

Full wwPDB X-ray Structure Validation Report (i)

Jan 7, 2024 – 12:04 pm GMT

PDB ID	:	6FC7
Title	:	Crystal Structure of Two-Domain Laccase mutant H165F from Streptomyces
		griseoflavus with high copper ions occupancy
Authors	:	Gabdulkhakov, A.G.; Tishchenko, T.V.
Deposited on	:	2017-12-20
Resolution	:	1.95 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 1.95 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Matria	Whole archive	Similar resolution
Metric	$(\# {\rm Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R _{free}	130704	2580 (1.96-1.96)
Clashscore	141614	2705 (1.96-1.96)
Ramachandran outliers	138981	2678 (1.96-1.96)
Sidechain outliers	138945	2678 (1.96-1.96)
RSRZ outliers	127900	2539 (1.96-1.96)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain			
1	А	322	75%	13%	13%	
1	D		% •			
	В	322	78% %	9%	13%	
1	С	322	73%	13%	14%	
1	D	322	% 	9%	14%	
-		022	% *			
1	Ε	322	78%	7% •	14%	

Contr	naea fron	i previous	paye		
Mol	Chain	Length	Quality of chain		
1	F	200			
1	Г	322	/5%	11%	14%
	a	222		_	
	G	322	76%	11%	13%
			2%		
1	Н	322	73%	13% •	14%
1	Ι	322	80%	7%	13%
			.%		
1	J	322	74%	13%	13%
			.% ■		
1	K	322	76%	11%	12%
	Ŧ				
1	L	322	76%	10%	14%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
2	CU	D	401	-	-	Х	-
3	PER	G	406	-	-	Х	-

2 Entry composition (i)

There are 6 unique types of molecules in this entry. The entry contains 26455 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Δ	201	Total	С	Ν	0	\mathbf{S}	0	0	0
1	A	201	2159	1347	393	407	12	0	0	0
1	р	281	Total	С	Ν	0	S	0	2	0
1	D	201	2171	1356	396	407	12	0	Δ	0
1	C	277	Total	С	Ν	0	S	0	1	0
1		211	2134	1333	387	401	13	0	1	0
1	П	278	Total	С	Ν	0	S	0	1	0
1	D	210	2140	1336	388	404	12	0	1	0
1	F	278	Total	С	Ν	0	S	1	1	0
1		210	2134	1333	387	401	13	L	1	0
1	Б	277	Total	С	Ν	0	S	1	9	0
1	Г	277	2143	1338	389	403	13	T	2	0
1	C	281	Total	С	Ν	0	S	0	1	0
1	G	201	2168	1352	394	410	12	0	1	0
1	ц	278	Total	С	Ν	0	S	0	0	0
1	11	210	2131	1331	387	401	12	0	0	0
1	т	281	Total	С	Ν	0	S	0	1	0
1	1	201	2167	1352	394	408	13	0	1	0
1	т	281	Total	С	Ν	0	S	0	1	0
1	J	201	2168	1352	394	410	12	0	1	U
1	K	282	Total	С	Ν	0	S	0	0	0
	IX	202	2164	1350	394	408	12		U	U
1	т	276	Total	С	Ν	Ο	S	0	1	0
		270	2124	1327	386	398	13	U	1	0

• Molecule 1 is a protein called Two-domain laccase.

There are 12 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	165	PHE	HIS	conflict	UNP A0A0M4FJ81
В	165	PHE	HIS	conflict	UNP A0A0M4FJ81
С	165	PHE	HIS	conflict	UNP A0A0M4FJ81
D	165	PHE	HIS	conflict	UNP A0A0M4FJ81
Е	165	PHE	HIS	conflict	UNP A0A0M4FJ81

Chain	Residue	Modelled	Actual	Comment	Reference
F	165	PHE	HIS	conflict	UNP A0A0M4FJ81
G	165	PHE	HIS	conflict	UNP A0A0M4FJ81
Н	165	PHE	HIS	conflict	UNP A0A0M4FJ81
Ι	165	PHE	HIS	conflict	UNP A0A0M4FJ81
J	165	PHE	HIS	conflict	UNP A0A0M4FJ81
K	165	PHE	HIS	conflict	UNP A0A0M4FJ81
L	165	PHE	HIS	conflict	UNP A0A0M4FJ81

• Molecule 2 is COPPER (II) ION (three-letter code: CU) (formula: Cu).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	7	Total Cu 7 7	0	0
2	В	4	Total Cu 4 4	0	0
2	С	1	Total Cu 1 1	0	0
2	D	7	Total Cu 7 7	0	0
2	Е	4	Total Cu 4 4	0	0
2	F	1	Total Cu 1 1	0	0
2	G	7	Total Cu 7 7	0	0
2	Н	4	Total Cu 4 4	0	0
2	Ι	1	Total Cu 1 1	0	0
2	J	7	Total Cu 7 7	0	0
2	К	4	Total Cu 4 4	0	0
2	L	1	Total Cu 1 1	0	0

• Molecule 3 is PEROXIDE ION (three-letter code: PER) (formula: O_2).

PER	
01 0 ⁻ — 0 ⁻ 02	

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	В	1	Total O 2 2	0	0
3	D	1	Total O 2 2	0	0
3	Е	1	Total O 2 2	0	0
3	G	1	Total O 2 2	0	0
3	J	1	Total O 2 2	0	0
3	K	1	Total O 2 2	0	0

• Molecule 4 is GLYCEROL (three-letter code: GOL) (formula: $C_3H_8O_3$).

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf
4	В	1	Total 6	${ m C} { m 3}$	O 3	0	0

• Molecule 5 is OXYGEN MOLECULE (three-letter code: OXY) (formula: O_2).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	D	1	Total O 2 2	0	0
5	J	1	Total O 2 2	0	0

• Molecule 6 is water.

6FC7	
0 - 0 ·	

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	А	53	Total O 53 53	0	0
6	В	57	$\begin{array}{cc} \text{Total} & \text{O} \\ 57 & 57 \end{array}$	0	0
6	С	43	Total O 43 43	0	0
6	D	49	Total O 49 49	0	0
6	Ε	70	Total O 70 70	0	0
6	F	40	Total O 40 40	0	0
6	G	43	Total O 43 43	0	0
6	Н	44	$\begin{array}{cc} \text{Total} & \text{O} \\ 44 & 44 \end{array}$	0	0
6	Ι	42	Total O 42 42	0	0
6	J	53	$\begin{array}{cc} \text{Total} & \text{O} \\ 53 & 53 \end{array}$	0	0
6	K	50	$\begin{array}{cc} {\rm Total} & {\rm O} \\ 50 & 50 \end{array}$	0	0
6	L	38	Total O 38 38	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Two-domain laccase

MET ASP ASP ASP ASP ASP ASP ASP ASP CEU CEU CEU CEU THR THR THR SER SER SER	ALL ALL ALL VAL ALL ALL ALL ALL ALL ALL	D86 E91 E91 V100 S101 1107 C106 C106 C106 T107 T128 V154
P1 68 F1 65 C1 65 C1 69 N1 78 N1 78 M1 99 M1 99 M2 24 F2 34 F2 35 F2 34 F2 35 F2 55 F2 55 F2 55 F2 F2 55 F2 F2 55 F2 F2 55 F2 F2 F2 55 F2 F2 F2	N261 1(2622 1(2622 1(26271 62271 7272 1(271 1(271)	
• Molecule 1: Two-domain lace	case	
Chain E:	78%	7% • 14%
NET ASP ASP ASC ASC ASC ASS ASS ASS ASS ASS ASS ASS	ALA PRO CLU CLU CLA VAL ALA PRO CLY ALA ALA ALA ALA ALA ALA ALA ALA ALA A	L79 D97 A142 A142 A144 A144 A144 A144 A144 A144
F234 R240 M248 P265 P265 P265 P265 P265 P265 P265 P265	oocy BIT CIU CIU ALA ALA ALA	
• Molecule 1: Two-domain lace	case	
Chain F:	75%	11% 14%
MET ASP ASP ASP ASP ASC CLY ASS ASS ASS ASS ASS ALA ALA ALA ALA ALA	ALA PRO ALA ALA PRO ALA ALA ALA ALA ALA ALA ALA ALA	R58 R64 M64 M96 M96 C106 C106 C106 H122 H122 H122 H123
H 36 H 42 D143 D143 H 156 H 156 V 156 V 156 V 156 V 166 C 176 C 176 K 183	R204 P210 P210 R210 R241 N241 N242 N242 N242 N242 N260 N260 N260 N260 N261 N261	0310 1311 1911 1917 1917 02U HTS HTS HTS
• Molecule 1: Two-domain lace	case	
Chain G:	76%	11% 13%
NET ARG ARG ARG ARG ARG ARG ARG ARG ARG CLEU CLEU CLEU CLEU ALA ALA ALA ALA ALA CLEU CLEU CLEU CLEU CLEU CLEU CLEU CLEU	ALLA PRO GUUU ALA ALA ALA ALA ALA ALA ALA ALA ALA	T95 H103 H106 0106 119 <
H155 F165 F165 F165 G172 G173 G173 G178 G178 G178 G178 G178 G178 C176 G176 G176 G178 C176 G178 C176 G176 C176 G176 C176 C176 C176 C176 C176 C176 C176 C	2110 1225 1225 1225 1225 1225 1225 1226 1226	V305 K306 H1320 H15 H15
• Molecule 1: Two-domain lace	case	
Chain H:	73%	13% • 14%
MET ASP ASP ASP ASP ASP CLY ASC ASC ASS ASS ALA ALA ALA ALA ALA ALA ALA ALA	ALA ALA ALA ALA ALA ALA ALA ALA ALA ALA	R50 R51 L59 L59 L59 L59 L58 H38 H38 H305 C106 C106 C106 C118
N118 K120 K120 K120 K141 M154 W154 W154 M154 M153	V195 H207 H207 H207 H224 H226 H226 H226 H223 H223 H223 H223 H224 H224 H224 H224	C247 C247 C247 C267 D260 N261 K261 E276 E278 C287 C287 C287 C287 C286 C298

• Molecule 1: Two-domain laccase

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1	Depositor
Cell constants	77.03Å 94.58Å 115.93Å	Deperitor
a, b, c, α , β , γ	90.00° 90.00° 92.01°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	49.41 - 1.95	Depositor
Resolution (A)	49.41 - 1.92	EDS
% Data completeness	92.7 (49.41-1.95)	Depositor
(in resolution range)	94.6 (49.41-1.92)	EDS
R _{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.61 (at 1.92 \text{\AA})$	Xtriage
Refinement program	PHENIX (1.11.1_2575: ???)	Depositor
B B.	0.195 , 0.231	Depositor
$\mathbf{n}, \mathbf{n}_{free}$	0.203 , 0.240	DCC
R_{free} test set	11831 reflections (5.00%)	wwPDB-VP
Wilson B-factor $(Å^2)$	32.0	Xtriage
Anisotropy	0.288	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.35, 26.8	EDS
L-test for $twinning^2$	$< L >=0.46, < L^2>=0.29$	Xtriage
	0.049 for h,-k,-l	
Estimated twinning fraction	0.095 for -h,k,-l	Xtriage
	0.116 for -h,-k,l	
F_o, F_c correlation	0.96	EDS
Total number of atoms	26455	wwPDB-VP
Average B, all atoms $(Å^2)$	32.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.17% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: OXY, GOL, PER, CU

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bo	nd lengths	Bond angles		
1VIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.46	0/2222	0.62	0/3018	
1	В	0.48	0/2240	0.65	0/3042	
1	С	0.49	0/2196	0.66	0/2982	
1	D	0.44	0/2202	0.65	0/2992	
1	Е	0.49	1/2199~(0.0%)	0.67	1/2987~(0.0%)	
1	F	0.45	0/2205	0.64	0/2994	
1	G	0.42	0/2231	0.62	0/3031	
1	Н	0.46	0/2193	0.63	0/2979	
1	Ι	0.42	0/2230	0.61	0/3028	
1	J	0.43	0/2231	0.62	0/3031	
1	Κ	0.44	0/2227	0.61	0/3025	
1	L	0.39	0/2185	0.62	0/2966	
All	All	0.45	1/26561~(0.0%)	0.63	1/36075~(0.0%)	

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	Е	255	PRO	N-CD	5.04	1.54	1.47

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	Ε	254	ASP	C-N-CD	5.36	139.66	128.40

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2159	0	2024	28	0
1	В	2171	0	2047	22	0
1	С	2134	0	2006	30	0
1	D	2140	0	2010	21	0
1	Е	2134	0	2008	19	0
1	F	2143	0	2013	18	0
1	G	2168	0	2030	25	0
1	Н	2131	0	2003	32	0
1	Ι	2167	0	2032	19	0
1	J	2168	0	2031	26	0
1	K	2164	0	2029	21	0
1	L	2124	0	2000	19	0
2	А	7	0	0	0	0
2	В	4	0	0	0	0
2	С	1	0	0	0	0
2	D	7	0	0	2	0
2	Е	4	0	0	0	0
2	F	1	0	0	0	0
2	G	7	0	0	0	0
2	Н	4	0	0	0	0
2	Ι	1	0	0	0	0
2	J	7	0	0	0	0
2	K	4	0	0	0	0
2	L	1	0	0	0	0
3	В	2	0	0	1	0
3	D	2	0	0	0	0
3	Е	2	0	0	0	0
3	G	2	0	0	2	0
3	J	2	0	0	0	0
3	K	2	0	0	0	0
4	В	6	0	8	0	0
5	D	2	0	0	0	0
5	J	2	0	0	0	0
6	A	53	0	0	0	0
6	В	57	0	0	0	0
6	С	43	0	0	0	0
6	D	49	0	0	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
6	Е	70	0	0	0	0
6	F	40	0	0	0	0
6	G	43	0	0	1	0
6	Н	44	0	0	2	0
6	Ι	42	0	0	1	0
6	J	53	0	0	1	0
6	Κ	50	0	0	0	0
6	L	38	0	0	0	0
All	All	26455	0	24241	251	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

All (251) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:70:LYS:HE3	1:C:95:THR:HG21	1.37	1.04
1:K:196:PHE:HB2	1:K:226:THR:HG22	1.64	0.79
1:B:250:THR:HG22	1:B:254:ASP:HB2	1.64	0.78
1:I:120:LYS:O	1:I:120:LYS:HD3	1.84	0.78
1:E:288:HIS:HB3	1:E:300:VAL:HG12	1.66	0.77
1:D:107:LEU:HD12	1:D:135:THR:HG22	1.68	0.76
1:C:70:LYS:HG3	1:C:71:GLY:H	1.53	0.73
1:D:91:GLU:OE2	1:D:128:THR:CG2	2.37	0.73
1:D:289:CYS:HG	2:D:401:CU:CU	1.03	0.73
1:C:70:LYS:HG3	1:C:71:GLY:N	2.03	0.72
1:C:70:LYS:HE3	1:C:95:THR:CG2	2.19	0.70
1:D:291:VAL:HG22	1:F:266:PRO:HG2	1.74	0.68
1:L:50:ARG:NH2	1:L:86:ASP:OD2	2.27	0.68
1:B:59:LEU:HD21	1:B:73:ALA:HB3	1.77	0.67
1:H:51:ARG:HG2	1:H:89:HIS:HB2	1.76	0.67
1:C:50:ARG:NH1	1:C:86:ASP:OD2	2.29	0.66
1:C:48:GLU:HG2	1:C:50:ARG:HG2	1.78	0.65
1:L:120:LYS:HD3	1:L:122:HIS:HE1	1.60	0.65
1:H:45:ALA:HA	1:H:183:LYS:HG2	1.79	0.65
1:D:165:PHE:CZ	1:E:300:VAL:HG11	2.32	0.64
1:A:288:HIS:HB3	1:A:300:VAL:HG13	1.81	0.62
1:D:289:CYS:SG	2:D:401:CU:CU	1.88	0.62
1:E:50:ARG:NH2	1:E:50:ARG:HG3	2.13	0.62
1:F:45:ALA:HB2	1:F:183:LYS:HE3	1.81	0.62
1:A:165:PHE:CZ	1:B:300[B]:VAL:HG21	2.35	0.62

A 4 1			Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:D:107:LEU:HD11	1:D:180:VAL:HG21	1.82	0.61
1:E:50:ARG:HH21	1:E:50:ARG:CG	2.14	0.61
1:C:293:SER:O	1:C:297:MET:HG2	2.01	0.61
1:A:156:TYR:CZ	1:A:176:GLY:HA3	2.36	0.61
1:B:318:GLN:HA	1:B:318:GLN:OE1	2.01	0.60
1:G:286:MET:HE2	1:G:300:VAL:HG21	1.84	0.60
1:G:204:ARG:HD3	1:G:210:PRO:HD3	1.85	0.59
1:E:50:ARG:HG3	1:E:50:ARG:HH21	1.68	0.59
1:A:68:LEU:HD13	1:A:78:PRO:HG3	1.84	0.59
1:H:120:LYS:HE3	1:I:319:GLU:HG2	1.83	0.59
1:K:114:ASP:OD2	1:K:119:ASN:ND2	2.35	0.59
1:H:118:GLN:HB3	1:I:320:HIS:CE1	2.38	0.59
1:A:297:MET:HE2	1:H:171:ARG:NH1	2.18	0.58
1:H:45:ALA:HA	1:H:183:LYS:CG	2.34	0.58
1:J:122:HIS:HD1	1:J:122:HIS:H	1.52	0.58
1:J:300:VAL:HG21	1:L:165:PHE:CZ	2.39	0.57
1:C:50:ARG:HH22	1:C:82:LEU:HA	1.70	0.57
1:C:286:MET:HE2	1:C:300:VAL:HG21	1.86	0.57
1:E:288:HIS:CB	1:E:300:VAL:HG12	2.34	0.57
1:K:195:VAL:HG22	1:K:225:ILE:HB	1.86	0.56
1:A:118:GLN:HG2	1:B:286:MET:HE3	1.86	0.56
1:B:106:GLY:HA3	1:B:154:TRP:CD2	2.40	0.56
1:H:229:GLU:OE2	1:I:293:SER:N	2.24	0.56
1:A:79:LEU:HA	1:A:177:PRO:HG2	1.88	0.55
1:E:264[A]:CYS:SG	1:E:270:PHE:HE1	2.29	0.55
1:G:175:TYR:CE1	1:G:195:VAL:HG11	2.42	0.55
3:B:403:PER:O1	1:C:290:HIS:NE2	2.38	0.55
1:F:136:HIS:CD2	1:F:149:GLY:HA2	2.42	0.55
1:G:155:HIS:CD2	1:G:269:SER:HB3	2.42	0.55
1:K:229:GLU:OE2	1:L:293:SER:OG	2.23	0.54
1:H:195:VAL:HG22	1:H:225:ILE:HB	1.90	0.54
1:H:50:ARG:HB2	1:H:88:LEU:HD12	1.90	0.54
1:I:207:HIS:CD2	1:I:298:GLY:HA2	2.44	0.53
1:J:229:GLU:OE2	1:K:293:SER:OG	2.26	0.53
1:J:52:VAL:HG22	1:J:88:LEU:HD11	1.91	0.53
1:J:156:TYR:CZ	1:J:176:GLY:HA3	2.44	0.52
1:F:204:ARG:HD3	1:F:210:PRO:HD3	1.90	0.52
1:A:300:VAL:HG21	1:C:165:PHE:CZ	2.44	0.52
1:J:136:HIS:CD2	1:J:149:GLY:HA2	2.45	0.51
1:C:70:LYS:CE	1:C:95:THR:HG21	2.26	0.51
1:J:307:LYS:HE2	1:J:313:PRO:HD3	1.92	0.51

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:E:156:TYR:CZ	1:E:176:GLY:HA3	2.46	0.51
1:G:155:HIS:HD2	1:G:269:SER:HB3	1.75	0.51
1:I:120:LYS:O	1:I:120:LYS:CD	2.58	0.50
1:A:220:VAL:HG13	1:A:274:ILE:HG13	1.94	0.50
1:A:319:GLU:HG3	1:C:120:LYS:HD2	1.92	0.50
1:C:288:HIS:HB3	1:C:300:VAL:HG23	1.93	0.50
1:G:103:HIS:CD2	3:G:406:PER:O1	2.64	0.50
1:A:155:HIS:CD2	1:A:269:SER:HB3	2.47	0.50
1:L:156:TYR:CZ	1:L:176:GLY:HA3	2.47	0.50
1:A:118:GLN:HB3	1:B:320:HIS:CE1	2.47	0.50
1:H:207:HIS:CE1	1:H:298:GLY:HA2	2.46	0.49
1:C:79:LEU:HD23	1:C:177:PRO:HG2	1.95	0.49
1:G:216:VAL:HG23	1:G:306:LYS:O	2.12	0.49
1:E:142:ALA:C	1:E:144:GLY:H	2.15	0.49
1:I:207:HIS:NE2	6:I:502:HOH:O	2.28	0.49
1:C:195:VAL:HA	1:C:225:ILE:O	2.13	0.49
1:G:119:ASN:ND2	6:G:504:HOH:O	2.46	0.49
1:K:207:HIS:CD2	1:K:298:GLY:HA2	2.48	0.49
1:L:187:LEU:HD12	1:L:187:LEU:H	1.77	0.49
1:A:297:MET:HE1	1:H:167:THR:HG22	1.94	0.49
1:J:106:GLY:HA3	1:J:154:TRP:CD2	2.48	0.49
1:J:288:HIS:HB3	1:J:300:VAL:HG13	1.95	0.48
1:C:289:CYS:O	1:C:295:SER:HB3	2.13	0.48
1:D:106:GLY:HA3	1:D:154:TRP:CD2	2.49	0.48
1:I:51:ARG:HG2	1:I:89:HIS:HB2	1.95	0.48
1:K:219:ARG:HH12	1:K:248:MET:HE3	1.79	0.48
1:L:91:GLU:OE2	1:L:130:THR:OG1	2.32	0.48
1:D:50:ARG:NH1	1:D:86:ASP:OD2	2.40	0.48
1:G:168:GLY:HA2	1:G:171:ARG:HD2	1.96	0.48
1:B:114:ASP:HB3	1:B:119:ASN:OD1	2.13	0.48
1:H:275:ILE:HB	1:H:278:GLU:HB2	1.96	0.48
1:K:146:TRP:CZ2	1:L:252:PRO:HB3	2.49	0.48
1:B:122:HIS:HB3	1:B:160:VAL:HG21	1.96	0.47
1:C:234:PHE:O	1:C:261:ASN:HA	2.15	0.47
1:E:289:CYS:O	1:E:295:SER:HB3	2.13	0.47
1:D:100:VAL:HG22	1:D:101:SER:H	1.80	0.47
1:L:40:ALA:HB1	1:L:187:LEU:HB2	1.95	0.47
1:D:224:MET:HB3	1:D:270:PHE:CE1	2.50	0.47
1:B:51[B]:ARG:HG2	1:B:89:HIS:HB2	1.97	0.47
1:G:103:HIS:NE2	3:G:406:PER:O1	2.48	0.47
1:I:235:HIS:HB2	1:I:261:ASN:OD1	2.15	0.47

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:J:87:THR:OG1	1:J:134:ARG:HG2	2.15	0.47
1:C:307:LYS:NZ	1:C:311:THR:OG1	2.47	0.47
1:H:79:LEU:HA	1:H:177:PRO:HG2	1.97	0.47
1:K:105:HIS:CD2	1:K:155:HIS:CE1	3.03	0.47
1:B:106:GLY:HA3	1:B:154:TRP:CE3	2.50	0.46
1:L:234:PHE:O	1:L:261:ASN:HA	2.15	0.46
1:B:233:THR:HB	1:B:261:ASN:HD21	1.80	0.46
1:K:106:GLY:HA3	1:K:154:TRP:CD2	2.50	0.46
1:G:183:LYS:HD3	1:G:183:LYS:C	2.35	0.46
1:C:79:LEU:CD1	1:C:81:GLU:HG2	2.46	0.46
1:E:195:VAL:HG22	1:E:225:ILE:HB	1.97	0.46
1:F:122:HIS:HB3	1:F:160:VAL:HG11	1.98	0.46
1:F:156:TYR:CZ	1:F:176:GLY:HA3	2.51	0.46
1:A:195:VAL:HG22	1:A:225:ILE:HB	1.97	0.46
1:H:137:GLU:CD	1:H:183:LYS:HE2	2.35	0.46
1:J:107:LEU:HD21	1:J:180:VAL:HG21	1.97	0.46
1:J:115:GLY:N	1:J:121:SER:OG	2.49	0.46
1:L:55:TYR:O	1:L:66:TYR:HA	2.15	0.46
1:B:249:LEU:HD22	1:B:254:ASP:HB3	1.98	0.46
1:G:229:GLU:O	1:H:231:TYR:OH	2.30	0.46
1:H:207:HIS:CG	1:H:298:GLY:HA2	2.50	0.46
1:L:207:HIS:CE1	1:L:298:GLY:HA2	2.51	0.46
1:D:107:LEU:HD21	1:D:178:VAL:HG11	1.98	0.45
1:J:165:PHE:CZ	1:K:300:VAL:HG21	2.51	0.45
1:C:220:VAL:O	1:C:273:GLN:HA	2.15	0.45
1:E:195:VAL:HA	1:E:225:ILE:O	2.17	0.45
1:I:195:VAL:HA	1:I:225:ILE:O	2.17	0.45
1:D:235:HIS:HB2	1:D:261:ASN:OD1	2.17	0.45
1:D:199:MET:HB3	1:D:199:MET:HE2	1.62	0.45
1:J:121:SER:O	1:J:131:TYR:OH	2.28	0.45
1:C:235:HIS:HB2	1:C:261:ASN:OD1	2.15	0.45
1:J:219:ARG:HD3	1:J:273:GLN:OE1	2.17	0.45
1:B:254:ASP:OD1	1:B:256:SER:OG	2.28	0.44
1:C:79:LEU:HD23	1:C:177:PRO:CG	2.47	0.44
1:E:143:ASP:OD1	1:E:145:THR:OG1	2.28	0.44
1:A:234:PHE:O	1:A:261:ASN:HA	2.17	0.44
1:C:45:ALA:HB2	1:C:183:LYS:HD3	1.98	0.44
1:G:173:GLY:HA2	1:G:175:TYR:CE2	2.52	0.44
1:A:204:ARG:HE	1:A:204:ARG:HB3	1.64	0.44
1:B:319:GLU:O	1:B:319:GLU:HG3	2.18	0.44
1:B:233:THR:HA	1:B:262:LYS:O	2.18	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:214:ALA:O	1:C:306:LYS:HE2	2.18	0.44
1:H:287:TYR:CE1	1:H:301:GLY:HA3	2.53	0.44
1:G:57:GLU:HG2	1:G:95:THR:OG1	2.17	0.44
1:G:143:ASP:OD2	1:G:145:THR:OG1	2.21	0.44
1:H:242:ALA:O	1:H:247:GLY:HA2	2.18	0.44
1:I:104:VAL:HB	1:I:133:TRP:CZ2	2.53	0.44
1:K:111:ILE:HD12	1:K:111:ILE:HA	1.85	0.44
1:A:242:ALA:O	1:A:247:GLY:HA2	2.18	0.44
1:D:234:PHE:O	1:D:261:ASN:HA	2.18	0.44
1:K:105:HIS:CE1	1:L:235:HIS:CE1	3.06	0.44
1:B:242:ALA:O	1:B:247:GLY:HA2	2.18	0.43
1:D:286:MET:HE3	1:F:116:THR:HG21	2.00	0.43
1:E:254:ASP:OD1	1:E:256:SER:OG	2.22	0.43
1:A:159:HIS:CE1	1:A:165:PHE:HA	2.53	0.43
1:B:207:HIS:CD2	1:B:298:GLY:HA2	2.53	0.43
1:C:122:HIS:HB3	1:C:160:VAL:HG11	2.00	0.43
1:B:79:LEU:HA	1:B:177:PRO:HG2	1.99	0.43
1:J:155:HIS:CD2	1:J:269:SER:HB3	2.54	0.43
1:F:64:MET:SD	1:F:96:MET:HE1	2.59	0.43
1:H:105:HIS:CE1	1:I:235:HIS:CE1	3.06	0.43
1:D:245:ARG:HA	1:E:257:GLN:HG3	1.99	0.43
1:J:122:HIS:HB3	1:J:160:VAL:HG11	1.99	0.43
1:A:68:LEU:HD13	1:A:78:PRO:CG	2.47	0.43
1:F:191:THR:HA	1:F:221:GLU:O	2.19	0.43
1:G:224:MET:HE1	1:G:225:ILE:O	2.19	0.43
1:J:171:ARG:NH2	6:J:503:HOH:O	2.33	0.43
1:A:106:GLY:HA3	1:A:154:TRP:CD2	2.54	0.43
1:C:97:ASP:OD1	1:C:98:VAL:HG13	2.19	0.43
1:K:195:VAL:HA	1:K:225:ILE:O	2.19	0.43
1:H:140:ARG:NH2	1:H:144:GLY:O	2.52	0.43
1:H:298:GLY:O	1:H:300:VAL:N	2.51	0.43
1:A:122:HIS:HB3	1:A:160:VAL:HG11	2.01	0.42
1:B:245:ARG:HA	1:C:257:GLN:HG3	1.99	0.42
1:F:104:VAL:HB	1:F:133:TRP:CZ2	2.54	0.42
1:J:57:GLU:HG2	1:J:95:THR:OG1	2.19	0.42
1:E:234:PHE:O	1:E:261:ASN:HA	2.19	0.42
1:F:58:ARG:HG2	1:F:96:MET:CE	2.49	0.42
1:J:233:THR:O	1:J:289:CYS:HA	2.19	0.42
1:K:242:ALA:O	1:K:247:GLY:HA2	2.20	0.42
1:F:235:HIS:HB2	1:F:261:ASN:OD1	2.20	0.42
1:A:191:THR:HA	1:A:221:GLU:O	2.19	0.42

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:H:59:LEU:HD21	1:H:73:ALA:HB3	2.02	0.42
1:H:233:THR:HA	1:H:262:LYS:O	2.19	0.42
1:J:157:HIS:ND1	1:J:158:ASP:O	2.40	0.42
1:J:306:LYS:CG	1:J:312:ILE:HD11	2.49	0.42
1:F:309:ASP:OD1	1:F:311:THR:OG1	2.33	0.42
1:I:116:THR:HB	1:I:118:GLN:OE1	2.19	0.42
1:A:155:HIS:HD2	1:A:269:SER:HB3	1.84	0.42
1:B:236:MET:HE2	1:B:236:MET:HB3	1.95	0.42
1:A:209:GLY:HA3	1:A:210:PRO:HA	1.89	0.42
1:G:282:ALA:HB1	1:G:305:VAL:O	2.20	0.42
1:L:282:ALA:HB2	1:L:307:LYS:HE3	2.02	0.42
1:A:173:GLY:HA2	1:A:175:TYR:CE2	2.54	0.42
1:G:320:HIS:CE1	1:I:118:GLN:HB3	2.55	0.42
1:K:204:ARG:HD3	1:K:210:PRO:HD3	2.01	0.42
1:F:242:ALA:O	1:F:247:GLY:HA2	2.20	0.42
1:G:156:TYR:CZ	1:G:176:GLY:HA3	2.54	0.42
6:H:541:HOH:O	1:I:292:GLN:HG3	2.19	0.42
1:A:120:LYS:HB3	1:A:120:LYS:HE3	1.84	0.41
1:F:159:HIS:CE1	1:F:165:PHE:HA	2.55	0.41
1:K:233:THR:HA	1:K:262:LYS:O	2.20	0.41
1:L:206:ALA:O	1:L:208:THR:HG23	2.20	0.41
1:L:226:THR:HB	1:L:265:GLY:O	2.20	0.41
1:F:106:GLY:HA3	1:F:154:TRP:CE3	2.55	0.41
1:G:165:PHE:CZ	1:H:300:VAL:HG21	2.55	0.41
1:K:233:THR:O	1:K:289:CYS:HA	2.19	0.41
1:G:224:MET:SD	1:G:270:PHE:CE1	3.14	0.41
1:H:106:GLY:HA3	1:H:154:TRP:CD2	2.55	0.41
1:J:188:PRO:HA	1:J:219:ARG:HG2	2.01	0.41
1:K:100:VAL:HG22	1:K:101:SER:H	1.85	0.41
1:E:142:ALA:C	1:E:144:GLY:N	2.73	0.41
1:H:165:PHE:CZ	1:I:300:VAL:HG21	2.56	0.41
1:C:204:ARG:NH1	1:C:210:PRO:HB3	2.36	0.41
1:D:158:ASP:OD2	1:D:169:GLY:HA3	2.21	0.41
1:D:236:MET:HE1	1:D:272:PHE:CZ	2.56	0.41
1:E:97:ASP:OD1	1:E:97:ASP:N	2.53	0.41
1:F:241:TRP:CZ3	1:F:260:ASP:HA	2.55	0.41
1:H:227:HIS:NE2	6:H:505:HOH:O	2.37	0.41
1:J:105:HIS:CE1	1:J:267:ALA:HB1	2.55	0.41
1:L:68:LEU:HD23	1:L:68:LEU:HA	1.91	0.41
1:A:250:THR:OG1	1:A:254:ASP:HB2	2.21	0.41
1:F:117:LYS:HD2	1:F:122:HIS:CE1	2.56	0.41

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:H:106:GLY:HA3	1:H:154:TRP:CE3	2.56	0.41
1:J:242:ALA:O	1:J:247:GLY:HA2	2.20	0.41
1:K:289:CYS:O	1:K:295:SER:HB3	2.21	0.41
1:A:69:GLU:OE2	1:A:72:LYS:HD2	2.21	0.41
1:H:234:PHE:O	1:H:261:ASN:HA	2.20	0.41
1:D:104:VAL:CG2	1:D:107:LEU:HD23	2.50	0.40
1:E:79:LEU:HA	1:E:177:PRO:HG2	2.03	0.40
1:G:106:GLY:HA3	1:G:154:TRP:CD2	2.56	0.40
1:G:245:ARG:HA	1:H:257:GLN:HG3	2.03	0.40
1:I:66:TYR:CD2	1:I:156:TYR:HE2	2.39	0.40
1:I:234:PHE:O	1:I:261:ASN:HA	2.20	0.40
1:C:66:TYR:CD2	1:C:156:TYR:HE1	2.39	0.40
1:G:288:HIS:HB3	1:G:300:VAL:HG23	2.02	0.40
1:L:80:ILE:HB	1:L:178:VAL:HG13	2.03	0.40
1:B:118:GLN:OE1	1:B:118:GLN:N	2.54	0.40
1:D:91:GLU:OE2	1:D:128:THR:HG23	2.20	0.40
1:G:136:HIS:CD2	1:G:149:GLY:HA2	2.56	0.40
1:H:229:GLU:OE1	1:I:293:SER:OG	2.33	0.40
1:H:235:HIS:ND1	1:H:260:ASP:O	2.39	0.40
1:J:300:VAL:HG21	1:L:165:PHE:HZ	1.87	0.40
1:K:90:VAL:O	1:K:130:THR:HA	2.21	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	279/322~(87%)	273 (98%)	6 (2%)	0	100	100
1	В	281/322~(87%)	268 (95%)	13 (5%)	0	100	100
1	С	276/322~(86%)	268 (97%)	8 (3%)	0	100	100
1	D	277/322~(86%)	271 (98%)	6 (2%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	Е	277/322~(86%)	270 (98%)	7 (2%)	0	100	100
1	F	277/322~(86%)	268 (97%)	9(3%)	0	100	100
1	G	280/322~(87%)	271 (97%)	9(3%)	0	100	100
1	Н	276/322~(86%)	266 (96%)	10 (4%)	0	100	100
1	Ι	280/322~(87%)	273~(98%)	7 (2%)	0	100	100
1	J	280/322~(87%)	271 (97%)	9(3%)	0	100	100
1	K	280/322~(87%)	272 (97%)	8 (3%)	0	100	100
1	L	275/322 (85%)	266 (97%)	9 (3%)	0	100	100
All	All	3338/3864 (86%)	3237 (97%)	101 (3%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	222/249~(89%)	220~(99%)	2(1%)	78 77
1	В	224/249~(90%)	223 (100%)	1 (0%)	91 90
1	С	220/249~(88%)	218~(99%)	2(1%)	78 77
1	D	220/249~(88%)	217~(99%)	3~(1%)	67 62
1	Ε	220/249~(88%)	217~(99%)	3 (1%)	67 62
1	F	221/249~(89%)	219~(99%)	2(1%)	78 77
1	G	223/249~(90%)	221~(99%)	2(1%)	78 77
1	Н	219/249~(88%)	215~(98%)	4 (2%)	59 53
1	Ι	223/249~(90%)	220~(99%)	3 (1%)	69 65
1	J	223/249~(90%)	222 (100%)	1 (0%)	91 90
1	Κ	222/249~(89%)	217~(98%)	5(2%)	50 42
1	L	218/249~(88%)	215 (99%)	3 (1%)	67 62
All	All	2655/2988~(89%)	2624 (99%)	31 (1%)	73 68

Mol	Chain	Res	Type
1	А	224	MET
1	А	240	ARG
1	В	318	GLN
1	С	70	LYS
1	С	240	ARG
1	D	224	MET
1	D	240	ARG
1	D	262	LYS
1	Е	50	ARG
1	Е	240	ARG
1	Е	248	MET
1	F	143	ASP
1	F	240	ARG
1	G	224	MET
1	G	240	ARG
1	Н	88	LEU
1	Н	120	LYS
1	Н	224	MET
1	Н	240	ARG
1	Ι	81	GLU
1	Ι	128	THR
1	Ι	240	ARG
1	J	224	MET
1	К	50	ARG
1	Κ	120	LYS
1	К	224	MET
1	К	240	ARG
1	K	318	GLN
1	L	117	LYS
1	L	224[A]	MET
1	L	224[B]	MET

All (31) residues with a non-rotameric sidechain are listed below:

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (1) such side chains are listed below:

Mol	Chain	Res	Type
1	Ι	257	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 57 ligands modelled in this entry, 48 are monoatomic - leaving 9 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	B	ond leng	gths	E	Bond ang	gles
INIOI	туре	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
3	PER	D	409	2	0,1,1	-	-	-		
5	OXY	D	407	2	1,1,1	0.13	0	-		
3	PER	J	406	2	0,1,1	-	-	-		
5	OXY	J	405	2	1,1,1	0.07	0	-		
3	PER	В	403	2	0,1,1	-	-	-		
3	PER	K	403	2	0,1,1	-	-	-		
3	PER	Е	405	2	0,1,1	-	-	-		
3	PER	G	406	2	0,1,1	-	-	-		
4	GOL	В	404	-	5,5,5	0.44	0	$5,\!5,\!5$	0.34	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	GOL	В	404	-	-	2/4/4/4	-

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
4	В	404	GOL	O1-C1-C2-O2
4	В	404	GOL	O1-C1-C2-C3

All (2) torsion outliers are listed below:

There are no ring outliers.

2 monomers are involved in 3 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	В	403	PER	1	0
3	G	406	PER	2	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	281/322~(87%)	-0.36	0 100 100	17, 28, 44, 69	3(1%)
1	В	281/322~(87%)	-0.35	2 (0%) 87 92	17, 28, 40, 79	7 (2%)
1	С	277/322~(86%)	-0.27	2 (0%) 87 92	20, 31, 48, 76	7 (2%)
1	D	278/322~(86%)	-0.32	2 (0%) 87 92	19, 29, 44, 81	6 (2%)
1	Ε	278/322~(86%)	-0.30	2 (0%) 87 92	19, 29, 45, 99	5 (1%)
1	F	277/322~(86%)	-0.35	1 (0%) 92 95	18, 30, 44, 59	5 (1%)
1	G	281/322~(87%)	-0.28	1 (0%) 92 95	20, 35, 52, 70	5 (1%)
1	Н	278/322~(86%)	-0.22	6 (2%) 62 70	22, 35, 51, 83	4 (1%)
1	Ι	281/322~(87%)	-0.19	1 (0%) 92 95	21, 35, 53, 84	4 (1%)
1	J	281/322~(87%)	-0.32	2 (0%) 87 92	21, 31, 47, 72	3 (1%)
1	Κ	282/322~(87%)	-0.32	2 (0%) 87 92	19, 30, 49, 73	1 (0%)
1	L	276/322~(85%)	-0.15	1 (0%) 92 95	24, 37, 52, 60	5 (1%)
All	All	3351/3864 (86%)	-0.29	22 (0%) 87 92	17, 31, 49, 99	55 (1%)

All (22) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	Ε	317	PRO	7.4
1	Е	40	ALA	6.9
1	Κ	40	ALA	5.4
1	Κ	321	ALA	4.1
1	Н	40	ALA	3.8
1	L	40	ALA	3.6
1	G	40	ALA	3.2
1	J	318	GLN	3.1
1	В	321	ALA	3.0
1	Ι	40	ALA	3.0
1	Н	316	ASP	2.9

Mol	Chain	Res	Type	RSRZ
1	Н	317	PRO	2.6
1	С	142	ALA	2.5
1	Н	41	GLY	2.5
1	С	70	LYS	2.3
1	D	317	PRO	2.3
1	Н	120	LYS	2.3
1	F	142	ALA	2.3
1	D	40	ALA	2.2
1	В	319	GLU	2.1
1	Н	142	ALA	2.1
1	J	40	ALA	2.1

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
2	CU	D	405	1/1	0.83	0.09	42,42,42,42	1
2	CU	J	403	1/1	0.91	0.12	34,34,34,34	1
4	GOL	В	404	6/6	0.91	0.09	37,39,40,44	0
2	CU	J	408	1/1	0.93	0.09	32,32,32,32	1
2	CU	G	405	1/1	0.93	0.07	33,33,33,33	1
2	CU	G	403	1/1	0.94	0.09	34,34,34,34	1
2	CU	G	402	1/1	0.94	0.08	36,36,36,36	1
2	CU	K	404	1/1	0.94	0.07	$38,\!38,\!38,\!38$	1
2	CU	Н	404	1/1	0.94	0.10	38,38,38,38	1
2	CU	В	406	1/1	0.95	0.20	27,27,27,27	1
2	CU	А	405	1/1	0.95	0.06	27,27,27,27	1
5	OXY	D	407	2/2	0.95	0.10	36,36,36,37	2

6F	C7
ΟI	\sim

	Type	Chain	Bes	Atoms	BSCC	RSR	B -factors (\mathbf{A}^2)	0<0.9
2	CU	E	403	1/1	0.96	0.10	<u>97 97 97 97</u>	v _k < 0.5
2	CU	D	403	1/1	0.90	0.10		1
2	CU	A	403	1/1	0.97	0.08	29 29 29 29 29	1
2	CU	J	407	1/1	0.97	0.00	30 30 30 30	1
2	CU	A	406	1/1	0.97	0.08	35 35 35 35	1
2	CU	Н	403	1/1	0.97	0.05	38 38 38 38	1
3	PER	B	403	$\frac{2}{2}$	0.97	0.09	16.16.16.23	2
3	PER	E	405	$\frac{2}{2}$	0.97	0.13	30.30.30.43	0
3	PER	G	406	$\frac{-}{2/2}$	0.97	0.13	23.23.23.31	2
3	PER	K	403	$\frac{-}{2/2}$	0.97	0.11	28.28.28.28	2
2	CU	D	403	1/1	0.97	0.10	46,46,46,46	1
2	CU	J	402	1/1	0.97	0.07	41.41.41.41	1
3	PER	D	409	$\frac{1}{2/2}$	0.98	0.08	28,28,28,29	2
2	CU	Е	404	1/1	0.98	0.05	31,31,31,31	1
2	CU	G	404	1/1	0.98	0.09	35,35,35,35	0
2	CU	А	402	1/1	0.98	0.09	34,34,34,34	1
2	CU	K	405	1/1	0.98	0.07	28,28,28,28	1
2	CU	G	407	1/1	0.98	0.07	40,40,40,40	1
5	OXY	J	405	2/2	0.98	0.07	33,33,33,36	0
2	CU	В	405	1/1	0.99	0.08	42,42,42,42	1
2	CU	J	409	1/1	0.99	0.11	41,41,41,41	0
2	CU	K	402	1/1	0.99	0.10	37,37,37,37	1
2	CU	D	404	1/1	0.99	0.04	31,31,31,31	0
2	CU	А	404	1/1	0.99	0.09	31,31,31,31	0
2	CU	L	401	1/1	0.99	0.08	29,29,29,29	0
2	CU	D	406	1/1	0.99	0.05	33,33,33,33	1
2	CU	G	408	1/1	0.99	0.09	38,38,38,38	0
2	CU	Н	402	1/1	0.99	0.09	42,42,42,42	0
2	CU	Е	401	1/1	0.99	0.07	$28,\!28,\!28,\!28$	0
3	PER	J	406	2/2	0.99	0.09	21,21,21,29	2
2	CU	Ε	402	1/1	0.99	0.08	$33,\!33,\!33,\!33$	0
2	CU	С	401	1/1	0.99	0.09	29,29,29,29	0
2	CU	D	401	1/1	0.99	0.08	26,26,26,26	0
2	CU	А	407	1/1	0.99	0.10	35,35,35,35	0
2	CU	Ι	401	1/1	1.00	0.07	30,30,30,30	0
2	CU	J	401	1/1	1.00	0.07	25,25,25,25	0
2	CU	D	408	1/1	1.00	0.09	32,32,32,32	0
2	CU	F	401	1/1	1.00	0.09	25,25,25,25	0
2	CU	J	404	1/1	1.00	0.07	29,29,29,29	1
2	CU	G	401	1/1	1.00	0.05	24,24,24,24	0
2	CU	H	401	1/1	1.00	0.10	29,29,29,29	0
2	CU	A	401	1/1	1.00	0.08	$22,\!22,\!22,\!22$	1

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
2	CU	Κ	401	1/1	1.00	0.09	30,30,30,30	0
2	CU	В	401	1/1	1.00	0.06	22,22,22,22	0
2	CU	В	402	1/1	1.00	0.09	33,33,33,33	0

Continued from previous page...

6.5 Other polymers (i)

There are no such residues in this entry.

