

Full wwPDB X-ray Structure Validation Report (i)

Jan 3, 2024 - 07:00 am GMT

PDB ID	:	5FTU
Title	:	Tetrameric complex of Latrophilin 3, Unc5D and FLRT2
Authors	:	Jackson, V.A.; Mehmood, S.; Chavent, M.; Roversi, P.; Carrasquero, M.; del
		Toro, D.; Seyit-Bremer, G.; Ranaivoson, F.M.; Comoletti, D.; Sansom, M.S.P.;
		Robinson, C.V.; Klein, R.; Seiradake, E.
Deposited on	:	2016-01-15
Resolution	:	6.01 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 6.01 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$		
R _{free}	130704	1000 (8.00-3.88)		
Clashscore	141614	1049 (8.00-3.90)		
Ramachandran outliers	138981	1016 (8.00-3.86)		
Sidechain outliers	138945	1018 (8.20-3.82)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain		
1	А	139	73% •	24%	
1	Е	139	73%	24%	
1	Ι	139	73%	24%	
2	В	339	79%	17%	·
2	F	339	80%	16%	·
2	J	339	78%	17%	·
3	С	383	83%	11%	• 5%

Continued	from	previous	page
contraca	<i>J</i> ¹ <i>O</i> 110	proceed ac	pago

Mol	Chain	Length	Quality of chain				
3	D	383	61%	8%		31%	
3	G	383	86%			9% • 5%	
3	Н	383	61%	8%	•	31%	
3	К	383	84%			10% • 5%	
3	L	383	61%	7%		31%	

2 Entry composition (i)

There are 6 unique types of molecules in this entry. The entry contains 25680 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Λ	106	Total	С	Ν	0	S	0	0	0
1	Л	100	853	536	152	160	5	0	0	0
1	F	106	Total	С	Ν	0	S	0	0	0
1		100	853	536	152	160	5	0	0	0
1	т	106	Total	С	Ν	0	S	0	0	0
	1	100	853	536	152	160	5	0	0	0

• Molecule 1 is a protein called NETRIN RECEPTOR UNC5D.

Chain	Residue	Modelled	Actual	Comment	Reference
А	162	GLY	-	expression tag	UNP F1LW30
А	163	THR	-	expression tag	UNP F1LW30
А	164	LYS	-	expression tag	UNP F1LW30
А	165	HIS	-	expression tag	UNP F1LW30
А	166	HIS	-	expression tag	UNP F1LW30
А	167	HIS	-	expression tag	UNP F1LW30
А	168	HIS	-	expression tag	UNP F1LW30
А	169	HIS	-	expression tag	UNP F1LW30
А	170	HIS	-	expression tag	UNP F1LW30
Е	162	GLY	-	expression tag	UNP F1LW30
Е	163	THR	-	expression tag	UNP F1LW30
Е	164	LYS	-	expression tag	UNP F1LW30
Е	165	HIS	-	expression tag	UNP F1LW30
Е	166	HIS	-	expression tag	UNP F1LW30
E	167	HIS	-	expression tag	UNP F1LW30
Е	168	HIS	-	expression tag	UNP F1LW30
Е	169	HIS	-	expression tag	UNP F1LW30
Е	170	HIS	-	expression tag	UNP F1LW30
Ι	162	GLY	-	expression tag	UNP F1LW30
Ι	163	THR	-	expression tag	UNP F1LW30
Ι	164	LYS	-	expression tag	UNP F1LW30
Ι	165	HIS	-	expression tag	UNP F1LW30
Ι	166	HIS	-	expression tag	UNP F1LW30

There are 27 discrepancies between the modelled and reference sequences:

	<i>J</i> 1	1 0			
Chain	Residue	Modelled	Actual	Comment	Reference
Ι	167	HIS	-	expression tag	UNP F1LW30
Ι	168	HIS	-	expression tag	UNP F1LW30
Ι	169	HIS	-	expression tag	UNP F1LW30
Ι	170	HIS	-	expression tag	UNP F1LW30

• Molecule 2 is a protein called LEUCINE-RICH REPEAT TRANSMEMBRANE PROTEIN FLRT2.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
0	Р	206	Total	С	Ν	0	\mathbf{S}	0 0	0	
	2 B 320	2587	1634	461	478	14	0	0	0	
0	Б	206	Total	С	Ν	0	S	0	0	0
	Г	320	2587	1634	461	478	14			
0	т	206	Total	С	Ν	0	S	0	0	0
	J	520	2587	1634	461	478	14	0	0	0

There are 33 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
В	33	THR	-	expression tag	UNP Q8BLU0
В	34	GLY	-	expression tag	UNP Q8BLU0
В	363	ARG	-	expression tag	UNP Q8BLU0
В	364	THR	-	expression tag	UNP Q8BLU0
В	365	LYS	-	expression tag	UNP Q8BLU0
В	366	HIS	-	expression tag	UNP Q8BLU0
В	367	HIS	-	expression tag	UNP Q8BLU0
В	368	HIS	-	expression tag	UNP Q8BLU0
В	369	HIS	-	expression tag	UNP Q8BLU0
В	370	HIS	-	expression tag	UNP Q8BLU0
В	371	HIS	-	expression tag	UNP Q8BLU0
F	33	THR	-	expression tag	UNP Q8BLU0
F	34	GLY	-	expression tag	UNP Q8BLU0
F	363	ARG	-	expression tag	UNP Q8BLU0
F	364	THR	-	expression tag	UNP Q8BLU0
F	365	LYS	-	expression tag	UNP Q8BLU0
F	366	HIS	-	expression tag	UNP Q8BLU0
F	367	HIS	-	expression tag	UNP Q8BLU0
F	368	HIS	-	expression tag	UNP Q8BLU0
F	369	HIS	-	expression tag	UNP Q8BLU0
F	370	HIS	-	expression tag	UNP Q8BLU0
F	371	HIS	-	expression tag	UNP Q8BLU0
J	33	THR	-	expression tag	UNP Q8BLU0

5FTU
OI I O

Chain	Residue	Modelled	Actual	Comment	Reference
J	34	GLY	-	expression tag	UNP Q8BLU0
J	363	ARG	-	expression tag	UNP Q8BLU0
J	364	THR	-	expression tag	UNP Q8BLU0
J	365	LYS	-	expression tag	UNP Q8BLU0
J	366	HIS	-	expression tag	UNP Q8BLU0
J	367	HIS	-	expression tag	UNP Q8BLU0
J	368	HIS	-	expression tag	UNP Q8BLU0
J	369	HIS	-	expression tag	UNP Q8BLU0
J	370	HIS	-	expression tag	UNP Q8BLU0
J	371	HIS	-	expression tag	UNP Q8BLU0

• Molecule 3 is a protein called ADHESION G PROTEIN-COUPLED RECEPTOR L3.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
9	C	265	Total	С	Ν	0	\mathbf{S}	0	0	0
3	C	305	2943	1867	485	575	16	0	0	0
2	л	262	Total	С	Ν	0	S	0	0	0
່ງ	D	205	2131	1360	351	415	5	0	0	0
3	С	365	Total	С	Ν	0	S	0	0	0
5	G	305	2943	1867	485	575	16	0		
2	Ц	263	Total	С	Ν	0	S	0	0	Ο
5	11	203	2131	1360	351	415	5	0	0	0
2	K	365	Total	С	Ν	0	S	0	0	Ο
5	Γ	505	2943	1867	485	575	16	0	0	0
3	т	263	Total	С	Ν	0	S	0	0	0
່ <u>ວ</u>		203	2131	1360	351	415	5	0		0

There are 66 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
С	90	THR	-	expression tag	UNP Q80TS3
С	91	GLY	-	expression tag	UNP Q80TS3
С	464	GLY	-	expression tag	UNP Q80TS3
С	465	THR	-	expression tag	UNP Q80TS3
С	466	LYS	-	expression tag	UNP Q80TS3
С	467	HIS	-	expression tag	UNP Q80TS3
С	468	HIS	-	expression tag	UNP Q80TS3
С	469	HIS	-	expression tag	UNP Q80TS3
С	470	HIS	-	expression tag	UNP Q80TS3
С	471	HIS	-	expression tag	UNP Q80TS3
С	472	HIS	-	expression tag	UNP Q80TS3
D	90	THR	-	expression tag	UNP Q80TS3

Chain	Residue	Modelled	Actual	Comment	Reference
D	91	GLY	-	expression tag	UNP Q80TS3
D	464	GLY	-	expression tag	UNP Q80TS3
D	465	THR	-	expression tag	UNP Q80TS3
D	466	LYS	-	expression tag	UNP Q80TS3
D	467	HIS	-	expression tag	UNP Q80TS3
D	468	HIS	-	expression tag	UNP Q80TS3
D	469	HIS	-	expression tag	UNP Q80TS3
D	470	HIS	-	expression tag	UNP Q80TS3
D	471	HIS	-	expression tag	UNP Q80TS3
D	472	HIS	-	expression tag	UNP Q80TS3
G	90	THR	-	expression tag	UNP Q80TS3
G	91	GLY	-	expression tag	UNP Q80TS3
G	464	GLY	-	expression tag	UNP Q80TS3
G	465	THR	-	expression tag	UNP Q80TS3
G	466	LYS	-	expression tag	UNP Q80TS3
G	467	HIS	-	expression tag	UNP Q80TS3
G	468	HIS	-	expression tag	UNP Q80TS3
G	469	HIS	-	expression tag	UNP Q80TS3
G	470	HIS	-	expression tag	UNP Q80TS3
G	471	HIS	-	expression tag	UNP Q80TS3
G	472	HIS	-	expression tag	UNP Q80TS3
Н	90	THR	-	expression tag	UNP Q80TS3
Н	91	GLY	-	expression tag	UNP Q80TS3
Н	464	GLY	-	expression tag	UNP Q80TS3
Н	465	THR	-	expression tag	UNP Q80TS3
Н	466	LYS	-	expression tag	UNP Q80TS3
Н	467	HIS	-	expression tag	UNP Q80TS3
Н	468	HIS	-	expression tag	UNP Q80TS3
Н	469	HIS	-	expression tag	UNP Q80TS3
Н	470	HIS	-	expression tag	UNP Q80TS3
Н	471	HIS	-	expression tag	UNP Q80TS3
Н	472	HIS	-	expression tag	UNP Q80TS3
K	90	THR	-	expression tag	UNP Q80TS3
K	91	GLY	-	expression tag	UNP Q80TS3
K	464	GLY	-	expression tag	UNP Q80TS3
K	465	THR	-	expression tag	UNP Q80TS3
K	466	LYS	-	expression tag	UNP Q80TS3
K	467	HIS	-	expression tag	UNP Q80TS3
K	468	HIS	-	expression tag	UNP Q80TS3
Κ	469	HIS	-	expression tag	UNP Q80TS3
K	470	HIS	-	expression tag	UNP Q80TS3
К	471	HIS	-	expression tag	UNP Q80TS3

Chain	Residue	Modelled	Actual	Comment	Reference
K	472	HIS	-	expression tag	UNP Q80TS3
L	90	THR	-	expression tag	UNP Q80TS3
L	91	GLY	-	expression tag	UNP Q80TS3
L	464	GLY	-	expression tag	UNP Q80TS3
L	465	THR	-	expression tag	UNP Q80TS3
L	466	LYS	-	expression tag	UNP Q80TS3
L	467	HIS	-	expression tag	UNP Q80TS3
L	468	HIS	-	expression tag	UNP Q80TS3
L	469	HIS	-	expression tag	UNP Q80TS3
L	470	HIS	-	expression tag	UNP Q80TS3
L	471	HIS	-	expression tag	UNP Q80TS3
L	472	HIS	-	expression tag	UNP Q80TS3

• Molecule 4 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	Δ	1	Total C N O	0	0
Ŧ	11	I	14 8 1 5	0	0
4	В	1	Total C N O	14	0
т	D	1	14 8 1 5	14	
4	С	1	Total C N O	14	0
-1	U	I	14 8 1 5	14	0
4	F	1	Total C N O	0	0
	Ľ	1	14 8 1 5	0	
4	F	1	Total C N O	14	0
4	Ľ	1	14 8 1 5	14	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	С	1	Total C N C)	0
4	G	1	14 8 1 5		0
4	Т	1	Total C N C) 0	0
4	1	1	14 8 1 5		0
4	т	1	Total C N C) 14	0
4	J	1	14 8 1 5		0
4	K	1	Total C N C) 14	0
4	17	I	14 8 1 5		0

• Molecule 5 is SODIUM ION (three-letter code: NA) (formula: Na).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	С	1	Total Na 1 1	0	0
5	D	1	Total Na 1 1	0	0
5	G	1	Total Na 1 1	0	0
5	Н	1	Total Na 1 1	0	0
5	К	1	Total Na 1 1	0	0
5	L	1	Total Na 1 1	0	0

• Molecule 6 is CALCIUM ION (three-letter code: CA) (formula: Ca).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	С	1	Total Ca 1 1	0	0
6	D	1	Total Ca 1 1	0	0
6	G	1	Total Ca 1 1	0	0
6	Н	1	Total Ca 1 1	0	0
6	Κ	1	Total Ca 1 1	0	0
6	L	1	Total Ca 1 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Chain A:	73% .	24%
ARG GLY ALA ASP ASP SER CLY CLV CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	R151 TILE TILE TAR ALA ALA ALA ALA ALA ALA ALA CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	
• Molecule 1: NETRIN RECEI	PTOR UNC5D	
Chain E:	73% .	24%
ARG GLY ALA ASP ASP ASP GLY GLY GLU CLY GLU FRO FRO FRO FRO FRO FRO FRO FRO FRO FRO	R151 TTR TTR TTR TTR TTR TTR ASN ASN ASN ASN ASN ASN ASS HTS HTS HTS HTS HTS HTS	
• Molecule 1: NETRIN RECEI	PTOR UNC5D	
Chain I:	73% •	24%
ARG GLY ALA ASP ASP GLY GLY GLY GLY CLU CLU CLU CLU PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	RIST TLE TLE TLE TLE TLE ALA ALA ALA ALA ALA CLU GLU GLU GLU GLU HIS HIS HIS HIS HIS	
• Molecule 2: LEUCINE-RICH	REPEAT TRANSMEMBRANE	PROTEIN FLRT2
Chain B:	79%	17% •
THR GLY ALY C36 C36 C40 C40 C40 C40 C40 C40 C40 C40 C40 C40	1107 1108 1113 11133 11133 11133 11133 1135 11	E1 84 L1 85 R1 85 R1 86 R2 00 R2 08 R2 08 L2 09 L2 10 L2 10 L2 29
E234 1237 V238 1256 R256 R256 Q260 Q260 Q263 Q260 Q263 C27 E27 E279 E279 E279 E279 E279 E279 E27	L305 N309 N309 P311 P311 P311 P314 P314 P314 Q344 R345 R345 R345 R345 R345 R345 R345 R	L353 N356 L357 L357 THR THR THR LVS H1S H1S H1S
HIS HIS HIS		
• Molecule 2: LEUCINE-RICH	REPEAT TRANSMEMBRANE	PROTEIN FLRT2
Chain F:	80%	16% •
THR THR ALA C36 C36 C36 C36 C36 C40 C36 C36 C40 C40 C40 C40 C40 C40 C40 C40 C40 C40	V113 T123 L132 L132 L135 H139 H139 H139 H138 H138 L138 F165 F165 F165 F165 F165 F165 F165 F165	F200 R208 1210 E234 E234 F237 V238

• Molecule 1: NETRIN RECEPTOR UNC5D

P246 P247 R266 Q260 Q263 P267 L267 F272 F272 L276 L276	L291 V295 L305 N309 P311 P311 L325 L325 L325 V334	(3340) (344) (345) (344)	P361 THR ARG LYS HIS HIS HIS HIS HIS HIS
• Molecule 2: LEUCIN	E-RICH REPEAT TH	RANSMEMBRANE	PROTEIN FLRT2
Chain J:	78%	1	7% •
THR CLY CLY C40 C40 C40 C40 C40 C40 C40 C40 C40 C40	H91 192 E102 N106 N106 N111 V113 T123 T123	L135 L138 H139 H139 L161 L161 L164 L164 L164 L171	E184 L186 R186 F200 F200 1210 1210 L209 L209 L209
E234 1237 1237 1238 1238 1236 1256 1256 1256 1267 1267 1267	F272 L275 E279 E279 L291 L291 L295 L305 L305 M310 M310	P311 L325 L325 C344 Q340 C344 Q344 V345 R346 R345 R346 R345 R346 R348	R351 E352 L353 L355 L357 L357 L357 A861 THR THR THR THR LYS
HIS HIS HIS HIS HIS HIS			
• Molecule 3: ADHESI	ON G PROTEIN-CO	UPLED RECEPTO	R L3
Chain C:	83%		11% • 5%
THR GLY PRO FRO MET MET ALA ALA ALA ALA ALA ALA E101 E101 F108 F108 T109 T109	1133 C134 1144 1144 1148 1148 1148 1148 1148 1	1182 C203 C203 C203 C203 L216 L216 L231 L231 F259 F259	F279 V280 D283 T293 T293 A310
R324 8330 1331 1331 1333 1333 1333 1333 1343 134	V390 S393 S393 D398 D398 V409 V410 V411 D418 D418 D418 L444	N449 7455 1462 1462 1463 0463 0464 6404 1418 1418 1418 1418 1418 1418 1418 1	
• Molecule 3: ADHESI	ON G PROTEIN-CO	UPLED RECEPTO	R L3
Chain D:	61%	8% 31	%
THR CLY PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	TYR THE TLEU TLEU TLEU CLEU ARG CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	SER ALA ALA ALA ALA GLY CLYS ASP CYS CYS SER ASP SER ASP	PR0 ALA ALA MET GLN GLU GLU TLE CYS CYS CYS LEU PR0
ASP ALA TTYR LLYS LLYS LLYS MET MET ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	VAL VAL ALA ALA ALA ALA ALA ALA ASP PRO PRO PRO PRO PRO CYS CYS CYS TYR TYR	LYS TTR TTR TTR CLU CLU CLU CVS CLU CVS CVS CVS TYR TYR TYR CLU CCS CCS CCS CCS CCS CCS CCS CCS CCS CC	GLN 17/5 1/17 1/202 1/202 1/202 1/207 1/216 1/216
L231 Y238 Y238 F259 F259 V250 V250 V280 V280 V280	1293 1296 1296 1310 1311 1312 1353 1353 1353 1353	Y373 Y373 Y406 Y410 Y411 Y411 Y411 Y411 Y411	L457 L457 THR LVS HIS HIS HIS HIS HIS HIS
• Molecule 3: ADHESI	ON G PROTEIN-CO	UPLED RECEPTO	R L3
Chain G:	86%		9% • 5%
THR GLY FRO FRO MET MET ALA ARD ARD ARD ARD FIO 109 1109 1109 1109	1133 C134 141 1144 1144 1144 1148 1148 1182 1182	259 1275 1229 1293 1293 1296 1296 1296 1296 1319	P322 D330 D331 D331 D332 D332 D332 V390 V390 S393
D398 M405 Y410 Y411 Y411 V414 Y455 L444 L445 L465 L462	14694 TAR TTT TTT TTT TTT TTTT TTTTTTTTTTTTT		
• Molecule 3: ADHESI	ON G PROTEIN-CO	UPLED RECEPTO	R L3

Chain H:	61%	8% •	31%
THR CLY PRO PRO PRO PRO PRO PRO PRO PRO PRO ALA ALA ALA ALA ALA ALA ARG CVS CVS CVS CVS CVS CVS CVS CVS CVS CVS	GLU LEU ARG CYS CYS CYS CYS CYS GLY ASP ASP CILE CILE CILE CILE CILE CILE CILE CILE	GLY ARG ASP ASP ASP LYS LYS CYS ASP	ASP ASP PRO ALA GLN GLU GLU GLU CLN ALA CLN CLN CLN CLN TLE CVS TTYR TLEU PRO
ASP ALA TYR LYS LYS LYS MET MET SER ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	GLY PRD ASP ASP PHE PHE PRO ASP PRO CYS PRO CYS PRO CYS TYR TYR LY LY CUS CUY CUS CUY CUS CUY CUS CUY CUS CUS CUS CUS CUS CUS CUS CUS CUS CUS	VAL TYR GLU GLU CYS VAL PRO TYR LYS	VAL GLN CLN CLN CLN CLN FHE L202 L202 L216 L216 A225
1231 1250 1250 1250 1250 1250 1250 1250 1286 1286 1286 1286 1286 1286	V297 E309 A310 1312 1312 D319 P322 1363 1363 1363 V373	V390 K406 Y409 I410 P411 D418	P424 8428 8428 1467 C464 C464 H18 H18 H18 H18 H18
HIS			
• Molecule 3: ADHESION	G PROTEIN-COUPLI	ED RECEPT	OR L3
Chain K:	84%		10% • 5%
THR GLY FRG GLY FRG FRG MAC AAL AAL AAL AAL AAL AAL AAL AAL AAL A	M11 1144 L148 V168 P177 Y182 Y211 L216	1220 1231 1231 1275 1275 1275	r2/9 1280 1293 1296 1319 1319 1319 1319 1322
1331 1331 1331 1333 1333 1333 1333 133	Y411 2418 2418 2418 2464 2464 6464 6464 6464 6464 6464 646	HIS	
• Molecule 3: ADHESION	G PROTEIN-COUPL	ED RECEPT	OR L3
Chain L:	61%	7% 3	1%
THR CLY PRO TLE PRO TLE ALA ANA ANA ANA ANA ANA ANA ANA ANA CVS SER CVS SER CVS SER CVS SER CVS SER CVS SER CVS SER CVS SER CVS CVS CVS CVS CVS CVS CVS CVS CVS CVS	GLU LEU ARG CYS CYS CYS CYS CYS CYS ALA ASP CLU CILE CILU SELU SELU SELU ASN	GLY ARG ASP ASP ASP LYS ILE CYS ASP	SER ALA ALA GLN MET GLU ASN ILE ARG CYS CYS TYR LEU PRO
ASP TYR LYS LYS LYS MET TILE SER CYS CYS CYS CYS CYS CYS CYS ASN ASN ASN ASN ASN ASN ASN ASN ASN AS	OLY PRO ASP VAL ASP PRO PRO PRO PRO PRO CYS THR TTR TTR TYR TYR CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	VAL GLN TYR GLN GLU GLU CYS VAL TYR LYS	val guy VAL 1755 VAL PHE L202 A25 A25 1231
Y238 L250 D275 F279 F279 F279 F279 L286 L286 L286 L286 L286 L286 L286 L286	1311 1312 1313 1353 1353 1353 1353 1353	Y409 Y411 D418 D418 P424 S428	1457 1464 1418 1418 1418 1415 1415 1415 1415 141

4 Data and refinement statistics (i)

Property	Value	Source	
Space group	I 41 2 2	Depositor	
Cell constants	292.36Å 292.36Å 291.77Å	Deneriten	
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor	
$\mathbf{P}_{\text{oscolution}}(\mathbf{\hat{A}})$	206.73 - 6.01	Depositor	
Resolution (A)	146.18 - 6.00	EDS	
% Data completeness	97.9 (206.73-6.01)	Depositor	
(in resolution range)	$97.3\ (146.18-6.00)$	EDS	
R_{merge}	0.23	Depositor	
R_{sym}	(Not available)	Depositor	
$< I/\sigma(I) > 1$	$1.43 (at 6.20 \text{\AA})$	Xtriage	
Refinement program	BUSTER 2.10.2	Depositor	
D D	0.276 , 0.278	Depositor	
Λ, Λ_{free}	0.330 , 0.324	DCC	
R_{free} test set	719 reflections (4.55%)	wwPDB-VP	
Wilson B-factor $(Å^2)$	344.8	Xtriage	
Anisotropy	0.030	Xtriage	
Bulk solvent $k_{sol}(e/A^3)$, $B_{sol}(A^2)$	0.29, 316.3	EDS	
L-test for twinning ²	$< L > = 0.31, < L^2 > = 0.15$	Xtriage	
Estimated twinning fraction	0.360 for l,-k,h	Vtriago	
Estimated twinning fraction	0.356 for -h,-l,-k	Atriage	
F_o, F_c correlation	0.83	EDS	
Total number of atoms	25680	wwPDB-VP	
Average B, all atoms $(Å^2)$	187.0	wwPDB-VP	

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.95% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NA, NAG, CA

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	lengths	Bond angles	
	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.35	0/876	0.49	0/1186
1	Ε	0.35	0/876	0.49	0/1186
1	Ι	0.35	0/876	0.49	0/1186
2	В	0.38	0/2637	0.57	0/3583
2	F	0.38	0/2637	0.56	0/3583
2	J	0.38	0/2637	0.56	0/3583
3	С	0.37	0/3021	0.56	0/4115
3	D	0.35	0/2189	0.51	0/2982
3	G	0.36	0/3021	0.54	0/4115
3	Н	0.35	0/2189	0.51	0/2982
3	Κ	0.36	0/3021	0.54	0/4115
3	L	0.35	0/2189	0.52	0/2982
All	All	0.36	0/26169	0.54	0/35598

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	853	0	814	1	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	Е	853	0	814	1	0
1	Ι	853	0	814	1	0
2	В	2587	0	2602	28	0
2	F	2587	0	2602	26	0
2	J	2587	0	2602	28	0
3	С	2943	0	2797	18	0
3	D	2131	0	2017	14	0
3	G	2943	0	2797	13	0
3	Н	2131	0	2017	15	0
3	K	2943	0	2797	16	0
3	L	2131	0	2017	13	0
4	А	14	0	13	0	0
4	В	14	0	13	0	0
4	С	14	0	13	0	0
4	Е	14	0	13	0	0
4	F	14	0	13	0	0
4	G	14	0	13	0	0
4	Ι	14	0	13	0	0
4	J	14	0	13	0	0
4	K	14	0	13	0	0
5	С	1	0	0	0	0
5	D	1	0	0	0	0
5	G	1	0	0	0	0
5	Н	1	0	0	0	0
5	K	1	0	0	0	0
5	L	1	0	0	0	0
6	С	1	0	0	0	0
6	D	1	0	0	0	0
6	G	1	0	0	0	0
6	Н	1	0	0	0	0
6	K	1	0	0	0	0
6	L	1	0	0	0	0
All	All	25680	0	24807	167	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

All (167) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1 Atom-2		Interatomic distance (Å)	Clash overlap (Å)
3:G:393:SER:HA	3:G:405:ASN:H	1.55	0.72

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
3:C:393:SER:HA	3:C:405:ASN:H	1.56	0.69	
3:K:393:SER:HA	3:K:405:ASN:H	1.61	0.65	
3:C:128:ARG:HH22	3:C:134:CYS:HB2	1.65	0.62	
3:K:128:ARG:HH22	3:K:134:CYS:HB2	1.65	0.61	
3:G:128:ARG:HH22	3:G:134:CYS:HB2	1.65	0.60	
2:F:186:ARG:HH21	2:F:208:ARG:HH12	1.51	0.59	
2:J:348:MET:HG2	3:L:428:SER:HB3	1.85	0.58	
2:J:186:ARG:HH21	2:J:208:ARG:HH12	1.50	0.58	
2:F:234:GLU:HG3	2:F:256:ARG:HB2	1.87	0.57	
3:D:225:ALA:HB3	3:D:279:PHE:HD2	1.70	0.56	
2:B:186:ARG:HH21	2:B:208:ARG:HH12	1.50	0.56	
2:J:234:GLU:HG3	2:J:256:ARG:HB2	1.87	0.56	
2:B:234:GLU:HG3	2:B:256:ARG:HB2	1.86	0.56	
2:J:184:GLU:HG3	2:J:208:ARG:HB2	1.88	0.56	
3:H:225:ALA:HB3	3:H:279:PHE:HD2	1.70	0.55	
3:C:310:ALA:HB2	3:C:363:LEU:HB3	1.88	0.55	
2:J:107:LEU:HB2	2:J:132:LEU:HD11	1.89	0.55	
2:B:107:LEU:HB2	2:B:132:LEU:HD11	1.89	0.54	
2:B:238:VAL:HG12	2:B:260:GLN:H	1.73	0.54	
2:F:107:LEU:HB2	2:F:132:LEU:HD11	1.89	0.54	
3:H:207:LEU:HD11	3:H:457:LEU:HD22	1.90	0.54	
2:B:184:GLU:HG3	2:B:208:ARG:HB2	1.88	0.54	
2:F:184:GLU:HG3	2:F:208:ARG:HB2	1.88	0.54	
2:F:238:VAL:HG12	2:F:260:GLN:H	1.73	0.54	
3:L:225:ALA:HB3	3:L:279:PHE:HD2	1.72	0.54	
2:J:238:VAL:HG12	2:J:260:GLN:H	1.73	0.53	
3:D:207:LEU:HD11	3:D:457:LEU:HD22	1.91	0.53	
3:L:207:LEU:HD11	3:L:457:LEU:HD22	1.90	0.52	
2:B:305:LEU:HB3	2:B:334:VAL:HG22	1.92	0.52	
2:F:305:LEU:HB3	2:F:334:VAL:HG22	1.91	0.52	
2:J:305:LEU:HB3	2:J:334:VAL:HG22	1.91	0.52	
3:C:216:LEU:HD22	3:C:259:PHE:HD2	1.76	0.51	
2:B:353:LEU:HD13	2:B:356:ASN:HA	1.94	0.50	
2:F:348:MET:HG2	3:H:428:SER:HB3	1.94	0.50	
1:I:135:VAL:HG22	1:I:144:LYS:HG2	1.94	0.49	
2:B:161:LEU:HD21	2:B:164:LEU:HD13	1.95	0.49	
1:E:135:VAL:HG22	1:E:144:LYS:HG2	1.94	0.49	
2:F:353:LEU:HD13	2:F:356:ASN:HA	1.95	0.49	
2:J:311:PRO:HA	2:J:340:GLN:HG3	1.95	0.49	
3:C:296:ILE:HD11	3:C:331:ILE:HG21	1.93	0.49	
2:F:108:PRO:HB2	2:F:111:VAL:HG23	1.94	0.49	

	to do pagom	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:135:VAL:HG22	1:A:144:LYS:HG2	1.94	0.49	
2:B:348:MET:HG2	3:D:428:SER:HB3	1.94	0.48	
2:F:68:LEU:HD23	2:F:70:LEU:HD11	1.95	0.48	
2:F:200:PHE:HB3	2:F:229:LEU:HD11	1.95	0.48	
2:F:311:PRO:HA	2:F:340:GLN:HG3	1.95	0.48	
2:B:108:PRO:HB2	2:B:111:VAL:HG23	1.94	0.48	
2:J:161:LEU:HD21	2:J:164:LEU:HD13	1.95	0.48	
2:B:311:PRO:HA	2:B:340:GLN:HG3	1.95	0.48	
2:J:353:LEU:HD13	2:J:356:ASN:HA	1.95	0.48	
2:B:200:PHE:HB3	2:B:229:LEU:HD11	1.95	0.48	
2:J:68:LEU:HD23	2:J:70:LEU:HD11	1.95	0.48	
2:B:68:LEU:HD23	2:B:70:LEU:HD11	1.95	0.48	
2:J:200:PHE:HB3	2:J:229:LEU:HD11	1.95	0.48	
2:F:161:LEU:HD21	2:F:164:LEU:HD13	1.95	0.47	
2:J:108:PRO:HB2	2:J:111:VAL:HG23	1.94	0.47	
3:K:310:ALA:HB2	3:K:363:LEU:HB3	1.97	0.46	
3:G:101:GLU:HB3	3:G:109:ILE:HD11	1.98	0.46	
2:F:135:LEU:HD21	2:F:138:LEU:HD13	1.97	0.46	
3:G:310:ALA:HB2	3:G:363:LEU:HB3	1.98	0.46	
2:J:135:LEU:HD21	2:J:138:LEU:HD13	1.97	0.46	
3:L:411:TYR:HD1	3:L:418:ASP:HB3	1.79	0.46	
2:B:135:LEU:HD21	2:B:138:LEU:HD13	1.97	0.45	
3:K:101:GLU:HB3	3:K:109:ILE:HD11	1.98	0.45	
3:D:411:TYR:HD1	3:D:418:ASP:HB3	1.81	0.45	
3:K:278:GLY:HA3	3:K:332:ASP:HA	1.97	0.45	
3:L:310:ALA:HB2	3:L:363:LEU:HB3	1.99	0.45	
3:G:411:TYR:HD1	3:G:418:ASP:HB3	1.81	0.45	
3:H:411:TYR:HD1	3:H:418:ASP:HB3	1.81	0.45	
2:J:272:PHE:HA	2:J:275:LEU:HD12	1.99	0.45	
3:G:216:LEU:HD22	3:G:259:PHE:HD2	1.82	0.45	
3:C:296:ILE:HD12	3:C:333:LEU:HD11	1.99	0.45	
3:H:406:LYS:HG2	3:H:424:PRO:HA	1.99	0.45	
3:K:319:ASP:HA	3:K:322:PRO:HG3	1.99	0.44	
2:J:43:ASP:HB3	3:K:376:ARG:HH22	1.82	0.44	
2:B:272:PHE:HA	2:B:275:LEU:HD12	1.98	0.44	
3:C:101:GLU:HB3	3:C:109:ILE:HD11	1.98	0.44	
3:C:332:ASP:HB3	3:C:343:ILE:HB	1.98	0.44	
2:F:272:PHE:HA	2:F:275:LEU:HD12	1.99	0.44	
3:G:108:PRO:HB3	3:G:168:VAL:HG22	2.00	0.44	
2:J:102:GLU:HG2	2:J:123:THR:HB	2.00	0.44	
3:K:216:LEU:HD22	3:K:259:PHE:HD2	1.82	0.44	

	,	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:B:343:GLU:HA	2:B:346:ARG:HB2	1.99	0.44	
3:D:310:ALA:HB2	3:D:363:LEU:HB3	1.98	0.44	
3:H:297:VAL:HG22	3:H:309:GLU:HG3	2.00	0.44	
3:H:310:ALA:HB2	3:H:363:LEU:HB3	1.99	0.44	
2:J:325:LEU:HD22	2:J:351:ARG:HD3	2.00	0.44	
2:J:343:GLU:HA	2:J:346:ARG:HB2	1.99	0.43	
2:F:325:LEU:HD22	2:F:351:ARG:HD3	2.00	0.43	
2:B:325:LEU:HD22	2:B:351:ARG:HD3	2.00	0.43	
2:F:343:GLU:HA	2:F:346:ARG:HB2	1.99	0.43	
3:K:108:PRO:HB3	3:K:168:VAL:HG22	1.99	0.43	
2:J:246:PRO:HA	2:J:247:PRO:HD3	1.93	0.43	
3:C:128:ARG:HH21	3:C:182:TYR:HB3	1.82	0.43	
2:F:102:GLU:HG2	2:F:123:THR:HB	1.99	0.43	
2:F:186:ARG:HE	2:F:210:ILE:HD13	1.84	0.43	
2:J:186:ARG:HE	2:J:210:ILE:HD13	1.84	0.43	
2:B:102:GLU:HG2	2:B:123:THR:HB	2.00	0.43	
2:B:186:ARG:HE	2:B:210:ILE:HD13	1.84	0.43	
3:G:278:GLY:HA3	3:G:332:ASP:HA	2.00	0.43	
3:C:108:PRO:HB3	3:C:168:VAL:HG22	2.00	0.43	
3:D:238:TYR:HB3	3:D:250:LEU:HD11	2.00	0.43	
3:L:238:TYR:HB3	3:L:250:LEU:HD11	2.01	0.42	
3:K:128:ARG:HH21	3:K:182:TYR:HB3	1.84	0.42	
2:J:267:ILE:HD12	2:J:291:LEU:HD21	2.02	0.42	
3:K:296:ILE:HD11	3:K:331:ILE:HG21	2.02	0.42	
3:L:390:VAL:HB	3:L:409:TYR:HB3	2.01	0.42	
3:C:211:TYR:CD1	2:F:320:TRP:HB3	2.55	0.42	
3:C:411:TYR:HD1	3:C:418:ASP:HB3	1.84	0.42	
3:G:296:ILE:HD11	3:G:331:ILE:HG21	2.01	0.42	
3:G:390:VAL:HB	3:G:409:TYR:HB3	2.02	0.42	
3:H:238:TYR:HB3	3:H:250:LEU:HD11	2.01	0.42	
3:L:250:LEU:HD22	3:L:286:LEU:HD22	2.02	0.42	
3:L:296:ILE:HG12	3:L:312:ILE:HD11	2.01	0.42	
3:L:297:VAL:HG22	3:L:309:GLU:HG3	2.01	0.42	
3:H:296:ILE:HG12	3:H:312:ILE:HD11	2.01	0.42	
3:D:297:VAL:HG22	3:D:309:GLU:HG3	2.01	0.42	
3:D:231:LEU:HD22	3:D:283:ASP:HB2	2.02	0.42	
3:D:296:ILE:HG12	3:D:312:ILE:HD11	2.01	0.42	
2:F:92:THR:HG23	2:F:113:VAL:HB	2.02	0.42	
3:G:128:ARG:HH21	3:G:182:TYR:HB3	1.84	0.42	
3:H:353:ILE:HD12	3:H:373:TYR:HB3	2.02	0.42	
3:L:353:ILE:HD12	3:L:373:TYR:HB3	2.02	0.41	

	ti a	Interatomic	Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)		
2:B:92:THR:HG23	2:B:113:VAL:HB	2.02	0.41		
3:D:250:LEU:HD22	3:D:286:LEU:HD22	2.02	0.41		
3:D:216:LEU:HD22	3:D:259:PHE:HD2	1.85	0.41		
2:J:91:HIS:HA	2:J:111:VAL:HA	2.03	0.41		
3:K:411:TYR:HD1	3:K:418:ASP:HB3	1.85	0.41		
2:B:91:HIS:HA	2:B:111:VAL:HA	2.03	0.41		
3:C:231:LEU:HD22	3:C:283:ASP:HB2	2.02	0.41		
3:C:444:LEU:HB2	3:C:455:TYR:HB2	2.01	0.41		
2:J:139:HIS:HA	2:J:165:PHE:HB2	2.02	0.41		
3:K:231:LEU:HD22	3:K:283:ASP:HB2	2.02	0.41		
3:L:231:LEU:HD22	3:L:283:ASP:HB2	2.02	0.41		
3:D:406:LYS:HG2	3:D:424:PRO:HA	2.01	0.41		
3:H:250:LEU:HD22	3:H:286:LEU:HD22	2.01	0.41		
2:B:267:ILE:HD12	2:B:291:LEU:HD21	2.02	0.41		
2:F:91:HIS:HA	2:F:111:VAL:HA	2.03	0.41		
2:F:267:ILE:HD12	2:F:291:LEU:HD21	2.01	0.41		
2:B:186:ARG:HG3	2:B:210:ILE:HB	2.03	0.41		
3:C:148:LEU:HD13	3:C:177:PRO:HG3	2.02	0.41		
2:B:320:TRP:HB3	3:K:211:TYR:CD1	2.56	0.41		
3:C:390:VAL:HB	3:C:409:TYR:HB3	2.01	0.41		
3:H:319:ASP:HA	3:H:322:PRO:HG3	2.03	0.41		
3:L:406:LYS:HG2	3:L:424:PRO:HA	2.03	0.41		
3:G:444:LEU:HB2	3:G:455:TYR:HB2	2.02	0.41		
3:K:148:LEU:HD13	3:K:177:PRO:HG3	2.03	0.41		
2:F:139:HIS:HA	2:F:165:PHE:HB2	2.02	0.40		
2:J:82:ALA:HA	2:J:106:ASN:HB3	2.03	0.40		
2:J:92:THR:HG23	2:J:113:VAL:HB	2.02	0.40		
2:J:291:LEU:HD22	2:J:295:VAL:HG11	2.03	0.40		
2:B:82:ALA:HA	2:B:106:ASN:HB3	2.03	0.40		
3:G:319:ASP:HA	3:G:322:PRO:HG3	2.03	0.40		
2:J:255:ILE:HG23	2:J:279:GLU:HB2	2.03	0.40		
3:K:353:ILE:HD12	3:K:373:TYR:HB3	2.03	0.40		
3:D:353:ILE:HD12	3:D:373:TYR:HB3	2.02	0.40		
3:D:390:VAL:HB	3:D:409:TYR:HB3	2.02	0.40		
2:F:291:LEU:HD22	2:F:295:VAL:HG11	2.03	0.40		
2:F:246:PRO:HA	2:F:247:PRO:HD3	1.93	0.40		
3:H:231:LEU:HD22	3:H:283:ASP:HB2	2.03	0.40		
3:H:390:VAL:HB	3:H:409:TYR:HB3	2.02	0.40		
2:B:43:ASP:HB3	3:C:376:ARG:HH22	1.85	0.40		
2:B:139:HIS:HA	2:B:165:PHE:HB2	2.03	0.40		
2:B:255:ILE:HG23	2:B:279:GLU:HB2	2.04	0.40		

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
3:C:353:ILE:HD12	3:C:373:TYR:HB3	2.02	0.40
3:H:216:LEU:HD22	3:H:259:PHE:HD2	1.86	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	104/139~(75%)	101 (97%)	2 (2%)	1 (1%)	15	54
1	Е	104/139~(75%)	101 (97%)	2 (2%)	1 (1%)	15	54
1	Ι	104/139~(75%)	101 (97%)	2 (2%)	1 (1%)	15	54
2	В	322/339~(95%)	285 (88%)	35 (11%)	2 (1%)	25	66
2	F	322/339~(95%)	285 (88%)	35 (11%)	2 (1%)	25	66
2	J	322/339~(95%)	285 (88%)	35 (11%)	2 (1%)	25	66
3	С	363/383~(95%)	330 (91%)	29 (8%)	4 (1%)	14	52
3	D	259/383~(68%)	241 (93%)	17 (7%)	1 (0%)	34	72
3	G	363/383~(95%)	334 (92%)	27 (7%)	2 (1%)	25	66
3	Н	259/383~(68%)	241 (93%)	17 (7%)	1 (0%)	34	72
3	Κ	363/383~(95%)	334 (92%)	26 (7%)	3 (1%)	19	60
3	L	259/383~(68%)	241 (93%)	17 (7%)	1 (0%)	34	72
All	All	3144/3732 (84%)	2879 (92%)	244 (8%)	21 (1%)	22	62

All (21) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
3	С	248	ASP
3	С	216	LEU

Mol	Chain	Res	Type
2	В	309	ASN
3	С	449	ASN
2	F	309	ASN
2	J	309	ASN
1	А	130	TYR
1	Е	130	TYR
3	K	449	ASN
3	G	133	ILE
1	Ι	130	TYR
2	В	60	GLY
2	F	60	GLY
2	J	60	GLY
3	К	133	ILE
3	K	322	PRO
3	G	322	PRO
3	L	322	PRO
3	С	133	ILE
3	D	322	PRO
3	Н	322	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Analysed Rotameric Outliers		Percer	ntiles
1	А	94/122~(77%)	93~(99%)	1 (1%)	73	84
1	Е	94/122~(77%)	93~(99%)	1 (1%)	73	84
1	Ι	94/122~(77%)	93~(99%)	1 (1%)	73	84
2	В	297/308~(96%)	288~(97%)	9~(3%)	41	63
2	F	297/308~(96%)	288~(97%)	9~(3%)	41	63
2	J	297/308~(96%)	288~(97%)	9~(3%)	41	63
3	С	324/340~(95%)	310~(96%)	14 (4%)	29	54
3	D	231/340~(68%)	227 (98%)	4 (2%)	60	78
3	G	324/340~(95%)	312 (96%)	12 (4%)	34	58

Mol	Chain	Analysed	Rotameric Outliers		Percentiles		
3	Н	231/340~(68%)	227~(98%)	4 (2%)	60 78		
3	Κ	324/340~(95%)	311~(96%)	13~(4%)	31 55		
3	L	231/340~(68%)	226~(98%)	5(2%)	52 71		
All	All	2838/3330~(85%)	2756 (97%)	82 (3%)	42 64		

Continued from previous page...

All (82) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	A	63	ILE
2	В	40	CYS
2	В	68	LEU
2	В	142	ASP
2	В	171	LEU
2	В	237	ILE
2	В	263	GLN
2	В	288	LEU
2	В	345	VAL
2	В	357	LEU
3	С	141	MET
3	С	144	ILE
3	С	179	PRO
3	С	203	CYS
3	С	275	ASP
3	С	279	PHE
3	С	280	VAL
3	С	293	THR
3	С	324	ARG
3	С	330	ASP
3	С	333	LEU
3	С	398	ASP
3	С	405	ASN
3	С	462	LEU
3	D	275	ASP
3	D	280	VAL
3	D	293	THR
3	D	363	LEU
1	Е	63	ILE
2	F	40	CYS
2	F	68	LEU
2	F	142	ASP
2	F	171	LEU

Mol	Chain	Res	Type
2	F	237	ILE
2	F	263	GLN
2	F	288	LEU
2	F	345	VAL
2	F	357	LEU
3	G	141	MET
3	G	144	ILE
3	G	220	ASP
3	G	275	ASP
3	G	279	PHE
3	G	280	VAL
3	G	293	THR
3	G	330	ASP
3	G	363	LEU
3	G	398	ASP
3	G	405	ASN
3	G	462	LEU
3	Н	275	ASP
3	Н	280	VAL
3	Н	293	THR
3	Н	363	LEU
1	Ι	63	ILE
2	J	40	CYS
2	J	68	LEU
2	J	142	ASP
2	J	171	LEU
2	J	237	ILE
2	J	263	GLN
2	J	288	LEU
2	J	345	VAL
2	J	357	LEU
3	Κ	141	MET
3	Κ	144	ILE
3	Κ	220	ASP
3	Κ	275	ASP
3	K	279	PHE
3	Κ	280	VAL
3	K	293	THR
3	Κ	330	ASP
3	K	363	LEU
3	Κ	380	ASN
3	Κ	398	ASP

Continued from previous page...

Mol	Chain	Res	Type
3	Κ	405	ASN
3	Κ	462	LEU
3	L	275	ASP
3	L	280	VAL
3	L	293	THR
3	L	363	LEU
3	L	380	ASN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (21) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	115	ASN
2	В	72	ASN
2	В	310	ASN
2	В	354	ASN
3	С	350	ASN
3	D	212	GLN
3	D	442	ASN
1	Е	115	ASN
2	F	72	ASN
2	F	293	GLN
2	F	310	ASN
2	F	354	ASN
3	G	442	ASN
3	Н	212	GLN
1	Ι	80	GLN
1	Ι	115	ASN
2	J	72	ASN
2	J	293	GLN
2	J	310	ASN
2	J	354	ASN
3	L	212	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 21 ligands modelled in this entry, 12 are monoatomic - leaving 9 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	$_{\rm sths}$	B	ond ang	les
IVIOI	туре	Unain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
4	NAG	J	1362	-	14,14,15	0.46	0	17,19,21	1.13	2 (11%)
4	NAG	Ι	1152	-	14,14,15	0.43	0	17,19,21	1.16	2 (11%)
4	NAG	С	1465	-	14,14,15	0.54	0	17,19,21	0.93	1 (5%)
4	NAG	F	1362	-	14,14,15	0.45	0	17,19,21	1.13	2 (11%)
4	NAG	Е	1152	-	14,14,15	0.44	0	17,19,21	1.15	2 (11%)
4	NAG	В	1362	-	14,14,15	0.45	0	17,19,21	1.14	2 (11%)
4	NAG	А	1152	-	14,14,15	0.43	0	17,19,21	1.16	2 (11%)
4	NAG	K	1465	-	14,14,15	0.54	0	17,19,21	0.91	1 (5%)
4	NAG	G	1465	-	14,14,15	0.55	0	17,19,21	0.92	1 (5%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	NAG	J	1362	-	-	0/6/23/26	0/1/1/1
4	NAG	Ι	1152	-	-	0/6/23/26	0/1/1/1
4	NAG	С	1465	-	-	3/6/23/26	0/1/1/1
4	NAG	F	1362	-	-	0/6/23/26	0/1/1/1
4	NAG	Е	1152	-	-	0/6/23/26	0/1/1/1
4	NAG	В	1362	-	-	0/6/23/26	0/1/1/1
4	NAG	А	1152	-	-	0/6/23/26	0/1/1/1
4	NAG	K	1465	-	_	3/6/23/26	0/1/1/1

Continued from previous page...

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	NAG	G	1465	-	-	3/6/23/26	0/1/1/1

There are no bond length outliers.

All (15) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
4	Ι	1152	NAG	C4-C3-C2	-2.44	107.44	111.02
4	Е	1152	NAG	C4-C3-C2	-2.43	107.46	111.02
4	А	1152	NAG	C4-C3-C2	-2.41	107.48	111.02
4	J	1362	NAG	C4-C3-C2	-2.36	107.56	111.02
4	В	1362	NAG	C4-C3-C2	-2.35	107.58	111.02
4	F	1362	NAG	C4-C3-C2	-2.34	107.59	111.02
4	В	1362	NAG	C8-C7-N2	2.14	119.72	116.10
4	С	1465	NAG	C4-C3-C2	-2.14	107.89	111.02
4	J	1362	NAG	C8-C7-N2	2.13	119.70	116.10
4	G	1465	NAG	C4-C3-C2	-2.12	107.91	111.02
4	А	1152	NAG	C8-C7-N2	2.12	119.69	116.10
4	Ι	1152	NAG	C8-C7-N2	2.11	119.67	116.10
4	K	1465	NAG	C4-C3-C2	-2.11	107.93	111.02
4	F	1362	NAG	C8-C7-N2	2.10	119.66	116.10
4	Е	1152	NAG	C8-C7-N2	2.08	119.63	116.10

There are no chirality outliers.

All (9) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms	
4	С	1465	NAG	C4-C5-C6-O6	
4	G	1465	NAG	C4-C5-C6-O6	
4	Κ	1465	NAG	C4-C5-C6-O6	
4	Κ	1465	NAG	O5-C5-C6-O6	
4	С	1465	NAG	O5-C5-C6-O6	
4	G	1465	NAG	O5-C5-C6-O6	
4	С	1465	NAG	C3-C2-N2-C7	
4	G	1465	NAG	C3-C2-N2-C7	
4	Κ	1465	NAG	C3-C2-N2-C7	

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks		
2	В	1		
2	F	1		
3	Н	1		
2	J	1		
3	L	1		
3	D	1		

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	В	307:ALA	С	308:ARG	N	3.26
1	F	307:ALA	С	308:ARG	N	3.26
1	Н	295:ASN	С	296:ILE	N	3.25
1	J	307:ALA	С	308:ARG	N	3.25
1	L	295:ASN	С	296:ILE	N	3.25
1	D	295:ASN	С	296:ILE	N	3.24

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.3 Carbohydrates (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.4 Ligands (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.5 Other polymers (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

