C5-C6-C7                                    |
| 23  | А     | 407 | CLA  | C3-C5-C6-C7                                    |
| 23  | А     | 405 | CLA  | CBD-CGD-O2D-CED                                |
| 23  | С     | 514 | CLA  | CBD-CGD-O2D-CED                                |
| 34  | С     | 521 | LMG  | O6-C5-C6-O5                                    |
| 35  | М     | 103 | LMT  | C4B-C5B-C6B-O6B                                |
| 31  | А     | 415 | LHG  | O2-C2-C3-O3                                    |
| 23  | С     | 513 | CLA  | C3-C5-C6-C7                                    |
| 23  | В     | 617 | CLA  | C3-C5-C6-C7                                    |
| 35  | В     | 623 | LMT  | O5B-C5B-C6B-O6B                                |
| 35  | С     | 522 | LMT  | O5B-C5B-C6B-O6B                                |
| 36  | В     | 626 | HTG  | O5-C5-C6-O6                                    |
| 36  | b     | 625 | HTG  | O5-C5-C6-O6                                    |
| 35  | М     | 103 | LMT  | O5'-C5'-C6'-O6'                                |
| 34  | с     | 519 | LMG  | C4-C5-C6-O5                                    |
| 36  | h     | 101 | HTG  | C4-C5-C6-O6                                    |
| 23  | b     | 614 | CLA  | CBD-CGD-O2D-CED                                |
| 34  | с     | 520 | LMG  | O6-C5-C6-O5                                    |
| 35  | E     | 102 | LMT  | O5'-C5'-C6 <sup>'</sup> -O6'                   |
| 23  | b     | 605 | CLA  | C4-C3-C5-C6                                    |
| 29  | a     | 415 | PL9  | C15-C14-C16-C17                                |
| 23  | C     | 508 | CLA  | C4-C3-C5-C6                                    |
| 23  | с     | 504 | CLA  | C4-C3-C5-C6                                    |
| 23  | b     | 605 | CLA  | C2-C3-C5-C6                                    |
| 29  | a     | 415 | PL9  | C13-C14-C16-C17                                |
| 23  | d     | 403 | CLA  | C2-C3-C5-C6                                    |
| 23  | C     | 508 | CLA  | $C2-\overline{C3}-\overline{C5}-\overline{C6}$ |
| 23  | с     | 507 | CLA  | C2-C3-C5-C6                                    |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 23  | b     | 614 | CLA  | C2-C3-C5-C6     |
| 23  | с     | 504 | CLA  | C2-C3-C5-C6     |
| 23  | В     | 607 | CLA  | C2A-CAA-CBA-CGA |
| 34  | с     | 519 | LMG  | O6-C5-C6-O5     |
| 35  | m     | 103 | LMT  | O5'-C1'-O1'-C1  |
| 26  | В     | 621 | SQD  | O5-C1-O6-C44    |
| 29  | d     | 405 | PL9  | C39-C41-C42-C43 |
| 29  | А     | 413 | PL9  | C14-C16-C17-C18 |
| 29  | D     | 407 | PL9  | C39-C41-C42-C43 |
| 31  | d     | 408 | LHG  | C33-C34-C35-C36 |
| 36  | h     | 101 | HTG  | O5-C5-C6-O6     |
| 31  | А     | 415 | LHG  | C1-C2-C3-O3     |
| 31  | d     | 407 | LHG  | C1-C2-C3-O3     |
| 23  | с     | 509 | CLA  | C3-C5-C6-C7     |
| 23  | В     | 602 | CLA  | CBA-CGA-O2A-C1  |
| 23  | А     | 407 | CLA  | CBA-CGA-O2A-C1  |
| 23  | С     | 510 | CLA  | CBA-CGA-O2A-C1  |
| 25  | t     | 101 | BCR  | C13-C14-C15-C16 |
| 23  | В     | 615 | CLA  | C5-C6-C7-C8     |
| 35  | В     | 623 | LMT  | C4B-C5B-C6B-O6B |
| 31  | D     | 408 | LHG  | O2-C2-C3-O3     |
| 35  | В     | 634 | LMT  | C2'-C1'-O1'-C1  |
| 26  | А     | 411 | SQD  | O6-C44-C45-O47  |
| 26  | a     | 413 | SQD  | O6-C44-C45-O47  |
| 35  | М     | 103 | LMT  | O5B-C5B-C6B-O6B |
| 23  | В     | 606 | CLA  | C6-C7-C8-C9     |
| 23  | с     | 512 | CLA  | C6-C7-C8-C9     |
| 23  | с     | 506 | CLA  | C6-C7-C8-C9     |
| 23  | b     | 604 | CLA  | C11-C10-C8-C9   |
| 23  | В     | 603 | CLA  | C6-C7-C8-C9     |
| 23  | С     | 513 | CLA  | C6-C7-C8-C9     |
| 23  | b     | 616 | CLA  | C6-C7-C8-C9     |
| 23  | с     | 504 | CLA  | C11-C12-C13-C14 |
| 23  | a     | 404 | CLA  | C15-C16-C17-C18 |
| 23  | В     | 617 | CLA  | C10-C11-C12-C13 |
| 23  | b     | 606 | CLA  | C2A-CAA-CBA-CGA |
| 23  | b     | 610 | CLA  | C2A-CAA-CBA-CGA |
| 25  | Н     | 101 | BCR  | C7-C8-C9-C10    |
| 26  | А     | 409 | SQD  | C8-C7-O47-C45   |
| 34  | Z     | 101 | LMG  | C10-C11-C12-C13 |
| 23  | b     | 611 | CLA  | C15-C16-C17-C18 |
| 23  | В     | 602 | CLA  | C5-C6-C7-C8     |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 23  | С     | 514 | CLA  | C13-C15-C16-C17 |
| 23  | b     | 616 | CLA  | C5-C6-C7-C8     |
| 23  | В     | 615 | CLA  | C8-C10-C11-C12  |
| 34  | Z     | 101 | LMG  | O6-C5-C6-O5     |
| 35  | Е     | 102 | LMT  | C4'-C5'-C6'-O6' |
| 23  | С     | 511 | CLA  | CBA-CGA-O2A-C1  |
| 23  | В     | 602 | CLA  | C15-C16-C17-C18 |
| 23  | с     | 509 | CLA  | C5-C6-C7-C8     |
| 23  | b     | 607 | CLA  | C13-C15-C16-C17 |
| 23  | с     | 507 | CLA  | C8-C10-C11-C12  |
| 23  | В     | 615 | CLA  | C10-C11-C12-C13 |
| 36  | с     | 522 | HTG  | O5-C5-C6-O6     |
| 23  | В     | 606 | CLA  | C5-C6-C7-C8     |
| 23  | b     | 606 | CLA  | C13-C15-C16-C17 |
| 23  | b     | 614 | CLA  | C13-C15-C16-C17 |
| 23  | с     | 513 | CLA  | C15-C16-C17-C18 |
| 23  | С     | 506 | CLA  | C8-C10-C11-C12  |
| 23  | С     | 510 | CLA  | O1A-CGA-O2A-C1  |
| 34  | с     | 519 | LMG  | C28-C29-C30-C31 |
| 37  | С     | 518 | DGD  | C1A-C2A-C3A-C4A |
| 23  | с     | 502 | CLA  | C13-C15-C16-C17 |
| 23  | с     | 502 | CLA  | C15-C16-C17-C18 |
| 23  | с     | 511 | CLA  | C3-C5-C6-C7     |
| 23  | d     | 403 | CLA  | CBA-CGA-O2A-C1  |
| 31  | d     | 408 | LHG  | C24-C23-O8-C6   |
| 23  | a     | 409 | CLA  | CBA-CGA-O2A-C1  |
| 36  | b     | 623 | HTG  | O5-C5-C6-O6     |
| 23  | b     | 601 | CLA  | C2-C1-O2A-CGA   |
| 23  | b     | 605 | CLA  | C5-C6-C7-C8     |
| 37  | с     | 517 | DGD  | C1B-C2B-C3B-C4B |
| 23  | b     | 602 | CLA  | C15-C16-C17-C18 |
| 23  | С     | 509 | CLA  | C10-C11-C12-C13 |
| 23  | С     | 507 | CLA  | C6-C7-C8-C10    |
| 23  | С     | 511 | CLA  | C6-C7-C8-C10    |
| 23  | В     | 616 | CLA  | C11-C12-C13-C15 |
| 23  | В     | 603 | CLA  | C11-C12-C13-C15 |
| 23  | b     | 605 | CLA  | C8-C10-C11-C12  |
| 23  | b     | 604 | CLA  | C15-C16-C17-C18 |
| 23  | В     | 607 | CLA  | C13-C15-C16-C17 |
| 23  | b     | 601 | CLA  | C8-C10-C11-C12  |
| 23  | с     | 504 | CLA  | C5-C6-C7-C8     |
| 36  | В     | 624 | HTG  | C1'-C2'-C3'-C4' |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 31  | D     | 408 | LHG  | C32-C33-C34-C35 |
| 35  | В     | 623 | LMT  | C3'-C4'-O1B-C1B |
| 23  | А     | 407 | CLA  | O1A-CGA-O2A-C1  |
| 23  | С     | 503 | CLA  | CBD-CGD-O2D-CED |
| 23  | с     | 513 | CLA  | C13-C15-C16-C17 |
| 29  | a     | 415 | PL9  | C24-C26-C27-C28 |
| 29  | a     | 415 | PL9  | C39-C41-C42-C43 |
| 37  | с     | 516 | DGD  | O6D-C5D-C6D-O5D |
| 26  | А     | 409 | SQD  | O49-C7-O47-C45  |
| 23  | b     | 616 | CLA  | C3-C5-C6-C7     |
| 23  | С     | 502 | CLA  | C15-C16-C17-C18 |
| 35  | В     | 623 | LMT  | C5'-C4'-O1B-C1B |
| 23  | d     | 403 | CLA  | O1A-CGA-O2A-C1  |
| 23  | В     | 602 | CLA  | O1A-CGA-O2A-C1  |
| 34  | с     | 520 | LMG  | C4-C5-C6-O5     |
| 23  | С     | 507 | CLA  | C8-C10-C11-C12  |
| 23  | b     | 606 | CLA  | C10-C11-C12-C13 |
| 23  | b     | 606 | CLA  | C15-C16-C17-C18 |
| 35  | В     | 634 | LMT  | O1'-C1-C2-C3    |
| 35  | М     | 103 | LMT  | C4'-C5'-C6'-O6' |
| 23  | с     | 509 | CLA  | O1A-CGA-O2A-C1  |
| 23  | С     | 511 | CLA  | O1A-CGA-O2A-C1  |
| 23  | a     | 409 | CLA  | O1A-CGA-O2A-C1  |
| 26  | L     | 102 | SQD  | C18-C19-C20-C21 |
| 31  | е     | 101 | LHG  | C11-C12-C13-C14 |
| 26  | В     | 621 | SQD  | C30-C31-C32-C33 |
| 23  | В     | 616 | CLA  | C8-C10-C11-C12  |
| 31  | d     | 406 | LHG  | C3-O3-P-O6      |
| 31  | D     | 408 | LHG  | C4-O6-P-O3      |
| 31  | е     | 101 | LHG  | C3-O3-P-O6      |
| 31  | d     | 407 | LHG  | C4-O6-P-O3      |
| 31  | L     | 101 | LHG  | C4-O6-P-O3      |
| 35  | b     | 628 | LMT  | O1'-C1-C2-C3    |
| 23  | В     | 606 | CLA  | CBA-CGA-O2A-C1  |
| 23  | с     | 509 | CLA  | CBA-CGA-O2A-C1  |
| 23  | с     | 510 | CLA  | C10-C11-C12-C13 |
| 34  | j     | 101 | LMG  | C10-C11-C12-C13 |
| 34  | a     | 417 | LMG  | O9-C10-O7-C8    |
| 23  | В     | 605 | CLA  | C4-C3-C5-C6     |
| 23  | с     | 509 | CLA  | O1D-CGD-O2D-CED |
| 23  | В     | 611 | CLA  | C2A-CAA-CBA-CGA |
| 23  | b     | 604 | CLA  | C3-C5-C6-C7     |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 37  | С     | 517 | DGD  | O6D-C5D-C6D-O5D |
| 23  | b     | 611 | CLA  | C8-C10-C11-C12  |
| 23  | b     | 604 | CLA  | C8-C10-C11-C12  |
| 34  | a     | 417 | LMG  | C11-C10-O7-C8   |
| 23  | В     | 603 | CLA  | C15-C16-C17-C18 |
| 26  | L     | 102 | SQD  | C27-C28-C29-C30 |
| 34  | j     | 101 | LMG  | C21-C22-C23-C24 |
| 26  | a     | 411 | SQD  | C9-C10-C11-C12  |
| 26  | a     | 411 | SQD  | C15-C16-C17-C18 |
| 26  | А     | 409 | SQD  | C9-C10-C11-C12  |
| 31  | d     | 408 | LHG  | C32-C33-C34-C35 |
| 34  | m     | 101 | LMG  | C35-C36-C37-C38 |
| 37  | Н     | 102 | DGD  | C6A-C7A-C8A-C9A |
| 23  | В     | 616 | CLA  | C16-C17-C18-C20 |
| 34  | m     | 101 | LMG  | C38-C39-C40-C41 |
| 34  | a     | 417 | LMG  | C31-C32-C33-C34 |
| 34  | С     | 521 | LMG  | C16-C17-C18-C19 |
| 31  | L     | 101 | LHG  | C25-C26-C27-C28 |
| 23  | с     | 501 | CLA  | O1D-CGD-O2D-CED |
| 26  | a     | 411 | SQD  | C11-C12-C13-C14 |
| 26  | A     | 409 | SQD  | C11-C10-C9-C8   |
| 23  | с     | 508 | CLA  | C5-C6-C7-C8     |
| 35  | m     | 103 | LMT  | C7-C8-C9-C10    |
| 34  | В     | 622 | LMG  | C36-C37-C38-C39 |
| 23  | С     | 508 | CLA  | CBD-CGD-O2D-CED |
| 37  | С     | 518 | DGD  | C2E-C1E-O5D-C6D |
| 37  | с     | 516 | DGD  | C2E-C1E-O5D-C6D |
| 26  | а     | 413 | SQD  | C24-C25-C26-C27 |
| 31  | Е     | 101 | LHG  | C24-C25-C26-C27 |
| 34  | С     | 501 | LMG  | C14-C15-C16-C17 |
| 31  | d     | 408 | LHG  | O10-C23-O8-C6   |
| 23  | В     | 609 | CLA  | C16-C17-C18-C20 |
| 23  | С     | 514 | CLA  | O1D-CGD-O2D-CED |
| 23  | C     | 506 | CLA  | C4-C3-C5-C6     |
| 37  | С     | 517 | DGD  | C5B-C6B-C7B-C8B |
| 34  | a     | 417 | LMG  | C30-C31-C32-C33 |
| 34  | C     | 520 | LMG  | C16-C17-C18-C19 |
| 31  | A     | 415 | LHG  | C32-C33-C34-C35 |
| 34  | J     | 101 | LMG  | C30-C31-C32-C33 |
| 23  | C     | 506 | CLA  | C2-C3-C5-C6     |
| 23  | a     | 406 | CLA  | C11-C12-C13-C14 |
| 23  | A     | 407 | CLA  | C11-C10-C8-C9   |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 23  | с     | 505 | CLA  | C11-C12-C13-C14 |
| 23  | С     | 511 | CLA  | C14-C13-C15-C16 |
| 23  | В     | 617 | CLA  | C6-C7-C8-C9     |
| 37  | С     | 517 | DGD  | C9A-CAA-CBA-CCA |
| 26  | A     | 411 | SQD  | C16-C17-C18-C19 |
| 31  | D     | 408 | LHG  | C13-C14-C15-C16 |
| 34  | Ζ     | 101 | LMG  | C17-C18-C19-C20 |
| 23  | a     | 404 | CLA  | C2A-CAA-CBA-CGA |
| 35  | С     | 522 | LMT  | C4B-C5B-C6B-O6B |
| 37  | С     | 517 | DGD  | C4D-C5D-C6D-O5D |
| 37  | с     | 516 | DGD  | C4D-C5D-C6D-O5D |
| 34  | с     | 519 | LMG  | C33-C34-C35-C36 |
| 27  | А     | 410 | GOL  | O1-C1-C2-C3     |
| 27  | А     | 410 | GOL  | C1-C2-C3-O3     |
| 27  | В     | 627 | GOL  | C1-C2-C3-O3     |
| 31  | А     | 415 | LHG  | O1-C1-C2-C3     |
| 31  | D     | 409 | LHG  | O1-C1-C2-C3     |
| 23  | с     | 506 | CLA  | C10-C11-C12-C13 |
| 37  | С     | 519 | DGD  | CBA-CCA-CDA-CEA |
| 37  | с     | 517 | DGD  | C4B-C5B-C6B-C7B |
| 34  | С     | 521 | LMG  | C37-C38-C39-C40 |
| 34  | J     | 101 | LMG  | C19-C20-C21-C22 |
| 26  | А     | 411 | SQD  | C18-C19-C20-C21 |
| 31  | е     | 101 | LHG  | C26-C27-C28-C29 |
| 34  | С     | 520 | LMG  | C12-C13-C14-C15 |
| 26  | А     | 409 | SQD  | C15-C16-C17-C18 |
| 34  | m     | 101 | LMG  | C39-C40-C41-C42 |
| 37  | Н     | 102 | DGD  | C5B-C6B-C7B-C8B |
| 23  | b     | 615 | CLA  | C16-C17-C18-C20 |
| 23  | В     | 616 | CLA  | C16-C17-C18-C19 |
| 23  | В     | 611 | CLA  | C16-C17-C18-C19 |
| 34  | Z     | 101 | LMG  | O6-C1-O1-C7     |
| 37  | с     | 516 | DGD  | O6E-C1E-O5D-C6D |
| 23  | В     | 602 | CLA  | C10-C11-C12-C13 |
| 23  | a     | 404 | CLA  | C13-C15-C16-C17 |
| 29  | d     | 405 | PL9  | C34-C36-C37-C38 |
| 37  | с     | 516 | DGD  | C5A-C6A-C7A-C8A |
| 35  | В     | 634 | LMT  | C6-C7-C8-C9     |
| 31  | b     | 630 | LHG  | C12-C13-C14-C15 |
| 26  | D     | 413 | SQD  | C30-C31-C32-C33 |
| 34  | С     | 521 | LMG  | C17-C18-C19-C20 |
| 31  | D     | 409 | LHG  | C13-C14-C15-C16 |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 37  | Н     | 102 | DGD  | CBA-CCA-CDA-CEA |
| 34  | В     | 622 | LMG  | C28-C29-C30-C31 |
| 23  | b     | 615 | CLA  | C13-C15-C16-C17 |
| 23  | В     | 606 | CLA  | O1A-CGA-O2A-C1  |
| 26  | a     | 413 | SQD  | C25-C26-C27-C28 |
| 35  | В     | 633 | LMT  | C2-C3-C4-C5     |
| 34  | m     | 101 | LMG  | C14-C15-C16-C17 |
| 34  | В     | 622 | LMG  | C17-C18-C19-C20 |
| 36  | В     | 629 | HTG  | O5-C5-C6-O6     |
| 37  | С     | 517 | DGD  | C7B-C8B-C9B-CAB |
| 37  | С     | 518 | DGD  | CAB-CBB-CCB-CDB |
| 23  | с     | 506 | CLA  | C13-C15-C16-C17 |
| 23  | С     | 508 | CLA  | C5-C6-C7-C8     |
| 23  | b     | 603 | CLA  | C13-C15-C16-C17 |
| 26  | А     | 409 | SQD  | C12-C13-C14-C15 |
| 23  | с     | 502 | CLA  | C16-C17-C18-C20 |
| 26  | L     | 102 | SQD  | C24-C25-C26-C27 |
| 36  | В     | 626 | HTG  | C3'-C4'-C5'-C6' |
| 26  | f     | 101 | SQD  | C29-C30-C31-C32 |
| 31  | D     | 409 | LHG  | C26-C27-C28-C29 |
| 37  | с     | 517 | DGD  | C9A-CAA-CBA-CCA |
| 23  | А     | 405 | CLA  | O1D-CGD-O2D-CED |
| 23  | В     | 605 | CLA  | C3-C5-C6-C7     |
| 23  | D     | 401 | CLA  | C15-C16-C17-C18 |
| 23  | b     | 611 | CLA  | C4-C3-C5-C6     |
| 24  | a     | 407 | PHO  | C4-C3-C5-C6     |
| 23  | с     | 505 | CLA  | C4-C3-C5-C6     |
| 29  | D     | 407 | PL9  | C30-C29-C31-C32 |
| 23  | В     | 616 | CLA  | C4-C3-C5-C6     |
| 24  | а     | 407 | PHO  | C2-C3-C5-C6     |
| 23  | с     | 505 | CLA  | C2-C3-C5-C6     |
| 29  | D     | 407 | PL9  | C28-C29-C31-C32 |
| 23  | b     | 609 | CLA  | C2-C3-C5-C6     |
| 34  | m     | 101 | LMG  | C11-C10-O7-C8   |
| 37  | C     | 517 | DGD  | C8A-C9A-CAA-CBA |
| 31  | d     | 406 | LHG  | C25-C26-C27-C28 |
| 27  | 0     | 302 | GOL  | O1-C1-C2-O2     |
| 27  | В     | 627 | GOL  | O2-C2-C3-O3     |
| 27  | b     | 624 | GOL  | O1-C1-C2-O2     |
| 36  | В     | 626 | HTG  | C4-C5-C6-O6     |
| 35  | b     | 628 | LMT  | C4'-C5'-C6'-O6' |
| 26  | D     | 413 | SQD  | C24-C25-C26-C27 |

Continued from previous page...



| 0 0 1100       | 11404 11011 | 0 1000         | ous page |                 |
|----------------|-------------|----------------|----------|-----------------|
| $\mathbf{Mol}$ | Chain       | $\mathbf{Res}$ | Type     | Atoms           |
| 34             | m           | 101            | LMG      | O9-C10-O7-C8    |
| 31             | D           | 408            | LHG      | C14-C15-C16-C17 |
| 23             | С           | 511            | CLA      | C5-C6-C7-C8     |
| 26             | L           | 102            | SQD      | C13-C14-C15-C16 |
| 31             | Е           | 101            | LHG      | C27-C28-C29-C30 |
| 37             | h           | 103            | DGD      | CAA-CBA-CCA-CDA |
| 26             | В           | 621            | SQD      | C24-C25-C26-C27 |
| 25             | d           | 404            | BCR      | C23-C24-C25-C26 |
| 25             | Н           | 101            | BCR      | C1-C6-C7-C8     |
| 25             | Т           | 101            | BCR      | C1-C6-C7-C8     |
| 25             | Т           | 101            | BCR      | C5-C6-C7-C8     |
| 25             | В           | 618            | BCR      | C1-C6-C7-C8     |
| 25             | D           | 406            | BCR      | C23-C24-C25-C26 |
| 25             | D           | 406            | BCR      | C23-C24-C25-C30 |
| 25             | b           | 617            | BCR      | C5-C6-C7-C8     |
| 35             | b           | 628            | LMT      | C4-C5-C6-C7     |
| 26             | D           | 413            | SQD      | C32-C33-C34-C35 |
| 31             | D           | 409            | LHG      | C24-C23-O8-C6   |
| 36             | b           | 625            | HTG      | C3'-C4'-C5'-C6' |
| 31             | D           | 408            | LHG      | C16-C17-C18-C19 |
| 35             | m           | 103            | LMT      | C11-C10-C9-C8   |
| 35             | М           | 101            | LMT      | C2-C3-C4-C5     |
| 26             | D           | 413            | SQD      | C7-C8-C9-C10    |
| 26             | D           | 413            | SQD      | C23-C24-C25-C26 |
| 35             | b           | 620            | LMT      | C1-C2-C3-C4     |
| 23             | b           | 601            | CLA      | C10-C11-C12-C13 |
| 37             | С           | 519            | DGD      | C8B-C9B-CAB-CBB |
| 29             | D           | 407            | PL9      | C15-C14-C16-C17 |
| 23             | b           | 609            | CLA      | C4-C3-C5-C6     |
| 23             | b           | 611            | CLA      | C2-C3-C5-C6     |
| 23             | a           | 406            | CLA      | C6-C7-C8-C10    |
| 23             | с           | 509            | CLA      | C12-C13-C15-C16 |
| 23             | A           | 407            | CLA      | C11-C10-C8-C7   |
| 23             | с           | 505            | CLA      | C11-C12-C13-C15 |
| 29             | D           | 407            | PL9      | C13-C14-C16-C17 |
| 23             | b           | 606            | CLA      | C11-C10-C8-C7   |
| 23             | С           | 511            | CLA      | C12-C13-C15-C16 |
| 23             | В           | 616            | CLA      | C2-C3-C5-C6     |
| 23             | D           | 405            | CLA      | C11-C10-C8-C7   |
| 23             | с           | 504            | CLA      | C11-C12-C13-C15 |
| 23             | с           | 504            | CLA      | C12-C13-C15-C16 |
| 36             | h           | 101            | HTG      | S1-C1'-C2'-C3'  |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 23  | b     | 605 | CLA  | C3-C5-C6-C7     |
| 31  | D     | 409 | LHG  | O10-C23-O8-C6   |
| 26  | L     | 102 | SQD  | C14-C15-C16-C17 |
| 37  | с     | 517 | DGD  | C3B-C4B-C5B-C6B |
| 31  | L     | 101 | LHG  | C17-C18-C19-C20 |
| 36  | В     | 625 | HTG  | C4-C5-C6-O6     |
| 23  | С     | 507 | CLA  | C13-C15-C16-C17 |
| 23  | b     | 608 | CLA  | C13-C15-C16-C17 |
| 23  | В     | 611 | CLA  | C13-C15-C16-C17 |
| 23  | D     | 405 | CLA  | C10-C11-C12-C13 |
| 26  | А     | 411 | SQD  | C15-C16-C17-C18 |
| 35  | М     | 103 | LMT  | O1'-C1-C2-C3    |
| 34  | С     | 520 | LMG  | C37-C38-C39-C40 |
| 26  | a     | 411 | SQD  | C27-C28-C29-C30 |
| 37  | с     | 517 | DGD  | C5A-C6A-C7A-C8A |
| 37  | С     | 518 | DGD  | C7B-C8B-C9B-CAB |
| 34  | С     | 521 | LMG  | C15-C16-C17-C18 |
| 26  | а     | 413 | SQD  | C27-C28-C29-C30 |
| 23  | В     | 605 | CLA  | C2C-C3C-CAC-CBC |
| 34  | J     | 101 | LMG  | C35-C36-C37-C38 |
| 31  | L     | 101 | LHG  | C34-C35-C36-C37 |
| 23  | С     | 512 | CLA  | CBD-CGD-O2D-CED |
| 23  | b     | 607 | CLA  | C16-C17-C18-C19 |
| 37  | с     | 517 | DGD  | O6E-C1E-O5D-C6D |
| 37  | С     | 518 | DGD  | O6E-C1E-O5D-C6D |
| 26  | а     | 413 | SQD  | C33-C34-C35-C36 |
| 26  | А     | 411 | SQD  | C8-C7-O47-C45   |
| 26  | a     | 413 | SQD  | C8-C7-O47-C45   |
| 31  | Ε     | 101 | LHG  | C8-C7-O7-C5     |
| 26  | L     | 102 | SQD  | C10-C11-C12-C13 |
| 23  | В     | 610 | CLA  | CBD-CGD-O2D-CED |
| 31  | L     | 101 | LHG  | C12-C13-C14-C15 |
| 26  | A     | 411 | SQD  | O49-C7-O47-C45  |
| 23  | b     | 601 | CLA  | C3-C5-C6-C7     |
| 35  | b     | 628 | LMT  | C2'-C1'-O1'-C1  |
| 26  | A     | 409 | SQD  | O6-C44-C45-O47  |
| 23  | В     | 612 | CLA  | C8-C10-C11-C12  |
| 29  | a     | 415 | PL9  | C23-C24-C26-C27 |
| 29  | a     | 415 | PL9  | C4-C3-C7-C8     |
| 29  | A     | 413 | PL9  | C4-C3-C7-C8     |
| 23  | a     | 406 | CLA  | C6-C7-C8-C9     |
| 23  | с     | 509 | CLA  | C14-C13-C15-C16 |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 23  | b     | 606 | CLA  | C11-C10-C8-C9   |
| 23  | С     | 511 | CLA  | C6-C7-C8-C9     |
| 23  | В     | 603 | CLA  | C11-C12-C13-C14 |
| 23  | D     | 405 | CLA  | C11-C10-C8-C9   |
| 23  | с     | 504 | CLA  | C14-C13-C15-C16 |
| 34  | j     | 101 | LMG  | C29-C30-C31-C32 |
| 23  | c     | 510 | CLA  | C3-C5-C6-C7     |
| 35  | D     | 403 | LMT  | O1'-C1-C2-C3    |
| 34  | Z     | 101 | LMG  | O6-C5-C6-O5     |
| 35  | В     | 623 | LMT  | O5'-C5'-C6'-O6' |
| 26  | a     | 413 | SQD  | C7-C8-C9-C10    |
| 23  | С     | 510 | CLA  | C8-C10-C11-C12  |
| 35  | b     | 628 | LMT  | C3-C4-C5-C6     |
| 24  | D     | 402 | PHO  | C2C-C3C-CAC-CBC |
| 23  | a     | 406 | CLA  | C1A-C2A-CAA-CBA |
| 23  | С     | 502 | CLA  | C1A-C2A-CAA-CBA |
| 23  | с     | 512 | CLA  | C1A-C2A-CAA-CBA |
| 23  | с     | 501 | CLA  | C1A-C2A-CAA-CBA |
| 23  | С     | 512 | CLA  | C1A-C2A-CAA-CBA |
| 23  | В     | 610 | CLA  | C1A-C2A-CAA-CBA |
| 23  | с     | 502 | CLA  | C16-C17-C18-C19 |
| 23  | b     | 615 | CLA  | C16-C17-C18-C19 |
| 23  | В     | 611 | CLA  | C16-C17-C18-C20 |
| 26  | a     | 413 | SQD  | O49-C7-O47-C45  |
| 31  | Е     | 101 | LHG  | O9-C7-O7-C5     |
| 34  | В     | 622 | LMG  | O9-C10-O7-C8    |
| 35  | Е     | 102 | LMT  | C2B-C1B-O1B-C4' |
| 34  | В     | 622 | LMG  | C11-C10-O7-C8   |
| 31  | d     | 407 | LHG  | C3-O3-P-O6      |
| 37  | Н     | 102 | DGD  | C4A-C5A-C6A-C7A |
| 31  | D     | 408 | LHG  | C7-C8-C9-C10    |
| 34  | С     | 501 | LMG  | C10-C11-C12-C13 |
| 35  | С     | 522 | LMT  | O5'-C5'-C6'-O6' |
| 35  | e     | 102 | LMT  | C4'-C5'-C6'-O6' |
| 35  | e     | 102 | LMT  | C4-C5-C6-C7     |
| 23  | b     | 615 | CLA  | C5-C6-C7-C8     |
| 31  | b     | 630 | LHG  | O6-C4-C5-C6     |
| 35  | E     | 102 | LMT  | O5B-C1B-O1B-C4' |
| 34  | J     | 101 | LMG  | C12-C13-C14-C15 |
| 37  | C     | 518 | DGD  | C9B-CAB-CBB-CCB |
| 37  | Н     | 102 | DGD  | CDB-CEB-CFB-CGB |
| 23  | В     | 606 | CLA  | C8-C10-C11-C12  |

Continued from previous page...



| Mol             | Chain | Res | Type | Atoms           |
|-----------------|-------|-----|------|-----------------|
| 23              | В     | 612 | CLA  | C16-C17-C18-C20 |
| 34              | с     | 519 | LMG  | C35-C36-C37-C38 |
| 37              | с     | 518 | DGD  | CAB-CBB-CCB-CDB |
| 31              | d     | 408 | LHG  | C27-C28-C29-C30 |
| 31              | А     | 415 | LHG  | C25-C26-C27-C28 |
| 23              | b     | 612 | CLA  | C10-C11-C12-C13 |
| 37              | h     | 103 | DGD  | C5B-C6B-C7B-C8B |
| 37              | с     | 516 | DGD  | O6E-C5E-C6E-O5E |
| 29              | d     | 405 | PL9  | C15-C14-C16-C17 |
| 23              | С     | 511 | CLA  | C4-C3-C5-C6     |
| 31              | L     | 101 | LHG  | C30-C31-C32-C33 |
| 31              | е     | 101 | LHG  | C9-C10-C11-C12  |
| 23              | В     | 609 | CLA  | C16-C17-C18-C19 |
| 23              | a     | 409 | CLA  | C16-C17-C18-C20 |
| 35              | b     | 628 | LMT  | O5'-C5'-C6'-O6' |
| 26              | L     | 102 | SQD  | C44-C45-C46-O48 |
| 35              | е     | 102 | LMT  | C3-C4-C5-C6     |
| 26              | В     | 621 | SQD  | C44-C45-C46-O48 |
| 34              | j     | 101 | LMG  | C38-C39-C40-C41 |
| 37              | с     | 517 | DGD  | C5D-C6D-O5D-C1E |
| 37              | С     | 518 | DGD  | C5D-C6D-O5D-C1E |
| 31              | А     | 415 | LHG  | C9-C10-C11-C12  |
| 23              | b     | 609 | CLA  | C13-C15-C16-C17 |
| 36              | b     | 623 | HTG  | S1-C1'-C2'-C3'  |
| 37              | С     | 518 | DGD  | CDA-CEA-CFA-CGA |
| 31              | d     | 407 | LHG  | C34-C35-C36-C37 |
| 31              | L     | 101 | LHG  | C24-C25-C26-C27 |
| 27              | А     | 410 | GOL  | O1-C1-C2-O2     |
| 27              | В     | 627 | GOL  | O1-C1-C2-O2     |
| 34              | С     | 521 | LMG  | C4-C5-C6-O5     |
| 37              | с     | 517 | DGD  | CBA-CCA-CDA-CEA |
| 35              | С     | 522 | LMT  | C1-C2-C3-C4     |
| 23              | В     | 603 | CLA  | C13-C15-C16-C17 |
| 23              | a     | 405 | CLA  | C15-C16-C17-C18 |
| 37              | C     | 517 | DGD  | O6E-C5E-C6E-O5E |
| $\overline{34}$ | J     | 101 | LMG  | O6-C5-C6-O5     |
| $\overline{37}$ | C     | 518 | DGD  | CCB-CDB-CEB-CFB |
| 31              | A     | 415 | LHG  | C11-C10-C9-C8   |
| 37              | с     | 518 | DGD  | CBA-CCA-CDA-CEA |
| 23              | С     | 512 | CLA  | CBA-CGA-O2A-C1  |
| 37              | С     | 516 | DGD  | C2A-C1A-O1G-C1G |
| 23              | b     | 601 | CLA  | CBA-CGA-O2A-C1  |

Continued from previous page...



| Mol                 | Chain | <b>B</b> os |      | Atoms                                                                                |
|---------------------|-------|-------------|------|--------------------------------------------------------------------------------------|
| 25                  | Chain | 102         | туре |                                                                                      |
| <u>30</u><br>20     | III I | 103         |      | $\begin{array}{c} 09-010-011-012 \\ 01-012-02-022 \\ \end{array}$                    |
| <u>- 30</u><br>- 21 |       | 621         | HIG  | $\begin{array}{c} SI-UT-U2-U3 \\ \hline \\ C00, C00, C20, C21 \\ \hline \end{array}$ |
| 31                  |       | 408         | LHG  | C28-C29-C30-C31                                                                      |
| 26                  | Ŀ     | 102         | SQD  | C46-C45-O47-C7                                                                       |
| 34                  | J     | 101         | LMG  | 06-C5-C6-O5                                                                          |
|                     | C     | 502         | CLA  | C2A-CAA-CBA-CGA                                                                      |
| 23                  | b     | 610         | CLA  | C15-C16-C17-C18                                                                      |
| 34                  | a     | 417         | LMG  | C35-C36-C37-C38                                                                      |
| 36                  | b     | 625         | HTG  | C4'-C5'-C6'-C7'                                                                      |
| 23                  | С     | 503         | CLA  | O1D-CGD-O2D-CED                                                                      |
| 26                  | f     | 101         | SQD  | C26-C27-C28-C29                                                                      |
| 26                  | f     | 101         | SQD  | C31-C32-C33-C34                                                                      |
| 23                  | b     | 611         | CLA  | CBA-CGA-O2A-C1                                                                       |
| 23                  | В     | 612         | CLA  | C16-C17-C18-C19                                                                      |
| 37                  | с     | 516         | DGD  | CDA-CEA-CFA-CGA                                                                      |
| 34                  | С     | 501         | LMG  | C37-C38-C39-C40                                                                      |
| 23                  | b     | 605         | CLA  | CBD-CGD-O2D-CED                                                                      |
| 23                  | С     | 510         | CLA  | C10-C11-C12-C13                                                                      |
| 23                  | В     | 613         | CLA  | C10-C11-C12-C13                                                                      |
| 37                  | С     | 517         | DGD  | C2E-C1E-O5D-C6D                                                                      |
| 37                  | с     | 517         | DGD  | C2E-C1E-O5D-C6D                                                                      |
| 35                  | С     | 522         | LMT  | C2'-C1'-O1'-C1                                                                       |
| 34                  | m     | 101         | LMG  | C2-C1-O1-C7                                                                          |
| 37                  | h     | 103         | DGD  | C9B-CAB-CBB-CCB                                                                      |
| 37                  | h     | 103         | DGD  | O2G-C1B-C2B-C3B                                                                      |
| 23                  | b     | 601         | CLA  | CAA-CBA-CGA-O2A                                                                      |
| 26                  | f     | 101         | SQD  | O6-C44-C45-O47                                                                       |
| 23                  | с     | 502         | CLA  | C10-C11-C12-C13                                                                      |
| 23                  | b     | 611         | CLA  | O1A-CGA-O2A-C1                                                                       |
| 31                  | b     | 630         | LHG  | C32-C33-C34-C35                                                                      |
| 26                  | А     | 409         | SQD  | C16-C17-C18-C19                                                                      |
| 31                  | d     | 407         | LHG  | C13-C14-C15-C16                                                                      |
| 34                  | с     | 519         | LMG  | C10-C11-C12-C13                                                                      |
| 29                  | d     | 405         | PL9  | C13-C14-C16-C17                                                                      |
| 23                  | A     | 405         | CLA  | C12-C13-C15-C16                                                                      |
| 23                  | a     | 406         | CLA  | C11-C12-C13-C15                                                                      |
| 23                  | с     | 506         | CLA  | C6-C7-C8-C10                                                                         |
| 23                  | В     | 605         | CLA  | C6-C7-C8-C10                                                                         |
| 23                  | b     | 615         | CLA  | C12-C13-C15-C16                                                                      |
| 23                  | b     | 604         | CLA  | C11-C10-C8-C7                                                                        |
| 23                  | - Č   | 511         | CLA  | C2-C3-C5-C6                                                                          |
| 23                  | b     | 601         | CLA  | C6-C7-C8-C10                                                                         |
|                     | ~     | 1 001       |      |                                                                                      |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 37  | Н     | 102 | DGD  | O2G-C1B-C2B-C3B |
| 23  | С     | 507 | CLA  | C6-C7-C8-C9     |
| 23  | С     | 514 | CLA  | C11-C10-C8-C9   |
| 23  | В     | 605 | CLA  | C6-C7-C8-C9     |
| 23  | С     | 505 | CLA  | C14-C13-C15-C16 |
| 23  | b     | 601 | CLA  | C6-C7-C8-C9     |
| 23  | b     | 601 | CLA  | C11-C10-C8-C9   |
| 23  | В     | 615 | CLA  | C14-C13-C15-C16 |
| 23  | С     | 502 | CLA  | CBD-CGD-O2D-CED |
| 34  | С     | 520 | LMG  | C17-C18-C19-C20 |
| 35  | m     | 103 | LMT  | C3-C4-C5-C6     |
| 35  | m     | 103 | LMT  | C6-C7-C8-C9     |
| 26  | В     | 621 | SQD  | C24-C23-O48-C46 |
| 37  | с     | 518 | DGD  | C2A-C1A-O1G-C1G |
| 34  | Z     | 101 | LMG  | C15-C16-C17-C18 |
| 37  | с     | 516 | DGD  | O1A-C1A-O1G-C1G |
| 34  | С     | 520 | LMG  | C11-C10-O7-C8   |
| 35  | Е     | 102 | LMT  | C5-C6-C7-C8     |
| 36  | В     | 624 | HTG  | C4'-C5'-C6'-C7' |
| 26  | L     | 102 | SQD  | C24-C23-O48-C46 |
| 23  | b     | 616 | CLA  | C8-C10-C11-C12  |
| 34  | Z     | 101 | LMG  | C16-C17-C18-C19 |
| 35  | a     | 418 | LMT  | C4-C5-C6-C7     |
| 23  | В     | 610 | CLA  | O1D-CGD-O2D-CED |
| 23  | В     | 604 | CLA  | C3-C5-C6-C7     |
| 34  | a     | 417 | LMG  | C10-C11-C12-C13 |
| 31  | b     | 630 | LHG  | C14-C15-C16-C17 |
| 31  | D     | 409 | LHG  | C17-C18-C19-C20 |
| 31  | е     | 101 | LHG  | C24-C25-C26-C27 |
| 23  | b     | 601 | CLA  | C4-C3-C5-C6     |
| 34  | с     | 520 | LMG  | C21-C22-C23-C24 |
| 23  | b     | 601 | CLA  | O1A-CGA-O2A-C1  |
| 23  | с     | 512 | CLA  | C3-C5-C6-C7     |
| 36  | В     | 625 | HTG  | C2'-C3'-C4'-C5' |
| 23  | с     | 511 | CLA  | CBA-CGA-O2A-C1  |
| 34  | С     | 520 | LMG  | C36-C37-C38-C39 |
| 35  | В     | 632 | LMT  | C7-C8-C9-C10    |
| 23  | С     | 507 | CLA  | C3A-C2A-CAA-CBA |
| 23  | с     | 512 | CLA  | C3A-C2A-CAA-CBA |
| 23  | В     | 610 | CLA  | C3A-C2A-CAA-CBA |
| 26  | f     | 101 | SQD  | C27-C28-C29-C30 |
| 26  | A     | 411 | SQD  | C19-C20-C21-C22 |

Continued from previous page...



| Mol             | Chain | Res | Type | Atoms           |
|-----------------|-------|-----|------|-----------------|
| 37              | С     | 518 | DGD  | C9A-CAA-CBA-CCA |
| 31              | d     | 407 | LHG  | C26-C27-C28-C29 |
| 31              | d     | 406 | LHG  | C32-C33-C34-C35 |
| 23              | b     | 605 | CLA  | CBA-CGA-O2A-C1  |
| 31              | d     | 407 | LHG  | C32-C33-C34-C35 |
| 23              | D     | 401 | CLA  | C13-C15-C16-C17 |
| 23              | b     | 610 | CLA  | C13-C15-C16-C17 |
| 34              | a     | 417 | LMG  | C7-C8-C9-O8     |
| 26              | А     | 411 | SQD  | O6-C44-C45-C46  |
| 26              | a     | 413 | SQD  | O6-C44-C45-C46  |
| 31              | е     | 101 | LHG  | C4-C5-C6-O8     |
| 31              | Е     | 101 | LHG  | C4-C5-C6-O8     |
| 26              | А     | 409 | SQD  | O6-C44-C45-C46  |
| 37              | h     | 103 | DGD  | O1G-C1G-C2G-C3G |
| 37              | С     | 517 | DGD  | C6B-C7B-C8B-C9B |
| 26              | a     | 411 | SQD  | C30-C31-C32-C33 |
| 37              | С     | 517 | DGD  | CAB-CBB-CCB-CDB |
| 23              | В     | 603 | CLA  | O2A-C1-C2-C3    |
| 34              | с     | 519 | LMG  | C29-C30-C31-C32 |
| 37              | с     | 517 | DGD  | CAA-CBA-CCA-CDA |
| 34              | С     | 520 | LMG  | C28-C29-C30-C31 |
| 37              | с     | 518 | DGD  | O1A-C1A-O1G-C1G |
| 23              | b     | 614 | CLA  | O1D-CGD-O2D-CED |
| 31              | D     | 409 | LHG  | O1-C1-C2-O2     |
| 31              | d     | 406 | LHG  | C33-C34-C35-C36 |
| 26              | А     | 411 | SQD  | C30-C31-C32-C33 |
| 23              | В     | 605 | CLA  | CBA-CGA-O2A-C1  |
| 31              | b     | 630 | LHG  | C35-C36-C37-C38 |
| 23              | b     | 605 | CLA  | O1A-CGA-O2A-C1  |
| 23              | с     | 512 | CLA  | O1A-CGA-O2A-C1  |
| 26              | В     | 621 | SQD  | O10-C23-O48-C46 |
| 23              | D     | 401 | CLA  | C16-C17-C18-C20 |
| 23              | a     | 409 | CLA  | C16-C17-C18-C19 |
| $3\overline{1}$ | E     | 101 | LHG  | C25-C26-C27-C28 |
| 34              | с     | 520 | LMG  | O1-C7-C8-O7     |
| 26              | a     | 411 | SQD  | O6-C44-C45-O47  |
| 31              | е     | 101 | LHG  | O7-C5-C6-O8     |
| $\overline{37}$ | C     | 517 | DGD  | C3B-C4B-C5B-C6B |
| $3\overline{1}$ | d     | 408 | LHG  | C9-C10-C11-C12  |
| 31              | d     | 407 | LHG  | C14-C15-C16-C17 |
| 23              | с     | 509 | CLA  | C13-C15-C16-C17 |
| 23              | с     | 506 | CLA  | C15-C16-C17-C18 |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 23  | А     | 404 | CLA  | C13-C15-C16-C17 |
| 31  | D     | 408 | LHG  | C1-C2-C3-O3     |
| 35  | b     | 620 | LMT  | C6-C7-C8-C9     |
| 34  | С     | 520 | LMG  | O9-C10-O7-C8    |
| 23  | d     | 402 | CLA  | C2-C1-O2A-CGA   |
| 23  | b     | 601 | CLA  | C2-C3-C5-C6     |
| 35  | М     | 103 | LMT  | C2B-C1B-O1B-C4' |
| 23  | В     | 616 | CLA  | C14-C13-C15-C16 |
| 23  | b     | 609 | CLA  | C6-C7-C8-C9     |
| 31  | d     | 408 | LHG  | C2-C3-O3-P      |
| 31  | D     | 409 | LHG  | C2-C3-O3-P      |
| 34  | J     | 101 | LMG  | C34-C35-C36-C37 |
| 25  | d     | 404 | BCR  | C1-C6-C7-C8     |
| 23  | D     | 405 | CLA  | C3-C5-C6-C7     |
| 23  | с     | 501 | CLA  | C10-C11-C12-C13 |
| 34  | Z     | 101 | LMG  | C19-C20-C21-C22 |
| 35  | С     | 522 | LMT  | O1'-C1-C2-C3    |
| 37  | С     | 517 | DGD  | C7A-C8A-C9A-CAA |
| 31  | b     | 630 | LHG  | C34-C35-C36-C37 |
| 37  | с     | 516 | DGD  | C4B-C5B-C6B-C7B |
| 34  | с     | 520 | LMG  | C28-C29-C30-C31 |
| 26  | D     | 413 | SQD  | C29-C30-C31-C32 |
| 35  | е     | 102 | LMT  | C2B-C1B-O1B-C4' |
| 23  | b     | 614 | CLA  | C15-C16-C17-C18 |
| 23  | с     | 511 | CLA  | O1A-CGA-O2A-C1  |
| 34  | с     | 519 | LMG  | C21-C22-C23-C24 |
| 23  | b     | 615 | CLA  | C15-C16-C17-C18 |
| 31  | d     | 407 | LHG  | O6-C4-C5-C6     |
| 23  | с     | 502 | CLA  | C12-C13-C15-C16 |
| 23  | b     | 611 | CLA  | C6-C7-C8-C10    |
| 23  | А     | 405 | CLA  | C11-C10-C8-C7   |
| 23  | d     | 402 | CLA  | C11-C12-C13-C15 |
| 23  | С     | 510 | CLA  | C6-C7-C8-C10    |
| 23  | С     | 514 | CLA  | C11-C10-C8-C7   |
| 23  | С     | 505 | CLA  | C12-C13-C15-C16 |
| 23  | В     | 616 | CLA  | C12-C13-C15-C16 |
| 23  | В     | 603 | CLA  | C6-C7-C8-C10    |
| 23  | В     | 615 | CLA  | C12-C13-C15-C16 |
| 36  | С     | 524 | HTG  | S1-C1'-C2'-C3'  |
| 23  | С     | 513 | CLA  | C10-C11-C12-C13 |
| 23  | b     | 607 | CLA  | C16-C17-C18-C20 |
| 34  | В     | 622 | LMG  | C18-C19-C20-C21 |

Continued from previous page...



| Mol             | Chain | Res              | Type | Atoms           |
|-----------------|-------|------------------|------|-----------------|
| 26              | D     | 413              | SQD  | C27-C28-C29-C30 |
| 36              | с     | 521              | HTG  | O5-C1-S1-C1'    |
| 34              | m     | 101              | LMG  | C22-C23-C24-C25 |
| 23              | с     | 512              | CLA  | C13-C15-C16-C17 |
| 23              | С     | 512              | CLA  | CBA-CGA-O2A-C1  |
| 31              | d     | 407              | LHG  | C24-C23-O8-C6   |
| 34              | В     | 622              | LMG  | C32-C33-C34-C35 |
| 31              | d     | 407              | LHG  | C29-C30-C31-C32 |
| 23              | В     | 607              | CLA  | C10-C11-C12-C13 |
| 24              | a     | 407              | PHO  | CAD-CBD-CGD-O2D |
| 24              | А     | 406              | PHO  | CAD-CBD-CGD-O2D |
| 23              | b     | 612              | CLA  | CAD-CBD-CGD-O2D |
| 23              | с     | 501              | CLA  | CAD-CBD-CGD-O2D |
| 23              | b     | 614              | CLA  | CAD-CBD-CGD-O2D |
| 23              | b     | 613              | CLA  | CAD-CBD-CGD-O2D |
| 23              | b     | 616              | CLA  | CAD-CBD-CGD-O2D |
| 23              | В     | 617              | CLA  | CAD-CBD-CGD-O2D |
| 35              | М     | 103              | LMT  | O5B-C1B-O1B-C4' |
| 26              | L     | 102              | SQD  | O10-C23-O48-C46 |
| 23              | b     | 605              | CLA  | O1D-CGD-O2D-CED |
| 37              | С     | 517              | DGD  | O6E-C1E-O5D-C6D |
| 26              | a     | 413              | SQD  | O5-C1-O6-C44    |
| 34              | m     | 101              | LMG  | O6-C1-O1-C7     |
| 23              | В     | 606              | CLA  | C13-C15-C16-C17 |
| 35              | В     | 623              | LMT  | C6-C7-C8-C9     |
| 34              | с     | 520              | LMG  | O1-C7-C8-C9     |
| 34              | Z     | 101              | LMG  | O1-C7-C8-C9     |
| 26              | a     | 411              | SQD  | O6-C44-C45-C46  |
| 34              | m     | 101              | LMG  | O1-C7-C8-C9     |
| 36              | b     | 625              | HTG  | C4-C5-C6-O6     |
| 31              | b     | 630              | LHG  | C27-C28-C29-C30 |
| $2\overline{3}$ | C     | 514              | CLA  | C3-C5-C6-C7     |
| 23              | B     | $60\overline{2}$ | CLA  | CAA-CBA-CGA-O2A |
| 31              | D     | 408              | LHG  | C17-C18-C19-C20 |
| 23              | В     | 605              | CLA  | C4C-C3C-CAC-CBC |
| 23              | b     | 605              | CLA  | CHA-CBD-CGD-O1D |
| 23              | b     | 605              | CLA  | CHA-CBD-CGD-O2D |
| 23              | B     | $60\overline{2}$ | CLA  | CHA-CBD-CGD-O1D |
| 23              | D     | 401              | CLA  | CHA-CBD-CGD-O1D |
| 23              | с     | 509              | CLA  | CHA-CBD-CGD-O1D |
| 23              | с     | 509              | CLA  | CHA-CBD-CGD-O2D |
| 23              | С     | 510              | CLA  | CHA-CBD-CGD-O1D |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 23  | С     | 510 | CLA  | CHA-CBD-CGD-O2D |
| 23  | С     | 509 | CLA  | CHA-CBD-CGD-O1D |
| 23  | С     | 503 | CLA  | CHA-CBD-CGD-O1D |
| 23  | С     | 503 | CLA  | CHA-CBD-CGD-O2D |
| 23  | b     | 601 | CLA  | CHA-CBD-CGD-O1D |
| 23  | b     | 601 | CLA  | CHA-CBD-CGD-O2D |
| 23  | с     | 504 | CLA  | CHA-CBD-CGD-O1D |
| 23  | С     | 507 | CLA  | C3-C5-C6-C7     |
| 23  | В     | 605 | CLA  | O1A-CGA-O2A-C1  |
| 23  | С     | 512 | CLA  | O1A-CGA-O2A-C1  |
| 31  | d     | 407 | LHG  | O10-C23-O8-C6   |
| 34  | Z     | 101 | LMG  | O1-C7-C8-O7     |
| 34  | a     | 417 | LMG  | 07-C8-C9-O8     |
| 31  | Е     | 101 | LHG  | O7-C5-C6-O8     |
| 26  | f     | 101 | SQD  | O47-C45-C46-O48 |
| 34  | m     | 101 | LMG  | O1-C7-C8-O7     |
| 37  | h     | 103 | DGD  | 01G-C1G-C2G-O2G |
| 37  | С     | 519 | DGD  | C2A-C1A-O1G-C1G |
| 23  | С     | 503 | CLA  | C10-C11-C12-C13 |
| 31  | А     | 415 | LHG  | O1-C1-C2-O2     |
| 26  | a     | 411 | SQD  | C35-C36-C37-C38 |
| 31  | D     | 409 | LHG  | C15-C16-C17-C18 |
| 36  | В     | 630 | HTG  | S1-C1'-C2'-C3'  |
| 35  | Е     | 102 | LMT  | C3-C4-C5-C6     |
| 34  | В     | 622 | LMG  | C33-C34-C35-C36 |
| 23  | b     | 611 | CLA  | C6-C7-C8-C9     |
| 23  | В     | 602 | CLA  | C11-C10-C8-C9   |
| 23  | С     | 513 | CLA  | C14-C13-C15-C16 |
| 23  | С     | 508 | CLA  | O1D-CGD-O2D-CED |
| 23  | С     | 512 | CLA  | O1D-CGD-O2D-CED |
| 26  | A     | 411 | SQD  | C29-C30-C31-C32 |
| 26  | В     | 621 | SQD  | C5-C6-S-O8      |
| 37  | Н     | 102 | DGD  | CCA-CDA-CEA-CFA |
| 34  | с     | 519 | LMG  | C31-C32-C33-C34 |
| 31  | b     | 630 | LHG  | C13-C14-C15-C16 |
| 37  | С     | 519 | DGD  | O1A-C1A-O1G-C1G |
| 23  | b     | 609 | CLA  | O1A-CGA-O2A-C1  |
| 34  | m     | 101 | LMG  | C30-C31-C32-C33 |
| 27  | В     | 628 | GOL  | O1-C1-C2-C3     |
| 34  | J     | 101 | LMG  | C36-C37-C38-C39 |
| 31  | D     | 409 | LHG  | C29-C30-C31-C32 |
| 23  | С     | 507 | CLA  | C16-C17-C18-C20 |

Continued from previous page...



| NT-1            |          | Dee | Lan   | • • • • • • • • • • • • • • • • • • • |
|-----------------|----------|-----|-------|---------------------------------------|
| MOI             | Chain    | Res | Type  | Atoms                                 |
| 23              | b        | 609 | CLA   | CBA-CGA-O2A-C1                        |
| 31              | D        | 408 | LHG   | C3-O3-P-O6                            |
| 31              | d        | 408 | LHG   | C4-O6-P-O3                            |
| 36              | В        | 625 | HTG   | O5-C5-C6-O6                           |
| 34              | С        | 520 | LMG   | C40-C41-C42-C43                       |
| 29              | d        | 405 | PL9   | C45-C44-C46-C47                       |
| 23              | В        | 605 | CLA   | C2-C3-C5-C6                           |
| 23              | В        | 610 | CLA   | C2-C3-C5-C6                           |
| 35              | В        | 632 | LMT   | C4-C5-C6-C7                           |
| 35              | В        | 632 | LMT   | C5-C6-C7-C8                           |
| 31              | d        | 406 | LHG   | C3-O3-P-O5                            |
| 31              | D        | 408 | LHG   | C3-O3-P-O4                            |
| 31              | d        | 407 | LHG   | C3-O3-P-O4                            |
| 31              | L        | 101 | LHG   | C4-O6-P-O5                            |
| 24              | D        | 402 | PHO   | C16-C17-C18-C19                       |
| 34              | Z        | 101 | LMG   | C10-C11-C12-C13                       |
| 23              | В        | 605 | CLA   | C13-C15-C16-C17                       |
| 23              | b        | 602 | CLA   | C10-C11-C12-C13                       |
| 34              | С        | 501 | LMG   | C29-C28-O8-C9                         |
| 29              | D        | 407 | PL9   | C29-C31-C32-C33                       |
| 35              | М        | 103 | LMT   | C6-C7-C8-C9                           |
| 35              | М        | 103 | LMT   | C9-C10-C11-C12                        |
| 31              | L        | 101 | LHG   | C13-C14-C15-C16                       |
| 23              | В        | 609 | CLA   | C13-C15-C16-C17                       |
| 23              | В        | 608 | CLA   | C3-C5-C6-C7                           |
| 26              | a        | 411 | SQD   | C26-C27-C28-C29                       |
| 31              | D        | 408 | LHG   | C26-C27-C28-C29                       |
| 34              | С        | 520 | LMG   | C32-C33-C34-C35                       |
| 23              | с        | 502 | CLA   | CAD-CBD-CGD-O1D                       |
| 23              | b        | 605 | CLA   | CAD-CBD-CGD-O1D                       |
| 23              | В        | 606 | CLA   | CAD-CBD-CGD-O1D                       |
| 23              | B        | 602 | CLA   | CAD-CBD-CGD-O1D                       |
| 26              | A        | 411 | SOD   | C5-C6-S-O9                            |
| 23              | c        | 506 | CLA   | CAD-CBD-CGD-O1D                       |
| 23              | C        | 503 | CLA   | CAD-CBD-CGD-O1D                       |
| $\frac{-3}{26}$ | B        | 621 | SOD   | C5-C6-S-O9                            |
| 23              | b        | 601 | CLA   | CAD-CBD-CGD-O1D                       |
| $\frac{-3}{23}$ | C C      | 504 | CLA   | CAD-CBD-CGD-01D                       |
| 23              | <u>я</u> | 406 | CLA   | C10-C11-C12-C13                       |
| 35              | M        | 103 | LMT   | <u>C1-C2-C3-C4</u>                    |
| $\frac{30}{23}$ | C        | 510 | CLA   | <u>C16-C17-C18-C20</u>                |
| 23              | R        | 606 |       | <u>C6-C7-C8-C10</u>                   |
| 20              | <u> </u> | 000 | L ODU |                                       |

Continued from previous page...



| Mol | Chain | Res  | Type                  | Atoms           |
|-----|-------|------|-----------------------|-----------------|
| 31  | b     | 630  | LHG                   | O6-C4-C5-O7     |
| 23  | В     | 605  | CLA                   | C11-C12-C13-C15 |
| 23  | b     | 607  | CLA                   | C12-C13-C15-C16 |
| 23  | с     | 501  | CLA                   | C11-C12-C13-C15 |
| 31  | Е     | 101  | LHG                   | C23-C24-C25-C26 |
| 36  | с     | 521  | HTG                   | C2-C1-S1-C1'    |
| 23  | с     | 510  | CLA                   | C6-C7-C8-C10    |
| 23  | С     | 513  | CLA                   | C12-C13-C15-C16 |
| 23  | b     | 616  | CLA                   | C6-C7-C8-C10    |
| 23  | b     | 616  | CLA                   | C11-C12-C13-C15 |
| 23  | a     | 409  | CLA                   | C11-C10-C8-C7   |
| 23  | В     | 611  | CLA                   | C12-C13-C15-C16 |
| 23  | В     | 617  | CLA                   | C12-C13-C15-C16 |
| 23  | С     | 506  | CLA                   | C12-C13-C15-C16 |
| 23  | с     | 504  | CLA                   | C11-C10-C8-C7   |
| 37  | h     | 103  | DGD                   | C9A-CAA-CBA-CCA |
| 34  | С     | 501  | LMG                   | C13-C14-C15-C16 |
| 23  | b     | 613  | CLA                   | O1A-CGA-O2A-C1  |
| 23  | В     | 610  | CLA                   | O1A-CGA-O2A-C1  |
| 35  | В     | 634  | LMT                   | C4-C5-C6-C7     |
| 26  | В     | 621  | SQD                   | C33-C34-C35-C36 |
| 35  | е     | 102  | LMT                   | O5B-C1B-O1B-C4' |
| 31  | b     | 630  | LHG                   | C16-C17-C18-C19 |
| 31  | d     | 407  | LHG                   | C9-C10-C11-C12  |
| 23  | С     | 512  | CLA                   | C3-C5-C6-C7     |
| 31  | b     | 630  | LHG                   | C25-C26-C27-C28 |
| 26  | f     | 101  | SQD                   | C44-C45-C46-O48 |
| 34  | С     | 501  | LMG                   | O10-C28-O8-C9   |
| 26  | L     | 102  | SQD                   | O47-C45-C46-O48 |
| 26  | В     | 621  | SQD                   | O47-C45-C46-O48 |
| 26  | a     | 411  | SQD                   | C16-C17-C18-C19 |
| 31  | D     | 409  | LHG                   | C14-C15-C16-C17 |
| 31  | d     | 407  | LHG                   | C16-C17-C18-C19 |
| 34  | C     | 520  | LMG                   | C35-C36-C37-C38 |
| 37  | C     | 518  | DGD                   | C8A-C9A-CAA-CBA |
| 37  | c     | 517  | DGD                   | C2G-C3G-O3G-C1D |
| 23  | D     | 401  | CLA                   | C16-C17-C18-C19 |
| 34  | С     | 520  | LMG                   | C11-C12-C13-C14 |
| 23  | с     | 508  | CLA                   | C11-C10-C8-C9   |
| 23  | d     | 402  | CLA                   | C11-C12-C13-C14 |
| 23  | b     | 615  | CLA                   | C14-C13-C15-C16 |
| 23  | с     | -507 | $\vdash$ CLA $\vdash$ | C11-C12-C13-C14 |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 23  | В     | 617 | CLA  | C14-C13-C15-C16 |
| 37  | h     | 103 | DGD  | CBB-CCB-CDB-CEB |
| 23  | С     | 503 | CLA  | C3-C5-C6-C7     |
| 34  | С     | 520 | LMG  | C34-C35-C36-C37 |
| 34  | В     | 622 | LMG  | C10-C11-C12-C13 |
| 31  | d     | 406 | LHG  | O10-C23-O8-C6   |
| 27  | В     | 628 | GOL  | O1-C1-C2-O2     |
| 31  | D     | 408 | LHG  | C11-C10-C9-C8   |
| 37  | с     | 517 | DGD  | C7B-C8B-C9B-CAB |
| 35  | В     | 623 | LMT  | C5-C6-C7-C8     |
| 24  | a     | 408 | PHO  | C8-C10-C11-C12  |
| 31  | d     | 406 | LHG  | C24-C25-C26-C27 |
| 34  | С     | 501 | LMG  | C17-C18-C19-C20 |
| 35  | D     | 403 | LMT  | C5-C6-C7-C8     |
| 34  | В     | 622 | LMG  | C13-C14-C15-C16 |
| 23  | С     | 507 | CLA  | C5-C6-C7-C8     |
| 31  | D     | 408 | LHG  | C11-C12-C13-C14 |
| 34  | a     | 417 | LMG  | C20-C21-C22-C23 |
| 35  | Е     | 102 | LMT  | O1'-C1-C2-C3    |
| 23  | b     | 616 | CLA  | O1A-CGA-O2A-C1  |
| 35  | D     | 403 | LMT  | O5B-C5B-C6B-O6B |
| 31  | d     | 406 | LHG  | C24-C23-O8-C6   |
| 26  | L     | 102 | SQD  | C31-C32-C33-C34 |
| 31  | d     | 406 | LHG  | C34-C35-C36-C37 |
| 34  | m     | 101 | LMG  | C37-C38-C39-C40 |
| 26  | В     | 621 | SQD  | C46-C45-O47-C7  |
| 23  | b     | 602 | CLA  | C2A-CAA-CBA-CGA |
| 23  | с     | 501 | CLA  | C2A-CAA-CBA-CGA |
| 23  | С     | 514 | CLA  | C2-C1-O2A-CGA   |
| 23  | C     | 511 | CLA  | C2-C1-O2A-CGA   |
| 23  | b     | 610 | CLA  | C2-C1-O2A-CGA   |
| 23  | В     | 614 | CLA  | C2-C1-O2A-CGA   |
| 26  | L     | 102 | SQD  | C26-C27-C28-C29 |
| 31  | d     | 408 | LHG  | C29-C30-C31-C32 |
| 26  | L     | 102 | SQD  | C11-C10-C9-C8   |
| 34  | a     | 417 | LMG  | C29-C30-C31-C32 |
| 26  | a     | 413 | SQD  | C18-C19-C20-C21 |
| 23  | b     | 616 | CLA  | CBA-CGA-O2A-C1  |
| 31  | d     | 407 | LHG  | O6-C4-C5-O7     |
| 25  | d     | 404 | BCR  | C5-C6-C7-C8     |
| 25  | В     | 618 | BCR  | C5-C6-C7-C8     |
| 25  | с     | 514 | BCR  | C23-C24-C25-C26 |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 25  | с     | 514 | BCR  | C23-C24-C25-C30 |
| 29  | d     | 405 | PL9  | C43-C44-C46-C47 |
| 34  | с     | 519 | LMG  | O10-C28-O8-C9   |
| 26  | a     | 413 | SQD  | C24-C23-O48-C46 |
| 23  | с     | 512 | CLA  | C2A-CAA-CBA-CGA |
| 26  | a     | 413 | SQD  | O10-C23-O48-C46 |
| 31  | Е     | 101 | LHG  | C4-O6-P-O3      |
| 26  | В     | 621 | SQD  | C9-C10-C11-C12  |
| 34  | m     | 101 | LMG  | C21-C22-C23-C24 |
| 26  | f     | 101 | SQD  | O6-C44-C45-C46  |
| 35  | М     | 103 | LMT  | C11-C10-C9-C8   |
| 23  | с     | 508 | CLA  | C11-C10-C8-C7   |
| 23  | с     | 506 | CLA  | C11-C12-C13-C15 |
| 23  | с     | 506 | CLA  | C12-C13-C15-C16 |
| 23  | С     | 510 | CLA  | C11-C12-C13-C15 |
| 23  | b     | 601 | CLA  | C11-C10-C8-C7   |
| 26  | А     | 411 | SQD  | C7-C8-C9-C10    |
| 23  | А     | 405 | CLA  | C11-C10-C8-C9   |
| 23  | А     | 405 | CLA  | C14-C13-C15-C16 |
| 23  | b     | 607 | CLA  | C14-C13-C15-C16 |
| 23  | с     | 501 | CLA  | C11-C12-C13-C14 |
| 23  | В     | 616 | CLA  | C11-C12-C13-C14 |
| 23  | а     | 409 | CLA  | C11-C10-C8-C9   |
| 25  | k     | 101 | BCR  | C9-C10-C11-C12  |
| 23  | а     | 404 | CLA  | C16-C17-C18-C19 |
| 34  | В     | 622 | LMG  | O6-C5-C6-O5     |
| 37  | с     | 517 | DGD  | CCB-CDB-CEB-CFB |
| 34  | Z     | 101 | LMG  | C4-C5-C6-O5     |
| 31  | Ε     | 101 | LHG  | C15-C16-C17-C18 |
| 35  | С     | 522 | LMT  | C4-C5-C6-C7     |
| 23  | В     | 610 | CLA  | CBA-CGA-O2A-C1  |
| 23  | A     | 407 | CLA  | C4-C3-C5-C6     |
| 23  | В     | 610 | CLA  | C4-C3-C5-C6     |
| 31  | d     | 406 | LHG  | С7-С8-С9-С10    |
| 31  | D     | 408 | LHG  | C34-C35-C36-C37 |
| 23  | В     | 604 | CLA  | CBA-CGA-O2A-C1  |
| 23  | b     | 613 | CLA  | CBA-CGA-O2A-C1  |
| 34  | Z     | 101 | LMG  | C12-C13-C14-C15 |
| 34  | z     | 101 | LMG  | C18-C19-C20-C21 |
| 31  | d     | 407 | LHG  | C31-C32-C33-C34 |
| 34  | с     | 519 | LMG  | C29-C28-O8-C9   |
| 23  | С     | 507 | CLA  | C16-C17-C18-C19 |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 23  | С     | 510 | CLA  | CBD-CGD-O2D-CED |
| 23  | с     | 513 | CLA  | C10-C11-C12-C13 |
| 35  | В     | 633 | LMT  | C4-C5-C6-C7     |
| 23  | D     | 401 | CLA  | C2C-C3C-CAC-CBC |
| 23  | С     | 509 | CLA  | C5-C6-C7-C8     |
| 23  | В     | 609 | CLA  | C2-C1-O2A-CGA   |
| 23  | b     | 608 | CLA  | C2-C1-O2A-CGA   |
| 23  | d     | 403 | CLA  | C3A-C2A-CAA-CBA |
| 23  | b     | 609 | CLA  | C3A-C2A-CAA-CBA |
| 23  | С     | 505 | CLA  | C8-C10-C11-C12  |
| 34  | a     | 417 | LMG  | C36-C37-C38-C39 |
| 23  | В     | 614 | CLA  | C13-C15-C16-C17 |
| 31  | L     | 101 | LHG  | C28-C29-C30-C31 |
| 23  | D     | 404 | CLA  | C11-C10-C8-C9   |
| 23  | с     | 509 | CLA  | C11-C12-C13-C14 |
| 23  | С     | 514 | CLA  | C14-C13-C15-C16 |
| 23  | b     | 607 | CLA  | C11-C12-C13-C14 |
| 23  | С     | 503 | CLA  | C14-C13-C15-C16 |
| 23  | b     | 614 | CLA  | C6-C7-C8-C9     |
| 23  | В     | 611 | CLA  | C11-C12-C13-C14 |
| 23  | В     | 611 | CLA  | C14-C13-C15-C16 |
| 23  | В     | 612 | CLA  | C11-C12-C13-C14 |
| 24  | D     | 402 | PHO  | C16-C17-C18-C20 |
| 23  | b     | 601 | CLA  | C16-C17-C18-C19 |
| 31  | d     | 408 | LHG  | C34-C35-C36-C37 |
| 31  | b     | 630 | LHG  | C18-C19-C20-C21 |
| 24  | А     | 406 | PHO  | O2A-C1-C2-C3    |
| 29  | a     | 415 | PL9  | C2-C3-C7-C8     |
| 23  | B     | 604 | CLA  | O1A-CGA-O2A-C1  |
| 34  | j     | 101 | LMG  | C36-C37-C38-C39 |
| 35  | b     | 620 | LMT  | C2-C3-C4-C5     |
| 26  | L     | 102 | SQD  | C16-C17-C18-C19 |
| 36  | В     | 624 | HTG  | C3'-C4'-C5'-C6' |
| 34  | C     | 521 | LMG  | C18-C19-C20-C21 |
| 26  | В     | 621 | SQD  | C11-C10-C9-C8   |
| 23  | В     | 602 | CLA  | C13-C15-C16-C17 |
| 29  | a     | 415 | PL9  | C20-C19-C21-C22 |
| 23  | b     | 601 | CLA  | CAA-CBA-CGA-O1A |
| 23  | с     | 511 | CLA  | C1A-C2A-CAA-CBA |
| 37  | с     | 516 | DGD  | CDB-CEB-CFB-CGB |
| 24  | А     | 406 | PHO  | C2-C3-C5-C6     |
| 23  | С     | 510 | CLA  | C11-C10-C8-C7   |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 23  | b     | 606 | CLA  | C12-C13-C15-C16 |
| 23  | b     | 610 | CLA  | C11-C12-C13-C15 |
| 23  | D     | 405 | CLA  | C12-C13-C15-C16 |
| 23  | a     | 405 | CLA  | C11-C10-C8-C7   |
| 23  | С     | 509 | CLA  | C13-C15-C16-C17 |
| 34  | Ζ     | 101 | LMG  | C29-C28-O8-C9   |
| 37  | с     | 516 | DGD  | CCB-CDB-CEB-CFB |
| 37  | Н     | 102 | DGD  | C9B-CAB-CBB-CCB |
| 35  | D     | 403 | LMT  | C4'-C5'-C6'-O6' |
| 23  | В     | 603 | CLA  | C2A-CAA-CBA-CGA |
| 23  | С     | 504 | CLA  | C15-C16-C17-C18 |
| 23  | А     | 407 | CLA  | C8-C10-C11-C12  |
| 23  | с     | 507 | CLA  | C5-C6-C7-C8     |
| 31  | L     | 101 | LHG  | С11-С10-С9-С8   |
| 34  | Z     | 101 | LMG  | C28-C29-C30-C31 |
| 37  | h     | 103 | DGD  | CDA-CEA-CFA-CGA |
| 23  | b     | 611 | CLA  | C13-C15-C16-C17 |
| 23  | с     | 509 | CLA  | C10-C11-C12-C13 |
| 35  | b     | 628 | LMT  | C6-C7-C8-C9     |
| 35  | D     | 403 | LMT  | C2B-C1B-O1B-C4' |
| 31  | d     | 408 | LHG  | O7-C5-C6-O8     |
| 34  | С     | 521 | LMG  | 07-C8-C9-O8     |
| 31  | d     | 407 | LHG  | O7-C5-C6-O8     |
| 31  | А     | 415 | LHG  | C29-C30-C31-C32 |
| 25  | у     | 101 | BCR  | C9-C10-C11-C12  |
| 23  | С     | 502 | CLA  | O1D-CGD-O2D-CED |
| 23  | с     | 503 | CLA  | C8-C10-C11-C12  |
| 34  | a     | 417 | LMG  | C34-C35-C36-C37 |
| 29  | А     | 413 | PL9  | C30-C29-C31-C32 |
| 23  | b     | 614 | CLA  | C2-C1-O2A-CGA   |
| 23  | b     | 613 | CLA  | C2-C1-O2A-CGA   |
| 29  | a     | 415 | PL9  | C18-C19-C21-C22 |
| 26  | A     | 409 | SQD  | C14-C15-C16-C17 |
| 23  | C     | 503 | CLA  | C16-C17-C18-C20 |
| 23  | с     | 506 | CLA  | C11-C10-C8-C9   |
| 31  | D     | 409 | LHG  | C10-C11-C12-C13 |
| 29  | A     | 413 | PL9  | C2-C3-C7-C8     |
| 37  | h     | 103 | DGD  | O1B-C1B-C2B-C3B |
| 34  | C     | 521 | LMG  | C10-C11-C12-C13 |
| 31  | е     | 101 | LHG  | C14-C15-C16-C17 |
| 26  | D     | 413 | SQD  | O10-C23-O48-C46 |
| 25  | A     | 408 | BCR  | C1-C6-C7-C8     |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 25  | С     | 516 | BCR  | C1-C6-C7-C8     |
| 25  | С     | 515 | BCR  | C1-C6-C7-C8     |
| 25  | b     | 618 | BCR  | C23-C24-C25-C30 |
| 35  | М     | 101 | LMT  | C9-C10-C11-C12  |
| 31  | L     | 101 | LHG  | C33-C34-C35-C36 |
| 31  | е     | 101 | LHG  | C25-C26-C27-C28 |
| 37  | С     | 518 | DGD  | C2G-C3G-O3G-C1D |
| 34  | J     | 101 | LMG  | C8-C7-O1-C1     |
| 26  | В     | 621 | SQD  | C45-C44-O6-C1   |
| 37  | с     | 517 | DGD  | C8A-C9A-CAA-CBA |
| 31  | d     | 408 | LHG  | O6-C4-C5-O7     |
| 36  | с     | 521 | HTG  | C4-C5-C6-O6     |
| 35  | m     | 103 | LMT  | O5'-C5'-C6'-O6' |
| 26  | D     | 413 | SQD  | C24-C23-O48-C46 |
| 34  | j     | 101 | LMG  | C28-C29-C30-C31 |
| 34  | С     | 501 | LMG  | C18-C19-C20-C21 |
| 35  | В     | 623 | LMT  | O5B-C1B-O1B-C4' |
| 26  | a     | 411 | SQD  | C19-C20-C21-C22 |
| 26  | В     | 621 | SQD  | C34-C35-C36-C37 |
| 23  | с     | 513 | CLA  | C4-C3-C5-C6     |
| 29  | a     | 415 | PL9  | C9-C11-C12-C13  |
| 29  | А     | 413 | PL9  | C28-C29-C31-C32 |
| 26  | L     | 102 | SQD  | O48-C23-C24-C25 |
| 31  | А     | 415 | LHG  | O8-C23-C24-C25  |
| 23  | b     | 613 | CLA  | CAA-CBA-CGA-O2A |
| 34  | Ζ     | 101 | LMG  | C11-C12-C13-C14 |
| 36  | D     | 412 | HTG  | C1'-C2'-C3'-C4' |
| 37  | с     | 518 | DGD  | CCB-CDB-CEB-CFB |
| 37  | С     | 519 | DGD  | C6B-C7B-C8B-C9B |
| 34  | Z     | 101 | LMG  | C18-C19-C20-C21 |
| 31  | d     | 407 | LHG  | C11-C10-C9-C8   |
| 34  | Z     | 101 | LMG  | O7-C10-C11-C12  |
| 29  | a     | 415 | PL9  | C45-C44-C46-C47 |
| 24  | D     | 402 | PHO  | C5-C6-C7-C8     |
| 37  | С     | 519 | DGD  | C1B-C2B-C3B-C4B |
| 31  | b     | 630 | LHG  | O7-C7-C8-C9     |
| 26  | f     | 101 | SQD  | O47-C7-C8-C9    |
| 23  | b     | 605 | CLA  | C11-C10-C8-C9   |
| 23  | с     | 509 | CLA  | C6-C7-C8-C9     |
| 23  | с     | 506 | CLA  | C11-C12-C13-C14 |
| 23  | С     | 510 | CLA  | C11-C10-C8-C9   |
| 23  | C     | 510 | CLA  | C11-C12-C13-C14 |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 23  | В     | 605 | CLA  | C11-C12-C13-C14 |
| 23  | с     | 510 | CLA  | C11-C12-C13-C14 |
| 23  | b     | 616 | CLA  | C11-C12-C13-C14 |
| 23  | D     | 405 | CLA  | C14-C13-C15-C16 |
| 23  | С     | 506 | CLA  | C14-C13-C15-C16 |
| 23  | с     | 504 | CLA  | C11-C10-C8-C9   |
| 23  | В     | 602 | CLA  | C3A-C2A-CAA-CBA |
| 23  | b     | 608 | CLA  | C3A-C2A-CAA-CBA |
| 31  | d     | 406 | LHG  | C11-C10-C9-C8   |
| 26  | В     | 621 | SQD  | O48-C23-C24-C25 |
| 23  | В     | 605 | CLA  | CAD-CBD-CGD-O2D |
| 23  | b     | 604 | CLA  | CAD-CBD-CGD-O2D |
| 23  | С     | 511 | CLA  | CAD-CBD-CGD-O2D |
| 23  | b     | 610 | CLA  | CAD-CBD-CGD-O2D |
| 23  | с     | 510 | CLA  | CAD-CBD-CGD-O2D |
| 23  | А     | 404 | CLA  | CAD-CBD-CGD-O2D |
| 23  | С     | 509 | CLA  | CAD-CBD-CGD-O2D |
| 23  | b     | 603 | CLA  | CAD-CBD-CGD-O2D |
| 23  | С     | 513 | CLA  | CAD-CBD-CGD-O2D |
| 23  | С     | 506 | CLA  | CAD-CBD-CGD-O2D |
| 31  | D     | 409 | LHG  | C9-C10-C11-C12  |
| 37  | с     | 516 | DGD  | CCA-CDA-CEA-CFA |
| 23  | b     | 601 | CLA  | C13-C15-C16-C17 |
| 37  | С     | 517 | DGD  | CCB-CDB-CEB-CFB |
| 23  | В     | 602 | CLA  | C2-C1-O2A-CGA   |
| 35  | е     | 102 | LMT  | C5-C6-C7-C8     |
| 23  | b     | 616 | CLA  | C4-C3-C5-C6     |
| 23  | b     | 616 | CLA  | C2-C3-C5-C6     |
| 23  | В     | 614 | CLA  | CAA-CBA-CGA-O2A |
| 31  | L     | 101 | LHG  | O7-C7-C8-C9     |
| 37  | h     | 103 | DGD  | C8A-C9A-CAA-CBA |
| 25  | С     | 527 | BCR  | C7-C8-C9-C10    |
| 23  | В     | 604 | CLA  | CBD-CGD-O2D-CED |
| 34  | c     | 519 | LMG  | O7-C10-C11-C12  |
| 34  | C     | 520 | LMG  | O8-C28-C29-C30  |
| 23  | C     | 511 | CLA  | CAA-CBA-CGA-O2A |
| 37  | H     | 102 | DGD  | O1B-C1B-C2B-C3B |
| 35  | B     | 633 | LMT  | C5-C6-C7-C8     |
| 34  | В     | 622 | LMG  | C22-C23-C24-C25 |
| 36  | В     | 625 | HTG  | C4'-C5'-C6'-C7' |
| 24  | a     | 407 | PHO  | O2A-C1-C2-C3    |
| 23  | b     | 613 | CLA  | O2A-C1-C2-C3    |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 23  | a     | 409 | CLA  | C15-C16-C17-C18 |
| 31  | D     | 409 | LHG  | C28-C29-C30-C31 |
| 23  | А     | 405 | CLA  | C3-C5-C6-C7     |
| 34  | j     | 101 | LMG  | C19-C20-C21-C22 |
| 23  | В     | 606 | CLA  | CHA-CBD-CGD-O1D |
| 23  | В     | 606 | CLA  | CHA-CBD-CGD-O2D |
| 23  | В     | 602 | CLA  | CHA-CBD-CGD-O2D |
| 24  | D     | 402 | PHO  | CHA-CBD-CGD-O2D |
| 23  | с     | 503 | CLA  | CHA-CBD-CGD-O2D |
| 23  | b     | 607 | CLA  | CHA-CBD-CGD-O1D |
| 23  | b     | 607 | CLA  | CHA-CBD-CGD-O2D |
| 23  | b     | 606 | CLA  | CHA-CBD-CGD-O1D |
| 23  | b     | 606 | CLA  | CHA-CBD-CGD-O2D |
| 23  | С     | 508 | CLA  | CHA-CBD-CGD-O1D |
| 23  | С     | 508 | CLA  | CHA-CBD-CGD-O2D |
| 23  | С     | 509 | CLA  | CHA-CBD-CGD-O2D |
| 23  | с     | 507 | CLA  | CHA-CBD-CGD-O1D |
| 23  | с     | 507 | CLA  | CHA-CBD-CGD-O2D |
| 23  | a     | 405 | CLA  | CHA-CBD-CGD-O2D |
| 23  | В     | 615 | CLA  | CHA-CBD-CGD-O1D |
| 23  | В     | 615 | CLA  | CHA-CBD-CGD-O2D |
| 23  | с     | 504 | CLA  | CHA-CBD-CGD-O2D |
| 29  | А     | 413 | PL9  | C45-C44-C46-C47 |
| 24  | А     | 406 | PHO  | C4-C3-C5-C6     |
| 29  | a     | 415 | PL9  | C43-C44-C46-C47 |
| 23  | В     | 613 | CLA  | CAA-CBA-CGA-O2A |
| 34  | J     | 101 | LMG  | O7-C10-C11-C12  |
| 23  | А     | 405 | CLA  | C2C-C3C-CAC-CBC |
| 34  | Z     | 101 | LMG  | C22-C23-C24-C25 |
| 37  | С     | 518 | DGD  | CDB-CEB-CFB-CGB |
| 35  | Е     | 102 | LMT  | C4B-C5B-C6B-O6B |
| 27  | A     | 410 | GOL  | O2-C2-C3-O3     |
| 29  | D     | 407 | PL9  | C45-C44-C46-C47 |
| 35  | D     | 403 | LMT  | O5B-C1B-O1B-C4' |
| 23  | В     | 616 | CLA  | C13-C15-C16-C17 |
| 23  | C     | 507 | CLA  | C12-C13-C15-C16 |
| 23  | b     | 614 | CLA  | C6-C7-C8-C10    |
| 23  | С     | 513 | CLA  | C6-C7-C8-C10    |
| 23  | b     | 602 | CLA  | CAA-CBA-CGA-O2A |
| 37  | С     | 518 | DGD  | O2G-C1B-C2B-C3B |
| 23  | С     | 510 | CLA  | CAA-CBA-CGA-O2A |
| 23  | С     | 507 | CLA  | C14-C13-C15-C16 |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 26  | А     | 409 | SQD  | C30-C31-C32-C33 |
| 23  | b     | 612 | CLA  | CAA-CBA-CGA-O2A |
| 34  | Z     | 101 | LMG  | C13-C14-C15-C16 |
| 24  | D     | 402 | PHO  | C4C-C3C-CAC-CBC |
| 34  | с     | 519 | LMG  | O9-C10-C11-C12  |
| 23  | a     | 404 | CLA  | C16-C17-C18-C20 |
| 23  | с     | 508 | CLA  | C4-C3-C5-C6     |
| 23  | с     | 513 | CLA  | C2-C3-C5-C6     |
| 31  | е     | 101 | LHG  | O8-C23-C24-C25  |
| 26  | f     | 101 | SQD  | O49-C7-C8-C9    |
| 25  | У     | 101 | BCR  | C21-C22-C23-C24 |
| 23  | С     | 507 | CLA  | C1A-C2A-CAA-CBA |
| 35  | В     | 632 | LMT  | C11-C10-C9-C8   |
| 31  | b     | 630 | LHG  | O9-C7-C8-C9     |
| 34  | С     | 520 | LMG  | O10-C28-C29-C30 |
| 23  | с     | 511 | CLA  | C2-C1-O2A-CGA   |
| 26  | L     | 102 | SQD  | O10-C23-C24-C25 |
| 31  | А     | 415 | LHG  | O10-C23-C24-C25 |
| 23  | В     | 614 | CLA  | CAA-CBA-CGA-O1A |
| 26  | а     | 411 | SQD  | C11-C10-C9-C8   |
| 36  | с     | 522 | HTG  | C4-C5-C6-O6     |
| 34  | m     | 101 | LMG  | O7-C10-C11-C12  |
| 31  | b     | 630 | LHG  | C19-C20-C21-C22 |
| 37  | Н     | 102 | DGD  | C7B-C8B-C9B-CAB |
| 23  | А     | 404 | CLA  | C2A-CAA-CBA-CGA |
| 23  | D     | 404 | CLA  | C2C-C3C-CAC-CBC |
| 26  | В     | 621 | SQD  | C35-C36-C37-C38 |
| 23  | с     | 513 | CLA  | C16-C17-C18-C20 |
| 26  | В     | 621 | SQD  | O10-C23-C24-C25 |
| 23  | с     | 512 | CLA  | C15-C16-C17-C18 |
| 31  | b     | 630 | LHG  | C11-C12-C13-C14 |
| 37  | С     | 517 | DGD  | CDB-CEB-CFB-CGB |
| 31  | E     | 101 | LHG  | C4-O6-P-O5      |
| 31  | d     | 408 | LHG  | C4-O6-P-O5      |
| 23  | b     | 613 | CLA  | CAA-CBA-CGA-O1A |
| 24  | a     | 408 | PHO  | C2C-C3C-CAC-CBC |
| 37  | С     | 519 | DGD  | C9B-CAB-CBB-CCB |
| 35  | M     | 103 | LMT  | C4-C5-C6-C7     |
| 25  | b     | 618 | BCR  | C23-C24-C25-C26 |
| 25  | D     | 406 | BCR  | C1-C6-C7-C8     |
| 23  | D     | 401 | CLA  | C4C-C3C-CAC-CBC |
| 34  | z     | 101 | LMG  | C15-C16-C17-C18 |

Continued from previous page...



|    | Chain | Daa | Trees       | Atoma                 |
|----|-------|-----|-------------|-----------------------|
|    |       | nes | <u>rype</u> | ALOIIIS               |
|    | Z     | 101 | LMG         | <u>09-C10-C11-C12</u> |
| 23 | b     | 612 | CLA         | CAA-CBA-CGA-O1A       |
| 23 | C     | 511 | CLA         | CAA-CBA-CGA-O1A       |
| 34 | a     | 417 | LMG         | C37-C38-C39-C40       |
| 31 | d     | 408 | LHG         | C28-C29-C30-C31       |
| 36 | b     | 621 | HTG         | C2'-C3'-C4'-C5'       |
| 23 | В     | 614 | CLA         | C15-C16-C17-C18       |
| 31 | е     | 101 | LHG         | O10-C23-C24-C25       |
| 23 | с     | 510 | CLA         | CAA-CBA-CGA-O1A       |
| 31 | L     | 101 | LHG         | O9-C7-C8-C9           |
| 23 | с     | 503 | CLA         | C15-C16-C17-C18       |
| 23 | В     | 608 | CLA         | CAD-CBD-CGD-O1D       |
| 23 | b     | 611 | CLA         | CAD-CBD-CGD-O1D       |
| 23 | с     | 505 | CLA         | CAD-CBD-CGD-O1D       |
| 23 | b     | 607 | CLA         | CAD-CBD-CGD-O1D       |
| 23 | b     | 606 | CLA         | CAD-CBD-CGD-O1D       |
| 23 | С     | 505 | CLA         | CAD-CBD-CGD-O1D       |
| 23 | b     | 609 | CLA         | CAD-CBD-CGD-O1D       |
| 23 | a     | 405 | CLA         | CAD-CBD-CGD-O1D       |
| 23 | В     | 610 | CLA         | CAD-CBD-CGD-O1D       |
| 34 | a     | 417 | LMG         | C21-C22-C23-C24       |
| 24 | a     | 408 | PHO         | NC-C1C-CHC-C4B        |
| 37 | с     | 516 | DGD         | O2G-C1B-C2B-C3B       |
| 23 | a     | 406 | CLA         | C11-C10-C8-C9         |
| 23 | a     | 405 | CLA         | C11-C10-C8-C9         |
| 34 | J     | 101 | LMG         | O9-C10-C11-C12        |
| 23 | с     | 505 | CLA         | CAA-CBA-CGA-O2A       |
| 26 | A     | 409 | SQD         | O47-C7-C8-C9          |
| 23 | D     | 405 | CLA         | C8-C10-C11-C12        |
| 26 | f     | 101 | SQD         | C24-C25-C26-C27       |
| 36 | b     | 625 | HTG         | C1'-C2'-C3'-C4'       |
| 23 | с     | 505 | CLA         | CAA-CBA-CGA-O1A       |
| 34 | С     | 520 | LMG         | C31-C32-C33-C34       |
| 23 | В     | 606 | CLA         | C4-C3-C5-C6           |
| 23 | с     | 506 | CLA         | C4-C3-C5-C6           |
| 23 | a     | 406 | CLA         | C11-C10-C8-C7         |
| 23 | A     | 407 | CLA         | C2-C3-C5-C6           |
| 23 | b     | 614 | CLA         | C12-C13-C15-C16       |
| 23 | В     | 617 | CLA         | C11-C12-C13-C15       |
| 31 | Е     | 101 | LHG         | 07-C7-C8-C9           |
| 26 | A     | 409 | SQD         | C13-C14-C15-C16       |
| 23 | b     | 612 | CLA         | C8-C10-C11-C12        |

Continued from previous page...



| Mol | Chain | $\mathbf{Res}$ | Type | Atoms           |
|-----|-------|----------------|------|-----------------|
| 23  | b     | 604            | CLA  | C13-C15-C16-C17 |
| 25  | Y     | 101            | BCR  | C21-C22-C23-C24 |
| 37  | С     | 518            | DGD  | O1B-C1B-C2B-C3B |
| 23  | В     | 613            | CLA  | CAA-CBA-CGA-O1A |
| 34  | m     | 101            | LMG  | O9-C10-C11-C12  |
| 26  | a     | 411            | SQD  | C10-C11-C12-C13 |
| 35  | b     | 628            | LMT  | C2-C1-O1'-C1'   |
| 35  | В     | 632            | LMT  | C2-C1-O1'-C1'   |
| 31  | d     | 408            | LHG  | O8-C23-C24-C25  |
| 23  | С     | 506            | CLA  | CAA-CBA-CGA-O2A |
| 29  | А     | 413            | PL9  | C19-C21-C22-C23 |
| 37  | С     | 518            | DGD  | CBB-CCB-CDB-CEB |
| 31  | d     | 408            | LHG  | C25-C26-C27-C28 |
| 31  | L     | 101            | LHG  | C16-C17-C18-C19 |
| 23  | В     | 613            | CLA  | C13-C15-C16-C17 |
| 23  | В     | 608            | CLA  | C2A-CAA-CBA-CGA |
| 36  | b     | 622            | HTG  | C4'-C5'-C6'-C7' |
| 26  | А     | 409            | SQD  | O49-C7-C8-C9    |
| 37  | с     | 516            | DGD  | O1B-C1B-C2B-C3B |
| 26  | a     | 411            | SQD  | O47-C7-C8-C9    |
| 34  | С     | 501            | LMG  | O8-C28-C29-C30  |

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.









































































































































































































































































































## 5.7 Other polymers (i)

There are no such residues in this entry.

## 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



## 6 Fit of model and data (i)

## 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

| Mol | Chain | Analysed                   | < <b>RSRZ</b> > | $\# RSRZ {>}2$ | $OWAB(A^2)$                     | Q<0.9 |
|-----|-------|----------------------------|-----------------|----------------|---------------------------------|-------|
| 1   | А     | 334/344~(97%)              | 0.05            | 11 (3%) 46 50  | 22,33,58,97                     | 0     |
| 1   | а     | 334/344~(97%)              | 0.20            | 14 (4%) 36 39  | 24,36,65,113                    | 0     |
| 2   | В     | 504/505~(99%)              | 0.31            | 58 (11%) 4 4   | 24, 38, 68, 118                 | 0     |
| 2   | b     | 504/505~(99%)              | 0.47            | 70~(13%) 2 2   | 25, 40, 77, 122                 | 0     |
| 3   | C     | 451/455~(99%)              | 0.64            | 71 (15%) 2 1   | 27, 48, 70, 108                 | 0     |
| 3   | с     | 455/455~(100%)             | 0.45            | 61 (13%) 3 2   | 32, 52, 72, 118                 | 0     |
| 4   | D     | 342/342~(100%)             | 0.08            | 18 (5%) 26 28  | 22, 35, 58, 113                 | 0     |
| 4   | d     | 341/342~(99%)              | 0.28            | 26 (7%) 13 14  | 24, 39, 59, 124                 | 0     |
| 5   | E     | 81/84~(96%)                | 0.34            | 7 (8%) 10 10   | 40, 59, 90, 125                 | 0     |
| 5   | е     | 79/84~(94%)                | 0.95            | 19 (24%) 0 0   | 45, 62, 100, 125                | 0     |
| 6   | F     | 34/44~(77%)                | -0.09           | 1 (2%) 51 55   | 41, 51, 81, 96                  | 0     |
| 6   | f     | 31/44~(70%)                | -0.07           | 4 (12%) 3 3    | 48, 53, 84, 128                 | 0     |
| 7   | Н     | 64/65~(98%)                | 0.37            | 8 (12%) 3 3    | 37, 51, 72, 104                 | 0     |
| 7   | h     | 65/65~(100%)               | 1.14            | 19 (29%) 0 0   | 40, 54, 79, 152                 | 0     |
| 8   | Ι     | 37/38~(97%)                | 0.42            | 7(18%) 1 1     | 36, 48, 98, 129                 | 0     |
| 8   | i     | 37/38~(97%)                | 0.24            | 3 (8%) 12 12   | 38, 49, 107, 137                | 0     |
| 9   | J     | 38/39~(97%)                | 0.29            | 6 (15%) 2 1    | 37, 55, 113, 156                | 0     |
| 9   | j     | 39/39~(100%)               | 0.84            | 10 (25%) 0 0   | 46, 56, 109, 137                | 0     |
| 10  | K     | 37/37~(100%)               | 0.15            | 4 (10%) 5 5    | 49, 58, 81, 98                  | 0     |
| 10  | k     | 37/37~(100%)               | 0.40            | 3 (8%) 12 12   | 52, 60, 82, 99                  | 0     |
| 11  | L     | 36/37~(97%)                | 0.50            | 5 (13%) 2 2    | 23, 30, 98, 143                 | 0     |
| 11  | 1     | $\overline{36/37}\ (97\%)$ | 0.19            | 4(11%) 5 5     | $\overline{24, 31, 97, 143}$    | 0     |
| 12  | M     | 32/36~(88%)                | -0.19           | 1 (3%) 49 52   | 24, 31, 53, 125                 | 0     |
| 12  | m     | 33/36~(91%)                | -0.30           | 3 (9%) 9 9     | $\overline{24,  32,  66,  126}$ | 0     |

Continued on next page...


| 001111 | naca jion | i previous puge |                 |               |                   |       |
|--------|-----------|-----------------|-----------------|---------------|-------------------|-------|
| Mol    | Chain     | Analysed        | < <b>RSRZ</b> > | #RSRZ>2       | $OWAB(Å^2)$       | Q<0.9 |
| 13     | Ο         | 243/244~(99%)   | 0.36            | 30 (12%) 4 3  | 22, 50, 103, 163  | 0     |
| 13     | 0         | 243/244~(99%)   | 0.57            | 45 (18%) 1 1  | 26, 50, 108, 151  | 0     |
| 14     | Т         | 29/32~(90%)     | 0.28            | 1 (3%) 45 48  | 26, 31, 68, 97    | 0     |
| 14     | t         | 29/32~(90%)     | -0.03           | 0 100 100     | 26, 31, 69, 98    | 0     |
| 15     | U         | 96/104~(92%)    | 0.57            | 13 (13%) 3 2  | 32, 44, 72, 86    | 0     |
| 15     | u         | 97/104~(93%)    | -0.10           | 4 (4%) 37 40  | 37, 47, 72, 105   | 0     |
| 16     | V         | 137/137~(100%)  | 0.17            | 5 (3%) 42 46  | 30, 46, 75, 111   | 0     |
| 16     | V         | 137/137~(100%)  | 0.45            | 21 (15%) 2 1  | 37, 54, 79, 112   | 0     |
| 17     | X         | 38/40~(95%)     | 0.40            | 3 (7%) 12 12  | 49, 58, 80, 121   | 0     |
| 17     | x         | 38/40~(95%)     | 1.08            | 9 (23%) 0 0   | 50, 60, 84, 123   | 0     |
| 18     | Y         | 29/30~(96%)     | 1.71            | 12 (41%) 0 0  | 60, 76, 112, 120  | 0     |
| 18     | У         | 29/30~(96%)     | 1.07            | 7 (24%) 0 0   | 63, 76, 107, 118  | 0     |
| 19     | Z         | 62/62~(100%)    | 1.44            | 23 (37%) 0 0  | 57, 77, 127, 161  | 0     |
| 19     | Z         | 62/62~(100%)    | 1.60            | 18 (29%) 0 0  | 61, 79, 127, 161  | 0     |
| 20     | R         | 34/34~(100%)    | 6.37            | 34 (100%) 0 0 | 92, 116, 145, 149 | 0     |
| All    | All       | 5284/5384 (98%) | 0.43            | 658 (12%) 3 3 | 22, 45, 88, 163   | 0     |

Continued from previous page...

## All (658) RSRZ outliers are listed below:

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 20  | R     | 18  | TRP  | 11.0 |
| 20  | R     | 20  | VAL  | 10.3 |
| 2   | b     | 495 | PHE  | 9.2  |
| 20  | R     | 35  | LEU  | 8.9  |
| 1   | А     | 11  | ALA  | 8.3  |
| 20  | R     | 14  | LEU  | 8.3  |
| 20  | R     | 6   | LEU  | 8.1  |
| 20  | R     | 15  | ALA  | 8.1  |
| 20  | R     | 19  | ALA  | 8.0  |
| 20  | R     | 8   | VAL  | 7.9  |
| 20  | R     | 23  | ILE  | 7.8  |
| 17  | Х     | 38  | GLN  | 7.8  |
| 9   | j     | 3   | GLU  | 7.7  |
| 20  | R     | 5   | VAL  | 7.5  |
| 9   | j     | 2   | SER  | 7.1  |
| 20  | R     | 3   | TRP  | 7.1  |
| 20  | R     | 31  | VAL  | 6.8  |



|                   | Choin  | <b>P</b> OC    | Tuno        | <br>Βςρ7 |
|-------------------|--------|----------------|-------------|----------|
| 7                 |        | nes            | <u>Type</u> |          |
| 7                 | h<br>D | 00             | GLY         | 0.7      |
| 20                | R I    | 4              | ARG         | 6.6      |
| 8                 |        | 38             | GLU         | 6.6      |
| 2                 | b      | 486            | LEU         | 6.5      |
| 20                | R      | 24             | LEU         | 6.5      |
| 20                | R      | 7              | VAL         | 6.5      |
| 19                | Z      | 4              | LEU         | 6.4      |
| 2                 | b      | 218            | LEU         | 6.3      |
| 3                 | С      | 437            | PHE         | 6.3      |
| 2                 | b      | 494            | GLY         | 6.3      |
| 3                 | С      | 253            | LEU         | 6.1      |
| 1                 | А      | 13             | LEU         | 6.1      |
| 20                | R      | 12             | VAL         | 6.1      |
| 13                | 0      | 27             | ARG         | 6.0      |
| 2                 | b      | 493            | TRP         | 6.0      |
| 20                | R      | 16             | ALA         | 6.0      |
| 20                | R      | 34             | LEU         | 5.9      |
| 5                 | Е      | 84             | LYS         | 5.9      |
| 2                 | b      | 488            | PRO         | 5.9      |
| 3                 | С      | 181            | PHE         | 5.9      |
| 20                | R      | 13             | LEU         | 5.9      |
| 8                 | i      | 37             | LEU         | 5.8      |
| 2                 | В      | 496            | TYR         | 5.8      |
| 19                | Z      | 32             | ASP         | 5.8      |
| 9                 | J      | 5              | GLY         | 5.8      |
| 13                | 0      | 22             | LEU         | 5.7      |
| 3                 | C      | 276            | LEU         | 5.7      |
| 2                 | b      | 487            | SER         | 5.7      |
| 20                | R      | 17             | GLY         | 5.6      |
| 20                | R      | 27             | ALA         | 5.6      |
| $\frac{-2}{20}$   | R      | 33             | LYS         | 5.6      |
| 19                | Z      | 33             | TRP         | 5.6      |
| 7                 | h      | 6              | TRP         | 5.5      |
| $\frac{1}{20}$    | R      | 21             | ARG         | 5.5      |
| 20                | R      | 10             | LEU         | 5.5      |
| <u></u>           | D      | 238            | THR         | 5.5      |
| 3                 | C      | 60             | ILE         | 5.5      |
| 10                | 7      | 60             | PHE         | 5.0      |
| <u>-19</u><br>-00 | P<br>D | 00<br>0        |             | 5.4      |
| 20<br>Q           |        | $\frac{2}{27}$ | I FII       | 5.4      |
| 0<br>             | D I    | 01<br>96       | TVP         | 5.4      |
| 20                |        | 20             |             | 0.4      |
| 19                | I Y    | 18             | VAL         | ರಿ.ರ     |



| 5GTI |
|------|
|------|

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 18  | Y     | 19  | ILE  | 5.3  |
| 19  | Z     | 7   | LEU  | 5.3  |
| 3   | с     | 143 | TYR  | 5.3  |
| 17  | X     | 33  | GLN  | 5.3  |
| 20  | R     | 32  | GLN  | 5.3  |
| 19  | Z     | 61  | VAL  | 5.2  |
| 7   | h     | 65  | LEU  | 5.2  |
| 20  | R     | 11  | PRO  | 5.2  |
| 19  | Z     | 3   | ILE  | 5.2  |
| 3   | С     | 433 | LEU  | 5.1  |
| 19  | Z     | 5   | PHE  | 5.1  |
| 19  | Z     | 1   | MET  | 5.1  |
| 18  | у     | 19  | ILE  | 5.1  |
| 3   | с     | 60  | ILE  | 5.0  |
| 19  | Z     | 31  | GLN  | 4.9  |
| 20  | R     | 22  | ASN  | 4.9  |
| 19  | Z     | 2   | THR  | 4.9  |
| 2   | В     | 495 | PHE  | 4.9  |
| 9   | j     | 5   | GLY  | 4.8  |
| 19  | Z     | 57  | LEU  | 4.8  |
| 17  | X     | 37  | VAL  | 4.8  |
| 3   | С     | 279 | LEU  | 4.7  |
| 13  | 0     | 25  | THR  | 4.7  |
| 11  | 1     | 3   | PRO  | 4.7  |
| 3   | с     | 426 | LEU  | 4.7  |
| 17  | Х     | 2   | THR  | 4.7  |
| 2   | b     | 249 | ALA  | 4.6  |
| 20  | R     | 28  | VAL  | 4.6  |
| 2   | b     | 161 | LEU  | 4.6  |
| 1   | А     | 12  | ASN  | 4.6  |
| 2   | b     | 504 | THR  | 4.6  |
| 17  | X     | 2   | THR  | 4.6  |
| 2   | В     | 461 | LEU  | 4.6  |
| 3   | C     | 143 | TYR  | 4.6  |
| 2   | В     | 494 | GLY  | 4.6  |
| 4   | d     | 12  | ARG  | 4.5  |
| 13  | 0     | 142 | PHE  | 4.5  |
| 3   | C     | 281 | MET  | 4.5  |
| 4   | d     | 17  | ILE  | 4.5  |
| 13  | 0     | 243 | ILE  | 4.5  |
| 19  | Z     | 30  | PRO  | 4.5  |
| 2   | b     | 496 | TYR  | 4.5  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 13  | 0     | 36  | GLN  | 4.5  |
| 2   | b     | 484 | PRO  | 4.5  |
| 17  | Х     | 34  | ILE  | 4.5  |
| 9   | j     | 7   | ILE  | 4.4  |
| 17  | Х     | 3   | ILE  | 4.4  |
| 3   | с     | 200 | THR  | 4.4  |
| 2   | b     | 503 | THR  | 4.4  |
| 19  | Ζ     | 34  | ASP  | 4.4  |
| 3   | С     | 23  | ALA  | 4.4  |
| 2   | b     | 491 | VAL  | 4.4  |
| 3   | С     | 438 | LEU  | 4.4  |
| 15  | U     | 58  | VAL  | 4.4  |
| 13  | 0     | 38  | TYR  | 4.3  |
| 3   | С     | 280 | SER  | 4.3  |
| 2   | b     | 497 | GLN  | 4.3  |
| 10  | k     | 18  | PHE  | 4.3  |
| 2   | В     | 253 | ALA  | 4.3  |
| 3   | С     | 282 | MET  | 4.3  |
| 13  | 0     | 32  | ILE  | 4.3  |
| 11  | L     | 2   | GLU  | 4.3  |
| 2   | b     | 489 | GLU  | 4.2  |
| 3   | С     | 283 | GLY  | 4.2  |
| 3   | с     | 279 | LEU  | 4.2  |
| 13  | 0     | 25  | THR  | 4.2  |
| 19  | Z     | 56  | VAL  | 4.2  |
| 11  | 1     | 2   | GLU  | 4.1  |
| 3   | с     | 63  | TRP  | 4.1  |
| 2   | b     | 492 | GLU  | 4.1  |
| 16  | V     | 21  | LEU  | 4.1  |
| 20  | R     | 30  | GLN  | 4.1  |
| 2   | b     | 245 | VAL  | 4.1  |
| 1   | А     | 15  | GLU  | 4.1  |
| 13  | 0     | 35  | SER  | 4.1  |
| 15  | U     | 73  | GLN  | 4.1  |
| 18  | Y     | 21  | GLN  | 4.1  |
| 3   | С     | 61  | VAL  | 4.1  |
| 3   | с     | 198 | VAL  | 4.1  |
| 3   | С     | 155 | ASN  | 4.1  |
| 2   | В     | 488 | PRO  | 4.0  |
| 2   | b     | 246 | PHE  | 4.0  |
| 2   | В     | 251 | VAL  | 4.0  |
| 2   | b     | 502 | VAL  | 4.0  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 2   | В     | 458 | PHE  | 4.0  |
| 5   | Е     | 15  | THR  | 4.0  |
| 3   | С     | 198 | VAL  | 4.0  |
| 3   | С     | 204 | LEU  | 4.0  |
| 13  | 0     | 87  | VAL  | 4.0  |
| 2   | b     | 248 | ALA  | 3.9  |
| 7   | h     | 22  | ALA  | 3.9  |
| 3   | с     | 430 | HIS  | 3.9  |
| 9   | j     | 9   | LEU  | 3.9  |
| 17  | X     | 36  | LYS  | 3.9  |
| 18  | Y     | 43  | ARG  | 3.9  |
| 3   | С     | 286 | ALA  | 3.9  |
| 3   | С     | 436 | PHE  | 3.8  |
| 2   | В     | 462 | PHE  | 3.8  |
| 13  | 0     | 27  | ARG  | 3.8  |
| 3   | с     | 201 | ASN  | 3.8  |
| 4   | d     | 154 | VAL  | 3.8  |
| 15  | U     | 104 | LYS  | 3.8  |
| 3   | С     | 430 | HIS  | 3.8  |
| 3   | с     | 191 | PRO  | 3.8  |
| 2   | b     | 499 | VAL  | 3.8  |
| 3   | с     | 140 | LEU  | 3.7  |
| 3   | с     | 433 | LEU  | 3.7  |
| 20  | R     | 25  | PRO  | 3.7  |
| 3   | С     | 285 | ILE  | 3.7  |
| 11  | L     | 7   | ARG  | 3.7  |
| 20  | R     | 9   | LEU  | 3.7  |
| 16  | v     | 10  | VAL  | 3.7  |
| 10  | k     | 17  | ILE  | 3.7  |
| 16  | V     | 107 | LEU  | 3.7  |
| 3   | с     | 203 | THR  | 3.7  |
| 2   | b     | 498 | LYS  | 3.7  |
| 3   | С     | 429 | SER  | 3.7  |
| 5   | Е     | 17  | VAL  | 3.7  |
| 13  | 0     | 246 | ALA  | 3.7  |
| 9   | J     | 7   | ILE  | 3.7  |
| 19  | Z     | 35  | ARG  | 3.7  |
| 13  | 0     | 133 | VAL  | 3.6  |
| 1   | a     | 11  | ALA  | 3.6  |
| 2   | b     | 296 | ALA  | 3.6  |
| 2   | В     | 489 | GLU  | 3.6  |
| 8   | Ι     | 36  | ASP  | 3.6  |

I36ASP3.6Continued on next page...



| Continued from previous page |       |     |      |      |  |  |
|------------------------------|-------|-----|------|------|--|--|
| Mol                          | Chain | Res | Type | RSRZ |  |  |
| 15                           | U     | 70  | ARG  | 3.6  |  |  |
| 3                            | С     | 277 | GLY  | 3.6  |  |  |
| 3                            | с     | 87  | ILE  | 3.6  |  |  |
| 5                            | Е     | 83  | LEU  | 3.6  |  |  |
| 2                            | b     | 250 | PHE  | 3.6  |  |  |
| 15                           | U     | 62  | LEU  | 3.6  |  |  |
| 2                            | В     | 505 | ARG  | 3.6  |  |  |
| 9                            | j     | 1   | MET  | 3.6  |  |  |
| 2                            | b     | 462 | PHE  | 3.6  |  |  |
| 3                            | С     | 435 | PHE  | 3.6  |  |  |
| 3                            | с     | 146 | PHE  | 3.6  |  |  |
| 13                           | 0     | 26  | ALA  | 3.5  |  |  |
| 16                           | V     | 4   | THR  | 3.5  |  |  |
| 5                            | е     | 20  | TRP  | 3.5  |  |  |
| 13                           | 0     | 134 | THR  | 3.5  |  |  |
| 2                            | В     | 252 | VAL  | 3.5  |  |  |
| 3                            | С     | 284 | PHE  | 3.5  |  |  |
| 2                            | b     | 294 | SER  | 3.5  |  |  |
| 3                            | с     | 202 | PRO  | 3.5  |  |  |
| 7                            | h     | 23  | PRO  | 3.5  |  |  |
| 2                            | b     | 295 | GLY  | 3.5  |  |  |
| 3                            | С     | 262 | ARG  | 3.5  |  |  |
| 13                           | 0     | 26  | ALA  | 3.5  |  |  |
| 2                            | b     | 247 | PHE  | 3.5  |  |  |
| 3                            | С     | 147 | PHE  | 3.5  |  |  |
| 3                            | С     | 59  | LEU  | 3.5  |  |  |
| 3                            | С     | 434 | ALA  | 3.5  |  |  |
| 2                            | b     | 251 | VAL  | 3.5  |  |  |
| 13                           | 0     | 135 | SER  | 3.5  |  |  |
| 3                            | С     | 440 | GLY  | 3.5  |  |  |
| 2                            | b     | 217 | ILE  | 3.4  |  |  |
| 15                           | U     | 79  | LEU  | 3.4  |  |  |
| 3                            | С     | 145 | SER  | 3.4  |  |  |
| 3                            | С     | 439 | VAL  | 3.4  |  |  |
| 19                           | Z     | 3   | ILE  | 3.4  |  |  |
| 3                            | С     | 278 | ALA  | 3.4  |  |  |
| 13                           | 0     | 37  | THR  | 3.4  |  |  |
| 3                            | С     | 148 | GLY  | 3.4  |  |  |
| 2                            | b     | 485 | GLU  | 3.4  |  |  |
| 3                            | С     | 432 | VAL  | 3.4  |  |  |
| 19                           | Z     | 62  | VAL  | 3.4  |  |  |
| 4                            | D     | 12  | ARG  | 3.4  |  |  |



|               | Choin  | <b>P</b> cc       | Turno  | BCD7       |
|---------------|--------|-------------------|--------|------------|
|               | Unaim  | 70                | _ туре |            |
| 0<br>10       | e      | 19                | TUD    | 3.4        |
| 13            | 0      | 4                 | THR    | 3.4        |
| 13            | 0      | 211               |        | 3.4        |
| 4             | d      | 148               | ALA    | 3.4        |
| 20            | R      | 29                |        | 3.4        |
| 2             | b      | 252               | VAL    | 3.4        |
| 3             | с      | 195               | ASP    | 3.4        |
| 17            | X      | 39                | ARG    | 3.4        |
| 6             | f      | 42                | PHE    | 3.4        |
| 7             | Н      | 6                 | TRP    | 3.4        |
| 16            | V      | 19                | ILE    | 3.4        |
| 19            | Z      | 29                | SER    | 3.4        |
| 16            | v      | 17                | LYS    | 3.4        |
| 12            | m      | 33                | GLN    | 3.3        |
| 17            | X      | 3                 | ILE    | 3.3        |
| 13            | 0      | 33                | ASP    | 3.3        |
| 2             | b      | 288               | VAL    | 3.3        |
| 3             | с      | 155               | ASN    | 3.3        |
| 3             | с      | 283               | GLY    | 3.3        |
| 4             | d      | 157               | PHE    | 3.3        |
| 2             | В      | 248               | ALA    | 3.3        |
| 2             | В      | 249               | ALA    | 3.3        |
| 2             | В      | 502               | VAL    | 3.3        |
| 13            | 0      | 204               | VAL    | 3.3        |
| 13            | 0      | 24                | ASP    | 3.3        |
| 3             | С      | 431               | PHE    | 3.3        |
| 2             | b      | 244               | ALA    | 3.3        |
| 13            | 0      | 245               | PRO    | 3.3        |
| 2             | В      | 296               | ALA    | 3.3        |
| 2             | b      | 293               | ALA    | 3.3        |
| 3             | C      | 252               | ILE    | 3.3        |
| 18            | v      | 37                | PHE    | 3.3        |
| 2             | b      | 298               | LEU    | 3.3        |
| 18            | Y      | 25                | ILE    | 3.3        |
| 3             | C C    | 282               | MET    | 3.3        |
| 3             | C C    | $\frac{202}{427}$ | ALA    | 3.2        |
| 1२            |        | 136               |        | 3.2        |
| - 5<br>- то   | C C    | 200               | SEB    | 3.2        |
| <u>ງ</u><br>ງ | R<br>R | 454               |        | 3.2        |
|               | D<br>7 | 404<br>26         | SED    | 3.2        |
| 19            |        | 00<br>150         |        | 0.2<br>2.0 |
| 4             | a      | 102               | VAL    | <u>).2</u> |
| 19            |        | 9                 | L LEU  | 3.2        |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 2   | В     | 504 | THR  | 3.2  |
| 3   | С     | 63  | TRP  | 3.2  |
| 19  | Z     | 59  | PHE  | 3.2  |
| 13  | 0     | 24  | ASP  | 3.2  |
| 1   | A     | 16  | ARG  | 3.2  |
| 2   | В     | 459 | ALA  | 3.2  |
| 5   | Е     | 11  | SER  | 3.2  |
| 4   | d     | 153 | PHE  | 3.1  |
| 13  | 0     | 62  | GLU  | 3.1  |
| 19  | Ζ     | 39  | LEU  | 3.1  |
| 12  | m     | 34  | LYS  | 3.1  |
| 7   | Н     | 2   | ALA  | 3.1  |
| 18  | Y     | 46  | LEU  | 3.1  |
| 3   | с     | 437 | PHE  | 3.1  |
| 5   | е     | 25  | ILE  | 3.1  |
| 4   | d     | 155 | SER  | 3.1  |
| 13  | 0     | 56  | PRO  | 3.1  |
| 2   | В     | 457 | VAL  | 3.1  |
| 2   | b     | 219 | VAL  | 3.1  |
| 7   | h     | 58  | VAL  | 3.1  |
| 4   | d     | 159 | ILE  | 3.1  |
| 8   | Ι     | 34  | ARG  | 3.1  |
| 5   | е     | 72  | ALA  | 3.1  |
| 18  | Y     | 20  | ALA  | 3.1  |
| 4   | D     | 11  | GLU  | 3.0  |
| 2   | В     | 451 | PHE  | 3.0  |
| 9   | j     | 4   | GLY  | 3.0  |
| 3   | С     | 275 | SER  | 3.0  |
| 3   | с     | 59  | LEU  | 3.0  |
| 18  | У     | 41  | VAL  | 3.0  |
| 3   | С     | 146 | PHE  | 3.0  |
| 9   | J     | 4   | GLY  | 3.0  |
| 2   | В     | 460 | LEU  | 3.0  |
| 16  | V     | 135 | VAL  | 3.0  |
| 4   | d     | 149 | PRO  | 3.0  |
| 2   | b     | 162 | PHE  | 3.0  |
| 17  | X     | 34  | ILE  | 3.0  |
| 3   | C     | 25  | ASN  | 3.0  |
| 2   | b     | 126 | PRO  | 3.0  |
| 5   | e     | 59  | GLU  | 3.0  |
| 3   | с     | 190 | ALA  | 3.0  |
| 13  | 0     | 22  | LEU  | 3.0  |



| 9011 |
|------|
|------|

|                | Chain  | <b>Res</b>      | Type  | BSB7       |
|----------------|--------|-----------------|-------|------------|
| 12             |        | 28              | - JPC | 3.0        |
| 10             | 7      | $\frac{20}{97}$ | TVR   | 3.0        |
| 19             |        | 27<br>19        |       | 0.0<br>2.0 |
| 1<br>12        | a      | 15              |       | 3.0<br>2.0 |
| 13             | 0      | 0<br>0<br>7     | LEU   | 3.0        |
| 13             | 0      | 80              |       | 3.0        |
| <u> </u>       | h<br>D | 10              |       | 3.0        |
|                | В      | 290             | ALA   | 3.0        |
| 4              | d      | 13              | GLY   | 3.0        |
| 13             | 0      | 133             | VAL   | 2.9        |
| 3              | C      | 57              | ALA   | 2.9        |
| 3              | с      | 192             | GLY   | 2.9        |
| 2              | b      | 291             | SER   | 2.9        |
| 2              | b      | 458             | PHE   | 2.9        |
| 3              | с      | 429             | SER   | 2.9        |
| 2              | b      | 292             | LEU   | 2.9        |
| 3              | с      | 260             | ALA   | 2.9        |
| 4              | d      | 151             | ALA   | 2.9        |
| 11             | L      | 10              | VAL   | 2.9        |
| 3              | С      | 180             | MET   | 2.9        |
| 15             | U      | 59              | GLU   | 2.9        |
| 2              | b      | 290             | ALA   | 2.9        |
| 2              | b      | 483             | ASP   | 2.9        |
| 15             | U      | 103             | TYR   | 2.9        |
| 7              | h      | 12              | ARG   | 2.9        |
| 13             | 0      | 59              | LYS   | 2.9        |
| 7              | h      | 7               | LEU   | 2.9        |
| 13             | 0      | 93              | LEU   | 2.9        |
| 3              | С      | 135             | ARG   | 2.9        |
| 8              | i      | 38              | GLU   | 2.9        |
| 3              | с      | 196             | VAL   | 2.9        |
| 16             | v      | 5               | PRO   | 2.9        |
| 5              | е      | 57              | ALA   | 2.9        |
| 13             | 0      | 5               | LEU   | 2.9        |
| 13             | 0      | 29              | ALA   | 2.9        |
| 13             | 0      | 93              | LEU   | 2.8        |
| 3              | c      | 193             | GLY   | 2.8        |
| 3              | C C    | 280             | SER   | 2.8        |
| 4              | b d    | 147             | SER   | 2.8        |
| <u>+</u><br>13 |        | 01              | GLY   | 2.0        |
| 10             |        | 291             |       | 2.0        |
| 1<br>0         | R A    | 2/24            |       | 2.0        |
| 2<br>          |        | 242             |       | 2.0        |
| ა              |        | 200             | ιπκ   | 2.ð        |



| 5GTI |
|------|
|------|

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 19  | Z     | 26  | ALA  | 2.8  |
| 19  | Z     | 42  | LEU  | 2.8  |
| 19  | Z     | 46  | LEU  | 2.8  |
| 13  | 0     | 60  | ARG  | 2.8  |
| 16  | V     | 16  | GLY  | 2.8  |
| 1   | a     | 265 | PHE  | 2.8  |
| 4   | d     | 150 | ILE  | 2.8  |
| 15  | U     | 74  | ILE  | 2.8  |
| 2   | b     | 459 | ALA  | 2.8  |
| 2   | В     | 161 | LEU  | 2.8  |
| 2   | b     | 238 | LEU  | 2.8  |
| 3   | с     | 147 | PHE  | 2.8  |
| 2   | В     | 293 | ALA  | 2.8  |
| 3   | С     | 254 | THR  | 2.8  |
| 2   | В     | 487 | SER  | 2.8  |
| 9   | J     | 3   | GLU  | 2.8  |
| 11  | L     | 9   | PRO  | 2.8  |
| 4   | D     | 150 | ILE  | 2.8  |
| 16  | V     | 26  | TYR  | 2.7  |
| 15  | U     | 99  | ASN  | 2.7  |
| 18  | Y     | 45  | ASN  | 2.7  |
| 3   | с     | 64  | ALA  | 2.7  |
| 2   | В     | 294 | SER  | 2.7  |
| 7   | Н     | 46  | LEU  | 2.7  |
| 13  | 0     | 139 | SER  | 2.7  |
| 4   | D     | 122 | LEU  | 2.7  |
| 19  | Z     | 38  | GLN  | 2.7  |
| 2   | В     | 85  | GLY  | 2.7  |
| 2   | b     | 127 | ARG  | 2.7  |
| 13  | Ο     | 204 | VAL  | 2.7  |
| 16  | v     | 22  | THR  | 2.7  |
| 5   | е     | 83  | LEU  | 2.7  |
| 5   | е     | 84  | LYS  | 2.7  |
| 3   | с     | 61  | VAL  | 2.7  |
| 19  | Z     | 56  | VAL  | 2.7  |
| 2   | В     | 297 | THR  | 2.7  |
| 10  | K     | 14  | ALA  | 2.7  |
| 3   | С     | 199 | ILE  | 2.7  |
| 3   | с     | 88  | LEU  | 2.7  |
| 3   | с     | 199 | ILE  | 2.7  |
| 19  | Z     | 7   | LEU  | 2.7  |
| 13  | 0     | 207 | ARG  | 2.7  |



| $5 \mathrm{GTI}$ |
|------------------|
|------------------|

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 18  | Y     | 42  | ARG  | 2.7  |
| 3   | С     | 201 | ASN  | 2.7  |
| 13  | 0     | 132 | ASN  | 2.7  |
| 13  | 0     | 57  | LYS  | 2.7  |
| 11  | L     | 8   | GLN  | 2.7  |
| 2   | В     | 284 | ILE  | 2.7  |
| 3   | с     | 257 | PHE  | 2.7  |
| 4   | d     | 123 | ILE  | 2.7  |
| 18  | Y     | 38  | LEU  | 2.7  |
| 10  | K     | 29  | PRO  | 2.7  |
| 13  | 0     | 130 | GLN  | 2.7  |
| 2   | b     | 242 | ILE  | 2.6  |
| 5   | е     | 36  | LEU  | 2.6  |
| 6   | f     | 43  | ILE  | 2.6  |
| 2   | b     | 412 | THR  | 2.6  |
| 3   | С     | 56  | HIS  | 2.6  |
| 13  | 0     | 23  | ASP  | 2.6  |
| 1   | А     | 14  | TRP  | 2.6  |
| 2   | b     | 457 | VAL  | 2.6  |
| 3   | с     | 22  | PHE  | 2.6  |
| 16  | V     | 136 | TYR  | 2.6  |
| 7   | h     | 64  | ALA  | 2.6  |
| 13  | 0     | 83  | GLY  | 2.6  |
| 2   | В     | 250 | PHE  | 2.6  |
| 2   | b     | 123 | PHE  | 2.6  |
| 3   | С     | 257 | PHE  | 2.6  |
| 2   | b     | 121 | GLU  | 2.6  |
| 15  | u     | 103 | TYR  | 2.6  |
| 7   | h     | 8   | GLY  | 2.6  |
| 3   | С     | 182 | PHE  | 2.6  |
| 3   | с     | 265 | ILE  | 2.6  |
| 19  | Ζ     | 60  | PHE  | 2.6  |
| 7   | h     | 13  | PRO  | 2.6  |
| 16  | V     | 12  | LEU  | 2.6  |
| 3   | с     | 284 | PHE  | 2.6  |
| 4   | D     | 159 | ILE  | 2.6  |
| 4   | d     | 14  | TRP  | 2.6  |
| 2   | В     | 241 | SER  | 2.6  |
| 5   | е     | 21  | VAL  | 2.5  |
| 19  | Z     | 53  | VAL  | 2.5  |
| 2   | В     | 490 | GLN  | 2.5  |
| 4   | d     | 146 | PHE  | 2.5  |



| 5C | TT |  |
|----|----|--|
| JG | ΤT |  |

| <u>р</u> и. 1 |        | <b>D</b> - |         |            |
|---------------|--------|------------|---------|------------|
|               | Unain  | Kes        | Type    | KSKZ       |
| 10            | K      | 28         | ILE     | 2.5        |
| 18            | у      | 43         | ARG     | 2.5        |
| 4             | d      | 126        | MET     | 2.5        |
| 12            | m      | 31         | SER     | 2.5        |
| 3             | С      | 255        | THR     | 2.5        |
| 4             | d      | 156        | VAL     | 2.5        |
| 3             | с      | 317        | PHE     | 2.5        |
| 2             | b      | 172        | TYR     | 2.5        |
| 3             | C      | 55         | ALA     | 2.5        |
| 3             | С      | 287        | THR     | 2.5        |
| 3             | С      | 340        | TYR     | 2.5        |
| 4             | D      | 148        | ALA     | 2.5        |
| 2             | b      | 505        | ARG     | 2.5        |
| 13            | 0      | 207        | ARG     | 2.5        |
| 1             | a      | 15         | GLU     | 2.5        |
| 13            | 0      | 199        | LEU     | 2.5        |
| 16            | V      | 8          | LEU     | 2.5        |
| 1             | a      | 264        | SER     | 2.5        |
| 1             | a      | 225        | ARG     | 2.5        |
| 2             | В      | 304        | ALA     | 2.5        |
| 2             | В      | 350        | GLU     | 2.5        |
| 4             | D      | 351        | ALA     | 2.5        |
| 3             | с      | 56         | HIS     | 2.5        |
| 2             | b      | 482        | ILE     | 2.5        |
| 19            | Z      | 6          | GLN     | 2.5        |
| 2             | В      | 245        | VAL     | 2.5        |
| 16            | v      | 25         | GLN     | 2.5        |
| 9             | J      | 6          | ARG     | 2.5        |
| 19            | Z      | 59         | PHE     | 2.5        |
| 2             | В      | 126        | PRO     | 2.5        |
| 4             | d      | 119        | ALA     | 2.5        |
| 7             | h      | 9          | ASP     | 2.5        |
| 1             | A      | 19         | ASN     | 2.5        |
| 13            | 0      | 4          | THR     | 2.5        |
| 13            | 0      | 58         | ASN     | 2.5        |
| 16            | v      | 7          | VAL     | 2.5        |
| 15            | Ū      | 76         | ARG     | 2.5        |
| 1             | a      | 285        | PHE     | 2.5        |
| 2             | B      | 200        | PHE     | 2.5        |
| $\frac{2}{2}$ | R      | 452        | THR     | 2.5        |
| 2             |        | 255        | THR     | 2.0<br>2.5 |
| 5<br>7        | ц<br>Ц | 00<br>     | LEII    | 2.0        |
| 1             | 11     | 44         | L L L U | ∠.4        |



| 5GTI |
|------|
|------|

| Mol | Chain | Res     | Type | RSRZ |
|-----|-------|---------|------|------|
| 1   | a     | 262     | TYR  | 2.4  |
| 4   | D     | 147     | SER  | 2.4  |
| 3   | С     | 154 LYS |      | 2.4  |
| 3   | С     | 272     | LEU  | 2.4  |
| 10  | k     | 38      | VAL  | 2.4  |
| 19  | Z     | 62      | VAL  | 2.4  |
| 2   | В     | 463 PHE |      | 2.4  |
| 18  | Y     | 22 LEU  |      | 2.4  |
| 8   | Ι     | 26      | GLY  | 2.4  |
| 16  | V     | 50      | PRO  | 2.4  |
| 3   | с     | 144     | SER  | 2.4  |
| 5   | е     | 14      | ILE  | 2.4  |
| 2   | b     | 414     | PRO  | 2.4  |
| 3   | C     | 288     | CYS  | 2.4  |
| 3   | с     | 259     | TRP  | 2.4  |
| 2   | b     | 301     | ALA  | 2.4  |
| 13  | 0     | 138     | THR  | 2.4  |
| 3   | С     | 442     | LEU  | 2.4  |
| 18  | у     | 22      | LEU  | 2.4  |
| 13  | 0     | 39 ARG  |      | 2.4  |
| 2   | b     | 223     | GLN  | 2.4  |
| 15  | U     | 101     | GLY  | 2.4  |
| 1   | a     | 340     | PRO  | 2.4  |
| 1   | a     | 14      | TRP  | 2.4  |
| 2   | b     | 501     | ASP  | 2.4  |
| 8   | Ι     | 29      | ALA  | 2.4  |
| 3   | С     | 26      | ARG  | 2.4  |
| 16  | V     | 132     | GLY  | 2.4  |
| 4   | D     | 123     | ILE  | 2.4  |
| 14  | Т     | 29      | ILE  | 2.4  |
| 7   | h     | 3       | ARG  | 2.4  |
| 13  | 0     | 208     | THR  | 2.4  |
| 19  | Z     | 33      | TRP  | 2.4  |
| 2   | b     | 289     | GLN  | 2.3  |
| 5   | е     | 42      | LEU  | 2.3  |
| 9   | J     | 9       | LEU  | 2.3  |
| 13  | 0     | 15      | LEU  | 2.3  |
| 3   | C     | 196     | VAL  | 2.3  |
| 2   | В     | 162     | PHE  | 2.3  |
| 3   | С     | 58      | GLY  | 2.3  |
| 4   | d     | 158     | LEU  | 2.3  |
| 7   | Н     | 43      | LEU  | 2.3  |



| 5GTI |
|------|
|------|

| Mol | Chain | Res Type |     | RSRZ |
|-----|-------|----------|-----|------|
| 4   | D     | 154      | VAL | 2.3  |
| 6   | f     | 15 ILE   |     | 2.3  |
| 5   | е     | 15 THR   |     | 2.3  |
| 5   | е     | 39 SER   |     | 2.3  |
| 2   | В     | 455 HIS  |     | 2.3  |
| 13  | 0     | 86       | LYS | 2.3  |
| 3   | с     | 425      | TRP | 2.3  |
| 13  | 0     | 87       | VAL | 2.3  |
| 3   | С     | 459      | ILE | 2.3  |
| 2   | В     | 411      | PHE | 2.3  |
| 2   | В     | 214      | LEU | 2.3  |
| 2   | В     | 501      | ASP | 2.3  |
| 2   | b     | 490      | GLN | 2.3  |
| 3   | с     | 204      | LEU | 2.3  |
| 4   | d     | 37       | LEU | 2.3  |
| 1   | А     | 249      | VAL | 2.3  |
| 2   | В     | 219      | VAL | 2.3  |
| 4   | D     | 280      | TRP | 2.3  |
| 3   | С     | 183 GLY  |     | 2.3  |
| 3   | с     | 184      | GLY | 2.3  |
| 8   | Ι     | 6        | ILE | 2.3  |
| 2   | b     | 243      | ALA | 2.3  |
| 4   | D     | 151      | ALA | 2.3  |
| 6   | f     | 16       | PHE | 2.3  |
| 16  | V     | 110      | LYS | 2.3  |
| 16  | V     | 95       | LEU | 2.3  |
| 3   | с     | 58       | GLY | 2.3  |
| 1   | А     | 152      | ALA | 2.3  |
| 5   | Е     | 74       | GLN | 2.3  |
| 13  | 0     | 40       | ILE | 2.3  |
| 13  | 0     | 63       | ALA | 2.3  |
| 3   | С     | 426      | LEU | 2.3  |
| 5   | е     | 7        | GLU | 2.3  |
| 6   | F     | 13       | TYR | 2.3  |
| 7   | h     | 42       | LEU | 2.3  |
| 2   | В     | 180      | PRO | 2.2  |
| 19  | Z     | 38       | GLN | 2.2  |
| 3   | с     | 97       | TRP | 2.2  |
| 4   | d     | 279      | LEU | 2.2  |
| 13  | 0     | 131      | PRO | 2.2  |
| 13  | 0     | 155      | ASN | 2.2  |
| 3   | с     | 183      | GLY | 2.2  |



| Mol | Chain | Res     | Type | RSRZ |  |
|-----|-------|---------|------|------|--|
| 2   | B     | 503     | THR  | 2.2  |  |
|     | 0     | 140     | THR  | 2.2  |  |
| 4   | D     | 149     | PRO  | 2.2  |  |
| 2   | b     | 241     | SER. | 2.2  |  |
| 7   | h     | 20      | LYS  | 2.2  |  |
| 16  | v     | 1 ALA   |      | 2.2  |  |
| 4   | d     | 127 LEU |      | 2.2  |  |
| 5   | e     | 81      | GLU  | 2.2  |  |
| 3   | С     | 64      | ALA  | 2.2  |  |
| 2   | B     | 464     | PHE  | 2.2  |  |
| 7   | Н     | 8       | GLY  | 2.2  |  |
| 3   | С     | 266     | TRP  | 2.2  |  |
| 9   | i     | 6       | ARG  | 2.2  |  |
| 2   | b     | 155     | ALA  | 2.2  |  |
| 3   | с     | 55      | ALA  | 2.2  |  |
| 3   | с     | 256     | PRO  | 2.2  |  |
| 4   | d     | 122     | LEU  | 2.2  |  |
| 13  | 0     | 209     | GLY  | 2.2  |  |
| 7   | h     | 16      | SER  | 2.2  |  |
| 13  | 0     | 30 TYR  |      | 2.2  |  |
| 3   | с     | 67 MET  |      | 2.2  |  |
| 7   | Н     | 10      | ILE  | 2.2  |  |
| 2   | В     | 286     | ARG  | 2.1  |  |
| 15  | u     | 101     | GLY  | 2.1  |  |
| 1   | A     | 339     | PHE  | 2.1  |  |
| 4   | D     | 273     | PHE  | 2.1  |  |
| 2   | В     | 298     | LEU  | 2.1  |  |
| 1   | a     | 330     | VAL  | 2.1  |  |
| 2   | b     | 456     | ALA  | 2.1  |  |
| 16  | V     | 6       | GLU  | 2.1  |  |
| 18  | Y     | 40      | ALA  | 2.1  |  |
| 18  | У     | 20      | ALA  | 2.1  |  |
| 2   | b     | 463     | PHE  | 2.1  |  |
| 12  | М     | 33      | GLN  | 2.1  |  |
| 19  | Z     | 57      | LEU  | 2.1  |  |
| 2   | В     | 456     | ALA  | 2.1  |  |
| 2   | В     | 491     | VAL  | 2.1  |  |
| 13  | Ο     | 30      | TYR  | 2.1  |  |
| 19  | Z     | 28      | ALA  | 2.1  |  |
| 3   | с     | 24      | THR  | 2.1  |  |
| 16  | v     | 9       | THR  | 2.1  |  |
| 7   | h     | 55      | LEU  | 2.1  |  |



| Mol | Chain | ResType |           | RSRZ |  |
|-----|-------|---------|-----------|------|--|
| 13  | 0     | 34      | 34 SER 2  |      |  |
| 15  | U     | 94      | 4 GLY 2.1 |      |  |
| 9   | j     | 14      | 14 THR 2. |      |  |
| 13  | 0     | 23      | ASP       | 2.1  |  |
| 19  | Ζ     | 4       | 4 LEU     |      |  |
| 4   | D     | 350     | ASN       | 2.1  |  |
| 13  | 0     | 91      | GLY       | 2.1  |  |
| 5   | е     | 82      | GLN       | 2.1  |  |
| 3   | с     | 428     | THR       | 2.1  |  |
| 1   | a     | 120     | LEU       | 2.1  |  |
| 1   | a     | 297     | LEU       | 2.1  |  |
| 2   | b     | 466     | HIS       | 2.1  |  |
| 3   | с     | 230     | LEU       | 2.1  |  |
| 2   | b     | 224     | ARG       | 2.1  |  |
| 3   | С     | 206     | PRO       | 2.1  |  |
| 3   | С     | 144     | SER       | 2.1  |  |
| 17  | Х     | 7       | LEU       | 2.1  |  |
| 11  | 1     | 8       | GLN       | 2.1  |  |
| 13  | Ο     | 196     | GLN       | 2.1  |  |
| 19  | Ζ     | 1       | MET       | 2.0  |  |
| 9   | j     | 8       | PRO       | 2.0  |  |
| 10  | K     | 30      | VAL       | 2.0  |  |
| 1   | А     | 38      | ILE       | 2.0  |  |
| 2   | b     | 239     | SER       | 2.0  |  |
| 4   | D     | 343     | GLU       | 2.0  |  |
| 5   | е     | 24      | SER       | 2.0  |  |
| 15  | u     | 70      | ARG       | 2.0  |  |
| 2   | В     | 256     | MET       | 2.0  |  |
| 3   | с     | 281     | MET       | 2.0  |  |
| 3   | с     | 66      | ALA       | 2.0  |  |
| 13  | 0     | 241     | ALA       | 2.0  |  |
| 2   | В     | 288     | VAL       | 2.0  |  |
| 4   | D     | 277     | THR       | 2.0  |  |
| 7   | Н     | 5       | THR       | 2.0  |  |
| 16  | V     | 2       | GLU       | 2.0  |  |
| 16  | V     | 18      | THR       | 2.0  |  |
| 3   | С     | 339     | LYS       | 2.0  |  |
| 2   | В     | 254     | GLY       | 2.0  |  |
| 18  | У     | 38      | LEU       | 2.0  |  |
| 8   | i     | 2       | GLU       | 2.0  |  |
| 4   | d     | 40      | CYS       | 2.0  |  |
| 7   | h     | 5       | THR       | 2.0  |  |



| Mol | Chain | Res   Type |     | RSRZ |
|-----|-------|------------|-----|------|
| 13  | 0     | 61         | GLN | 2.0  |
| 5   | е     | 17         | VAL | 2.0  |
| 16  | V     | 135        | VAL | 2.0  |
| 13  | 0     | 226        | GLY | 2.0  |
| 2   | В     | 292        | LEU | 2.0  |
| 3   | с     | 21         | ILE | 2.0  |
| 13  | 0     | 10         | ILE | 2.0  |
| 15  | u     | 102        | LEU | 2.0  |
| 3   | с     | 187        | ASP | 2.0  |
| 5   | Е     | 82         | GLN | 2.0  |
| 11  | 1     | 9          | PRO | 2.0  |

## 6.2 Non-standard residues in protein, DNA, RNA chains (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

| Mol | Type | Chain | Res | Atoms | RSCC | RSR  | B-factors(Å <sup>2</sup> ) | Q<0.9 |
|-----|------|-------|-----|-------|------|------|----------------------------|-------|
| 8   | FME  | i     | 1   | 10/11 | 0.96 | 0.11 | $38,\!50,\!63,\!74$        | 0     |
| 12  | FME  | m     | 1   | 10/11 | 0.96 | 0.11 | $26,\!43,\!69,\!74$        | 0     |
| 12  | FME  | М     | 1   | 10/11 | 0.97 | 0.17 | 33,41,72,72                | 0     |
| 8   | FME  | Ι     | 1   | 10/11 | 0.97 | 0.17 | 29,49,53,54                | 0     |
| 14  | FME  | t     | 1   | 10/11 | 0.97 | 0.10 | 22,34,47,66                | 0     |
| 14  | FME  | Т     | 1   | 10/11 | 0.98 | 0.09 | 19,37,45,52                | 0     |

## 6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

## 6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

| Mol | Type | Chain | Res | Atoms | RSCC | RSR  | $\mathbf{B}	ext{-factors}(\mathbf{A}^2)$ | Q<0.9 |
|-----|------|-------|-----|-------|------|------|------------------------------------------|-------|
| 30  | UNL  | А     | 414 | 28/-  | 0.27 | 0.57 | $66,\!93,\!121,\!126$                    | 0     |



| $\alpha \cdot \cdot \cdot$ | C    | •        |      |
|----------------------------|------|----------|------|
| Continued                  | from | previous | page |

| Mol | Type | Chain  | Res | Atoms                 | RSCC | RSR  | $\mathbf{B}	ext{-factors}(\mathbf{A}^2)$ | Q<0.9 |
|-----|------|--------|-----|-----------------------|------|------|------------------------------------------|-------|
| 36  | HTG  | В      | 626 | 19/19                 | 0.48 | 0.70 | $51,\!135,\!163,\!189$                   | 0     |
| 36  | HTG  | D      | 412 | 16/19                 | 0.48 | 0.40 | 43,118,136,138                           | 0     |
| 34  | LMG  | С      | 521 | 51/55                 | 0.52 | 0.51 | 50,107,149,153                           | 0     |
| 30  | UNL  | a      | 416 | 30/-                  | 0.54 | 0.50 | 86,102,121,129                           | 0     |
| 36  | HTG  | С      | 524 | 9/19                  | 0.57 | 1.21 | 70,90,106,139                            | 0     |
| 35  | LMT  | В      | 633 | 35/35                 | 0.58 | 0.45 | $39,\!117,\!133,\!139$                   | 0     |
| 30  | UNL  | b      | 627 | 33/-                  | 0.59 | 0.45 | 53,80,145,147                            | 0     |
| 36  | HTG  | b      | 623 | 19/19                 | 0.59 | 0.61 | 73,116,140,180                           | 0     |
| 35  | LMT  | D      | 403 | 35/35                 | 0.60 | 0.40 | 40,112,125,126                           | 0     |
| 35  | LMT  | С      | 522 | 35/35                 | 0.60 | 0.64 | 83,119,141,151                           | 0     |
| 34  | LMG  | с      | 520 | 51/55                 | 0.64 | 0.43 | 62,104,135,147                           | 0     |
| 35  | LMT  | е      | 102 | 35/35                 | 0.64 | 0.80 | 75,139,161,171                           | 0     |
| 35  | LMT  | m      | 103 | 35/35                 | 0.65 | 0.50 | 40,85,113,117                            | 0     |
| 30  | UNL  | J      | 102 | 10/-                  | 0.66 | 0.45 | 59,66,85,90                              | 0     |
| 35  | LMT  | М      | 103 | 35/35                 | 0.68 | 0.34 | 37,128,152,157                           | 0     |
| 35  | LMT  | М      | 101 | 35/35                 | 0.68 | 0.34 | 40,85,105,107                            | 0     |
| 30  | UNL  | В      | 631 | 33/-                  | 0.68 | 0.26 | 36,92,134,151                            | 0     |
| 30  | UNL  | Ι      | 101 | 40/-                  | 0.70 | 0.32 | 39,89,141,148                            | 0     |
| 36  | HTG  | с      | 522 | 19/19                 | 0.70 | 0.82 | 83,139,149,158                           | 0     |
| 25  | BCR  | h      | 102 | 40/40                 | 0.71 | 0.29 | 42,57,71,74                              | 0     |
| 36  | HTG  | В      | 625 | 19/19                 | 0.72 | 0.43 | $43,\!101,\!109,\!111$                   | 0     |
| 34  | LMG  | Z      | 101 | 37/55                 | 0.72 | 0.40 | 57,103,134,149                           | 0     |
| 30  | UNL  | j      | 102 | 10/-                  | 0.73 | 0.32 | 57,81,94,94                              | 0     |
| 35  | LMT  | Е      | 102 | 35/35                 | 0.73 | 0.56 | $91,\!129,\!157,\!163$                   | 0     |
| 31  | LHG  | е      | 101 | 42/49                 | 0.73 | 0.43 | $63,\!119,\!140,\!150$                   | 0     |
| 30  | UNL  | с      | 525 | 32/-                  | 0.73 | 0.33 | 74,104,124,132                           | 0     |
| 30  | UNL  | K      | 101 | 34/-                  | 0.74 | 0.32 | 62,102,116,137                           | 0     |
| 30  | UNL  | m      | 102 | 10/-                  | 0.75 | 0.32 | 36,47,64,66                              | 0     |
| 30  | UNL  | i      | 101 | 40/-                  | 0.75 | 0.38 | 56,91,147,151                            | 0     |
| 29  | PL9  | a      | 415 | 55/55                 | 0.75 | 0.34 | 56,82,108,115                            | 0     |
| 27  | GOL  | d      | 401 | 6/6                   | 0.76 | 0.68 | 36,51,76,77                              | 0     |
| 36  | HTG  | b      | 622 | 19/19                 | 0.76 | 0.83 | 77,105,127,134                           | 0     |
| 36  | HTG  | b      | 621 | 19/19                 | 0.78 | 0.26 | 33,91,127,144                            | 0     |
| 29  | PL9  | A      | 413 |                       | 0.78 | 0.34 | 44,83,100,110                            | 0     |
| 35  | LMT  | b      | 628 | $\frac{25/35}{12/54}$ | 0.78 | 0.28 | 37,63,135,142                            | 0     |
| 26  | SQD  | t      | 101 | 43/54                 | 0.78 | 0.32 | 86,117,154,157                           | 0     |
| 35  | LMT  | b      | 620 |                       | 0.79 | 0.24 | 55,88,143,147                            | 0     |
|     | HTG  | h<br>T | 101 | 10/19                 | 0.79 | 0.38 | 71,110,125,143                           |       |
| 20  | SQD  |        | 102 | <u> </u>              | 0.79 | 0.26 | 39,73,114,123                            |       |
| 33  | UA   | B      | 601 |                       | 0.79 | 0.12 | 144,144,144,144                          |       |
| 30  | HTG  |        | 523 | 19/19                 | 0.80 | 0.43 | 95,107,121,133                           |       |
| 30  | UNL  | a a    | 029 | 30/-                  | 0.81 | 0.33 | 40,80,130,141                            | U     |



| Continued from previous page |      |       |                |       |      |      |                                |         |  |
|------------------------------|------|-------|----------------|-------|------|------|--------------------------------|---------|--|
| Mol                          | Type | Chain | $\mathbf{Res}$ | Atoms | RSCC | RSR  | ${f B}	ext{-factors}({f A}^2)$ | Q < 0.9 |  |
| 36                           | HTG  | с     | 521            | 19/19 | 0.81 | 0.37 | $71,\!125,\!137,\!163$         | 0       |  |
| 36                           | HTG  | b     | 626            | 19/19 | 0.81 | 0.25 | $66,\!114,\!151,\!181$         | 0       |  |
| 31                           | LHG  | Ε     | 101            | 42/49 | 0.81 | 0.26 | $47,\!95,\!114,\!121$          | 0       |  |
| 36                           | HTG  | В     | 630            | 19/19 | 0.82 | 0.27 | $67,\!116,\!145,\!154$         | 0       |  |
| 26                           | SQD  | В     | 621            | 54/54 | 0.82 | 0.24 | 44,82,109,118                  | 0       |  |
| 35                           | LMT  | В     | 632            | 25/35 | 0.82 | 0.26 | $41,\!68,\!135,\!136$          | 0       |  |
| 25                           | BCR  | Н     | 101            | 40/40 | 0.82 | 0.23 | $35,\!46,\!66,\!73$            | 0       |  |
| 34                           | LMG  | С     | 520            | 51/55 | 0.83 | 0.28 | 43,75,125,134                  | 0       |  |
| 34                           | LMG  | С     | 501            | 51/55 | 0.83 | 0.29 | 40,81,110,113                  | 0       |  |
| 27                           | GOL  | 0     | 302            | 6/6   | 0.83 | 0.27 | $63,\!68,\!72,\!78$            | 0       |  |
| 30                           | UNL  | Х     | 101            | 18/-  | 0.84 | 0.32 | $47,\!66,\!104,\!105$          | 0       |  |
| 35                           | LMT  | В     | 623            | 35/35 | 0.84 | 0.26 | $50,\!95,\!120,\!122$          | 0       |  |
| 26                           | SQD  | А     | 411            | 54/54 | 0.85 | 0.25 | 41,71,114,129                  | 0       |  |
| 30                           | UNL  | М     | 102            | 10/-  | 0.85 | 0.27 | 38,51,60,60                    | 0       |  |
| 30                           | UNL  | D     | 411            | 40/-  | 0.85 | 0.28 | 49,76,125,128                  | 0       |  |
| 35                           | LMT  | a     | 418            | 35/35 | 0.86 | 0.53 | $97,\!118,\!139,\!139$         | 0       |  |
| 27                           | GOL  | В     | 628            | 6/6   | 0.86 | 0.26 | 47,58,65,72                    | 0       |  |
| 36                           | HTG  | V     | 203            | 11/19 | 0.86 | 0.61 | 88,101,107,108                 | 0       |  |
| 34                           | LMG  | Z     | 101            | 39/55 | 0.86 | 0.24 | $69,\!117,\!144,\!151$         | 0       |  |
| 33                           | CA   | 0     | 301            | 1/1   | 0.87 | 0.12 | 101,101,101,101                | 0       |  |
| 30                           | UNL  | D     | 410            | 17/-  | 0.87 | 0.37 | 46,64,94,102                   | 0       |  |
| 34                           | LMG  | с     | 519            | 51/55 | 0.87 | 0.28 | 47,78,122,143                  | 0       |  |
| 34                           | LMG  | a     | 417            | 51/55 | 0.87 | 0.22 | 42,79,99,115                   | 0       |  |
| 36                           | HTG  | В     | 624            | 19/19 | 0.88 | 0.21 | 33,71,128,130                  | 0       |  |
| 35                           | LMT  | В     | 634            | 26/35 | 0.88 | 0.18 | $48,\!90,\!109,\!115$          | 0       |  |
| 27                           | GOL  | a     | 412            | 6/6   | 0.88 | 0.24 | 56,70,85,86                    | 0       |  |
| 34                           | LMG  | В     | 622            | 51/55 | 0.88 | 0.23 | $35,\!53,\!83,\!101$           | 0       |  |
| 37                           | DGD  | h     | 103            | 62/66 | 0.88 | 0.29 | 34,46,67,76                    | 0       |  |
| 23                           | CLA  | С     | 513            | 65/65 | 0.88 | 0.22 | 46,60,106,112                  | 0       |  |
| 23                           | CLA  | С     | 514            | 65/65 | 0.89 | 0.25 | $50,\!65,\!100,\!107$          | 0       |  |
| 30                           | UNL  | Х     | 101            | 18/-  | 0.89 | 0.20 | 39,66,83,87                    | 0       |  |
| 26                           | SQD  | a     | 413            | 54/54 | 0.89 | 0.22 | 37,73,134,146                  | 0       |  |
| 37                           | DGD  | С     | 518            | 62/66 | 0.89 | 0.23 | 35,51,111,119                  | 0       |  |
| 23                           | CLA  | b     | 602            | 65/65 | 0.89 | 0.25 | $36,\!48,\!68,\!77$            | 0       |  |
| 23                           | CLA  | с     | 512            | 65/65 | 0.89 | 0.22 | $53,\!66,\!96,\!104$           | 0       |  |
| 25                           | BCR  | у     | 101            | 40/40 | 0.89 | 0.17 | 48,60,74,77                    | 0       |  |
| 34                           | LMG  | m     | 101            | 51/55 | 0.90 | 0.20 | 33,52,85,99                    | 0       |  |
| 23                           | CLA  | с     | 507            | 65/65 | 0.90 | 0.19 | 43,57,70,72                    | 0       |  |
| 36                           | HTG  | В     | 629            | 19/19 | 0.90 | 0.20 | 47,59,78,83                    | 0       |  |
| 23                           | CLA  | В     | 603            | 65/65 | 0.90 | 0.23 | 31,41,57,69                    | 0       |  |
| 23                           | CLA  | с     | 513            | 65/65 | 0.90 | 0.22 | 58,74,112,119                  | 0       |  |
| 23                           | CLA  | b     | 616            | 65/65 | 0.90 | 0.20 | 34,51,101,111                  | 0       |  |



| Mol Type Chain Res Atoms RSCC RSR B-factors(A <sup>2</sup> ) | ) Q < 0.9 |
|--------------------------------------------------------------|-----------|
|                                                              |           |
| 23 CLA C 512 65/65 0.90 0.18 39,54,77,85                     | 0         |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$       | 0         |
| 37 DGD H 102 62/66 0.90 0.29 29,42,64,68                     | 0         |
| 34 LMG J 101 51/55 0.91 0.20 33,54,96,105                    | 0         |
| 23 CLA C 504 65/65 0.91 0.29 37,47,66,75                     | 0         |
| 23 CLA b 609 65/65 0.91 0.17 39,48,63,74                     | 0         |
| 23 CLA b 615 65/65 0.91 0.18 33,43,65,87                     | 0         |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$       | 0         |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$       | 0         |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$       | 0         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$      | 0         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$      | 0         |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$       | 0         |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$     | 0         |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$     | 0         |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$       | 0         |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$       | 0         |
| 37 DGD C 517 62/66 0.92 0.26 30,41,77,88                     | 0         |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$       | 0         |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$       | 0         |
| 23 CLA C 502 65/65 0.92 0.23 36,45,67,70                     | 0         |
| 23 CLA c 511 65/65 0.92 0.19 47,56,78,89                     | 0         |
| 23 CLA B 612 65/65 0.92 0.26 24,32,49,54                     | 0         |
| 25 BCR D 406 40/40 0.92 0.19 35,46,78,84                     | 0         |
| 23 CLA C 507 65/65 0.93 0.16 42,57,106,115                   | 0         |
| 36 HTG b 625 19/19 0.93 0.11 40,60,90,94                     | 0         |
| 23 CLA c 503 65/65 0.93 0.44 44,55,67,84                     | 0         |
| 23 CLA B 616 65/65 0.93 0.15 29,38,60,67                     | 0         |
| 33 CA V 201 1/1 0.93 0.11 94,94,94,94                        | 0         |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$       | 0         |
| 23 CLA C 505 65/65 0.93 0.23 32,46,91,111                    | 0         |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$       | 0         |
| 23 CLA B 615 65/65 0.93 0.17 23,32,86,95                     | 0         |
| 25 BCR C 527 40/40 0.93 0.17 43,55,71,72                     | 0         |
| 23 CLA C 503 65/65 0.93 0.36 33,43,60,67                     | 0         |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$       | 0         |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$       | 0         |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$       | 0         |
| 23 CLA D 405 65/65 0.93 0.18 33,48,111,119                   | 0         |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$       | 0         |
| 33 CA o 301 1/1 0.93 0.11 89,89,89,89                        | 0         |
| 23 CLA b 612 65/65 0.93 0.28 28,35,48,69                     | 0         |

 $d f_{\alpha}$ .....  $\alpha$ ntina



| Continued from previous page |      |       |     |                       |      |      |                                        | 0.00  |
|------------------------------|------|-------|-----|-----------------------|------|------|----------------------------------------|-------|
| Mol                          | Type | Chain | Res | Atoms                 | RSCC | RSR  | $\frac{B-factors(A^2)}{40.55,105,111}$ | Q<0.9 |
| 31                           | LHG  | d     | 408 | 49/49                 | 0.94 | 0.21 | 40,55,105,111                          | 0     |
| 37                           | DGD  | с     | 516 | $\frac{62/66}{10/10}$ | 0.94 | 0.23 | 35,47,74,93                            | 0     |
| 25                           | BCR  | с     | 514 | $\frac{40}{40}$       | 0.94 | 0.14 | 58,68,80,83                            | 0     |
| 23                           | CLA  | С     | 508 | 65/65                 | 0.94 | 0.20 | 39,53,121,131                          | 0     |
| 25                           | BCR  | Y     | 101 | 40/40                 | 0.94 | 0.15 | 40,51,62,71                            | 0     |
| 23                           | CLA  | В     | 617 | 65/65                 | 0.94 | 0.21 | 33,45,121,132                          | 0     |
| 23                           | CLA  | В     | 613 | 65/65                 | 0.94 | 0.25 | $26,\!33,\!45,\!65$                    | 0     |
| 23                           | CLA  | D     | 404 | 65/65                 | 0.94 | 0.18 | 21,29,50,56                            | 0     |
| 23                           | CLA  | В     | 605 | 65/65                 | 0.94 | 0.31 | $22,\!31,\!101,\!111$                  | 0     |
| 31                           | LHG  | L     | 101 | 49/49                 | 0.94 | 0.25 | $26,\!39,\!54,\!75$                    | 0     |
| 23                           | CLA  | С     | 510 | 65/65                 | 0.94 | 0.32 | $39,\!53,\!71,\!79$                    | 0     |
| 31                           | LHG  | d     | 406 | 49/49                 | 0.94 | 0.23 | 27,48,81,84                            | 0     |
| 23                           | CLA  | С     | 509 | 65/65                 | 0.94 | 0.32 | $33,\!46,\!93,\!103$                   | 0     |
| 25                           | BCR  | k     | 101 | 40/40                 | 0.94 | 0.17 | 50,60,84,87                            | 0     |
| 25                           | BCR  | С     | 515 | 40/40                 | 0.94 | 0.17 | 49,60,74,82                            | 0     |
| 25                           | BCR  | d     | 404 | 40/40                 | 0.94 | 0.15 | 43,55,79,81                            | 0     |
| 25                           | BCR  | b     | 619 | 40/40                 | 0.94 | 0.15 | 33,46,69,80                            | 0     |
| 23                           | CLA  | В     | 602 | 65/65                 | 0.94 | 0.21 | $39,\!61,\!93,\!123$                   | 0     |
| 23                           | CLA  | b     | 606 | 65/65                 | 0.94 | 0.14 | 29,42,91,110                           | 0     |
| 31                           | LHG  | D     | 409 | 49/49                 | 0.94 | 0.21 | $32,\!50,\!107,\!117$                  | 0     |
| 23                           | CLA  | В     | 607 | 65/65                 | 0.94 | 0.14 | 28,37,76,93                            | 0     |
| 26                           | SQD  | A     | 409 | 54/54                 | 0.94 | 0.16 | 41,66,99,109                           | 0     |
| 23                           | CLA  | с     | 501 | 65/65                 | 0.94 | 0.23 | 43,53,67,72                            | 0     |
| 23                           | CLA  | b     | 610 | 65/65                 | 0.95 | 0.22 | 35,44,56,61                            | 0     |
| 29                           | PL9  | d     | 405 | 55/55                 | 0.95 | 0.20 | 24,33,49,66                            | 0     |
| 23                           | CLA  | с     | 510 | 65/65                 | 0.95 | 0.34 | 39,51,67,71                            | 0     |
| 37                           | DGD  | с     | 518 | 62/66                 | 0.95 | 0.20 | 39,50,74,97                            | 0     |
| 23                           | CLA  | b     | 608 | 65/65                 | 0.95 | 0.29 | 34,44,67,72                            | 0     |
| 23                           | CLA  | С     | 506 | 65/65                 | 0.95 | 0.28 | 33,44,75,82                            | 0     |
| 23                           | CLA  | b     | 604 | 65/65                 | 0.95 | 0.33 | $24,\!33,\!95,\!101$                   | 0     |
| 23                           | CLA  | b     | 614 | 65/65                 | 0.95 | 0.15 | $25,\!35,\!93,\!107$                   | 0     |
| 23                           | CLA  | b     | 605 | 65/65                 | 0.95 | 0.26 | 26, 34, 51, 76                         | 0     |
| 30                           | UNL  | d     | 409 | 17/-                  | 0.95 | 0.38 | 48,58,94,99                            | 0     |
| 29                           | PL9  | D     | 407 | 55/55                 | 0.95 | 0.24 | 20,30,44,53                            | 0     |
| 23                           | CLA  | b     | 603 | 65/65                 | 0.95 | 0.27 | 32,44,61,70                            | 0     |
| 27                           | GOL  | В     | 627 | 6/6                   | 0.95 | 0.36 | 60,77,93,95                            | 0     |
| 23                           | CLA  | с     | 504 | 65/65                 | 0.95 | 0.29 | 41,52,94,117                           | 0     |
| 25                           | BCR  | b     | 617 | 40/40                 | 0.95 | 0.16 | 21,35,45,51                            | 0     |
| 23                           | CLA  | a     | 405 | 65/65                 | 0.96 | 0.15 | 23,29,52,60                            | 0     |
| 25                           | BCR  | с     | 515 | 40/40                 | 0.96 | 0.14 | 41,54,66,70                            | 0     |
| 31                           | LHG  | D     | 408 | 49/49                 | 0.96 | 0.26 | 25,37,56,78                            | 0     |
| 25                           | BCR  | В     | 618 | 40/40                 | 0.96 | 0.18 | 24,37,48,49                            | 0     |
| · · · · ·                    |      |       | Ľ   | /                     | 1    | Ľ Š  | , , , , ==                             | -     |



| Continuea from previous page |      |       |     |                    |      |      |                                          |       |
|------------------------------|------|-------|-----|--------------------|------|------|------------------------------------------|-------|
| Mol                          | Type | Chain | Res | Atoms              | RSCC | RSR  | $\mathbf{B}	ext{-factors}(\mathbf{A}^2)$ | Q<0.9 |
| 23                           | CLA  | d     | 402 | 65/65              | 0.96 | 0.22 | $27,\!32,\!58,\!72$                      | 0     |
| 25                           | BCR  | b     | 618 | 40/40              | 0.96 | 0.22 | $22,\!36,\!51,\!56$                      | 0     |
| 23                           | CLA  | С     | 511 | 65/65              | 0.96 | 0.48 | $36,\!48,\!61,\!67$                      | 0     |
| 23                           | CLA  | с     | 506 | 65/65              | 0.96 | 0.15 | 47,65,98,117                             | 0     |
| 23                           | CLA  | В     | 606 | 65/65              | 0.96 | 0.21 | $24,\!33,\!46,\!51$                      | 0     |
| 23                           | CLA  | В     | 608 | 65/65              | 0.96 | 0.22 | $20,\!28,\!59,\!67$                      | 0     |
| 23                           | CLA  | b     | 613 | 65/65              | 0.96 | 0.26 | 24,36,79,89                              | 0     |
| 23                           | CLA  | b     | 611 | 65/65              | 0.96 | 0.21 | $27,\!35,\!57,\!62$                      | 0     |
| 23                           | CLA  | b     | 607 | 65/65              | 0.96 | 0.18 | $21,\!30,\!58,\!67$                      | 0     |
| 33                           | CA   | с     | 523 | 1/1                | 0.96 | 0.17 | $68,\!68,\!68,\!68$                      | 0     |
| 23                           | CLA  | А     | 405 | 65/65              | 0.96 | 0.15 | $24,\!33,\!85,\!94$                      | 0     |
| 25                           | BCR  | t     | 101 | 40/40              | 0.96 | 0.24 | $23,\!43,\!64,\!68$                      | 0     |
| 24                           | PHO  | a     | 408 | 64/64              | 0.96 | 0.28 | $30,\!40,\!53,\!60$                      | 0     |
| 23                           | CLA  | a     | 409 | 65/65              | 0.96 | 0.18 | $30,\!44,\!124,\!130$                    | 0     |
| 39                           | MG   | j     | 103 | 1/1                | 0.96 | 0.13 | 48,48,48,48                              | 0     |
| 27                           | GOL  | А     | 410 | 6/6                | 0.96 | 0.12 | $45,\!57,\!60,\!90$                      | 0     |
| 25                           | BCR  | a     | 410 | 40/40              | 0.96 | 0.15 | $28,\!38,\!55,\!58$                      | 0     |
| 23                           | CLA  | a     | 404 | 65/65              | 0.96 | 0.19 | $27,\!33,\!52,\!66$                      | 0     |
| 25                           | BCR  | В     | 619 | 40/40              | 0.96 | 0.23 | $21,\!36,\!52,\!60$                      | 0     |
| 23                           | CLA  | А     | 404 | 65/65              | 0.96 | 0.17 | $22,\!25,\!39,\!58$                      | 0     |
| 23                           | CLA  | А     | 407 | 65/65              | 0.97 | 0.15 | 28,38,98,117                             | 0     |
| 39                           | MG   | J     | 103 | 1/1                | 0.97 | 0.17 | 43,43,43,43                              | 0     |
| 38                           | HEM  | е     | 103 | 43/43              | 0.97 | 0.20 | 52,78,106,116                            | 0     |
| 23                           | CLA  | В     | 604 | 65/65              | 0.97 | 0.27 | $30,\!43,\!56,\!67$                      | 0     |
| 25                           | BCR  | Т     | 101 | 40/40              | 0.97 | 0.24 | $21,\!37,\!55,\!60$                      | 0     |
| 23                           | CLA  | D     | 401 | 65/65              | 0.97 | 0.16 | $21,\!28,\!43,\!47$                      | 0     |
| 24                           | PHO  | А     | 406 | 64/64              | 0.97 | 0.20 | $22,\!29,\!39,\!46$                      | 0     |
| 24                           | PHO  | D     | 402 | 64/64              | 0.97 | 0.24 | $25,\!31,\!44,\!55$                      | 0     |
| 23                           | CLA  | В     | 611 | 65/65              | 0.97 | 0.23 | $29,\!41,\!55,\!70$                      | 0     |
| 25                           | BCR  | А     | 408 | 40/40              | 0.97 | 0.17 | $23,\!34,\!48,\!56$                      | 0     |
| 23                           | CLA  | В     | 609 | 65/65              | 0.97 | 0.24 | $30,\!42,\!56,\!66$                      | 0     |
| 23                           | CLA  | В     | 614 | 65/65              | 0.97 | 0.32 | $23,\!31,\!72,\!87$                      | 0     |
| 23                           | CLA  | a     | 406 | 65/65              | 0.97 | 0.20 | $30,\!38,\!98,\!103$                     | 0     |
| 33                           | CA   | С     | 526 | 1/1                | 0.98 | 0.26 | 59, 59, 59, 59, 59                       | 0     |
| 40                           | HEC  | V     | 201 | 43/43              | 0.98 | 0.14 | $44,\!53,\!63,\!82$                      | 0     |
| 40                           | HEC  | V     | 202 | 43/43              | 0.98 | 0.12 | $33,\!36,\!48,\!70$                      | 0     |
| 38                           | HEM  | E     | 103 | $43\overline{/43}$ | 0.98 | 0.09 | 43,56,69,83                              | 0     |
| 24                           | PHO  | a     | 407 | 64/64              | 0.98 | 0.20 | $24,\!31,\!45,\!50$                      | 0     |
| $\overline{32}$              | BCT  | a     | 419 | 4/4                | 0.98 | 0.07 | $41,\!45,\!48,\!58$                      | 0     |
| 33                           | CA   | с     | 524 | 1/1                | 0.98 | 0.08 | $66,\!66,\!66,\!66$                      | 0     |
| 32                           | BCT  | A     | 416 | 4/4                | 0.98 | 0.08 | $32,\!45,\!46,\!51$                      | 0     |
| $\overline{22}$              | CL   | a     | 403 | 1/1                | 0.98 | 0.27 | 41,41,41,41                              | 0     |



| Mol | Type | Chain | Res | Atoms | RSCC | RSR  | $\mathbf{B}	ext{-factors}(\mathrm{\AA}^2)$ | Q<0.9 |
|-----|------|-------|-----|-------|------|------|--------------------------------------------|-------|
| 22  | CL   | А     | 402 | 1/1   | 0.99 | 0.10 | 24, 24, 24, 24                             | 0     |
| 28  | OEX  | А     | 412 | 10/10 | 0.99 | 0.10 | $23,\!32,\!46,\!47$                        | 0     |
| 21  | FE2  | a     | 401 | 1/1   | 0.99 | 0.04 | $47,\!47,\!47,\!47$                        | 0     |
| 21  | FE2  | А     | 401 | 1/1   | 0.99 | 0.05 | 46, 46, 46, 46                             | 0     |
| 28  | OEX  | a     | 414 | 10/10 | 0.99 | 0.09 | $29,\!36,\!46,\!48$                        | 0     |
| 22  | CL   | А     | 403 | 1/1   | 0.99 | 0.25 | 27,27,27,27                                | 0     |
| 22  | CL   | a     | 402 | 1/1   | 1.00 | 0.13 | 28,28,28,28                                | 0     |

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.




































































































































































































































































































































































































































































## 6.5 Other polymers (i)

There are no such residues in this entry.

