

Jan 22, 2024 – 02:23 PM EST

PDB ID	:	8GLM
EMDB ID	:	EMD-40199
Title	:	The Type 9 Secretion System in vivo assembled, RemZ substrate bound com-
		plex - conformation 1
Authors	:	Deme, J.C.; Lea, S.M.
Deposited on	:	2023-03-22
Resolution	:	2.20 Å(reported)
This is	a F	Full wwPDB EM Validation Report for a publicly released PDB entry

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 70
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain				
1	А	2403	• 75%		16%	6	• 9%
2	В	176	60% 13%	•		27%	
3	F	402	5%		19%	•	9%
4	D	1114	5%• 93%				

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 21902 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Protein involved in gliding motility SprA.

Mol	Chain	Residues	Atoms				AltConf	Trace	
1	А	2191	Total 17380	C 10946	N 2947	O 3446	S 41	0	0

• Molecule 2 is a protein called Peptidyl-prolyl cis-trans isomerase.

Mol	Chain	Residues	Atoms			AltConf	Trace	
2	В	128	Total	С	N	Ō	0	0
	D	120	990	633	160	197	0	0

• Molecule 3 is a protein called Type IX secretion system protein PorV domain-containing protein.

Mol	Chain	Residues	Atoms			AltConf	Trace		
3	F	367	Total 2861	C 1834	N 462	O 560	$\frac{\mathrm{S}}{5}$	0	0

• Molecule 4 is a protein called RemZ.

Mol	Chain	Residues	Atoms				AltConf	Trace	
4	D	75	Total 602	C 384	N 99	0 118	S 1	0	0

• Molecule 5 is Lauryl Maltose Neopentyl Glycol (three-letter code: LMN) (formula: $C_{47}H_{88}O_{22}$).

Mol	Chain	Residues	Atoms	AltConf
5	А	1	Total C O 69 47 22	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Protein involved in gliding motility SprA

• Molecule 4: RemZ	
Chain D: 5%.	93%
MET VAL VAL ASP VAL ALA TRP GIY GIY GIY ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ALA ALA ALA ALA ALA ALA ASN ASN ALA ALA ALA ALA ALA ALA ASN ASA ALA ALA ASN ASA ALA ASN ASA ASN ALA ASN ALA ASN ALA ASN ALA ASN ASN ASN ASN ASN ASN ASN ASN ASN AS
617 ALA ALA ALA ALA ALA ALA ALA ALA ALA CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	ASN ASN GLY GLY GLY CGLY ALA GLY GLY GLY ALA ALA ALA ALA ALA ALA ALA ALA ALA A
617 617 617 617 617 718 718 718 718 718 718 718 718 718 7	VAL VAL SER ALA ALA ALA CLY GLY ALA ALA ALA ALA ALA ALA ALA ALA ALA A
GLY GLY ALA ALA ALA CLY CLY CLY GLY GLY ALA ALA ALA ALA THR THR THR THR THR THR THR THR THR THR	ASN VAL CYS ASN ASN ASN ASN ASN ASN ASN ASN ASN AS
TYR ASN ASN ASN ASN ASN ASN CLV CLV CLV CLV CLV CLV ASN ASN ASN ASN ASN ASN ASN CLV CLV CLV CLV ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	VAL VAL THR THR THR SER SER ASN THR THR THR THR ALA ALA ALA ALA ALA ASN SER SER SER SER SER ALA ALA ALA ALA ALA ALA ALA ALA ASN THR THR THR THR THR THR THR THR THR THR
THR VAL VAL ALA ALA ALA ALA CVAL CVAL CVAL	THR GLY GLY CLY CLY CLY CLY CLY CLY CLY CLY CLY C
0LY LEU THR THR THR CHU THR SER SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	PRO LEU CLAU CLAU CLAU CLAU SER ALA ASN ASN ASN ASN ASN ASN ASN ASN ASN AS
GLY THR THR THR VAL TYR VAL TYR GLY GLY GLY ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	PRO VAL THR THR THR THR THR THR THR VAL VAL VAL VAL VAL VAL VAL VAL VAL VAL
ALA THR THR VAL VAL VAL ALA ALA ALA ALA ALA ALA ALA	TTR CITY CITY CITY CITY CITY CITY CITY CITY
SER ASI LEU ASI ALA ALA ALA ASI ASI ASI ASI ASI ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	VAL VAL ANN ANN TRP TRP TRP CIT SER CIT SER CIT SER CIT SER CIT SER CIT CIT SER SER SER SER SER CIT SER SER SER SER SER SER SER SER SER SER
THR THR GLY GLY SER SER CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	VAL THR ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN
TYR LYS ARG TLE TLE TRR PRO PRO PRO PRO ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	SER PRO GLY THR THR THR ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP
PRO ARC ARC ARC ARC ARC ARC ARC ARC ARC ARC	917 1116 2111 21116 2111 21116 2111 2111
11LE ASN ASN ASN ASN ASN ASN ASN ASN TTR TTR TTR TTR TTR TTR TTR TTR TTR TT	ASN ASN ASN ASN ASN ASN ASN ALA VAL CTYR CTYR SER CIY SER CIY GIY GIY GIY THR THR THR THR THR PRO
GLY ASN GLY ALA ALA PLEU CLEU CLEU CLY GLY GLY CLY GLY CLY GLY ALA ALA ALA ALA ALA ALA ALA ALA ALA A	MET MET VAL ALA ALA ALA ASN ASN ASN ASN ASN ASN ASN ALC ASN ASN ALA ASN ASN ALA ASN ASN ALA ASN ASN ALA ASN ASN ASN ASN ASN ASN ASN ASN ASN AS
THR THR GLY GLY GLY GLY CLEU CLEU CLEU CLEU CLEU CLEU CLEU CLEU	ASN PRO HIS PRO HIS PRO HIS PRO HIS ASN ASN ASN ASN ASN ASN ASN ASN ASN AS
VAL PRO CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	CLER CLER CLER CLER CLER CLER CLER CLER
	2 3 3 8 8 3 2 8 8 8 3 4 5 8 8 8 4 5 8 8 8 4 5 8 8 8 4 5 8 8 8 8
VAL THR THR THR THR THR THR ALA ASP ASP ASP ASP ASP TR ASP TR ASP TR ASP TR ASP TR ASP TR ASP TR ASP TR ASP TR ASP TR ASP TR ASP TR ASP TR ASP TR THR THR THR THR THR THR THR THR THR	

W O R L D W I D E PROTEIN DATA BANK

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	422344	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	58	Depositor
Minimum defocus (nm)	200	Depositor
Maximum defocus (nm)	2000	Depositor
Magnification	Not provided	
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor
Maximum map value	0.097	Depositor
Minimum map value	-0.043	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	0.002	Depositor
Recommended contour level	0.0117	Depositor
Map size (Å)	319.488, 319.488, 319.488	wwPDB
Map dimensions	384, 384, 384	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.832, 0.832, 0.832	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: LMN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles		
1VIOI		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.30	0/17756	0.52	0/24118	
2	В	0.28	0/1009	0.52	0/1370	
3	F	0.31	0/2935	0.53	1/3976~(0.0%)	
4	D	0.33	0/608	0.53	0/816	
All	All	0.30	0/22308	0.52	1/30280~(0.0%)	

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	\mathbf{F}	126	PRO	CA-N-CD	-9.02	98.87	111.50

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	17380	0	16729	228	0
2	В	990	0	976	14	0
3	F	2861	0	2715	48	0
4	D	602	0	620	8	0
5	А	69	0	88	3	0
All	All	21902	0	21128	287	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 7.

All (287) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic	Clash
Atom-1	At0111-2	distance (Å)	overlap (Å)
1:A:1392:ASN:ND2	1:A:1476:GLY:O	2.10	0.85
1:A:2398:ARG:NH1	1:A:2400:ASN:OD1	2.09	0.84
1:A:1965:PRO:HD3	1:A:1996:TRP:HB2	1.65	0.78
1:A:1222:GLN:NE2	1:A:1286:ASP:OD2	2.19	0.75
1:A:1647:ALA:HB3	1:A:1650:GLN:HB2	1.67	0.75
4:D:1066:ASP:OD1	4:D:1067:ILE:N	2.20	0.74
1:A:2075:ALA:O	1:A:2271:LYS:NZ	2.23	0.71
1:A:401:ASN:ND2	1:A:415:ASN:OD1	2.19	0.71
1:A:2370:ILE:HB	1:A:2396:THR:HG23	1.73	0.70
1:A:755:ARG:HH21	1:A:1550:GLU:HG2	1.59	0.68
3:F:59:GLN:O	3:F:209:GLN:NE2	2.26	0.67
1:A:1792:ASN:ND2	1:A:1812:ASP:OD2	2.27	0.67
1:A:865:GLN:OE1	1:A:1006:TYR:OH	2.08	0.67
1:A:1646:ARG:NH1	1:A:1656:ASP:OD2	2.26	0.67
1:A:163:ASN:HD21	3:F:173:ASP:HA	1.59	0.67
1:A:1737:ARG:NH2	1:A:1809:ASP:O	2.28	0.67
1:A:556:ILE:HG12	1:A:579:LEU:HD21	1.77	0.66
1:A:803:ASN:HB3	1:A:836:GLU:HG3	1.78	0.65
1:A:1357:LYS:HB2	1:A:1512:ASP:HB3	1.79	0.65
2:B:94:ASN:HB3	2:B:123:ARG:HH21	1.61	0.64
1:A:1775:THR:HG22	1:A:1777:SER:H	1.63	0.62
1:A:180:MET:SD	1:A:190:ASN:ND2	2.70	0.62
1:A:1775:THR:HB	1:A:1778:LEU:HB2	1.81	0.62
1:A:2081:GLU:HG3	1:A:2335:LEU:HD21	1.81	0.62
1:A:1422:SER:O	1:A:1469:LYS:NZ	2.33	0.61
3:F:239:PHE:HB2	3:F:247:LEU:HB3	1.83	0.61
3:F:381:ASN:HB3	3:F:384:GLU:HG3	1.80	0.61
1:A:2350:GLN:HG2	1:A:2352:ILE:HD11	1.81	0.61
1:A:343:ASN:HD22	1:A:407:ILE:HG13	1.66	0.61
1:A:768:ASP:N	1:A:768:ASP:OD1	2.35	0.60
1:A:2299:ARG:HD3	1:A:2301:LYS:HE2	1.83	0.60
1:A:1731:PHE:HD2	1:A:1768:TYR:HB3	1.66	0.60
1:A:144:GLU:OE2	1:A:174:ARG:NH1	2.35	0.60
3:F:137:GLU:HG3	3:F:163:SER:HA	1.83	0.60
3:F:291:ASN:O	3:F:294:LYS:HE3	2.02	0.59
1:A:867:THR:HG22	1:A:1260:VAL:HG22	1.83	0.59
1:A:2097:ILE:HG21	1:A:2153:PRO:HG2	1.84	0.59

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:1877:GLN:HG2	1:A:1959:VAL:HG22	1.85	0.59
1:A:2291:GLU:HG3	1:A:2330:ARG:HG2	1.85	0.59
1:A:2115:TYR:OH	1:A:2141:ILE:O	2.11	0.59
1:A:1337:LEU:HD22	1:A:1341:ASP:HB3	1.85	0.58
1:A:1377:ASP:OD2	1:A:1401:LYS:NZ	2.32	0.58
1:A:2324:LYS:HB3	1:A:2358:THR:HG22	1.84	0.58
1:A:374:ASN:HD22	1:A:387:LYS:HE3	1.68	0.58
1:A:492:ASN:OD1	1:A:494:SER:OG	2.13	0.58
1:A:1738:GLN:HB2	1:A:1761:ASN:HB3	1.85	0.58
3:F:55:VAL:HG11	3:F:392:THR:HB	1.86	0.57
1:A:137:VAL:HA	1:A:181:GLY:HA3	1.86	0.57
1:A:1060:ASN:HB3	1:A:1061:PRO:HD3	1.86	0.57
3:F:57:SER:HB2	3:F:64:LYS:HE3	1.86	0.57
1:A:2071:MET:HB2	1:A:2159:TYR:O	2.05	0.57
1:A:884:ILE:HD13	1:A:892:PHE:HE2	1.70	0.56
1:A:1587:ASN:HB3	1:A:1638:ASN:HB2	1.86	0.56
1:A:2206:TYR:O	1:A:2207:ARG:NH1	2.39	0.56
2:B:100:ILE:HG22	2:B:100:ILE:O	2.06	0.56
3:F:99:LYS:HA	3:F:105:ALA:HA	1.87	0.55
1:A:1876:ILE:HD11	1:A:1960:LEU:HD23	1.89	0.55
2:B:54:TYR:HB2	2:B:145:PHE:HB2	1.89	0.55
1:A:1012:LEU:HD13	1:A:1213:TRP:CE2	2.42	0.55
1:A:1683:GLN:HG3	1:A:1738:GLN:HG2	1.88	0.55
1:A:1291:ASN:OD1	1:A:1326:GLN:NE2	2.39	0.55
3:F:304:ILE:O	3:F:307:SER:OG	2.23	0.55
1:A:288:ASN:ND2	1:A:289:ASP:OD2	2.35	0.55
3:F:121:ARG:HD3	4:D:1042:TYR:CD1	2.41	0.55
1:A:2272:ASP:N	1:A:2272:ASP:OD1	2.39	0.55
1:A:1849:ASP:HB2	1:A:1879:SER:HB2	1.88	0.54
3:F:170:GLU:H	3:F:170:GLU:CD	2.10	0.54
1:A:540:ASP:HA	1:A:683:LYS:HE2	1.89	0.54
1:A:1963:TYR:CZ	1:A:1965:PRO:HG2	2.43	0.54
2:B:32:GLU:O	2:B:36:VAL:HG13	2.07	0.54
1:A:2329:LEU:HD13	1:A:2353:TRP:HB3	1.90	0.54
5:A:2501:LMN:HBJA	5:A:2501:LMN:HBIA	1.90	0.54
1:A:1951:ASN:HB2	1:A:2016:LYS:HB3	1.89	0.53
1:A:163:ASN:ND2	3:F:173:ASP:HA	2.22	0.53
1:A:219:LYS:NZ	1:A:221:GLU:OE2	2.42	0.53
1:A:2021:ILE:HB	1:A:2029:VAL:HB	1.90	0.53
1:A:556:ILE:HG22	1:A:564:PHE:HZ	1.73	0.52
3:F:157:ALA:HB3	3:F:183:ASP:HB2	1.91	0.51

Atom 1	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:A:350:LEU:HD11	1:A:390:PRO:HD3	1.91	0.51	
1:A:679:ARG:NH2	1:A:1675:GLU:OE1	2.36	0.51	
1:A:2071:MET:HE3	1:A:2245:LEU:HB3	1.93	0.51	
2:B:139:GLY:N	2:B:172:LEU:O	2.35	0.51	
1:A:553:ILE:HG22	1:A:555:TYR:H	1.76	0.51	
1:A:649:ALA:HA	1:A:652:GLN:HB2	1.91	0.51	
1:A:1179:ILE:HD12	1:A:1216:PHE:CD2	2.46	0.51	
2:B:96:ASN:OD1	2:B:119:SER:OG	2.28	0.51	
1:A:1370:ASN:O	1:A:1371:GLN:NE2	2.44	0.51	
1:A:1316:ASN:HB2	1:A:1321:ILE:HG13	1.93	0.51	
1:A:2142:GLY:HA3	1:A:2234:PHE:CE2	2.46	0.51	
3:F:124:GLY:O	3:F:125:ASP:HB2	2.11	0.50	
3:F:285:SER:O	3:F:289:GLU:HG3	2.12	0.50	
1:A:2212:ILE:HG12	1:A:2243:VAL:HG12	1.94	0.50	
1:A:421:GLU:HB3	1:A:1171:ILE:HD11	1.93	0.50	
1:A:2316:ILE:HG23	1:A:2317:ILE:HG13	1.93	0.50	
4:D:1101:LEU:HD11	4:D:1107:ILE:HD11	1.94	0.50	
1:A:287:ASP:OD1	1:A:453:ARG:NH2	2.40	0.50	
1:A:1007:ILE:HD11	1:A:1033:LEU:HD11	1.94	0.50	
1:A:2274:ALA:HB3	1:A:2287:VAL:HB	1.93	0.50	
3:F:133:VAL:HG11	3:F:167:VAL:HG13	1.94	0.50	
1:A:1993:LYS:NZ	1:A:2051:THR:O	2.32	0.49	
1:A:152:THR:HG21	3:F:131:ARG:HG3	1.94	0.49	
1:A:556:ILE:HD12	1:A:654:TYR:CE1	2.47	0.49	
1:A:1813:ILE:HG13	1:A:1813:ILE:O	2.12	0.49	
1:A:2171:ILE:HD13	1:A:2240:MET:HE1	1.95	0.49	
1:A:2321:ILE:HG12	1:A:2361:TYR:HD2	1.76	0.49	
1:A:277:GLN:NE2	1:A:278:ASN:O	2.45	0.49	
1:A:343:ASN:O	1:A:344:ILE:HD13	2.12	0.49	
1:A:1548:SER:HB2	1:A:1551:GLN:HG3	1.93	0.49	
1:A:1120:TYR:CE2	1:A:1122:LEU:HB2	2.48	0.49	
2:B:127:PRO:O	2:B:131:GLU:HG2	2.12	0.49	
1:A:556:ILE:HG23	1:A:654:TYR:CZ	2.48	0.49	
1:A:2191:LYS:HZ2	1:A:2192:TYR:HE1	1.61	0.49	
1:A:658:ASN:ND2	1:A:670:ASP:OD2	2.46	0.49	
1:A:1318:ASN:HB2	3:F:31:PRO:HB2	1.95	0.49	
1:A:179:LEU:HB2	1:A:191:ALA:HB3	1.95	0.49	
1:A:864:SER:HA	1:A:1263:GLU:HG2	1.94	0.48	
1:A:1945:ILE:HG12	1:A:2021:ILE:HD12	1.95	0.48	
1:A:755:ARG:NH2	1:A:1550:GLU:HG2	2.25	0.48	
1:A:931:SER:HB3	1:A:1203:LEU:HB3	1.95	0.48	

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:1577:PRO:HG2	1:A:1580:TRP:NE1	2.29	0.48
3:F:199:ASN:N	3:F:199:ASN:OD1	2.42	0.48
1:A:359:PRO:HG2	1:A:362:GLU:OE1	2.14	0.48
1:A:556:ILE:HG22	1:A:564:PHE:CZ	2.48	0.48
1:A:1956:SER:HB3	1:A:1984:GLN:HG3	1.94	0.48
1:A:2364:SER:HB2	5:A:2501:LMN:HCT	1.95	0.48
1:A:1774:LEU:HD12	1:A:1778:LEU:HD13	1.95	0.47
1:A:1342:SER:HB3	1:A:1491:LYS:HG3	1.96	0.47
1:A:144:GLU:HB2	1:A:174:ARG:HB2	1.97	0.47
1:A:1954:LYS:HG3	1:A:2013:LYS:HG2	1.96	0.47
1:A:184:GLY:O	1:A:185:THR:HG22	2.14	0.47
1:A:572:SER:HA	1:A:632:LYS:HD3	1.97	0.47
1:A:730:ASP:O	1:A:734:GLN:HG3	2.13	0.47
1:A:1639:PHE:HB2	1:A:1664:GLN:HB3	1.96	0.47
3:F:84:ASP:OD1	3:F:84:ASP:N	2.47	0.47
1:A:2142:GLY:HA3	1:A:2234:PHE:CD2	2.50	0.47
1:A:1127:GLY:O	1:A:1131:ARG:HG3	2.15	0.47
1:A:2398:ARG:HG2	1:A:2398:ARG:HH11	1.78	0.47
3:F:126:PRO:HD2	3:F:127:ASN:N	2.30	0.47
1:A:2259:LEU:HD12	1:A:2263:LEU:HD23	1.97	0.47
3:F:68:ALA:HB3	3:F:99:LYS:HD2	1.98	0.47
1:A:692:ILE:HB	1:A:744:LEU:CD2	2.45	0.46
1:A:1063:PRO:HD2	1:A:1066:GLY:O	2.15	0.46
1:A:711:LEU:HB3	1:A:716:ASP:HB2	1.96	0.46
1:A:884:ILE:HD12	1:A:884:ILE:HA	1.82	0.46
3:F:353:GLN:HG2	3:F:376:ALA:HB3	1.96	0.46
1:A:933:ASN:ND2	1:A:1017:GLY:HA3	2.30	0.46
1:A:679:ARG:HH22	1:A:1675:GLU:CD	2.17	0.46
1:A:1829:ILE:O	1:A:1831:ILE:N	2.47	0.46
1:A:1391:GLN:O	1:A:1476:GLY:HA3	2.16	0.46
1:A:511:ASN:HD21	1:A:1237:ARG:CZ	2.29	0.46
1:A:1561:VAL:HG22	1:A:1595:ILE:HG12	1.98	0.46
1:A:1617:ASP:OD2	1:A:1620:GLU:HG3	2.16	0.46
1:A:1872:LEU:O	1:A:1962:GLY:HA2	2.15	0.46
1:A:471:LYS:HB2	1:A:471:LYS:HE2	1.56	0.46
1:A:611:ASP:HB3	1:A:616:ARG:HB2	1.97	0.46
3:F:80:PRO:HB2	3:F:83:THR:HG22	1.97	0.46
1:A:1765:ASN:OD1	1:A:1787:ASN:ND2	2.48	0.45
3:F:298:ILE:HD13	3:F:306:LYS:HD2	1.99	0.45
1:A:635:THR:OG1	1:A:639:GLU:OE2	2.33	0.45
1:A:1203:LEU:HD11	1:A:1209:THR:HB	1.99	0.45

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:1863:GLU:HG3	1:A:1869:VAL:HG22	1.97	0.45
2:B:94:ASN:O	2:B:94:ASN:ND2	2.49	0.45
1:A:209:TYR:CE1	1:A:211:PRO:HG3	2.52	0.45
1:A:1187:VAL:HG23	1:A:1195:ILE:HD12	1.98	0.45
1:A:1389:PHE:CE1	1:A:1485:ASN:HB3	2.50	0.45
2:B:109:LYS:HB2	2:B:109:LYS:HE3	1.51	0.45
1:A:200:ALA:HB2	3:F:83:THR:HB	1.97	0.45
1:A:2020:ASN:C	1:A:2021:ILE:HD13	2.36	0.45
1:A:183:ILE:HB	1:A:187:LEU:HB3	1.97	0.45
1:A:2221:TYR:CD2	2:B:158:LYS:HE2	2.52	0.45
1:A:348:GLN:NE2	1:A:423:THR:O	2.49	0.45
1:A:1029:ILE:HG12	1:A:1243:MET:HG2	1.99	0.45
1:A:1049:GLU:HB2	1:A:1088:GLN:O	2.17	0.45
1:A:1733:THR:HG23	1:A:1766:TYR:HB3	1.97	0.45
1:A:683:LYS:HE2	1:A:683:LYS:HB2	1.78	0.45
1:A:1683:GLN:HE21	1:A:1683:GLN:HB3	1.67	0.45
1:A:343:ASN:HB3	1:A:407:ILE:HD11	1.99	0.45
1:A:623:GLU:OE2	1:A:661:ARG:NH2	2.44	0.45
1:A:662:ASN:OD1	1:A:1234:ARG:NH2	2.50	0.45
1:A:1348:ASN:ND2	1:A:1485:ASN:OD1	2.50	0.45
1:A:1522:ILE:HD12	1:A:1539:GLY:O	2.17	0.45
3:F:246:LYS:HB2	3:F:331:MET:HB3	1.99	0.45
1:A:145:MET:SD	3:F:76:ILE:HD12	2.58	0.44
1:A:720:ASP:OD1	1:A:723:LEU:HB2	2.17	0.44
1:A:1389:PHE:CZ	1:A:1485:ASN:HB3	2.52	0.44
3:F:100:ILE:HG13	3:F:101:ASN:H	1.82	0.44
3:F:320:LYS:NZ	3:F:348:MET:HG2	2.32	0.44
1:A:1578:LYS:HB2	1:A:1578:LYS:HE3	1.72	0.44
1:A:1634:ARG:HG2	1:A:1669:VAL:HG22	2.00	0.44
3:F:123:THR:HG23	3:F:124:GLY:H	1.82	0.44
1:A:699:GLN:HA	1:A:721:TYR:CE1	2.53	0.44
1:A:1298:LYS:O	1:A:1302:ASN:ND2	2.48	0.44
1:A:1270:THR:OG1	1:A:1278:PRO:HD3	2.18	0.44
1:A:865:GLN:HG3	1:A:1289:ALA:HB2	2.00	0.44
1:A:1338:GLN:HB2	1:A:1341:ASP:HB2	1.98	0.44
1:A:556:ILE:HD13	1:A:556:ILE:HA	1.76	0.44
1:A:1270:THR:HG21	1:A:1276:GLN:HA	1.99	0.44
1:A:351:GLY:HA2	1:A:382:SER:O	2.18	0.44
1:A:1760:ARG:HD2	1:A:1793:PHE:CG	2.53	0.44
3:F:61:ASN:O	3:F:64:LYS:HG2	2.18	0.44
3:F:199:ASN:O	3:F:240:ILE:HB	2.18	0.44

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:273:GLY:O	1:A:690:ILE:HG12	2.18	0.43
1:A:1673:ASP:OD1	1:A:1676:VAL:HG12	2.17	0.43
1:A:2064:MET:HE3	1:A:2213:ASN:O	2.18	0.43
3:F:294:LYS:HD2	3:F:294:LYS:C	2.38	0.43
1:A:644:PRO:HA	1:A:647:TYR:CE1	2.53	0.43
1:A:692:ILE:HG12	1:A:724:GLY:O	2.18	0.43
1:A:1777:SER:HB2	1:A:1828:ASP:HB2	2.00	0.43
1:A:218:GLN:NE2	1:A:218:GLN:HA	2.33	0.43
3:F:21:ASP:OD1	3:F:21:ASP:N	2.48	0.43
1:A:287:ASP:OD2	1:A:290:ARG:HD2	2.19	0.43
1:A:1988:ARG:NH1	1:A:2043:GLU:OE2	2.51	0.43
1:A:365:VAL:HG13	1:A:518:PRO:HD2	2.00	0.43
1:A:251:ARG:HD2	1:A:765:LYS:HZ2	1.83	0.43
2:B:133:ILE:HD13	2:B:133:ILE:HA	1.85	0.43
1:A:2370:ILE:HB	1:A:2396:THR:CG2	2.47	0.43
1:A:808:THR:OG1	1:A:809:GLU:N	2.52	0.43
1:A:1746:GLU:OE2	1:A:1753:GLY:N	2.52	0.43
1:A:133:ASN:HB2	3:F:333:GLN:HE21	1.83	0.42
1:A:2231:ASN:O	1:A:2232:THR:OG1	2.36	0.42
3:F:36:ALA:O	3:F:388:ARG:NH2	2.47	0.42
1:A:1495:ASP:OD1	1:A:1495:ASP:N	2.53	0.42
1:A:1772:PHE:HD2	1:A:1780:LEU:HD22	1.83	0.42
4:D:1062:VAL:HG12	4:D:1075:ASN:HB3	2.00	0.42
1:A:1988:ARG:HD3	1:A:2007:PHE:CD2	2.54	0.42
1:A:1074:LEU:HG	1:A:1075:ILE:HG12	2.01	0.42
1:A:1178:SER:H	1:A:1224:GLN:NE2	2.17	0.42
1:A:2050:SER:O	1:A:2051:THR:OG1	2.33	0.42
1:A:2350:GLN:HE22	3:F:127:ASN:HD22	1.67	0.42
1:A:194:ASP:HB3	1:A:197:SER:HB3	2.02	0.42
1:A:1010:TRP:CH2	1:A:1215:GLN:HB2	2.54	0.42
3:F:24:ARG:HD2	3:F:261:PRO:HB2	2.00	0.42
4:D:1054:SER:OG	4:D:1057:ASP:O	2.17	0.42
1:A:309:TYR:O	1:A:587:ARG:NH1	2.51	0.42
1:A:691:PRO:HB3	1:A:725:ARG:NH2	2.34	0.42
1:A:1121:TYR:O	1:A:1131:ARG:HD3	2.19	0.42
1:A:1316:ASN:HA	4:D:1068:SER:HB3	2.00	0.42
1:A:1361:MET:HE2	1:A:1383:ILE:HD11	2.02	0.42
3:F:24:ARG:HD3	3:F:24:ARG:HA	1.74	0.42
1:A:343:ASN:ND2	1:A:407:ILE:HG13	2.33	0.42
1:A:1337:LEU:HD23	1:A:1337:LEU:HA	1.90	0.42
1:A:1829:ILE:HD11	1:A:1844:TYR:HB2	2.01	0.42

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:623:GLU:HB2	1:A:627:GLU:HG2	2.02	0.42
1:A:840:LEU:O	1:A:1517:GLY:HA3	2.20	0.42
1:A:1077:ALA:HB2	1:A:2384:THR:HG23	2.01	0.42
1:A:1339:TYR:CD1	1:A:1495:ASP:HA	2.55	0.42
1:A:268:VAL:HG22	1:A:742:VAL:HB	2.02	0.41
1:A:865:GLN:HE22	1:A:1006:TYR:HE1	1.67	0.41
1:A:1965:PRO:CD	1:A:1996:TRP:HB2	2.43	0.41
1:A:1853:GLN:O	1:A:1874:ASN:HB3	2.20	0.41
2:B:35:ILE:HG21	2:B:54:TYR:CD2	2.55	0.41
3:F:369:ASP:HB2	3:F:390:SER:HB2	2.02	0.41
1:A:511:ASN:HD21	1:A:1237:ARG:NH2	2.19	0.41
1:A:1474:ILE:HD11	1:A:1478:PRO:HD2	2.02	0.41
1:A:1844:TYR:OH	1:A:1882:ASN:OD1	2.25	0.41
1:A:2401:PHE:HZ	3:F:391:LEU:HD21	1.84	0.41
1:A:1579:LYS:HE2	1:A:1579:LYS:HB2	1.92	0.41
1:A:1642:VAL:HB	1:A:1662:PHE:HB3	2.03	0.41
2:B:61:GLY:HA3	2:B:138:SER:O	2.20	0.41
2:B:158:LYS:HB2	2:B:158:LYS:HE3	1.83	0.41
3:F:53:SER:HB2	3:F:64:LYS:HB2	2.02	0.41
1:A:749:ILE:HD12	1:A:752:GLN:HG3	2.01	0.41
1:A:827:VAL:HG21	1:A:1531:ASP:HB3	2.01	0.41
1:A:965:TYR:HB3	1:A:968:GLU:HG3	2.02	0.41
5:A:2501:LMN:HBK	5:A:2501:LMN:HBS	1.34	0.41
1:A:318:ILE:HD13	1:A:466:TYR:HB3	2.02	0.41
1:A:1942:LEU:HD12	1:A:1942:LEU:HA	1.86	0.41
1:A:2184:TYR:CE1	1:A:2186:GLY:HA3	2.56	0.41
3:F:21:ASP:HB2	3:F:22:ILE:H	1.67	0.41
3:F:48:GLY:O	3:F:64:LYS:HE2	2.21	0.41
4:D:1052:LEU:HG	4:D:1083:PHE:HE2	1.86	0.41
1:A:235:ARG:HD2	1:A:235:ARG:HA	1.62	0.41
1:A:884:ILE:HG22	1:A:889:ASP:OD2	2.21	0.41
1:A:1191:TYR:HE2	1:A:1224:GLN:HE21	1.68	0.41
1:A:827:VAL:HG22	1:A:1530:ALA:HA	2.03	0.40
1:A:1351:VAL:HG12	1:A:1353:MET:HG2	2.03	0.40
1:A:1431:THR:HG23	1:A:1606:ILE:HG12	2.03	0.40
1:A:933:ASN:OD1	1:A:936:ARG:NE	2.35	0.40
1:A:1036:ILE:HD12	1:A:1238:PHE:HB2	2.04	0.40
1:A:1048:TYR:CE1	1:A:1069:PRO:HG2	2.55	0.40
1:A:733:LEU:HD23	1:A:733:LEU:HA	1.95	0.40
1:A:1012:LEU:HD11	1:A:1211:ALA:HB1	2.03	0.40
3:F:121:ARG:HD3	4:D:1042:TYR:HD1	1.85	0.40

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:699:GLN:H	1:A:699:GLN:HG2	1.63	0.40
1:A:1428:ASP:OD1	1:A:1428:ASP:N	2.54	0.40
1:A:2268:GLU:OE1	1:A:2270:LYS:HE2	2.21	0.40
3:F:194:ALA:HA	3:F:199:ASN:HA	2.04	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	2183/2403~(91%)	2084 (96%)	98 (4%)	1 (0%)	100	100
2	В	124/176~(70%)	115 (93%)	9 (7%)	0	100	100
3	F	363/402~(90%)	345~(95%)	18 (5%)	0	100	100
4	D	73/1114 (7%)	68 (93%)	5 (7%)	0	100	100
All	All	2743/4095~(67%)	2612 (95%)	130 (5%)	1 (0%)	100	100

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	199	PHE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	1926/2114 (91%)	1864 (97%)	62 (3%)	39 50
2	В	109/151~(72%)	104~(95%)	5(5%)	27 34
3	F	296/325~(91%)	272~(92%)	24 (8%)	11 12
4	D	72/853~(8%)	69~(96%)	3 (4%)	30 38
All	All	2403/3443~(70%)	2309~(96%)	94 (4%)	36 41

All (94) residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
1	А	176	SER
1	А	219	LYS
1	А	239	SER
1	А	280	ASP
1	А	378	ASP
1	А	401	ASN
1	А	411	LYS
1	А	456	ASN
1	А	518	PRO
1	А	537	LYS
1	А	539	ASP
1	А	554	ASN
1	А	656	PHE
1	А	720	ASP
1	А	725	ARG
1	А	741	GLU
1	А	747	ASN
1	А	767	SER
1	А	826	ASP
1	А	827	VAL
1	А	836	GLU
1	А	871	ARG
1	А	931	SER
1	А	996	SER
1	А	1102	SER
1	А	1247	ASN
1	А	1290	VAL
1	А	1353	MET
1	А	1428	ASP
1	А	1495	ASP
1	А	1531	ASP
1	А	1683	GLN
1	А	1722	PHE

Mol	Chain	Res	Type
1	А	1727	SER
1	А	1745	ARG
1	А	1752	ILE
1	А	1778	LEU
1	А	1808	ASP
1	А	1827	TYR
1	А	1849	ASP
1	А	1856	SER
1	А	1879	SER
1	А	1881	SER
1	А	1890	MET
1	А	1947	ASN
1	А	1949	GLN
1	А	1956	SER
1	А	2011	SER
1	А	2022	ASP
1	А	2030	ASP
1	А	2034	ASP
1	А	2066	SER
1	А	2083	GLN
1	А	2136	ASN
1	А	2191	LYS
1	А	2198	LYS
1	А	2207	ARG
1	А	2240	MET
1	А	2299	ARG
1	А	2351	ASN
1	А	2364	SER
1	А	2396	THR
2	В	42	ASN
2	В	94	ASN
2	В	116	GLU
2	В	136	LEU
2	В	174	SER
3	F	88	ASP
3	F	102	ASP
3	F	128	GLU
3	F	137	GLU
3	F	141	ASP
3	F	149	SER
3	F	171	GLU
3	F	197	ASP

Mol	Chain	Res	Type
3	F	198	PHE
3	F	216	SER
3	F	221	ASP
3	F	241	PHE
3	F	243	ASP
3	F	254	THR
3	F	294	LYS
3	F	296	LYS
3	F	310	ASP
3	F	333	GLN
3	F	334	ASP
3	F	346	SER
3	F	348	MET
3	F	349	LYS
3	F	392	THR
3	F	401	THR
4	D	1054	SER
4	D	1084	GLN
4	D	1102	ASP

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (7) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	1324	ASN
1	А	1326	GLN
1	А	1348	ASN
1	А	1485	ASN
1	А	2331	ASN
1	А	2350	GLN
1	А	2351	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

1 ligand is modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	Tink	B	ond leng	gths	B	ond ang	les
WIOI	Type	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
5	LMN	А	2501	-	72,72,72	1.62	12 (16%)	96,98,98	1.05	5 (5%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	LMN	А	2501	-	-	23/50/130/130	0/4/4/4

All (12) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
5	А	2501	LMN	O5-C1	5.93	1.56	1.41
5	А	2501	LMN	O1-C1	-4.21	1.33	1.40
5	А	2501	LMN	CBQ-CCM	3.56	1.60	1.54
5	А	2501	LMN	CBT-CCM	3.48	1.61	1.53
5	А	2501	LMN	CBS-CCM	2.91	1.60	1.53
5	А	2501	LMN	O4-C4	2.80	1.51	1.43
5	А	2501	LMN	OBZ-CCS	2.75	1.48	1.41
5	А	2501	LMN	OBX-CCJ	2.59	1.48	1.41
5	А	2501	LMN	OBX-CCF	2.54	1.50	1.44
5	А	2501	LMN	OBY-CCR	2.37	1.47	1.41
5	А	2501	LMN	CBR-CBL	2.31	1.60	1.52
5	А	2501	LMN	CBR-CCM	2.00	1.58	1.54

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
5	А	2501	LMN	CCS-OCB-CCQ	-3.45	109.43	117.96
5	А	2501	LMN	CCR-O4-C4	-3.34	109.70	117.96
5	А	2501	LMN	CBK-CBQ-CCM	-2.53	109.03	117.16
5	А	2501	LMN	C1-C2-C3	2.48	115.16	110.00
5	А	2501	LMN	CBL-CBR-CCM	-2.03	110.62	117.16

All (5) bond angle outliers are listed below:

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
5	А	2501	LMN	O5-C1-O1-CBS
5	А	2501	LMN	CBK-CBQ-CCM-CBR
5	А	2501	LMN	CBK-CBQ-CCM-CBS
5	А	2501	LMN	CBK-CBQ-CCM-CBT
5	А	2501	LMN	O1-CBS-CCM-CBQ
5	А	2501	LMN	O1-CBS-CCM-CBR
5	А	2501	LMN	OBY-CCR-O4-C4
5	А	2501	LMN	OAJ-CBN-CCD-CCO
5	А	2501	LMN	O1-CBS-CCM-CBT
5	А	2501	LMN	O5-C5-C6-O6
5	А	2501	LMN	OAJ-CBN-CCD-OBZ
5	А	2501	LMN	CBJ-CBL-CBR-CCM
5	А	2501	LMN	CBI-CBK-CBQ-CCM
5	А	2501	LMN	CBC-CBE-CBG-CBI
5	А	2501	LMN	CCH-CCQ-OCB-CCS
5	А	2501	LMN	OAL-CBP-CCF-OBX
5	А	2501	LMN	CCF-CCQ-OCB-CCS
5	А	2501	LMN	CBH-CBJ-CBL-CBR
5	A	2501	LMN	OBZ-CCS-OCB-CCQ
5	A	2501	LMN	CBE-CBG-CBI-CBK
5	A	2501	LMN	C4-C5-C6-O6
5	А	2501	LMN	CCW-CCS-OCB-CCQ
5	А	2501	LMN	CBA-CBC-CBE-CBG

All (23) torsion outliers are listed below:

There are no ring outliers.

1 monomer is involved in 3 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
5	А	2501	LMN	3	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths,

bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-40199. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 192

Y Index: 192

Z Index: 192

6.2.2 Raw map

X Index: 192

Y Index: 192

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 159

Y Index: 210

Z Index: 198

6.3.2 Raw map

X Index: 159

Y Index: 210

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.0117. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

emd_40199_msk_1.map (i) 6.6.1

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 133 nm^3 ; this corresponds to an approximate mass of 120 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.455 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.455 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estim	Estimation criterion (FSC cut-off)			
Resolution estimate (A)	0.143	0.5	Half-bit		
Reported by author	2.20	-	-		
Author-provided FSC curve	2.22	2.61	2.27		
Unmasked-calculated*	2.78	3.31	2.85		

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 2.78 differs from the reported value 2.2 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-40199 and PDB model 8GLM. Per-residue inclusion information can be found in section 3 on page 5.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.0117 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.0117).

9.4 Atom inclusion (i)

At the recommended contour level, 97% of all backbone atoms, 91% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.0117) and Q-score for the entire model and for each chain.

		0
Chain	Atom inclusion	Q-score
All	0.9140	0.6440
А	0.9240	0.6510
В	0.8640	0.6030
D	0.9010	0.6160
F	0.8750	0.6220

