

# Full wwPDB X-ray Structure Validation Report (i)

#### Aug 19, 2023 – 04:47 PM EDT

| PDB ID       | : | 2FZS                                                                       |
|--------------|---|----------------------------------------------------------------------------|
| Title        | : | Crystal structure of E. coli ClpP with a Peptide Chloromethyl Ketone Cova- |
|              |   | lently Bound at the Active Site                                            |
| Authors      | : | Szyk, A.; Maurizi, M.R.                                                    |
| Deposited on | : | 2006-02-10                                                                 |
| Resolution   | : | 1.90 Å(reported)                                                           |
|              |   |                                                                            |

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| MolProbity                     | : | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as541be (2020)                                 |
| Xtriage (Phenix)               | : | 1.13                                                               |
| EDS                            | : | 2.35                                                               |
| buster-report                  | : | 1.1.7(2018)                                                        |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| Refmac                         | : | 5.8.0158                                                           |
| CCP4                           | : | 7.0.044 (Gargrove)                                                 |
| Ideal geometry (proteins)      | : | Engh & Huber $(2001)$                                              |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.35                                                               |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $X\text{-}RAY \, DIFFRACTION$ 

The reported resolution of this entry is 1.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Motria                | Whole archive       | Similar resolution                                          |
|-----------------------|---------------------|-------------------------------------------------------------|
|                       | $(\# { m Entries})$ | $(\# { m Entries},  { m resolution}  { m range}({ m \AA}))$ |
| R <sub>free</sub>     | 130704              | 6207 (1.90-1.90)                                            |
| Clashscore            | 141614              | 6847 (1.90-1.90)                                            |
| Ramachandran outliers | 138981              | 6760 (1.90-1.90)                                            |
| Sidechain outliers    | 138945              | 6760 (1.90-1.90)                                            |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

| Mol | Chain | Length | Quality of chain |            |
|-----|-------|--------|------------------|------------|
| 1   | А     | 193    | 77%              | 13% 6% • • |
| 1   | В     | 193    | 79%              | 17% • •    |
| 1   | С     | 193    | 75%              | 15% 5% 5%  |
| 1   | D     | 193    | 75%              | 17% •••    |
| 1   | Е     | 193    | 80%              | 16% • •    |
| 1   | F     | 193    | 79%              | 15% •••    |
| 1   | G     | 193    | 74%              | 18% • 5%   |



| Contr | nueu fron | i previous | puge             |     |       |
|-------|-----------|------------|------------------|-----|-------|
| Mol   | Chain     | Length     | Quality of chain |     |       |
| 1     | Н         | 193        | 78%              | 13% | • 5%  |
| 1     | Ι         | 193        | 72%              | 21% | • 5%  |
| 1     | J         | 193        | 76%              | 18% | •••   |
| 1     | K         | 193        | 76%              | 18% | •••   |
| 1     | L         | 193        | 75%              | 17% | •• 5% |
| 1     | М         | 193        | 76%              | 18% | ••••  |
| 1     | Ν         | 193        | 83%              | 10% | •• 5% |

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

| Mol | Type | Chain | Res  | Chirality | Geometry | Clashes | Electron density |
|-----|------|-------|------|-----------|----------|---------|------------------|
| 4   | GOL  | С     | 3006 | -         | -        | Х       | -                |



# 2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 24125 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain | Residues | Atoms |     |     |     |              | ZeroOcc | AltConf | Trace |   |  |
|-----|-------|----------|-------|-----|-----|-----|--------------|---------|---------|-------|---|--|
| 1   | Δ     | 196      | Total | С   | Ν   | 0   | S            | 0       | 7       | 0     |   |  |
|     | A     | 100      | 1487  | 946 | 252 | 274 | 15           | 0       | 1       | 0     |   |  |
| 1   | р     | 102      | Total | С   | Ν   | 0   | S            | 0       | 10      | 0     |   |  |
| 1   | D     | 192      | 1554  | 981 | 268 | 290 | 15           | 0       | 10      | 0     |   |  |
| 1   | С     | 183      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0       | 7       | 0     |   |  |
|     | 0     | 100      | 1467  | 931 | 254 | 270 | 12           |         | 0       |       | 0 |  |
| 1   | О     | 185      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0       | 3       | 0     |   |  |
|     |       | 100      | 1462  | 926 | 249 | 275 | 12           | 0       | 0       | 0     |   |  |
| 1   | E     | 188      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0       | 2       | 0     |   |  |
| -   |       | 100      | 1479  | 936 | 252 | 278 | 13           | 0       |         | 0     |   |  |
| 1   | F     | 185      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0       | 2       | 0     |   |  |
|     | T,    | 100      | 1453  | 920 | 247 | 274 | 12           | 0       | 2       | 0     |   |  |
| 1   | G     | 183      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0       | 1       | 0     |   |  |
|     | G     | 100      | 1448  | 917 | 246 | 271 | 14           | 0       | T       | 0     |   |  |
| 1   | Н     | 183      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0       | 2       | 0     |   |  |
| -   | 11    | 100      | 1439  | 912 | 245 | 270 | 12           | 0       |         | 0     |   |  |
| 1   | Т     | 183      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0       | 7       | 0     |   |  |
| -   | 1     | 100      | 1461  | 928 | 248 | 270 | 15           |         |         |       |   |  |
| 1   | J     | 185      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0       | 2       | 0     |   |  |
|     |       | 100      | 1456  | 922 | 247 | 274 | 13           | Ŭ       | -       |       |   |  |
| 1   | K     | 186      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0       | 1       | 0     |   |  |
| -   |       | 100      | 1462  | 926 | 251 | 273 | 12           | 0       | 1       | 0     |   |  |
| 1   | L     | 183      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0       | 11      | 0     |   |  |
|     | Ľ     | 100      | 1478  | 939 | 246 | 278 | 15           | 0       | 11      |       |   |  |
| 1   | М     | 186      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0       | 11      | 0     |   |  |
|     |       | 100      | 1505  | 958 | 256 | 276 | 15           |         | **      | 0     |   |  |
| 1   | Ν     | 183      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0       | 10      | 0     |   |  |
| -   |       | 100      | 1469  | 938 | 245 | 271 | 15           |         | 10      |       |   |  |

• Molecule 1 is a protein called ATP-dependent Clp protease proteolytic subunit.

• Molecule 2 is N 2 -[(BENZYLOXY)CARBONYL]-N-[(1S,2S)-2-HYDROXY-1-(4-H YDROXYBENZYL)PROPYL]-L-LEUCINAMIDE (three-letter code: CMQ) (formula: C<sub>24</sub>H<sub>32</sub>N<sub>2</sub>O<sub>5</sub>).





| Mol | Chain | Residues | Atoms |              |   |   | ZeroOcc | AltConf |   |
|-----|-------|----------|-------|--------------|---|---|---------|---------|---|
| 0   |       | 1        | Total | С            | Ν | 0 | 0       | 0       |   |
|     | A     | 1        | 31    | 24           | 2 | 5 | 0       | 0       |   |
| 0   | D     | 1        | Total | С            | Ν | 0 | 0       | 0       |   |
|     | D     | L        | 31    | 24           | 2 | 5 | 0       | 0       |   |
| 9   | С     | 1        | Total | С            | Ν | 0 | 0       | 0       |   |
|     |       | L        | 31    | 24           | 2 | 5 | 0       | 0       |   |
| 9   | П     | 1        | Total | С            | Ν | 0 | 0       | 0       |   |
|     | D     | T        | 31    | 24           | 2 | 5 | 0       | 0       |   |
| 9   | F     | 1        | Total | С            | Ν | 0 | 0       | 0       |   |
|     | Ľ     | T        | 31    | 24           | 2 | 5 | 0       | 0       |   |
| 9   | F     | 1        | Total | С            | Ν | 0 | 0       | 0       |   |
|     | I.    | T        | 31    | 24           | 2 | 5 | 0       | 0       |   |
| 2   | C     | 1        | Total | С            | Ν | 0 | 0       | 0       |   |
| 2   | G     | T        | 31    | 24           | 2 | 5 | 0       | 0       |   |
| 2   | Ц     | н        | 1     | Total        | С | Ν | Ο       | 0       | 0 |
| 2   | 11    | I        | 31    | 24           | 2 | 5 | 0       | 0       |   |
| 2   | T     | 1        | Total | С            | Ν | Ο | 0       | 0       |   |
| 2   | T     | I        | 31    | 24           | 2 | 5 | U       | 0       |   |
| 2   | т     | 1        | Total | С            | Ν | 0 | 0       | 0       |   |
|     | 5     | T        | 31    | 24           | 2 | 5 | 0       | 0       |   |
| 2   | K     | 1        | Total | С            | Ν | Ο | 0       | 0       |   |
|     | 11    | I        | 31    | 24           | 2 | 5 | 0       | 0       |   |
| 2   | L     | 1        | Total | $\mathbf{C}$ | Ν | Ο | 0       | 0       |   |
| 2   | Ľ     | I        | 31    | 24           | 2 | 5 | 0       | 0       |   |
| 2   | М     | 1        | Total | $\mathbf{C}$ | Ν | Ο | 0       | 0       |   |
| 2   | IVI   | T        | 31    | 24           | 2 | 5 | 0       | 0       |   |
| 2   | N     | 1        | Total | С            | Ν | 0 | 0       | 0       |   |
|     |       | L 1      | 31    | 24           | 2 | 5 | 0       |         |   |



• Molecule 3 is TRIETHYLENE GLYCOL (three-letter code: PGE) (formula:  $C_6H_{14}O_4$ ).



| Mol | Chain | Residues | Atoms                                                         | ZeroOcc | AltConf |
|-----|-------|----------|---------------------------------------------------------------|---------|---------|
| 3   | А     | 1        | Total         C         O           10         6         4    | 0       | 0       |
| 3   | В     | 1        | Total         C         O           10         6         4    | 0       | 0       |
| 3   | С     | 1        | Total         C         O           10         6         4    | 0       | 0       |
| 3   | D     | 1        | Total         C         O           10         6         4    | 0       | 0       |
| 3   | Е     | 1        | Total         C         O           10         6         4    | 0       | 0       |
| 3   | F     | 1        | Total         C         O           10         6         4    | 0       | 0       |
| 3   | G     | 1        | Total         C         O           10         6         4    | 0       | 0       |
| 3   | Н     | 1        | Total         C         O           10         6         4    | 0       | 0       |
| 3   | Ι     | 1        | Total         C         O           10         6         4    | 0       | 0       |
| 3   | J     | 1        | Total         C         O           10         6         4    | 0       | 0       |
| 3   | K     | 1        | Total         C         O           10         6         4    | 0       | 0       |
| 3   | K     | 1        | $\begin{array}{c cc} Total & C & O \\ 10 & 6 & 4 \end{array}$ | 0       | 0       |
| 3   | L     | 1        | Total         C         O           10         6         4    | 0       | 0       |



| Mol | Chain | Residues | Atoms                                                      | ZeroOcc | AltConf |
|-----|-------|----------|------------------------------------------------------------|---------|---------|
| 3   | М     | 1        | Total         C         O           10         6         4 | 0       | 0       |
| 3   | Ν     | 1        | Total C O<br>10 6 4                                        | 0       | 0       |



| Mol | Chain | Residues | Atoms                                                                            | ZeroOcc | AltConf |
|-----|-------|----------|----------------------------------------------------------------------------------|---------|---------|
| 4   | А     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$     | 0       | 0       |
| 4   | В     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$     | 0       | 0       |
| 4   | В     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$     | 0       | 0       |
| 4   | С     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$     | 0       | 0       |
| 4   | С     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 4   | F     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$     | 0       | 0       |
| 4   | G     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 4   | Н     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 4   | K     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |



Continued from previous page...

| Mol | Chain | Residues | Atoms                                                                            | ZeroOcc | AltConf |
|-----|-------|----------|----------------------------------------------------------------------------------|---------|---------|
| 4   | L     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 4   | Ν     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$     | 0       | 0       |

• Molecule 5 is water.

| Mol | Chain | Residues | Atoms                                     | ZeroOcc | AltConf |
|-----|-------|----------|-------------------------------------------|---------|---------|
| 5   | А     | 234      | Total O<br>234 234                        | 0       | 0       |
| 5   | В     | 188      | Total O<br>188 188                        | 0       | 0       |
| 5   | С     | 189      | Total O<br>189 189                        | 0       | 0       |
| 5   | D     | 165      | Total O<br>165 165                        | 0       | 0       |
| 5   | Е     | 199      | Total O<br>199 199                        | 0       | 0       |
| 5   | F     | 218      | Total         O           218         218 | 0       | 0       |
| 5   | G     | 232      | Total         O           232         232 | 0       | 0       |
| 5   | Н     | 176      | Total O<br>176 176                        | 0       | 0       |
| 5   | Ι     | 171      | Total O<br>171 171                        | 0       | 0       |
| 5   | J     | 176      | Total O<br>176 176                        | 0       | 0       |
| 5   | К     | 192      | Total O<br>192 192                        | 0       | 0       |
| 5   | L     | 247      | Total         O           247         247 | 0       | 0       |
| 5   | М     | 251      | Total         O           251         251 | 0       | 0       |
| 5   | Ν     | 217      | Total         O           217         217 | 0       | 0       |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: ATP-dependent Clp protease proteolytic subunit



#### M153 H156 R166 D167 L184 V186 L189 R192 R192 N193

• Molecule 1: ATP-dependent Clp protease proteolytic subunit

| Chain E:                                                                                                    | 80%                                                                                                        | 16% ••                                                       |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| ALA<br>112<br>122<br>123<br>146<br>17<br>148<br>148<br>148<br>148<br>148<br>148<br>148<br>148<br>148<br>148 | E36<br>B37<br>H38<br>H38<br>K57<br>K57<br>Y77<br>Y77<br>M92<br>M92<br>M116<br>N116<br>S117<br>S117<br>S117 | H122<br>Q123<br>L135<br>E141<br>E144<br>R144<br>M153<br>M153 |
|                                                                                                             |                                                                                                            |                                                              |

• Molecule 1: ATP-dependent Clp protease proteolytic subunit



• Molecule 1: ATP-dependent Clp protease proteolytic subunit

| Chain G:                                                                                                            | 74%                                                                                                                        |                                        | 18% •                                                | 5%                                           |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------|----------------------------------------------|
| ALA<br>L2<br>V3<br>V3<br>V3<br>M5<br>V6<br>V1<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU | 516<br>119<br>119<br>119<br>122<br>125<br>126<br>126<br>132<br>132<br>132<br>132<br>132<br>132<br>132<br>132<br>132<br>132 | E56<br>K57<br>D58<br>B58<br>M98<br>M98 | L114<br>P115<br>N116<br>N116<br>R118<br>H122<br>Q123 | P124<br>(129<br>1133<br>1135<br>1135<br>E136 |
| R140<br>E141<br>E141<br>E151<br>E151<br>R166<br>S175<br>S175<br>P177<br>L184                                        | N193                                                                                                                       |                                        |                                                      |                                              |

• Molecule 1: ATP-dependent Clp protease proteolytic subunit

| Chain H:                                                                                                                          | 78%                                                                                                   |                                                                       | 13% • 5                               | 5%                                        |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|-------------------------------------------|
| ALA<br>L2<br>P4<br>W5<br>W6<br>W5<br>W6<br>CLU<br>CC<br>CLU<br>ARG<br>CLU<br>ARG<br>CLU<br>ARG<br>CLU<br>D18<br>ARG<br>CLU<br>D18 | 821<br>822<br>123<br>123<br>826<br>826<br>826<br>826<br>123<br>132<br>133<br>133<br>133<br>133<br>133 | L42<br>L50<br>K67<br>K67<br>K67<br>K67<br>K68<br>H120<br>H122<br>H122 | 1155<br>E136<br>A139<br>K1143<br>V145 | R1 48<br>M1 49<br>M1 53<br>M1 53<br>R1 72 |
| L184<br>L189<br>M198                                                                                                              |                                                                                                       |                                                                       |                                       |                                           |
| • Molecule 1: ATP-depen                                                                                                           | ident Clp protease                                                                                    | proteolytic subu                                                      | nit                                   |                                           |
| Chain I:                                                                                                                          | 72%                                                                                                   |                                                                       | <b>21%</b> • 59                       | %                                         |
| ALA<br>LL2<br>THE<br>GLU<br>GLU<br>GLU<br>GLU<br>S21<br>S21<br>S21                                                                | R27<br>132<br>034<br>034<br>142<br>142<br>150<br>N54                                                  | K57<br>D68<br>068<br><b>V69</b><br>M74<br>Y77<br>M80                  | P85<br>R111<br>L114<br>P115<br>H122   | q129<br>T133<br>E136                      |

#### E141

• Molecule 1: ATP-dependent Clp protease proteolytic subunit



• Molecule 1: ATP-dependent Clp protease proteolytic subunit

| Chain N:                                                                                     | 83%                                                                                                | 10% •• 5%                                                                    |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| ALA<br>12<br>12<br>112<br>112<br>116<br>116<br>116<br>117<br>118<br>118<br>118<br>118<br>118 | L31<br>E36<br>E36<br>M41<br>V44<br>V44<br>K84<br>M92<br>Q94<br>Q94<br>C94<br>C1114<br>L114<br>L114 | H122<br>Q123<br>H138<br>H138<br>H138<br>H142<br>N145<br>F173<br>F173<br>F173 |
|                                                                                              |                                                                                                    |                                                                              |

# 4 Data and refinement statistics (i)

| Property                                    | Value                       | Source    |
|---------------------------------------------|-----------------------------|-----------|
| Space group                                 | C 1 2 1                     | Depositor |
| Cell constants                              | 190.70Å 101.00Å 155.40Å     | Dopositor |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$      | 90.00° 99.00° 90.00°        | Depositor |
| Bosolution (Å)                              | 15.00 - 1.90                | Depositor |
| Resolution (A)                              | 29.85 - 1.90                | EDS       |
| % Data completeness                         | 93.8 (15.00-1.90)           | Depositor |
| (in resolution range)                       | 93.4(29.85-1.90)            | EDS       |
| $R_{merge}$                                 | 0.05                        | Depositor |
| $R_{sym}$                                   | (Not available)             | Depositor |
| $< I/\sigma(I) > 1$                         | $2.16 (at 1.89 \text{\AA})$ | Xtriage   |
| Refinement program                          | REFMAC 5.2.0005             | Depositor |
| P. P.                                       | 0.173 , $0.233$             | Depositor |
| II, II, <i>free</i>                         | 0.173 , $0.232$             | DCC       |
| $R_{free}$ test set                         | 10777 reflections $(5.01%)$ | wwPDB-VP  |
| Wilson B-factor $(Å^2)$                     | 27.4                        | Xtriage   |
| Anisotropy                                  | 0.223                       | Xtriage   |
| Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$ | 0.34, $39.4$                | EDS       |
| L-test for $twinning^2$                     | $ < L >=0.51, < L^2>=0.35$  | Xtriage   |
| Estimated twinning fraction                 | No twinning to report.      | Xtriage   |
| $F_o, F_c$ correlation                      | 0.94                        | EDS       |
| Total number of atoms                       | 24125                       | wwPDB-VP  |
| Average B, all atoms $(Å^2)$                | 35.0                        | wwPDB-VP  |

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.01% of the height of the origin peak. No significant pseudotranslation is detected.

<sup>&</sup>lt;sup>2</sup>Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

# 5 Model quality (i)

## 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: CMQ, PGE, GOL

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol Chain |     | Bo   | ond lengths     | Bond angles |                 |  |
|-----------|-----|------|-----------------|-------------|-----------------|--|
|           |     | RMSZ | # Z  > 5        | RMSZ        | # Z  > 5        |  |
| 1         | А   | 0.90 | 0/1538          | 0.85        | 2/2069~(0.1%)   |  |
| 1         | В   | 0.81 | 1/1618~(0.1%)   | 0.87        | 4/2175~(0.2%)   |  |
| 1         | С   | 0.83 | 1/1518~(0.1%)   | 0.88        | 4/2043~(0.2%)   |  |
| 1         | D   | 0.79 | 0/1497          | 0.85        | 2/2016~(0.1%)   |  |
| 1         | Е   | 0.88 | 0/1510          | 0.84        | 2/2032~(0.1%)   |  |
| 1         | F   | 1.03 | 2/1484~(0.1%)   | 0.97        | 5/1999~(0.3%)   |  |
| 1         | G   | 0.99 | 1/1487~(0.1%)   | 1.26        | 10/2001~(0.5%)  |  |
| 1         | Н   | 0.83 | 2/1470~(0.1%)   | 0.84        | 3/1980~(0.2%)   |  |
| 1         | Ι   | 0.74 | 0/1512          | 0.85        | 3/2034~(0.1%)   |  |
| 1         | J   | 0.75 | 0/1487          | 0.80        | 3/2002~(0.1%)   |  |
| 1         | Κ   | 0.84 | 0/1489          | 0.86        | 3/2006~(0.1%)   |  |
| 1         | L   | 1.00 | 6/1545~(0.4%)   | 0.91        | 4/2079~(0.2%)   |  |
| 1         | М   | 0.96 | 0/1572          | 0.94        | 2/2113~(0.1%)   |  |
| 1         | N   | 0.86 | 0/1532          | 0.89        | 4/2063~(0.2%)   |  |
| All       | All | 0.88 | 13/21259~(0.1%) | 0.91        | 51/28612~(0.2%) |  |

All (13) bond length outliers are listed below:

| Mol | Chain | Res    | Type | Atoms  | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|--------|------|--------|-------|-------------|----------|
| 1   | Н     | 136    | GLU  | CD-OE1 | 8.13  | 1.34        | 1.25     |
| 1   | С     | 181    | GLU  | CG-CD  | 6.54  | 1.61        | 1.51     |
| 1   | L     | 181[A] | GLU  | CD-OE1 | 6.41  | 1.32        | 1.25     |
| 1   | L     | 181[B] | GLU  | CD-OE1 | 6.41  | 1.32        | 1.25     |
| 1   | Н     | 136    | GLU  | CG-CD  | 6.24  | 1.61        | 1.51     |
| 1   | G     | 27     | ARG  | CD-NE  | -5.67 | 1.36        | 1.46     |
| 1   | F     | 176    | ALA  | CA-CB  | 5.45  | 1.63        | 1.52     |
| 1   | В     | 181    | GLU  | CG-CD  | 5.20  | 1.59        | 1.51     |
| 1   | F     | 162    | GLU  | CG-CD  | 5.19  | 1.59        | 1.51     |
| 1   | L     | 181[A] | GLU  | CB-CG  | 5.14  | 1.61        | 1.52     |
| 1   | Ĺ     | 181[B] | GLU  | CB-CG  | 5.14  | 1.61        | 1.52     |
| 1   | Ĺ     | 181[A] | GLU  | CG-CD  | 5.04  | 1.59        | 1.51     |



| Mol | Chain | Res    | Type | Atoms | Z    | Observed(Å) | Ideal(Å) |
|-----|-------|--------|------|-------|------|-------------|----------|
| 1   | L     | 181[B] | GLU  | CG-CD | 5.04 | 1.59        | 1.51     |

All (51) bond angle outliers are listed below:

| Mol | Chain | Res   | Type | Atoms     | Z      | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-------|------|-----------|--------|------------------|---------------|
| 1   | G     | 27    | ARG  | NE-CZ-NH2 | -28.69 | 105.95           | 120.30        |
| 1   | G     | 27    | ARG  | NE-CZ-NH1 | 20.06  | 130.33           | 120.30        |
| 1   | G     | 27    | ARG  | CD-NE-CZ  | 10.11  | 137.75           | 123.60        |
| 1   | Ι     | 27    | ARG  | NE-CZ-NH2 | -10.05 | 115.27           | 120.30        |
| 1   | K     | 98    | MET  | CG-SD-CE  | -9.80  | 84.52            | 100.20        |
| 1   | G     | 27    | ARG  | CG-CD-NE  | -8.69  | 93.56            | 111.80        |
| 1   | Ι     | 27    | ARG  | NE-CZ-NH1 | 7.59   | 124.10           | 120.30        |
| 1   | В     | 31    | LEU  | CA-CB-CG  | 7.43   | 132.38           | 115.30        |
| 1   | F     | 98    | MET  | CG-SD-CE  | -7.42  | 88.33            | 100.20        |
| 1   | С     | 31    | LEU  | CA-CB-CG  | 7.29   | 132.07           | 115.30        |
| 1   | N     | 118   | ARG  | CG-CD-NE  | -7.05  | 97.00            | 111.80        |
| 1   | D     | 31    | LEU  | CA-CB-CG  | 7.00   | 131.41           | 115.30        |
| 1   | М     | 140   | ARG  | NE-CZ-NH1 | 6.97   | 123.79           | 120.30        |
| 1   | G     | 36[A] | GLU  | N-CA-CB   | -6.83  | 98.31            | 110.60        |
| 1   | G     | 36[B] | GLU  | N-CA-CB   | -6.83  | 98.31            | 110.60        |
| 1   | Н     | 120   | MET  | CG-SD-CE  | 6.71   | 110.93           | 100.20        |
| 1   | F     | 120   | MET  | CG-SD-CE  | -6.65  | 89.56            | 100.20        |
| 1   | G     | 189   | LEU  | CA-CB-CG  | 6.64   | 130.57           | 115.30        |
| 1   | N     | 118   | ARG  | NE-CZ-NH2 | -6.63  | 116.98           | 120.30        |
| 1   | Н     | 31    | LEU  | CB-CG-CD1 | 6.60   | 122.22           | 111.00        |
| 1   | F     | 166   | ARG  | NE-CZ-NH1 | 6.42   | 123.51           | 120.30        |
| 1   | Е     | 31    | LEU  | CA-CB-CG  | 6.37   | 129.95           | 115.30        |
| 1   | Ι     | 2     | LEU  | CA-CB-CG  | 6.29   | 129.76           | 115.30        |
| 1   | Н     | 31    | LEU  | CA-CB-CG  | 6.17   | 129.49           | 115.30        |
| 1   | K     | 172   | ARG  | NE-CZ-NH2 | -6.08  | 117.26           | 120.30        |
| 1   | F     | 148   | ARG  | NE-CZ-NH1 | 6.06   | 123.33           | 120.30        |
| 1   | J     | 31    | LEU  | CA-CB-CG  | 5.96   | 129.00           | 115.30        |
| 1   | D     | 185   | VAL  | CB-CA-C   | 5.94   | 122.68           | 111.40        |
| 1   | L     | 143   | LEU  | CB-CG-CD2 | 5.92   | 121.07           | 111.00        |
| 1   | Е     | 189   | LEU  | CA-CB-CG  | 5.89   | 128.85           | 115.30        |
| 1   | Ν     | 31[A] | LEU  | CA-CB-CG  | 5.83   | 128.71           | 115.30        |
| 1   | Ν     | 31[B] | LEU  | CA-CB-CG  | 5.83   | 128.71           | 115.30        |
| 1   | L     | 114   | LEU  | CB-CG-CD1 | 5.74   | 120.76           | 111.00        |
| 1   | K     | 42    | LEU  | CA-CB-CG  | 5.66   | 128.31           | 115.30        |
| 1   | F     | 166   | ARG  | NE-CZ-NH2 | -5.63  | 117.48           | 120.30        |
| 1   | G     | 98    | MET  | CG-SD-CE  | -5.55  | 91.32            | 100.20        |
| 1   | С     | 185   | VAL  | CA-CB-CG1 | 5.32   | 118.88           | 110.90        |



| Mol | Chain | $\operatorname{Res}$ | Type | Atoms      | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|----------------------|------|------------|-------|------------------|---------------|
| 1   | В     | 31                   | LEU  | CB-CG-CD1  | 5.23  | 119.89           | 111.00        |
| 1   | В     | 36                   | GLU  | CA-CB-CG   | 5.20  | 124.84           | 113.40        |
| 1   | С     | 185                  | VAL  | CG1-CB-CG2 | 5.20  | 119.22           | 110.90        |
| 1   | В     | 143                  | LEU  | CB-CG-CD2  | 5.19  | 119.83           | 111.00        |
| 1   | С     | 31                   | LEU  | CB-CG-CD1  | 5.18  | 119.81           | 111.00        |
| 1   | J     | 98                   | MET  | CG-SD-CE   | -5.16 | 91.94            | 100.20        |
| 1   | L     | 125                  | LEU  | CB-CG-CD1  | -5.16 | 102.23           | 111.00        |
| 1   | L     | 189                  | LEU  | CA-CB-CG   | 5.15  | 127.15           | 115.30        |
| 1   | М     | 114                  | LEU  | CB-CG-CD1  | 5.05  | 119.58           | 111.00        |
| 1   | J     | 189                  | LEU  | CB-CG-CD1  | -5.04 | 102.44           | 111.00        |
| 1   | А     | 98[A]                | MET  | CB-CG-SD   | 5.04  | 127.50           | 112.40        |
| 1   | А     | 98[B]                | MET  | CB-CG-SD   | 5.04  | 127.50           | 112.40        |
| 1   | G     | 36[A]                | GLU  | CA-CB-CG   | 5.03  | 124.47           | 113.40        |
| 1   | G     | 36[B]                | GLU  | CA-CB-CG   | 5.03  | 124.47           | 113.40        |

There are no chirality outliers.

There are no planarity outliers.

### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | А     | 1487  | 0        | 1509     | 61      | 0            |
| 1   | В     | 1554  | 0        | 1567     | 53      | 0            |
| 1   | С     | 1467  | 0        | 1487     | 44      | 0            |
| 1   | D     | 1462  | 0        | 1471     | 49      | 0            |
| 1   | Е     | 1479  | 0        | 1486     | 39      | 0            |
| 1   | F     | 1453  | 0        | 1456     | 20      | 0            |
| 1   | G     | 1448  | 0        | 1455     | 39      | 0            |
| 1   | Н     | 1439  | 0        | 1448     | 37      | 0            |
| 1   | Ι     | 1461  | 0        | 1477     | 47      | 0            |
| 1   | J     | 1456  | 0        | 1463     | 36      | 0            |
| 1   | K     | 1462  | 0        | 1476     | 42      | 0            |
| 1   | L     | 1478  | 0        | 1483     | 43      | 0            |
| 1   | М     | 1505  | 0        | 1533     | 37      | 0            |
| 1   | N     | 1469  | 0        | 1492     | 23      | 0            |
| 2   | А     | 31    | 0        | 31       | 9       | 0            |



| 2FZS | 5 |
|------|---|
|      |   |

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 2   | В     | 31    | 0        | 30       | 7       | 0            |
| 2   | С     | 31    | 0        | 30       | 6       | 0            |
| 2   | D     | 31    | 0        | 31       | 8       | 0            |
| 2   | Е     | 31    | 0        | 31       | 8       | 0            |
| 2   | F     | 31    | 0        | 28       | 1       | 0            |
| 2   | G     | 31    | 0        | 29       | 1       | 0            |
| 2   | Н     | 31    | 0        | 31       | 6       | 0            |
| 2   | Ι     | 31    | 0        | 31       | 7       | 0            |
| 2   | J     | 31    | 0        | 31       | 8       | 0            |
| 2   | Κ     | 31    | 0        | 31       | 9       | 0            |
| 2   | L     | 31    | 0        | 29       | 7       | 0            |
| 2   | М     | 31    | 0        | 29       | 1       | 0            |
| 2   | Ν     | 31    | 0        | 29       | 2       | 0            |
| 3   | А     | 10    | 0        | 14       | 1       | 0            |
| 3   | В     | 10    | 0        | 14       | 2       | 0            |
| 3   | С     | 10    | 0        | 14       | 0       | 0            |
| 3   | D     | 10    | 0        | 14       | 0       | 0            |
| 3   | Е     | 10    | 0        | 14       | 0       | 0            |
| 3   | F     | 10    | 0        | 14       | 1       | 0            |
| 3   | G     | 10    | 0        | 14       | 0       | 0            |
| 3   | Н     | 10    | 0        | 14       | 0       | 0            |
| 3   | Ι     | 10    | 0        | 14       | 0       | 0            |
| 3   | J     | 10    | 0        | 14       | 1       | 0            |
| 3   | K     | 20    | 0        | 28       | 2       | 0            |
| 3   | L     | 10    | 0        | 14       | 0       | 0            |
| 3   | М     | 10    | 0        | 14       | 1       | 0            |
| 3   | N     | 10    | 0        | 14       | 2       | 0            |
| 4   | A     | 6     | 0        | 8        | 2       | 0            |
| 4   | В     | 12    | 0        | 16       | 0       | 0            |
| 4   | C     | 12    | 0        | 16       | 6       | 0            |
| 4   | F     | 6     | 0        | 8        | 2       | 0            |
| 4   | G     | 6     | 0        | 8        | 1       | 0            |
| 4   | H     | 6     | 0        | 8        | 2       | 0            |
| 4   | K     | 6     | 0        | 8        | 1       | 0            |
| 4   | L     | 6     | 0        | 8        | 0       | 0            |
| 4   | N A   | 6     | 0        | 8        | 3       | 0            |
| 5   | A     | 234   | 0        | 0        |         | 0            |
| 5   | B     | 188   | 0        | 0        | 6       | 0            |
| 5   |       | 189   | 0        | 0        | 8       | 0            |
| 5   | D     | 165   | 0        | 0        | 5       | 0            |
| 5   | E     | 199   | 0        | 0        | 10      | 0            |
| 5   | F,    | 218   | 0        | 0        | 7       | 0            |



|     | Jerre |       |          |          |         |              |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|----------|---------|--------------|
| Mol | Chain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
| 5   | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 232   | 0        | 0        | 8       | 0            |
| 5   | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 176   | 0        | 0        | 5       | 0            |
| 5   | Ι                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 171   | 0        | 0        | 4       | 0            |
| 5   | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 176   | 0        | 0        | 6       | 0            |
| 5   | Κ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 192   | 0        | 0        | 8       | 0            |
| 5   | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 247   | 0        | 0        | 12      | 0            |
| 5   | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 251   | 0        | 0        | 5       | 0            |
| 5   | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 217   | 0        | 0        | 6       | 0            |
| All | All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24125 | 0        | 21522    | 514     | 0            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 12.

All (514) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom 1             | Atom 2              | Interatomic  | Clash       |
|--------------------|---------------------|--------------|-------------|
| Atom-1             | Atom-2              | distance (Å) | overlap (Å) |
| 1:D:122:HIS:NE2    | 2:D:504:CMQ:H242    | 1.14         | 1.45        |
| 1:I:122:HIS:NE2    | 2:I:509:CMQ:H242    | 1.24         | 1.45        |
| 1:B:122:HIS:NE2    | 2:B:502:CMQ:H242    | 1.20         | 1.43        |
| 1:H:122:HIS:NE2    | 2:H:508:CMQ:H242    | 1.14         | 1.43        |
| 1:A:122:HIS:NE2    | 2:A:501:CMQ:H242    | 1.20         | 1.41        |
| 1:C:122:HIS:NE2    | 2:C:503:CMQ:H242    | 1.31         | 1.41        |
| 1:J:122:HIS:NE2    | 2:J:510:CMQ:H242    | 1.09         | 1.41        |
| 1:E:122:HIS:NE2    | 2:E:505:CMQ:H242    | 1.11         | 1.40        |
| 1:K:122:HIS:NE2    | 2:K:511:CMQ:H242    | 1.08         | 1.36        |
| 1:A:181:GLU:HG2    | 5:A:4202:HOH:O      | 1.40         | 1.19        |
| 1:A:182:TYR:HD2    | 1:A:184[B]:LEU:CD2  | 1.62         | 1.12        |
| 1:C:6:VAL:HG11     | 1:C:22:ARG:HH22     | 1.14         | 1.07        |
| 4:C:3006:GOL:H31   | 5:D:4147:HOH:O      | 1.54         | 1.06        |
| 1:C:15:ARG:HG2     | 1:C:15:ARG:HH11     | 0.94         | 1.04        |
| 1:H:122:HIS:NE2    | 2:H:508:CMQ:H241    | 1.72         | 1.03        |
| 1:K:104:THR:HG21   | 1:K:153:MET:CE      | 1.89         | 1.01        |
| 1:L:136[B]:GLU:OE2 | 1:L:140:ARG:HD3     | 1.60         | 1.00        |
| 1:A:182:TYR:HD2    | 1:A:184[B]:LEU:HD21 | 1.25         | 0.99        |
| 1:F:22:ARG:O       | 1:F:25:LYS:HG2      | 1.62         | 0.99        |
| 1:A:182:TYR:CD2    | 1:A:184[B]:LEU:HD21 | 1.99         | 0.96        |
| 1:I:77:TYR:HA      | 1:I:80:MET:HE2      | 1.50         | 0.94        |
| 1:H:122:HIS:CD2    | 2:H:508:CMQ:H242    | 2.02         | 0.93        |
| 1:C:22:ARG:HH11    | 1:C:22:ARG:HB2      | 1.30         | 0.93        |
| 1:I:122:HIS:NE2    | 2:I:509:CMQ:H241    | 1.79         | 0.93        |
| 1:E:153:MET:HE3    | 5:E:4193:HOH:O      | 1.66         | 0.93        |



| Atom 1              | Atom 2             | Interatomic             | Clash       |
|---------------------|--------------------|-------------------------|-------------|
| Atom-1              | Atom-2             | distance $(\text{\AA})$ | overlap (Å) |
| 1:B:122:HIS:NE2     | 2:B:502:CMQ:H241   | 1.83                    | 0.92        |
| 2:G:507:CMQ:H7      | 5:G:4221:HOH:O     | 1.68                    | 0.92        |
| 1:A:182:TYR:CD2     | 1:A:184[B]:LEU:CD2 | 2.53                    | 0.92        |
| 1:C:15:ARG:HG2      | 1:C:15:ARG:NH1     | 1.73                    | 0.91        |
| 1:B:148[A]:ARG:NH1  | 1:C:116:ASN:HD21   | 1.70                    | 0.89        |
| 1:K:104:THR:HG21    | 1:K:153:MET:HE2    | 1.54                    | 0.89        |
| 1:F:172:ARG:HD3     | 5:F:4165:HOH:O     | 1.71                    | 0.89        |
| 1:G:3:VAL:CG1       | 1:G:18:ASP:HB2     | 2.03                    | 0.88        |
| 1:F:136[B]:GLU:HG3  | 1:M:143:LEU:HD11   | 1.53                    | 0.88        |
| 1:K:122:HIS:NE2     | 2:K:511:CMQ:H241   | 1.86                    | 0.88        |
| 1:C:15:ARG:HH11     | 1:C:15:ARG:CG      | 1.86                    | 0.87        |
| 1:K:104:THR:HG21    | 1:K:153:MET:HE1    | 1.56                    | 0.87        |
| 1:A:92:MET:SD       | 5:A:4166:HOH:O     | 2.32                    | 0.87        |
| 2:F:506:CMQ:H7      | 5:F:4167:HOH:O     | 1.73                    | 0.86        |
| 1:K:104:THR:CG2     | 1:K:153:MET:HE1    | 2.04                    | 0.86        |
| 1:A:122:HIS:CE1     | 2:A:501:CMQ:C24    | 2.56                    | 0.86        |
| 1:G:184:LEU:HB3     | 5:G:4137:HOH:O     | 1.75                    | 0.86        |
| 5:D:4094:HOH:O      | 1:E:92:MET:SD      | 2.33                    | 0.86        |
| 1:A:122:HIS:NE2     | 2:A:501:CMQ:H241   | 1.91                    | 0.86        |
| 1:J:122:HIS:CE1     | 2:J:510:CMQ:H242   | 2.10                    | 0.86        |
| 1:A:104:THR:HG21    | 1:A:153[B]:MET:CE  | 2.06                    | 0.86        |
| 4:C:3006:GOL:O3     | 1:D:118:ARG:HB2    | 1.76                    | 0.86        |
| 1:K:122:HIS:CD2     | 2:K:511:CMQ:H242   | 2.11                    | 0.85        |
| 1:D:148:ARG:HH21    | 1:E:116:ASN:HD21   | 1.25                    | 0.85        |
| 1:L:181[B]:GLU:HG2  | 5:L:4092:HOH:O     | 1.76                    | 0.85        |
| 1:B:148[A]:ARG:HH11 | 1:C:116:ASN:ND2    | 1.74                    | 0.85        |
| 1:K:122:HIS:CE1     | 2:K:511:CMQ:C24    | 2.59                    | 0.85        |
| 1:G:184:LEU:HD22    | 5:G:4137:HOH:O     | 1.74                    | 0.85        |
| 1:A:104:THR:HG21    | 1:A:153[B]:MET:HE2 | 1.56                    | 0.84        |
| 1:E:153:MET:CE      | 5:E:4193:HOH:O     | 2.23                    | 0.84        |
| 1:C:6:VAL:HG11      | 1:C:22:ARG:NH2     | 1.91                    | 0.84        |
| 1:H:172:ARG:HH11    | 1:H:172:ARG:CG     | 1.91                    | 0.83        |
| 1:N:142[B]:ILE:HD11 | 5:N:4145:HOH:O     | 1.77                    | 0.83        |
| 1:I:153[B]:MET:CE   | 1:I:184:LEU:HD21   | 2.08                    | 0.83        |
| 1:I:122:HIS:CD2     | 2:I:509:CMQ:H242   | 2.13                    | 0.82        |
| 1:B:136:GLU:HG3     | 5:B:4185:HOH:O     | 1.80                    | 0.82        |
| 1:H:122:HIS:CE1     | 2:H:508:CMQ:H241   | 2.15                    | 0.81        |
| 1:K:184:LEU:HB3     | 5:K:4179:HOH:O     | 1.79                    | 0.81        |
| 1:J:119:VAL:HG11    | 1:J:184:LEU:HD13   | 1.61                    | 0.81        |
| 1:K:104:THR:CG2     | 1:K:153:MET:CE     | 2.58                    | 0.81        |
| 1:L:98[B]:MET:HE2   | 2:L:512:CMQ:C17    | 2.11                    | 0.81        |



| Atom 1              | Atom 2              | Interatomic             | Clash       |
|---------------------|---------------------|-------------------------|-------------|
| Atom-1              | Atom-2              | distance $(\text{\AA})$ | overlap (Å) |
| 1:A:182:TYR:HD2     | 1:A:184[B]:LEU:HD23 | 1.41                    | 0.81        |
| 1:K:153:MET:HG3     | 5:K:4134:HOH:O      | 1.81                    | 0.81        |
| 1:L:70:ILE:HG12     | 1:L:98[B]:MET:HE1   | 1.63                    | 0.80        |
| 1:A:148:ARG:HH11    | 1:B:116:ASN:HD21    | 1.30                    | 0.80        |
| 1:D:122:HIS:CE1     | 2:D:504:CMQ:C24     | 2.65                    | 0.80        |
| 1:D:122:HIS:CE1     | 2:D:504:CMQ:H242    | 2.13                    | 0.80        |
| 1:E:122:HIS:CE1     | 2:E:505:CMQ:C24     | 2.64                    | 0.80        |
| 1:M:104:THR:HB      | 1:M:184[B]:LEU:HD12 | 1.64                    | 0.80        |
| 1:A:26:GLU:HG2      | 5:A:4235:HOH:O      | 1.82                    | 0.79        |
| 1:A:92:MET:HE1      | 5:G:4106:HOH:O      | 1.80                    | 0.79        |
| 1:A:153[A]:MET:HG3  | 5:A:4117:HOH:O      | 1.80                    | 0.79        |
| 1:B:122:HIS:CE1     | 2:B:502:CMQ:C24     | 2.65                    | 0.79        |
| 5:A:4226:HOH:O      | 1:B:92[A]:MET:HE1   | 1.82                    | 0.79        |
| 1:E:122:HIS:NE2     | 2:E:505:CMQ:H241    | 1.96                    | 0.79        |
| 1:K:122:HIS:CE1     | 2:K:511:CMQ:H241    | 2.18                    | 0.79        |
| 1:B:143:LEU:HD11    | 1:I:136:GLU:HG3     | 1.65                    | 0.78        |
| 1:A:122:HIS:CE1     | 2:A:501:CMQ:H242    | 2.14                    | 0.78        |
| 1:J:122:HIS:CE1     | 2:J:510:CMQ:C24     | 2.67                    | 0.78        |
| 1:L:98[B]:MET:CE    | 2:L:512:CMQ:H172    | 2.13                    | 0.78        |
| 1:A:122:HIS:CE1     | 2:A:501:CMQ:H241    | 2.17                    | 0.78        |
| 1:H:122:HIS:CE1     | 2:H:508:CMQ:C24     | 2.65                    | 0.78        |
| 1:A:157:THR:HG22    | 1:A:184[B]:LEU:HD22 | 1.66                    | 0.78        |
| 1:F:118:ARG:HB3     | 4:F:3004:GOL:O3     | 1.83                    | 0.78        |
| 1:J:77:TYR:HA       | 1:J:80[A]:MET:HE2   | 1.63                    | 0.77        |
| 1:D:101:PHE:HA      | 1:D:153:MET:CE      | 2.14                    | 0.77        |
| 1:F:6:VAL:HG21      | 1:F:22:ARG:HD3      | 1.65                    | 0.77        |
| 1:B:148[A]:ARG:HH11 | 1:C:116:ASN:HD21    | 1.26                    | 0.77        |
| 1:K:92:MET:SD       | 5:K:4113:HOH:O      | 2.43                    | 0.76        |
| 1:B:163:GLN:HE22    | 1:B:166[B]:ARG:HH22 | 1.33                    | 0.76        |
| 1:C:122:HIS:NE2     | 2:C:503:CMQ:H241    | 1.99                    | 0.76        |
| 2:E:505:CMQ:H6      | 5:E:4152:HOH:O      | 1.86                    | 0.76        |
| 1:B:122:HIS:CE1     | 2:B:502:CMQ:H241    | 2.20                    | 0.75        |
| 1:K:2:LEU:HD12      | 5:K:4177:HOH:O      | 1.86                    | 0.75        |
| 1:L:53[A]:GLU:HG2   | 5:L:4166:HOH:O      | 1.86                    | 0.75        |
| 1:G:27:ARG:HD3      | 1:G:58:ASP:O        | 1.85                    | 0.75        |
| 1:B:122:HIS:CD2     | 2:B:502:CMQ:H242    | 2.18                    | 0.75        |
| 1:E:77:TYR:OH       | 1:E:156:HIS:HE1     | 1.68                    | 0.75        |
| 1:G:3:VAL:HG11      | 1:G:18:ASP:HB2      | 1.68                    | 0.74        |
| 1:N:118:ARG:HG2     | 4:N:3007:GOL:H11    | 1.69                    | 0.74        |
| 1:C:22:ARG:HD2      | 5:C:4129:HOH:O      | 1.88                    | 0.73        |
| 1:L:5:MET:HA        | 1:L:17:PHE:O        | 1.89                    | 0.72        |



| Atom 1             | A.L D               | Interatomic             | Clash       |
|--------------------|---------------------|-------------------------|-------------|
| Atom-1             | Atom-2              | distance $(\text{\AA})$ | overlap (Å) |
| 1:D:101:PHE:HA     | 1:D:153:MET:HE3     | 1.71                    | 0.72        |
| 1:A:140:ARG:HG2    | 1:A:140:ARG:HH11    | 1.55                    | 0.72        |
| 1:B:178:GLU:HA     | 1:B:181:GLU:HG2     | 1.71                    | 0.72        |
| 1:L:98[B]:MET:HE2  | 2:L:512:CMQ:H172    | 1.68                    | 0.72        |
| 1:M:15:ARG:HG2     | 1:M:15:ARG:HH21     | 1.55                    | 0.72        |
| 4:A:3001:GOL:H32   | 1:G:141:GLU:OE2     | 1.90                    | 0.71        |
| 1:M:116:ASN:HD21   | 1:N:148:ARG:NH1     | 1.88                    | 0.71        |
| 1:H:172:ARG:CD     | 5:H:4163:HOH:O      | 2.37                    | 0.71        |
| 1:J:193:ASN:H      | 1:J:193:ASN:ND2     | 1.86                    | 0.71        |
| 1:B:143:LEU:HD11   | 1:I:136:GLU:CG      | 2.20                    | 0.70        |
| 1:I:122:HIS:CE1    | 2:I:509:CMQ:H241    | 2.25                    | 0.70        |
| 1:E:141:GLU:OE2    | 4:F:3004:GOL:H32    | 1.91                    | 0.69        |
| 1:C:122:HIS:CE1    | 2:C:503:CMQ:C24     | 2.75                    | 0.69        |
| 1:E:122:HIS:CE1    | 2:E:505:CMQ:H241    | 2.28                    | 0.69        |
| 1:H:172:ARG:HD2    | 5:H:4163:HOH:O      | 1.93                    | 0.69        |
| 1:I:122:HIS:CE1    | 2:I:509:CMQ:C24     | 2.74                    | 0.69        |
| 1:M:92[B]:MET:HB3  | 1:M:114:LEU:HD22    | 1.74                    | 0.69        |
| 1:B:10:THR:HG22    | 1:B:12:ARG:HG2      | 1.75                    | 0.68        |
| 1:I:153[A]:MET:HG2 | 1:I:164:ILE:HD12    | 1.74                    | 0.68        |
| 1:H:144:LYS:O      | 1:H:148:ARG:HG2     | 1.92                    | 0.68        |
| 3:K:4015:PGE:H22   | 5:K:4195:HOH:O      | 1.92                    | 0.68        |
| 1:J:166:ARG:HD3    | 5:J:4105:HOH:O      | 1.91                    | 0.68        |
| 1:E:38:HIS:HE1     | 5:E:4070:HOH:O      | 1.76                    | 0.68        |
| 1:E:15:ARG:CB      | 1:F:7:ILE:HG21      | 2.23                    | 0.68        |
| 1:F:140:ARG:NH1    | 5:F:4224:HOH:O      | 2.27                    | 0.68        |
| 1:H:153:MET:CE     | 1:H:184:LEU:HD21    | 2.23                    | 0.68        |
| 1:I:153[B]:MET:HE1 | 1:I:184:LEU:HD21    | 1.75                    | 0.68        |
| 1:B:136:GLU:HB2    | 1:I:143:LEU:HD11    | 1.74                    | 0.67        |
| 1:J:166:ARG:CD     | 5:J:4105:HOH:O      | 2.41                    | 0.67        |
| 2:J:510:CMQ:H8     | 5:J:4155:HOH:O      | 1.92                    | 0.67        |
| 1:A:157:THR:CG2    | 1:A:184[B]:LEU:HD22 | 2.23                    | 0.67        |
| 1:A:182:TYR:CD2    | 1:A:184[B]:LEU:HD23 | 2.26                    | 0.67        |
| 1:L:162:GLU:HA     | 1:L:165:GLU:OE1     | 1.94                    | 0.67        |
| 1:A:140:ARG:HH11   | 1:A:140:ARG:CG      | 2.07                    | 0.67        |
| 4:C:3006:GOL:O3    | 1:D:118:ARG:CB      | 2.42                    | 0.67        |
| 1:E:122:HIS:CD2    | 2:E:505:CMQ:H242    | 2.20                    | 0.66        |
| 1:G:54:ASN:HD22    | 1:G:56:GLU:H        | 1.44                    | 0.66        |
| 1:G:135:ILE:HD13   | 1:N:142[B]:ILE:HD12 | 1.78                    | 0.66        |
| 1:C:122:HIS:CE1    | 2:C:503:CMQ:H241    | 2.31                    | 0.65        |
| 1:H:172:ARG:HH11   | 1:H:172:ARG:HG3     | 1.59                    | 0.65        |
| 1:D:7:ILE:O        | 1:D:8:GLU:HB2       | 1.95                    | 0.65        |



| Atom 1             | A + 2               | Interatomic  | Clash       |
|--------------------|---------------------|--------------|-------------|
| Atom-1             | Atom-2              | distance (Å) | overlap (Å) |
| 1:L:161:LEU:O      | 1:L:165:GLU:HG3     | 1.95         | 0.65        |
| 1:J:193:ASN:H      | 1:J:193:ASN:HD22    | 1.45         | 0.64        |
| 1:L:2:LEU:HD22     | 1:M:3:VAL:HG21      | 1.80         | 0.64        |
| 1:C:136:GLU:O      | 1:C:140[B]:ARG:HG2  | 1.98         | 0.64        |
| 1:I:18:ASP:OD2     | 1:I:21:SER:OG       | 2.09         | 0.64        |
| 1:E:70:ILE:HD12    | 2:E:505:CMQ:H22A    | 1.78         | 0.64        |
| 1:M:2:LEU:HD21     | 5:N:4097:HOH:O      | 1.96         | 0.64        |
| 1:N:173:PHE:HE1    | 4:N:3007:GOL:H31    | 1.63         | 0.64        |
| 4:C:3006:GOL:H12   | 5:C:4108:HOH:O      | 1.97         | 0.64        |
| 1:D:77:TYR:OH      | 1:D:156:HIS:HE1     | 1.81         | 0.64        |
| 1:B:104:THR:HB     | 1:B:184:LEU:HD23    | 1.78         | 0.64        |
| 1:I:111:ARG:O      | 1:I:185[B]:VAL:HG23 | 1.97         | 0.64        |
| 1:J:116:ASN:ND2    | 1:K:148:ARG:HH11    | 1.95         | 0.64        |
| 1:A:144:LYS:HE2    | 5:A:4099:HOH:O      | 1.97         | 0.63        |
| 1:A:143:LEU:HG     | 5:A:4180:HOH:O      | 1.98         | 0.63        |
| 1:K:17:PHE:CE2     | 1:K:25:LYS:HE3      | 2.33         | 0.63        |
| 1:N:173:PHE:CE1    | 4:N:3007:GOL:H31    | 2.32         | 0.63        |
| 1:D:22:ARG:HD2     | 1:D:22:ARG:O        | 1.97         | 0.63        |
| 1:B:10:THR:HB      | 1:B:13:GLY:O        | 1.99         | 0.62        |
| 1:D:122:HIS:CE1    | 2:D:504:CMQ:H241    | 2.34         | 0.62        |
| 1:A:77:TYR:OH      | 1:A:156:HIS:HE1     | 1.81         | 0.62        |
| 1:C:5:MET:HG3      | 1:C:5:MET:O         | 1.99         | 0.62        |
| 1:A:148:ARG:HH11   | 1:B:116:ASN:ND2     | 1.97         | 0.62        |
| 1:E:156:HIS:HD2    | 5:E:4016:HOH:O      | 1.81         | 0.62        |
| 1:K:104:THR:HG22   | 1:K:153:MET:HE1     | 1.82         | 0.62        |
| 1:E:92:MET:HB3     | 1:E:114:LEU:HD22    | 1.82         | 0.62        |
| 1:G:136:GLU:OE1    | 1:G:140:ARG:NH1     | 2.31         | 0.62        |
| 1:L:2:LEU:HD23     | 5:M:4111:HOH:O      | 1.99         | 0.61        |
| 1:B:181:GLU:HG3    | 5:B:4080:HOH:O      | 1.98         | 0.61        |
| 1:J:176:ALA:HB1    | 1:J:188:ILE:HD12    | 1.81         | 0.61        |
| 1:M:104:THR:CB     | 1:M:184[B]:LEU:HD12 | 2.29         | 0.61        |
| 1:F:41:ASN:ND2     | 1:G:32:THR:OG1      | 2.32         | 0.61        |
| 1:M:116:ASN:ND2    | 1:N:148:ARG:HH11    | 1.99         | 0.61        |
| 1:L:70:ILE:HG12    | 1:L:98[B]:MET:CE    | 2.31         | 0.60        |
| 1:H:17:PHE:HD2     | 1:H:21:SER:HB3      | 1.66         | 0.60        |
| 1:J:114:LEU:HG     | 1:K:78:ASP:HB3      | 1.82         | 0.60        |
| 1:D:122:HIS:NE2    | 2:D:504:CMQ:H241    | 2.09         | 0.60        |
| 2:E:505:CMQ:C6     | 5:E:4152:HOH:O      | 2.46         | 0.60        |
| 1:B:70:ILE:HD12    | 2:B:502:CMQ:H21A    | 1.82         | 0.59        |
| 1:D:140:ARG:HD3    | 5:D:4160:HOH:O      | 2.01         | 0.59        |
| 1:E:144[A]:LYS:HD3 | 5:F:4191:HOH:O      | 2.03         | 0.59        |



| Atom-1              | Atom-2            | Interatomic  | Clash       |
|---------------------|-------------------|--------------|-------------|
| Atom-1              | Atom-2            | distance (Å) | overlap (Å) |
| 1:M:116:ASN:ND2     | 1:N:148:ARG:NH1   | 2.50         | 0.59        |
| 1:J:116:ASN:HD21    | 1:K:148:ARG:HH11  | 1.49         | 0.59        |
| 1:J:116:ASN:HD21    | 1:K:148:ARG:NH1   | 2.00         | 0.59        |
| 1:B:178:GLU:O       | 1:B:181:GLU:HG2   | 2.02         | 0.59        |
| 5:J:4045:HOH:O      | 2:K:511:CMQ:H4    | 2.03         | 0.59        |
| 1:E:38:HIS:HD2      | 5:E:4103:HOH:O    | 1.85         | 0.59        |
| 3:K:4015:PGE:H5     | 5:K:4195:HOH:O    | 2.02         | 0.59        |
| 1:M:161:LEU:O       | 1:M:165:GLU:HG3   | 2.03         | 0.59        |
| 1:F:42:LEU:HD11     | 1:G:3:VAL:HG13    | 1.83         | 0.59        |
| 1:A:104:THR:CG2     | 1:A:153[B]:MET:CE | 2.79         | 0.59        |
| 1:H:4:PRO:CD        | 1:I:42:LEU:HD11   | 2.32         | 0.58        |
| 1:H:34:GLN:HE21     | 1:H:68:GLY:HA2    | 1.67         | 0.58        |
| 1:A:34:GLN:OE1      | 1:A:68:GLY:HA2    | 2.03         | 0.58        |
| 1:I:70:ILE:HD12     | 2:I:509:CMQ:H21A  | 1.85         | 0.58        |
| 1:I:32:THR:OG1      | 1:J:41:ASN:ND2    | 2.36         | 0.58        |
| 1:B:178:GLU:HA      | 1:B:181:GLU:CG    | 2.33         | 0.58        |
| 1:D:104:THR:CG2     | 1:D:153:MET:HE1   | 2.33         | 0.58        |
| 1:J:145:VAL:HG21    | 2:J:510:CMQ:H5    | 1.86         | 0.58        |
| 1:B:38:HIS:HE1      | 5:C:4132:HOH:O    | 1.86         | 0.58        |
| 1:D:70:ILE:HD12     | 2:D:504:CMQ:H22A  | 1.86         | 0.58        |
| 1:B:114[B]:LEU:HD22 | 1:B:189:LEU:HB2   | 1.86         | 0.58        |
| 1:B:129:GLN:HG2     | 5:B:4168:HOH:O    | 2.03         | 0.58        |
| 1:J:7:ILE:HG12      | 1:J:16:SER:HA     | 1.85         | 0.58        |
| 1:M:70:ILE:HD12     | 2:M:513:CMQ:H21A  | 1.86         | 0.57        |
| 1:L:4:PRO:HD3       | 1:M:42:LEU:HD11   | 1.87         | 0.57        |
| 1:D:22:ARG:O        | 1:D:25:LYS:HB2    | 2.04         | 0.57        |
| 1:J:34:GLN:HE21     | 1:J:68:GLY:HA2    | 1.69         | 0.57        |
| 1:A:108:LYS:HE2     | 1:A:186:ASP:OD1   | 2.05         | 0.57        |
| 1:J:136[B]:GLU:OE2  | 1:J:140:ARG:NH1   | 2.36         | 0.57        |
| 1:H:27:ARG:HD3      | 1:H:57:LYS:HE2    | 1.86         | 0.56        |
| 1:M:34[A]:GLN:HG2   | 5:M:4144:HOH:O    | 2.05         | 0.56        |
| 1:K:92:MET:CE       | 5:L:4228:HOH:O    | 2.53         | 0.56        |
| 1:A:140:ARG:CG      | 1:A:140:ARG:NH1   | 2.68         | 0.56        |
| 1:C:70:ILE:HD12     | 2:C:503:CMQ:H21A  | 1.86         | 0.56        |
| 1:D:115:PRO:HD3     | 1:D:189:LEU:O     | 2.05         | 0.56        |
| 1:L:140:ARG:HG3     | 5:L:4252:HOH:O    | 2.04         | 0.56        |
| 1:D:119:VAL:HG11    | 1:D:184:LEU:HD13  | 1.87         | 0.56        |
| 1:C:41:ASN:ND2      | 1:D:32:THR:OG1    | 2.39         | 0.56        |
| 1:L:70:ILE:HA       | 1:L:98[B]:MET:CE  | 2.36         | 0.56        |
| 1:I:77:TYR:HA       | 1:I:80:MET:CE     | 2.31         | 0.56        |
| 1:L:172:ARG:NH2     | 5:L:4024:HOH:O    | 2.36         | 0.56        |



| Atom 1              | Atom D             | Interatomic             | Clash       |
|---------------------|--------------------|-------------------------|-------------|
| Atom-1              | Atom-2             | distance $(\text{\AA})$ | overlap (Å) |
| 1:H:4:PRO:HD2       | 1:I:42:LEU:HD11    | 1.89                    | 0.55        |
| 1:A:73:GLY:HA3      | 1:A:98[B]:MET:SD   | 2.47                    | 0.55        |
| 1:B:18:ASP:HB3      | 1:C:5:MET:HG2      | 1.88                    | 0.55        |
| 1:B:127:GLY:HA3     | 1:I:129:GLN:HG3    | 1.88                    | 0.55        |
| 1:G:129[A]:GLN:HG2  | 1:N:127:GLY:HA3    | 1.89                    | 0.55        |
| 1:D:101:PHE:CD1     | 1:D:153:MET:HE3    | 2.42                    | 0.55        |
| 1:M:189:LEU:HD11    | 3:M:4013:PGE:H3    | 1.89                    | 0.55        |
| 1:L:70:ILE:HA       | 1:L:98[B]:MET:HE1  | 1.89                    | 0.54        |
| 1:A:104:THR:CG2     | 1:A:153[B]:MET:HE1 | 2.36                    | 0.54        |
| 1:B:178:GLU:HA      | 1:B:181:GLU:CD     | 2.28                    | 0.54        |
| 1:D:148:ARG:NH2     | 1:E:116:ASN:HD21   | 2.00                    | 0.54        |
| 1:K:191:HIS:CE1     | 1:L:81[A]:GLN:HG3  | 2.42                    | 0.54        |
| 4:C:3006:GOL:C1     | 5:C:4108:HOH:O     | 2.54                    | 0.54        |
| 1:H:172:ARG:HH11    | 1:H:172:ARG:HG2    | 1.71                    | 0.54        |
| 1:A:122:HIS:CD2     | 2:A:501:CMQ:H242   | 2.26                    | 0.53        |
| 1:C:55:PRO:HB2      | 1:C:84:LYS:HG3     | 1.90                    | 0.53        |
| 1:A:122:HIS:NE2     | 2:A:501:CMQ:C16    | 2.66                    | 0.53        |
| 1:I:27:ARG:HD3      | 1:I:58:ASP:O       | 2.09                    | 0.53        |
| 1:D:129[B]:GLN:NE2  | 5:D:4145:HOH:O     | 2.26                    | 0.53        |
| 1:G:25:LYS:NZ       | 5:G:4237:HOH:O     | 2.34                    | 0.53        |
| 1:E:57:LYS:O        | 1:E:85:PRO:HB3     | 2.09                    | 0.53        |
| 1:H:153:MET:HE1     | 1:H:184:LEU:HD21   | 1.90                    | 0.53        |
| 1:A:189[A]:LEU:HD13 | 1:G:82:PHE:CE1     | 2.43                    | 0.53        |
| 1:I:27:ARG:NH2      | 1:I:50:LEU:O       | 2.39                    | 0.53        |
| 1:C:174[A]:LEU:HD12 | 1:C:184:LEU:HD12   | 1.91                    | 0.53        |
| 1:G:3:VAL:CG1       | 1:G:19:ILE:HG22    | 2.39                    | 0.53        |
| 1:J:6:VAL:HG21      | 1:J:22:ARG:HG2     | 1.90                    | 0.53        |
| 1:L:143:LEU:HG      | 5:L:4183:HOH:O     | 2.09                    | 0.53        |
| 1:A:189[B]:LEU:HD22 | 1:G:82:PHE:HE1     | 1.74                    | 0.52        |
| 1:B:148[A]:ARG:NH1  | 1:C:116:ASN:ND2    | 2.41                    | 0.52        |
| 1:G:3:VAL:CB        | 1:G:18:ASP:HB2     | 2.39                    | 0.52        |
| 1:A:136:GLU:O       | 1:A:140:ARG:HD3    | 2.09                    | 0.52        |
| 1:I:34:GLN:NE2      | 1:I:68:GLY:HA2     | 2.24                    | 0.52        |
| 1:J:122:HIS:CE1     | 2:J:510:CMQ:H241   | 2.41                    | 0.52        |
| 3:N:4014:PGE:H6     | 5:N:4132:HOH:O     | 2.09                    | 0.52        |
| 1:G:54:ASN:ND2      | 1:G:56:GLU:H       | 2.07                    | 0.52        |
| 1:M:92[A]:MET:HB3   | 1:M:114:LEU:HD22   | 1.91                    | 0.52        |
| 1:A:148:ARG:HD3     | 1:B:116:ASN:ND2    | 2.25                    | 0.52        |
| 1:C:84:LYS:CD       | 1:D:192:ARG:HG2    | 2.39                    | 0.52        |
| 5:A:4226:HOH:O      | 1:B:92[A]:MET:CE   | 2.50                    | 0.52        |
| 1:E:15:ARG:CB       | 1:F:7:ILE:CG2      | 2.88                    | 0.52        |



| Atom-1              | Atom-2              | Interatomic  | Clash       |
|---------------------|---------------------|--------------|-------------|
| Atom-1              | Atom-2              | distance (Å) | overlap (Å) |
| 1:J:8:GLU:OE2       | 1:J:22:ARG:NE       | 2.42         | 0.51        |
| 1:J:189:LEU:HD11    | 3:J:4010:PGE:H22    | 1.91         | 0.51        |
| 1:I:57:LYS:O        | 1:I:85:PRO:HB3      | 2.09         | 0.51        |
| 1:J:122:HIS:CD2     | 2:J:510:CMQ:H242    | 2.23         | 0.51        |
| 1:G:118:ARG:HB2     | 4:G:3009:GOL:H11    | 1.92         | 0.51        |
| 1:L:57:LYS:NZ       | 5:L:4090:HOH:O      | 2.43         | 0.51        |
| 1:N:142[B]:ILE:HG12 | 2:N:514:CMQ:C7      | 2.40         | 0.51        |
| 1:D:104:THR:HG22    | 1:D:153:MET:HE1     | 1.93         | 0.51        |
| 1:D:167:ASP:HA      | 1:D:172:ARG:HH21    | 1.75         | 0.51        |
| 1:E:9:GLN:HA        | 1:E:14:GLU:HG2      | 1.91         | 0.51        |
| 1:F:38:HIS:HD2      | 5:F:4166:HOH:O      | 1.91         | 0.51        |
| 1:J:147:GLY:O       | 1:J:151:GLU:HG3     | 2.10         | 0.51        |
| 1:A:74:MET:SD       | 1:A:98[A]:MET:HE1   | 2.50         | 0.51        |
| 1:I:111:ARG:C       | 1:I:185[B]:VAL:HG23 | 2.31         | 0.51        |
| 1:H:32:THR:OG1      | 1:I:41:ASN:ND2      | 2.44         | 0.51        |
| 1:F:148:ARG:NH1     | 1:G:116:ASN:OD1     | 2.37         | 0.51        |
| 1:I:153[B]:MET:HE3  | 1:I:184:LEU:HD21    | 1.92         | 0.51        |
| 1:K:124:PRO:HD3     | 2:K:511:CMQ:H22     | 1.92         | 0.51        |
| 1:C:22:ARG:HH11     | 1:C:22:ARG:CB       | 2.13         | 0.51        |
| 1:E:14:GLU:N        | 5:E:4196:HOH:O      | 2.43         | 0.51        |
| 1:A:189[A]:LEU:HD11 | 3:A:4001:PGE:H5     | 1.93         | 0.50        |
| 1:H:34:GLN:HE21     | 1:H:68:GLY:CA       | 2.23         | 0.50        |
| 1:A:92:MET:HB3      | 1:A:114:LEU:HD22    | 1.94         | 0.50        |
| 1:K:92:MET:HE1      | 5:L:4228:HOH:O      | 2.12         | 0.50        |
| 1:K:191:HIS:HE1     | 1:L:81[A]:GLN:HG3   | 1.77         | 0.50        |
| 1:A:108:LYS:HD3     | 5:A:4139:HOH:O      | 2.12         | 0.50        |
| 1:D:101:PHE:HA      | 1:D:153:MET:HE1     | 1.93         | 0.50        |
| 1:L:136[B]:GLU:OE1  | 1:L:140:ARG:NH1     | 2.41         | 0.50        |
| 1:F:57:LYS:O        | 1:F:85:PRO:HB3      | 2.12         | 0.49        |
| 1:H:4:PRO:HD3       | 1:I:42:LEU:HD11     | 1.94         | 0.49        |
| 1:B:10:THR:HG22     | 1:B:10:THR:O        | 2.11         | 0.49        |
| 1:A:32:THR:OG1      | 1:G:41:ASN:ND2      | 2.46         | 0.49        |
| 1:G:147:GLY:O       | 1:G:151:GLU:HG3     | 2.12         | 0.49        |
| 1:H:27:ARG:CD       | 1:H:57:LYS:HE2      | 2.42         | 0.49        |
| 1:M:31[B]:LEU:HG    | 1:M:43:ILE:CD1      | 2.42         | 0.49        |
| 1:A:118:ARG:HB3     | 4:A:3001:GOL:O3     | 2.12         | 0.49        |
| 1:A:54:ASN:HD22     | 1:A:56:GLU:H        | 1.60         | 0.49        |
| 1:L:4:PRO:O         | 1:L:18:ASP:HA       | 2.12         | 0.49        |
| 1:I:192:ARG:HG3     | 1:I:193:ASN:N       | 2.27         | 0.49        |
| 1:M:92[A]:MET:HE1   | 5:N:4043:HOH:O      | 2.12         | 0.49        |
| 1:G:56:GLU:HG3      | 5:G:4223:HOH:O      | 2.12         | 0.49        |



| Atom 1             | Atom 2              | Interatomic  | Clash       |
|--------------------|---------------------|--------------|-------------|
| Atom-1             | Atom-2              | distance (Å) | overlap (Å) |
| 1:H:42[A]:LEU:HD11 | 1:N:4:PRO:CD        | 2.43         | 0.49        |
| 1:H:5:MET:HG3      | 1:I:21:SER:OG       | 2.13         | 0.48        |
| 1:J:55:PRO:HB3     | 1:J:84:LYS:HE3      | 1.95         | 0.48        |
| 1:E:9:GLN:HG3      | 1:E:14:GLU:OE2      | 2.13         | 0.48        |
| 1:I:115:PRO:HD3    | 1:I:189:LEU:O       | 2.13         | 0.48        |
| 1:K:141:GLU:HG3    | 2:K:511:CMQ:H5      | 1.94         | 0.48        |
| 1:N:70:ILE:HD12    | 2:N:514:CMQ:H22A    | 1.95         | 0.48        |
| 1:B:41:ASN:ND2     | 1:C:32:THR:OG1      | 2.47         | 0.48        |
| 1:C:84:LYS:NZ      | 1:D:193:ASN:HD21    | 2.11         | 0.48        |
| 1:D:104:THR:HG21   | 1:D:153:MET:CE      | 2.43         | 0.48        |
| 1:D:129[A]:GLN:NE2 | 1:D:130:GLY:N       | 2.61         | 0.48        |
| 1:F:17:PHE:CE1     | 1:G:6:VAL:HG13      | 2.48         | 0.48        |
| 1:J:166:ARG:HD2    | 5:J:4105:HOH:O      | 2.10         | 0.48        |
| 1:K:92:MET:HB3     | 1:K:114[B]:LEU:HD22 | 1.93         | 0.48        |
| 1:M:92[A]:MET:CE   | 5:N:4043:HOH:O      | 2.60         | 0.48        |
| 1:B:18:ASP:HB3     | 1:C:5:MET:CG        | 2.43         | 0.48        |
| 1:F:38:HIS:HE1     | 5:G:4058:HOH:O      | 1.95         | 0.48        |
| 1:A:123:GLN:HE22   | 1:H:133:THR:H       | 1.60         | 0.48        |
| 1:D:7:ILE:O        | 1:D:8:GLU:CB        | 2.62         | 0.48        |
| 1:D:104:THR:CG2    | 1:D:153:MET:CE      | 2.92         | 0.48        |
| 4:H:3008:GOL:H31   | 1:I:141:GLU:OE2     | 2.14         | 0.48        |
| 2:A:501:CMQ:H7     | 5:A:4174:HOH:O      | 2.14         | 0.48        |
| 1:B:22:ARG:O       | 1:B:25[A]:LYS:HG2   | 2.13         | 0.48        |
| 1:B:153[B]:MET:HG3 | 5:B:4129:HOH:O      | 2.13         | 0.48        |
| 1:E:51:GLU:HG3     | 1:E:85:PRO:HD3      | 1.96         | 0.48        |
| 1:D:3:VAL:HG11     | 1:E:2:LEU:HD22      | 1.96         | 0.47        |
| 1:D:104:THR:HG21   | 1:D:153:MET:HE1     | 1.96         | 0.47        |
| 1:C:148:ARG:NH2    | 1:C:151:GLU:OE1     | 2.47         | 0.47        |
| 1:G:54:ASN:HD22    | 1:G:54:ASN:C        | 2.16         | 0.47        |
| 1:K:41:ASN:ND2     | 5:K:4058:HOH:O      | 2.46         | 0.47        |
| 1:D:101:PHE:HD1    | 1:D:153:MET:HE3     | 1.78         | 0.47        |
| 1:G:3:VAL:HG13     | 1:G:19:ILE:HG22     | 1.95         | 0.47        |
| 1:G:3:VAL:HB       | 1:G:18:ASP:HB2      | 1.96         | 0.47        |
| 3:F:4006:PGE:H4    | 5:F:4103:HOH:O      | 2.14         | 0.47        |
| 1:G:27:ARG:CD      | 1:G:58:ASP:O        | 2.60         | 0.47        |
| 1:C:84:LYS:HD2     | 1:D:192:ARG:HG2     | 1.97         | 0.47        |
| 2:L:512:CMQ:C13    | 5:L:4248:HOH:O      | 2.61         | 0.47        |
| 1:C:153:MET:HE2    | 5:C:4090:HOH:O      | 2.14         | 0.47        |
| 1:C:144:LYS:HE3    | 5:C:4030:HOH:O      | 2.14         | 0.47        |
| 1:E:3:VAL:HG12     | 1:E:18:ASP:HB2      | 1.97         | 0.47        |
| 1:C:5:MET:HB2      | 1:C:16:SER:HB3      | 1.97         | 0.47        |



| Atom-1             | Atom-2             | Interatomic  | Clash       |
|--------------------|--------------------|--------------|-------------|
|                    | 7100m <b>2</b>     | distance (Å) | overlap (Å) |
| 1:D:148:ARG:HE     | 1:E:116:ASN:ND2    | 2.13         | 0.46        |
| 1:K:23:LEU:HD11    | 1:L:49:PHE:HB2     | 1.97         | 0.46        |
| 1:L:70:ILE:HD12    | 2:L:512:CMQ:H21A   | 1.97         | 0.46        |
| 1:L:70:ILE:CG1     | 1:L:98[B]:MET:HE1  | 2.40         | 0.46        |
| 1:B:143:LEU:CD1    | 1:I:136:GLU:HG3    | 2.42         | 0.46        |
| 1:M:6:VAL:HG12     | 1:M:7:ILE:N        | 2.30         | 0.46        |
| 1:M:190:THR:HB     | 5:M:4264:HOH:O     | 2.14         | 0.46        |
| 1:N:192:ARG:HH12   | 3:N:4014:PGE:H5    | 1.81         | 0.46        |
| 1:B:163:GLN:HE22   | 1:B:166[B]:ARG:NH2 | 2.09         | 0.46        |
| 1:B:192:ARG:NH1    | 3:B:4002:PGE:H42   | 2.31         | 0.46        |
| 1:A:22:ARG:O       | 1:A:25:LYS:HG2     | 2.16         | 0.46        |
| 1:E:114:LEU:O      | 1:E:117:SER:HB2    | 2.16         | 0.46        |
| 1:H:172:ARG:CG     | 1:H:172:ARG:NH1    | 2.62         | 0.46        |
| 1:I:54:ASN:CG      | 1:I:57:LYS:HG3     | 2.36         | 0.46        |
| 1:D:148:ARG:HH21   | 1:E:116:ASN:ND2    | 2.05         | 0.46        |
| 1:C:84:LYS:HG2     | 1:C:85:PRO:HD3     | 1.97         | 0.45        |
| 5:D:4141:HOH:O     | 1:E:2:LEU:HD23     | 2.15         | 0.45        |
| 1:E:19:ILE:HD12    | 1:E:19:ILE:HA      | 1.81         | 0.45        |
| 1:E:123:GLN:HE22   | 1:L:133:THR:H      | 1.64         | 0.45        |
| 1:H:4:PRO:HD3      | 1:I:42:LEU:HD21    | 1.99         | 0.45        |
| 1:J:136[B]:GLU:HG2 | 1:J:140:ARG:HD3    | 1.98         | 0.45        |
| 1:A:82:PHE:CE1     | 1:B:192:ARG:HA     | 2.51         | 0.45        |
| 1:A:108:LYS:NZ     | 5:A:4221:HOH:O     | 2.49         | 0.45        |
| 1:G:3:VAL:O        | 1:G:5:MET:HG2      | 2.16         | 0.45        |
| 1:B:23:LEU:HD23    | 1:B:23:LEU:HA      | 1.82         | 0.45        |
| 1:D:31:LEU:HB2     | 1:D:43:ILE:HD13    | 1.99         | 0.45        |
| 1:J:51:GLU:HG3     | 1:J:85:PRO:HD3     | 1.99         | 0.45        |
| 4:K:3010:GOL:H11   | 1:L:141:GLU:OE2    | 2.16         | 0.45        |
| 1:M:140:ARG:NH2    | 5:M:4254:HOH:O     | 2.44         | 0.45        |
| 1:C:3:VAL:HA       | 5:C:4140:HOH:O     | 2.17         | 0.45        |
| 1:H:172:ARG:HG2    | 1:H:172:ARG:NH1    | 2.32         | 0.44        |
| 1:J:116:ASN:HD22   | 1:K:148:ARG:HD3    | 1.82         | 0.44        |
| 1:E:38:HIS:CE1     | 5:E:4070:HOH:O     | 2.61         | 0.44        |
| 1:F:147:GLY:O      | 1:F:151:GLU:HG3    | 2.18         | 0.44        |
| 1:G:3:VAL:HG12     | 1:G:19:ILE:H       | 1.83         | 0.44        |
| 1:B:192:ARG:HH12   | 3:B:4002:PGE:H42   | 1.83         | 0.44        |
| 1:H:17:PHE:HB3     | 1:H:21:SER:HB2     | 2.00         | 0.44        |
| 1:I:172:ARG:HD3    | 5:I:4062:HOH:O     | 2.16         | 0.44        |
| 1:A:156:HIS:HD2    | 5:A:4007:HOH:O     | 1.99         | 0.44        |
| 1:I:170[B]:ARG:HE  | 1:I:170[B]:ARG:HB3 | 1.39         | 0.44        |
| 1:L:98[B]:MET:HE3  | 2:L:512:CMQ:H172   | 1.96         | 0.44        |



| Atom-1                                                                  | Atom-2              | Interatomic  | Clash                                     |
|-------------------------------------------------------------------------|---------------------|--------------|-------------------------------------------|
| 1.11.179. ADC.NE                                                        | E.U. 4169.UOU.O     | alstance (A) | $\frac{\text{overlap}(\mathbf{A})}{0.44}$ |
| 1.1.195[D].VAL.11C99                                                    | 0:0:4100:000:0      | 2.01         | 0.44                                      |
| 1:1:160[D]: VAL:HG22                                                    | 1:1:100:A5F:N       | 2.32         | 0.44                                      |
| $\frac{2:1:009:\text{CMQ:H}}{1 \text{ M} 24[\text{A}] \text{ CLN NEQ}}$ | 0:1:4120:HUH:U      | 2.17         | 0.44                                      |
| $\frac{1:M:34[A]:GLN:NE2}{1:M:170[A]:ALA]UD1}$                          | 1:M:08:GLY:HAZ      | 2.32         | 0.43                                      |
| 1:M:170:ALA:HB1                                                         | 1.M:188[B]:1LE:UDI  | 2.47         | 0.43                                      |
| 1:B:144:LYS:0                                                           | 1:B:148[B]:ARG:HG2  | 2.18         | 0.43                                      |
| I:C:42[B]:LEU:HDII                                                      | 1:D:4:PRO:HD3       | 2.00         | 0.43                                      |
| 1:1:70:1LE:O                                                            | 1:1:74:MET:HG2      | 2.19         | 0.43                                      |
| 1:L:190:THR:HG22                                                        | 1:L:191:HIS:CD2     | 2.54         | 0.43                                      |
| 1:C:15:ARG:NH1                                                          | 1:C:15:ARG:CG       | 2.56         | 0.43                                      |
| 1:C:133:THR:H                                                           | 1:J:123:GLN:HE22    | 1.66         | 0.43                                      |
| 1:K:153:MET:CE                                                          | 1:K:153:MET:HA      | 2.48         | 0.43                                      |
| 1:A:70:ILE:HD12                                                         | 2:A:501:CMQ:H21A    | 2.00         | 0.43                                      |
| 1:D:31:LEU:HB2                                                          | 1:D:43:ILE:CD1      | 2.48         | 0.43                                      |
| 1:L:25:LYS:HA                                                           | 5:L:4198:HOH:O      | 2.17         | 0.43                                      |
| 1:L:144:LYS:NZ                                                          | 5:L:4101:HOH:O      | 2.31         | 0.43                                      |
| 1:B:10:THR:O                                                            | 1:B:10:THR:CG2      | 2.67         | 0.43                                      |
| 1:E:115:PRO:HD3                                                         | 1:E:189:LEU:O       | 2.19         | 0.43                                      |
| 1:F:136[A]:GLU:OE2                                                      | 5:F:4185:HOH:O      | 2.21         | 0.43                                      |
| 1:C:23:LEU:HD12                                                         | 1:C:30:PHE:HE2      | 1.83         | 0.43                                      |
| 1:D:101:PHE:CD1                                                         | 1:D:153:MET:CE      | 3.02         | 0.43                                      |
| 1:A:92:MET:CE                                                           | 5:G:4106:HOH:O      | 2.51         | 0.43                                      |
| 1:B:123:GLN:HE22                                                        | 1:I:133:THR:H       | 1.67         | 0.43                                      |
| 1:G:133:THR:H                                                           | 1:N:123:GLN:HE22    | 1.67         | 0.43                                      |
| 1:M:153:MET:HA                                                          | 1:M:153:MET:HE2     | 2.01         | 0.43                                      |
| 1:E:3:VAL:CG1                                                           | 1:E:18:ASP:HB2      | 2.49         | 0.43                                      |
| 1:E:153:MET:HE2                                                         | 5:E:4193:HOH:O      | 2.08         | 0.43                                      |
| 1:F:129:GLN:OE1                                                         | 1:M:127:GLY:HA3     | 2.18         | 0.43                                      |
| 1:K:4:PRO:HD3                                                           | 1:L:42:LEU:HD21     | 2.00         | 0.43                                      |
| 1:K:57:LYS:O                                                            | 1:K:85:PRO:HB3      | 2.19         | 0.43                                      |
| 1:M:176:ALA:HB1                                                         | 1:M:188[B]:ILE:HD12 | 2.00         | 0.43                                      |
| 1:A:189[B]:LEU:HD22                                                     | 1:G:82:PHE:CE1      | 2.53         | 0.43                                      |
| 1:D:70:ILE:HD12                                                         | 2:D:504:CMQ:C2      | 2.48         | 0.43                                      |
| 1:B:176:ALA:HB3                                                         | 1:B:177:PRO:HD3     | 2.00         | 0.42                                      |
| 1:C:23:LEU:HD12                                                         | 1:C:30:PHE:CE2      | 2.54         | 0.42                                      |
| 1:M:3:VAL:HG13                                                          | 1:M:19:ILE:HG22     | 2.01         | 0.42                                      |
| 4:H:3008:GOL:H11                                                        | 5:H:4135:HOH:O      | 2.20         | 0.42                                      |
| 1:C:174[A]:LEU:HD23                                                     | 5:C:4076:HOH:O      | 2.20         | 0.42                                      |
| 1:K:115:PRO:HD3                                                         | 1:K:189:LEU:O       | 2.19         | 0.42                                      |
| 1.B.178.GLU.CA                                                          | 1·B·181·GLU·HG2     | 2.44         | 0.42                                      |
| 1:I:176:ALA:HB3                                                         | 1:I:177:PRO:HD3     | 2.00         | 0.42                                      |



| Atom-1             | Atom-2              | Interatomic  | Clash       |
|--------------------|---------------------|--------------|-------------|
| Atom-1             | Atom-2              | distance (Å) | overlap (Å) |
| 1:L:5:MET:O        | 1:M:21:SER:HB3      | 2.19         | 0.42        |
| 1:F:123:GLN:HE22   | 1:M:133:THR:H       | 1.67         | 0.42        |
| 1:J:145:VAL:O      | 1:J:149:MET:HG2     | 2.20         | 0.42        |
| 1:L:143:LEU:CG     | 5:L:4183:HOH:O      | 2.66         | 0.42        |
| 2:L:512:CMQ:H133   | 2:L:512:CMQ:N1      | 2.35         | 0.42        |
| 1:C:41:ASN:HD21    | 1:D:30:PHE:HB3      | 1.84         | 0.42        |
| 1:D:124:PRO:HA     | 2:D:504:CMQ:O3      | 2.19         | 0.42        |
| 1:G:4:PRO:O        | 1:G:18:ASP:HA       | 2.19         | 0.42        |
| 1:H:42[A]:LEU:HD11 | 1:N:4:PRO:HD2       | 2.02         | 0.42        |
| 1:I:153[B]:MET:CE  | 1:I:184:LEU:CD2     | 2.91         | 0.42        |
| 2:H:508:CMQ:C6     | 5:H:4086:HOH:O      | 2.67         | 0.42        |
| 1:N:94:GLN:HA      | 1:N:118:ARG:O       | 2.19         | 0.42        |
| 1:E:17:PHE:HD2     | 1:E:21:SER:HB3      | 1.84         | 0.42        |
| 1:B:189:LEU:HD22   | 1:B:193:ASN:HD21    | 1.84         | 0.42        |
| 2:K:511:CMQ:H22A   | 5:K:4029:HOH:O      | 2.19         | 0.42        |
| 1:B:139:ALA:O      | 1:B:143:LEU:HG      | 2.19         | 0.41        |
| 1:J:34:GLN:NE2     | 1:J:68:GLY:HA2      | 2.33         | 0.41        |
| 1:J:176:ALA:HB3    | 1:J:177:PRO:HD3     | 2.02         | 0.41        |
| 1:J:193:ASN:HD22   | 1:J:193:ASN:N       | 2.16         | 0.41        |
| 1:K:89:THR:C       | 1:K:90:ILE:HG13     | 2.41         | 0.41        |
| 1:L:3:VAL:HA       | 1:L:4:PRO:HD3       | 1.95         | 0.41        |
| 1:C:122:HIS:CD2    | 2:C:503:CMQ:H242    | 2.34         | 0.41        |
| 1:N:138:HIS:O      | 1:N:142[B]:ILE:HG13 | 2.21         | 0.41        |
| 1:G:57:LYS:O       | 1:G:85:PRO:HB3      | 2.20         | 0.41        |
| 1:H:22:ARG:O       | 1:H:25:LYS:HB2      | 2.21         | 0.41        |
| 1:I:153[B]:MET:HE3 | 1:I:184:LEU:CD2     | 2.50         | 0.41        |
| 1:I:185[B]:VAL:CG2 | 1:I:186:ASP:N       | 2.84         | 0.41        |
| 1:N:92:MET:HE3     | 1:N:92:MET:HB3      | 1.93         | 0.41        |
| 1:H:145:VAL:O      | 1:H:149:MET:HG2     | 2.19         | 0.41        |
| 1:K:7:ILE:HG12     | 1:K:8:GLU:H         | 1.86         | 0.41        |
| 1:N:145:VAL:O      | 1:N:149:MET:HG2     | 2.20         | 0.41        |
| 1:G:175:SER:OG     | 1:G:177:PRO:HD2     | 2.21         | 0.41        |
| 1:J:92:MET:HB3     | 1:J:114:LEU:HD23    | 2.03         | 0.41        |
| 1:K:175:SER:OG     | 1:K:177:PRO:HD2     | 2.20         | 0.41        |
| 1:M:15:ARG:HG2     | 1:M:15:ARG:NH2      | 2.31         | 0.41        |
| 1:B:115:PRO:HD3    | 1:B:189:LEU:O       | 2.20         | 0.41        |
| 1:F:115:PRO:HG3    | 1:F:190:THR:HG22    | 2.02         | 0.41        |
| 1:L:32:THR:OG1     | 1:M:41:ASN:ND2      | 2.53         | 0.41        |
| 1:A:3:VAL:HG13     | 1:A:19:ILE:HG22     | 2.03         | 0.41        |
| 1:A:108:LYS:HA     | 1:A:108:LYS:HD2     | 1.77         | 0.41        |
| 1:B:38:HIS:HD2     | 5:B:4128:HOH:O      | 2.04         | 0.41        |



| Atom 1            | Atom 2              | Interatomic  | Clash       |
|-------------------|---------------------|--------------|-------------|
| Atom-1            | Atom-2              | distance (Å) | overlap (Å) |
| 1:D:92:MET:HB3    | 1:D:114:LEU:HD22    | 2.03         | 0.41        |
| 1:E:135:ILE:HD13  | 1:L:142[A]:ILE:HD13 | 2.02         | 0.41        |
| 1:K:36:GLU:CD     | 1:K:38:HIS:H        | 2.25         | 0.41        |
| 1:K:92:MET:HB3    | 1:K:114[A]:LEU:HD12 | 2.03         | 0.41        |
| 1:A:2:LEU:HD13    | 1:G:3:VAL:HG21      | 2.02         | 0.41        |
| 1:C:4:PRO:HG2     | 1:C:19:ILE:HB       | 2.03         | 0.41        |
| 1:D:127:GLY:HA2   | 1:K:128:TYR:O       | 2.21         | 0.41        |
| 1:H:189:LEU:HD23  | 1:H:189:LEU:HA      | 1.92         | 0.41        |
| 1:K:70:ILE:O      | 1:K:74:MET:HG2      | 2.21         | 0.41        |
| 1:D:22:ARG:HD2    | 1:D:22:ARG:C        | 2.41         | 0.40        |
| 2:J:510:CMQ:H21A  | 5:J:4178:HOH:O      | 2.20         | 0.40        |
| 1:M:34[A]:GLN:CG  | 5:M:4144:HOH:O      | 2.68         | 0.40        |
| 1:N:41:ASN:ND2    | 5:N:4045:HOH:O      | 2.53         | 0.40        |
| 2:B:502:CMQ:H22A  | 5:B:4038:HOH:O      | 2.21         | 0.40        |
| 1:C:71:THR:HG21   | 4:C:3006:GOL:H2     | 2.03         | 0.40        |
| 1:I:54:ASN:ND2    | 1:I:57:LYS:HG3      | 2.37         | 0.40        |
| 1:I:145:VAL:O     | 1:I:149:MET:HG2     | 2.22         | 0.40        |
| 1:I:166:ARG:HG2   | 5:I:4080:HOH:O      | 2.20         | 0.40        |
| 1:L:34:GLN:HE22   | 1:L:68:GLY:HA2      | 1.86         | 0.40        |
| 1:H:139:ALA:O     | 1:H:143:LEU:HG      | 2.20         | 0.40        |
| 1:K:21:SER:O      | 1:K:24:LEU:HB3      | 2.21         | 0.40        |
| 1:M:57:LYS:O      | 1:M:85:PRO:HB3      | 2.21         | 0.40        |
| 1:M:92[A]:MET:HE1 | 1:N:44:VAL:HG11     | 2.02         | 0.40        |
| 1:A:7:ILE:HB      | 1:G:17:PHE:CE2      | 2.57         | 0.40        |
| 1:H:50:LEU:HD23   | 1:H:50:LEU:HA       | 1.86         | 0.40        |
| 1:M:192:ARG:HG2   | 1:N:84:LYS:HE3      | 2.04         | 0.40        |
| 1:G:115:PRO:HD3   | 1:G:189:LEU:O       | 2.21         | 0.40        |
| 1:G:123:GLN:HB2   | 1:G:124:PRO:HD2     | 2.04         | 0.40        |
| 1:H:2:LEU:HD13    | 5:I:4122:HOH:O      | 2.20         | 0.40        |

There are no symmetry-related clashes.

## 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.



| Mol | Chain | Analysed        | Favoured   | Allowed | Outliers | Perce | ntiles |
|-----|-------|-----------------|------------|---------|----------|-------|--------|
| 1   | А     | 189/193~(98%)   | 184 (97%)  | 5 (3%)  | 0        | 100   | 100    |
| 1   | В     | 200/193~(104%)  | 195 (98%)  | 5 (2%)  | 0        | 100   | 100    |
| 1   | С     | 186/193~(96%)   | 182 (98%)  | 4 (2%)  | 0        | 100   | 100    |
| 1   | D     | 184/193~(95%)   | 180 (98%)  | 3 (2%)  | 1 (0%)   | 29    | 18     |
| 1   | Е     | 186/193~(96%)   | 180 (97%)  | 6 (3%)  | 0        | 100   | 100    |
| 1   | F     | 183/193~(95%)   | 180 (98%)  | 3 (2%)  | 0        | 100   | 100    |
| 1   | G     | 183/193~(95%)   | 179 (98%)  | 4 (2%)  | 0        | 100   | 100    |
| 1   | Н     | 181/193 (94%)   | 178 (98%)  | 3 (2%)  | 0        | 100   | 100    |
| 1   | Ι     | 186/193~(96%)   | 183 (98%)  | 3 (2%)  | 0        | 100   | 100    |
| 1   | J     | 183/193~(95%)   | 179 (98%)  | 4 (2%)  | 0        | 100   | 100    |
| 1   | К     | 183/193~(95%)   | 178 (97%)  | 5 (3%)  | 0        | 100   | 100    |
| 1   | L     | 190/193~(98%)   | 187 (98%)  | 3 (2%)  | 0        | 100   | 100    |
| 1   | М     | 193/193~(100%)  | 188 (97%)  | 5 (3%)  | 0        | 100   | 100    |
| 1   | Ν     | 189/193~(98%)   | 186 (98%)  | 3 (2%)  | 0        | 100   | 100    |
| All | All   | 2616/2702~(97%) | 2559 (98%) | 56 (2%) | 1 (0%)   | 100   | 100    |

All (1) Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | D     | 17  | PHE  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed       | Rotameric | Outliers | Perce | ntiles |
|-----|-------|----------------|-----------|----------|-------|--------|
| 1   | А     | 165/163~(101%) | 150 (91%) | 15 (9%)  | 9     | 3      |
| 1   | В     | 173/163~(106%) | 163 (94%) | 10 (6%)  | 20    | 10     |
| 1   | С     | 162/163~(99%)  | 145 (90%) | 17 (10%) | 7     | 2      |
| 1   | D     | 160/163~(98%)  | 146 (91%) | 14 (9%)  | 10    | 4      |
| 1   | Е     | 161/163~(99%)  | 154 (96%) | 7 (4%)   | 29    | 19     |



| Mol | Chain | Analysed         | Rotameric  | Outliers | Percent | iles |
|-----|-------|------------------|------------|----------|---------|------|
| 1   | F     | 158/163~(97%)    | 148 (94%)  | 10 (6%)  | 18      | 8    |
| 1   | G     | 159/163~(98%)    | 151~(95%)  | 8 (5%)   | 24 1    | 15   |
| 1   | Н     | 157/163~(96%)    | 146~(93%)  | 11 (7%)  | 15      | 7    |
| 1   | Ι     | 162/163~(99%)    | 156~(96%)  | 6 (4%)   | 34 2    | 25   |
| 1   | J     | 159/163~(98%)    | 151~(95%)  | 8 (5%)   | 24 1    | 15   |
| 1   | Κ     | 159/163~(98%)    | 152~(96%)  | 7 (4%)   | 28 1    | 9    |
| 1   | L     | 166/163~(102%)   | 156~(94%)  | 10 (6%)  | 19      | 9    |
| 1   | М     | 168/163~(103%)   | 156~(93%)  | 12 (7%)  | 14      | 6    |
| 1   | Ν     | 165/163~(101%)   | 154 (93%)  | 11 (7%)  | 16      | 7    |
| All | All   | 2274/2282~(100%) | 2128 (94%) | 146 (6%) | 19      | 8    |

All (146) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | $\operatorname{Res}$ | Type |
|-----|-------|----------------------|------|
| 1   | А     | 2                    | LEU  |
| 1   | А     | 25                   | LYS  |
| 1   | А     | 54                   | ASN  |
| 1   | А     | 56                   | GLU  |
| 1   | А     | 98[A]                | MET  |
| 1   | А     | 98[B]                | MET  |
| 1   | А     | 108                  | LYS  |
| 1   | А     | 114                  | LEU  |
| 1   | А     | 122                  | HIS  |
| 1   | А     | 140                  | ARG  |
| 1   | А     | 148                  | ARG  |
| 1   | А     | 184[A]               | LEU  |
| 1   | А     | 184[B]               | LEU  |
| 1   | А     | 189[A]               | LEU  |
| 1   | А     | 189[B]               | LEU  |
| 1   | В     | 11                   | SER  |
| 1   | В     | 31                   | LEU  |
| 1   | В     | 36                   | GLU  |
| 1   | В     | 108                  | LYS  |
| 1   | В     | 114[A]               | LEU  |
| 1   | В     | 114[B]               | LEU  |
| 1   | В     | 122                  | HIS  |
| 1   | В     | 162[A]               | GLU  |
| 1   | В     | 162[B]               | GLU  |
| 1   | В     | 193                  | ASN  |



| 1         C         5         MET           1         C         6         VAL           1         C         15         ARG           1         C         22         ARG           1         C         31         LEU           1         C         34         GLN           1         C         35         VAL           1         C         34         GLU           1         C         35         VAL           1         C         34         GLU           1         C         42[B]         LEU           1         C         42[B]         LEU           1         C         143         LEU           1         C         143         LEU           1         C         148         ARG           1         C         185         VAL           1         D         2         LEU           1         D         17         PHE           1         D         18         ASP           1         D         122         ARG           1         D         126                                                            | Mol | Chain | Res    | Type |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|--------|------|
| 1         C         6         VAL           1         C         15         ARG           1         C         22         ARG           1         C         31         LEU           1         C         34         GLN           1         C         35         VAL           1         C         35         VAL           1         C         36         GLU           1         C         42[A]         LEU           1         C         42[B]         LEU           1         C         143         LEU           1         C         143         LEU           1         C         143         LEU           1         C         148         ARG           1         C         185         VAL           1         D         2         LEU           1         D         3         VAL           1         D         18         ASP           1         D         12         LEU           1         D         12         ARG           1         D         12                                                             | 1   | С     | 5      | MET  |
| 1         C         15         ARG           1         C         22         ARG           1         C         31         LEU           1         C         34         GLN           1         C         35         VAL           1         C         36         GLU           1         C         36         GLU           1         C         42[A]         LEU           1         C         42[B]         LEU           1         C         143         LEU           1         C         143         LEU           1         C         143         LEU           1         C         148         ARG           1         C         148         ARG           1         C         148         ARG           1         D         2         LEU           1         D         3         VAL           1         D         3         VAL           1         D         166         ARG           1         D         120         ILEU           1         D         122                                                        | 1   | C     | 6      | VAL  |
| 1         C         22         ARG           1         C         31         LEU           1         C         34         GLN           1         C         35         VAL           1         C         36         GLU           1         C         42[A]         LEU           1         C         42[B]         LEU           1         C         42[B]         LEU           1         C         142         HIS           1         C         143         LEU           1         D         2         LEU           1         D         2         LEU           1         D         3         VAL           1         D         17         PHE           1         D         18         ASP           1         D         122         HIS           1         D         126                                                       | 1   | C     | 15     | ARG  |
| 1         C         31         LEU           1         C         34         GLN           1         C         35         VAL           1         C         36         GLU           1         C         42[A]         LEU           1         C         42[B]         LEU           1         C         42[B]         LEU           1         C         142         HIS           1         C         143         LEU           1         C         143         LEU           1         C         143         LEU           1         C         148         ARG           1         C         185         VAL           1         D         2         LEU           1         D         3         VAL           1         D         3         VAL           1         D         3         VAL           1         D         17         PHE           1         D         18         ASP           1         D         26         GLU           1         D         120                                                         | 1   | C     | 22     | ARG  |
| 1         C         34         GLN           1         C         35         VAL           1         C         36         GLU           1         C         42[A]         LEU           1         C         42[B]         LEU           1         C         42[B]         LEU           1         C         142         LEU           1         C         143         KEU           1         D         122         HIS           1         D         2         LEU           1         D         3         VAL           1         D         3         VAL           1         D         17         PHE           1         D         18         ASP           1         D         122         HIS           1         D         126                                                     | 1   | C     | 31     | LEU  |
| 1         C         35         VAL           1         C         36         GLU           1         C         42[A]         LEU           1         C         42[B]         LEU           1         C         42[B]         LEU           1         C         14         LEU           1         C         143         LEU           1         C         143         LEU           1         C         143         LEU           1         C         148         ARG           1         C         148         ARG           1         C         148         ARG           1         D         2         LEU           1         D         3         VAL           1         D         3         VAL           1         D         3         VAL           1         D         17         PHE           1         D         18         ASP           1         D         122         HIS           1         D         122         HIS           1         D         126                                                       | 1   | C     | 34     | GLN  |
| 1         C         36         GLU           1         C $42[A]$ LEU           1         C $42[B]$ LEU           1         C $42[B]$ LEU           1         C $141$ LEU           1         C $143$ LEU           1         C $148$ ARG           1         D $2$ LEU           1         D $3$ VAL           1         D $17$ PHE           1         D $17$ PHE           1         D $17$ PHE           1         D $122$ ARG           1         D $122$ HIS           1         D $129[B]$ GLN           1 </th <th>1</th> <th>C</th> <th>35</th> <th>VAL</th>                                                                                                                                                                                                                                                                                           | 1   | C     | 35     | VAL  |
| 1         C $42[A]$ LEU           1         C $42[B]$ LEU           1         C $42[B]$ LEU           1         C $114$ LEU           1         C $114$ LEU           1         C $122$ HIS           1         C $143$ LEU           1         C $143$ LEU           1         C $148$ ARG           1         C $185$ VAL           1         D $2$ LEU           1         D $3$ VAL           1         D $3$ VAL           1         D $17$ PHE           1         D $17$ PHE           1         D $126$ GLU           1         D $122$ ARG           1         D $129[A]$ GLN           1         D $129[B]$ GLN           1         D $136$ GLU <t< th=""><th>1</th><th>C</th><th>36</th><th>GLU</th></t<>                                                                                                                                                                                                                                                                                                           | 1   | C     | 36     | GLU  |
| 1         C $42[B]$ LEU           1         C $42[B]$ LEU           1         C $114$ LEU           1         C $114$ LEU           1         C $122$ HIS           1         C $143$ LEU           1         C $143$ LEU           1         C $148$ ARG           1         C $185$ VAL           1         D $2$ LEU           1         D $3$ VAL           1         D $3$ VAL           1         D $3$ VAL           1         D $185$ VAL           1         D $122$ ARG           1         D $126$ GLU           1         D $129[A]$ GLN           1         D $136$ GLU           1         D $136$ GLU           1         E $36$ GLU           1 <th>1</th> <th>C</th> <th>42[A]</th> <th>LEU</th>                                                                                                                                                                                                                                                                                                              | 1   | C     | 42[A]  | LEU  |
| 1         C         84         LYS           1         C         114         LEU           1         C         122         HIS           1         C         143         LEU           1         C         143         LEU           1         C         143         LEU           1         C         148         ARG           1         C         166         ARG           1         D         2         LEU           1         D         3         VAL           1         D         3         VAL           1         D         3         VAL           1         D         3         VAL           1         D         17         PHE           1         D         18         ASP           1         D         22         ARG           1         D         122         HIS           1         D         122         HIS           1         D         136         GLU           1         D         136         GLU           1         E         36 <t< th=""><th>1</th><th>C</th><th>42[B]</th><th>LEU</th></t<> | 1   | C     | 42[B]  | LEU  |
| 1         C         114         LEU           1         C         122         HIS           1         C         143         LEU           1         C         143         LEU           1         C         143         LEU           1         C         148         ARG           1         C         166         ARG           1         D         2         LEU           1         D         3         VAL           1         D         18         ASP           1         D         122         ARG           1         D         122         HIS           1         D         129[A]         GLN           1         D         136         GLU           1         D         136         GLU           1         E         6         VAL           1         E         31                                                             | 1   | C     | 84     | LYS  |
| 1         C         122         HIS           1         C         143         LEU           1         C         148         ARG           1         C         166         ARG           1         C         185         VAL           1         D         2         LEU           1         D         3         VAL           1         D         17         PHE           1         D         18         ASP           1         D         26         GLU           1         D         129[A]         GLN           1         D         129[A]         GLN           1         D         136         GLU           1         D         136         ARG           1         D         185                                                             | 1   | C     | 114    | LEU  |
| 1         C         143         LEU           1         C         143         ARG           1         C         148         ARG           1         C         185         VAL           1         D         2         LEU           1         D         3         VAL           1         D         185         GLU           1         D         122         HIS           1         D         129[A]         GLN           1         D         126         ARG           1         D         129[B]         GLN           1         D         136         GLU           1         E         6         VAL           1         E         36 <td< th=""><th>1</th><th>C</th><th>122</th><th>HIS</th></td<> | 1   | C     | 122    | HIS  |
| 1         C         148         ARG           1         C         166         ARG           1         C         185         VAL           1         D         2         LEU           1         D         3         VAL           1         D         3         VAL           1         D         3         VAL           1         D         17         PHE           1         D         18         ASP           1         D         22         ARG           1         D         22         ARG           1         D         26         GLU           1         D         31         LEU           1         D         122         HIS           1         D         129[A]         GLN           1         D         126         ARG           1         D         126         ARG           1         D         129[B]         GLN           1         D         136         GLU           1         E         6         VAL           1         E         36                                                           | 1   | C     | 143    | LEU  |
| 1         C         166         ARG           1         C         185         VAL           1         D         2         LEU           1         D         3         VAL           1         D         3         VAL           1         D         3         VAL           1         D         8         GLU           1         D         17         PHE           1         D         18         ASP           1         D         22         ARG           1         D         26         GLU           1         D         31         LEU           1         D         122         HIS           1         D         129[A]         GLN           1         D         129[B]         GLN           1         D         136         GLU           1         D         136         ARG           1         D         185         VAL           1         E         36         GLU           1         E         36         GLU           1         E         36                                                            | 1   | C     | 148    | ARG  |
| 1         C         185         VAL           1         D         2         LEU           1         D         3         VAL           1         D         3         VAL           1         D         3         VAL           1         D         8         GLU           1         D         17         PHE           1         D         18         ASP           1         D         22         ARG           1         D         26         GLU           1         D         31         LEU           1         D         122         HIS           1         D         129[A]         GLN           1         D         129[B]         GLN           1         D         136         GLU           1         D         136         GLU           1         D         185         VAL           1         E         8         GLU           1         E         31         LEU           1         E         36         GLU           1         E         36         <                                                    | 1   | C     | 166    | ARG  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | С     | 185    | VAL  |
| 1       D       3       VAL         1       D       8       GLU         1       D       17       PHE         1       D       18       ASP         1       D       22       ARG         1       D       26       GLU         1       D       26       GLU         1       D       31       LEU         1       D       122       HIS         1       D       129[A]       GLN         1       D       129[B]       GLN         1       D       136       GLU         1       D       136       GLU         1       D       136       GLU         1       D       185       VAL         1       E       6       VAL         1       E       31       LEU         1       E       36       GLU         1       E       36       GLU         1       E       122       HIS         1       E       148       ARG         1       F       3       VAL         1       F                                                                                                                                                             | 1   | D     | 2      | LEU  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | D     | 3      | VAL  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | D     | 8      | GLU  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | D     | 17     | PHE  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | D     | 18     | ASP  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | D     | 22     | ARG  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | D     | 26     | GLU  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | D     | 31     | LEU  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | D     | 122    | HIS  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | D     | 129[A] | GLN  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | D     | 129[B] | GLN  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | D     | 136    | GLU  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | D     | 166    | ARG  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | D     | 185    | VAL  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | Е     | 6      | VAL  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | Е     | 8      | GLU  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | Е     | 26     | GLU  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | Е     | 31     | LEU  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | Е     | 36     | GLU  |
| 1         E         148         ARG           1         F         3         VAL           1         F         6         VAL           1         F         18         ASP           1         F         21         SER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | Е     | 122    | HIS  |
| 1         F         3         VAL           1         F         6         VAL           1         F         18         ASP           1         F         21         SER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1   | Е     | 148    | ARG  |
| 1         F         6         VAL           1         F         18         ASP           1         F         21         SER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1   | F     | 3      | VAL  |
| 1         F         18         ASP           1         F         21         SER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   | F     | 6      | VAL  |
| 1 F 21 SER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1   | F     | 18     | ASP  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   | F     | 21     | SER  |



| Mol | Chain | Res    | Type |
|-----|-------|--------|------|
| 1   | F     | 25     | LYS  |
| 1   | F     | 122    | HIS  |
| 1   | F     | 129    | GLN  |
| 1   | F     | 148    | ARG  |
| 1   | F     | 181    | GLU  |
| 1   | F     | 187    | SER  |
| 1   | G     | 6      | VAL  |
| 1   | G     | 22     | ARG  |
| 1   | G     | 36[A]  | GLU  |
| 1   | G     | 36[B]  | GLU  |
| 1   | G     | 54     | ASN  |
| 1   | G     | 114    | LEU  |
| 1   | G     | 122    | HIS  |
| 1   | G     | 166    | ARG  |
| 1   | Н     | 2      | LEU  |
| 1   | Н     | 5      | MET  |
| 1   | Н     | 16     | SER  |
| 1   | Н     | 18     | ASP  |
| 1   | Н     | 23     | LEU  |
| 1   | Н     | 31     | LEU  |
| 1   | Н     | 57     | LYS  |
| 1   | Н     | 120    | MET  |
| 1   | Н     | 122    | HIS  |
| 1   | Н     | 172    | ARG  |
| 1   | Н     | 193    | ASN  |
| 1   | Ι     | 2      | LEU  |
| 1   | Ι     | 114    | LEU  |
| 1   | Ι     | 122    | HIS  |
| 1   | Ι     | 152[A] | LEU  |
| 1   | Ι     | 152[B] | LEU  |
| 1   | Ι     | 181    | GLU  |
| 1   | J     | 2      | LEU  |
| 1   | J     | 25     | LYS  |
| 1   | J     | 31     | LEU  |
| 1   | J     | 56     | GLU  |
| 1   | J     | 114    | LEU  |
| 1   | J     | 122    | HIS  |
| 1   | J     | 172    | ARG  |
| 1   | J     | 193    | ASN  |
| 1   | K     | 2      | LEU  |
| 1   | K     | 16     | SER  |
|     |       |        |      |



| Mol | Chain | Res    | Type |  |
|-----|-------|--------|------|--|
| 1   | K     | 42     | LEU  |  |
| 1   | K     | 122    | HIS  |  |
| 1   | K     | 148    | ARG  |  |
| 1   | K     | 172    | ARG  |  |
| 1   | L     | 3      | VAL  |  |
| 1   | L     | 25     | LYS  |  |
| 1   | L     | 41     | ASN  |  |
| 1   | L     | 56     | GLU  |  |
| 1   | L     | 104[A] | THR  |  |
| 1   | L     | 104[B] | THR  |  |
| 1   | L     | 114    | LEU  |  |
| 1   | L     | 122    | HIS  |  |
| 1   | L     | 181[A] | GLU  |  |
| 1   | L     | 181[B] | GLU  |  |
| 1   | М     | 16     | SER  |  |
| 1   | М     | 22     | ARG  |  |
| 1   | М     | 31[A]  | LEU  |  |
| 1   | М     | 31[B]  | LEU  |  |
| 1   | М     | 56     | GLU  |  |
| 1   | М     | 108[A] | LYS  |  |
| 1   | М     | 108[B] | LYS  |  |
| 1   | М     | 114    | LEU  |  |
| 1   | М     | 122    | HIS  |  |
| 1   | М     | 153    | MET  |  |
| 1   | М     | 163    | GLN  |  |
| 1   | М     | 192    | ARG  |  |
| 1   | N     | 3      | VAL  |  |
| 1   | N     | 18     | ASP  |  |
| 1   | N     | 31[A]  | LEU  |  |
| 1   | N     | 31[B]  | LEU  |  |
| 1   | N     | 36[A]  | GLU  |  |
| 1   | N     | 36[B]  | GLU  |  |
| 1   | N     | 114[A] | LEU  |  |
| 1   | N     | 114[B] | LEU  |  |
| 1   | N     | 118    | ARG  |  |
| 1   | N     | 122    | HIS  |  |
| 1   | N     | 148    | ARG  |  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (51) such sidechains are listed below:

| 1 A 41 ASN | Mol | Chain | Res | Type |
|------------|-----|-------|-----|------|
|            | 1   | А     | 41  | ASN  |



| Mol | Chain | Res | Type |  |  |
|-----|-------|-----|------|--|--|
| 1   | А     | 54  | ASN  |  |  |
| 1   | А     | 123 | GLN  |  |  |
| 1   | А     | 156 | HIS  |  |  |
| 1   | А     | 163 | GLN  |  |  |
| 1   | В     | 38  | HIS  |  |  |
| 1   | В     | 41  | ASN  |  |  |
| 1   | В     | 116 | ASN  |  |  |
| 1   | В     | 123 | GLN  |  |  |
| 1   | В     | 163 | GLN  |  |  |
| 1   | В     | 193 | ASN  |  |  |
| 1   | С     | 34  | GLN  |  |  |
| 1   | С     | 41  | ASN  |  |  |
| 1   | С     | 116 | ASN  |  |  |
| 1   | D     | 41  | ASN  |  |  |
| 1   | D     | 116 | ASN  |  |  |
| 1   | D     | 156 | HIS  |  |  |
| 1   | D     | 193 | ASN  |  |  |
| 1   | Е     | 38  | HIS  |  |  |
| 1   | Е     | 41  | ASN  |  |  |
| 1   | Е     | 116 | ASN  |  |  |
| 1   | Е     | 123 | GLN  |  |  |
| 1   | Е     | 156 | HIS  |  |  |
| 1   | F     | 34  | GLN  |  |  |
| 1   | F     | 38  | HIS  |  |  |
| 1   | F     | 41  | ASN  |  |  |
| 1   | F     | 123 | GLN  |  |  |
| 1   | G     | 41  | ASN  |  |  |
| 1   | G     | 54  | ASN  |  |  |
| 1   | G     | 191 | HIS  |  |  |
| 1   | Н     | 34  | GLN  |  |  |
| 1   | Н     | 41  | ASN  |  |  |
| 1   | Ι     | 41  | ASN  |  |  |
| 1   | J     | 34  | GLN  |  |  |
| 1   | J     | 41  | ASN  |  |  |
| 1   | J     | 116 | ASN  |  |  |
| 1   | J     | 123 | GLN  |  |  |
| 1   | J     | 163 | GLN  |  |  |
| 1   | J     | 193 | ASN  |  |  |
| 1   | Κ     | 34  | GLN  |  |  |
| 1   | K     | 41  | ASN  |  |  |
| 1   | Κ     | 123 | GLN  |  |  |
|     |       |     | HIS  |  |  |



| eentinaea frent preeto ae page |       |                |      |  |  |  |  |
|--------------------------------|-------|----------------|------|--|--|--|--|
| Mol                            | Chain | $\mathbf{Res}$ | Type |  |  |  |  |
| 1                              | K     | 193            | ASN  |  |  |  |  |
| 1                              | L     | 123            | GLN  |  |  |  |  |
| 1                              | М     | 41             | ASN  |  |  |  |  |
| 1                              | М     | 116            | ASN  |  |  |  |  |
| 1                              | М     | 123            | GLN  |  |  |  |  |
| 1                              | М     | 163            | GLN  |  |  |  |  |
| 1                              | N     | 41             | ASN  |  |  |  |  |
| 1                              | N     | 123            | GLN  |  |  |  |  |

#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

## 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

## 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

## 5.6 Ligand geometry (i)

40 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol Type Chain | Chain | Res | Link | Bond lengths |          |          | Bond angles |          |        |          |
|----------------|-------|-----|------|--------------|----------|----------|-------------|----------|--------|----------|
|                | Chain |     |      | Counts       | RMSZ     | # Z  > 2 | Counts      | RMSZ     | # Z >2 |          |
| 2              | CMQ   | Е   | 505  | 1            | 31,32,32 | 1.32     | 1 (3%)      | 39,42,42 | 1.59   | 11 (28%) |
| 2              | CMQ   | G   | 507  | 1            | 31,32,32 | 1.43     | 1 (3%)      | 39,42,42 | 1.26   | 6 (15%)  |
| 2              | CMQ   | С   | 503  | 1            | 31,32,32 | 1.26     | 2 (6%)      | 39,42,42 | 1.35   | 5 (12%)  |
| 2              | CMQ   | F   | 506  | 1            | 31,32,32 | 1.15     | 1 (3%)      | 39,42,42 | 1.32   | 6 (15%)  |
| 2              | CMQ   | Н   | 508  | 1            | 31,32,32 | 1.21     | 1 (3%)      | 39,42,42 | 1.52   | 8 (20%)  |


| Mal  | Turne | Chain | Dec  | Tiple | Bo          | ond leng | $\mathbf{ths}$ | E              | ond ang | gles                 |
|------|-------|-------|------|-------|-------------|----------|----------------|----------------|---------|----------------------|
| WIOI | туре  | Unam  | nes  | LIIIK | Counts      | RMSZ     | # Z >2         | Counts         | RMSZ    | # Z >2               |
| 4    | GOL   | С     | 3005 | -     | $5,\!5,\!5$ | 0.27     | 0              | $5,\!5,\!5$    | 0.63    | 0                    |
| 4    | GOL   | С     | 3006 | -     | $5,\!5,\!5$ | 0.35     | 0              | $5,\!5,\!5$    | 0.54    | 0                    |
| 3    | PGE   | Ι     | 4009 | -     | $9,\!9,\!9$ | 0.45     | 0              | 8,8,8          | 0.45    | 0                    |
| 4    | GOL   | В     | 3002 | -     | $5,\!5,\!5$ | 0.23     | 0              | $5,\!5,\!5$    | 0.62    | 0                    |
| 2    | CMQ   | М     | 513  | 1     | 31,32,32    | 1.18     | 2 (6%)         | 39,42,42       | 1.29    | 5 (12%)              |
| 3    | PGE   | F     | 4006 | -     | $9,\!9,\!9$ | 0.38     | 0              | 8,8,8          | 0.51    | 0                    |
| 4    | GOL   | Ν     | 3007 | -     | $5,\!5,\!5$ | 0.31     | 0              | $5,\!5,\!5$    | 0.74    | 0                    |
| 3    | PGE   | М     | 4013 | -     | $9,\!9,\!9$ | 0.43     | 0              | 8,8,8          | 0.51    | 0                    |
| 3    | PGE   | G     | 4007 | -     | $9,\!9,\!9$ | 0.50     | 0              | 8,8,8          | 0.48    | 0                    |
| 2    | CMQ   | Ν     | 514  | 1     | 31,32,32    | 1.23     | 1 (3%)         | 39,42,42       | 1.12    | 4 (10%)              |
| 2    | CMQ   | D     | 504  | 1     | 31,32,32    | 1.22     | 1 (3%)         | 39,42,42       | 1.53    | <mark>6 (15%)</mark> |
| 3    | PGE   | В     | 4002 | -     | $9,\!9,\!9$ | 0.51     | 0              | 8,8,8          | 0.18    | 0                    |
| 2    | CMQ   | Κ     | 511  | 1     | 31,32,32    | 1.15     | 1 (3%)         | 39,42,42       | 1.20    | 5 (12%)              |
| 2    | CMQ   | L     | 512  | 1     | 31,32,32    | 1.23     | 2 (6%)         | 39,42,42       | 1.31    | 5 (12%)              |
| 3    | PGE   | Κ     | 4015 | -     | $9,\!9,\!9$ | 0.22     | 0              | 8,8,8          | 0.90    | 0                    |
| 4    | GOL   | В     | 3003 | -     | $5,\!5,\!5$ | 0.43     | 0              | $5,\!5,\!5$    | 0.34    | 0                    |
| 4    | GOL   | L     | 3011 | -     | $5,\!5,\!5$ | 0.46     | 0              | $5,\!5,\!5$    | 0.66    | 0                    |
| 3    | PGE   | С     | 4003 | -     | $9,\!9,\!9$ | 0.51     | 0              | 8,8,8          | 0.32    | 0                    |
| 3    | PGE   | Ε     | 4005 | -     | $9,\!9,\!9$ | 0.49     | 0              | 8,8,8          | 0.37    | 0                    |
| 2    | CMQ   | Ι     | 509  | 1     | 31,32,32    | 1.21     | 1 (3%)         | 39,42,42       | 1.59    | 5 (12%)              |
| 3    | PGE   | Κ     | 4011 | -     | $9,\!9,\!9$ | 0.52     | 0              | 8,8,8          | 0.45    | 0                    |
| 3    | PGE   | Н     | 4008 | -     | $9,\!9,\!9$ | 0.42     | 0              | $8,\!8,\!8$    | 0.54    | 0                    |
| 4    | GOL   | F     | 3004 | -     | $5,\!5,\!5$ | 0.60     | 0              | $5,\!5,\!5$    | 0.70    | 0                    |
| 3    | PGE   | L     | 4012 | -     | $9,\!9,\!9$ | 0.59     | 0              | 8,8,8          | 0.31    | 0                    |
| 2    | CMQ   | J     | 510  | 1     | 31,32,32    | 1.23     | 1 (3%)         | $39,\!42,\!42$ | 1.44    | 6 (15%)              |
| 4    | GOL   | Н     | 3008 | -     | $5,\!5,\!5$ | 0.37     | 0              | $5,\!5,\!5$    | 0.88    | 0                    |
| 2    | CMQ   | В     | 502  | 1     | 31,32,32    | 1.11     | 1 (3%)         | 39,42,42       | 1.27    | 3 (7%)               |
| 3    | PGE   | А     | 4001 | -     | $9,\!9,\!9$ | 0.50     | 0              | 8,8,8          | 0.29    | 0                    |
| 4    | GOL   | А     | 3001 | -     | $5,\!5,\!5$ | 0.30     | 0              | $5,\!5,\!5$    | 0.48    | 0                    |
| 3    | PGE   | J     | 4010 | -     | $9,\!9,\!9$ | 0.60     | 0              | 8,8,8          | 0.49    | 0                    |
| 3    | PGE   | Ν     | 4014 | _     | 9,9,9       | 0.43     | 0              | 8,8,8          | 0.45    | 0                    |
| 4    | GOL   | G     | 3009 | -     | $5,\!5,\!5$ | 0.49     | 0              | $5,\!5,\!5$    | 0.37    | 0                    |
| 4    | GOL   | K     | 3010 | -     | $5,\!5,\!5$ | 0.32     | 0              | $5,\!5,\!5$    | 0.79    | 0                    |
| 3    | PGE   | D     | 4004 | -     | 9,9,9       | 0.47     | 0              | 8,8,8          | 0.35    | 0                    |
| 2    | CMQ   | А     | 501  | 1     | 31,32,32    | 1.26     | 1 (3%)         | 39,42,42       | 1.45    | 8 (20%)              |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.



| Mol | Type | Chain | Res  | Link | Chirals | Torsions    | Rings   |
|-----|------|-------|------|------|---------|-------------|---------|
| 2   | CMQ  | Е     | 505  | 1    | -       | 10/29/29/29 | 0/2/2/2 |
| 2   | CMQ  | G     | 507  | 1    | -       | 4/29/29/29  | 0/2/2/2 |
| 2   | CMQ  | С     | 503  | 1    | -       | 6/29/29/29  | 0/2/2/2 |
| 2   | CMQ  | F     | 506  | 1    | -       | 4/29/29/29  | 0/2/2/2 |
| 2   | CMQ  | Н     | 508  | 1    | -       | 10/29/29/29 | 0/2/2/2 |
| 4   | GOL  | С     | 3005 | -    | -       | 4/4/4/4     | -       |
| 4   | GOL  | С     | 3006 | -    | -       | 2/4/4/4     | -       |
| 3   | PGE  | Ι     | 4009 | -    | -       | 3/7/7/7     | -       |
| 4   | GOL  | В     | 3002 | -    | -       | 2/4/4/4     | -       |
| 2   | CMQ  | М     | 513  | 1    | -       | 7/29/29/29  | 0/2/2/2 |
| 3   | PGE  | F     | 4006 | -    | -       | 6/7/7/7     | -       |
| 4   | GOL  | Ν     | 3007 | -    | -       | 4/4/4/4     | -       |
| 3   | PGE  | М     | 4013 | -    | -       | 3/7/7/7     | -       |
| 3   | PGE  | G     | 4007 | -    | -       | 5/7/7/7     | -       |
| 2   | CMQ  | N     | 514  | 1    | -       | 9/29/29/29  | 0/2/2/2 |
| 2   | CMQ  | D     | 504  | 1    | -       | 8/29/29/29  | 0/2/2/2 |
| 3   | PGE  | В     | 4002 | -    | -       | 3/7/7/7     | -       |
| 2   | CMQ  | K     | 511  | 1    | -       | 7/29/29/29  | 0/2/2/2 |
| 2   | CMQ  | L     | 512  | 1    | -       | 7/29/29/29  | 0/2/2/2 |
| 3   | PGE  | K     | 4015 | -    | -       | 6/7/7/7     | -       |
| 4   | GOL  | В     | 3003 | -    | -       | 2/4/4/4     | -       |
| 4   | GOL  | L     | 3011 | -    | -       | 2/4/4/4     | -       |
| 3   | PGE  | С     | 4003 | -    | -       | 6/7/7/7     | -       |
| 3   | PGE  | Е     | 4005 | -    | -       | 4/7/7/7     | -       |
| 2   | CMQ  | Ι     | 509  | 1    | -       | 6/29/29/29  | 0/2/2/2 |
| 3   | PGE  | K     | 4011 | -    | -       | 5/7/7/7     | -       |
| 3   | PGE  | Н     | 4008 | -    | -       | 3/7/7/7     | -       |
| 4   | GOL  | F     | 3004 | -    | -       | 2/4/4/4     | -       |
| 3   | PGE  | L     | 4012 | -    | -       | 4/7/7/7     | -       |
| 2   | CMQ  | J     | 510  | 1    | -       | 9/29/29/29  | 0/2/2/2 |
| 4   | GOL  | Н     | 3008 | _    | -       | 0/4/4/4     | -       |
| 2   | CMQ  | В     | 502  | 1    | -       | 6/29/29/29  | 0/2/2/2 |
| 3   | PGE  | A     | 4001 | -    | -       | 3/7/7/7     | -       |
| 4   | GOL  | А     | 3001 | -    | -       | 2/4/4/4     | -       |
| 3   | PGE  | J     | 4010 | -    | -       | 0/7/7/7     | -       |



| Mol | Type | Chain | Res  | Link | Chirals | Torsions   | Rings   |
|-----|------|-------|------|------|---------|------------|---------|
| 3   | PGE  | Ν     | 4014 | -    | -       | 3/7/7/7    | -       |
| 4   | GOL  | G     | 3009 | -    | -       | 2/4/4/4    | -       |
| 4   | GOL  | K     | 3010 | -    | -       | 3/4/4/4    | -       |
| 3   | PGE  | D     | 4004 | -    | -       | 6/7/7/7    | -       |
| 2   | CMQ  | А     | 501  | 1    | -       | 4/29/29/29 | 0/2/2/2 |

Continued from previous page...

| All | (17) | bond | length | outliers | are | listed | below: |
|-----|------|------|--------|----------|-----|--------|--------|
|-----|------|------|--------|----------|-----|--------|--------|

| Mol | Chain | Res | Type | Atoms   | Z    | Observed(Å) | $\operatorname{Ideal}(\operatorname{\AA})$ |
|-----|-------|-----|------|---------|------|-------------|--------------------------------------------|
| 2   | G     | 507 | CMQ  | O1-C1   | 6.19 | 1.47        | 1.35                                       |
| 2   | С     | 503 | CMQ  | O1-C1   | 5.93 | 1.46        | 1.35                                       |
| 2   | D     | 504 | CMQ  | 01-C1   | 5.80 | 1.46        | 1.35                                       |
| 2   | J     | 510 | CMQ  | O1-C1   | 5.56 | 1.45        | 1.35                                       |
| 2   | Н     | 508 | CMQ  | O1-C1   | 5.39 | 1.45        | 1.35                                       |
| 2   | А     | 501 | CMQ  | O1-C1   | 5.36 | 1.45        | 1.35                                       |
| 2   | Е     | 505 | CMQ  | O1-C1   | 5.31 | 1.45        | 1.35                                       |
| 2   | Κ     | 511 | CMQ  | O1-C1   | 5.11 | 1.45        | 1.35                                       |
| 2   | L     | 512 | CMQ  | O1-C1   | 5.07 | 1.44        | 1.35                                       |
| 2   | Ι     | 509 | CMQ  | O1-C1   | 5.04 | 1.44        | 1.35                                       |
| 2   | Ν     | 514 | CMQ  | O1-C1   | 4.88 | 1.44        | 1.35                                       |
| 2   | В     | 502 | CMQ  | O1-C1   | 4.84 | 1.44        | 1.35                                       |
| 2   | F     | 506 | CMQ  | O1-C1   | 4.56 | 1.44        | 1.35                                       |
| 2   | М     | 513 | CMQ  | O1-C1   | 4.04 | 1.42        | 1.35                                       |
| 2   | М     | 513 | CMQ  | O2-C1   | 2.55 | 1.26        | 1.21                                       |
| 2   | C     | 503 | CMQ  | C21-C19 | 2.10 | 1.42        | 1.38                                       |
| 2   | L     | 512 | CMQ  | C20-C22 | 2.01 | 1.42        | 1.38                                       |

All (83) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms      | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|-------|------------------|---------------|
| 2   | Ι     | 509 | CMQ  | O1-C1-O2   | -5.42 | 113.85           | 124.25        |
| 2   | D     | 504 | CMQ  | O1-C1-N1   | 4.48  | 119.62           | 110.50        |
| 2   | В     | 502 | CMQ  | O1-C1-N1   | 4.48  | 119.60           | 110.50        |
| 2   | Е     | 505 | CMQ  | O1-C1-O2   | -4.33 | 115.95           | 124.25        |
| 2   | В     | 502 | CMQ  | O1-C1-O2   | -4.08 | 116.42           | 124.25        |
| 2   | С     | 503 | CMQ  | C17-C15-N2 | -4.07 | 104.14           | 110.07        |
| 2   | D     | 504 | CMQ  | O1-C1-O2   | -3.98 | 116.62           | 124.25        |
| 2   | F     | 506 | CMQ  | C17-C15-N2 | -3.95 | 104.31           | 110.07        |
| 2   | L     | 512 | CMQ  | O1-C1-N1   | 3.95  | 118.53           | 110.50        |
| 2   | М     | 513 | CMQ  | C17-C15-N2 | -3.86 | 104.44           | 110.07        |
| 2   | L     | 512 | CMQ  | O1-C1-O2   | -3.78 | 117.00           | 124.25        |



| Mol | Chain | Res | Type             | Atoms       | Z                 | Observed(°) | $Ideal(^{o})$ |
|-----|-------|-----|------------------|-------------|-------------------|-------------|---------------|
| 2   | М     | 513 | CMQ              | O1-C1-O2    | -3.66             | 117.23      | 124.25        |
| 2   | С     | 503 | CMQ              | O1-C1-O2    | -3.66             | 117.23      | 124.25        |
| 2   | А     | 501 | CMQ              | O1-C1-O2    | -3.65             | 117.24      | 124.25        |
| 2   | J     | 510 | CMQ              | C17-C15-N2  | -3.63             | 104.78      | 110.07        |
| 2   | Ι     | 509 | CMQ              | 01-C1-N1    | 3.56              | 117.73      | 110.50        |
| 2   | Н     | 508 | CMQ              | C11-C9-N1   | -3.52             | 102.47      | 110.58        |
| 2   | С     | 503 | CMQ              | 01-C1-N1    | 3.50              | 117.61      | 110.50        |
| 2   | J     | 510 | CMQ              | C9-N1-C1    | 3.42              | 129.26      | 120.90        |
| 2   | Κ     | 511 | CMQ              | O1-C1-O2    | -3.39             | 117.74      | 124.25        |
| 2   | Н     | 508 | CMQ              | C17-C15-N2  | -3.33             | 105.21      | 110.07        |
| 2   | J     | 510 | CMQ              | C10-C9-N1   | -3.29             | 102.21      | 111.16        |
| 2   | L     | 512 | CMQ              | C17-C15-N2  | -3.25             | 105.34      | 110.07        |
| 2   | А     | 501 | CMQ              | C17-C15-N2  | -3.21             | 105.39      | 110.07        |
| 2   | J     | 510 | CMQ              | O4-C16-C24  | -3.18             | 100.32      | 109.74        |
| 2   | Е     | 505 | CMQ              | O1-C1-N1    | 3.06              | 116.72      | 110.50        |
| 2   | D     | 504 | CMQ              | C17-C15-N2  | -3.06             | 105.61      | 110.07        |
| 2   | Н     | 508 | CMQ              | O1-C1-O2    | -3.04             | 118.42      | 124.25        |
| 2   | G     | 507 | CMQ              | O1-C1-O2    | -3.02             | 118.45      | 124.25        |
| 2   | Κ     | 511 | CMQ              | O1-C1-N1    | 2.99              | 116.57      | 110.50        |
| 2   | М     | 513 | CMQ              | O1-C2-C3    | 2.99              | 116.57      | 109.39        |
| 2   | Н     | 508 | CMQ              | O1-C2-C3    | 2.95              | 116.48      | 109.39        |
| 2   | В     | 502 | CMQ              | O1-C2-C3    | 2.89              | 116.34      | 109.39        |
| 2   | F     | 506 | CMQ              | O1-C1-O2    | -2.89             | 118.71      | 124.25        |
| 2   | D     | 504 | CMQ              | C13-C12-C11 | 2.87              | 121.66      | 111.11        |
| 2   | Ν     | 514 | CMQ              | O1-C1-O2    | -2.83             | 118.81      | 124.25        |
| 2   | Ν     | 514 | CMQ              | C17-C15-N2  | -2.83             | 105.95      | 110.07        |
| 2   | Ι     | 509 | CMQ              | C9-N1-C1    | 2.79              | 127.72      | 120.90        |
| 2   | Ε     | 505 | CMQ              | C11-C9-N1   | -2.76             | 104.22      | 110.58        |
| 2   | J     | 510 | CMQ              | C11-C9-N1   | -2.76             | 104.22      | 110.58        |
| 2   | Ε     | 505 | CMQ              | O4-C16-C24  | -2.76             | 101.57      | 109.74        |
| 2   | А     | 501 | CMQ              | C2-O1-C1    | -2.70             | 109.90      | 115.93        |
| 2   | L     | 512 | CMQ              | O1-C2-C3    | 2.69              | 115.87      | 109.39        |
| 2   | Н     | 508 | CMQ              | C10-C9-N1   | -2.67             | 103.89      | 111.16        |
| 2   | G     | 507 | CMQ              | C17-C15-N2  | -2.65             | 106.21      | 110.07        |
| 2   | Н     | 508 | CMQ              | O4-C16-C24  | -2.62             | 101.98      | 109.74        |
| 2   | F     | 506 | CMQ              | O1-C2-C3    | 2.59              | 115.62      | 109.39        |
| 2   | G     | 507 | CMQ              | C17-C15-C16 | 2.59              | 116.03      | 111.70        |
| 2   | G     | 507 | $CM\overline{Q}$ | O1-C2-C3    | 2.57              | 115.57      | 109.39        |
| 2   | А     | 501 | CMQ              | C8-C3-C4    | 2.57              | 122.20      | 118.17        |
| 2   | F     | 506 | CMQ              | O1-C1-N1    | $2.5\overline{6}$ | 115.70      | 110.50        |
| 2   | Ε     | 505 | CMQ              | C11-C9-C10  | -2.55             | 104.50      | 110.57        |
| 2   | С     | 503 | CMQ              | O1-C2-C3    | $2.5\overline{2}$ | 115.45      | 109.39        |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|------------------|---------------|
| 2   | F     | 506 | CMQ  | C10-C9-N1   | -2.51 | 104.32           | 111.16        |
| 2   | N     | 514 | CMQ  | C11-C9-C10  | -2.48 | 104.67           | 110.57        |
| 2   | Н     | 508 | CMQ  | C12-C11-C9  | 2.42  | 122.09           | 115.43        |
| 2   | А     | 501 | CMQ  | C9-N1-C1    | 2.41  | 126.78           | 120.90        |
| 2   | Κ     | 511 | CMQ  | O4-C16-C24  | -2.38 | 102.70           | 109.74        |
| 2   | Е     | 505 | CMQ  | O1-C2-C3    | 2.35  | 115.03           | 109.39        |
| 2   | А     | 501 | CMQ  | C17-C15-C16 | 2.34  | 115.62           | 111.70        |
| 2   | D     | 504 | CMQ  | O1-C2-C3    | 2.32  | 114.96           | 109.39        |
| 2   | Н     | 508 | CMQ  | O1-C1-N1    | 2.26  | 115.09           | 110.50        |
| 2   | G     | 507 | CMQ  | O1-C1-N1    | 2.26  | 115.09           | 110.50        |
| 2   | Е     | 505 | CMQ  | C17-C15-N2  | -2.25 | 106.79           | 110.07        |
| 2   | Е     | 505 | CMQ  | C2-O1-C1    | -2.22 | 110.97           | 115.93        |
| 2   | G     | 507 | CMQ  | C8-C3-C4    | 2.21  | 121.65           | 118.17        |
| 2   | J     | 510 | CMQ  | C11-C9-C10  | -2.21 | 105.30           | 110.57        |
| 2   | Κ     | 511 | CMQ  | C17-C15-N2  | -2.21 | 106.85           | 110.07        |
| 2   | L     | 512 | CMQ  | C11-C9-C10  | -2.20 | 105.33           | 110.57        |
| 2   | F     | 506 | CMQ  | C17-C15-C16 | 2.18  | 115.35           | 111.70        |
| 2   | Ι     | 509 | CMQ  | O2-C1-N1    | 2.17  | 128.41           | 124.85        |
| 2   | А     | 501 | CMQ  | 01-C1-N1    | 2.17  | 114.92           | 110.50        |
| 2   | С     | 503 | CMQ  | O4-C16-C24  | -2.17 | 103.31           | 109.74        |
| 2   | Ι     | 509 | CMQ  | C8-C3-C4    | 2.15  | 121.55           | 118.17        |
| 2   | Е     | 505 | CMQ  | C22-C20-C18 | -2.15 | 118.07           | 121.03        |
| 2   | Е     | 505 | CMQ  | C8-C3-C4    | 2.15  | 121.54           | 118.17        |
| 2   | Е     | 505 | CMQ  | C18-C17-C15 | -2.14 | 109.61           | 113.33        |
| 2   | D     | 504 | CMQ  | C12-C11-C9  | 2.11  | 121.24           | 115.43        |
| 2   | A     | 501 | CMQ  | C7-C8-C3    | -2.10 | 117.42           | 120.63        |
| 2   | Ν     | 514 | CMQ  | O1-C1-N1    | 2.06  | 114.70           | 110.50        |
| 2   | Κ     | 511 | CMQ  | C10-C9-N1   | -2.04 | 105.60           | 111.16        |
| 2   | М     | 513 | CMQ  | 01-C1-N1    | 2.03  | 114.63           | 110.50        |
| 2   | М     | 513 | CMQ  | O2-C1-N1    | 2.01  | 128.13           | 124.85        |

Continued from previous page...

There are no chirality outliers.

All (182) torsion outliers are listed below:

| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 2   | А     | 501 | CMQ  | N2-C15-C17-C18  |
| 2   | А     | 501 | CMQ  | C16-C15-C17-C18 |
| 2   | В     | 502 | CMQ  | N2-C15-C17-C18  |
| 2   | В     | 502 | CMQ  | C16-C15-C17-C18 |
| 2   | С     | 503 | CMQ  | O2-C1-O1-C2     |
| 2   | С     | 503 | CMQ  | N2-C15-C17-C18  |
| 2   | С     | 503 | CMQ  | C16-C15-C17-C18 |



| Mol | Chain | Res  | Type | Atoms           |
|-----|-------|------|------|-----------------|
| 2   | D     | 504  | CMQ  | O2-C1-O1-C2     |
| 2   | D     | 504  | CMQ  | N1-C1-O1-C2     |
| 2   | D     | 504  | CMQ  | N2-C15-C17-C18  |
| 2   | D     | 504  | CMQ  | C16-C15-C17-C18 |
| 2   | Е     | 505  | CMQ  | O2-C1-O1-C2     |
| 2   | Е     | 505  | CMQ  | N1-C1-O1-C2     |
| 2   | Е     | 505  | CMQ  | N2-C15-C17-C18  |
| 2   | Е     | 505  | CMQ  | C16-C15-C17-C18 |
| 2   | F     | 506  | CMQ  | N2-C15-C17-C18  |
| 2   | F     | 506  | CMQ  | C16-C15-C17-C18 |
| 2   | G     | 507  | CMQ  | N2-C15-C17-C18  |
| 2   | G     | 507  | CMQ  | C16-C15-C17-C18 |
| 2   | Н     | 508  | CMQ  | N2-C15-C17-C18  |
| 2   | Н     | 508  | CMQ  | C16-C15-C17-C18 |
| 2   | Ι     | 509  | CMQ  | N2-C15-C17-C18  |
| 2   | Ι     | 509  | CMQ  | C16-C15-C17-C18 |
| 2   | J     | 510  | CMQ  | N2-C15-C17-C18  |
| 2   | J     | 510  | CMQ  | C16-C15-C17-C18 |
| 2   | K     | 511  | CMQ  | N2-C15-C17-C18  |
| 2   | K     | 511  | CMQ  | C16-C15-C17-C18 |
| 2   | L     | 512  | CMQ  | N2-C15-C17-C18  |
| 2   | L     | 512  | CMQ  | C16-C15-C17-C18 |
| 2   | М     | 513  | CMQ  | N2-C15-C17-C18  |
| 2   | М     | 513  | CMQ  | C16-C15-C17-C18 |
| 2   | Ν     | 514  | CMQ  | O2-C1-O1-C2     |
| 2   | N     | 514  | CMQ  | N1-C1-O1-C2     |
| 2   | N     | 514  | CMQ  | N2-C15-C17-C18  |
| 2   | N     | 514  | CMQ  | C16-C15-C17-C18 |
| 4   | A     | 3001 | GOL  | C1-C2-C3-O3     |
| 4   | В     | 3003 | GOL  | C1-C2-C3-O3     |
| 4   | С     | 3005 | GOL  | O1-C1-C2-C3     |
| 4   | C     | 3005 | GOL  | C1-C2-C3-O3     |
| 4   | F     | 3004 | GOL  | C1-C2-C3-O3     |
| 4   | K     | 3010 | GOL  | 01-C1-C2-C3     |
| 4   | L     | 3011 | GOL  | O1-C1-C2-O2     |
| 4   | L     | 3011 | GOL  | O1-C1-C2-C3     |
| 4   | N     | 3007 | GOL  | C1-C2-C3-O3     |
| 2   | A     | 501  | CMQ  | 02-C1-O1-C2     |
| 2   | Н     | 508  | CMQ  | O2-C1-O1-C2     |
| 2   | L     | 512  | CMQ  | O2-C1-O1-C2     |
| 2   | А     | 501  | CMQ  | N1-C1-O1-C2     |
| 2   | С     | 503  | CMQ  | N1-C1-O1-C2     |

Continued from previous page...



|                    |       | r r · · · · · | r and party of |                                                                               |
|--------------------|-------|---------------|----------------|-------------------------------------------------------------------------------|
| $\mathbf{Mol}$     | Chain | Res           | Type           | Atoms                                                                         |
| 2                  | Н     | 508           | CMQ            | N1-C1-O1-C2                                                                   |
| 2                  | J     | 510           | CMQ            | N1-C1-O1-C2                                                                   |
| 2                  | L     | 512           | CMQ            | N1-C1-O1-C2                                                                   |
| 2                  | М     | 513           | CMQ            | N1-C1-O1-C2                                                                   |
| 2                  | Ι     | 509           | CMQ            | O2-C1-O1-C2                                                                   |
| 2                  | J     | 510           | CMQ            | O2-C1-O1-C2                                                                   |
| 2                  | М     | 513           | CMQ            | O2-C1-O1-C2                                                                   |
| 2                  | В     | 502           | CMQ            | N1-C1-O1-C2                                                                   |
| 2                  | Ι     | 509           | CMQ            | N1-C1-O1-C2                                                                   |
| 3                  | K     | 4015          | PGE            | O3-C5-C6-O4                                                                   |
| 3                  | L     | 4012          | PGE            | O3-C5-C6-O4                                                                   |
| 3                  | С     | 4003          | PGE            | C6-C5-O3-C4                                                                   |
| 2                  | В     | 502           | CMQ            | O2-C1-O1-C2                                                                   |
| 3                  | С     | 4003          | PGE            | O2-C3-C4-O3                                                                   |
| 3                  | G     | 4007          | PGE            | O2-C3-C4-O3                                                                   |
| 3                  | K     | 4015          | PGE            | O2-C3-C4-O3                                                                   |
| 2                  | J     | 510           | CMQ            | C12-C11-C9-N1                                                                 |
| 3                  | Е     | 4005          | PGE            | O2-C3-C4-O3                                                                   |
| 3                  | K     | 4011          | PGE            | O2-C3-C4-O3                                                                   |
| 2                  | D     | 504           | CMQ            | C9-C11-C12-C13                                                                |
| 2                  | E     | 505           | CMQ            | C9-C11-C12-C13                                                                |
| 3                  | G     | 4007          | PGE            | 01-C1-C2-O2                                                                   |
| 3                  | G     | 4007          | PGE            | <u>03-C5-C6-O4</u>                                                            |
| 3                  | M     | 4013          | PGE            | <u>03-C5-C6-O4</u>                                                            |
| 3                  | G     | 4007          | PGE            | C6-C5-O3-C4                                                                   |
| 2                  | H     | 508           | CMO            | <u>C9-C11-C12-C13</u>                                                         |
| $\frac{2}{2}$      | H     | 508           | CMQ            | C12-C11-C9-N1                                                                 |
| 2                  | K     | 511           | CMQ            | N1-C1-O1-C2                                                                   |
| 3                  | B     | 4002          | PGE            | 02-C3-C4-O3                                                                   |
| 3                  | A     | 4001          | PGE            | 01-C1-C2-O2                                                                   |
| 3                  | B     | 4002          | PGE            | 01-C1-C2-O2                                                                   |
| 3                  | C     | 4003          | PGE            | 03-C5-C6-O4                                                                   |
| 3                  | D     | 4004          | PGE            | 01-C1-C2-O2                                                                   |
| 3                  | F     | 4006          | PGE            | 03-C5-C6-O4                                                                   |
| 3                  | H     | 4008          | PGE            | 01-C1-C2-O2                                                                   |
| 3                  | I     | 4000          | PGE            | 03-C5-C6-O4                                                                   |
| 3                  | K     | 4011          | PGE            | 01-C1-C2-O2                                                                   |
| $\frac{0}{2}$      | K     | 511           | CMO            | 01010202<br>02-C1-O1-C2                                                       |
| $\frac{2}{2}$      | I     | 510           | CMO            | $\begin{array}{c} 02-01-01-02 \\ \hline 09-011-012-013 \\ \hline \end{array}$ |
| 2                  | N N   | 514           | CMO            | N2_C15_C16_O4                                                                 |
| <u></u><br><u></u> |       | 3006          | CINIQ          | C1-C2-C3-O3                                                                   |
|                    |       | 3000          | COL            | 01-02-03-03                                                                   |
| <b>H</b>           | U U   | 1 0009        |                |                                                                               |

Continued from previous page...



| Mol           | Chain   | Res            |     | Atoms                                                                    |
|---------------|---------|----------------|-----|--------------------------------------------------------------------------|
| 4             | N       | 3007           | GOL | 01-C1-C2-C3                                                              |
| 3             | D       | 4004           | PGE | <u>03-C5-C6-O4</u>                                                       |
| 3             | E       | 4005           | PGE | <u>03-C5-C6-O4</u>                                                       |
| 3             | F       | 4006           | PGE | 01-C1-C2-O2                                                              |
| 3             | K       | 4011           | PGE | 01 C1 C2 C2<br>03-C5-C6-O4                                               |
| 4             | B       | 3003           | GOL | 00 - 00 - 00 - 01<br>02-02-03                                            |
| 4             | C       | 3005           | GOL | 02 02 03 03<br>01-C1-C2-02                                               |
|               | C       | 3005           | GOL | 01010202<br>02-02-03-03                                                  |
| <u>т</u><br>Л | C       | 3006           | GOL | 02 02 03 03<br>02 02 03 03                                               |
| 4             | E E     | 3000           | COL | $\begin{array}{c} 02 - 02 - 03 - 03 \\ 02 - 02 - 03 - 03 \\ \end{array}$ |
| 4             | r<br>C  | 2004           | COL | $\begin{array}{c} 02-02-03-03\\ \hline 01 \ 01 \ 02 \ 02 \end{array}$    |
| 4             | G<br>V  | 2010           | COL | 01-01-02-02                                                              |
| 4             | N N     | 3010           | COL | $\begin{array}{c} 01-01-02-02 \\ 02 \ 02 \ 02 \ 02 \end{array}$          |
| 4             | IN<br>N | 3007           | BOL | 02-02-03-03                                                              |
| <u>3</u>      | N<br>D  | 4014           | PGE | 02-03-04-03                                                              |
| 2             | D       | 504            | CMQ | C9-C11-C12-C14                                                           |
| 2             | D       | 504            | CMQ | C12-C11-C9-N1                                                            |
| 3             | E       | 4005           | PGE | 01-C1-C2-O2                                                              |
| 3             | K       | 4015           | PGE | 01-C1-C2-O2                                                              |
| 2             | N       | 514            | CMQ | N2-C15-C16-C24                                                           |
| 3             | M       | 4013           | PGE | O2-C3-C4-O3                                                              |
| 4             | N       | 3007           | GOL | O1-C1-C2-O2                                                              |
| 2             | J       | 510            | CMQ | C12-C11-C9-C10                                                           |
| 3             | L       | 4012           | PGE | O1-C1-C2-O2                                                              |
| 3             | I       | 4009           | PGE | C3-C4-O3-C5                                                              |
| 2             | E       | 505            | CMQ | C12-C11-C9-N1                                                            |
| 2             | Н       | 508            | CMQ | N2-C15-C16-O4                                                            |
| 3             | Е       | 4005           | PGE | C1-C2-O2-C3                                                              |
| 3             | D       | 4004           | PGE | C3-C4-O3-C5                                                              |
| 3             | Ι       | 4009           | PGE | C1-C2-O2-C3                                                              |
| 3             | А       | 4001           | PGE | C3-C4-O3-C5                                                              |
| 3             | С       | 4003           | PGE | C3-C4-O3-C5                                                              |
| 2             | Е       | 505            | CMQ | C9-C11-C12-C14                                                           |
| 3             | L       | 4012           | PGE | O2-C3-C4-O3                                                              |
| 4             | В       | 3002           | GOL | O1-C1-C2-O2                                                              |
| 3             | F       | 4006           | PGE | C1-C2-O2-C3                                                              |
| 3             | Н       | 4008           | PGE | C6-C5-O3-C4                                                              |
| 3             | F       | 4006           | PGE | C3-C4-O3-C5                                                              |
| 3             | G       | 4007           | PGE | C4-C3-O2-C2                                                              |
| 2             | M       | 513            | CMO | C15-C17-C18-C20                                                          |
| 2             | N       | 514            | CMO | C17-C15-C16-O4                                                           |
| 3             | C       | 4003           | PGE | C4-C3-O2-C2                                                              |
| 3             | K       | 4015           | PGE | C1-C2-O2-C3                                                              |
| <u> </u>      |         | _ <u>+</u> \+\ |     |                                                                          |

Continued from previous page...



| Mol | Chain | Res  | Type | Atoms           |  |
|-----|-------|------|------|-----------------|--|
| 2   | М     | 513  | CMQ  | C15-C17-C18-C19 |  |
| 3   | L     | 4012 | PGE  | C4-C3-O2-C2     |  |
| 3   | Ν     | 4014 | PGE  | C3-C4-O3-C5     |  |
| 4   | А     | 3001 | GOL  | O2-C2-C3-O3     |  |
| 3   | В     | 4002 | PGE  | O3-C5-C6-O4     |  |
| 3   | М     | 4013 | PGE  | C3-C4-O3-C5     |  |
| 3   | К     | 4011 | PGE  | C6-C5-O3-C4     |  |
| 2   | D     | 504  | CMQ  | C12-C11-C9-C10  |  |
| 2   | Е     | 505  | CMQ  | C15-C17-C18-C19 |  |
| 3   | А     | 4001 | PGE  | O2-C3-C4-O3     |  |
| 2   | Е     | 505  | CMQ  | C15-C17-C18-C20 |  |
| 2   | K     | 511  | CMQ  | C15-C17-C18-C19 |  |
| 2   | L     | 512  | CMQ  | C15-C17-C18-C19 |  |
| 2   | Ν     | 514  | CMQ  | C15-C17-C18-C19 |  |
| 2   | С     | 503  | CMQ  | C15-C17-C18-C20 |  |
| 2   | L     | 512  | CMQ  | C15-C17-C18-C20 |  |
| 3   | N     | 4014 | PGE  | C1-C2-O2-C3     |  |
| 2   | J     | 510  | CMQ  | C3-C2-O1-C1     |  |
| 2   | N     | 514  | CMQ  | C15-C17-C18-C20 |  |
| 2   | K     | 511  | CMQ  | C15-C17-C18-C20 |  |
| 2   | С     | 503  | CMQ  | C15-C17-C18-C19 |  |
| 3   | K     | 4015 | PGE  | C3-C4-O3-C5     |  |
| 4   | В     | 3002 | GOL  | O1-C1-C2-C3     |  |
| 2   | В     | 502  | CMQ  | C15-C17-C18-C20 |  |
| 2   | В     | 502  | CMQ  | C15-C17-C18-C19 |  |
| 3   | D     | 4004 | PGE  | C1-C2-O2-C3     |  |
| 3   | F     | 4006 | PGE  | O2-C3-C4-O3     |  |
| 2   | Н     | 508  | CMQ  | C15-C17-C18-C20 |  |
| 3   | K     | 4011 | PGE  | C1-C2-O2-C3     |  |
| 2   | G     | 507  | CMQ  | C15-C17-C18-C20 |  |
| 2   | F     | 506  | CMQ  | O2-C1-O1-C2     |  |
| 2   | F     | 506  | CMQ  | C15-C17-C18-C20 |  |
| 2   | Н     | 508  | CMQ  | C15-C17-C18-C19 |  |
| 3   | K     | 4015 | PGE  | C4-C3-O2-C2     |  |
| 3   | F     | 4006 | PGE  | C6-C5-O3-C4     |  |
| 4   | K     | 3010 | GOL  | O2-C2-C3-O3     |  |
| 2   | Ι     | 509  | CMQ  | C15-C17-C18-C19 |  |
| 3   | D     | 4004 | PGE  | C4-C3-O2-C2     |  |
| 2   | G     | 507  | CMQ  | C15-C17-C18-C19 |  |
| 3   | C     | 4003 | PGE  | O1-C1-C2-O2     |  |
| 3   | H     | 4008 | PGE  | O2-C3-C4-O3     |  |
| 2   | H     | 508  | CMQ  | C12-C11-C9-C10  |  |

Continued from previous page...



| Mol | Chain | $\mathbf{Res}$ | Type | Atoms           |
|-----|-------|----------------|------|-----------------|
| 3   | D     | 4004           | PGE  | O2-C3-C4-O3     |
| 2   | Ι     | 509            | CMQ  | C15-C17-C18-C20 |
| 2   | Е     | 505            | CMQ  | N2-C15-C16-O4   |
| 2   | J     | 510            | CMQ  | N2-C15-C16-O4   |
| 2   | Κ     | 511            | CMQ  | N2-C15-C16-O4   |
| 2   | L     | 512            | CMQ  | N2-C15-C16-O4   |
| 2   | М     | 513            | CMQ  | N2-C15-C16-O4   |

Continued from previous page...

There are no ring outliers.

28 monomers are involved in 107 short contacts:

| Mol | Chain | Res  | Type | Clashes | Symm-Clashes |
|-----|-------|------|------|---------|--------------|
| 2   | Е     | 505  | CMQ  | 8       | 0            |
| 2   | G     | 507  | CMQ  | 1       | 0            |
| 2   | С     | 503  | CMQ  | 6       | 0            |
| 2   | F     | 506  | CMQ  | 1       | 0            |
| 2   | Н     | 508  | CMQ  | 6       | 0            |
| 4   | С     | 3006 | GOL  | 6       | 0            |
| 2   | М     | 513  | CMQ  | 1       | 0            |
| 3   | F     | 4006 | PGE  | 1       | 0            |
| 4   | Ν     | 3007 | GOL  | 3       | 0            |
| 3   | М     | 4013 | PGE  | 1       | 0            |
| 2   | Ν     | 514  | CMQ  | 2       | 0            |
| 2   | D     | 504  | CMQ  | 8       | 0            |
| 3   | В     | 4002 | PGE  | 2       | 0            |
| 2   | Κ     | 511  | CMQ  | 9       | 0            |
| 2   | L     | 512  | CMQ  | 7       | 0            |
| 3   | Κ     | 4015 | PGE  | 2       | 0            |
| 2   | Ι     | 509  | CMQ  | 7       | 0            |
| 4   | F     | 3004 | GOL  | 2       | 0            |
| 2   | J     | 510  | CMQ  | 8       | 0            |
| 4   | Н     | 3008 | GOL  | 2       | 0            |
| 2   | В     | 502  | CMQ  | 7       | 0            |
| 3   | А     | 4001 | PGE  | 1       | 0            |
| 4   | А     | 3001 | GOL  | 2       | 0            |
| 3   | J     | 4010 | PGE  | 1       | 0            |
| 3   | Ν     | 4014 | PGE  | 2       | 0            |
| 4   | G     | 3009 | GOL  | 1       | 0            |
| 4   | K     | 3010 | GOL  | 1       | 0            |
| 2   | А     | 501  | CMQ  | 9       | 0            |

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths,



bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.













































Torsions



Rings











## 5.7 Other polymers (i)

There are no such residues in this entry.

## 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Fit of model and data (i)

### 6.1 Protein, DNA and RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

#### 6.2 Non-standard residues in protein, DNA, RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

#### 6.3 Carbohydrates (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

#### 6.4 Ligands (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.
























































## 6.5 Other polymers (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

