Full wwPDB EM Validation Report

Jul 10, 2023 – 05:06 PM EDT

PDB ID : 8FL6
EMDB ID : EMD-29268
Title : Human nuclear pre-60S ribosomal subunit (State J1)
Authors : Vanden Broeck, A.; Klinge, S.
Deposited on : 2022-12-21
Resolution : 2.62 Å (reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
with specific help available everywhere you see the symbol.

The types of validation reports are described at
http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references) were used in the production of this report:

- EMDB validation analysis : 0.0.1.dev50
- Mogul : 1.8.5 (274361), CSD as541be (2020)
- MolProbity : 4.02b-467
- buster-report : 1.1.7 (2018)
- Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)
- MapQ : 1.9.9
- Ideal geometry (proteins) : Engh & Huber (2001)
- Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
- Validation Pipeline (wwPDB-VP) : 2.34
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

ELECTRON MICROSCOPY

The reported resolution of this entry is 2.62 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>EM structures (#Entries)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clashscore</td>
<td>158937</td>
<td>4297</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>154571</td>
<td>4023</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>154315</td>
<td>3826</td>
</tr>
<tr>
<td>RNA backbone</td>
<td>4643</td>
<td>859</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BA</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>157</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>L2</td>
<td>1167</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>5070</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>L4</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>L5</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>L6</td>
<td>211</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>L7</td>
<td>203</td>
<td>92%</td>
</tr>
<tr>
<td>9</td>
<td>L8</td>
<td>215</td>
<td>59%</td>
</tr>
<tr>
<td>10</td>
<td>L9</td>
<td>204</td>
<td>94%</td>
</tr>
<tr>
<td>11</td>
<td>LA</td>
<td>184</td>
<td>81%</td>
</tr>
<tr>
<td>12</td>
<td>LB</td>
<td>188</td>
<td>95%</td>
</tr>
<tr>
<td>13</td>
<td>LC</td>
<td>176</td>
<td>97%</td>
</tr>
<tr>
<td>14</td>
<td>LD</td>
<td>196</td>
<td>70% 8% 21%</td>
</tr>
<tr>
<td>15</td>
<td>LE</td>
<td>160</td>
<td>92% 8%</td>
</tr>
<tr>
<td>16</td>
<td>LF</td>
<td>128</td>
<td>76% 5% 20%</td>
</tr>
<tr>
<td>17</td>
<td>LG</td>
<td>140</td>
<td>96%</td>
</tr>
<tr>
<td>18</td>
<td>LH</td>
<td>156</td>
<td>87% 8%</td>
</tr>
<tr>
<td>19</td>
<td>LI</td>
<td>145</td>
<td>86% 7% 8%</td>
</tr>
<tr>
<td>20</td>
<td>LJ</td>
<td>136</td>
<td>88% 11%</td>
</tr>
<tr>
<td>21</td>
<td>LK</td>
<td>148</td>
<td>93% 6%</td>
</tr>
<tr>
<td>22</td>
<td>LL</td>
<td>137</td>
<td>85% 6% 9%</td>
</tr>
<tr>
<td>23</td>
<td>LM</td>
<td>159</td>
<td>53% 43%</td>
</tr>
<tr>
<td>24</td>
<td>LN</td>
<td>403</td>
<td>93% 7%</td>
</tr>
<tr>
<td>25</td>
<td>LO</td>
<td>115</td>
<td>79% 17%</td>
</tr>
<tr>
<td>26</td>
<td>LP</td>
<td>125</td>
<td>79% 6% 15%</td>
</tr>
<tr>
<td>27</td>
<td>LQ</td>
<td>135</td>
<td>90% 5% 5%</td>
</tr>
<tr>
<td>28</td>
<td>LR</td>
<td>117</td>
<td>91%</td>
</tr>
<tr>
<td>29</td>
<td>LS</td>
<td>123</td>
<td>93% 6%</td>
</tr>
<tr>
<td>30</td>
<td>LT</td>
<td>110</td>
<td>95% 5%</td>
</tr>
<tr>
<td>31</td>
<td>LU</td>
<td>105</td>
<td>90% 8%</td>
</tr>
<tr>
<td>32</td>
<td>LV</td>
<td>106</td>
<td>91% 8%</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>LW</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>LX</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>LY</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>LZ</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>NC</td>
<td>731</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>NF</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>NK</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>NL</td>
<td>478</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>NP</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>SA</td>
<td>427</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>SB</td>
<td>297</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>SC</td>
<td>288</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>SD</td>
<td>248</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>SE</td>
<td>266</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>SF</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>SG</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>SH</td>
<td>293</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>SI</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>SK</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>SL</td>
<td>490</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>SM</td>
<td>588</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>SQ</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>SR</td>
<td>634</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>SV</td>
<td>163</td>
<td></td>
</tr>
</tbody>
</table>
2 Entry composition

There are 60 unique types of molecules in this entry. The entry contains 153706 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called 60S ribosomal protein L12.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BA</td>
<td>160</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td>193</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 2 is a RNA chain called 5.8S rRNA.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>L1</td>
<td>154</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td>1080</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>154</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 3 is a RNA chain called ITS2 rRNA.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>L2</td>
<td>72</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td>502</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>72</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 4 is a RNA chain called 28S rRNA.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>3405</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td>23725</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>3405</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 5 is a RNA chain called 5S rRNA.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>L4</td>
<td>120</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td>844</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>120</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 6 is a protein called 60S ribosomal protein L11.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>L5</td>
<td>168</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td>239</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>
• Molecule 7 is a protein called 60S ribosomal protein L13.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>L6</td>
<td>210</td>
<td>Total C N O S</td>
<td>1701 1064 352 281 4</td>
<td>0</td>
</tr>
</tbody>
</table>

• Molecule 8 is a protein called 60S ribosomal protein L13a.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>L7</td>
<td>201</td>
<td>Total C N O S</td>
<td>1650 1063 321 261 5</td>
<td>0</td>
</tr>
</tbody>
</table>

• Molecule 9 is a protein called 60S ribosomal protein L14.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>L8</td>
<td>135</td>
<td>Total C N O S</td>
<td>1111 713 213 178 7</td>
<td>0</td>
</tr>
</tbody>
</table>

• Molecule 10 is a protein called 60S ribosomal protein L15.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>L9</td>
<td>203</td>
<td>Total C N O S</td>
<td>1701 1072 359 266 4</td>
<td>0</td>
</tr>
</tbody>
</table>

• Molecule 11 is a protein called 60S ribosomal protein L17.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>LA</td>
<td>153</td>
<td>Total C N O S</td>
<td>1242 776 241 216 9</td>
<td>0</td>
</tr>
</tbody>
</table>

• Molecule 12 is a protein called 60S ribosomal protein L18.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>LB</td>
<td>187</td>
<td>Total C N O S</td>
<td>1512 944 314 249 5</td>
<td>0</td>
</tr>
</tbody>
</table>

• Molecule 13 is a protein called 60S ribosomal protein L18a.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>LC</td>
<td>176</td>
<td>Total C N O S</td>
<td>1461 930 284 236 11</td>
<td>0</td>
</tr>
</tbody>
</table>

• Molecule 14 is a protein called 60S ribosomal protein L19.
Molecule 15 is a protein called 60S ribosomal protein L21.

Molecule 16 is a protein called 60S ribosomal protein L22.

Molecule 17 is a protein called 60S ribosomal protein L23.

Molecule 18 is a protein called 60S ribosomal protein L23a.

Molecule 19 is a protein called 60S ribosomal protein L26.

Molecule 20 is a protein called 60S ribosomal protein L27.

Molecule 21 is a protein called 60S ribosomal protein L27a.
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>LK</td>
<td>147</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1162</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>736</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>237</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>186</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 22 is a protein called 60S ribosomal protein L28.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>LL</td>
<td>125</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>622</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>207</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>168</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 23 is a protein called 60S ribosomal protein L29.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>LM</td>
<td>91</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>751</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>469</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>165</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>113</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 24 is a protein called 60S ribosomal protein L3.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>LN</td>
<td>402</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3239</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2061</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>608</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>556</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 25 is a protein called 60S ribosomal protein L30.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>LO</td>
<td>95</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>738</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>468</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>131</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>133</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 26 is a protein called 60S ribosomal protein L31.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>LP</td>
<td>106</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>879</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>555</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>170</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>152</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 27 is a protein called 60S ribosomal protein L32.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>LQ</td>
<td>128</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1053</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>667</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>216</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>165</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 28 is a protein called 60S ribosomal protein L34.
• Molecule 29 is a protein called 60S ribosomal protein L35.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>LR</td>
<td>112</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>888 555 183 144 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Molecule 30 is a protein called 60S ribosomal protein L35a.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>LS</td>
<td>122</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1015 641 205 168 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Molecule 31 is a protein called 60S ribosomal protein L36.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>LT</td>
<td>109</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>876 555 174 144 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Molecule 32 is a protein called 60S ribosomal protein L36a.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>LU</td>
<td>102</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>832 521 177 129 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Molecule 33 is a protein called 60S ribosomal protein L37.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>LV</td>
<td>104</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>851 533 174 138 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Molecule 34 is a protein called 60S ribosomal protein L37a.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>LW</td>
<td>86</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>705 434 155 111 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Molecule 35 is a protein called 60S ribosomal protein L38.
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>LY</td>
<td>69</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N 569</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O 366</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S 103</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>99</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 36 is a protein called 60S ribosomal protein L39.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>LZ</td>
<td>50</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N 444</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O 281</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S 98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 37 is a protein called Nucleolar GTP-binding protein 2.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>NC</td>
<td>44</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N 219</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O 131</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44</td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 38 is a protein called Ribosome biogenesis protein NSA2 homolog.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>NF</td>
<td>71</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N 626</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O 392</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>129</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>102</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 39 is a protein called Protein LLP homolog.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>NK</td>
<td>67</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N 581</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O 363</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>128</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>88</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 40 is a protein called Ribosome biogenesis protein NOP53.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>NL</td>
<td>323</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N 2666</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O 1658</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>531</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>475</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 41 is a protein called Zinc finger protein 593.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>NP</td>
<td>104</td>
<td>Total C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N 847</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O 520</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>178</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>145</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 42 is a protein called 60S ribosomal protein L4.
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>SA</td>
<td>358</td>
<td>Total C N O S</td>
<td>2853 1797 570 473 13</td>
<td>0 0</td>
</tr>
</tbody>
</table>

- Molecule 43 is a protein called 60S ribosomal protein L5.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>SB</td>
<td>275</td>
<td>Total C N O S</td>
<td>2243 1419 406 404 14</td>
<td>0 0</td>
</tr>
</tbody>
</table>

- Molecule 44 is a protein called 60S ribosomal protein L6.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>SC</td>
<td>217</td>
<td>Total C N O S</td>
<td>1747 1124 332 287 4</td>
<td>0 0</td>
</tr>
</tbody>
</table>

- Molecule 45 is a protein called 60S ribosomal protein L7.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>SD</td>
<td>225</td>
<td>Total C N O S</td>
<td>1870 1202 358 301 9</td>
<td>0 0</td>
</tr>
</tbody>
</table>

- Molecule 46 is a protein called 60S ribosomal protein L7a.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>SE</td>
<td>231</td>
<td>Total C N O S</td>
<td>1869 1191 361 313 4</td>
<td>1 0</td>
</tr>
</tbody>
</table>

- Molecule 47 is a protein called 60S ribosomal protein L8.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>SF</td>
<td>245</td>
<td>Total C N O S</td>
<td>1876 1177 383 310 6</td>
<td>0 0</td>
</tr>
</tbody>
</table>

- Molecule 48 is a protein called 60S ribosomal protein L9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>SG</td>
<td>190</td>
<td>Total C N O S</td>
<td>1518 956 284 272 6</td>
<td>0 0</td>
</tr>
</tbody>
</table>

- Molecule 49 is a protein called MKI67 FHA domain-interacting nucleolar phosphoprotein.
- Molecule 50 is a protein called 60S ribosomal protein L7-like 1.

- Molecule 51 is a protein called Eukaryotic translation initiation factor 6.

- Molecule 52 is a protein called Ribosomal L1 domain-containing protein 1.

- Molecule 53 is a protein called Pescadillo homolog.

- Molecule 54 is a protein called mRNA turnover protein 4 homolog.

- Molecule 55 is a protein called GTP-binding protein 4.

- Molecule 56 is a protein called Probable ribosome biogenesis protein RLP24.
Molecule 57 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>SV</td>
<td>139</td>
<td>Total C</td>
<td>1184</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>754</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AltConf</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trace</td>
<td>0</td>
</tr>
</tbody>
</table>

Molecule 58 is ZINC ION (three-letter code: ZN) (formula: Zn).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>LR</td>
<td>1</td>
<td>Total Zn</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>LV</td>
<td>1</td>
<td>Total Zn</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>LW</td>
<td>1</td>
<td>Total Zn</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>LX</td>
<td>1</td>
<td>Total Zn</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>NP</td>
<td>1</td>
<td>Total Zn</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>SV</td>
<td>1</td>
<td>Total Zn</td>
<td>1</td>
</tr>
</tbody>
</table>

Molecule 59 is GUANOSINE-5’-DIPHOSPHATE (three-letter code: GDP) (formula: C_{10}H_{15}N_{5}O_{11}P_{2}).
Molecule 60 is POTASSIUM ION (three-letter code: K) (formula: K).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>SR</td>
<td>1</td>
<td>Total C N O P</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>28 10 5 11 2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>SR</td>
<td>1</td>
<td>Total K</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 1</td>
<td></td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: 60S ribosomal protein L12

 Chain BA:

- Molecule 2: 5.8S rRNA

 Chain L1:

- Molecule 3: ITS2 rRNA

 Chain L2:
• Molecule 4: 28S rRNA

Chain L3:
- Molecule 5: 5S rRNA

Chain L4:

- Molecule 6: 60S ribosomal protein L11

Chain L5:

- Molecule 7: 60S ribosomal protein L13

Chain L6:

- Molecule 8: 60S ribosomal protein L13a

Chain L7:

- Molecule 9: 60S ribosomal protein L14

Chain L8:

- Molecule 10: 60S ribosomal protein L15

Chain L9:
- Molecule 11: 60S ribosomal protein L17

Chain LA:

- Molecule 12: 60S ribosomal protein L18

Chain LB:

- Molecule 13: 60S ribosomal protein L18a

Chain LC:

- Molecule 14: 60S ribosomal protein L19

Chain LD:

- Molecule 15: 60S ribosomal protein L21

Chain LE:

- Molecule 16: 60S ribosomal protein L22

Chain LF:
• Molecule 17: 60S ribosomal protein L23

Chain LG:

• Molecule 18: 60S ribosomal protein L23a

Chain LH:

• Molecule 19: 60S ribosomal protein L26

Chain LI:

• Molecule 20: 60S ribosomal protein L27

Chain LJ:

• Molecule 21: 60S ribosomal protein L27a

Chain LK:

• Molecule 22: 60S ribosomal protein L28

Chain LL:

• Molecule 23: 60S ribosomal protein L29

Chain LM:
- Molecule 24: 60S ribosomal protein L3

Chain LN:

- Molecule 25: 60S ribosomal protein L30

Chain LO:

- Molecule 26: 60S ribosomal protein L31

Chain LP:

- Molecule 27: 60S ribosomal protein L32

Chain LQ:

- Molecule 28: 60S ribosomal protein L34

Chain LR:

- Molecule 29: 60S ribosomal protein L35
Chain LS:

- Molecule 30: 60S ribosomal protein L35a

Chain LT:

- Molecule 31: 60S ribosomal protein L36

Chain LU:

- Molecule 32: 60S ribosomal protein L36a

Chain LV:

- Molecule 33: 60S ribosomal protein L37

Chain LW:

- Molecule 34: 60S ribosomal protein L37a

Chain LX:

- Molecule 35: 60S ribosomal protein L38

Chain LY:
• Molecule 36: 60S ribosomal protein L39

Chain LZ:

• Molecule 37: Nucleolar GTP-binding protein 2

Chain NC:

• Molecule 38: Ribosome biogenesis protein NSA2 homolog

Chain NF:
• Molecule 39: Protein LLP homolog

Chain NK:

• Molecule 40: Ribosome biogenesis protein NOP53

Chain NL:

• Molecule 41: Zinc finger protein 593

Chain NP:
- Molecule 42: 60S ribosomal protein L4

Chain SA:

- Molecule 43: 60S ribosomal protein L5

Chain SB:

- Molecule 44: 60S ribosomal protein L6

Chain SC:

- Molecule 45: 60S ribosomal protein L7

Chain SD:

- Molecule 46: 60S ribosomal protein L7a
Chain SE:

Molecule 47: 60S ribosomal protein L8

Chain SF:

Molecule 48: 60S ribosomal protein L9

Chain SG:

Molecule 49: MKI67 FHA domain-interacting nucleolar phosphoprotein

Chain SH:

Molecule 50: 60S ribosomal protein L7-like 1

Chain SI:
- Molecule 51: Eukaryotic translation initiation factor 6

Chain SK:

- Molecule 52: Ribosomal L1 domain-containing protein 1

Chain SL:

- Molecule 53: Pescadillo homolog

Chain SM:
• Molecule 54: mRNA turnover protein 4 homolog

Chain SQ:

• Molecule 55: GTP-binding protein 4

Chain SR:

• Molecule 56: Probable ribosome biogenesis protein RLP24

Chain SV:
4 Experimental information

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM reconstruction method</td>
<td>SINGLE PARTICLE</td>
<td>Depositor</td>
</tr>
<tr>
<td>Imposed symmetry</td>
<td>POINT, C1</td>
<td>Depositor</td>
</tr>
<tr>
<td>Number of particles used</td>
<td>71912</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution determination method</td>
<td>FSC 0.143 CUT-OFF</td>
<td>Depositor</td>
</tr>
<tr>
<td>CTF correction method</td>
<td>PHASE FLIPPING AND AMPLITUDE CORRECTION</td>
<td>Depositor</td>
</tr>
<tr>
<td>Microscope</td>
<td>FEI TITAN KRIOS</td>
<td>Depositor</td>
</tr>
<tr>
<td>Voltage (kV)</td>
<td>300</td>
<td>Depositor</td>
</tr>
<tr>
<td>Electron dose (e^-/Å^2)</td>
<td>60</td>
<td>Depositor</td>
</tr>
<tr>
<td>Minimum defocus (nm)</td>
<td>500</td>
<td>Depositor</td>
</tr>
<tr>
<td>Maximum defocus (nm)</td>
<td>2500</td>
<td>Depositor</td>
</tr>
<tr>
<td>Magnification</td>
<td>64000</td>
<td>Depositor</td>
</tr>
<tr>
<td>Image detector</td>
<td>GATAN K3 (6k x 4k)</td>
<td>Depositor</td>
</tr>
<tr>
<td>Maximum map value</td>
<td>9.164</td>
<td>Depositor</td>
</tr>
<tr>
<td>Minimum map value</td>
<td>-0.003</td>
<td>Depositor</td>
</tr>
<tr>
<td>Average map value</td>
<td>0.048</td>
<td>Depositor</td>
</tr>
<tr>
<td>Map value standard deviation</td>
<td>0.186</td>
<td>Depositor</td>
</tr>
<tr>
<td>Recommended contour level</td>
<td>1.0</td>
<td>Depositor</td>
</tr>
<tr>
<td>Map size (Å)</td>
<td>514.56, 514.56, 514.56</td>
<td>wwPDB</td>
</tr>
<tr>
<td>Map dimensions</td>
<td>480, 480, 480</td>
<td>wwPDB</td>
</tr>
<tr>
<td>Map angles (°)</td>
<td>90.0, 90.0, 90.0</td>
<td>wwPDB</td>
</tr>
<tr>
<td>Pixel spacing (Å)</td>
<td>1.072, 1.072, 1.072</td>
<td>Depositor</td>
</tr>
</tbody>
</table>
5 Model quality

5.1 Standard geometry

Bond lengths and bond angles in the following residue types are not validated in this section: PSU, ONU, A2M, K, HIC, OMG, GDP, UR3, 6MZ, MG, OMC, ZN.

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>#</td>
</tr>
<tr>
<td>1</td>
<td>BA</td>
<td>0.24</td>
<td>0/959</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>0.57</td>
<td>0/3589</td>
</tr>
<tr>
<td>3</td>
<td>L2</td>
<td>0.39</td>
<td>0/1709</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>0.47</td>
<td>0/79296</td>
</tr>
<tr>
<td>5</td>
<td>L4</td>
<td>0.70</td>
<td>0/2861</td>
</tr>
<tr>
<td>6</td>
<td>L5</td>
<td>0.29</td>
<td>0/1372</td>
</tr>
<tr>
<td>7</td>
<td>L6</td>
<td>0.27</td>
<td>0/1732</td>
</tr>
<tr>
<td>8</td>
<td>L7</td>
<td>0.30</td>
<td>0/1682</td>
</tr>
<tr>
<td>9</td>
<td>L8</td>
<td>0.28</td>
<td>0/1133</td>
</tr>
<tr>
<td>10</td>
<td>L9</td>
<td>0.32</td>
<td>0/1746</td>
</tr>
<tr>
<td>11</td>
<td>LA</td>
<td>0.29</td>
<td>0/1268</td>
</tr>
<tr>
<td>12</td>
<td>LB</td>
<td>0.31</td>
<td>0/1536</td>
</tr>
<tr>
<td>13</td>
<td>LC</td>
<td>0.34</td>
<td>0/1501</td>
</tr>
<tr>
<td>14</td>
<td>LD</td>
<td>0.26</td>
<td>0/1305</td>
</tr>
<tr>
<td>15</td>
<td>LE</td>
<td>0.33</td>
<td>0/1291</td>
</tr>
<tr>
<td>16</td>
<td>LF</td>
<td>0.28</td>
<td>0/856</td>
</tr>
<tr>
<td>17</td>
<td>LG</td>
<td>0.29</td>
<td>0/1048</td>
</tr>
<tr>
<td>18</td>
<td>LH</td>
<td>0.29</td>
<td>0/1175</td>
</tr>
<tr>
<td>19</td>
<td>LI</td>
<td>0.30</td>
<td>0/1132</td>
</tr>
<tr>
<td>20</td>
<td>LJ</td>
<td>0.33</td>
<td>0/1130</td>
</tr>
<tr>
<td>21</td>
<td>LK</td>
<td>0.30</td>
<td>0/1191</td>
</tr>
<tr>
<td>22</td>
<td>LL</td>
<td>0.27</td>
<td>0/1017</td>
</tr>
<tr>
<td>23</td>
<td>LM</td>
<td>0.28</td>
<td>0/763</td>
</tr>
<tr>
<td>24</td>
<td>LN</td>
<td>0.29</td>
<td>0/3294</td>
</tr>
<tr>
<td>25</td>
<td>LO</td>
<td>0.29</td>
<td>0/748</td>
</tr>
<tr>
<td>26</td>
<td>LP</td>
<td>0.28</td>
<td>0/894</td>
</tr>
<tr>
<td>27</td>
<td>LQ</td>
<td>0.29</td>
<td>0/1071</td>
</tr>
<tr>
<td>28</td>
<td>LR</td>
<td>0.29</td>
<td>0/898</td>
</tr>
<tr>
<td>29</td>
<td>LS</td>
<td>0.29</td>
<td>0/1023</td>
</tr>
<tr>
<td>30</td>
<td>LT</td>
<td>0.30</td>
<td>0/895</td>
</tr>
<tr>
<td>31</td>
<td>LU</td>
<td>0.26</td>
<td>0/843</td>
</tr>
<tr>
<td>32</td>
<td>LV</td>
<td>0.32</td>
<td>0/864</td>
</tr>
</tbody>
</table>
There are no bond length outliers.

All (9) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>5022</td>
<td>U</td>
<td>O4'-C1'-N1</td>
<td>6.23</td>
<td>113.19</td>
<td>108.20</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2486</td>
<td>G</td>
<td>N1-C6-O6</td>
<td>-6.18</td>
<td>116.19</td>
<td>119.90</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>170</td>
<td>C</td>
<td>C6-N1-C2</td>
<td>-6.11</td>
<td>117.86</td>
<td>120.30</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2469</td>
<td>C</td>
<td>C2-N1-C1'</td>
<td>5.99</td>
<td>125.39</td>
<td>118.80</td>
</tr>
<tr>
<td>5</td>
<td>L4</td>
<td>48</td>
<td>G</td>
<td>O4'-C1'-N9</td>
<td>5.79</td>
<td>112.83</td>
<td>108.20</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>83</td>
<td>C</td>
<td>N1-C2-O2</td>
<td>5.78</td>
<td>122.37</td>
<td>118.90</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2486</td>
<td>G</td>
<td>C5-C6-O6</td>
<td>5.54</td>
<td>131.92</td>
<td>128.60</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2519</td>
<td>U</td>
<td>O4'-C1'-N1</td>
<td>5.18</td>
<td>112.34</td>
<td>108.20</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4303</td>
<td>C</td>
<td>C6-N1-C2</td>
<td>-5.17</td>
<td>118.23</td>
<td>120.30</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

There are no planarity outliers.
5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BA</td>
<td>954</td>
<td>0</td>
<td>690</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>3278</td>
<td>0</td>
<td>1665</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>L2</td>
<td>1535</td>
<td>0</td>
<td>789</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>73095</td>
<td>0</td>
<td>37033</td>
<td>327</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>L4</td>
<td>2561</td>
<td>0</td>
<td>1295</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>L5</td>
<td>1349</td>
<td>0</td>
<td>1383</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>L6</td>
<td>1701</td>
<td>0</td>
<td>1818</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>L7</td>
<td>1650</td>
<td>0</td>
<td>1794</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>L8</td>
<td>1111</td>
<td>0</td>
<td>1174</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>L9</td>
<td>1701</td>
<td>0</td>
<td>1749</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>LA</td>
<td>1242</td>
<td>0</td>
<td>1269</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>LB</td>
<td>1512</td>
<td>0</td>
<td>1628</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>LC</td>
<td>1461</td>
<td>0</td>
<td>1502</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>LD</td>
<td>1289</td>
<td>0</td>
<td>1429</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>LE</td>
<td>1264</td>
<td>0</td>
<td>1328</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>LF</td>
<td>842</td>
<td>0</td>
<td>864</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>LG</td>
<td>1034</td>
<td>0</td>
<td>1097</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>LH</td>
<td>1156</td>
<td>0</td>
<td>1268</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>LI</td>
<td>1115</td>
<td>0</td>
<td>1205</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>LJ</td>
<td>1107</td>
<td>0</td>
<td>1182</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>LK</td>
<td>1162</td>
<td>0</td>
<td>1213</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>LL</td>
<td>1002</td>
<td>0</td>
<td>1068</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>LM</td>
<td>751</td>
<td>0</td>
<td>820</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>LN</td>
<td>3239</td>
<td>0</td>
<td>3377</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>LO</td>
<td>738</td>
<td>0</td>
<td>774</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>LP</td>
<td>879</td>
<td>0</td>
<td>924</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>LQ</td>
<td>1053</td>
<td>0</td>
<td>1147</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>LR</td>
<td>888</td>
<td>0</td>
<td>977</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>LS</td>
<td>1015</td>
<td>0</td>
<td>1148</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>LT</td>
<td>876</td>
<td>0</td>
<td>912</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>LU</td>
<td>832</td>
<td>0</td>
<td>917</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>LV</td>
<td>851</td>
<td>0</td>
<td>920</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>LW</td>
<td>705</td>
<td>0</td>
<td>737</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>LX</td>
<td>708</td>
<td>0</td>
<td>756</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>LY</td>
<td>569</td>
<td>0</td>
<td>637</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>LZ</td>
<td>444</td>
<td>0</td>
<td>483</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>NC</td>
<td>219</td>
<td>0</td>
<td>92</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>NF</td>
<td>626</td>
<td>0</td>
<td>665</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>NK</td>
<td>581</td>
<td>0</td>
<td>656</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>NL</td>
<td>2666</td>
<td>0</td>
<td>2774</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>41</td>
<td>NP</td>
<td>847</td>
<td>0</td>
<td>854</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>42</td>
<td>SA</td>
<td>2853</td>
<td>0</td>
<td>3028</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>43</td>
<td>SB</td>
<td>2243</td>
<td>0</td>
<td>2268</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>44</td>
<td>SC</td>
<td>1747</td>
<td>0</td>
<td>1897</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>45</td>
<td>SD</td>
<td>1870</td>
<td>0</td>
<td>1996</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>46</td>
<td>SE</td>
<td>1869</td>
<td>0</td>
<td>2014</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>47</td>
<td>SF</td>
<td>1876</td>
<td>0</td>
<td>1970</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>48</td>
<td>SG</td>
<td>1518</td>
<td>0</td>
<td>1601</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>49</td>
<td>SH</td>
<td>1128</td>
<td>0</td>
<td>1001</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>SI</td>
<td>1937</td>
<td>0</td>
<td>2070</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>51</td>
<td>SK</td>
<td>1852</td>
<td>0</td>
<td>1828</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>52</td>
<td>SL</td>
<td>1917</td>
<td>0</td>
<td>2018</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>53</td>
<td>SM</td>
<td>3278</td>
<td>0</td>
<td>3332</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>54</td>
<td>SQ</td>
<td>1771</td>
<td>0</td>
<td>1810</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>55</td>
<td>SR</td>
<td>4932</td>
<td>0</td>
<td>5072</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>56</td>
<td>SV</td>
<td>1184</td>
<td>0</td>
<td>1248</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>57</td>
<td>L1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>57</td>
<td>L3</td>
<td>75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>57</td>
<td>L4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>57</td>
<td>LG</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>57</td>
<td>LQ</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>57</td>
<td>LT</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>57</td>
<td>SA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>57</td>
<td>SF</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>57</td>
<td>SR</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>58</td>
<td>LR</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>58</td>
<td>LV</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>58</td>
<td>LW</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>58</td>
<td>LX</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>58</td>
<td>NP</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>58</td>
<td>SV</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>59</td>
<td>SR</td>
<td>28</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>SR</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>153706</td>
<td>0</td>
<td>117178</td>
<td>579</td>
<td>0</td>
</tr>
</tbody>
</table>

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

All (579) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:L4:40:U:O2</td>
<td>6:L5:75:ARG:NH1</td>
<td>2.06</td>
<td>0.89</td>
</tr>
<tr>
<td>2:L1:51:U:OP2</td>
<td>36:LI:21:ARG:NH2</td>
<td>2.07</td>
<td>0.86</td>
</tr>
<tr>
<td>4:L3:2555:G:O2'</td>
<td>20:L1:108:ARG:NH2</td>
<td>2.08</td>
<td>0.86</td>
</tr>
<tr>
<td>5:L4:30:C:O2'</td>
<td>43:SB:221:LYS:NZ</td>
<td>2.09</td>
<td>0.86</td>
</tr>
<tr>
<td>4:L3:2520:C:O2</td>
<td>4:L3:2640:G:N2</td>
<td>2.08</td>
<td>0.86</td>
</tr>
<tr>
<td>4:L3:3896:C:O2'</td>
<td>24:LN:268:ARG:NH2</td>
<td>2.12</td>
<td>0.83</td>
</tr>
<tr>
<td>4:L3:695:G:O2'</td>
<td>4:L3:697:G:OP2</td>
<td>1.96</td>
<td>0.83</td>
</tr>
<tr>
<td>4:L3:2263:G:OP1</td>
<td>22:LL:107:ARG:NH2</td>
<td>2.13</td>
<td>0.82</td>
</tr>
<tr>
<td>38:NF:3:GLN:NE2</td>
<td>55:SR:207:VAL:O</td>
<td>2.12</td>
<td>0.82</td>
</tr>
<tr>
<td>4:L3:1480:C:O2'</td>
<td>4:L3:1482:G:OP2</td>
<td>1.98</td>
<td>0.81</td>
</tr>
<tr>
<td>4:L3:4940:C:OP1</td>
<td>44:SC:156:ARG:NH2</td>
<td>2.13</td>
<td>0.80</td>
</tr>
<tr>
<td>4:L3:4156:G:OP2</td>
<td>4:L3:4157:A:O2'</td>
<td>2.00</td>
<td>0.79</td>
</tr>
<tr>
<td>4:L3:4693:C:O2</td>
<td>4:L3:4695:C:N4</td>
<td>2.15</td>
<td>0.78</td>
</tr>
<tr>
<td>4:L3:2318:G:N2</td>
<td>4:L3:2321:G:OP2</td>
<td>2.15</td>
<td>0.78</td>
</tr>
<tr>
<td>4:L3:151:G:OP1</td>
<td>10:L9:49:ARG:NH2</td>
<td>2.17</td>
<td>0.77</td>
</tr>
<tr>
<td>4:L3:2480:G:OP1</td>
<td>53:SM:22:LYS:NZ</td>
<td>2.16</td>
<td>0.77</td>
</tr>
<tr>
<td>4:L3:4985:U:O2</td>
<td>24:LN:174:ARG:NH1</td>
<td>2.18</td>
<td>0.77</td>
</tr>
<tr>
<td>4:L3:3717:A:OP2</td>
<td>4:L3:3735:G:N2</td>
<td>2.18</td>
<td>0.77</td>
</tr>
<tr>
<td>4:L3:4728:U:OP2</td>
<td>24:LN:132:LYS:NZ</td>
<td>2.18</td>
<td>0.77</td>
</tr>
<tr>
<td>5:L4:55:A:O2'</td>
<td>6:L5:151:ILE:O</td>
<td>2.03</td>
<td>0.76</td>
</tr>
<tr>
<td>4:L3:4415:A:OP1</td>
<td>38:NF:66:LYS:NZ</td>
<td>2.16</td>
<td>0.76</td>
</tr>
<tr>
<td>4:L3:4678:G:OP1</td>
<td>39:NK:14:ARG:NH1</td>
<td>2.19</td>
<td>0.76</td>
</tr>
<tr>
<td>4:L3:1366:G:N7</td>
<td>7:L6:37:LYS:NZ</td>
<td>2.34</td>
<td>0.75</td>
</tr>
<tr>
<td>4:L3:1943:A:OP2</td>
<td>4:L3:2039:G:N2</td>
<td>2.18</td>
<td>0.75</td>
</tr>
<tr>
<td>4:L3:1508:A:OP1</td>
<td>42:SA:110:ARG:NH2</td>
<td>2.20</td>
<td>0.75</td>
</tr>
<tr>
<td>4:L3:1255:A:OP1</td>
<td>4:L3:1257:A:N6</td>
<td>2.20</td>
<td>0.75</td>
</tr>
<tr>
<td>4:L3:502:C:O2'</td>
<td>4:L3:503:C:OP1</td>
<td>2.03</td>
<td>0.75</td>
</tr>
<tr>
<td>4:L3:375:G:OP2</td>
<td>33:LW:52:LYS:NZ</td>
<td>2.21</td>
<td>0.73</td>
</tr>
<tr>
<td>4:L3:1573:G:OP1</td>
<td>14:LD:92:LYS:NZ</td>
<td>2.22</td>
<td>0.72</td>
</tr>
<tr>
<td>3:L2:1167:A:O3'</td>
<td>4:L3:1:C:OP2</td>
<td>2.07</td>
<td>0.72</td>
</tr>
<tr>
<td>2:L1:50:C:O2'</td>
<td>55:SR:578:SER:OG</td>
<td>2.08</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>51:SK:99:GLU:O1</td>
<td>51:SK:125:THR:O1</td>
<td>2.05</td>
<td>0.71</td>
</tr>
<tr>
<td>53:SM:33:ASP:O1</td>
<td>53:SM:36:ARG:NH2</td>
<td>2.23</td>
<td>0.71</td>
</tr>
<tr>
<td>4:L3:4449:A:O1</td>
<td>55:SR:118:LYS:NZ</td>
<td>2.22</td>
<td>0.71</td>
</tr>
<tr>
<td>53:SM:357:ASP:O2</td>
<td>53:SM:359:SER:O</td>
<td>2.09</td>
<td>0.70</td>
</tr>
<tr>
<td>4:L3:1366:G:N2</td>
<td>4:L3:1371:U:O2</td>
<td>2.23</td>
<td>0.70</td>
</tr>
<tr>
<td>3:L2:13:G:O1</td>
<td>50:SL:186:ASN:NE2</td>
<td>2.22</td>
<td>0.70</td>
</tr>
<tr>
<td>4:L3:4565:G:O2</td>
<td>24:LN:268:ARG:NH2</td>
<td>2.25</td>
<td>0.69</td>
</tr>
<tr>
<td>35:LY:52:LYS:NZ</td>
<td>40:NL:368:LEU:O</td>
<td>2.25</td>
<td>0.69</td>
</tr>
<tr>
<td>4:L3:4371:G:O1</td>
<td>32:LV:59:LYS:NZ</td>
<td>2.26</td>
<td>0.69</td>
</tr>
<tr>
<td>4:L3:2407:G:O6</td>
<td>36:LZ:2:SER:N</td>
<td>2.26</td>
<td>0.69</td>
</tr>
<tr>
<td>4:L3:4305:G:O2</td>
<td>4:L3:4306:OMU:O5'</td>
<td>2.09</td>
<td>0.69</td>
</tr>
<tr>
<td>51:SK:244:LEU:N</td>
<td>55:SR:352:LYS:NZ</td>
<td>2.16</td>
<td>0.68</td>
</tr>
<tr>
<td>4:L3:408:G:O2</td>
<td>4:L3:411:U:O2</td>
<td>2.11</td>
<td>0.68</td>
</tr>
<tr>
<td>42:SA:8:ILE:HD11</td>
<td>42:SA:257:PHE:CE2</td>
<td>2.29</td>
<td>0.68</td>
</tr>
<tr>
<td>4:L3:1364:U:O2</td>
<td>7:L6:36:ARG:NH2</td>
<td>2.27</td>
<td>0.67</td>
</tr>
<tr>
<td>4:L3:4633:G:O1</td>
<td>56:SV:34:SER:OD2</td>
<td>2.11</td>
<td>0.67</td>
</tr>
<tr>
<td>40:NL:139:VAL:HG23</td>
<td>40:NL:142:ALA:HB2</td>
<td>1.77</td>
<td>0.67</td>
</tr>
<tr>
<td>4:L3:1433:A:N6</td>
<td>4:L3:1451:G:O2'</td>
<td>2.28</td>
<td>0.66</td>
</tr>
<tr>
<td>4:L3:2299:G:O2</td>
<td>42:SA:204:ARG:NH1</td>
<td>2.27</td>
<td>0.66</td>
</tr>
<tr>
<td>47:SF:133:TYR:HG3</td>
<td>47:SF:168:VAL:HG12</td>
<td>1.77</td>
<td>0.66</td>
</tr>
<tr>
<td>4:L3:4987:C:N4</td>
<td>24:LN:121:ASN:OD1</td>
<td>2.29</td>
<td>0.66</td>
</tr>
<tr>
<td>4:L3:2373:C:O4</td>
<td>26:LP:69:ASN:OD2</td>
<td>2.28</td>
<td>0.66</td>
</tr>
<tr>
<td>4:L3:2848:C:O2</td>
<td>4:L3:3838:U:O4</td>
<td>2.07</td>
<td>0.66</td>
</tr>
<tr>
<td>4:L3:1998:C:N3</td>
<td>4:L3:2019:C:O2'</td>
<td>2.29</td>
<td>0.65</td>
</tr>
<tr>
<td>4:L3:4717:A:O2</td>
<td>24:LN:30:LYS:NZ</td>
<td>2.28</td>
<td>0.65</td>
</tr>
<tr>
<td>4:L3:3776:G:N2</td>
<td>4:L3:3776:G:O2</td>
<td>2.28</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:L3:308:G:OP2</td>
<td>4:L3:308:G:N2</td>
<td>2.23</td>
<td>0.65</td>
</tr>
<tr>
<td>4:L3:4633:G:O2'</td>
<td>4:L3:4635:A:OP2</td>
<td>2.05</td>
<td>0.65</td>
</tr>
<tr>
<td>4:L3:67:C:OP2</td>
<td>4:L3:312:G:N2</td>
<td>2.28</td>
<td>0.64</td>
</tr>
<tr>
<td>4:L3:2841:G:OP1</td>
<td>41:NP:10:HIS:NE2</td>
<td>2.29</td>
<td>0.64</td>
</tr>
<tr>
<td>2:L1:152:U:OP1</td>
<td>4:L3:4162:C:N4</td>
<td>2.30</td>
<td>0.64</td>
</tr>
<tr>
<td>4:L3:1238:A:O2'</td>
<td>45:SD:52:GLU:OE2</td>
<td>2.16</td>
<td>0.64</td>
</tr>
<tr>
<td>4:L3:2822:G:N7</td>
<td>14:LD:20:LYS:NZ</td>
<td>2.46</td>
<td>0.64</td>
</tr>
<tr>
<td>4:L3:2487:G:O6</td>
<td>50:SI:51:LYS:NZ</td>
<td>2.27</td>
<td>0.64</td>
</tr>
<tr>
<td>4:L3:2876:OMG:HM22</td>
<td>4:L3:2877:G:H5'</td>
<td>1.80</td>
<td>0.64</td>
</tr>
<tr>
<td>4:L3:110:C:OP1</td>
<td>7:L6:89:LYS:NZ</td>
<td>2.29</td>
<td>0.63</td>
</tr>
<tr>
<td>4:L3:2545:U:O2'</td>
<td>4:L3:2547:G:N7</td>
<td>2.27</td>
<td>0.63</td>
</tr>
<tr>
<td>2:L1:87:G:OP2</td>
<td>29:LS:5:LYS:NZ</td>
<td>2.31</td>
<td>0.63</td>
</tr>
<tr>
<td>4:L3:197:A:N3</td>
<td>4:L3:222:C:O2'</td>
<td>2.30</td>
<td>0.63</td>
</tr>
<tr>
<td>4:L3:320:C:OP1</td>
<td>31:LU:84:LYS:NZ</td>
<td>2.20</td>
<td>0.63</td>
</tr>
<tr>
<td>4:L3:1173:G:N2</td>
<td>4:L3:1188:C:N3</td>
<td>2.46</td>
<td>0.63</td>
</tr>
<tr>
<td>4:L3:23:C:OP1</td>
<td>33:LL:44:LYS:NZ</td>
<td>2.31</td>
<td>0.62</td>
</tr>
<tr>
<td>4:L3:1633:G:O6</td>
<td>4:L3:3918:G:O2'</td>
<td>2.18</td>
<td>0.61</td>
</tr>
<tr>
<td>4:L3:3700:C:O2'</td>
<td>4:L3:3774:A:N3</td>
<td>2.32</td>
<td>0.61</td>
</tr>
<tr>
<td>4:L3:1177:U:OP2</td>
<td>4:L3:1180:C:N4</td>
<td>2.33</td>
<td>0.61</td>
</tr>
<tr>
<td>4:L3:1892:A:OP1</td>
<td>4:L3:1893:C:N4</td>
<td>2.19</td>
<td>0.61</td>
</tr>
<tr>
<td>4:L3:2562:G:O2'</td>
<td>4:L3:2565:A:N6</td>
<td>2.34</td>
<td>0.61</td>
</tr>
<tr>
<td>4:L3:4987:C:OP2</td>
<td>24:LN:116:ARG:NH2</td>
<td>2.33</td>
<td>0.61</td>
</tr>
<tr>
<td>4:L3:4220:6MZ:H8</td>
<td>4:L3:4220:6MZ:O1P</td>
<td>2.01</td>
<td>0.61</td>
</tr>
<tr>
<td>4:L3:5053:U:O2'</td>
<td>4:L3:5054:C:OP2</td>
<td>2.14</td>
<td>0.61</td>
</tr>
<tr>
<td>2:L1:69:PSU:H2'</td>
<td>2:L1:70:G:O4'</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>4:L3:4927:G:OP2</td>
<td>4:L3:4927:G:N2</td>
<td>2.17</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:L4:12:U:O3’</td>
<td>5:L4:109:U:O2’</td>
<td>2.15</td>
<td>0.60</td>
</tr>
<tr>
<td>4:L3:1397:A:O2’</td>
<td>4:L3:1467:C:O2’</td>
<td>2.10</td>
<td>0.60</td>
</tr>
<tr>
<td>4:L3:4620:OMU:OP2</td>
<td>4:L3:4670:C:N4</td>
<td>2.30</td>
<td>0.60</td>
</tr>
<tr>
<td>41:NP:95:GLU:OE1</td>
<td>41:NP:117:LEU:HD21</td>
<td>2.01</td>
<td>0.60</td>
</tr>
<tr>
<td>40:NL:190:ARG:NH2</td>
<td>53:SM:117:ASP:OD1</td>
<td>2.34</td>
<td>0.60</td>
</tr>
<tr>
<td>4:L3:454:U:O2’</td>
<td>27:LQ:5:ARG:NH1</td>
<td>2.35</td>
<td>0.60</td>
</tr>
<tr>
<td>4:L3:3868:G:O2’</td>
<td>4:L3:3869:OMC:H5”</td>
<td>2.00</td>
<td>0.60</td>
</tr>
<tr>
<td>4:L3:4910:G:N2</td>
<td>8:L7:106:ASP:O</td>
<td>2.35</td>
<td>0.60</td>
</tr>
<tr>
<td>4:L3:3724:A2M:H2’</td>
<td>4:L3:3725:G:C8</td>
<td>2.37</td>
<td>0.60</td>
</tr>
<tr>
<td>8:L7:54:TYR:OH</td>
<td>8:L7:73:PHE:O</td>
<td>2.20</td>
<td>0.59</td>
</tr>
<tr>
<td>4:L3:1461:C:OP1</td>
<td>12:LB:144:LYS:NZ</td>
<td>2.34</td>
<td>0.59</td>
</tr>
<tr>
<td>4:L3:1481:C:O4’</td>
<td>31:LU:4:ARG:NH2</td>
<td>2.36</td>
<td>0.59</td>
</tr>
<tr>
<td>6:L5:93:GLU:OE2</td>
<td>6:L5:175:LEU:HD22</td>
<td>2.02</td>
<td>0.59</td>
</tr>
<tr>
<td>4:L3:369:G:N2</td>
<td>4:L3:372:A:OP2</td>
<td>2.31</td>
<td>0.59</td>
</tr>
<tr>
<td>14:LD:39:GLN:OE1</td>
<td>14:LD:42:ARG:NH1</td>
<td>2.35</td>
<td>0.59</td>
</tr>
<tr>
<td>4:L3:1071:C:O2</td>
<td>44:SC:70:LYS:NZ</td>
<td>2.26</td>
<td>0.59</td>
</tr>
<tr>
<td>4:L3:1548:G:O2’</td>
<td>4:L3:2812:A:N3</td>
<td>2.32</td>
<td>0.59</td>
</tr>
<tr>
<td>4:L3:2414:G:O2’</td>
<td>4:L3:2415:OMU:H5”</td>
<td>2.02</td>
<td>0.58</td>
</tr>
<tr>
<td>14:LD:70:ARG:NH1</td>
<td>14:LD:76:MET:SD</td>
<td>2.77</td>
<td>0.58</td>
</tr>
<tr>
<td>4:L3:1629:G:N1</td>
<td>47:SF:208:GLU:OE1</td>
<td>2.36</td>
<td>0.58</td>
</tr>
<tr>
<td>4:L3:2588:C:OP1</td>
<td>4:L3:2768:C:O2’</td>
<td>2.18</td>
<td>0.58</td>
</tr>
<tr>
<td>4:L3:4546:A:N7</td>
<td>47:SF:215:ASN:ND2</td>
<td>2.52</td>
<td>0.57</td>
</tr>
<tr>
<td>52:SL:239:GLU:O</td>
<td>52:SL:244:LYS:NZ</td>
<td>2.32</td>
<td>0.57</td>
</tr>
<tr>
<td>4:L3:397:G:H2’</td>
<td>4:L3:398:2AM:H5”</td>
<td>1.86</td>
<td>0.57</td>
</tr>
<tr>
<td>2:L1:90:C:HO2’</td>
<td>19:LI:24:HIS:HD1</td>
<td>1.51</td>
<td>0.57</td>
</tr>
<tr>
<td>17:LG:13:LYS:NZ</td>
<td>17:LG:59:ASP:OD1</td>
<td>2.33</td>
<td>0.57</td>
</tr>
<tr>
<td>31:LU:63:VAL:O</td>
<td>31:LU:64:SER:OG</td>
<td>2.18</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>41:NP:33:ARG:NH1</td>
<td>56:SV:25:ASP:OD2</td>
<td>2.38</td>
<td>0.56</td>
</tr>
<tr>
<td>43:SB:59:ASP:OD1</td>
<td>43:SB:60:ILE:N</td>
<td>2.37</td>
<td>0.56</td>
</tr>
<tr>
<td>51:SK:67:ARG:NH1</td>
<td>51:SK:112:ASP:OD2</td>
<td>2.39</td>
<td>0.56</td>
</tr>
<tr>
<td>4:L3:1369:C:OP2</td>
<td>4:L3:1370:G:O2'</td>
<td>2.12</td>
<td>0.56</td>
</tr>
<tr>
<td>4:L3:2415:OMU:HM23</td>
<td>4:L3:2416:G:H8</td>
<td>1.71</td>
<td>0.56</td>
</tr>
<tr>
<td>40:NL:225:PRO:HD2</td>
<td>40:NL:228:LEU:HD12</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>4:L3:267:G:N7</td>
<td>40:NL:147:ARG:NH1</td>
<td>2.54</td>
<td>0.55</td>
</tr>
<tr>
<td>40:NL:452:GLU:OE2</td>
<td>40:NL:454:ARG:NH1</td>
<td>2.40</td>
<td>0.55</td>
</tr>
<tr>
<td>4:L3:2533:C:OP1</td>
<td>18:LH:139:ARG:NH1</td>
<td>2.40</td>
<td>0.55</td>
</tr>
<tr>
<td>4:L3:972:C:C6</td>
<td>44:SC:126:LEU:HD23</td>
<td>2.42</td>
<td>0.54</td>
</tr>
<tr>
<td>4:L3:1946:G:O2'</td>
<td>38:NF:36:SER:OG</td>
<td>2.25</td>
<td>0.54</td>
</tr>
<tr>
<td>4:L3:2838:G:O2'</td>
<td>4:L3:2839:PSU:H5'</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>4:L3:3938:G:N2</td>
<td>4:L3:4171:C:OP2</td>
<td>2.39</td>
<td>0.54</td>
</tr>
<tr>
<td>6:L5:110:GLN:OE1</td>
<td>6:L5:110:GLN:N</td>
<td>2.40</td>
<td>0.54</td>
</tr>
<tr>
<td>4:L3:454:U:O2'</td>
<td>27:LQ:5:ARG:NH2</td>
<td>2.40</td>
<td>0.54</td>
</tr>
<tr>
<td>4:L3:4937:C:O3'</td>
<td>44:SC:183:ARG:NH2</td>
<td>2.40</td>
<td>0.54</td>
</tr>
<tr>
<td>4:L3:5022:U:O2'</td>
<td>4:L3:5023:C:OP2</td>
<td>2.20</td>
<td>0.54</td>
</tr>
<tr>
<td>4:L3:1493:G:OP1</td>
<td>23:LM:44:ARG:NH2</td>
<td>2.38</td>
<td>0.54</td>
</tr>
<tr>
<td>4:L3:2426:U:O3'</td>
<td>14:LD:5:ARG:NH2</td>
<td>2.41</td>
<td>0.54</td>
</tr>
<tr>
<td>4:L3:4305:G:HO2'</td>
<td>4:L3:4306:OMU:P</td>
<td>2.29</td>
<td>0.54</td>
</tr>
<tr>
<td>4:L3:3825:A2M:HM2</td>
<td>4:L3:3826:C:O4'</td>
<td>2.08</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:L4:7:OP1</td>
<td>43:SB:33:ARG:NH1</td>
<td>2.41</td>
<td>0.53</td>
</tr>
<tr>
<td>4:L3:4088:C:OP1</td>
<td>47:SF:37:ARG:NH2</td>
<td>2.38</td>
<td>0.53</td>
</tr>
<tr>
<td>34:LX:8:VAL:O</td>
<td>34:LX:11:VAL:HG22</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>26:LP:95:ASP:OD1</td>
<td>26:LP:96:GLU:N</td>
<td>2.41</td>
<td>0.53</td>
</tr>
<tr>
<td>54:SQ:75:VAL:HG22</td>
<td>54:SQ:79:ARG:HH12</td>
<td>1.74</td>
<td>0.53</td>
</tr>
<tr>
<td>4:L3:1325:C:O2'</td>
<td>4:L3:1326:A2M:OP1</td>
<td>2.21</td>
<td>0.53</td>
</tr>
<tr>
<td>4:L3:4664:A:OP1</td>
<td>24:LN:376:HIS:NE2</td>
<td>2.41</td>
<td>0.53</td>
</tr>
<tr>
<td>4:L3:3715:PSU:H2'</td>
<td>4:L3:3716:C:O4'</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>4:L3:4761:G:OP1</td>
<td>8:L7:37:ARG:HH2</td>
<td>2.41</td>
<td>0.53</td>
</tr>
<tr>
<td>8:L7:190:ASP:OD1</td>
<td>8:L7:191:LYS:N</td>
<td>2.42</td>
<td>0.53</td>
</tr>
<tr>
<td>34:LX:73:THR:OG1</td>
<td>47:SF:80:GLU:OE2</td>
<td>2.18</td>
<td>0.53</td>
</tr>
<tr>
<td>44:SC:278:THR:HG22</td>
<td>44:SC:279:ASN:H</td>
<td>1.74</td>
<td>0.53</td>
</tr>
<tr>
<td>3:L2:5:A:N6</td>
<td>3:L2:95:A:O2'</td>
<td>2.42</td>
<td>0.52</td>
</tr>
<tr>
<td>4:L3:2756:G:HG21</td>
<td>53:SM:59:THR:HG21</td>
<td>1.72</td>
<td>0.52</td>
</tr>
<tr>
<td>4:L3:435:A:H61</td>
<td>4:L3:1312:A:H2</td>
<td>1.56</td>
<td>0.52</td>
</tr>
<tr>
<td>28:LR:44:SER:OG</td>
<td>28:LR:46:CYS:SG</td>
<td>2.64</td>
<td>0.52</td>
</tr>
<tr>
<td>4:L3:3724:A2M:H2'</td>
<td>4:L3:3725:G:H8</td>
<td>1.73</td>
<td>0.52</td>
</tr>
<tr>
<td>44:SC:281:ILE:HG23</td>
<td>44:SC:286:LEU:HD11</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>4:L3:4301:U:OP2</td>
<td>15:LE:87:LYS:NZ</td>
<td>2.31</td>
<td>0.52</td>
</tr>
<tr>
<td>4:L3:4139:G:H21</td>
<td>4:L3:4140:C:N4</td>
<td>2.07</td>
<td>0.52</td>
</tr>
<tr>
<td>4:L3:4872:G:O6</td>
<td>9:L8:98:ARG:NH1</td>
<td>2.42</td>
<td>0.52</td>
</tr>
<tr>
<td>51:SK:238:ASP:OD1</td>
<td>51:SK:239:SER:N</td>
<td>2.42</td>
<td>0.52</td>
</tr>
<tr>
<td>4:L3:4691:A:OP1</td>
<td>48:SG:75:SER:OG</td>
<td>2.24</td>
<td>0.52</td>
</tr>
<tr>
<td>4:L3:2724:G:O2'</td>
<td>4:L3:2726:G:OP2</td>
<td>2.22</td>
<td>0.52</td>
</tr>
<tr>
<td>4:L3:4500:PSU:H2'</td>
<td>4:L3:4501:U:C6</td>
<td>2.44</td>
<td>0.52</td>
</tr>
<tr>
<td>8:L7:37:ARG:H2</td>
<td>8:L7:108:ILE:HD11</td>
<td>1.90</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:L3:2843:U:O2'</td>
<td>4:L3:4632:U:OP1</td>
<td>2.27</td>
<td>0.52</td>
</tr>
<tr>
<td>4:L3:2422:OMC:OP1</td>
<td>11:LA:127:ARG:NH2</td>
<td>2.40</td>
<td>0.52</td>
</tr>
<tr>
<td>4:L3:2895:A:O3'</td>
<td>14:LD:136:ARG:NH2</td>
<td>2.42</td>
<td>0.52</td>
</tr>
<tr>
<td>4:L3:2590:G:O2'</td>
<td>4:L3:2755:A:N6</td>
<td>2.41</td>
<td>0.51</td>
</tr>
<tr>
<td>4:L3:1100:U:O2'</td>
<td>4:L3:1167:C:OP2</td>
<td>2.17</td>
<td>0.51</td>
</tr>
<tr>
<td>4:L3:4523:A2M:H8</td>
<td>4:L3:4523:A2M:OP2</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>51:SK:85:ARG:NH2</td>
<td>51:SK:89:PRO:O</td>
<td>2.44</td>
<td>0.51</td>
</tr>
<tr>
<td>4:L3:4524:G:C2</td>
<td>24:LN:252:ALA:HB1</td>
<td>2.46</td>
<td>0.51</td>
</tr>
<tr>
<td>7:LF:7:GLY:O</td>
<td>21:LK:49:HIS:NE2</td>
<td>2.42</td>
<td>0.51</td>
</tr>
<tr>
<td>14:LD:7:GLN:N</td>
<td>14:LD:7:GLN:OE1</td>
<td>2.43</td>
<td>0.51</td>
</tr>
<tr>
<td>34:LL:69:TRP:NE1</td>
<td>47:SF:173:GLY:O</td>
<td>2.43</td>
<td>0.51</td>
</tr>
<tr>
<td>51:SK:126:GLU:OE1</td>
<td>51:SK:139:ARG:NH2</td>
<td>2.41</td>
<td>0.51</td>
</tr>
<tr>
<td>4:L3:1577:G:OP1</td>
<td>34:LL:17:ARG:NH2</td>
<td>2.42</td>
<td>0.51</td>
</tr>
<tr>
<td>47:SF:23:ARG:NH1</td>
<td>47:SF:52:PRO:O</td>
<td>2.43</td>
<td>0.51</td>
</tr>
<tr>
<td>4:L3:1534:2M:HM'2</td>
<td>4:L3:1535:C:C6</td>
<td>2.46</td>
<td>0.51</td>
</tr>
<tr>
<td>7:LF:164:GLU:N</td>
<td>7:LF:164:GLU:OE1</td>
<td>2.44</td>
<td>0.51</td>
</tr>
<tr>
<td>34:LL:26:VAL:HG22</td>
<td>47:SF:178:PRO:HD2</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>4:L3:111:C:OP1</td>
<td>29:LS:110:LYS:NZ</td>
<td>2.43</td>
<td>0.51</td>
</tr>
<tr>
<td>4:L3:1997:U:O3'</td>
<td>54:SQ:57:ARG:NH2</td>
<td>2.43</td>
<td>0.50</td>
</tr>
<tr>
<td>4:L3:2876:OMG:C8</td>
<td>34:LL:16:THR:HG22</td>
<td>2.46</td>
<td>0.50</td>
</tr>
<tr>
<td>4:L3:404:U:O3'</td>
<td>19:LI:87:ARG:NH2</td>
<td>2.41</td>
<td>0.50</td>
</tr>
<tr>
<td>45:SD:26:ALA:O</td>
<td>45:SD:30:ILE:HD12</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>4:L3:2000:G:O6</td>
<td>54:SQ:54:LYS:NZ</td>
<td>2.34</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:L3:2380:G:N2</td>
<td>4:L3:2425:U:OP1</td>
<td>2.39</td>
<td>0.50</td>
</tr>
<tr>
<td>4:L3:2381:A:O2</td>
<td>4:L3:2431:PSU:H5'</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>4:L3:2382:PSU:H2'</td>
<td>4:L3:2633:U:C6</td>
<td>2.46</td>
<td>0.50</td>
</tr>
<tr>
<td>8:L7:92:THR:O</td>
<td>8:L7:96:GLN:NE2</td>
<td>2.43</td>
<td>0.50</td>
</tr>
<tr>
<td>4:L3:2562:G:N2</td>
<td>4:L3:2565:A:OP2</td>
<td>2.42</td>
<td>0.50</td>
</tr>
<tr>
<td>4:L3:2564:G:O2'</td>
<td>4:L3:2566:U:OP2</td>
<td>2.42</td>
<td>0.50</td>
</tr>
<tr>
<td>4:L3:4928:C:O4'</td>
<td>4:L3:4939:C:OP2</td>
<td>2.42</td>
<td>0.50</td>
</tr>
<tr>
<td>36:LC:35:ASN:ND2</td>
<td>36:LC:36:ASN:OE2</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>41:LC:17:ASN:NE2</td>
<td>41:LC:18:ASN:OE2</td>
<td>2.47</td>
<td>0.49</td>
</tr>
<tr>
<td>50:SI:70:ASP:NH2</td>
<td>50:SI:70:ASP:OD1</td>
<td>2.58</td>
<td>0.49</td>
</tr>
<tr>
<td>4:L3:4552:PSU:H2'</td>
<td>4:L3:4553:U:C6</td>
<td>2.49</td>
<td>0.48</td>
</tr>
<tr>
<td>18:HC:16:ASP:C8</td>
<td>18:HC:16:ASP:OD1</td>
<td>2.42</td>
<td>0.48</td>
</tr>
<tr>
<td>44:SC:281:ILE:CG2</td>
<td>44:SC:286:LEU:HD11</td>
<td>2.43</td>
<td>0.48</td>
</tr>
<tr>
<td>9:LC:11:ASP:NH2</td>
<td>9:LC:58:THR:O</td>
<td>2.46</td>
<td>0.48</td>
</tr>
<tr>
<td>9:L8:11:ASP:NH2</td>
<td>9:L8:58:THR:O</td>
<td>2.46</td>
<td>0.48</td>
</tr>
<tr>
<td>4:L3:1871:ASP:NH1</td>
<td>4:L3:1871:ASP:OE1</td>
<td>2.58</td>
<td>0.49</td>
</tr>
<tr>
<td>10:LC:14:ASP:NH2</td>
<td>10:LC:15:ASP:OE1</td>
<td>2.57</td>
<td>0.48</td>
</tr>
<tr>
<td>4:L3:3730:ASP:H2'</td>
<td>4:L3:3731:ASP:H6</td>
<td>1.78</td>
<td>0.48</td>
</tr>
<tr>
<td>8:L7:20:ASP:OE1</td>
<td>8:L7:20:ASP:NH1</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>Atom-1</td>
<td>Atom-2</td>
<td>Interatomic distance (Å)</td>
<td>Clash overlap (Å)</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>3:L2:4:G:N7</td>
<td>50:SI:70:ARG:NH1</td>
<td>2.59</td>
<td>0.48</td>
</tr>
<tr>
<td>4:L3:140:G:OP1</td>
<td>40:NL:163:ARG:NH2</td>
<td>2.47</td>
<td>0.48</td>
</tr>
<tr>
<td>4:L3:2324:C:O2'</td>
<td>27:LO:98:GLU:OE1</td>
<td>2.32</td>
<td>0.47</td>
</tr>
<tr>
<td>4:L3:1214:C:N4</td>
<td>23:LM:90:SER:O</td>
<td>2.47</td>
<td>0.47</td>
</tr>
<tr>
<td>7:L6:100:PRO:O</td>
<td>31:LU:25:ARG:NH2</td>
<td>2.43</td>
<td>0.47</td>
</tr>
<tr>
<td>4:L3:3605:C:OP2</td>
<td>14:LD:71:ARG:NH1</td>
<td>2.48</td>
<td>0.47</td>
</tr>
<tr>
<td>46:SE:195:LYS:N1</td>
<td>53:SM:100:GLU:OE2</td>
<td>2.35</td>
<td>0.47</td>
</tr>
<tr>
<td>41:NP:95:GLU:O</td>
<td>56:SV:47:ARG:NH1</td>
<td>2.45</td>
<td>0.47</td>
</tr>
<tr>
<td>4:L3:2815:A2M:H2'</td>
<td>4:L3:2816:G:C8</td>
<td>2.49</td>
<td>0.46</td>
</tr>
<tr>
<td>4:L3:3701:OMC:OP1</td>
<td>4:L3:3701:OMC:H3'</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>35:LY:3:ARG:NH2</td>
<td>35:LY:41:TYR:OH</td>
<td>2.49</td>
<td>0.46</td>
</tr>
<tr>
<td>51:SK:225:ASN:HB2</td>
<td>51:SK:228:GLN:OE1</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>4:L3:4156:G:OP</td>
<td>4:L3:4157:A:HO2'</td>
<td>2.30</td>
<td>0.46</td>
</tr>
<tr>
<td>4:L3:4405:G:OP2</td>
<td>55:SR:130:LYS:NZ</td>
<td>2.34</td>
<td>0.46</td>
</tr>
<tr>
<td>47:SF:118:GLU:HG3</td>
<td>47:SF:126:LEU:HD11</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>4:L3:1895:G:OP1</td>
<td>45:SD:96:ARG:NH2</td>
<td>2.49</td>
<td>0.46</td>
</tr>
<tr>
<td>4:L3:2601:A:OP1</td>
<td>28:LR:40:LYS:NZ</td>
<td>2.48</td>
<td>0.46</td>
</tr>
<tr>
<td>12:LB:34:PHE:CD2</td>
<td>42:SA:293:LEU:HD22</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>47:SF:42:LYS:NZ</td>
<td>47:SF:89:TYR:OH</td>
<td>2.49</td>
<td>0.46</td>
</tr>
<tr>
<td>4:L3:2097:U:O3'</td>
<td>4:L3:2098:G:HG2'</td>
<td>2.16</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:L3:3723:A:O2'</td>
<td>4:L3:3724:A2M:H5'</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>4:L3:1279:A:O2'</td>
<td>4:L3:1281:G:N7</td>
<td>2.47</td>
<td>0.46</td>
</tr>
<tr>
<td>2:L1:26:C:O2'</td>
<td>42:SA:53:ALA:A</td>
<td>2.30</td>
<td>0.46</td>
</tr>
<tr>
<td>4:L3:2861:OMC:HM23</td>
<td>4:L3:2861:OMC:H1'</td>
<td>1.44</td>
<td>0.45</td>
</tr>
<tr>
<td>4:L3:3654:G:O2'</td>
<td>4:L3:3693:U:OP1</td>
<td>2.32</td>
<td>0.45</td>
</tr>
<tr>
<td>4:L3:4476:C:O2'</td>
<td>48:SG:173:ARG:NH2</td>
<td>2.48</td>
<td>0.45</td>
</tr>
<tr>
<td>4:L3:1328:G:O2'</td>
<td>4:L3:2349:A:OP1</td>
<td>2.33</td>
<td>0.45</td>
</tr>
<tr>
<td>4:L3:2739:C:O2</td>
<td>47:SF:188:LYS:NZ</td>
<td>2.45</td>
<td>0.45</td>
</tr>
<tr>
<td>2:L1:75:OMG:H1'</td>
<td>2:L1:75:OMG:HM23</td>
<td>1.48</td>
<td>0.45</td>
</tr>
<tr>
<td>4:L3:2415:OMU:HM23</td>
<td>4:L3:2416:G:C8</td>
<td>2.52</td>
<td>0.45</td>
</tr>
<tr>
<td>4:L3:3925:OMU:HM23</td>
<td>4:L3:3925:OMU:H1'</td>
<td>1.50</td>
<td>0.45</td>
</tr>
<tr>
<td>4:L3:1797:G:OP1</td>
<td>45:SD:104:LYS:NZ</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>4:L3:4126:C:OP1</td>
<td>46:SE:37:LYS:NZ</td>
<td>2.37</td>
<td>0.45</td>
</tr>
<tr>
<td>4:L3:4227:OMU:HM23</td>
<td>4:L3:4227:OMU:H1'</td>
<td>1.78</td>
<td>0.45</td>
</tr>
<tr>
<td>4:L3:152:U:OP1</td>
<td>10:L9:49:ARG:NH1</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>4:L3:1532:G:OP2</td>
<td>33:LIW:31:LYS:NZ</td>
<td>2.47</td>
<td>0.45</td>
</tr>
<tr>
<td>4:L3:4571:A2M:H8</td>
<td>4:L3:4571:A2M:O5'</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>2:L1:7:U:O2'</td>
<td>4:L3:1305:C:OP1</td>
<td>2.34</td>
<td>0.45</td>
</tr>
<tr>
<td>4:L3:1645:C:OP1</td>
<td>42:SA:80:ARG:NH2</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>16:LF:99:TRP:HB2</td>
<td>16:LF:100:LEU:HD12</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>4:L3:3614:G:O6</td>
<td>41:NP:87:LYS:NZ</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>4:L3:5068:G:N2</td>
<td>4:L3:5069:U:O4</td>
<td>2.41</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:L3:351:C:OP2</td>
<td>42:SA:197:ARG:NH1</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>4:L3:3642:A:HO2'</td>
<td>33:lw:2:THR:N</td>
<td>2.15</td>
<td>0.44</td>
</tr>
<tr>
<td>19:Li:62:TYR:CE2</td>
<td>19:Li:97:VAL:HG11</td>
<td>2.52</td>
<td>0.44</td>
</tr>
<tr>
<td>4:L3:1677:PSU:H4'</td>
<td>4:L3:1680:G:C2</td>
<td>2.53</td>
<td>0.44</td>
</tr>
<tr>
<td>4:L3:3841:OMC:HM23</td>
<td>4:L3:3841:OMC:H1'</td>
<td>1.60</td>
<td>0.44</td>
</tr>
<tr>
<td>12:LB:53:MET:SD</td>
<td>12:LB:143:ARG:NH2</td>
<td>2.91</td>
<td>0.44</td>
</tr>
<tr>
<td>4:L3:102:G:OP1</td>
<td>7:L6:71:ARG:NH2</td>
<td>2.45</td>
<td>0.44</td>
</tr>
<tr>
<td>4:L3:33908:A:O2'</td>
<td>4:L3:3531:U:OP1</td>
<td>2.31</td>
<td>0.44</td>
</tr>
<tr>
<td>9:L8:106:ASP:OD1</td>
<td>44:Sc:161:ARG:NH2</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>18:Li:155:ILE:H</td>
<td>18:Li:155:ILE:HD12</td>
<td>1.82</td>
<td>0.44</td>
</tr>
<tr>
<td>26:LP:20:VAL:O</td>
<td>26:LP:20:VAL:HG13</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>3:L2:45:C:OP1</td>
<td>52:SL:240:LYS:NZ</td>
<td>2.45</td>
<td>0.44</td>
</tr>
<tr>
<td>4:L3:4670:C:O2'</td>
<td>4:L3:4672:A:OP2</td>
<td>2.31</td>
<td>0.44</td>
</tr>
<tr>
<td>4:L3:2415:OMU:HM23</td>
<td>4:L3:2415:OMU:H1'</td>
<td>1.80</td>
<td>0.44</td>
</tr>
<tr>
<td>35:LY:51:ILE:HD12</td>
<td>35:LY:10:ASP:OD2</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>4:L3:3852:A:N7</td>
<td>4:L3:3853:PSU:N1</td>
<td>2.66</td>
<td>0.44</td>
</tr>
<tr>
<td>4:L3:3730:PSU:H2'</td>
<td>4:L3:3731:C:C6</td>
<td>2.51</td>
<td>0.44</td>
</tr>
<tr>
<td>40:NL:289:THR:HG23</td>
<td>40:NL:292:SER:H</td>
<td>1.82</td>
<td>0.44</td>
</tr>
<tr>
<td>4:L3:1254:A:N1</td>
<td>4:L3:1258:G:N1</td>
<td>2.62</td>
<td>0.43</td>
</tr>
<tr>
<td>20:LJ:76:ASN:OD1</td>
<td>20:LJ:77:TYR:N</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>49:SH:46:VAL:HG13</td>
<td>49:SH:121:MET:HB2</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>4:L3:1534:A2M:HM3</td>
<td>4:L3:1637:A:C4</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>4:L3:4575:G:O2'</td>
<td>4:L3:5069:U:OP1</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>19:Li:19:PHE:O</td>
<td>19:Li:26:ARG:NH2</td>
<td>2.50</td>
<td>0.43</td>
</tr>
<tr>
<td>40:NL:188:VAL:O</td>
<td>53:SM:163:ARG:NH1</td>
<td>2.52</td>
<td>0.43</td>
</tr>
<tr>
<td>54:SQ:42:ILE:HD11</td>
<td>54:SQ:92:VAL:HG13</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>4:L3:2815:A2M:H2'</td>
<td>4:L3:2816:G:H8</td>
<td>1.83</td>
<td>0.43</td>
</tr>
<tr>
<td>4:L3:4530:UR3:H6</td>
<td>4:L3:4530:UR3:O5'</td>
<td>2.18</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:LF:91:LEU:O</td>
<td>16:LF:96:LEU:N</td>
<td>2.49</td>
<td>0.43</td>
</tr>
<tr>
<td>51:SK:49:VAL:HG12</td>
<td>51:SK:50:HIS:O</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>4:L3:2725:A:OP2</td>
<td>14:LD:97:ARG:NH2</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>4:L3:2804:OMC:HM23</td>
<td>4:L3:2804:OMC:H1'</td>
<td>1.64</td>
<td>0.43</td>
</tr>
<tr>
<td>4:L3:4536:OMC:HM23</td>
<td>4:L3:4536:OMC:H1'</td>
<td>1.78</td>
<td>0.43</td>
</tr>
<tr>
<td>4:L3:4620:OMU:HM23</td>
<td>4:L3:4620:OMU:H1'</td>
<td>1.68</td>
<td>0.43</td>
</tr>
<tr>
<td>44:SC:264:ILE:HD12</td>
<td>44:SC:267:LEU:HD22</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>52:SL:253:VAL:HG12</td>
<td>52:SL:263:ILE:HD11</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>2:L1:68:G:O2'</td>
<td>2:L1:69:PSU:H5''</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>4:L3:2258:C:N3</td>
<td>44:SC:90:ALA:N</td>
<td>2.66</td>
<td>0.43</td>
</tr>
<tr>
<td>33:LV:36:LYS:HA</td>
<td>33:LV:45:ARG:HH21</td>
<td>1.84</td>
<td>0.43</td>
</tr>
<tr>
<td>41:NP:98:SER:OG</td>
<td>41:NP:100:GLU:OE1</td>
<td>2.24</td>
<td>0.43</td>
</tr>
<tr>
<td>53:SM:170:HIS:HB3</td>
<td>53:SM:283:LEU:HD11</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>4:L3:1591:U:OP2</td>
<td>4:L3:2856:C:O2''</td>
<td>2.24</td>
<td>0.43</td>
</tr>
<tr>
<td>4:L3:2340:C:H4'</td>
<td>42:SA:42:THR:HG23</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>4:L3:3852:A:C2'</td>
<td>4:L3:3853:PSU:H5''</td>
<td>2.48</td>
<td>0.43</td>
</tr>
<tr>
<td>4:L3:4872:G:OP2</td>
<td>4:L3:94:LYS:NZ</td>
<td>2.43</td>
<td>0.43</td>
</tr>
<tr>
<td>45:SD:30:ILE:HD12</td>
<td>45:SD:30:ILE:H</td>
<td>1.84</td>
<td>0.43</td>
</tr>
<tr>
<td>4:L3:4678:G:N7</td>
<td>39:NK:11:ARG:NH2</td>
<td>2.66</td>
<td>0.43</td>
</tr>
<tr>
<td>15:LE:63:ARG:NH2</td>
<td>23:LM:30:GLU:OE1</td>
<td>2.52</td>
<td>0.43</td>
</tr>
<tr>
<td>30:LT:18:LEU:HD23</td>
<td>30:LT:19:ARG:NH2</td>
<td>2.34</td>
<td>0.43</td>
</tr>
<tr>
<td>4:L3:5022:U:HO2'</td>
<td>4:L3:5023:C:P</td>
<td>2.40</td>
<td>0.43</td>
</tr>
<tr>
<td>7:L6:63:THR:HG22</td>
<td>7:L6:64:VAL:N</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>17:LG:112:MET:CE</td>
<td>17:LG:117:ILE:HD11</td>
<td>2.49</td>
<td>0.43</td>
</tr>
<tr>
<td>51:SK:61:ARG:NH1</td>
<td>51:SK:106:ASN:OD1</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>4:L3:2739:C:OP1</td>
<td>47:SF:177:LYS:NZ</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>4:L3:2837:OMU:HM23</td>
<td>4:L3:2837:OMU:H1'</td>
<td>1.49</td>
<td>0.43</td>
</tr>
<tr>
<td>4:L3:3928:A:OP1</td>
<td>10:L9:90:ASN:ND2</td>
<td>2.52</td>
<td>0.43</td>
</tr>
<tr>
<td>4:L3:4305:G:H4'</td>
<td>4:L3:4306:OMU:OP1</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>5:L4:74:A:N3</td>
<td>13:LC:53:LYS:NZ</td>
<td>2.67</td>
<td>0.43</td>
</tr>
<tr>
<td>10:L9:165:THR:HG23</td>
<td>10:L9:168:GLY:H</td>
<td>1.84</td>
<td>0.43</td>
</tr>
<tr>
<td>16:LF:60:VAL:HG23</td>
<td>16:LF:61:VAL:HG23</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>22:LL:20:ARG:NH2</td>
<td>27:LQ:84:GLU:OE1</td>
<td>2.46</td>
<td>0.43</td>
</tr>
<tr>
<td>24:LN:220:ILE:HG12</td>
<td>24:LN:278:THR:HG23</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>4:L3:1676:C:OP2</td>
<td>4:L3:1677:PSU:N1</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>4:L3:4306:OMU:HM22</td>
<td>4:L3:4307:A:H5'</td>
<td>2.01</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:L3:265:C:H2'</td>
<td>40:NL:151:LEU:HD21</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>4:L3:1250:C:N4</td>
<td>4:L3:1261:G:O6</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>4:L3:2696:A:H62</td>
<td>35:LY:35:LYS:HZ2</td>
<td>1.68</td>
<td>0.42</td>
</tr>
<tr>
<td>43:SB:64:ILE:CD1</td>
<td>43:SB:109:LEU:HD22</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>2:L1:102:G:OP2</td>
<td>2:L1:104:A:O2'</td>
<td>2.30</td>
<td>0.42</td>
</tr>
<tr>
<td>4:L3:1577:G:O2'</td>
<td>4:L3:1612:G:H4'</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>4:L3:442:G:OP1</td>
<td>30:LT:68:ARG:NH1</td>
<td>2.46</td>
<td>0.42</td>
</tr>
<tr>
<td>4:L3:1340:OMC:HM23</td>
<td>4:L3:1340:OMC:H1'</td>
<td>1.49</td>
<td>0.42</td>
</tr>
<tr>
<td>4:L3:2725:A:N6</td>
<td>14:LD:88:ARG:NH1</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>40:NL:206:LEU:HD22</td>
<td>40:NL:214:LEU:HD22</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>4:L3:1677:PSU:H4'</td>
<td>4:L3:1680:G:N1</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>56:SV:19:MET:SD</td>
<td>56:SV:19:MET:N</td>
<td>2.93</td>
<td>0.42</td>
</tr>
<tr>
<td>4:L3:2487:G:O2'</td>
<td>4:L3:2488:C:O5'</td>
<td>2.38</td>
<td>0.42</td>
</tr>
<tr>
<td>44:SC:278:THR:HG22</td>
<td>44:SC:279:ASN:N</td>
<td>2.35</td>
<td>0.42</td>
</tr>
<tr>
<td>51:SK:150:SER:HA</td>
<td>51:SK:194:ALA:HB3</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>52:SL:235:LYS:O</td>
<td>52:SL:238:SER:N</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>26:LP:92:ARG:HA</td>
<td>26:LP:102:LEU:HD23</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>4:L3:4457:PSU:O4</td>
<td>24:LN:252:ALA:HB3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>4:L3:4541:G:N2</td>
<td>4:L3:4544:A:OP2</td>
<td>2.42</td>
<td>0.41</td>
</tr>
<tr>
<td>4:L3:503:C:O2'</td>
<td>4:L3:504:G:O5'</td>
<td>2.34</td>
<td>0.41</td>
</tr>
<tr>
<td>4:L3:1398:A:H61</td>
<td>4:L3:1501:C:N4</td>
<td>2.17</td>
<td>0.41</td>
</tr>
<tr>
<td>4:L3:2362:U:H2'</td>
<td>4:L3:2363:A2M:H8</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>4:L3:4635:A:H3'</td>
<td>4:L3:4636:PSU:H4'</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>8:L7:189:ILE:HD11</td>
<td>9:L8:119:ARG:HG3</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>Atom-1</td>
<td>Atom-2</td>
<td>Interatomic distance (Å)</td>
<td>Clash overlap (Å)</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>4:L3:346:G:OP1</td>
<td>19:LI:8:THR:HG23</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>4:L3:4431:PSU:H2'^2'</td>
<td>4:L3:4432:C:C6</td>
<td>2.54</td>
<td>0.41</td>
</tr>
<tr>
<td>53:SM:150:THR:HG22</td>
<td>53:SM:151:GLY:N</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>2:LI:85:U:H3'^2'</td>
<td>2:LI:86:U:H5'</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>4:L3:3825:A2M:H2'^2'</td>
<td>4:L3:3826:C:O4'</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>18:LH:143:ASP:N</td>
<td>18:LH:143:ASP:OD1</td>
<td>2.54</td>
<td>0.41</td>
</tr>
<tr>
<td>4:L3:4457:PSU:H1'</td>
<td>24:LN:252:ALA:HB3</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>4:L3:1474:C:H2'</td>
<td>4:L3:1475:G:O4'</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>4:L3:2459:G:N2</td>
<td>4:L3:2462:C:OP2</td>
<td>2.51</td>
<td>0.41</td>
</tr>
<tr>
<td>4:L3:4162:C:O2'</td>
<td>46:SE:69:ILE:HD11</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>4:L3:4370:OMG:H5''</td>
<td>32:LV:64:LYS:HG2</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>51:SK:155:SER:OG</td>
<td>51:SK:156:ASN:N</td>
<td>2.54</td>
<td>0.41</td>
</tr>
<tr>
<td>4:L3:1515:A:OP1</td>
<td>21:LK:33:GLY:N</td>
<td>2.52</td>
<td>0.41</td>
</tr>
<tr>
<td>4:L3:4266:G:N3</td>
<td>4:L3:4266:G:H2'</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>4:L3:5064:G:O6</td>
<td>24:LN:124:LYS:NZ</td>
<td>2.54</td>
<td>0.41</td>
</tr>
<tr>
<td>4:L3:4587:G:OP1</td>
<td>8:LE:71:ARG:NH1</td>
<td>2.53</td>
<td>0.40</td>
</tr>
<tr>
<td>4:L3:1920:C:H3'</td>
<td>4:L3:1921:C:H5''</td>
<td>2.02</td>
<td>0.40</td>
</tr>
<tr>
<td>4:L3:2876:OMG:N7</td>
<td>34:RX:16:THR:HG22</td>
<td>2.36</td>
<td>0.40</td>
</tr>
<tr>
<td>4:L3:4137:C:H2'</td>
<td>4:L3:4138:C:O4'</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>4:L3:4434:C:H2'</td>
<td>4:L3:4435:U:O4'</td>
<td>2.21</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Continued on next page
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:L3:3661:G:N7</td>
<td>47:SF:152:SER:OG</td>
<td>2.41</td>
<td>0.40</td>
</tr>
</tbody>
</table>

There are no symmetry-related clashes.

5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BA</td>
<td>158/165 (96%)</td>
<td>157 (99%)</td>
<td>1 (1%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>L5</td>
<td>166/178 (93%)</td>
<td>166 (100%)</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>L6</td>
<td>208/211 (99%)</td>
<td>204 (98%)</td>
<td>4 (2%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>L7</td>
<td>199/203 (98%)</td>
<td>197 (99%)</td>
<td>2 (1%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>L8</td>
<td>133/215 (62%)</td>
<td>130 (98%)</td>
<td>3 (2%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>L9</td>
<td>201/204 (98%)</td>
<td>194 (96%)</td>
<td>7 (4%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>LA</td>
<td>151/184 (82%)</td>
<td>146 (97%)</td>
<td>5 (3%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>12</td>
<td>LB</td>
<td>185/188 (98%)</td>
<td>181 (98%)</td>
<td>4 (2%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>13</td>
<td>LC</td>
<td>174/176 (99%)</td>
<td>171 (98%)</td>
<td>3 (2%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>14</td>
<td>LD</td>
<td>152/196 (78%)</td>
<td>152 (100%)</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>15</td>
<td>LE</td>
<td>150/160 (94%)</td>
<td>144 (96%)</td>
<td>6 (4%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>16</td>
<td>LF</td>
<td>101/128 (79%)</td>
<td>100 (99%)</td>
<td>1 (1%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>17</td>
<td>LG</td>
<td>137/140 (98%)</td>
<td>135 (98%)</td>
<td>2 (2%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>18</td>
<td>LH</td>
<td>141/156 (90%)</td>
<td>141 (100%)</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>19</td>
<td>LI</td>
<td>132/145 (91%)</td>
<td>131 (99%)</td>
<td>1 (1%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>LJ</td>
<td>133/136 (98%)</td>
<td>130 (98%)</td>
<td>3 (2%)</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>LK</td>
<td>145/148 (98%)</td>
<td>140 (97%)</td>
<td>5 (3%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>22</td>
<td>LL</td>
<td>123/137 (90%)</td>
<td>122 (99%)</td>
<td>1 (1%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>23</td>
<td>LM</td>
<td>87/159 (55%)</td>
<td>86 (99%)</td>
<td>1 (1%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>24</td>
<td>LN</td>
<td>399/403 (99%)</td>
<td>385 (96%)</td>
<td>14 (4%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>25</td>
<td>LO</td>
<td>93/115 (81%)</td>
<td>93 (100%)</td>
<td>0</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>26</td>
<td>LP</td>
<td>104/125 (83%)</td>
<td>103 (99%)</td>
<td>1 (1%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>27</td>
<td>LQ</td>
<td>126/135 (93%)</td>
<td>125 (99%)</td>
<td>1 (1%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>28</td>
<td>LR</td>
<td>110/117 (94%)</td>
<td>109 (99%)</td>
<td>1 (1%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>29</td>
<td>LS</td>
<td>120/123 (98%)</td>
<td>119 (99%)</td>
<td>1 (1%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>30</td>
<td>LT</td>
<td>107/110 (97%)</td>
<td>107 (100%)</td>
<td>0</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>31</td>
<td>LU</td>
<td>100/105 (95%)</td>
<td>99 (99%)</td>
<td>1 (1%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>32</td>
<td>LV</td>
<td>102/106 (96%)</td>
<td>98 (96%)</td>
<td>4 (4%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>33</td>
<td>LW</td>
<td>84/97 (87%)</td>
<td>83 (99%)</td>
<td>1 (1%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>34</td>
<td>LX</td>
<td>89/92 (97%)</td>
<td>86 (97%)</td>
<td>3 (3%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>35</td>
<td>LY</td>
<td>67/70 (96%)</td>
<td>66 (98%)</td>
<td>1 (2%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>36</td>
<td>LZ</td>
<td>48/51 (94%)</td>
<td>47 (98%)</td>
<td>1 (2%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>37</td>
<td>NC</td>
<td>42/731 (6%)</td>
<td>40 (95%)</td>
<td>2 (5%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>38</td>
<td>NF</td>
<td>69/260 (26%)</td>
<td>68 (99%)</td>
<td>1 (1%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>39</td>
<td>NK</td>
<td>63/129 (49%)</td>
<td>63 (100%)</td>
<td>0</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>40</td>
<td>NL</td>
<td>317/478 (66%)</td>
<td>314 (99%)</td>
<td>3 (1%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>41</td>
<td>NP</td>
<td>100/134 (75%)</td>
<td>100 (100%)</td>
<td>0</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>42</td>
<td>SA</td>
<td>356/427 (83%)</td>
<td>349 (98%)</td>
<td>7 (2%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>43</td>
<td>SB</td>
<td>273/297 (92%)</td>
<td>271 (99%)</td>
<td>2 (1%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>44</td>
<td>SC</td>
<td>211/288 (73%)</td>
<td>204 (97%)</td>
<td>7 (3%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>45</td>
<td>SD</td>
<td>223/248 (90%)</td>
<td>216 (97%)</td>
<td>7 (3%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>46</td>
<td>SE</td>
<td>228/266 (86%)</td>
<td>226 (99%)</td>
<td>2 (1%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>47</td>
<td>SF</td>
<td>243/257 (95%)</td>
<td>234 (96%)</td>
<td>9 (4%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>48</td>
<td>SG</td>
<td>188/192 (98%)</td>
<td>187 (100%)</td>
<td>1 (0%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>49</td>
<td>SH</td>
<td>149/293 (51%)</td>
<td>145 (97%)</td>
<td>4 (3%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>50</td>
<td>SI</td>
<td>231/255 (91%)</td>
<td>225 (97%)</td>
<td>6 (3%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>51</td>
<td>SK</td>
<td>242/245 (99%)</td>
<td>229 (95%)</td>
<td>13 (5%)</td>
<td>0</td>
<td>100 100</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>SL</td>
<td>236/490 (48%)</td>
<td>227 (96%)</td>
<td>9 (4%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>53</td>
<td>SM</td>
<td>393/588 (67%)</td>
<td>387 (98%)</td>
<td>6 (2%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>54</td>
<td>SQ</td>
<td>215/239 (90%)</td>
<td>213 (99%)</td>
<td>2 (1%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>55</td>
<td>SR</td>
<td>595/634 (94%)</td>
<td>587 (99%)</td>
<td>8 (1%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>56</td>
<td>SV</td>
<td>137/163 (84%)</td>
<td>136 (99%)</td>
<td>1 (1%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>8936/11492 (78%)</td>
<td>8768 (98%)</td>
<td>168 (2%)</td>
<td>0</td>
<td>100 100</td>
</tr>
</tbody>
</table>

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BA</td>
<td>53/137 (39%)</td>
<td>53 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>6</td>
<td>L5</td>
<td>142/149 (95%)</td>
<td>142 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>7</td>
<td>L6</td>
<td>176/177 (99%)</td>
<td>176 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>8</td>
<td>L7</td>
<td>173/174 (99%)</td>
<td>173 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>9</td>
<td>L8</td>
<td>115/161 (71%)</td>
<td>115 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>10</td>
<td>L9</td>
<td>171/172 (99%)</td>
<td>171 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>11</td>
<td>LA</td>
<td>134/163 (82%)</td>
<td>134 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>12</td>
<td>LB</td>
<td>164/165 (99%)</td>
<td>164 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>13</td>
<td>LC</td>
<td>157/157 (100%)</td>
<td>157 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>14</td>
<td>LD</td>
<td>138/175 (79%)</td>
<td>138 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>15</td>
<td>LE</td>
<td>136/140 (97%)</td>
<td>136 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>16</td>
<td>LF</td>
<td>93/115 (81%)</td>
<td>93 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>17</td>
<td>LG</td>
<td>106/107 (99%)</td>
<td>106 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>18</td>
<td>LH</td>
<td>124/133 (93%)</td>
<td>124 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>19</td>
<td>LI</td>
<td>124/135 (92%)</td>
<td>124 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>20</td>
<td>LJ</td>
<td>117/118 (99%)</td>
<td>117 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>LK</td>
<td>120/121 (99%)</td>
<td>120 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>22</td>
<td>LL</td>
<td>109/121 (90%)</td>
<td>109 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>23</td>
<td>LM</td>
<td>77/126 (61%)</td>
<td>77 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>24</td>
<td>LN</td>
<td>347/348 (100%)</td>
<td>347 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>25</td>
<td>LO</td>
<td>80/97 (82%)</td>
<td>80 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>26</td>
<td>LP</td>
<td>97/110 (88%)</td>
<td>97 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>27</td>
<td>LQ</td>
<td>114/121 (94%)</td>
<td>114 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>28</td>
<td>LR</td>
<td>96/100 (96%)</td>
<td>96 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>29</td>
<td>LS</td>
<td>109/110 (99%)</td>
<td>109 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>30</td>
<td>LT</td>
<td>88/89 (99%)</td>
<td>88 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>31</td>
<td>LU</td>
<td>86/89 (97%)</td>
<td>85 (99%)</td>
<td>1</td>
<td>71 86</td>
</tr>
<tr>
<td>32</td>
<td>LV</td>
<td>92/94 (98%)</td>
<td>92 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>33</td>
<td>LW</td>
<td>73/80 (91%)</td>
<td>73 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>34</td>
<td>LX</td>
<td>74/75 (99%)</td>
<td>74 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>35</td>
<td>LY</td>
<td>64/65 (98%)</td>
<td>64 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>36</td>
<td>LZ</td>
<td>47/48 (98%)</td>
<td>47 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>38</td>
<td>NF</td>
<td>65/228 (28%)</td>
<td>65 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>39</td>
<td>NK</td>
<td>61/115 (53%)</td>
<td>61 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>40</td>
<td>NL</td>
<td>280/402 (70%)</td>
<td>280 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>41</td>
<td>NP</td>
<td>88/114 (77%)</td>
<td>88 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>42</td>
<td>SA</td>
<td>298/348 (86%)</td>
<td>296 (99%)</td>
<td>2</td>
<td>84 93</td>
</tr>
<tr>
<td>43</td>
<td>SB</td>
<td>234/250 (94%)</td>
<td>234 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>44</td>
<td>SC</td>
<td>192/252 (76%)</td>
<td>192 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>45</td>
<td>SD</td>
<td>194/215 (90%)</td>
<td>194 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>46</td>
<td>SE</td>
<td>198/223 (89%)</td>
<td>197 (100%)</td>
<td>1</td>
<td>88 95</td>
</tr>
<tr>
<td>47</td>
<td>SF</td>
<td>188/199 (94%)</td>
<td>188 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>48</td>
<td>SG</td>
<td>169/171 (99%)</td>
<td>169 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>49</td>
<td>SH</td>
<td>103/274 (38%)</td>
<td>103 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>50</td>
<td>SI</td>
<td>210/228 (92%)</td>
<td>209 (100%)</td>
<td>1</td>
<td>88 95</td>
</tr>
<tr>
<td>51</td>
<td>SK</td>
<td>212/213 (100%)</td>
<td>211 (100%)</td>
<td>1</td>
<td>88 95</td>
</tr>
<tr>
<td>52</td>
<td>SL</td>
<td>221/437 (51%)</td>
<td>221 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>SM</td>
<td>354/509 (70%)</td>
<td>354 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>54</td>
<td>SQ</td>
<td>194/214 (91%)</td>
<td>194 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>55</td>
<td>SR</td>
<td>545/574 (95%)</td>
<td>545 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>56</td>
<td>SV</td>
<td>128/149 (86%)</td>
<td>128 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>7730/9287 (83%)</td>
<td>7724 (100%)</td>
<td>6 (0%)</td>
<td>93 98</td>
</tr>
</tbody>
</table>

All (6) residues with a non-rotameric sidechain are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>LU</td>
<td>29</td>
<td>ARG</td>
</tr>
<tr>
<td>42</td>
<td>SA</td>
<td>95</td>
<td>MET</td>
</tr>
<tr>
<td>42</td>
<td>SA</td>
<td>109</td>
<td>ARG</td>
</tr>
<tr>
<td>46</td>
<td>SE</td>
<td>175</td>
<td>ARG</td>
</tr>
<tr>
<td>50</td>
<td>SI</td>
<td>93</td>
<td>LYS</td>
</tr>
<tr>
<td>51</td>
<td>SK</td>
<td>57</td>
<td>ARG</td>
</tr>
</tbody>
</table>

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (13) such sidechains are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>LC</td>
<td>144</td>
<td>GLN</td>
</tr>
<tr>
<td>15</td>
<td>LE</td>
<td>58</td>
<td>HIS</td>
</tr>
<tr>
<td>21</td>
<td>LK</td>
<td>19</td>
<td>HIS</td>
</tr>
<tr>
<td>24</td>
<td>LN</td>
<td>42</td>
<td>HIS</td>
</tr>
<tr>
<td>41</td>
<td>NP</td>
<td>32</td>
<td>HIS</td>
</tr>
<tr>
<td>44</td>
<td>SC</td>
<td>136</td>
<td>HIS</td>
</tr>
<tr>
<td>44</td>
<td>SC</td>
<td>190</td>
<td>HIS</td>
</tr>
<tr>
<td>48</td>
<td>SG</td>
<td>140</td>
<td>GLN</td>
</tr>
<tr>
<td>53</td>
<td>SM</td>
<td>170</td>
<td>HIS</td>
</tr>
<tr>
<td>53</td>
<td>SM</td>
<td>375</td>
<td>HIS</td>
</tr>
<tr>
<td>55</td>
<td>SR</td>
<td>37</td>
<td>HIS</td>
</tr>
<tr>
<td>55</td>
<td>SR</td>
<td>157</td>
<td>HIS</td>
</tr>
<tr>
<td>55</td>
<td>SR</td>
<td>209</td>
<td>HIS</td>
</tr>
</tbody>
</table>

5.3.3 RNA

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Backbone Outliers</th>
<th>Pucker Outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>L1</td>
<td>152/157 (96%)</td>
<td>18 (11%)</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>L2</td>
<td>67/1167 (5%)</td>
<td>9 (13%)</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Backbone Outliers</th>
<th>Pucker Outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>3371/5070 (66%)</td>
<td>409 (12%)</td>
<td>4 (0%)</td>
</tr>
<tr>
<td>5</td>
<td>L4</td>
<td>119/121 (98%)</td>
<td>11 (9%)</td>
<td>1 (0%)</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>3709/6515 (56%)</td>
<td>447 (12%)</td>
<td>5 (0%)</td>
</tr>
</tbody>
</table>

All (447) RNA backbone outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>L1</td>
<td>23</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>34</td>
<td>U</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>35</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>59</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>62</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>63</td>
<td>U</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>82</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>83</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>84</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>86</td>
<td>U</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>94</td>
<td>G</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>103</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>105</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>110</td>
<td>U</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>111</td>
<td>U</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>127</td>
<td>U</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>151</td>
<td>G</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>156</td>
<td>U</td>
</tr>
<tr>
<td>3</td>
<td>L2</td>
<td>11</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>L2</td>
<td>48</td>
<td>G</td>
</tr>
<tr>
<td>3</td>
<td>L2</td>
<td>49</td>
<td>G</td>
</tr>
<tr>
<td>3</td>
<td>L2</td>
<td>51</td>
<td>U</td>
</tr>
<tr>
<td>3</td>
<td>L2</td>
<td>62</td>
<td>U</td>
</tr>
<tr>
<td>3</td>
<td>L2</td>
<td>96</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>L2</td>
<td>101</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>L2</td>
<td>1165</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>L2</td>
<td>1166</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>39</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>42</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>48</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>56</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>58</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>59</td>
<td>A</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>64</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>65</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>66</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>69</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>91</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>109</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>119</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>159</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>164</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>167</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>169</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>170</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>171</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>172</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>173</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>181</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>200</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>210</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>218</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>233</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>234</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>261</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>263</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>266</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>274</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>316</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>340</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>349</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>387</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>409</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>410</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>412</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>450</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>452</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>453</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>454</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>464</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>467</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>469</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>472</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>473</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>479</td>
<td>G</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>492</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>493</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>496</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>497</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>499</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>501</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>502</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>503</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>504</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>510</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>511</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>658</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>660</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>667</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>668</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>669</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>686</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>704</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>730</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>731</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>739</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>741</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>742</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>746</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>913</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>915</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>916</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>917</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>918</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>926</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>932</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>933</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>944</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>945</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>956</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>959</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>960</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>971</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>972</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1066</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1072</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1080</td>
<td>C</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1169</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1171</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1173</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1174</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1178</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1180</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1181</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1182</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1201</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1203</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1211</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1214</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1215</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1216</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1253</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1254</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1255</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1266</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1269</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1270</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1273</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1280</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1284</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1287</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1294</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1295</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1301</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1314</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1319</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1325</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1326</td>
<td>A2M</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1354</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1358</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1359</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1365</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1366</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1379</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1397</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1420</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1439</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1443</td>
<td>A</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>1497</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1498</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1502</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1523</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1534</td>
<td>A2M</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1547</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1578</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1581</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1592</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1613</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1624</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1625</td>
<td>OMG</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1631</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1633</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1634</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1642</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1654</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1661</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1670</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1671</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1676</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1677</td>
<td>PSU</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1678</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1721</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1726</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1734</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1791</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1804</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1811</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1815</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1821</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1822</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1836</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1837</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1842</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1854</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1875</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1880</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1882</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1887</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1888</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1897</td>
<td>A</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>1910</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1919</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1921</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1922</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1925</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1973</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1974</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1978</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1984</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1997</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2002</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2011</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2016</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2021</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2026</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2041</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2044</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2046</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2055</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2056</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2069</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2084</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2085</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2092</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2093</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2094</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2095</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2096</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2097</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2098</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2109</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2110</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2111</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2261</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2289</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2300</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2301</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2313</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2316</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2348</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2351</td>
<td>OMC</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2395</td>
<td>A</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>2414</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2417</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2422</td>
<td>OMG</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2424</td>
<td>OMG</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2425</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2429</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2450</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2453</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2470</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2471</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2475</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2476</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2477</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2478</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2486</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2487</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2488</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2489</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2492</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2493</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2512</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2513</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2519</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2529</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2544</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2545</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2548</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2554</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2587</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2638</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2653</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2669</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2687</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2694</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2695</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2696</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2711</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2742</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2743</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2760</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2764</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2769</td>
<td>U</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>2772</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2787</td>
<td>A2M</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2788</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2790</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2814</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2826</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2827</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2842</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2855</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2877</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2902</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2917</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2918</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3271</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3593</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3595</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3597</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3626</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3635</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3644</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3653</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3662</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3696</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3697</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3701</td>
<td>OMC</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3838</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3840</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3868</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3872</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3875</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3887</td>
<td>OMC</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3905</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3915</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4069</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4076</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4084</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4085</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4119</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4122</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4127</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4133</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4139</td>
<td>G</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>4140</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4142</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4143</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4144</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4145</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4147</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4150</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4154</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4162</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4170</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4183</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4184</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4191</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4194</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4202</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4205</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4221</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4222</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4229</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4233</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4251</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4254</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4266</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4268</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4273</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4281</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4305</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4306</td>
<td>OMU</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4329</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4330</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4332</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4373</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4376</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4377</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4378</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4387</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4418</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4453</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4464</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4466</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4475</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4491</td>
<td>G</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>4498</td>
<td>OMU</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4512</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4513</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4519</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4523</td>
<td>A2M</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4524</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4545</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4548</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4549</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4555</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4556</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4558</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4560</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4584</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4590</td>
<td>A2M</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4608</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4627</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4636</td>
<td>PSU</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4637</td>
<td>OMG</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4656</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4670</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4672</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4678</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4701</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4708</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4709</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4719</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4720</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4740</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4741</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4742</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4750</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4751</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4754</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4757</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4759</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4765</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4772</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4773</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4870</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4871</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4882</td>
<td>U</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>4883</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4900</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4901</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4910</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4914</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4916</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4937</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4943</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4976</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>5014</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>5020</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>5022</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>5023</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>5026</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>5027</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>5031</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>5041</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>5050</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>5054</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>5055</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>5061</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>5062</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>5069</td>
<td>U</td>
</tr>
<tr>
<td>5</td>
<td>L4</td>
<td>7</td>
<td>G</td>
</tr>
<tr>
<td>5</td>
<td>L4</td>
<td>24</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>L4</td>
<td>49</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>L4</td>
<td>53</td>
<td>U</td>
</tr>
<tr>
<td>5</td>
<td>L4</td>
<td>54</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>L4</td>
<td>64</td>
<td>G</td>
</tr>
<tr>
<td>5</td>
<td>L4</td>
<td>66</td>
<td>G</td>
</tr>
<tr>
<td>5</td>
<td>L4</td>
<td>89</td>
<td>G</td>
</tr>
<tr>
<td>5</td>
<td>L4</td>
<td>110</td>
<td>G</td>
</tr>
<tr>
<td>5</td>
<td>L4</td>
<td>111</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>L4</td>
<td>120</td>
<td>U</td>
</tr>
</tbody>
</table>

All (5) RNA pucker outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>496</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>502</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>503</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2095</td>
<td>A</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>L4</td>
<td>109</td>
<td>U</td>
</tr>
</tbody>
</table>

5.4 Non-standard residues in protein, DNA, RNA chains

107 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>3853</td>
<td>4</td>
<td>18,21,22</td>
<td>1.02</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4312</td>
<td>4</td>
<td>18,21,22</td>
<td>1.01</td>
</tr>
<tr>
<td>4</td>
<td>OMG</td>
<td>L3</td>
<td>4228</td>
<td>4</td>
<td>18,26,27</td>
<td>1.32</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>5001</td>
<td>4</td>
<td>18,21,22</td>
<td>1.06</td>
</tr>
<tr>
<td>4</td>
<td>OMC</td>
<td>L3</td>
<td>3869</td>
<td>4</td>
<td>19,22,23</td>
<td>0.61</td>
</tr>
<tr>
<td>4</td>
<td>OMC</td>
<td>L3</td>
<td>4370</td>
<td>4</td>
<td>18,26,27</td>
<td>1.29</td>
</tr>
<tr>
<td>4</td>
<td>OMG</td>
<td>L3</td>
<td>4637</td>
<td>4</td>
<td>18,26,27</td>
<td>1.20</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4403</td>
<td>4</td>
<td>18,21,22</td>
<td>1.04</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4500</td>
<td>4</td>
<td>18,21,22</td>
<td>1.05</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>3695</td>
<td>4</td>
<td>18,21,22</td>
<td>1.07</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>2632</td>
<td>4</td>
<td>18,21,22</td>
<td>1.05</td>
</tr>
<tr>
<td>4</td>
<td>OMG</td>
<td>L3</td>
<td>1316</td>
<td>4</td>
<td>18,26,27</td>
<td>1.18</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4532</td>
<td>4</td>
<td>18,21,22</td>
<td>1.04</td>
</tr>
<tr>
<td>4</td>
<td>OMU</td>
<td>L3</td>
<td>2415</td>
<td>4</td>
<td>19,22,23</td>
<td>1.99</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>3920</td>
<td>4,57</td>
<td>18,21,22</td>
<td>1.01</td>
</tr>
<tr>
<td>4</td>
<td>OMU</td>
<td>L3</td>
<td>2837</td>
<td>4</td>
<td>19,22,23</td>
<td>2.02</td>
</tr>
<tr>
<td>4</td>
<td>OMC</td>
<td>L3</td>
<td>2351</td>
<td>4,57</td>
<td>19,22,23</td>
<td>0.67</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4293</td>
<td>4</td>
<td>18,21,22</td>
<td>0.98</td>
</tr>
<tr>
<td>4</td>
<td>OMC</td>
<td>L3</td>
<td>3701</td>
<td>4</td>
<td>19,22,23</td>
<td>0.53</td>
</tr>
<tr>
<td>4</td>
<td>6MZ</td>
<td>L3</td>
<td>4220</td>
<td>4</td>
<td>18,25,26</td>
<td>1.09</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4972</td>
<td>4</td>
<td>18,21,22</td>
<td>1.00</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>1860</td>
<td>4</td>
<td>18,21,22</td>
<td>1.02</td>
</tr>
<tr>
<td>Mol</td>
<td>Type</td>
<td>Chain</td>
<td>Res</td>
<td>Link</td>
<td>Bond lengths</td>
<td>Bond angles</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>4</td>
<td>OMC</td>
<td>L3</td>
<td>2861</td>
<td>4</td>
<td>19,22,23</td>
<td>0.57</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>3851</td>
<td>4</td>
<td>18,21,22</td>
<td>1.06</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>3730</td>
<td>4</td>
<td>18,21,22</td>
<td>1.06</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>1683</td>
<td>4</td>
<td>18,21,22</td>
<td>1.05</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>3844</td>
<td>4</td>
<td>18,21,22</td>
<td>1.08</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4296</td>
<td>4</td>
<td>18,21,22</td>
<td>0.98</td>
</tr>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>398</td>
<td>4</td>
<td>18,25,26</td>
<td>1.21</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>3822</td>
<td>4</td>
<td>18,21,22</td>
<td>1.09</td>
</tr>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>2401</td>
<td>4</td>
<td>18,25,26</td>
<td>1.23</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4361</td>
<td>4</td>
<td>18,21,22</td>
<td>0.97</td>
</tr>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>3825</td>
<td>4</td>
<td>18,25,26</td>
<td>1.21</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4311</td>
<td>4</td>
<td>18,21,22</td>
<td>1.08</td>
</tr>
<tr>
<td>4</td>
<td>OMC</td>
<td>L3</td>
<td>3841</td>
<td>4</td>
<td>19,22,23</td>
<td>0.58</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4493</td>
<td>4</td>
<td>18,21,22</td>
<td>1.03</td>
</tr>
<tr>
<td>4</td>
<td>OMC</td>
<td>L3</td>
<td>2876</td>
<td>4</td>
<td>18,26,27</td>
<td>1.16</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>1677</td>
<td>4</td>
<td>18,21,22</td>
<td>1.02</td>
</tr>
<tr>
<td>4</td>
<td>OMU</td>
<td>L3</td>
<td>4306</td>
<td>4</td>
<td>19,22,23</td>
<td>1.95</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>5010</td>
<td>4</td>
<td>18,21,22</td>
<td>1.05</td>
</tr>
<tr>
<td>4</td>
<td>OMG</td>
<td>L3</td>
<td>2424</td>
<td>4</td>
<td>18,26,27</td>
<td>1.23</td>
</tr>
<tr>
<td>4</td>
<td>OMC</td>
<td>L3</td>
<td>4456</td>
<td>4</td>
<td>19,22,23</td>
<td>0.61</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4353</td>
<td>4</td>
<td>18,21,22</td>
<td>0.98</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>3884</td>
<td>4</td>
<td>18,21,22</td>
<td>1.04</td>
</tr>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>1524</td>
<td>4</td>
<td>18,25,26</td>
<td>1.21</td>
</tr>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>1534</td>
<td>4,57</td>
<td>18,25,26</td>
<td>1.17</td>
</tr>
<tr>
<td>4</td>
<td>OMG</td>
<td>L3</td>
<td>2364</td>
<td>4</td>
<td>18,26,27</td>
<td>1.21</td>
</tr>
<tr>
<td>4</td>
<td>OMC</td>
<td>L3</td>
<td>2824</td>
<td>4</td>
<td>19,22,23</td>
<td>0.59</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>1582</td>
<td>4</td>
<td>18,21,22</td>
<td>1.03</td>
</tr>
<tr>
<td>4</td>
<td>OMC</td>
<td>L3</td>
<td>2804</td>
<td>4</td>
<td>19,22,23</td>
<td>0.60</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4689</td>
<td>4</td>
<td>18,21,22</td>
<td>1.05</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4457</td>
<td>4</td>
<td>18,21,22</td>
<td>1.08</td>
</tr>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>400</td>
<td>4</td>
<td>18,25,26</td>
<td>1.20</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>1792</td>
<td>4</td>
<td>18,21,22</td>
<td>1.03</td>
</tr>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>3718</td>
<td>4</td>
<td>18,25,26</td>
<td>1.24</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L1</td>
<td>55</td>
<td>2</td>
<td>18,21,22</td>
<td>1.03</td>
</tr>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>3724</td>
<td>4</td>
<td>18,25,26</td>
<td>1.20</td>
</tr>
<tr>
<td>4</td>
<td>OMG</td>
<td>L3</td>
<td>1522</td>
<td>4</td>
<td>18,26,27</td>
<td>1.21</td>
</tr>
<tr>
<td>Mol</td>
<td>Type</td>
<td>Chain</td>
<td>Res</td>
<td>Link</td>
<td>Bond lengths</td>
<td>Bond angles</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>#/</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>2815</td>
<td>4</td>
<td>18,25,26</td>
<td>1.21</td>
</tr>
<tr>
<td></td>
<td>PSU</td>
<td>L3</td>
<td>4576</td>
<td>4</td>
<td>18,21,22</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td>PSU</td>
<td>L3</td>
<td>4471</td>
<td>4</td>
<td>18,21,22</td>
<td>1.06</td>
</tr>
<tr>
<td></td>
<td>PSU</td>
<td>L3</td>
<td>4552</td>
<td>4</td>
<td>18,21,22</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>OMG</td>
<td>L3</td>
<td>1340</td>
<td>4</td>
<td>19,22,23</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>PSU</td>
<td>L3</td>
<td>2508</td>
<td>4</td>
<td>18,21,22</td>
<td>1.02</td>
</tr>
<tr>
<td></td>
<td>OMG</td>
<td>L3</td>
<td>4623</td>
<td>4</td>
<td>18,26,27</td>
<td>1.19</td>
</tr>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>4571</td>
<td>4</td>
<td>18,25,26</td>
<td>1.21</td>
</tr>
<tr>
<td></td>
<td>OMG</td>
<td>L3</td>
<td>3887</td>
<td>4</td>
<td>19,22,23</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td>PSU</td>
<td>L3</td>
<td>3637</td>
<td>4</td>
<td>18,21,22</td>
<td>1.02</td>
</tr>
<tr>
<td></td>
<td>PSU</td>
<td>L3</td>
<td>4579</td>
<td>4</td>
<td>18,21,22</td>
<td>1.00</td>
</tr>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>3830</td>
<td>4</td>
<td>18,25,26</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td>OMG</td>
<td>L3</td>
<td>4392</td>
<td>4</td>
<td>18,26,27</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>OMU</td>
<td>L3</td>
<td>4227</td>
<td>4</td>
<td>19,22,23</td>
<td>1.95</td>
</tr>
<tr>
<td></td>
<td>PSU</td>
<td>L3</td>
<td>1862</td>
<td>4</td>
<td>18,21,22</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>PSU</td>
<td>L3</td>
<td>4521</td>
<td>4</td>
<td>18,21,22</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>OMG</td>
<td>L3</td>
<td>1625</td>
<td>4</td>
<td>18,26,27</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>OMG</td>
<td>L3</td>
<td>3899</td>
<td>4</td>
<td>18,26,27</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>PSU</td>
<td>L3</td>
<td>4636</td>
<td>4</td>
<td>18,21,22</td>
<td>1.04</td>
</tr>
<tr>
<td>2</td>
<td>OMG</td>
<td>L1</td>
<td>75</td>
<td>2</td>
<td>18,26,27</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>UR3</td>
<td>L3</td>
<td>4530</td>
<td>4</td>
<td>19,22,23</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td>PSU</td>
<td>L3</td>
<td>3734</td>
<td>4</td>
<td>18,21,22</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td>A2M</td>
<td>L3</td>
<td>4523</td>
<td>4</td>
<td>18,25,26</td>
<td>1.21</td>
</tr>
<tr>
<td></td>
<td>A2M</td>
<td>L3</td>
<td>1871</td>
<td>4</td>
<td>18,25,26</td>
<td>1.19</td>
</tr>
<tr>
<td></td>
<td>PSU</td>
<td>L3</td>
<td>2839</td>
<td>4</td>
<td>18,21,22</td>
<td>1.08</td>
</tr>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>1326</td>
<td>4</td>
<td>18,25,26</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>PSU</td>
<td>L3</td>
<td>3715</td>
<td>4</td>
<td>18,21,22</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>OMG</td>
<td>L3</td>
<td>4494</td>
<td>4</td>
<td>18,26,27</td>
<td>1.24</td>
</tr>
<tr>
<td></td>
<td>PSU</td>
<td>L3</td>
<td>1536</td>
<td>4</td>
<td>18,21,22</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>OMG</td>
<td>L3</td>
<td>3627</td>
<td>4</td>
<td>18,26,27</td>
<td>1.20</td>
</tr>
<tr>
<td>24</td>
<td>HIC</td>
<td>LN</td>
<td>245</td>
<td>24</td>
<td>8,11,12</td>
<td>1.61</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4299</td>
<td>4</td>
<td>18,21,22</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>OMG</td>
<td>L3</td>
<td>4498</td>
<td>4</td>
<td>19,22,23</td>
<td>2.09</td>
</tr>
<tr>
<td></td>
<td>OMC</td>
<td>L3</td>
<td>2422</td>
<td>4,57</td>
<td>19,22,23</td>
<td>0.59</td>
</tr>
<tr>
<td>2</td>
<td>PSU</td>
<td>L1</td>
<td>69</td>
<td>2</td>
<td>18,21,22</td>
<td>1.07</td>
</tr>
</tbody>
</table>
In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. ‘-’ means no outliers of that kind were identified.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>3853</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4312</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>OMG</td>
<td>L3</td>
<td>4228</td>
<td>4</td>
<td>-</td>
<td>0/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>5001</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>OMG</td>
<td>L3</td>
<td>3869</td>
<td>4</td>
<td>-</td>
<td>0/9/27/28</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>OMG</td>
<td>L3</td>
<td>4370</td>
<td>4</td>
<td>-</td>
<td>0/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>OMG</td>
<td>L3</td>
<td>4637</td>
<td>4</td>
<td>-</td>
<td>3/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4403</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4500</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>3695</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>2632</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>OMG</td>
<td>L3</td>
<td>1316</td>
<td>4</td>
<td>-</td>
<td>1/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4532</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>OMU</td>
<td>L3</td>
<td>2415</td>
<td>4</td>
<td>-</td>
<td>1/9/27/28</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>3920</td>
<td>4,57</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>OMU</td>
<td>L3</td>
<td>2837</td>
<td>4</td>
<td>-</td>
<td>1/9/27/28</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>OMG</td>
<td>L3</td>
<td>2351</td>
<td>4,57</td>
<td>-</td>
<td>3/9/27/28</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4293</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>OMC</td>
<td>L3</td>
<td>3701</td>
<td>4</td>
<td>-</td>
<td>7/9/27/28</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>6MZ</td>
<td>L3</td>
<td>4220</td>
<td>4</td>
<td>-</td>
<td>3/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4972</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>1860</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>OMC</td>
<td>L3</td>
<td>2861</td>
<td>4</td>
<td>-</td>
<td>1/9/27/28</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>3851</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>3730</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>1683</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>2861</td>
<td>4</td>
<td>-</td>
<td>1/9/27/28</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>3844</td>
<td>4</td>
<td>-</td>
<td>1/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>3822</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>2401</td>
<td>4</td>
<td>-</td>
<td>2/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4361</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>3825</td>
<td>4</td>
<td>-</td>
<td>0/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4431</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>OMC</td>
<td>L3</td>
<td>3841</td>
<td>4</td>
<td>-</td>
<td>1/9/27/28</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4493</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>OMG</td>
<td>L3</td>
<td>2876</td>
<td>4</td>
<td>-</td>
<td>1/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>1677</td>
<td>4</td>
<td>-</td>
<td>3/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>5010</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>OMU</td>
<td>L3</td>
<td>4306</td>
<td>4</td>
<td>-</td>
<td>4/9/27/28</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4431</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>OMC</td>
<td>L3</td>
<td>4456</td>
<td>4</td>
<td>-</td>
<td>2/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4353</td>
<td>4</td>
<td>-</td>
<td>1/9/27/28</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>3884</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>1524</td>
<td>4</td>
<td>-</td>
<td>1/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>1534</td>
<td>4,5,7</td>
<td>-</td>
<td>1/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>OMG</td>
<td>L3</td>
<td>2364</td>
<td>4</td>
<td>-</td>
<td>2/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>OMC</td>
<td>L3</td>
<td>2824</td>
<td>4</td>
<td>-</td>
<td>0/9/27/28</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>1582</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>OMC</td>
<td>L3</td>
<td>2804</td>
<td>4</td>
<td>-</td>
<td>1/9/27/28</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4689</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4457</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>400</td>
<td>4</td>
<td>-</td>
<td>1/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>1792</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>3718</td>
<td>4</td>
<td>-</td>
<td>1/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>2</td>
<td>PSU</td>
<td>L1</td>
<td>55</td>
<td>2</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>3724</td>
<td>4</td>
<td>-</td>
<td>1/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>OMG</td>
<td>L3</td>
<td>1522</td>
<td>4</td>
<td>-</td>
<td>0/5/27/28</td>
<td>0/3/3/3</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>2815</td>
<td>4</td>
<td>-</td>
<td>2/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4576</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4471</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4552</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>OMC</td>
<td>L3</td>
<td>1340</td>
<td>4</td>
<td>-</td>
<td>1/9/27/28</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>2508</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>OMG</td>
<td>L3</td>
<td>4623</td>
<td>4</td>
<td>-</td>
<td>0/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>4571</td>
<td>4</td>
<td>-</td>
<td>1/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>OMC</td>
<td>L3</td>
<td>3887</td>
<td>4</td>
<td>-</td>
<td>2/9/27/28</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>3637</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4579</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>3830</td>
<td>4</td>
<td>-</td>
<td>1/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>OMC</td>
<td>L3</td>
<td>4392</td>
<td>4</td>
<td>-</td>
<td>1/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>OMU</td>
<td>L3</td>
<td>4227</td>
<td>4</td>
<td>-</td>
<td>1/9/27/28</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>1862</td>
<td>4</td>
<td>-</td>
<td>2/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4521</td>
<td>4</td>
<td>-</td>
<td>2/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>OMG</td>
<td>L3</td>
<td>1625</td>
<td>4</td>
<td>-</td>
<td>2/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>OMG</td>
<td>L3</td>
<td>3899</td>
<td>4</td>
<td>-</td>
<td>0/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4636</td>
<td>4</td>
<td>-</td>
<td>5/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>2</td>
<td>OMG</td>
<td>L1</td>
<td>75</td>
<td>2</td>
<td>-</td>
<td>1/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>UR3</td>
<td>L3</td>
<td>4530</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>3734</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>4523</td>
<td>4</td>
<td>-</td>
<td>2/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>1871</td>
<td>4</td>
<td>-</td>
<td>0/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>2839</td>
<td>4</td>
<td>-</td>
<td>3/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>1326</td>
<td>4</td>
<td>-</td>
<td>3/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>3715</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>OMG</td>
<td>L3</td>
<td>4494</td>
<td>4</td>
<td>-</td>
<td>0/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>1536</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>OMG</td>
<td>L3</td>
<td>3627</td>
<td>4</td>
<td>-</td>
<td>0/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>24</td>
<td>HIC</td>
<td>LN</td>
<td>245</td>
<td>24</td>
<td>-</td>
<td>2/5/6/8</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4299</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>OMU</td>
<td>L3</td>
<td>4498</td>
<td>4</td>
<td>-</td>
<td>1/9/27/28</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>OMC</td>
<td>L3</td>
<td>2422</td>
<td>4,57</td>
<td>-</td>
<td>2/9/27/28</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L1</td>
<td>69</td>
<td>2</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>OMC</td>
<td>L3</td>
<td>2365</td>
<td>4</td>
<td>-</td>
<td>0/9/27/28</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>2363</td>
<td>4</td>
<td>-</td>
<td>1/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>OMC</td>
<td>L3</td>
<td>4536</td>
<td>4</td>
<td>-</td>
<td>1/9/27/28</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>OMG</td>
<td>L3</td>
<td>3744</td>
<td>4</td>
<td>-</td>
<td>1/5/27/28</td>
<td>0/3/3/3</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>4590</td>
<td>4</td>
<td>-</td>
<td>4/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>3639</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>OMG</td>
<td>L3</td>
<td>4620</td>
<td>4</td>
<td>-</td>
<td>1/9/27/28</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>OMG</td>
<td>L3</td>
<td>4499</td>
<td>4</td>
<td>-</td>
<td>0/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>2787</td>
<td>4</td>
<td>-</td>
<td>3/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>OMG</td>
<td>L3</td>
<td>3925</td>
<td>4</td>
<td>-</td>
<td>1/9/27/28</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>A2M</td>
<td>L3</td>
<td>3867</td>
<td>4</td>
<td>-</td>
<td>1/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4628</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>4</td>
<td>OMG</td>
<td>L3</td>
<td>4618</td>
<td>4</td>
<td>-</td>
<td>2/5/27/28</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>4</td>
<td>PSU</td>
<td>L3</td>
<td>4673</td>
<td>4</td>
<td>-</td>
<td>0/7/25/26</td>
<td>0/2/2/2</td>
</tr>
</tbody>
</table>

All (192) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>4498</td>
<td>OMU</td>
<td>C6-N1</td>
<td>4.78</td>
<td>1.49</td>
<td>1.38</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4620</td>
<td>OMU</td>
<td>C6-N1</td>
<td>4.66</td>
<td>1.49</td>
<td>1.38</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2837</td>
<td>OMU</td>
<td>C6-N1</td>
<td>4.59</td>
<td>1.49</td>
<td>1.38</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2415</td>
<td>OMU</td>
<td>C6-N1</td>
<td>4.59</td>
<td>1.49</td>
<td>1.38</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4306</td>
<td>OMU</td>
<td>C6-N1</td>
<td>4.58</td>
<td>1.49</td>
<td>1.38</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4227</td>
<td>OMU</td>
<td>C6-N1</td>
<td>4.49</td>
<td>1.48</td>
<td>1.38</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3925</td>
<td>OMU</td>
<td>C6-N1</td>
<td>4.44</td>
<td>1.48</td>
<td>1.38</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4498</td>
<td>OMU</td>
<td>C2-N1</td>
<td>4.42</td>
<td>1.45</td>
<td>1.38</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4498</td>
<td>OMU</td>
<td>C5-C4</td>
<td>4.13</td>
<td>1.52</td>
<td>1.43</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2837</td>
<td>OMU</td>
<td>C2-N1</td>
<td>4.11</td>
<td>1.45</td>
<td>1.38</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2415</td>
<td>OMU</td>
<td>C5-C4</td>
<td>3.97</td>
<td>1.52</td>
<td>1.43</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2837</td>
<td>OMU</td>
<td>C5-C4</td>
<td>3.97</td>
<td>1.52</td>
<td>1.43</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4227</td>
<td>OMU</td>
<td>C2-N1</td>
<td>3.90</td>
<td>1.44</td>
<td>1.38</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4227</td>
<td>OMU</td>
<td>C2-N1</td>
<td>3.90</td>
<td>1.44</td>
<td>1.38</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3925</td>
<td>OMU</td>
<td>C5-C4</td>
<td>3.84</td>
<td>1.52</td>
<td>1.43</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4306</td>
<td>OMU</td>
<td>C2-N1</td>
<td>3.82</td>
<td>1.44</td>
<td>1.38</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3925</td>
<td>OMU</td>
<td>C2-N1</td>
<td>3.80</td>
<td>1.44</td>
<td>1.38</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4227</td>
<td>OMU</td>
<td>C5-C4</td>
<td>3.77</td>
<td>1.52</td>
<td>1.43</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4620</td>
<td>OMU</td>
<td>C2-N1</td>
<td>3.71</td>
<td>1.44</td>
<td>1.38</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4620</td>
<td>OMU</td>
<td>C5-C4</td>
<td>3.68</td>
<td>1.51</td>
<td>1.43</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4306</td>
<td>OMU</td>
<td>C5-C4</td>
<td>3.60</td>
<td>1.51</td>
<td>1.43</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3822</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.52</td>
<td>1.39</td>
<td>1.35</td>
</tr>
<tr>
<td>24</td>
<td>LN</td>
<td>245</td>
<td>HIC</td>
<td>CD2-CG</td>
<td>3.49</td>
<td>1.41</td>
<td>1.36</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2839</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.40</td>
<td>1.39</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4431</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.40</td>
<td>1.39</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4457</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.36</td>
<td>1.39</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1862</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.34</td>
<td>1.39</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3715</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.32</td>
<td>1.39</td>
<td>1.35</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>1871</td>
<td>A2M</td>
<td>O4'-C1'</td>
<td>3.32</td>
<td>1.45</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3734</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.32</td>
<td>1.39</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3730</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.30</td>
<td>1.39</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4500</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.30</td>
<td>1.39</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3695</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.30</td>
<td>1.39</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4228</td>
<td>OMG</td>
<td>C8-N7</td>
<td>-3.27</td>
<td>1.29</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4576</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.27</td>
<td>1.39</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3844</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.25</td>
<td>1.39</td>
<td>1.35</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>69</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.22</td>
<td>1.39</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>5010</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.21</td>
<td>1.39</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4403</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.20</td>
<td>1.39</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4471</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.20</td>
<td>1.39</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2632</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.19</td>
<td>1.39</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4618</td>
<td>OMG</td>
<td>C8-N7</td>
<td>-3.17</td>
<td>1.29</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4532</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.17</td>
<td>1.39</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4673</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.16</td>
<td>1.39</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4636</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.15</td>
<td>1.39</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1792</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.14</td>
<td>1.39</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1860</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.12</td>
<td>1.39</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3637</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.08</td>
<td>1.38</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>398</td>
<td>A2M</td>
<td>O4'-C1'</td>
<td>3.08</td>
<td>1.45</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2508</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.08</td>
<td>1.38</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1582</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.08</td>
<td>1.38</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3851</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.08</td>
<td>1.38</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4306</td>
<td>OMU</td>
<td>O4-C4</td>
<td>-3.08</td>
<td>1.18</td>
<td>1.24</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4370</td>
<td>OMG</td>
<td>C8-N7</td>
<td>-3.07</td>
<td>1.29</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>400</td>
<td>A2M</td>
<td>O4'-C1'</td>
<td>3.06</td>
<td>1.45</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4552</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.06</td>
<td>1.38</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1625</td>
<td>OMG</td>
<td>C8-N7</td>
<td>-3.06</td>
<td>1.29</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3884</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.06</td>
<td>1.38</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3724</td>
<td>A2M</td>
<td>O4'-C1'</td>
<td>3.06</td>
<td>1.45</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1536</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.05</td>
<td>1.38</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4228</td>
<td>OMG</td>
<td>C5-C6</td>
<td>-3.03</td>
<td>1.41</td>
<td>1.47</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3853</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.03</td>
<td>1.38</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4972</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.02</td>
<td>1.38</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4494</td>
<td>OMG</td>
<td>C8-N7</td>
<td>-3.02</td>
<td>1.29</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>5001</td>
<td>PSU</td>
<td>C6-C5</td>
<td>3.02</td>
<td>1.38</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3830</td>
<td>A2M</td>
<td>O4'-C1'</td>
<td>3.01</td>
<td>1.45</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2876</td>
<td>OMG</td>
<td>C8-N7</td>
<td>-3.00</td>
<td>1.29</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4571</td>
<td>A2M</td>
<td>O4'-C1'</td>
<td>2.99</td>
<td>1.45</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3825</td>
<td>A2M</td>
<td>O4'-C1'</td>
<td>2.98</td>
<td>1.45</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3639</td>
<td>PSU</td>
<td>C6-C5</td>
<td>2.98</td>
<td>1.38</td>
<td>1.35</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>4689</td>
<td>PSU</td>
<td>C6-C5</td>
<td>2.98</td>
<td>1.38</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2364</td>
<td>OMG</td>
<td>C8-N7</td>
<td>-2.97</td>
<td>1.30</td>
<td>1.35</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>55</td>
<td>PSU</td>
<td>C6-C5</td>
<td>2.96</td>
<td>1.38</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4620</td>
<td>OMU</td>
<td>O4-C4</td>
<td>-2.96</td>
<td>1.18</td>
<td>1.24</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2424</td>
<td>OMG</td>
<td>C8-N7</td>
<td>-2.96</td>
<td>1.30</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2815</td>
<td>A2M</td>
<td>O4'-C1'</td>
<td>2.95</td>
<td>1.45</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4493</td>
<td>PSU</td>
<td>C6-C5</td>
<td>2.95</td>
<td>1.38</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2401</td>
<td>A2M</td>
<td>O4'-C1'</td>
<td>2.94</td>
<td>1.45</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1522</td>
<td>OMG</td>
<td>C8-N7</td>
<td>-2.93</td>
<td>1.30</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4523</td>
<td>A2M</td>
<td>O4'-C1'</td>
<td>2.93</td>
<td>1.45</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>75</td>
<td>OMG</td>
<td>C8-N7</td>
<td>-2.92</td>
<td>1.30</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4637</td>
<td>OMG</td>
<td>C8-N7</td>
<td>-2.92</td>
<td>1.30</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4227</td>
<td>OMU</td>
<td>O4-C4</td>
<td>-2.91</td>
<td>1.18</td>
<td>1.24</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3899</td>
<td>OMG</td>
<td>C8-N7</td>
<td>-2.91</td>
<td>1.30</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3718</td>
<td>A2M</td>
<td>O4'-C1'</td>
<td>2.89</td>
<td>1.45</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4312</td>
<td>PSU</td>
<td>C6-C5</td>
<td>2.88</td>
<td>1.38</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4499</td>
<td>OMG</td>
<td>C8-N7</td>
<td>-2.88</td>
<td>1.30</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4623</td>
<td>OMG</td>
<td>C8-N7</td>
<td>-2.87</td>
<td>1.30</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4521</td>
<td>PSU</td>
<td>C6-C5</td>
<td>2.85</td>
<td>1.38</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4392</td>
<td>OMG</td>
<td>C8-N7</td>
<td>-2.84</td>
<td>1.30</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1316</td>
<td>OMG</td>
<td>C8-N7</td>
<td>-2.83</td>
<td>1.30</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2415</td>
<td>OMU</td>
<td>O4-C4</td>
<td>-2.83</td>
<td>1.19</td>
<td>1.24</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2837</td>
<td>OMU</td>
<td>O4-C4</td>
<td>-2.83</td>
<td>1.19</td>
<td>1.24</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4353</td>
<td>PSU</td>
<td>C6-C5</td>
<td>2.82</td>
<td>1.38</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4530</td>
<td>UR3</td>
<td>C2-N1</td>
<td>-2.81</td>
<td>1.34</td>
<td>1.38</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3744</td>
<td>OMG</td>
<td>C8-N7</td>
<td>-2.81</td>
<td>1.30</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2363</td>
<td>A2M</td>
<td>C8-N7</td>
<td>-2.81</td>
<td>1.29</td>
<td>1.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4361</td>
<td>PSU</td>
<td>C6-C5</td>
<td>2.80</td>
<td>1.38</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3925</td>
<td>OMU</td>
<td>O4-C4</td>
<td>-2.80</td>
<td>1.19</td>
<td>1.24</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1326</td>
<td>A2M</td>
<td>O4'-C1'</td>
<td>2.78</td>
<td>1.45</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1683</td>
<td>PSU</td>
<td>C6-C5</td>
<td>2.76</td>
<td>1.38</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2363</td>
<td>A2M</td>
<td>O4'-C1'</td>
<td>2.76</td>
<td>1.44</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2424</td>
<td>OMG</td>
<td>C5-C6</td>
<td>-2.76</td>
<td>1.41</td>
<td>1.47</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3920</td>
<td>PSU</td>
<td>C6-C5</td>
<td>2.76</td>
<td>1.38</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3718</td>
<td>A2M</td>
<td>C8-N7</td>
<td>-2.75</td>
<td>1.29</td>
<td>1.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4579</td>
<td>PSU</td>
<td>C6-C5</td>
<td>2.74</td>
<td>1.38</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1524</td>
<td>A2M</td>
<td>O4'-C1'</td>
<td>2.74</td>
<td>1.44</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4498</td>
<td>OMU</td>
<td>O4-C4</td>
<td>-2.73</td>
<td>1.19</td>
<td>1.24</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3627</td>
<td>OMG</td>
<td>C8-N7</td>
<td>-2.72</td>
<td>1.30</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4590</td>
<td>A2M</td>
<td>O4'-C1'</td>
<td>2.71</td>
<td>1.44</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4220</td>
<td>6MZ</td>
<td>C8-N7</td>
<td>-2.69</td>
<td>1.29</td>
<td>1.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1625</td>
<td>OMG</td>
<td>C5-C6</td>
<td>-2.68</td>
<td>1.42</td>
<td>1.47</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>4628</td>
<td>PSU</td>
<td>C6-C5</td>
<td>2.68</td>
<td>1.38</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3899</td>
<td>OMG</td>
<td>C5-C6</td>
<td>-2.68</td>
<td>1.42</td>
<td>1.47</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4370</td>
<td>OMG</td>
<td>C5-C6</td>
<td>-2.66</td>
<td>1.42</td>
<td>1.47</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1677</td>
<td>PSU</td>
<td>C6-C5</td>
<td>2.65</td>
<td>1.38</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4293</td>
<td>PSU</td>
<td>C6-C5</td>
<td>2.65</td>
<td>1.38</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2787</td>
<td>A2M</td>
<td>C8-N7</td>
<td>-2.64</td>
<td>1.30</td>
<td>1.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4590</td>
<td>A2M</td>
<td>C8-N7</td>
<td>-2.64</td>
<td>1.30</td>
<td>1.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4293</td>
<td>PSU</td>
<td>C6-C5</td>
<td>2.65</td>
<td>1.38</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4306</td>
<td>OMG</td>
<td>C5-C6</td>
<td>-2.66</td>
<td>1.42</td>
<td>1.47</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4494</td>
<td>OMG</td>
<td>C5-C6</td>
<td>-2.61</td>
<td>1.42</td>
<td>1.47</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3867</td>
<td>A2M</td>
<td>O4'-C1'</td>
<td>2.61</td>
<td>1.44</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4571</td>
<td>A2M</td>
<td>C8-N7</td>
<td>-2.59</td>
<td>1.30</td>
<td>1.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>398</td>
<td>A2M</td>
<td>C8-N7</td>
<td>-2.57</td>
<td>1.30</td>
<td>1.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1524</td>
<td>A2M</td>
<td>C8-N7</td>
<td>-2.54</td>
<td>1.30</td>
<td>1.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1534</td>
<td>A2M</td>
<td>C8-N7</td>
<td>-2.54</td>
<td>1.30</td>
<td>1.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2401</td>
<td>A2M</td>
<td>C8-N7</td>
<td>-2.54</td>
<td>1.30</td>
<td>1.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4571</td>
<td>A2M</td>
<td>O4'-C1'</td>
<td>2.56</td>
<td>1.44</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4293</td>
<td>PSU</td>
<td>C6-C5</td>
<td>2.55</td>
<td>1.38</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3867</td>
<td>A2M</td>
<td>C8-N7</td>
<td>-2.55</td>
<td>1.30</td>
<td>1.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4530</td>
<td>UR3</td>
<td>C4-N3</td>
<td>-2.54</td>
<td>1.34</td>
<td>1.40</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1524</td>
<td>A2M</td>
<td>C8-N7</td>
<td>-2.54</td>
<td>1.30</td>
<td>1.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1534</td>
<td>A2M</td>
<td>C8-N7</td>
<td>-2.54</td>
<td>1.30</td>
<td>1.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2401</td>
<td>A2M</td>
<td>C8-N7</td>
<td>-2.54</td>
<td>1.30</td>
<td>1.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2364</td>
<td>OMG</td>
<td>C5-C6</td>
<td>-2.53</td>
<td>1.42</td>
<td>1.47</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4523</td>
<td>A2M</td>
<td>C8-N7</td>
<td>-2.53</td>
<td>1.30</td>
<td>1.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1534</td>
<td>A2M</td>
<td>O4'-C1'</td>
<td>2.53</td>
<td>1.44</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3825</td>
<td>A2M</td>
<td>C8-N7</td>
<td>-2.53</td>
<td>1.30</td>
<td>1.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2815</td>
<td>OMU</td>
<td>C2-N3</td>
<td>2.52</td>
<td>1.42</td>
<td>1.38</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>75</td>
<td>OMG</td>
<td>C5-C6</td>
<td>-2.51</td>
<td>1.42</td>
<td>1.47</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>400</td>
<td>A2M</td>
<td>C8-N7</td>
<td>-2.49</td>
<td>1.30</td>
<td>1.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4392</td>
<td>OMG</td>
<td>C5-C6</td>
<td>-2.49</td>
<td>1.42</td>
<td>1.47</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3830</td>
<td>A2M</td>
<td>C8-N7</td>
<td>-2.49</td>
<td>1.30</td>
<td>1.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1522</td>
<td>OMG</td>
<td>C5-C6</td>
<td>-2.49</td>
<td>1.42</td>
<td>1.47</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2837</td>
<td>OMU</td>
<td>C2-N3</td>
<td>2.48</td>
<td>1.42</td>
<td>1.38</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1316</td>
<td>OMG</td>
<td>C5-C6</td>
<td>-2.47</td>
<td>1.42</td>
<td>1.47</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4499</td>
<td>OMG</td>
<td>C5-C6</td>
<td>-2.46</td>
<td>1.42</td>
<td>1.47</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1326</td>
<td>A2M</td>
<td>C8-N7</td>
<td>-2.45</td>
<td>1.30</td>
<td>1.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4623</td>
<td>OMG</td>
<td>C5-C6</td>
<td>-2.45</td>
<td>1.42</td>
<td>1.47</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4618</td>
<td>OMG</td>
<td>C5-C6</td>
<td>-2.43</td>
<td>1.42</td>
<td>1.47</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3724</td>
<td>A2M</td>
<td>C8-N7</td>
<td>-2.41</td>
<td>1.30</td>
<td>1.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1871</td>
<td>A2M</td>
<td>C8-N7</td>
<td>-2.41</td>
<td>1.30</td>
<td>1.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4227</td>
<td>OMU</td>
<td>O2-C2</td>
<td>-2.38</td>
<td>1.18</td>
<td>1.23</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2876</td>
<td>OMG</td>
<td>C5-C6</td>
<td>-2.38</td>
<td>1.42</td>
<td>1.47</td>
</tr>
</tbody>
</table>

Continued on next page...
Table

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>4299</td>
<td>PSU</td>
<td>C6-C5</td>
<td>2.38</td>
<td>1.38</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3744</td>
<td>OMG</td>
<td>C5-C6</td>
<td>-2.37</td>
<td>1.42</td>
<td>1.47</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4620</td>
<td>OMU</td>
<td>O2-C2</td>
<td>-2.31</td>
<td>1.18</td>
<td>1.23</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4530</td>
<td>UR3</td>
<td>C2-N3</td>
<td>-2.30</td>
<td>1.34</td>
<td>1.39</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2415</td>
<td>OMU</td>
<td>C2-N3</td>
<td>2.29</td>
<td>1.42</td>
<td>1.38</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2415</td>
<td>OMU</td>
<td>O2-C2</td>
<td>-2.27</td>
<td>1.18</td>
<td>1.23</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3925</td>
<td>OMU</td>
<td>O2-C2</td>
<td>-2.26</td>
<td>1.18</td>
<td>1.23</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3925</td>
<td>OMU</td>
<td>C2-N3</td>
<td>2.25</td>
<td>1.42</td>
<td>1.38</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4370</td>
<td>OMG</td>
<td>C5-C4</td>
<td>-2.25</td>
<td>1.37</td>
<td>1.43</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1534</td>
<td>A2M</td>
<td>C4-N3</td>
<td>-2.20</td>
<td>1.32</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1524</td>
<td>A2M</td>
<td>C4-N3</td>
<td>-2.16</td>
<td>1.32</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2401</td>
<td>A2M</td>
<td>C4-N3</td>
<td>-2.16</td>
<td>1.32</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4220</td>
<td>6MZ</td>
<td>C4-N3</td>
<td>-2.15</td>
<td>1.32</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2837</td>
<td>OMU</td>
<td>O2-C2</td>
<td>-2.14</td>
<td>1.19</td>
<td>1.23</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3718</td>
<td>A2M</td>
<td>C4-N3</td>
<td>-2.14</td>
<td>1.32</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2787</td>
<td>A2M</td>
<td>C4-N3</td>
<td>-2.13</td>
<td>1.32</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1683</td>
<td>PSU</td>
<td>C4-C5</td>
<td>-2.09</td>
<td>1.38</td>
<td>1.44</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4498</td>
<td>OMU</td>
<td>O2-C2</td>
<td>-2.08</td>
<td>1.19</td>
<td>1.23</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4494</td>
<td>OMG</td>
<td>C5-C4</td>
<td>-2.07</td>
<td>1.37</td>
<td>1.43</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3830</td>
<td>A2M</td>
<td>C4-N3</td>
<td>-2.07</td>
<td>1.32</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2424</td>
<td>OMG</td>
<td>C5-C4</td>
<td>-2.06</td>
<td>1.37</td>
<td>1.43</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4228</td>
<td>OMG</td>
<td>C5-C4</td>
<td>-2.06</td>
<td>1.37</td>
<td>1.43</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4590</td>
<td>A2M</td>
<td>C4-N3</td>
<td>-2.06</td>
<td>1.32</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4299</td>
<td>PSU</td>
<td>C4-C5</td>
<td>-2.06</td>
<td>1.38</td>
<td>1.44</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3899</td>
<td>OMG</td>
<td>C5-C4</td>
<td>-2.05</td>
<td>1.37</td>
<td>1.43</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1326</td>
<td>A2M</td>
<td>C4-N3</td>
<td>-2.05</td>
<td>1.32</td>
<td>1.35</td>
</tr>
<tr>
<td>24</td>
<td>LN</td>
<td>245</td>
<td>HIC</td>
<td>CZ-NE2</td>
<td>-2.05</td>
<td>1.42</td>
<td>1.48</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4618</td>
<td>OMG</td>
<td>C5-C4</td>
<td>-2.05</td>
<td>1.37</td>
<td>1.43</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2815</td>
<td>A2M</td>
<td>C4-N3</td>
<td>-2.05</td>
<td>1.32</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3627</td>
<td>OMG</td>
<td>C5-C4</td>
<td>-2.05</td>
<td>1.37</td>
<td>1.43</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2364</td>
<td>OMG</td>
<td>C5-C4</td>
<td>-2.04</td>
<td>1.37</td>
<td>1.43</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4523</td>
<td>A2M</td>
<td>C4-N3</td>
<td>-2.03</td>
<td>1.32</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4623</td>
<td>OMG</td>
<td>C5-C4</td>
<td>-2.03</td>
<td>1.37</td>
<td>1.43</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4628</td>
<td>PSU</td>
<td>C4-C5</td>
<td>-2.02</td>
<td>1.38</td>
<td>1.44</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4227</td>
<td>OMU</td>
<td>C2-N3</td>
<td>2.02</td>
<td>1.41</td>
<td>1.38</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4498</td>
<td>OMU</td>
<td>C4-N3</td>
<td>2.02</td>
<td>1.42</td>
<td>1.38</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1522</td>
<td>OMG</td>
<td>C5-C4</td>
<td>-2.02</td>
<td>1.37</td>
<td>1.43</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4673</td>
<td>PSU</td>
<td>C4-C5</td>
<td>-2.02</td>
<td>1.38</td>
<td>1.44</td>
</tr>
</tbody>
</table>

All (301) bond angle outliers are listed below:

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>2837</td>
<td>OMU</td>
<td>C4-N3-C2</td>
<td>-5.36</td>
<td>119.52</td>
<td>126.58</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2415</td>
<td>OMU</td>
<td>C4-N3-C2</td>
<td>-5.33</td>
<td>119.55</td>
<td>126.58</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4306</td>
<td>OMU</td>
<td>C4-N3-C2</td>
<td>-5.33</td>
<td>119.55</td>
<td>126.58</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3925</td>
<td>OMU</td>
<td>C4-N3-C2</td>
<td>-5.31</td>
<td>119.57</td>
<td>126.58</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4296</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-5.24</td>
<td>118.78</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4498</td>
<td>OMU</td>
<td>C4-N3-C2</td>
<td>-5.23</td>
<td>119.68</td>
<td>126.58</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4220</td>
<td>6MZ</td>
<td>C2-N1-C6</td>
<td>5.22</td>
<td>121.06</td>
<td>116.59</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4227</td>
<td>OMU</td>
<td>C4-N3-C2</td>
<td>-5.21</td>
<td>119.71</td>
<td>126.58</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4299</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-5.07</td>
<td>119.03</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4312</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.96</td>
<td>119.19</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4493</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.89</td>
<td>119.30</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4353</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.93</td>
<td>120.71</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4353</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.89</td>
<td>119.30</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4431</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.87</td>
<td>119.32</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4532</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.83</td>
<td>119.38</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4299</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.83</td>
<td>120.60</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1582</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.83</td>
<td>119.38</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2508</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.79</td>
<td>119.44</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4312</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.78</td>
<td>120.55</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3637</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.78</td>
<td>119.46</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4296</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.76</td>
<td>120.52</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3851</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.75</td>
<td>119.50</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2632</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.74</td>
<td>119.50</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4532</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.73</td>
<td>120.48</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4493</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.74</td>
<td>119.50</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4361</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.74</td>
<td>120.50</td>
<td>115.13</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>55</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.74</td>
<td>119.51</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4403</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.73</td>
<td>119.52</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4457</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.73</td>
<td>120.48</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4689</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.72</td>
<td>119.54</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4673</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.71</td>
<td>119.55</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4636</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.71</td>
<td>120.47</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3639</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.70</td>
<td>120.46</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4521</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.70</td>
<td>119.57</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3695</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.69</td>
<td>119.58</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>5010</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.68</td>
<td>119.60</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3920</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.67</td>
<td>119.61</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4361</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.67</td>
<td>119.61</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>5001</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.66</td>
<td>120.41</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3639</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.66</td>
<td>119.63</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4532</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.65</td>
<td>120.40</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1677</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.64</td>
<td>119.65</td>
<td>126.34</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>1683</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.64</td>
<td>119.66</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4457</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.63</td>
<td>119.66</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4972</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.63</td>
<td>119.66</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4500</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.63</td>
<td>119.67</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4552</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.63</td>
<td>119.67</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>5001</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.63</td>
<td>119.67</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4689</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.62</td>
<td>120.37</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3637</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.62</td>
<td>120.36</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4471</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.62</td>
<td>120.35</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3695</td>
<td>OMU</td>
<td>N3-C2-N1</td>
<td>4.53</td>
<td>120.91</td>
<td>114.89</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>55</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.56</td>
<td>120.30</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4673</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.56</td>
<td>120.30</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2839</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.56</td>
<td>119.77</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1792</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.56</td>
<td>119.77</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4628</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.57</td>
<td>119.75</td>
<td>126.34</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>69</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.53</td>
<td>119.81</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4576</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.53</td>
<td>120.26</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4530</td>
<td>UR3</td>
<td>C4-N3-C2</td>
<td>-4.53</td>
<td>120.30</td>
<td>124.56</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4493</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.51</td>
<td>120.24</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3734</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.51</td>
<td>120.24</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4972</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.51</td>
<td>120.24</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4590</td>
<td>A2M</td>
<td>N3-C2-N1</td>
<td>-4.49</td>
<td>121.66</td>
<td>128.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4500</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.49</td>
<td>120.22</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1860</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.49</td>
<td>120.21</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3695</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.48</td>
<td>120.21</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3730</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.47</td>
<td>120.20</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3715</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.47</td>
<td>120.20</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2508</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.46</td>
<td>120.19</td>
<td>115.13</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>1536</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.45</td>
<td>120.18</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4552</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.44</td>
<td>120.16</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3884</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.43</td>
<td>119.95</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3920</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.43</td>
<td>120.15</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4620</td>
<td>OMU</td>
<td>C4-N3-C2</td>
<td>-4.43</td>
<td>120.74</td>
<td>126.58</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4403</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.43</td>
<td>120.15</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4403</td>
<td>OMU</td>
<td>C4-N3-C2</td>
<td>-4.43</td>
<td>120.74</td>
<td>126.58</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1582</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.42</td>
<td>120.14</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2839</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.42</td>
<td>120.14</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4579</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.42</td>
<td>119.97</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1862</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.41</td>
<td>120.13</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>5010</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.41</td>
<td>120.13</td>
<td>115.13</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>69</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.39</td>
<td>120.11</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4521</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.38</td>
<td>120.09</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3844</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.38</td>
<td>120.09</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2415</td>
<td>OMU</td>
<td>N3-C2-N1</td>
<td>4.37</td>
<td>120.69</td>
<td>114.89</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3851</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.36</td>
<td>120.07</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2632</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.35</td>
<td>120.06</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3724</td>
<td>A2M</td>
<td>N3-C2-N1</td>
<td>-4.30</td>
<td>121.96</td>
<td>128.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3925</td>
<td>OMU</td>
<td>N3-C2-N1</td>
<td>4.29</td>
<td>120.58</td>
<td>114.89</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3853</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.28</td>
<td>119.98</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4293</td>
<td>PSU</td>
<td>C4-N3-C2</td>
<td>-4.26</td>
<td>120.20</td>
<td>126.34</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4579</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.25</td>
<td>119.94</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3830</td>
<td>A2M</td>
<td>N3-C2-N1</td>
<td>-4.23</td>
<td>122.06</td>
<td>128.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1683</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.23</td>
<td>119.92</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2837</td>
<td>OMU</td>
<td>N3-C2-N1</td>
<td>4.21</td>
<td>120.47</td>
<td>114.89</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4293</td>
<td>PSU</td>
<td>N1-C2-N3</td>
<td>4.21</td>
<td>119.89</td>
<td>115.13</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2363</td>
<td>A2M</td>
<td>N3-C2-N1</td>
<td>-4.18</td>
<td>122.14</td>
<td>128.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1524</td>
<td>A2M</td>
<td>N3-C2-N1</td>
<td>-4.15</td>
<td>122.19</td>
<td>128.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>400</td>
<td>A2M</td>
<td>N3-C2-N1</td>
<td>-4.13</td>
<td>122.22</td>
<td>128.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4498</td>
<td>OMU</td>
<td>N3-C2-N1</td>
<td>4.06</td>
<td>120.28</td>
<td>114.89</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2401</td>
<td>A2M</td>
<td>N3-C2-N1</td>
<td>-4.04</td>
<td>122.36</td>
<td>128.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4523</td>
<td>A2M</td>
<td>N3-C2-N1</td>
<td>-4.04</td>
<td>122.37</td>
<td>128.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1326</td>
<td>A2M</td>
<td>N3-C2-N1</td>
<td>-4.03</td>
<td>122.38</td>
<td>128.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3867</td>
<td>A2M</td>
<td>N3-C2-N1</td>
<td>-4.02</td>
<td>122.39</td>
<td>128.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1871</td>
<td>A2M</td>
<td>N3-C2-N1</td>
<td>-4.00</td>
<td>122.43</td>
<td>128.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2787</td>
<td>A2M</td>
<td>N3-C2-N1</td>
<td>-4.00</td>
<td>122.43</td>
<td>128.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3825</td>
<td>A2M</td>
<td>N3-C2-N1</td>
<td>-4.00</td>
<td>122.43</td>
<td>128.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2815</td>
<td>A2M</td>
<td>N3-C2-N1</td>
<td>-3.98</td>
<td>122.46</td>
<td>128.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4220</td>
<td>6MZ</td>
<td>N3-C2-N1</td>
<td>-3.92</td>
<td>122.56</td>
<td>128.68</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>398</td>
<td>A2M</td>
<td>N3-C2-N1</td>
<td>-3.90</td>
<td>122.58</td>
<td>128.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1534</td>
<td>A2M</td>
<td>N3-C2-N1</td>
<td>-3.86</td>
<td>122.65</td>
<td>128.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4571</td>
<td>A2M</td>
<td>N3-C2-N1</td>
<td>-3.82</td>
<td>122.70</td>
<td>128.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4200</td>
<td>6MZ</td>
<td>C9-N6-C6</td>
<td>-3.82</td>
<td>119.58</td>
<td>122.87</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4227</td>
<td>OMU</td>
<td>C5-C4-N3</td>
<td>3.79</td>
<td>120.51</td>
<td>114.84</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4227</td>
<td>OMU</td>
<td>N3-C2-N1</td>
<td>3.77</td>
<td>119.89</td>
<td>114.89</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3718</td>
<td>A2M</td>
<td>N3-C2-N1</td>
<td>-3.65</td>
<td>122.97</td>
<td>128.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4620</td>
<td>OMU</td>
<td>N3-C2-N1</td>
<td>3.58</td>
<td>119.64</td>
<td>114.89</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2837</td>
<td>OMU</td>
<td>C5-C4-N3</td>
<td>3.52</td>
<td>120.11</td>
<td>114.84</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4498</td>
<td>OMU</td>
<td>C5-C4-N3</td>
<td>3.51</td>
<td>120.09</td>
<td>114.84</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4620</td>
<td>OMU</td>
<td>C5-C4-N3</td>
<td>3.50</td>
<td>120.07</td>
<td>114.84</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4306</td>
<td>OMU</td>
<td>C5-C4-N3</td>
<td>3.47</td>
<td>120.03</td>
<td>114.84</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2415</td>
<td>OMU</td>
<td>C5-C4-N3</td>
<td>3.43</td>
<td>119.97</td>
<td>114.84</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3925</td>
<td>OMU</td>
<td>C5-C4-N3</td>
<td>3.39</td>
<td>119.91</td>
<td>114.84</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4296</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-3.15</td>
<td>119.33</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4227</td>
<td>OMU</td>
<td>O4-C4-C5</td>
<td>-3.12</td>
<td>119.67</td>
<td>125.16</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2837</td>
<td>OMU</td>
<td>O4-C4-C5</td>
<td>-3.03</td>
<td>119.83</td>
<td>125.16</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3925</td>
<td>OMU</td>
<td>O4-C4-C5</td>
<td>-2.98</td>
<td>119.92</td>
<td>125.16</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4498</td>
<td>OMU</td>
<td>O4-C4-C5</td>
<td>-2.96</td>
<td>119.95</td>
<td>125.16</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3853</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.96</td>
<td>119.53</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4628</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.94</td>
<td>119.56</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1536</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.90</td>
<td>119.59</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2508</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.87</td>
<td>119.63</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4457</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.85</td>
<td>119.66</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3639</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.84</td>
<td>119.67</td>
<td>122.79</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>55</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.84</td>
<td>119.67</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3734</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.81</td>
<td>119.69</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4620</td>
<td>OMU</td>
<td>O4-C4-C5</td>
<td>-2.80</td>
<td>120.23</td>
<td>125.16</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2415</td>
<td>OMU</td>
<td>O4-C4-C5</td>
<td>-2.80</td>
<td>120.24</td>
<td>125.16</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3822</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.79</td>
<td>119.72</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4579</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.78</td>
<td>119.73</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4500</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.76</td>
<td>119.76</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4532</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.75</td>
<td>119.76</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1862</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.72</td>
<td>119.80</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3884</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.72</td>
<td>119.80</td>
<td>122.79</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>69</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.72</td>
<td>119.80</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3715</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.72</td>
<td>119.80</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4306</td>
<td>OMU</td>
<td>O4-C4-C5</td>
<td>-2.71</td>
<td>120.39</td>
<td>125.16</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4576</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.70</td>
<td>119.82</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3884</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.70</td>
<td>119.92</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3920</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.69</td>
<td>119.82</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4618</td>
<td>OMG</td>
<td>O6-C6-C5</td>
<td>2.67</td>
<td>129.60</td>
<td>124.37</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>4370</td>
<td>OMG</td>
<td>O6-C6-C5</td>
<td>2.66</td>
<td>129.57</td>
<td>124.37</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>5001</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.66</td>
<td>119.86</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4972</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.64</td>
<td>119.88</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4353</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.64</td>
<td>119.89</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1677</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.63</td>
<td>119.89</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3730</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.62</td>
<td>119.91</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4312</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.62</td>
<td>119.91</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4636</td>
<td>PSU</td>
<td>C6-C5-C4</td>
<td>2.62</td>
<td>120.03</td>
<td>118.20</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4623</td>
<td>OMG</td>
<td>O6-C6-C5</td>
<td>2.61</td>
<td>129.47</td>
<td>124.37</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1582</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.59</td>
<td>119.94</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4471</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.59</td>
<td>119.94</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4299</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.57</td>
<td>119.96</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3844</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.57</td>
<td>119.96</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3734</td>
<td>PSU</td>
<td>C6-C5-C4</td>
<td>2.56</td>
<td>119.99</td>
<td>118.20</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4494</td>
<td>OMG</td>
<td>O6-C6-C5</td>
<td>2.55</td>
<td>129.36</td>
<td>124.37</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4403</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.55</td>
<td>119.99</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1792</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.54</td>
<td>119.99</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4353</td>
<td>PSU</td>
<td>C6-C5-C4</td>
<td>2.53</td>
<td>119.97</td>
<td>118.20</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4431</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.53</td>
<td>120.01</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4521</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.53</td>
<td>120.01</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4392</td>
<td>OMG</td>
<td>O6-C6-C5</td>
<td>2.52</td>
<td>129.30</td>
<td>124.37</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4431</td>
<td>PSU</td>
<td>C6-C5-C4</td>
<td>2.52</td>
<td>119.96</td>
<td>118.20</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1316</td>
<td>OMG</td>
<td>O6-C6-C5</td>
<td>2.50</td>
<td>129.26</td>
<td>124.37</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2839</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.50</td>
<td>120.04</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>5001</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.49</td>
<td>120.13</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3744</td>
<td>OMG</td>
<td>O6-C6-C5</td>
<td>2.48</td>
<td>129.22</td>
<td>124.37</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3822</td>
<td>PSU</td>
<td>C6-C5-C4</td>
<td>2.48</td>
<td>119.93</td>
<td>118.20</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3695</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.47</td>
<td>120.07</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4637</td>
<td>OMG</td>
<td>O6-C6-C5</td>
<td>2.47</td>
<td>129.19</td>
<td>124.37</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4636</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.46</td>
<td>120.08</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4552</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.46</td>
<td>120.08</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2876</td>
<td>OMG</td>
<td>O6-C6-C5</td>
<td>2.46</td>
<td>129.17</td>
<td>124.37</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4299</td>
<td>PSU</td>
<td>C6-C5-C4</td>
<td>2.44</td>
<td>119.90</td>
<td>118.20</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4299</td>
<td>PSU</td>
<td>C6-C5-C4</td>
<td>2.44</td>
<td>119.90</td>
<td>118.20</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2415</td>
<td>OMU</td>
<td>O2-C2-N1</td>
<td>-2.43</td>
<td>119.55</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4689</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.43</td>
<td>120.12</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3925</td>
<td>OMU</td>
<td>O2-C2-N1</td>
<td>-2.43</td>
<td>119.56</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4590</td>
<td>A2M</td>
<td>C4-C5-N7</td>
<td>-2.43</td>
<td>106.87</td>
<td>109.40</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>75</td>
<td>OMG</td>
<td>O6-C6-C5</td>
<td>2.43</td>
<td>129.11</td>
<td>124.37</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3637</td>
<td>PSU</td>
<td>C6-C5-C4</td>
<td>2.42</td>
<td>119.89</td>
<td>118.20</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>5010</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.42</td>
<td>120.13</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2364</td>
<td>OMG</td>
<td>O6-C6-C5</td>
<td>2.42</td>
<td>129.09</td>
<td>124.37</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4457</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.42</td>
<td>120.21</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3639</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.40</td>
<td>120.23</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2815</td>
<td>A2M</td>
<td>C4-C5-N7</td>
<td>-2.40</td>
<td>106.90</td>
<td>109.40</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3899</td>
<td>OMG</td>
<td>O6-C6-C5</td>
<td>2.39</td>
<td>129.04</td>
<td>124.37</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4293</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.38</td>
<td>120.25</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4361</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.37</td>
<td>120.18</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1677</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.37</td>
<td>120.26</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3695</td>
<td>PSU</td>
<td>C6-C5-C4</td>
<td>2.34</td>
<td>119.83</td>
<td>118.20</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1522</td>
<td>OMG</td>
<td>O6-C6-C5</td>
<td>2.33</td>
<td>128.93</td>
<td>124.37</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3920</td>
<td>PSU</td>
<td>C6-C5-C4</td>
<td>2.32</td>
<td>119.82</td>
<td>118.20</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4576</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.31</td>
<td>120.32</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4972</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.30</td>
<td>120.33</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4689</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.30</td>
<td>120.33</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4628</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.30</td>
<td>120.33</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3730</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.30</td>
<td>120.34</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>5001</td>
<td>PSU</td>
<td>C6-C5-C4</td>
<td>2.29</td>
<td>119.80</td>
<td>118.20</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1534</td>
<td>A2M</td>
<td>C4-C5-N7</td>
<td>-2.28</td>
<td>107.03</td>
<td>109.40</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4532</td>
<td>PSU</td>
<td>C6-C5-C4</td>
<td>2.28</td>
<td>119.79</td>
<td>118.20</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4590</td>
<td>A2M</td>
<td>C2-N1-C6</td>
<td>2.28</td>
<td>122.65</td>
<td>118.75</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3822</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.27</td>
<td>120.36</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4471</td>
<td>PSU</td>
<td>C6-C5-C4</td>
<td>2.28</td>
<td>119.79</td>
<td>118.20</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4220</td>
<td>6MZ</td>
<td>C4-C5-N7</td>
<td>-2.28</td>
<td>107.03</td>
<td>109.40</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4532</td>
<td>PSU</td>
<td>C6-C5-C4</td>
<td>2.28</td>
<td>119.79</td>
<td>118.20</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4590</td>
<td>A2M</td>
<td>C2-N1-C6</td>
<td>2.28</td>
<td>122.65</td>
<td>118.75</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3822</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.27</td>
<td>120.36</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4673</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.27</td>
<td>120.36</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4673</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.27</td>
<td>120.29</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3639</td>
<td>PSU</td>
<td>C6-C5-C4</td>
<td>2.26</td>
<td>119.78</td>
<td>118.20</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4500</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.26</td>
<td>120.37</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1683</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.26</td>
<td>120.31</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2837</td>
<td>OMU</td>
<td>O2-C2-N1</td>
<td>-2.25</td>
<td>119.79</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1534</td>
<td>A2M</td>
<td>C4-C5-N7</td>
<td>-2.25</td>
<td>107.05</td>
<td>109.40</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1524</td>
<td>A2M</td>
<td>C4-C5-N7</td>
<td>-2.25</td>
<td>107.06</td>
<td>109.40</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1326</td>
<td>A2M</td>
<td>C4-C5-N7</td>
<td>-2.24</td>
<td>107.06</td>
<td>109.40</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2351</td>
<td>OMC</td>
<td>C1'-N1-C2</td>
<td>2.23</td>
<td>123.40</td>
<td>118.42</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>69</td>
<td>PSU</td>
<td>O4'-C1'-C2'</td>
<td>2.23</td>
<td>108.29</td>
<td>105.14</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1625</td>
<td>OMG</td>
<td>O6-C6-C5</td>
<td>2.23</td>
<td>128.72</td>
<td>124.37</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3715</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.22</td>
<td>120.41</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4293</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.22</td>
<td>120.35</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3844</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.21</td>
<td>120.42</td>
<td>122.68</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>69</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.19</td>
<td>120.44</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1792</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.19</td>
<td>120.44</td>
<td>122.68</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>LN</td>
<td>245</td>
<td>HIC</td>
<td>CB-CA-C</td>
<td>-2.19</td>
<td>107.37</td>
<td>111.47</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4361</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.19</td>
<td>120.45</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4471</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.19</td>
<td>120.45</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1860</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.18</td>
<td>120.45</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2632</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.18</td>
<td>120.39</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3734</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.17</td>
<td>120.47</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2839</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.16</td>
<td>120.47</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4353</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.16</td>
<td>120.47</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4499</td>
<td>OMG</td>
<td>O6-C6-C5</td>
<td>2.15</td>
<td>128.57</td>
<td>124.37</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3853</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.15</td>
<td>120.48</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4523</td>
<td>A2M</td>
<td>C4-C5-N7</td>
<td>-2.15</td>
<td>107.16</td>
<td>109.40</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4306</td>
<td>OMU</td>
<td>O2-C2-N1</td>
<td>-2.15</td>
<td>119.93</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3715</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.15</td>
<td>120.50</td>
<td>122.68</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>55</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.14</td>
<td>120.50</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1536</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.14</td>
<td>120.51</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1534</td>
<td>A2M</td>
<td>O4'-C1'-C2'</td>
<td>2.15</td>
<td>102.90</td>
<td>106.59</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2424</td>
<td>OMG</td>
<td>O6-C6-C5</td>
<td>2.12</td>
<td>128.52</td>
<td>124.37</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4493</td>
<td>PSU</td>
<td>O2-C2-N1</td>
<td>-2.11</td>
<td>120.47</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4296</td>
<td>PSU</td>
<td>C6-C5-C4</td>
<td>2.10</td>
<td>119.66</td>
<td>118.20</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1871</td>
<td>A2M</td>
<td>C3'-C2'-C1'</td>
<td>-2.09</td>
<td>98.86</td>
<td>102.89</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1862</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.09</td>
<td>120.55</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>398</td>
<td>A2M</td>
<td>C4-C5-N7</td>
<td>-2.08</td>
<td>107.23</td>
<td>109.40</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4312</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.08</td>
<td>120.56</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4552</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.08</td>
<td>120.56</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1860</td>
<td>PSU</td>
<td>O4'-C1'-C2'</td>
<td>2.08</td>
<td>108.07</td>
<td>105.14</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3695</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.07</td>
<td>120.56</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>5010</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.07</td>
<td>120.56</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4628</td>
<td>PSU</td>
<td>O4'-C1'-C2'</td>
<td>2.07</td>
<td>108.07</td>
<td>105.14</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4493</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.07</td>
<td>120.56</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4552</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.07</td>
<td>120.56</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1871</td>
<td>A2M</td>
<td>C3'-C2'-C1'</td>
<td>-2.09</td>
<td>98.96</td>
<td>102.89</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1862</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.09</td>
<td>120.55</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>398</td>
<td>A2M</td>
<td>C4-C5-N7</td>
<td>-2.08</td>
<td>107.23</td>
<td>109.40</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4312</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.08</td>
<td>120.56</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4552</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.08</td>
<td>120.56</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1860</td>
<td>PSU</td>
<td>O4'-C1'-C2'</td>
<td>2.08</td>
<td>108.07</td>
<td>105.14</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3695</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.07</td>
<td>120.56</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>5010</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.07</td>
<td>120.56</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4628</td>
<td>PSU</td>
<td>O4'-C1'-C2'</td>
<td>2.07</td>
<td>108.07</td>
<td>105.14</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4493</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.07</td>
<td>120.56</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4552</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.07</td>
<td>120.56</td>
<td>122.68</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>4493</td>
<td>PSU</td>
<td>C6-C5-C4</td>
<td>2.04</td>
<td>119.62</td>
<td>118.20</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4532</td>
<td>PSU</td>
<td>C6-N1-C2</td>
<td>-2.04</td>
<td>120.60</td>
<td>122.68</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4636</td>
<td>PSU</td>
<td>O4'-C1'-C2'</td>
<td>2.03</td>
<td>108.00</td>
<td>105.14</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1582</td>
<td>PSU</td>
<td>C6-C5-C4</td>
<td>2.02</td>
<td>119.61</td>
<td>118.20</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2632</td>
<td>PSU</td>
<td>O4'-C1'-C2'</td>
<td>2.02</td>
<td>107.99</td>
<td>105.14</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4498</td>
<td>OMU</td>
<td>O2-C2-N1-C2</td>
<td>-2.02</td>
<td>120.11</td>
<td>122.79</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3830</td>
<td>A2M</td>
<td>C4-C5-N7</td>
<td>-2.01</td>
<td>107.30</td>
<td>109.40</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3734</td>
<td>PSU</td>
<td>O4'-C1'-C2'</td>
<td>2.00</td>
<td>107.97</td>
<td>105.14</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

All (93) torsion outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>L1</td>
<td>75</td>
<td>OMG</td>
<td>C1'-C2'-O2'-CM2</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>398</td>
<td>A2M</td>
<td>C1'-C2'-O2'-CM'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>400</td>
<td>A2M</td>
<td>C1'-C2'-O2'-CM'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1316</td>
<td>OMG</td>
<td>C1'-C2'-O2'-CM2</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1326</td>
<td>A2M</td>
<td>O4'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1326</td>
<td>A2M</td>
<td>C3'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1326</td>
<td>A2M</td>
<td>C1'-C2'-O2'-CM'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1340</td>
<td>OMC</td>
<td>C1'-C2'-O2'-CM2</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2363</td>
<td>A2M</td>
<td>C1'-C2'-O2'-CM'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2364</td>
<td>OMG</td>
<td>C1'-C2'-O2'-CM2</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2415</td>
<td>OMU</td>
<td>C1'-C2'-O2'-CM2</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2422</td>
<td>OMC</td>
<td>C1'-C2'-O2'-CM2</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2787</td>
<td>A2M</td>
<td>C3'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2787</td>
<td>A2M</td>
<td>C1'-C2'-O2'-CM'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2804</td>
<td>OMC</td>
<td>C1'-C2'-O2'-CM2</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2815</td>
<td>A2M</td>
<td>C1'-C2'-O2'-CM'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2837</td>
<td>OMU</td>
<td>C1'-C2'-O2'-CM2</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2839</td>
<td>PSU</td>
<td>C2'-C1'-C5-C4</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2861</td>
<td>OMC</td>
<td>C1'-C2'-O2'-CM2</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3701</td>
<td>OMC</td>
<td>C2'-C1'-N1-C2</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3701</td>
<td>OMC</td>
<td>C2'-C1'-N1-C6</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3718</td>
<td>A2M</td>
<td>C1'-C2'-O2'-CM'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3724</td>
<td>A2M</td>
<td>C1'-C2'-O2'-CM'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3744</td>
<td>OMG</td>
<td>C1'-C2'-O2'-CM2</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3830</td>
<td>A2M</td>
<td>C1'-C2'-O2'-CM'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3841</td>
<td>OMC</td>
<td>C1'-C2'-O2'-CM2</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3867</td>
<td>A2M</td>
<td>C1'-C2'-O2'-CM'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3887</td>
<td>OMC</td>
<td>C3'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3887</td>
<td>OMC</td>
<td>O4'-C4'-C5'-O5'</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>3925</td>
<td>OMU</td>
<td>C1'-C2'-O2'-CM2</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4392</td>
<td>OMG</td>
<td>C1'-C2'-O2'-CM2</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4456</td>
<td>OMC</td>
<td>C1'-C2'-O2'-CM2</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4571</td>
<td>A2M</td>
<td>C1'-C2'-O2'-CM'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4590</td>
<td>A2M</td>
<td>O4'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4590</td>
<td>A2M</td>
<td>C3'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4620</td>
<td>OMU</td>
<td>C1'-C2'-O2'-CM2</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4636</td>
<td>PSU</td>
<td>C2'-C1'-C5-C4</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4637</td>
<td>OMG</td>
<td>O4'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4637</td>
<td>OMG</td>
<td>C1'-C2'-O2'-CM2</td>
</tr>
<tr>
<td>24</td>
<td>LN</td>
<td>245</td>
<td>HIC</td>
<td>CA-CB-CG-ND1</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2401</td>
<td>A2M</td>
<td>C3'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4220</td>
<td>6MZ</td>
<td>O4'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4220</td>
<td>6MZ</td>
<td>C3'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4306</td>
<td>OMC</td>
<td>C3'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4523</td>
<td>A2M</td>
<td>C3'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4618</td>
<td>OMG</td>
<td>O4'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4637</td>
<td>OMG</td>
<td>C3'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2401</td>
<td>A2M</td>
<td>O4'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4224</td>
<td>OMG</td>
<td>O4'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2787</td>
<td>A2M</td>
<td>O4'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4306</td>
<td>OMC</td>
<td>O4'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4523</td>
<td>A2M</td>
<td>O4'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4618</td>
<td>OMG</td>
<td>C3'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1625</td>
<td>OMC</td>
<td>C3'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1625</td>
<td>PSU</td>
<td>C3'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3701</td>
<td>OMC</td>
<td>C3'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1677</td>
<td>PSU</td>
<td>O4'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3701</td>
<td>OMC</td>
<td>O4'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2424</td>
<td>OMC</td>
<td>C3'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4590</td>
<td>A2M</td>
<td>C4'-C5'-O5'-P</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1677</td>
<td>PSU</td>
<td>C3'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>24</td>
<td>LN</td>
<td>245</td>
<td>HIC</td>
<td>CA-CB-CG-CD2</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1862</td>
<td>PSU</td>
<td>O4'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1625</td>
<td>OMC</td>
<td>O4'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2422</td>
<td>OMC</td>
<td>O4'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4227</td>
<td>OMC</td>
<td>C1'-C2'-O2'-CM2</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4590</td>
<td>A2M</td>
<td>C1'-C2'-O2'-CM'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3701</td>
<td>OMC</td>
<td>C4'-C5'-O5'-P</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4220</td>
<td>6MZ</td>
<td>C4'-C5'-O5'-P</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4306</td>
<td>OMC</td>
<td>C4'-C5'-O5'-P</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3844</td>
<td>PSU</td>
<td>C4'-C5'-O5'-P</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>1524</td>
<td>A2M</td>
<td>C3'-C2'-O2'-CM'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2876</td>
<td>OMG</td>
<td>C3'-C2'-O2'-CM2</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3701</td>
<td>OMC</td>
<td>O4'-C1'-N1-C6</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2351</td>
<td>OMC</td>
<td>C2'-C1'-N1-C2</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3701</td>
<td>OMC</td>
<td>O4'-C1'-N1-C6</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2839</td>
<td>PSU</td>
<td>O4'-C1'-C5-C4</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4521</td>
<td>PSU</td>
<td>O4'-C1'-C5-C4</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4636</td>
<td>PSU</td>
<td>O4'-C1'-C5-C4</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4636</td>
<td>PSU</td>
<td>C4'-C5'-O5'-P</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2815</td>
<td>A2M</td>
<td>O4'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4536</td>
<td>OMC</td>
<td>C1'-C2'-O2'-CM2</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1677</td>
<td>PSU</td>
<td>O4'-C1'-C5-C6</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2839</td>
<td>PSU</td>
<td>O4'-C1'-C5-C6</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4521</td>
<td>PSU</td>
<td>O4'-C1'-C5-C6</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4636</td>
<td>PSU</td>
<td>O4'-C1'-C5-C6</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4306</td>
<td>OMU</td>
<td>C2'-C1'-N1-C2</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2351</td>
<td>OMC</td>
<td>O4'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4636</td>
<td>PSU</td>
<td>O4'-C4'-C5'-O5'</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4498</td>
<td>OMU</td>
<td>C4'-C5'-O5'-P</td>
</tr>
</tbody>
</table>

There are no ring outliers.

55 monomers are involved in 87 short contacts:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>3853</td>
<td>PSU</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4312</td>
<td>PSU</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>5001</td>
<td>PSU</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3869</td>
<td>OMC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4370</td>
<td>OMG</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4637</td>
<td>OMG</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4403</td>
<td>PSU</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4500</td>
<td>PSU</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2632</td>
<td>PSU</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1316</td>
<td>OMG</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2415</td>
<td>OMU</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2837</td>
<td>OMU</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2351</td>
<td>OMC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3701</td>
<td>OMC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4220</td>
<td>6MZ</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>L3</td>
<td>1860</td>
<td>PSU</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2861</td>
<td>OMC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3730</td>
<td>PSU</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>398</td>
<td>A2M</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4311</td>
<td>PSU</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3841</td>
<td>OMC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2876</td>
<td>OMG</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1677</td>
<td>PSU</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4306</td>
<td>OMC</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1534</td>
<td>A2M</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2364</td>
<td>OMG</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2804</td>
<td>OMC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4457</td>
<td>PSU</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>400</td>
<td>A2M</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3718</td>
<td>A2M</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3724</td>
<td>A2M</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2815</td>
<td>A2M</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4552</td>
<td>PSU</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1340</td>
<td>OMC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4571</td>
<td>A2M</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4227</td>
<td>OMC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4636</td>
<td>PSU</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>75</td>
<td>OMG</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4530</td>
<td>UR3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4523</td>
<td>A2M</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1871</td>
<td>A2M</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2839</td>
<td>PSU</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>1326</td>
<td>A2M</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3715</td>
<td>PSU</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3627</td>
<td>OMG</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2422</td>
<td>OMC</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>69</td>
<td>PSU</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>2363</td>
<td>A2M</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4536</td>
<td>OMC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3744</td>
<td>OMG</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4620</td>
<td>OMC</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3925</td>
<td>OMC</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>3867</td>
<td>A2M</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>4618</td>
<td>OMG</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
5.5 Carbohydrates

There are no monosaccharides in this entry.

5.6 Ligand geometry

Of 96 ligands modelled in this entry, 95 are monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>59</td>
<td>GDP</td>
<td>SR</td>
<td>1001</td>
<td>60,57</td>
<td>24,30,30</td>
<td>2.55</td>
</tr>
</tbody>
</table>

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>GDP</td>
<td>SR</td>
<td>1001</td>
<td>60,57</td>
<td>-</td>
<td>0/12/32/32</td>
<td>0/3/3/3</td>
</tr>
</tbody>
</table>

All (8) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>SR</td>
<td>1001</td>
<td>GDP</td>
<td>O6-C6</td>
<td>8.35</td>
<td>1.40</td>
<td>1.23</td>
</tr>
<tr>
<td>59</td>
<td>SR</td>
<td>1001</td>
<td>GDP</td>
<td>C2-N2</td>
<td>4.73</td>
<td>1.45</td>
<td>1.34</td>
</tr>
<tr>
<td>59</td>
<td>SR</td>
<td>1001</td>
<td>GDP</td>
<td>O4'-C1'</td>
<td>4.38</td>
<td>1.47</td>
<td>1.41</td>
</tr>
<tr>
<td>59</td>
<td>SR</td>
<td>1001</td>
<td>GDP</td>
<td>C5-C4</td>
<td>2.37</td>
<td>1.49</td>
<td>1.43</td>
</tr>
<tr>
<td>59</td>
<td>SR</td>
<td>1001</td>
<td>GDP</td>
<td>PB-O3B</td>
<td>-2.25</td>
<td>1.46</td>
<td>1.54</td>
</tr>
<tr>
<td>59</td>
<td>SR</td>
<td>1001</td>
<td>GDP</td>
<td>PB-O2B</td>
<td>-2.25</td>
<td>1.46</td>
<td>1.54</td>
</tr>
<tr>
<td>59</td>
<td>SR</td>
<td>1001</td>
<td>GDP</td>
<td>C2'-C1'</td>
<td>-2.13</td>
<td>1.50</td>
<td>1.53</td>
</tr>
<tr>
<td>59</td>
<td>SR</td>
<td>1001</td>
<td>GDP</td>
<td>C2'-C3'</td>
<td>-2.09</td>
<td>1.47</td>
<td>1.53</td>
</tr>
</tbody>
</table>

All (9) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>SR</td>
<td>1001</td>
<td>GDP</td>
<td>C3'-C2'-C1'</td>
<td>4.15</td>
<td>107.23</td>
<td>100.98</td>
</tr>
</tbody>
</table>

Continued on next page...
There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>SR</td>
<td>1001</td>
<td>GDP</td>
<td>C5-C6-N1</td>
<td>3.31</td>
<td>119.81</td>
<td>113.95</td>
</tr>
<tr>
<td>59</td>
<td>SR</td>
<td>1001</td>
<td>GDP</td>
<td>C2-N1-C6</td>
<td>-2.92</td>
<td>119.72</td>
<td>125.10</td>
</tr>
<tr>
<td>59</td>
<td>SR</td>
<td>1001</td>
<td>GDP</td>
<td>O2B-PB-O3A</td>
<td>2.87</td>
<td>114.25</td>
<td>104.64</td>
</tr>
<tr>
<td>59</td>
<td>SR</td>
<td>1001</td>
<td>GDP</td>
<td>O3B-PB-O3A</td>
<td>2.69</td>
<td>113.65</td>
<td>104.64</td>
</tr>
<tr>
<td>59</td>
<td>SR</td>
<td>1001</td>
<td>GDP</td>
<td>C2'-C3'-C4'</td>
<td>2.61</td>
<td>107.71</td>
<td>102.64</td>
</tr>
<tr>
<td>59</td>
<td>SR</td>
<td>1001</td>
<td>GDP</td>
<td>PA-O3A-PB</td>
<td>-2.40</td>
<td>124.59</td>
<td>132.83</td>
</tr>
<tr>
<td>59</td>
<td>SR</td>
<td>1001</td>
<td>GDP</td>
<td>O6-C6-C5</td>
<td>-2.27</td>
<td>119.95</td>
<td>124.37</td>
</tr>
<tr>
<td>59</td>
<td>SR</td>
<td>1001</td>
<td>GDP</td>
<td>O2A-PA-O1A</td>
<td>-2.14</td>
<td>101.64</td>
<td>112.24</td>
</tr>
</tbody>
</table>
5.7 Other polymers

There are no such residues in this entry.

5.8 Polymer linkage issues

There are no chain breaks in this entry.
6 Map visualisation

This section contains visualisations of the EMDB entry EMD-29268. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.
6.2 Central slices

6.2.1 Primary map

The images above show central slices of the map in three orthogonal directions.

6.2.2 Raw map

The images above show central slices of the map in three orthogonal directions.
6.3 Largest variance slices

6.3.1 Primary map

![Primary map images](X Index: 226, Y Index: 233, Z Index: 239)

6.3.2 Raw map

![Raw map images](X Index: 0, Y Index: 0, Z Index: 0)

The images above show the largest variance slices of the map in three orthogonal directions.
6.4 Orthogonal standard-deviation projections (False-color)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.
6.5 Orthogonal surface views

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 1.0. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map’s contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.
6.6 Mask visualisation

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency.

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

6.6.1 emd_29268_msk_1.map

![Images of 3D surface views in X, Y, and Z orientations]
7 Map analysis

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.
7.2 Volume estimate

The volume at the recommended contour level is 849 nm3; this corresponds to an approximate mass of 767 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.
7.3 Rotationally averaged power spectrum

Reported resolution corresponds to spatial frequency of 0.382 Å⁻¹
8 Fourier-Shell correlation

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC

*Reported resolution corresponds to spatial frequency of 0.382 Å⁻¹
8.2 Resolution estimates

<table>
<thead>
<tr>
<th>Resolution estimate (Å)</th>
<th>Estimation criterion (FSC cut-off)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.143</td>
</tr>
<tr>
<td>Reported by author</td>
<td>2.62</td>
</tr>
<tr>
<td>Author-provided FSC curve</td>
<td>2.62</td>
</tr>
<tr>
<td>Unmasked-calculated*</td>
<td>3.88</td>
</tr>
</tbody>
</table>

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.88 differs from the reported value 2.62 by more than 10%
9 Map-model fit

This section contains information regarding the fit between EMDB map EMD-29268 and PDB model 8FL6. Per-residue inclusion information can be found in section 3 on page 15.

9.1 Map-model overlay

The images above show the 3D surface view of the map at the recommended contour level 1.0 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.
9.2 Q-score mapped to coordinate model

The images above show the model with each residue coloured according to its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (1.0).
9.4 Atom inclusion

At the recommended contour level, 86% of all backbone atoms, 82% of all non-hydrogen atoms, are inside the map.
9.5 Map-model fit summary

The table lists the average atom inclusion at the recommended contour level (1.0) and Q-score for the entire model and for each chain.

<table>
<thead>
<tr>
<th>Chain</th>
<th>Atom inclusion</th>
<th>Q-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.8200</td>
<td>0.5590</td>
</tr>
<tr>
<td>BA</td>
<td>0.2310</td>
<td>0.3430</td>
</tr>
<tr>
<td>L1</td>
<td>0.9330</td>
<td>0.6010</td>
</tr>
<tr>
<td>L2</td>
<td>0.8160</td>
<td>0.5310</td>
</tr>
<tr>
<td>L3</td>
<td>0.8610</td>
<td>0.5490</td>
</tr>
<tr>
<td>L4</td>
<td>0.9670</td>
<td>0.6220</td>
</tr>
<tr>
<td>L5</td>
<td>0.7430</td>
<td>0.5440</td>
</tr>
<tr>
<td>L6</td>
<td>0.7590</td>
<td>0.5550</td>
</tr>
<tr>
<td>L7</td>
<td>0.8690</td>
<td>0.6080</td>
</tr>
<tr>
<td>L8</td>
<td>0.8730</td>
<td>0.5960</td>
</tr>
<tr>
<td>L9</td>
<td>0.9230</td>
<td>0.6270</td>
</tr>
<tr>
<td>LA</td>
<td>0.8140</td>
<td>0.5700</td>
</tr>
<tr>
<td>LB</td>
<td>0.8580</td>
<td>0.5940</td>
</tr>
<tr>
<td>LC</td>
<td>0.9370</td>
<td>0.6420</td>
</tr>
<tr>
<td>LD</td>
<td>0.7600</td>
<td>0.5530</td>
</tr>
<tr>
<td>LE</td>
<td>0.8420</td>
<td>0.5770</td>
</tr>
<tr>
<td>LF</td>
<td>0.6660</td>
<td>0.5130</td>
</tr>
<tr>
<td>LG</td>
<td>0.8260</td>
<td>0.6010</td>
</tr>
<tr>
<td>LH</td>
<td>0.8240</td>
<td>0.5940</td>
</tr>
<tr>
<td>LI</td>
<td>0.7730</td>
<td>0.5560</td>
</tr>
<tr>
<td>LJ</td>
<td>0.8300</td>
<td>0.5900</td>
</tr>
<tr>
<td>LK</td>
<td>0.8680</td>
<td>0.6010</td>
</tr>
<tr>
<td>LL</td>
<td>0.8070</td>
<td>0.5730</td>
</tr>
<tr>
<td>LM</td>
<td>0.6630</td>
<td>0.5450</td>
</tr>
<tr>
<td>LN</td>
<td>0.8140</td>
<td>0.5760</td>
</tr>
<tr>
<td>LO</td>
<td>0.7020</td>
<td>0.5320</td>
</tr>
<tr>
<td>LP</td>
<td>0.7370</td>
<td>0.5530</td>
</tr>
<tr>
<td>LQ</td>
<td>0.8170</td>
<td>0.5890</td>
</tr>
<tr>
<td>LR</td>
<td>0.8150</td>
<td>0.5920</td>
</tr>
<tr>
<td>LS</td>
<td>0.7950</td>
<td>0.5730</td>
</tr>
<tr>
<td>LT</td>
<td>0.8730</td>
<td>0.6000</td>
</tr>
<tr>
<td>LU</td>
<td>0.7160</td>
<td>0.5400</td>
</tr>
<tr>
<td>LV</td>
<td>0.8310</td>
<td>0.6000</td>
</tr>
<tr>
<td>LW</td>
<td>0.8970</td>
<td>0.6010</td>
</tr>
<tr>
<td>LX</td>
<td>0.7200</td>
<td>0.5570</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Chain</th>
<th>Atom inclusion</th>
<th>Q-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>LY</td>
<td>0.6710</td>
<td>0.5280</td>
</tr>
<tr>
<td>LZ</td>
<td>0.8820</td>
<td>0.6060</td>
</tr>
<tr>
<td>NC</td>
<td>0.0000</td>
<td>0.3340</td>
</tr>
<tr>
<td>NF</td>
<td>0.6020</td>
<td>0.5570</td>
</tr>
<tr>
<td>NK</td>
<td>0.5700</td>
<td>0.4890</td>
</tr>
<tr>
<td>NL</td>
<td>0.7140</td>
<td>0.5480</td>
</tr>
<tr>
<td>NP</td>
<td>0.6830</td>
<td>0.5250</td>
</tr>
<tr>
<td>SA</td>
<td>0.8230</td>
<td>0.5830</td>
</tr>
<tr>
<td>SB</td>
<td>0.8380</td>
<td>0.5910</td>
</tr>
<tr>
<td>SC</td>
<td>0.7000</td>
<td>0.5270</td>
</tr>
<tr>
<td>SD</td>
<td>0.8410</td>
<td>0.5820</td>
</tr>
<tr>
<td>SE</td>
<td>0.8420</td>
<td>0.5920</td>
</tr>
<tr>
<td>SF</td>
<td>0.8310</td>
<td>0.5920</td>
</tr>
<tr>
<td>SG</td>
<td>0.8530</td>
<td>0.6110</td>
</tr>
<tr>
<td>SH</td>
<td>0.7610</td>
<td>0.5460</td>
</tr>
<tr>
<td>SI</td>
<td>0.8020</td>
<td>0.5800</td>
</tr>
<tr>
<td>SK</td>
<td>0.7600</td>
<td>0.5560</td>
</tr>
<tr>
<td>SL</td>
<td>0.6080</td>
<td>0.4760</td>
</tr>
<tr>
<td>SM</td>
<td>0.8730</td>
<td>0.6160</td>
</tr>
<tr>
<td>SQ</td>
<td>0.4280</td>
<td>0.4810</td>
</tr>
<tr>
<td>SR</td>
<td>0.6600</td>
<td>0.5330</td>
</tr>
<tr>
<td>SV</td>
<td>0.7440</td>
<td>0.5370</td>
</tr>
</tbody>
</table>