

Full wwPDB X-ray Structure Validation Report (i)

Sep 5, 2023 – 07:45 PM EDT

PDB ID	:	$4\mathrm{EZM}$
Title	:	Crystal structure of the human IgE-Fc(epsilon)3-4 bound to its B cell receptor
		derCD23
Authors	:	Dhaliwal, B.; Yuan, D.; Sutton, B.J.
Deposited on	:	2012-05-03
Resolution	:	3.10 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

:	4.02b-467
:	1.8.5 (274361), CSD as541be (2020)
:	1.13
:	2.35
:	20191225.v01 (using entries in the PDB archive December 25th 2019)
:	5.8.0158
:	7.0.044 (Gargrove)
:	Engh & Huber (2001)
:	Parkinson et al. (1996)
:	2.35
	:::::::::::::::::::::::::::::::::::::::

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive (#Entries)	Similar resolution $(\#$ Entries, resolution range(Å))		
R _{free}	130704	1094 (3.10-3.10)		
Clashscore	141614	1184 (3.10-3.10)		
Ramachandran outliers	138981	1141 (3.10-3.10)		
Sidechain outliers	138945	1141 (3.10-3.10)		
RSRZ outliers	127900	1067 (3.10-3.10)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of ch	ain
			13%	
1	А	223	82%	11% • 5%
			17%	
1	В	223	83%	10% 7%
			19%	
1	\mathbf{C}	223	77%	9% • 12%
			20%	
1	D	223	83%	8% • 7%
			33%	
1	Ε	223	75%	9% • 14%

Mol	Chain	Length	Quality of chain	Quality of chain					
			36%						
1	F	223	80%	11% • 7%					
	C	1.40	16%						
2	G	143	76%	14% •• 7%					
0	п	149	19%						
	П	145	76%	15% •• 7%					
2	т	143	7/0/	100/ 70/					
	1	140	12%	• 770					
2	J	143	76%	17% • 7%					
			29%						
2	К	143	78%	15% • 6%					
			27%						
2	L	143	79%	12% •• 6%					
	м	-							
3	M	5	60%	40%					
2	N	5	2004	200/					
<u> </u>	11		80%	20%					
3	0	5	40% 60%						
3	Р	5	80%	20%					
3	Q	5	60%	40%					
	D	_							
3	R	5	60%	40%					

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
3	NAG	М	1	-	-	-	Х
3	NAG	N	1	-	-	-	Х
3	NAG	0	1	-	-	-	Х
3	MAN	0	4	-	-	-	Х
3	NAG	Q	1	-	-	-	Х
4	MAN	С	606	-	-	-	Х
4	MAN	С	607	-	-	-	Х

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 16496 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
1	Δ	911	Total C N O S	0	0	0
1	Л	211	$1667 \ 1044 \ 307 \ 310 \ 6$	0	0	0
1	В	208	Total C N O S	0	0	Ο
1	D	200	1650 1033 304 307 6	0	0	0
1	С	107	Total C N O S	0	1	Ο
1		197	$1565 \ 981 \ 284 \ 294 \ 6$	0	1	0
1		207	Total C N O S	0	0	Ο
1	D	201	1639 1027 302 304 6	0	0	
1	F	101	Total C N O S	0	0	0
1		191	1509 945 276 283 5	0	0	0
1	Б	208	Total C N O S	0	0	0
	Г	200	$1645 \ 1030 \ 303 \ 306 \ 6$	0	0	U

• Molecule 1 is a protein called Ig epsilon chain C region.

There are 30 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual Comment		Reference
А	325	ALA	-	expression tag	UNP P01854
А	326	ASP	-	expression tag	UNP P01854
А	327	PRO	-	expression tag	UNP P01854
А	371	GLN	ASN	engineered mutation	UNP P01854
А	383	GLN	ASN	engineered mutation	UNP P01854
В	325	ALA	-	expression tag	UNP P01854
В	326	ASP	-	expression tag	UNP P01854
В	327	PRO	-	expression tag	UNP P01854
В	371	GLN	ASN	engineered mutation	UNP P01854
В	383	GLN	ASN	engineered mutation	UNP P01854
С	325	ALA	-	expression tag	UNP P01854
С	326	ASP	-	expression tag	UNP P01854
С	327	PRO	-	expression tag	UNP P01854
С	371	GLN	ASN	engineered mutation	UNP P01854
С	383	GLN	ASN	engineered mutation	UNP P01854
D	325	ALA	-	expression tag	UNP P01854
D	326	ASP	-	expression tag	UNP P01854

Chain	Residue	sidue Modelled Actual Comm		Comment	Reference
D	327	PRO	-	expression tag	UNP P01854
D	371	GLN	ASN	engineered mutation	UNP P01854
D	383	GLN	ASN	engineered mutation	UNP P01854
E	325	ALA	-	expression tag	UNP P01854
E	326	ASP	-	expression tag	UNP P01854
E	327	PRO	-	expression tag	UNP P01854
Е	371	GLN	ASN	engineered mutation	UNP P01854
E	383	GLN	ASN	engineered mutation	UNP P01854
F	325	ALA	-	expression tag	UNP P01854
F	326	ASP	-	expression tag	UNP P01854
F	327	PRO	-	expression tag	UNP P01854
F	371	GLN	ASN	engineered mutation	UNP P01854
F	383	GLN	ASN	engineered mutation	UNP P01854

• Molecule 2 is a protein called Low affinity immunoglobulin epsilon Fc receptor.

Mol	Chain	Residues		A	toms			ZeroOcc	AltConf	Trace	
0	С	122	Total	С	Ν	0	S	0	0	0	
	G	100	1070	673	191	195	11	0	0	0	
0	Ц	122	Total	С	Ν	0	S	0	0	0	
	11	100	1070	673	191	195	11	0	0	U	
0	2 I 133	I 199	122	Total	С	Ν	0	S	0	0	0
		155	1070	673	191	195	11	0	0	0	
9	Т	133	Total	С	Ν	0	\mathbf{S}	0	0	0	
	J		1070	673	191	195	11	0	0	0	
9	K	134	Total	С	Ν	0	S	0	0	0	
	194	1074	675	192	196	11	0	0	0		
9	т	194	Total	С	Ν	0	S	0	0	0	
		134	1078	677	192	198	11		0	U	

• Molecule 3 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyran ose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
3	М	5	Total 61	С 34	N 2	O 25	0	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
3	Ν	5	Total C N O	0	0	0
			61 34 2 25			
3	0	5	Total C N O	0	0	0
5	0	5	61 34 2 25	0		
2	D	P 5	Total C N O	0	0	0
5	1		61 34 2 25			
2	0	Б	Total C N O	0	0	0
3 Q	5	61 34 2 25	0	0	U	
3	D	E.	Total C N O	0	0	0
	n	5	61 34 2 25	0	U	U

• Molecule 4 is alpha-D-mannopyranose (three-letter code: MAN) (formula: $C_6H_{12}O_6$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	С	1	Total C O 11 6 5	0	0
4	С	1	Total C O 11 6 5	0	0

• Molecule 5 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	J	1	Total O 1 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Ig epsilon chain C region

• Molecule 2: Low affinity immunoglobulin epsilon Fc receptor

Chain I:	449	6 74%		18% • 7%
SER GLY F158 V159 V159 V160 N161 T162 C163	P164 V167 V167 V167 V168 R168 R179 R172 R172 K173 C173	G178 K179 W184 M180 C191 D192 D192 D192 D193 E195	8200 8204 8204 8205 8205 8205 8205 8208 8208 8210 8211 82113 8213	H216 L223 N224 N225 L225 C230 C230 C231 W224 V235 U235 C233 C233 C233
H239 S243 W244 W245 A246 P247 C248	E249 P260 T251 S252 R253 R253 S254 Q255 G1Y G1Y G1U	C259 V260 N261 N261 N262 N265 C266 R266 R266 R265 R265 R265 R265 C273	0278 0278 0278 0282 0282 0283 0283 0284 0284 0284 0288 7289 7289	A292 SER SER GLU GLU SER ALA GLU
• Molecule	2: Low affini	ty immunoglobuli	n epsilon Fc recept	or
Chain J:	12%	76%		17% • 7%

• Molecule 2: Low affinity immunoglobulin epsilon Fc receptor

• Molecule 2: Low affinity immunoglobulin epsilon Fc receptor

 • Molecule 3: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

40%

Chain M:

NAG1 NAG2 BMA3 MAN4 MAN5 MAN5

 \bullet Molecule 3: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain N: 80% 20%

60%

NAG1 NAG2 BMA3 MAN4 MAN5 MAN5

 \bullet Molecule 3: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose nose

Chain O:	40%	60%
NAG1 NAG2 BMA3 MAN4 MAN5		

 \bullet Molecule 3: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose nose

Chain P:	80%	20%

NAG1 NAG2 BMA3 MAN4 MAN5 MAN5

 \bullet Molecule 3: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain Q:	60%	40%

NAG1 NAG2 BMA3 MAN4 MAN5 MAN5

 • Molecule 3: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain R:

60%

40%

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	62.89Å 110.75Å 376.56Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Bosolution(Å)	29.87 - 3.10	Depositor
Resolution (A)	29.87 - 3.10	EDS
% Data completeness	(Not available) (29.87-3.10)	Depositor
(in resolution range)	98.7 (29.87-3.10)	EDS
R _{merge}	(Not available)	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.25 (at 3.11 \text{\AA})$	Xtriage
Refinement program	BUSTER 2.8.0	Depositor
P. P.	0.264 , 0.283	Depositor
n, n_{free}	0.282 , 0.303	DCC
R_{free} test set	2437 reflections $(5.05%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	98.7	Xtriage
Anisotropy	0.088	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.31 , 72.4	EDS
L-test for twinning ²	$ < L >=0.47, < L^2>=0.30$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.80	EDS
Total number of atoms	16496	wwPDB-VP
Average B, all atoms $(Å^2)$	111.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.13% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MAN, NAG, BMA

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	Bond angles		
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.47	1/1710~(0.1%)	0.72	7/2328~(0.3%)	
1	В	0.39	0/1692	0.65	1/2301~(0.0%)	
1	С	0.37	0/1605	0.64	0/2182	
1	D	0.40	0/1681	0.76	4/2287~(0.2%)	
1	Ε	0.37	0/1544	0.61	0/2094	
1	F	0.37	0/1687	0.62	0/2295	
2	G	0.42	0/1103	0.69	1/1494~(0.1%)	
2	Н	0.43	0/1103	0.70	0/1494	
2	Ι	0.40	0/1103	0.68	0/1494	
2	J	0.41	0/1103	0.68	0/1494	
2	Κ	0.39	0/1107	0.68	0/1499	
2	L	0.39	0/1112	0.75	3/1507~(0.2%)	
All	All	0.40	1/16550~(0.0%)	0.68	16/22469 (0.1%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
2	L	0	1

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	А	545	PRO	N-CD	10.62	1.62	1.47

All (16) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
1	D	369	THR	CB-CA-C	13.29	147.49	111.60
2	L	256	GLY	N-CA-C	10.56	139.50	113.10
1	D	369	THR	N-CA-C	-8.64	87.67	111.00
1	А	364	ALA	N-CA-C	-6.86	92.48	111.00
1	А	371	GLN	N-CA-C	6.16	127.64	111.00
1	В	544	ASN	N-CA-C	5.97	127.12	111.00
2	G	254	SER	N-CA-C	-5.96	94.91	111.00
1	А	544	ASN	N-CA-C	5.83	126.75	111.00
1	А	545	PRO	CA-N-CD	-5.61	103.65	111.50
2	L	289	THR	N-CA-CB	5.60	120.94	110.30
1	D	369	THR	C-N-CA	5.57	135.62	121.70
1	А	544	ASN	C-N-CD	-5.56	108.36	120.60
2	L	255	GLN	CB-CA-C	-5.38	99.63	110.40
1	А	545	PRO	N-CA-C	5.25	125.75	112.10
1	А	364	ALA	CB-CA-C	5.19	117.89	110.10
1	D	368	GLY	C-N-CA	5.18	134.64	121.70

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
2	L	255	GLN	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1667	0	1656	15	0
1	В	1650	0	1637	12	0
1	С	1565	0	1552	18	0
1	D	1639	0	1629	16	0
1	Е	1509	0	1483	20	0
1	F	1645	0	1633	25	0
2	G	1070	0	994	20	0
2	Н	1070	0	994	18	0
2	Ι	1070	0	994	17	0
2	J	1070	0	994	12	0
2	Κ	1074	0	996	12	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	L	1078	0	999	14	0
3	М	61	0	52	5	0
3	Ν	61	0	52	4	0
3	0	61	0	52	9	0
3	Р	61	0	52	4	0
3	Q	61	0	52	6	0
3	R	61	0	52	5	0
4	С	22	0	20	3	0
5	J	1	0	0	0	0
All	All	16496	0	15893	191	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 7.

All (191) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:H:167:TRP:HB3	2:H:174:CYS:SG	1.43	1.57
1:E:478:TRP:CZ3	1:E:524:CYS:SG	2.15	1.37
2:I:163:CYS:SG	2:I:167:TRP:HB2	1.68	1.33
2:G:163:CYS:SG	2:G:167:TRP:HB2	1.72	1.27
2:H:167:TRP:CB	2:H:174:CYS:SG	2.25	1.22
1:E:478:TRP:CH2	1:E:524:CYS:SG	2.36	1.19
2:I:163:CYS:SG	2:I:167:TRP:CB	2.31	1.18
2:G:163:CYS:SG	2:G:167:TRP:CB	2.31	1.17
4:C:607:MAN:H2	3:O:5:MAN:O6	1.45	1.16
1:F:464:CYS:SG	1:F:478:TRP:CH2	2.53	1.00
2:H:259:CYS:HG	2:H:273:CYS:HG	1.07	0.97
1:E:478:TRP:CE3	1:E:524:CYS:SG	2.58	0.95
1:E:392:GLN:HG3	3:Q:1:NAG:O6	1.67	0.94
1:C:392:GLN:NE2	3:0:1:NAG:O6	2.02	0.93
1:F:358:CYS:HG	1:F:418:CYS:HG	1.10	0.93
1:A:358:CYS:HG	1:A:418:CYS:HG	1.06	0.91
1:D:358:CYS:HG	1:D:418:CYS:HG	1.14	0.91
2:G:163:CYS:SG	2:G:167:TRP:HB3	2.09	0.90
2:I:191:CYS:HG	2:I:282:CYS:HG	1.21	0.89
1:D:369:THR:O	1:D:370:VAL:HG23	1.72	0.88
1:A:464:CYS:HG	1:A:524:CYS:HG	1.11	0.86
1:C:392:GLN:HG3	3:0:1:NAG:O6	1.75	0.86
1:E:392:GLN:NE2	3:Q:1:NAG:O6	2.08	0.86
1:F:392:GLN:NE2	3:R:1:NAG:O6	2.09	0.85

	A h O	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:E:392:GLN:CG	3:Q:1:NAG:O6	2.25	0.84	
1:F:440:ARG:NH1	2:L:255:GLN:O	2.10	0.84	
2:L:254:SER:O	2:L:255:GLN:HB2	1.79	0.83	
2:I:259:CYS:HG	2:I:273:CYS:HG	1.06	0.83	
1:E:358:CYS:HG	1:E:418:CYS:HG	1.22	0.82	
2:I:163:CYS:SG	2:I:167:TRP:HB3	2.16	0.82	
1:C:544:ASN:ND2	1:C:544:ASN:O	2.13	0.82	
1:B:358:CYS:HG	1:B:418:CYS:HG	1.22	0.81	
1:D:392:GLN:NE2	3:P:1:NAG:O6	2.13	0.81	
1:C:392:GLN:CG	3:O:1:NAG:O6	2.30	0.79	
1:A:392:GLN:HG3	3:M:1:NAG:O6	1.81	0.79	
1:B:392:GLN:NE2	3:N:1:NAG:O6	2.14	0.79	
4:C:607:MAN:C2	3:O:5:MAN:O6	2.30	0.78	
2:J:259:CYS:HG	2:J:273:CYS:HG	1.28	0.78	
1:F:392:GLN:HG3	3:R:1:NAG:O6	1.82	0.78	
2:K:191:CYS:HG	2:K:282:CYS:HG	1.28	0.78	
1:C:544:ASN:O	1:C:544:ASN:CG	2.23	0.75	
1:A:392:GLN:CG	3:M:1:NAG:O6	2.36	0.73	
4:C:607:MAN:H2	3:O:5:MAN:HO6	1.52	0.73	
2:H:160:CYS:HG	2:H:288:CYS:HG	1.28	0.73	
1:D:521:GLU:HG3	1:F:421:THR:HG21	1.72	0.71	
2:J:191:CYS:HG	2:J:282:CYS:HG	1.27	0.71	
1:B:392:GLN:HG3	3:N:1:NAG:O6	1.92	0.70	
1:E:464:CYS:SG	1:E:478:TRP:CH2	2.84	0.70	
1:F:392:GLN:CG	3:R:1:NAG:O6	2.38	0.70	
2:G:163:CYS:SG	2:G:164:PRO:HD2	2.31	0.70	
1:D:392:GLN:HG3	3:P:1:NAG:O6	1.94	0.67	
2:L:259:CYS:HG	2:L:273:CYS:HG	1.40	0.66	
2:H:167:TRP:CG	2:H:174:CYS:SG	2.89	0.65	
1:C:392:GLN:HE21	3:O:1:NAG:C6	2.10	0.65	
1:C:543:VAL:O	1:C:544:ASN:OD1	2.16	0.64	
1:B:392:GLN:CG	3:N:1:NAG:O6	2.46	0.64	
1:E:478:TRP:CZ2	1:E:524:CYS:SG	2.92	0.63	
2:H:167:TRP:CE3	2:H:174:CYS:SG	2.90	0.63	
1:D:392:GLN:CG	3:P:1:NAG:O6	2.48	0.62	
2:I:160:CYS:HG	2:I:288:CYS:HG	1.22	0.62	
2:H:167:TRP:HB3	2:H:174:CYS:HG	1.55	0.62	
2:L:254:SER:O	2:L:255:GLN:CB	2.48	0.62	
1:D:392:GLN:HE21	3:P:1:NAG:C6	2.15	0.60	
1:F:392:GLN:HE21	3:R:1:NAG:C6	2.14	0.60	
2:G:252:SER:HB2	2:G:255:GLN:HA	1.84	0.59	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:E:392:GLN:HE21	3:Q:1:NAG:C6	2.15	0.59	
1:F:440:ARG:NH1	2:L:257:GLU:H	2.01	0.59	
2:G:163:CYS:SG	2:G:164:PRO:CD	2.93	0.57	
1:C:531:ALA:O	1:C:535:GLN:HA	2.05	0.57	
1:E:475:SER:HB2	1:E:527:VAL:HB	1.86	0.56	
2:J:162:THR:HB	2:J:287:THR:HG23	1.88	0.56	
1:B:392:GLN:HE21	3:N:1:NAG:C6	2.16	0.56	
1:E:359:LEU:HD11	3:Q:2:NAG:O7	2.05	0.55	
2:K:246:ALA:HA	2:K:267:ARG:HE	1.71	0.55	
1:F:464:CYS:SG	1:F:478:TRP:HH2	2.18	0.55	
2:I:162:THR:HB	2:I:287:THR:HG23	1.88	0.55	
2:K:226:LEU:O	2:K:226:LEU:HG	2.07	0.55	
1:A:360:VAL:HG13	1:A:399:VAL:HG13	1.89	0.55	
1:B:464:CYS:HG	1:B:524:CYS:HG	0.59	0.55	
2:H:162:THR:HB	2:H:287:THR:HG23	1.89	0.55	
2:G:162:THR:HB	2:G:287:THR:HG23	1.88	0.54	
2:J:174:CYS:HB2	2:J:284:ARG:HG2	1.90	0.54	
1:F:464:CYS:SG	1:F:478:TRP:CZ2	2.92	0.54	
1:B:360:VAL:HG13	1:B:399:VAL:HG13	1.90	0.54	
2:I:163:CYS:SG	2:I:164:PRO:HD2	2.48	0.54	
2:L:162:THR:HB	2:L:287:THR:HG23	1.90	0.54	
1:E:336:VAL:HG12	1:E:362:ASP:HA	1.90	0.53	
2:G:184:TRP:CH2	2:G:224:ARG:HG2	2.44	0.53	
2:J:226:LEU:HG	2:J:226:LEU:O	2.08	0.53	
2:L:226:LEU:HG	2:L:226:LEU:O	2.09	0.53	
2:G:174:CYS:HB2	2:G:284:ARG:HG2	1.91	0.53	
2:K:162:THR:HB	2:K:287:THR:HG23	1.89	0.53	
1:C:360:VAL:HG13	1:C:399:VAL:HG13	1.91	0.52	
1:D:360:VAL:HG13	1:D:399:VAL:HG13	1.91	0.52	
1:F:360:VAL:HG13	1:F:399:VAL:HG13	1.91	0.52	
1:E:360:VAL:HG13	1:E:399:VAL:HG13	1.91	0.52	
2:J:184:TRP:CZ2	2:J:224:ARG:HG2	2.45	0.52	
2:I:226:LEU:O	2:I:226:LEU:HG	2.09	0.52	
1:F:347:ASP:HA	1:F:351:ARG:HB2	1.90	0.52	
2:G:184:TRP:CZ2	2:G:224:ARG:HG2	2.45	0.51	
1:D:443:PRO:HB3	1:D:469:PHE:HB3	1.91	0.51	
1:C:359:LEU:HD11	3:0:2:NAG:O7	2.10	0.51	
2:K:184:TRP:CH2	2:K:224:ARG:HG2	2.45	0.51	
2:L:184:TRP:CH2	2:L:224:ARG:HG2	2.46	0.51	
2:G:226:LEU:HG	2:G:226:LEU:O	2.09	0.51	
2:H:226:LEU:HG	2:H:226:LEU:O	2.10	0.51	

	lo do pagom	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:460:ARG:HG3	1:A:543:VAL:HG13	1.92	0.51	
1:A:535:GLN:OE1	2:G:228:LEU:HG	2.10	0.51	
1:C:475:SER:HB2	1:C:527:VAL:HB	1.92	0.51	
2:K:184:TRP:CZ2	2:K:224:ARG:HG2	2.46	0.51	
1:F:358:CYS:CB	1:F:418:CYS:HG	2.23	0.50	
1:C:460:ARG:HG3	1:C:543:VAL:HG13	1.92	0.50	
1:F:359:LEU:HD11	3:R:2:NAG:O7	2.11	0.50	
2:H:223:LEU:HB3	2:H:260:VAL:HB	1.93	0.50	
2:I:184:TRP:CZ2	2:I:224:ARG:HG2	2.47	0.50	
1:D:358:CYS:CB	1:D:418:CYS:HG	2.25	0.50	
1:F:479:LEU:HG	1:F:484:GLN:HA	1.93	0.50	
2:G:163:CYS:HG	2:G:174:CYS:HB3	1.76	0.50	
2:J:184:TRP:CH2	2:J:224:ARG:HG2	2.47	0.49	
1:D:347:ASP:HA	1:D:351:ARG:HB2	1.94	0.49	
1:B:460:ARG:HG3	1:B:543:VAL:HG13	1.94	0.49	
2:L:184:TRP:CZ2	2:L:224:ARG:HG2	2.47	0.49	
1:F:440:ARG:HH12	2:L:257:GLU:H	1.59	0.49	
1:D:519:LYS:HD3	1:F:419:ARG:HH22	1.78	0.49	
2:K:160:CYS:HB2	2:K:172:ARG:HG2	1.94	0.49	
1:D:519:LYS:HA	1:F:419:ARG:HH22	1.77	0.48	
1:B:347:ASP:HA	1:B:351:ARG:HB2	1.95	0.48	
1:C:358:CYS:CB	1:C:418:CYS:HG	2.26	0.48	
2:G:252:SER:C	2:G:254:SER:H	2.17	0.48	
1:D:369:THR:O	1:D:370:VAL:CG2	2.54	0.48	
1:F:478:TRP:CE2	1:F:524:CYS:SG	2.99	0.48	
2:K:163:CYS:CB	2:K:174:CYS:HG	2.16	0.48	
2:I:160:CYS:HB2	2:I:172:ARG:HG2	1.96	0.48	
1:A:392:GLN:CD	3:M:1:NAG:HO6	2.14	0.48	
2:I:184:TRP:CH2	2:I:224:ARG:HG2	2.48	0.48	
2:K:163:CYS:HA	2:K:174:CYS:SG	2.54	0.48	
1:C:392:GLN:CD	3:O:1:NAG:O6	2.52	0.47	
2:H:167:TRP:HE3	2:H:174:CYS:SG	2.36	0.47	
1:A:439:PRO:HA	2:G:254:SER:HA	1.96	0.47	
1:D:519:LYS:HE3	1:F:428:ALA:H	1.79	0.47	
1:E:447:ALA:CB	1:E:464:CYS:SG	3.02	0.47	
1:F:535:GLN:OE1	2:L:228:LEU:HG	2.14	0.47	
2:L:200:SER:HA	2:L:234:TRP:CE3	2.50	0.47	
2:I:174:CYS:HB2	2:I:284:ARG:HG2	1.96	0.47	
2:K:200:SER:HA	2:K:234:TRP:CE3	2.50	0.47	
2:G:200:SER:HA	2:G:234:TRP:CE3	2.49	0.47	
2:I:163:CYS:SG	2:I:174:CYS:SG	3.13	0.47	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:H:174:CYS:HB3	2:H:284:ARG:HG2	1.97	0.47	
1:F:435:LYS:HE3	2:L:257:GLU:HG3	1.97	0.46	
2:H:184:TRP:CH2	2:H:224:ARG:HG2	2.50	0.46	
2:I:200:SER:HA	2:I:234:TRP:CE3	2.50	0.46	
2:H:227:ASP:C	2:H:229:LYS:H	2.18	0.46	
2:J:200:SER:HA	2:J:234:TRP:CE3	2.50	0.46	
1:E:392:GLN:CD	3:Q:1:NAG:O6	2.54	0.46	
2:H:226:LEU:H	2:H:229:LYS:HG3	1.81	0.46	
2:G:163:CYS:SG	2:G:174:CYS:SG	3.14	0.45	
2:J:207:GLN:OE1	2:J:268:TRP:NE1	2.48	0.45	
2:H:167:TRP:HB2	2:H:174:CYS:SG	2.44	0.45	
1:E:447:ALA:HB2	1:E:464:CYS:SG	2.56	0.45	
1:D:457:ARG:HA	1:D:457:ARG:NE	2.32	0.44	
1:A:358:CYS:CB	1:A:418:CYS:HG	2.31	0.44	
1:B:544:ASN:HA	1:B:545:PRO:HD2	1.74	0.44	
1:C:347:ASP:HA	1:C:351:ARG:HB2	1.99	0.44	
1:A:392:GLN:OE1	3:M:1:NAG:O6	2.23	0.44	
1:E:362:ASP:HB3	1:E:397:LEU:O	2.18	0.44	
2:J:163:CYS:CB	2:J:174:CYS:SG	3.06	0.44	
2:K:163:CYS:CB	2:K:174:CYS:SG	3.04	0.44	
2:I:163:CYS:SG	2:I:164:PRO:CD	3.06	0.43	
1:C:525:ARG:HD2	1:C:536:THR:HG21	2.01	0.43	
1:B:422:HIS:HB3	1:B:425:LEU:HB3	2.01	0.42	
2:G:222:GLY:O	2:G:234:TRP:HA	2.19	0.42	
1:F:422:HIS:HB3	1:F:425:LEU:HD13	2.00	0.42	
2:J:163:CYS:HG	2:J:174:CYS:HG	0.42	0.42	
1:A:347:ASP:HA	1:A:351:ARG:HB2	2.01	0.42	
2:L:223:LEU:HB3	2:L:260:VAL:HB	2.02	0.42	
1:A:460:ARG:HG3	1:A:543:VAL:CG1	2.50	0.42	
1:A:359:LEU:HD11	3:M:2:NAG:O7	2.20	0.41	
1:B:531:ALA:O	1:B:535:GLN:HA	2.19	0.41	
1:C:531:ALA:HB1	1:C:537:VAL:HG23	2.01	0.41	
2:G:254:SER:O	2:G:255:GLN:OE1	2.39	0.41	
2:G:223:LEU:HB3	2:G:260:VAL:HB	2.02	0.41	
1:E:478:TRP:CD2	1:E:524:CYS:SG	3.09	0.41	
2:K:223:LEU:HB3	2:K:260:VAL:HB	2.03	0.41	
2:I:223:LEU:HB3	2:I:260:VAL:HB	2.02	0.41	
2:H:226:LEU:O	2:H:228:LEU:N	2.54	0.41	
1:C:372:LEU:HA	1:C:420:VAL:HG13	2.04	0.40	
1:E:473:ASP:O	1:E:528:HIS:HD2	2.03	0.40	
2:J:223:LEU:HB3	2:J:260:VAL:HB	2.03	0.40	

J	Figure Figure		
Atom-1	Atom-2	$\begin{array}{c} {\rm Interatomic}\\ {\rm distance}~({\rm \AA}) \end{array}$	Clash overlap (Å)
1:F:475:SER:HB2	1:F:527:VAL:HB	2.03	0.40
2:H:200:SER:HA	2:H:234:TRP:CE3	2.57	0.40
1:A:466:ILE:HD13	1:A:505:VAL:HG23	2.04	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	209/223~(94%)	198 (95%)	10 (5%)	1 (0%)	29	64
1	В	204/223~(92%)	190 (93%)	13 (6%)	1 (0%)	29	64
1	С	192/223~(86%)	183 (95%)	8 (4%)	1 (0%)	29	64
1	D	205/223~(92%)	193 (94%)	11 (5%)	1 (0%)	29	64
1	Е	179/223~(80%)	171 (96%)	8 (4%)	0	100	100
1	F	206/223~(92%)	200 (97%)	5 (2%)	1 (0%)	29	64
2	G	129/143~(90%)	113 (88%)	15 (12%)	1 (1%)	19	54
2	Н	129/143~(90%)	118 (92%)	9~(7%)	2(2%)	9	37
2	Ι	129/143~(90%)	113 (88%)	16 (12%)	0	100	100
2	J	129/143~(90%)	116 (90%)	12 (9%)	1 (1%)	19	54
2	K	130/143~(91%)	118 (91%)	12 (9%)	0	100	100
2	L	132/143~(92%)	118 (89%)	14 (11%)	0	100	100
All	All	1973/2196~(90%)	1831 (93%)	133 (7%)	9 (0%)	29	64

All (9) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	D	370	VAL
	<i>a</i>	7	-

Contre	naca fron	i preui	bus puye
Mol	Chain	Res	Type
2	Н	228	LEU
1	А	393	ARG
1	В	393	ARG
1	F	393	ARG
1	С	393	ARG
2	G	228	LEU
2	Н	226	LEU
2	J	161	ASN

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
1	А	186/195~(95%)	176 (95%)	10 (5%)	22	53	
1	В	185/195~(95%)	179~(97%)	6 (3%)	39	69	
1	С	176/195~(90%)	166 (94%)	10 (6%)	20	52	
1	D	182/195~(93%)	174 (96%)	8 (4%)	28	61	
1	Е	167/195~(86%)	159~(95%)	8 (5%)	25	58	
1	F	183/195~(94%)	174 (95%)	9~(5%)	25	57	
2	G	114/120~(95%)	106~(93%)	8 (7%)	15	45	
2	Η	114/120~(95%)	105~(92%)	9~(8%)	12	40	
2	Ι	114/120~(95%)	107~(94%)	7~(6%)	18	49	
2	J	114/120~(95%)	107~(94%)	7~(6%)	18	49	
2	Κ	114/120~(95%)	107~(94%)	7~(6%)	18	49	
2	L	115/120~(96%)	108 (94%)	7~(6%)	18	49	
All	All	1764/1890~(93%)	1668 (95%)	96~(5%)	22	53	

All (96) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	352	LYS
1	А	359	LEU
	a i	1	,

1 A 371 GLN 1 A 372 LEU 1 A 425 LEU	1
1 A 372 LEU 1 A 425 LEU	
1 A 425 LEU	J
	J
$1 \mid A \mid 427 \mid ARC$	ť
1 A 475 SER	t
1 A 479 LEU	J
1 A 525 ARC	ť
1 A 544 ASN	1
1 B 359 LEU	J
1 B 372 LEU	J
1 B 424 HIS	
1 B 475 SER	t
1 B 525 ARC	ť
1 B 544 ASN	1
1 C 359 LEU	J
1 C 362 ASF)
1 C 372 LEU	J
1 C 397 LEU	J
1 C 420 VAI	
1 C 429 LEU	J
1 C 430 MET	Γ
1 C 436 THE	2
1 C 525 ARC	ť
1 C 544 ASN	1
1 D 359 LEU	J
1 D 427 ARC	ť
1 D 457 ARC	ť
1 D 458 ASF	>
1 D 461 THE	2
1 D 475 SER	t
1 D 521 GLU	J
1 D 525 ARC	ť
1 E 344 SER	
1 E 359 LEU	J
1 E 362 ASF)
1 E 372 LEU	J
1 E 401 SER	l
1 E 425 LEU	J
1 E 523 ILE	
1 E 525 ARC	ť
1 F 347 ASF	>
1 F 359 LEU	J

Mol	Chain	Res	Type
1	F	363	LEU
1	F	369	THR
1	F	372	LEU
1	F	427	ARG
1	F	440	ARG
1	F	475	SER
1	F	525	ARG
2	G	160	CYS
2	G	208	ASP
2	G	224	ARG
2	G	225	ASN
2	G	228	LEU
2	G	243	SER
2	G	255	GLN
2	G	289	THR
2	Н	160	CYS
2	Н	208	ASP
2	Н	224	ARG
2	Н	225	ASN
2	Н	228	LEU
2	Н	243	SER
2	Н	252	SER
2	Н	258	ASP
2	Н	289	THR
2	Ι	208	ASP
2	Ι	213	HIS
2	Ι	224	ARG
2	Ι	225	ASN
2	Ι	243	SER
2	Ι	252	SER
2	Ι	289	THR
2	J	208	ASP
2	J	224	ARG
2	J	225	ASN
2	J	228	LEU
2	J	243	SER
2	J	252	SER
2	J	263	ARG
2	K	208	ASP
2	K	224	ARG
2	K	225	ASN
2	К	228	LEU

Mol	Chain	Res	Type
2	K	243	SER
2	Κ	252	SER
2	Κ	289	THR
2	L	208	ASP
2	L	224	ARG
2	L	225	ASN
2	L	228	LEU
2	L	243	SER
2	L	252	SER
2	L	289	THR

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (24) such sidechains are listed below:

Mol	Chain	Res	Type
1	В	392	GLN
1	В	481	ASN
1	С	392	GLN
1	С	544	ASN
1	D	392	GLN
1	Е	392	GLN
1	F	392	GLN
2	G	213	HIS
2	G	225	ASN
2	G	255	GLN
2	G	269	ASN
2	Н	213	HIS
2	Н	269	ASN
2	Ι	225	ASN
2	Ι	269	ASN
2	J	213	HIS
2	J	225	ASN
2	J	269	ASN
2	K	213	HIS
2	Κ	225	ASN
2	K	269	ASN
2	L	213	HIS
2	L	225	ASN
2	L	269	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

30 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mol Type Chain		Ros Link		Bond lengths			Bond angles		
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
3	NAG	М	1	3	14,14,15	0.52	0	$17,\!19,\!21$	1.47	2 (11%)
3	NAG	М	2	3	14,14,15	0.58	0	17,19,21	1.38	2 (11%)
3	BMA	М	3	3	11,11,12	0.71	0	$15,\!15,\!17$	2.17	3 (20%)
3	MAN	М	4	3	11,11,12	0.59	0	$15,\!15,\!17$	1.60	4 (26%)
3	MAN	М	5	3	11,11,12	0.65	0	$15,\!15,\!17$	1.56	3 (20%)
3	NAG	Ν	1	3	14,14,15	0.51	0	17,19,21	1.46	2 (11%)
3	NAG	Ν	2	3	14,14,15	0.57	0	17,19,21	1.37	1 (5%)
3	BMA	Ν	3	3	11,11,12	0.71	0	$15,\!15,\!17$	2.17	3 (20%)
3	MAN	Ν	4	3	11,11,12	0.61	0	$15,\!15,\!17$	1.60	4 (26%)
3	MAN	Ν	5	3	11,11,12	0.64	0	$15,\!15,\!17$	1.55	3 (20%)
3	NAG	0	1	3	14,14,15	0.52	0	17,19,21	1.47	2 (11%)
3	NAG	0	2	3	14,14,15	0.56	0	17,19,21	1.37	2 (11%)
3	BMA	0	3	3	11,11,12	0.71	0	$15,\!15,\!17$	2.17	3 (20%)
3	MAN	0	4	3	11,11,12	0.61	0	$15,\!15,\!17$	1.59	4 (26%)
3	MAN	Ο	5	3	11,11,12	0.64	0	$15,\!15,\!17$	1.55	3 (20%)
3	NAG	Р	1	3	14,14,15	0.53	0	17,19,21	1.46	2 (11%)
3	NAG	Р	2	3	14,14,15	0.57	0	17,19,21	1.37	1 (5%)
3	BMA	Р	3	3	11,11,12	0.71	0	$15,\!15,\!17$	2.17	3 (20%)

Mol	Mol Type Chain		Res Link		Bond lengths			Bond angles		
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
3	MAN	Р	4	3	11,11,12	0.61	0	$15,\!15,\!17$	1.59	4 (26%)
3	MAN	Р	5	3	11,11,12	0.65	0	$15,\!15,\!17$	1.55	3 (20%)
3	NAG	Q	1	3	14,14,15	0.53	0	17,19,21	1.46	2 (11%)
3	NAG	Q	2	3	14,14,15	0.57	0	$17,\!19,\!21$	1.37	2 (11%)
3	BMA	Q	3	3	11,11,12	0.71	0	$15,\!15,\!17$	2.18	3 (20%)
3	MAN	Q	4	3	11,11,12	0.61	0	$15,\!15,\!17$	1.59	4 (26%)
3	MAN	Q	5	3	11,11,12	0.64	0	$15,\!15,\!17$	1.55	3 (20%)
3	NAG	R	1	3	14,14,15	0.52	0	17,19,21	1.46	2 (11%)
3	NAG	R	2	3	14,14,15	0.57	0	$17,\!19,\!21$	1.37	1 (5%)
3	BMA	R	3	3	11,11,12	0.71	0	$15,\!15,\!17$	2.17	3 (20%)
3	MAN	R	4	3	11,11,12	0.61	0	15, 15, 17	1.59	4 (26%)
3	MAN	R	5	3	11,11,12	0.64	0	$15,\!15,\!17$	1.57	3 (20%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	NAG	М	1	3	-	1/6/23/26	0/1/1/1
3	NAG	М	2	3	-	1/6/23/26	0/1/1/1
3	BMA	М	3	3	-	2/2/19/22	0/1/1/1
3	MAN	М	4	3	-	1/2/19/22	0/1/1/1
3	MAN	М	5	3	-	2/2/19/22	0/1/1/1
3	NAG	N	1	3	-	1/6/23/26	0/1/1/1
3	NAG	N	2	3	-	1/6/23/26	0/1/1/1
3	BMA	Ν	3	3	-	2/2/19/22	0/1/1/1
3	MAN	N	4	3	-	1/2/19/22	0/1/1/1
3	MAN	Ν	5	3	-	2/2/19/22	0/1/1/1
3	NAG	0	1	3	-	1/6/23/26	0/1/1/1
3	NAG	0	2	3	-	1/6/23/26	0/1/1/1
3	BMA	Ο	3	3	-	2/2/19/22	0/1/1/1
3	MAN	0	4	3	-	1/2/19/22	0/1/1/1
3	MAN	Ο	5	3	-	2/2/19/22	0/1/1/1
3	NAG	Р	1	3	-	1/6/23/26	0/1/1/1
3	NAG	Р	2	3	-	1/6/23/26	0/1/1/1
3	BMA	Р	3	3	-	2/2/19/22	0/1/1/1
3	MAN	Р	4	3	-	1/2/19/22	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	MAN	Р	5	3	-	2/2/19/22	0/1/1/1
3	NAG	Q	1	3	-	1/6/23/26	0/1/1/1
3	NAG	Q	2	3	-	1/6/23/26	0/1/1/1
3	BMA	Q	3	3	-	2/2/19/22	0/1/1/1
3	MAN	Q	4	3	-	1/2/19/22	0/1/1/1
3	MAN	Q	5	3	-	2/2/19/22	0/1/1/1
3	NAG	R	1	3	-	1/6/23/26	0/1/1/1
3	NAG	R	2	3	-	1/6/23/26	0/1/1/1
3	BMA	R	3	3	-	2/2/19/22	0/1/1/1
3	MAN	R	4	3	-	1/2/19/22	0/1/1/1
3	MAN	R	5	3	-	2/2/19/22	0/1/1/1

There are no bond length outliers.

All (81) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	Q	3	BMA	O5-C5-C6	6.47	117.35	107.20
3	Р	3	BMA	O5-C5-C6	6.46	117.33	107.20
3	Ν	3	BMA	O5-C5-C6	6.45	117.32	107.20
3	М	3	BMA	O5-C5-C6	6.44	117.29	107.20
3	R	3	BMA	O5-C5-C6	6.43	117.29	107.20
3	0	3	BMA	O5-C5-C6	6.42	117.27	107.20
3	Q	1	NAG	O5-C5-C6	3.81	113.18	107.20
3	0	1	NAG	O5-C5-C6	3.81	113.17	107.20
3	М	1	NAG	O5-C5-C6	3.80	113.16	107.20
3	Р	1	NAG	O5-C5-C6	3.79	113.14	107.20
3	R	1	NAG	O5-C5-C6	3.79	113.14	107.20
3	Ν	1	NAG	O5-C5-C6	3.78	113.14	107.20
3	М	4	MAN	O5-C1-C2	-3.31	105.67	110.77
3	М	5	MAN	O5-C1-C2	-3.29	105.70	110.77
3	R	4	MAN	O5-C1-C2	-3.28	105.70	110.77
3	R	5	MAN	O5-C1-C2	-3.28	105.70	110.77
3	Р	4	MAN	O5-C1-C2	-3.27	105.72	110.77
3	Ν	4	MAN	O5-C1-C2	-3.27	105.72	110.77
3	0	5	MAN	O5-C1-C2	-3.26	105.74	110.77
3	Р	5	MAN	O5-C1-C2	-3.26	105.74	110.77
3	Q	4	MAN	O5-C1-C2	-3.26	105.74	110.77
3	Q	5	MAN	O5-C1-C2	-3.25	105.75	110.77
3	Ν	5	MAN	O5-C1-C2	-3.24	105.77	110.77
3	0	4	MAN	O5-C1-C2	-3.23	105.78	110.77
3	Q	3	BMA	O3-C3-C4	-3.09	103.20	110.35

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
3	М	3	BMA	O3-C3-C4	-3.09	103.21	110.35
3	Ν	3	BMA	O3-C3-C4	-3.09	103.21	110.35
3	Р	3	BMA	O3-C3-C4	-3.08	103.22	110.35
3	0	3	BMA	O3-C3-C4	-3.07	103.25	110.35
3	R	3	BMA	O3-C3-C4	-3.07	103.25	110.35
3	R	5	MAN	C3-C4-C5	3.06	115.69	110.24
3	Ν	5	MAN	C3-C4-C5	3.03	115.65	110.24
3	М	5	MAN	C3-C4-C5	3.02	115.64	110.24
3	0	5	MAN	C3-C4-C5	3.02	115.62	110.24
3	Q	5	MAN	C3-C4-C5	3.00	115.59	110.24
3	Р	5	MAN	C3-C4-C5	3.00	115.58	110.24
3	0	3	BMA	C6-C5-C4	-3.00	105.99	113.00
3	R	3	BMA	C6-C5-C4	-2.99	105.99	113.00
3	Ν	3	BMA	C6-C5-C4	-2.99	106.01	113.00
3	Q	3	BMA	C6-C5-C4	-2.98	106.03	113.00
3	Р	3	BMA	C6-C5-C4	-2.98	106.03	113.00
3	М	3	BMA	C6-C5-C4	-2.97	106.04	113.00
3	М	2	NAG	C1-O5-C5	2.86	116.07	112.19
3	Ν	2	NAG	C1-O5-C5	2.83	116.02	112.19
3	R	2	NAG	C1-O5-C5	2.82	116.01	112.19
3	0	2	NAG	C1-O5-C5	2.81	116.00	112.19
3	Р	2	NAG	C1-O5-C5	2.81	116.00	112.19
3	Q	2	NAG	C1-O5-C5	2.80	115.99	112.19
3	Ν	4	MAN	C3-C4-C5	-2.77	105.30	110.24
3	М	4	MAN	C3-C4-C5	-2.76	105.31	110.24
3	Р	4	MAN	C3-C4-C5	-2.75	105.33	110.24
3	R	4	MAN	C3-C4-C5	-2.74	105.34	110.24
3	Ο	4	MAN	C3-C4-C5	-2.74	105.35	110.24
3	Q	4	MAN	C3-C4-C5	-2.74	105.36	110.24
3	Ν	5	MAN	O4-C4-C3	-2.54	104.48	110.35
3	Р	5	MAN	O4-C4-C3	-2.54	104.49	110.35
3	Ο	5	MAN	O4-C4-C3	-2.53	104.50	110.35
3	М	5	MAN	O4-C4-C3	-2.52	104.51	110.35
3	Q	5	MAN	O4-C4-C3	-2.52	104.52	110.35
3	R	5	MAN	O4-C4-C3	-2.52	104.52	110.35
3	0	1	NAG	O5-C1-C2	-2.37	107.54	111.29
3	Q	1	NAG	O5-C1-C2	-2.37	107.54	111.29
3	Ν	1	NAG	O5-C1-C2	-2.37	107.55	111.29
3	Р	1	NAG	O5-C1-C2	-2.37	107.55	111.29
3	М	1	NAG	O5-C1-C2	-2.36	107.56	111.29
3	0	4	MAN	C2-C3-C4	-2.36	106.81	110.89
3	R	1	NAG	O5-C1-C2	-2.35	107.58	111.29

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	М	4	MAN	C2-C3-C4	-2.35	106.83	110.89
3	Ν	4	MAN	C2-C3-C4	-2.34	106.85	110.89
3	Р	4	MAN	C2-C3-C4	-2.34	106.85	110.89
3	Q	4	MAN	C2-C3-C4	-2.34	106.85	110.89
3	R	4	MAN	C2-C3-C4	-2.32	106.88	110.89
3	Ν	4	MAN	C1-C2-C3	-2.07	107.12	109.67
3	0	4	MAN	C1-C2-C3	-2.06	107.14	109.67
3	R	4	MAN	C1-C2-C3	-2.06	107.14	109.67
3	Q	4	MAN	C1-C2-C3	-2.05	107.14	109.67
3	Р	4	MAN	C1-C2-C3	-2.05	107.15	109.67
3	М	4	MAN	C1-C2-C3	-2.04	107.15	109.67
3	М	2	NAG	O5-C5-C6	2.02	110.38	107.20
3	0	2	NAG	O5-C5-C6	2.00	110.35	107.20
3	Q	2	NAG	O7-C7-C8	-2.00	118.34	122.06

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
3	М	5	MAN	O5-C5-C6-O6
3	N	5	MAN	O5-C5-C6-O6
3	0	5	MAN	O5-C5-C6-O6
3	Р	5	MAN	O5-C5-C6-O6
3	Q	5	MAN	O5-C5-C6-O6
3	R	5	MAN	O5-C5-C6-O6
3	М	5	MAN	C4-C5-C6-O6
3	N	5	MAN	C4-C5-C6-O6
3	0	5	MAN	C4-C5-C6-O6
3	Р	5	MAN	C4-C5-C6-O6
3	Q	5	MAN	C4-C5-C6-O6
3	R	5	MAN	C4-C5-C6-O6
3	М	3	BMA	O5-C5-C6-O6
3	N	3	BMA	O5-C5-C6-O6
3	0	3	BMA	O5-C5-C6-O6
3	Р	3	BMA	O5-C5-C6-O6
3	Q	3	BMA	O5-C5-C6-O6
3	R	3	BMA	O5-C5-C6-O6
3	М	1	NAG	O5-C5-C6-O6
3	N	1	NAG	O5-C5-C6-O6
3	0	1	NAG	O5-C5-C6-O6
3	Р	1	NAG	O5-C5-C6-O6
3	Q	1	NAG	O5-C5-C6-O6

All (42) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	R	1	NAG	O5-C5-C6-O6
3	М	3	BMA	C4-C5-C6-O6
3	N	3	BMA	C4-C5-C6-O6
3	0	3	BMA	C4-C5-C6-O6
3	Р	3	BMA	C4-C5-C6-O6
3	Q	3	BMA	C4-C5-C6-O6
3	R	3	BMA	C4-C5-C6-O6
3	М	2	NAG	C4-C5-C6-O6
3	N	2	NAG	C4-C5-C6-O6
3	0	2	NAG	C4-C5-C6-O6
3	Р	2	NAG	C4-C5-C6-O6
3	Q	2	NAG	C4-C5-C6-O6
3	R	2	NAG	C4-C5-C6-O6
3	N	4	MAN	C4-C5-C6-O6
3	0	4	MAN	C4-C5-C6-O6
3	Р	4	MAN	C4-C5-C6-O6
3	R	4	MAN	C4-C5-C6-O6
3	М	4	MAN	C4-C5-C6-O6
3	Q	4	MAN	C4-C5-C6-O6

Continued from previous page...

There are no ring outliers.

11 monomers are involved in 33 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	0	5	MAN	3	0
3	0	2	NAG	1	0
3	0	1	NAG	5	0
3	Q	1	NAG	5	0
3	М	1	NAG	4	0
3	R	1	NAG	4	0
3	N	1	NAG	4	0
3	Р	1	NAG	4	0
3	Q	2	NAG	1	0
3	R	2	NAG	1	0
3	М	2	NAG	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

2 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tinle	Bo	ond leng	\mathbf{ths}	B	ond ang	les
IVIOI	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
4	MAN	С	607	-	11,11,12	1.62	3 (27%)	15,15,17	1.32	2 (13%)
4	MAN	С	606	-	11,11,12	1.43	2 (18%)	15,15,17	1.93	8 (53%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns.

² - ² means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	MAN	С	607	-	-	0/2/19/22	0/1/1/1
4	MAN	С	606	-	-	1/2/19/22	1/1/1/1

All (5) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
4	С	606	MAN	C4-C5	2.53	1.58	1.53
4	С	607	MAN	C4-C5	2.45	1.58	1.53
4	С	607	MAN	O5-C5	2.31	1.48	1.43
4	С	607	MAN	C4-C3	2.16	1.57	1.52
4	С	606	MAN	C1-C2	2.11	1.57	1.52

All (10) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	С	606	MAN	C1-O5-C5	3.42	116.83	112.19
4	С	606	MAN	O5-C1-C2	2.73	114.99	110.77
4	С	607	MAN	O3-C3-C4	2.69	116.57	110.35
4	С	606	MAN	C3-C4-C5	-2.48	105.81	110.24
4	С	606	MAN	O3-C3-C4	2.31	115.68	110.35
4	С	606	MAN	C6-C5-C4	2.20	118.15	113.00
4	С	606	MAN	O5-C5-C4	2.15	116.05	110.83
4	С	607	MAN	O5-C1-C2	2.14	114.07	110.77
4	C	606	MAN	O4-C4-C5	2.10	114.52	109.30
4	С	606	MAN	C1-C2-C3	2.07	112.21	109.67

There are no chirality outliers.

All (1) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	С	606	MAN	C4-C5-C6-O6

All (1) ring outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	С	606	MAN	C1-C2-C3-C4-C5-O5

1 monomer is involved in 3 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	С	607	MAN	3	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	# RSRZ >	>2	$\mathbf{OWAB}(\mathrm{\AA}^2)$	Q<0.9
1	А	211/223~(94%)	1.04	29 (13%) 3	1	58, 83, 128, 143	0
1	В	208/223~(93%)	1.07	37~(17%) 1	0	55, 84, 162, 190	0
1	С	197/223~(88%)	1.23	42 (21%) 0	0	70,100,137,178	0
1	D	207/223~(92%)	1.28	45 (21%) 0	0	65, 93, 144, 186	0
1	Е	191/223~(85%)	2.16	73~(38%) 0	0	103,134,192,213	0
1	F	208/223~(93%)	1.93	80 (38%) 0	0	97,125,172,194	0
2	G	133/143~(93%)	1.04	23~(17%) 1	0	68, 91, 140, 176	0
2	Н	133/143~(93%)	1.13	27~(20%) 1	0	66, 98, 129, 153	0
2	Ι	133/143~(93%)	2.48	63~(47%) 0	0	109,140,171,197	0
2	J	133/143~(93%)	0.89	17 (12%) 3	1	62,85,120,158	0
2	Κ	134/143~(93%)	1.65	42 (31%) 0	0	92, 122, 148, 168	0
2	L	134/143~(93%)	1.60	38 (28%) 0	0	91, 122, 155, 183	0
All	All	$202\overline{2/2196}\ (92\%)$	1.45	516 (25%) 0) 0	$55, \overline{109, 161, 213}$	0

All (516) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
2	Ι	292	ALA	23.2
2	Ι	264	GLY	12.8
1	Е	456	SER	10.5
2	Ι	173	LYS	9.8
1	Е	515	GLU	9.8
1	А	395	GLY	9.7
1	F	500	GLY	9.6
1	Е	532	SER	9.4
2	Ι	291	PRO	9.3
1	D	454	PRO	9.2
2	Н	292	ALA	8.8

Mol	Chain	Res	Type	RSRZ
2	Ι	205	GLU	8.4
1	Е	424	HIS	8.2
1	D	452	GLU	8.2
2	Ι	193	ASP	8.1
1	А	501	SER	8.0
1	F	480	HIS	7.8
1	D	335	GLY	7.8
2	Κ	264	GLY	7.8
2	Ι	265	SER	7.8
1	С	533	PRO	7.6
1	В	369	THR	7.5
1	D	533	PRO	7.5
1	F	542	SER	7.5
2	Κ	259	CYS	7.5
1	Е	359	LEU	7.2
1	D	459	LYS	7.1
1	Е	452	GLU	7.1
1	D	483	VAL	7.1
1	F	396	THR	7.1
1	F	464	CYS	7.1
2	K	247	PRO	7.0
1	Е	531	ALA	7.0
2	G	288	CYS	6.9
2	Ι	158	PHE	6.9
2	Ι	178	GLY	6.8
1	F	424	HIS	6.7
1	F	487	ASP	6.7
2	Ι	216	HIS	6.7
2	L	253	ARG	6.6
1	Е	358	CYS	6.6
2	К	178	GLY	6.5
2	L	205	GLU	6.5
1	F	486	PRO	6.5
1	Е	484	GLN	6.5
1	В	395	GLY	6.4
1	D	366	SER	6.4
2	L	252	SER	6.3
2	Ι	231	GLU	6.2
1	Е	434	THR	6.1
1	F	481	ASN	6.0
T	-			
1	C	373	THR	6.0

Mol	Chain	Res	Type	RSRZ
1	F	454	PRO	5.9
2	Н	252	SER	5.8
1	D	456	SER	5.8
1	F	455	GLY	5.8
1	F	483	VAL	5.8
1	Е	390	GLU	5.7
1	В	424	HIS	5.7
1	А	394	ASN	5.6
1	С	417	GLN	5.6
2	J	193	ASP	5.6
2	Н	289	THR	5.6
2	L	291	PRO	5.6
1	С	378	SER	5.6
1	Е	487	ASP	5.5
1	F	501	SER	5.5
2	Ι	250	PRO	5.5
1	В	418	CYS	5.5
1	А	393	ARG	5.5
2	Ι	174	CYS	5.5
1	В	419	ARG	5.5
2	Ι	172	ARG	5.4
2	Κ	253	ARG	5.4
1	F	335	GLY	5.4
2	L	256	GLY	5.4
1	С	347	ASP	5.3
1	Е	458	ASP	5.3
2	G	289	THR	5.3
1	Ε	454	PRO	5.3
2	K	174	CYS	5.3
2	Ι	279	ALA	5.3
1	A	533	PRO	5.3
1	F	402	THR	5.3
1	A	454	PRO	5.2
2	L	266	GLY	5.2
1	С	363	LEU	5.2
1	F	368	GLY	5.2
2	K	165	GLU	5.2
1	С	501	SER	5.2
1	С	336	VAL	5.1
1	В	454	PRO	5.1
1	Е	378	SER	5.1
2	К	229	LYS	5.1

1.1.5.C.R.M.1.2.5. $1, y pc$ $1, 0, 1 d d d d d d d d d d d d d d d d d d $	Mol	Chain	Res	Tvne	RSRZ
1 1 311 ALA 5.1 2 G 228 LEU 5.0 1 E 428 ALA 5.0 1 E 392 GLN 5.0 1 F 451 PRO 5.0 1 A 482 GLU 5.0 1 B 393 ARG 4.9 2 J 174 CYS 4.9 2 L 191 CYS 4.9 2 L 254 SER 4.9 2 L 254 SER 4.9 1 D 393 ARG 4.9 1 F 456 SER 4.8 2 L 255 GLN 4.8 2 L 190 ALA 4.8 2 G 216 HIS 4.7 1 F 390 GLU 4.7	1	E	377		5.1
2 G 220 LBC 3.0 1 E 428 ALA 5.0 1 F 451 PRO 5.0 1 F 451 PRO 5.0 1 B 393 ARG 4.9 2 J 174 CYS 4.9 2 L 191 CYS 4.9 2 L 254 SER 4.9 2 L 254 SER 4.9 1 D 393 ARG 4.9 1 F 456 SER 4.8 2 L 255 GLN 4.8 2 L 190 ALA 4.8 2 G 216 HIS 4.7 1 F 390 GLU 4.7 2 G 192 ASP 4.6 2 K 2		C	222	LEU	5.1
1 E 392 GLN 5.0 1 F 451 PRO 5.0 1 A 482 GLU 5.0 1 B 393 ARG 4.9 2 J 174 CYS 4.9 2 L 191 CYS 4.9 2 L 254 SER 4.9 2 L 254 SER 4.9 1 D 393 ARG 4.9 1 F 456 SER 4.8 2 L 255 GLN 4.8 2 L 255 GLN 4.8 2 L 190 ALA 4.8 2 G 216 HIS 4.7 1 F 390 GLU 4.7 2 I 249 GLU 4.7 2 G 192 ASP 4.6 2 I 272 PHE 4.6 1 E	1	E	<u> </u>		5.0
1 E 332 GLN 3.6 1 F 451 PRO 5.0 1 A 482 GLU 5.0 1 B 393 ARG 4.9 2 J 174 CYS 4.9 2 L 191 CYS 4.9 2 L 254 SER 4.9 2 L 254 SER 4.9 1 D 393 ARG 4.9 1 F 456 SER 4.8 2 L 255 GLN 4.8 2 L 190 ALA 4.8 2 G 216 HIS 4.7 1 F 390 GLU 4.7 2 G 216 HIS 4.7 2 G 192 ASP 4.6 2 K 193 ASP 4.6 1 E 499	1	E F	302	CIN	5.0
1 A 482 GLU 5.0 1 B 393 ARG 4.9 2 J 174 CYS 4.9 2 L 191 CYS 4.9 2 L 191 CYS 4.9 2 K 238 SER 4.9 2 L 254 SER 4.9 1 D 393 ARG 4.9 1 F 456 SER 4.8 1 C 389 GLU 4.8 2 L 255 GLN 4.8 2 L 190 ALA 4.8 2 G 216 HIS 4.7 1 F 390 GLU 4.7 2 G 192 ASP 4.6 2 K 216 HIS 4.7 2 G 192 ASP 4.6 1 E 499 LYS 4.6 1 E	1	E F	<u> </u>	PRO	5.0
1 A 462 GLC 3.0 1 B 393 ARG 4.9 2 J 174 CYS 4.9 2 L 191 CYS 4.9 2 K 238 SER 4.9 2 L 254 SER 4.9 1 D 393 ARG 4.9 1 F 456 SER 4.8 2 L 255 GLN 4.8 2 L 255 GLN 4.8 2 L 190 ALA 4.8 2 L 190 ALA 4.8 2 L 190 ALA 4.8 2 L 190 GLU 4.7 1 F 390 GLU 4.7 2 G 192 ASP 4.6 2 K 193 ASP 4.6 1 E 499 LYS 4	1	Γ Λ	401		5.0
1 B 393 ARG 4.9 2 J 174 CYS 4.9 2 L 191 CYS 4.9 2 K 238 SER 4.9 2 L 254 SER 4.9 1 D 393 ARG 4.9 1 F 456 SER 4.8 1 C 389 GLU 4.8 2 L 255 GLN 4.8 2 L 190 ALA 4.8 2 G 216 HIS 4.7 1 F 347 ASP 4.7 1 F 390 GLU 4.7 2 K 216 HIS 4.7 2 K 216 HIS 4.7 2 G 192 ASP 4.6 1 E 499 LYS 4.6 1 E 533 PRO 4.6 1 E	1	A D	402 202	APC	<u> </u>
2 J 114 C1S 4.9 2 L 191 CYS 4.9 2 K 238 SER 4.9 2 L 254 SER 4.9 1 D 393 ARG 4.9 1 F 456 SER 4.8 1 C 389 GLU 4.8 2 L 255 GLN 4.8 2 L 190 ALA 4.8 2 G 216 HIS 4.7 1 F 347 ASP 4.7 1 F 390 GLU 4.7 2 I 249 GLU 4.7 2 K 216 HIS 4.7 2 G 192 ASP 4.6 1 E 499 LYS 4.6 1 E 533 PRO 4.6 1 E 533 PRO 4.6 1 D	1 0	D		CVS	4.9
2 L 191 C 1 S 4.9 2 K 238 SER 4.9 1 D 393 ARG 4.9 1 D 393 ARG 4.9 1 F 456 SER 4.8 1 C 389 GLU 4.8 2 L 255 GLN 4.8 2 L 190 ALA 4.8 2 G 216 HIS 4.7 1 F 347 ASP 4.7 1 F 390 GLU 4.7 2 I 249 GLU 4.7 2 I 249 GLU 4.7 2 G 192 ASP 4.6 1 E 499 LYS 4.6 1 E 499 LYS 4.6 1 E 533 PRO 4.6 1 E 533 PRO 4.6 1 D <t< td=""><td>2</td><td>J</td><td>1/4</td><td>CIS</td><td>4.9</td></t<>	2	J	1/4	CIS	4.9
2 K 238 SER 4.9 2 L 254 SER 4.9 1 D 393 ARG 4.9 1 F 456 SER 4.8 1 C 389 GLU 4.8 2 L 255 GLN 4.8 2 L 190 ALA 4.8 2 G 216 HIS 4.7 1 F 347 ASP 4.7 1 F 390 GLU 4.7 2 I 249 GLU 4.7 2 I 249 GLU 4.7 2 K 216 HIS 4.7 2 G 192 ASP 4.6 2 K 193 ASP 4.6 1 E 499 LYS 4.6 1 E 533 PRO 4.6 1 B 347 ASP 4.6 1 D	2		191	CIS CED	4.9
2 L 254 SER 4.9 1 D 393 ARG 4.9 1 F 456 SER 4.8 1 C 389 GLU 4.8 2 L 255 GLN 4.8 2 L 190 ALA 4.8 2 G 216 HIS 4.7 1 F 347 ASP 4.7 1 F 390 GLU 4.7 2 I 249 GLU 4.7 2 K 216 HIS 4.7 2 K 216 HIS 4.7 2 G 192 ASP 4.6 1 E 499 LYS 4.6 1 E 533 PRO 4.6 1 E 533 PRO 4.6 1 B 347 ASP 4.6 1 D 424 HIS 4	2	Λ I	238	SER	4.9
1 D 393 ARG 4.9 1 F 456 SER 4.8 1 C 389 GLU 4.8 2 L 255 GLN 4.8 2 L 190 ALA 4.8 2 G 216 HIS 4.7 1 F 347 ASP 4.7 1 F 390 GLU 4.7 2 I 249 GLU 4.7 2 K 216 HIS 4.7 2 I 249 GLU 4.7 2 K 216 HIS 4.7 2 G 192 ASP 4.6 1 E 499 LYS 4.6 1 E 533 PRO 4.6 1 E 533 PRO 4.6 1 D 424 HIS 4.6 1 D 424 HIS 4.6 1 E	2		254	SER	4.9
1 F 456 SER 4.8 1 C 389 GLU 4.8 2 L 255 GLN 4.8 2 L 190 ALA 4.8 2 G 216 HIS 4.7 1 F 347 ASP 4.7 1 F 390 GLU 4.7 2 I 249 GLU 4.7 2 K 216 HIS 4.7 2 K 216 HIS 4.7 2 K 216 HIS 4.7 2 G 192 ASP 4.6 1 E 499 LYS 4.6 1 E 365 PRO 4.6 1 F 365 PRO 4.6 1 B 347 ASP 4.6 1 D 424 HIS 4.6 1 B 394 ASN 4.5 1 E	1		393	ARG	4.9
1 C 389 GLU 4.8 2 L 255 GLN 4.8 2 G 216 HIS 4.7 1 F 347 ASP 4.7 1 F 390 GLU 4.7 2 I 249 GLU 4.7 2 I 249 GLU 4.7 2 I 249 GLU 4.7 2 K 216 HIS 4.7 2 G 192 ASP 4.6 1 E 499 LYS 4.6 1 E 499 LYS 4.6 1 E 365 PRO 4.6 1 E 533 PRO 4.6 1 B 394 ASN 4.5 1 D 424 HIS 4.6 1 B	1	F C	456	SER	4.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		389	GLU	4.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2		255	GLN	4.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	L	190	ALA	4.8
1 F 347 ASP 4.7 1 F 390 GLU 4.7 2 I 249 GLU 4.7 2 K 216 HIS 4.7 2 G 192 ASP 4.6 2 K 193 ASP 4.6 1 E 499 LYS 4.6 1 E 499 LYS 4.6 1 E 533 PRO 4.6 1 F 365 PRO 4.6 1 E 533 PRO 4.6 1 B 347 ASP 4.6 1 D 424 HIS 4.6 1 D 424 HIS 4.6 1 E 373 THR 4.5 1 E 379 GLY 4.5 1 F 519 LYS 4.5 1 A 531 ALA 4	2	G	216	HIS	4.7
1 F 390 GLU 4.7 2 I 249 GLU 4.7 2 K 216 HIS 4.7 2 G 192 ASP 4.6 2 K 193 ASP 4.6 2 K 193 ASP 4.6 1 E 499 LYS 4.6 1 E 499 LYS 4.6 1 F 365 PRO 4.6 1 F 365 PRO 4.6 1 E 533 PRO 4.6 1 B 347 ASP 4.6 1 B 394 ASN 4.5 1 D 424 HIS 4.6 1 B 394 ASN 4.5 1 E 373 THR 4.5 2 G 278 GLY 4.5 1 F 519 LYS 4.5 1 E	1	F	347	ASP	4.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	F	390	GLU	4.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	Ι	249	GLU	4.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	K	216	HIS	4.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	G	192	ASP	4.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	Κ	193	ASP	4.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Е	499	LYS	4.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	Ι	272	PHE	4.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	F	365	PRO	4.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Е	533	PRO	4.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	347	ASP	4.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	D	424	HIS	4.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	394	ASN	4.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Е	373	THR	4.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	G	278	GLY	4.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	379	GLY	4.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	F	519	LYS	4.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	D	460	ARG	4.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	A	531	ALA	4.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	Н	253	ARG	4.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Е	361	VAL	4.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	E	482	GLU	4.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	L	278	GLY	4.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 1	- C	453	TRP	4.5
	1	Ē	451	PRO	4.5

Continued from previous page...

Continued from previous page							
Mol	Chain	Res	Type	RSRZ			
1	F	459	LYS	4.5			
2	L	263	ARG	4.4			
1	F	361	VAL	4.4			
2	Ι	167	TRP	4.4			
2	Ι	263	ARG	4.4			
2	L	159	VAL	4.4			
1	F	418	CYS	4.4			
1	Е	512	THR	4.4			
1	D	457	ARG	4.3			
2	Ι	248	GLY	4.3			
1	В	386	THR	4.3			
2	J	287	THR	4.3			
1	Е	464	CYS	4.3			
2	K	263	ARG	4.3			
1	С	397	LEU	4.3			
2	Ι	229	LYS	4.3			
1	В	501	SER	4.2			
1	F	363	LEU	4.2			
2	L	289	THR	4.2			
1	Е	341	SER	4.2			
1	В	512	THR	4.2			
1	С	383	GLN	4.2			
1	F	389	GLU	4.2			
2	K	190	ALA	4.2			
1	Е	340	LEU	4.2			
1	F	345	PRO	4.2			
1	F	516	TRP	4.2			
1	D	512	THR	4.2			
1	D	392	GLN	4.1			
1	Е	486	PRO	4.1			
1	F	417	GLN	4.1			
1	А	456	SER	4.1			
1	F	524	CYS	4.1			
1	А	532	SER	4.1			
1	Е	459	LYS	4.1			
1	D	455	GLY	4.1			
2	Ι	266	GLY	4.1			
2	Ι	251	THR	4.1			
1	Е	468	ASN	4.0			
2	L	212	LYS	4.0			
1	С	487	ASP	4.0			
2	I	236	ASP	4.0			

Mol	Chain	Res	Type	RSRZ
2	Ι	207	GLN	4.0
1	F	460	ARG	4.0
1	А	335	GLY	4.0
2	Ι	290	PRO	4.0
2	L	288	CYS	4.0
1	Е	453	TRP	3.9
1	С	364	ALA	3.9
2	Н	291	PRO	3.9
1	F	485	LEU	3.9
1	А	453	TRP	3.9
2	K	192	ASP	3.9
2	G	165	GLU	3.9
2	K	228	LEU	3.9
1	В	396	THR	3.9
1	Е	481	ASN	3.9
1	С	454	PRO	3.9
2	K	262	MET	3.9
1	Е	511	VAL	3.8
1	D	373	THR	3.8
2	K	271	ALA	3.8
1	Е	389	GLU	3.8
2	Ι	163	CYS	3.8
1	Е	400	THR	3.8
1	D	518	GLN	3.8
1	Е	357	THR	3.8
1	D	401	SER	3.8
1	D	481	ASN	3.8
1	Е	401	SER	3.8
1	A	424	HIS	3.7
2	G	229	LYS	3.7
2	L	229	LYS	3.7
2	Н	203	SER	3.7
2	Ι	160	CYS	3.7
2	G	279	ALA	3.6
1	A	455	GLY	3.6
1	Ε	520	ASP	3.6
2	Н	174	CYS	3.6
1	F	458	ASP	3.6
1	В	457	ARG	3.6
2	K	157	GLY	3.6
1	Е	338	ALA	3.6
2	K	258	ASP	3.6

1

1

1

В

В

F

371

389

364

Mol Chain

1	C	532[A]	SER	3.6
1	С	503	PHE	3.6
1	С	452	GLU	3.6
1	F	490	HIS	3.6
2	J	238	SER	3.6
1	Е	498	THR	3.5
1	Е	354	PRO	3.5
2	K	246	ALA	3.5
1	F	511	VAL	3.5
2	L	225	ASN	3.5
1	Е	536	THR	3.5
1	Е	535	GLN	3.5
2	L	165	GLU	3.5
1	E	465	LEU	3.5
2	L	173	LYS	3.5
1	F	446	TYR	3.5
1	F	482	GLU	3.5
2	Ι	238	SER	3.5
2	Ι	171	GLN	3.4
2	J	288	CYS	3.4
2	L	238	SER	3.4
2	K	282	CYS	3.4
1	F	385	SER	3.4
1	С	384	HIS	3.4
1	F	517	GLU	3.4
1	D	532	SER	3.4
2	Ι	288	CYS	3.4
1	F	392	GLN	3.3
1	E	404	PRO	3.3
2	Ι	246	ALA	3.3
1	С	386	THR	3.3
2	L	180	GLY	3.3
2	L	237	GLY	3.3
2	Н	183	GLN	3.3
2	Ι	212	LYS	3.3
2	G	191	CYS	3.3
1	E	391	LYS	3.3
1	A	364	ALA	3.3
1	В	423	PRO	3.3

Continued from previous page...

Res

Type

RSRZ

ALA Continued on next page...

GLN

GLU

3.3

3.2

3.2

Mol	Chain	Res	Type	RSRZ
1	A	365	PRO	3.2
2	Н	169	ASN	3.2
1	А	452	GLU	3.2
1	F	346	PHE	3.2
1	F	465	LEU	3.2
2	G	292	ALA	3.2
1	А	361	VAL	3.2
2	L	158	PHE	3.2
1	С	385	SER	3.2
2	G	287	THR	3.2
1	А	388	LYS	3.2
1	F	452	GLU	3.2
1	С	499	LYS	3.2
2	L	204	PRO	3.2
1	А	347	ASP	3.2
1	А	396	THR	3.2
2	K	231	GLU	3.2
2	K	252	SER	3.1
1	Е	362	ASP	3.1
1	Е	500	GLY	3.1
2	Н	286	ALA	3.1
1	Е	374	TRP	3.1
1	F	444	GLU	3.1
2	K	233	ILE	3.1
1	В	421	THR	3.1
2	L	259	CYS	3.1
2	Н	205	GLU	3.1
2	J	286	ALA	3.1
2	K	189	TYR	3.1
2	L	192	ASP	3.1
1	F	367	LYS	3.1
1	F	497	LYS	3.1
1	С	401	SER	3.1
1	В	428	ALA	3.1
1	D	503	PHE	3.0
1	Е	506	PHE	3.0
1	F	395	GLY	3.0
1	D	464	CYS	3.0
1	A	516	TRP	3.0
1	F	494	GLN	3.0
2	Ι	258	ASP	3.0
2	K	207	GLN	3.0

Continued from previous page...

Mol	Chain	Res	Type	RSRZ
2	Ι	210	LEU	3.0
1	В	398	THR	3.0
1	А	502	GLY	3.0
2	Ι	159	VAL	3.0
1	D	451	PRO	3.0
1	Е	513	ARG	3.0
2	L	228	LEU	3.0
1	D	497	LYS	3.0
2	Н	251	THR	3.0
2	Н	230	GLY	3.0
2	Н	288	CYS	3.0
1	D	461	THR	2.9
1	Е	455	GLY	2.9
1	В	422	HIS	2.9
1	F	471	PRO	2.9
1	F	339	TYR	2.9
1	Е	347	ASP	2.9
2	L	267	ARG	2.9
2	Н	247	PRO	2.9
2	K	288	CYS	2.9
2	K	208	ASP	2.9
2	Ι	190	ALA	2.9
2	Κ	203	SER	2.9
1	А	337	SER	2.8
1	В	456	SER	2.8
2	Н	255	GLN	2.8
2	J	180	GLY	2.8
1	D	484	GLN	2.8
2	Н	248	GLY	2.8
1	D	447	ALA	2.8
2	Н	165	GLU	2.8
2^{-}	I	206	GLU	2.8
1	F	359	LEU	2.8
1	C	361	VAL	2.8
2	J	191	CYS	2.8
1	С	400	THR	2.8
1	С	362	ASP	2.8
1	F	388	LYS	2.8
2	Н	287	THR	2.8
2	Ι	209	PHE	2.8
1	E	461	THR	2.8
1	F	518	GLN	2.7

Mol	Chain	Res	Type	RSRZ
2	J	252	SER	2.7
2	J	253	ARG	2.7
1	F	507	SER	2.7
2	J	158	PHE	2.7
1	F	515	GLU	2.7
1	F	528	HIS	2.7
1	А	362	ASP	2.7
2	Ι	179	LYS	2.7
1	С	387	ARG	2.7
2	G	291	PRO	2.7
2	Ι	230	GLY	2.7
1	А	457	ARG	2.7
2	Ι	278	GLY	2.7
2	Ι	254	SER	2.7
2	K	215	SER	2.7
2	Κ	279	ALA	2.7
1	F	386	THR	2.7
1	В	390	GLU	2.7
1	D	347	ASP	2.6
2	K	237	GLY	2.6
1	В	359	LEU	2.6
1	F	366	SER	2.6
2	Ι	211	THR	2.6
1	В	367	LYS	2.6
1	F	468	ASN	2.6
1	F	520	ASP	2.6
2	Н	180	GLY	2.6
1	F	488	ALA	2.6
1	С	455	GLY	2.6
2	Н	290	PRO	2.6
2	Ι	245	TRP	2.6
1	В	488	ALA	2.6
1	В	361	VAL	2.6
2	Н	195	GLU	2.6
2	L	174	CYS	2.6
2	L	262	MET	2.6
1	F	428	ALA	2.6
1	Е	436	THR	2.6
1	А	473	ASP	2.6
1	Е	387	ARG	2.6
2	Ι	286	ALA	2.6
1	F	394	ASN	2.6

Mol	Chain	Res	Type	RSRZ
2	Ι	237	GLY	2.6
1	D	534	SER	2.6
2	J	178	GLY	2.6
2	Ι	252	SER	2.6
1	В	388	LYS	2.6
1	Е	365	PRO	2.6
1	Е	524	CYS	2.6
1	D	395	GLY	2.5
1	D	446	TYR	2.5
1	D	485	LEU	2.5
1	В	430	MET	2.5
1	F	381	PRO	2.5
2	J	192	ASP	2.5
1	D	357	THR	2.5
2	G	217	THR	2.5
1	Е	397	LEU	2.5
2	L	283	ASP	2.5
2	J	173	LYS	2.5
1	С	403	LEU	2.5
1	F	467	GLN	2.5
2	Ι	213	HIS	2.5
1	F	484	GLN	2.5
2	G	243	SER	2.5
2	Ι	169	ASN	2.5
2	Н	249	GLU	2.5
2	G	190	ALA	2.5
1	Е	360	VAL	2.4
2	Ι	208	ASP	2.4
2	Ι	262	MET	2.4
2	K	291	PRO	2.4
1	Е	398	THR	2.4
1	F	475	SER	2.4
2	K	167	TRP	2.4
2	K	202	HIS	2.4
1	F	401	SER	2.4
2	K	254	SER	2.4
1	D	426	PRO	2.4
1	D	514	ALA	2.4
1	В	464	CYS	2.4
1	D	501	SER	2.4
2	Κ	265	SER	2.4
1	Е	445	VAL	2.4

Mol	Chain	Res	Type	RSRZ
2	G	258	ASP	2.4
1	С	524	CYS	2.4
2	Ι	192	ASP	2.3
2	Ι	268	TRP	2.3
1	Е	483	VAL	2.3
1	F	336	VAL	2.3
1	Е	379	GLY	2.3
2	Ι	267	ARG	2.3
1	F	423	PRO	2.3
1	D	502	GLY	2.3
2	G	196	GLY	2.3
2	Н	258	ASP	2.3
2	J	160	CYS	2.3
2	J	228	LEU	2.3
2	Н	244	ASN	2.3
1	В	520	ASP	2.3
2	Κ	227	ASP	2.3
1	F	453	TRP	2.3
2	Н	280	TRP	2.3
1	D	337	SER	2.3
1	В	513	ARG	2.3
1	Е	475	SER	2.3
1	Е	521	GLU	2.2
1	С	504	PHE	2.2
1	D	448	PHE	2.2
2	L	290	PRO	2.2
1	D	396	THR	2.2
1	С	513	ARG	2.2
1	С	404	PRO	2.2
2	G	171	GLN	2.2
2	L	208	ASP	2.2
2	Ι	170	PHE	2.2
2	K	158	PHE	2.2
1	Е	474	ILE	2.2
2	L	166	LYS	2.2
1	В	375	SER	2.2
1	F	530	ALA	2.2
2	Ι	253	ARG	2.2
2	Ι	239	HIS	2.2
2	L	220	TRP	2.2
1	F	447	ALA	2.2
2	G	163	CYS	2.2

Mol	Chain	Res	Type	RSRZ
2	Ι	247	PRO	2.2
1	А	500	GLY	2.2
1	F	422	HIS	2.1
1	Е	526	ALA	2.1
1	В	376	ARG	2.1
2	L	274	ASP	2.1
1	D	450	THR	2.1
1	D	453	TRP	2.1
1	D	390	GLU	2.1
1	D	494	GLN	2.1
2	Ι	195	GLU	2.1
2	K	195	GLU	2.1
1	С	366	SER	2.1
1	С	357	THR	2.1
1	В	368	GLY	2.1
1	Ε	345	PRO	2.1
2	L	183	GLN	2.1
2	J	258	ASP	2.1
2	K	244	ASN	2.1
1	E	412	GLU	2.1
1	С	340	LEU	2.1
2	Н	200	SER	2.1
1	F	457	ARG	2.1
2	G	174	CYS	2.1
1	С	468	ASN	2.1
2	Ι	204	PRO	2.1
2	G	158	PHE	2.0
1	В	429	LEU	2.0
1	A	497	LYS	2.0
2	G	255	GLN	2.0
2	I	261	MET	2.0
1	D	363	LEU	2.0
1	C	529	GLU	2.0
1	F	384	HIS	2.0
1	C	396	THR	2.0
1	C	486	PRO	2.0
2	1	287	THR	2.0
1	E	411	ILE	2.0
1	F	462	LEU	2.0
1	C	398	THR	2.0
1	F	502	GLY	2.0
2	K	290	PRO	2.0

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type	RSRZ	
1	В	544	ASN	2.0	

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
3	NAG	0	1	14/15	0.41	0.60	148,155,161,164	0
3	NAG	N	1	14/15	0.52	0.50	185,189,195,198	0
3	MAN	R	5	11/12	0.65	0.36	$154,\!155,\!156,\!157$	0
3	NAG	Q	1	14/15	0.67	0.80	158,160,162,164	0
3	MAN	0	4	11/12	0.68	0.41	164,166,168,169	0
3	MAN	М	5	11/12	0.72	0.34	153,154,155,156	0
3	NAG	М	1	14/15	0.72	0.44	142,147,153,157	0
3	MAN	0	5	11/12	0.73	0.31	142,142,144,144	0
3	MAN	Р	5	11/12	0.74	0.34	146,148,149,150	0
3	MAN	Q	5	11/12	0.75	0.38	138,139,140,141	0
3	NAG	Q	2	14/15	0.76	0.21	132,134,136,136	0
3	MAN	Q	4	11/12	0.78	0.24	$153,\!155,\!156,\!157$	0
3	NAG	Р	1	14/15	0.79	0.31	139,144,146,147	0
3	MAN	N	4	11/12	0.79	0.32	155,157,160,161	0
3	BMA	Q	3	11/12	0.79	0.21	$150,\!152,\!153,\!153$	0
3	MAN	Ν	5	11/12	0.81	0.28	$155,\!156,\!157,\!157$	0
3	MAN	М	4	11/12	0.82	0.38	163, 165, 168, 169	0
3	NAG	R	2	14/15	0.83	0.40	147,150,151,151	0
3	NAG	R	1	14/15	0.84	0.28	$142,\!147,\!151,\!153$	0
3	BMA	0	3	11/12	0.84	0.17	139,143,145,146	0
3	NAG	Ν	2	14/15	0.84	0.31	120,124,127,128	0
3	MAN	R	4	11/12	0.85	0.16	147,149,151,151	0
3	NAG	0	2	14/15	0.87	0.30	$135, 137, 142, \overline{143}$	0
3	BMA	R	3	11/12	0.87	0.25	137,139,139,139	0
3	MAN	Р	4	11/12	0.88	0.21	$156,\!157,\!159,\!159$	0
3	NAG	М	2	14/15	0.88	0.51	146,148,151,152	0
3	BMA	Ν	3	11/12	0.89	0.19	123,126,128,128	0

Continued from previous page...

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
3	BMA	Р	3	11/12	0.89	0.21	105,106,107,108	0
3	NAG	Р	2	14/15	0.90	0.28	103,105,106,107	0
3	BMA	М	3	11/12	0.90	0.21	141,143,145,146	0

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
4	MAN	С	607	11/12	0.44	0.84	122,122,126,128	0
4	MAN	С	606	11/12	0.57	0.53	127,128,130,131	0

6.5 Other polymers (i)

There are no such residues in this entry.

