

Nov 21, 2022 – 02:38 PM EST

PDB ID	:	8EUI
EMDB ID	:	EMD-24423
Title	:	Ytm1 associated nascent 60S ribosome (-fkbp39) State 3
Authors	:	Zhou, X.; Bilokapic, S.; Deshmukh, A.A.; Halic, M.
Deposited on	:	2022-10-18
Resolution	:	3.10 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev43
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length		Quality of ch	ain	
1	1	3498	65	5%	17%	18%
2	2	165	.		21% •	
3	3	302	- 39%		59%	
4	8	51		98%		·
5	9	229	45%	6%	48%	
6	А	253		96%		•
7	В	388		97%		•
8	С	363		99%		·

Continued from previous page... Chain Length Quality of chain Mol 9 D 294 . . 96% 9% 10 Е 19593% • 6% 11 F 25085% 14% 12 \mathbf{G} 25988% 12% • 11% Η 1319092% 8% 9% 14Ι 22176% 24% 18% J 1517494% • • . . 16Κ 9495% L 208 1797% • i 18Μ 13493% 7% 19Ν 20199% Ο 2019799% ÷ 21Р 187 • 7% 92% Q ••• 2218799% ÷ R 1932377% 23% \mathbf{S} 241765% 95% Т ••• 2516098% 13% U 2611782% 16% • V ... 2713996% 28Х 14182% 17% • Υ ... 2912698% Ζ ... 30 13697% 31 14899% \mathbf{a} • ÷ 3261 b 90% 8% • 33 11719% \mathbf{c} 80%

Mol	Chain	Length	Quality of chain	
34	d	113	86%	14%
35	е	127	91%	• 8%
36	f	108	98%	•
37	g	112	93%	• 5%
38	h	122	99%	•
39	i	99	96%	•••
40	j	91	91%	9%
41	k	74	5% 91%	• 5%
42	m	740	14% 57% • 43%	
43	n	607	17% 59% • 41%	
44	О	106	92%	8%
45	р	440	53% 65% 35%	
46	u	192	29% • 69%	

2 Entry composition (i)

There are 47 unique types of molecules in this entry. The entry contains 122892 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called RNA (2863-MER).

Mol	Chain	Residues			AltConf	Trace			
1	1	2855	Total 61093	C 27299	N 11065	O 19874	Р 2855	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
1	1746	С	U	conflict	GB 157310483
1	2185	U	С	conflict	GB 157310483

• Molecule 2 is a RNA chain called RNA (152-MER).

Mol	Chain	Residues		A	AltConf	Trace			
2	2	158	Total 3354	C 1501	N 588	0 1107	Р 158	0	0

• Molecule 3 is a protein called Protein mak16.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	3	123	Total 1042	C 657	N 199	0 180	S 6	0	0

• Molecule 4 is a protein called 60S ribosomal protein L39.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
4	8	50	Total 437	C 273	N 98	O 65	S 1	0	0

• Molecule 5 is a RNA chain called RNA (118-MER).

Mol	Chain	Residues		At	AltConf	Trace			
5	9	118	Total 2519	C 1124	N 452	O 825	Р 118	0	0

• Molecule 6 is a protein called 60S ribosomal protein L2-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	А	245	Total 1858	C 1158	N 374	0 321	${f S}{5}$	0	0

• Molecule 7 is a protein called 60S ribosomal protein L3-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	В	377	Total 3003	C 1901	N 567	O 525	S 10	0	0

• Molecule 8 is a protein called 60S ribosomal protein L4-B.

Mol	Chain	Residues		Ate	AltConf	Trace			
8	С	359	Total 2795	C 1765	N 536	0 491	${ m S} { m 3}$	0	0

• Molecule 9 is a protein called 60S ribosomal protein L5-A.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
9	D	284	Total 2287	C 1447	N 406	0 430	${S \over 4}$	0	0

• Molecule 10 is a protein called 60S ribosomal protein L6.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	Е	183	Total 1415	C 907	N 259	0 245	${S \atop 4}$	0	0

• Molecule 11 is a protein called 60S ribosomal protein L7-B.

Mol	Chain	Residues	Atoms					AltConf	Trace
11	F	214	Total 1745	C 1124	N 320	O 298	${ m S} { m 3}$	0	0

• Molecule 12 is a protein called 60S ribosomal protein L8.

Mol	Chain	Residues	Atoms					AltConf	Trace
12	G	229	Total 1804	C 1154	N 332	0 315	${ m S} { m 3}$	0	0

• Molecule 13 is a protein called 60S ribosomal protein L9-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
13	Н	175	Total 862	C 512	N 175	0 175	0	0

• Molecule 14 is a protein called 60S ribosomal protein L10-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	Ι	168	Total 1354	C 858	N 251	O 240	${ m S}{ m 5}$	0	0

• Molecule 15 is a protein called 60S ribosomal protein L11-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
15	J	169	Total 1359	C 860	N 255	0 239	${ m S}{ m 5}$	0	0

• Molecule 16 is a protein called 60S ribosomal protein L43-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	K	90	Total 695	C 428	N 144	0 117	S 6	0	0

• Molecule 17 is a protein called 60S ribosomal protein L13.

Mol	Chain	Residues		Ate	AltConf	Trace			
17	L	202	Total 1612	C 1008	N 321	O 282	S 1	0	0

• Molecule 18 is a protein called 60S ribosomal protein L14.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	М	125	Total 1007	С 644	N 191	0 168	${S \atop 4}$	0	0

• Molecule 19 is a protein called 60S ribosomal protein L15-A.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
19	Ν	200	Total 1676	C 1050	N 348	О 275	${ m S} { m 3}$	0	0

• Molecule 20 is a protein called 60S ribosomal protein L16-B.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	Ο	196	Total 1557	C 999	N 297	O 257	$\frac{S}{4}$	0	0

• Molecule 21 is a protein called 60S ribosomal protein L17-A.

Mol	Chain	Residues		Atoms					Trace
21	Р	173	Total 1369	C 865	N 264	0 237	${ m S} { m 3}$	0	0

• Molecule 22 is a protein called 60S ribosomal protein L18-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	Q	186	Total 1487	C 934	N 300	0 252	S 1	0	0

• Molecule 23 is a protein called 60S ribosomal protein L19-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
23	R	149	Total 1229	C 765	N 261	0 198	${ m S}{ m 5}$	0	0

• Molecule 24 is a protein called 60S ribosomal protein L20-A.

Mol	Chain	Residues		Atoms					Trace
24	S	168	Total 1408	C 909	N 263	0 231	${S \atop 5}$	0	0

• Molecule 25 is a protein called 60S ribosomal protein L21-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
25	Т	159	Total 1289	C 812	N 248	O 226	${ m S} { m 3}$	0	0

• Molecule 26 is a protein called 60S ribosomal protein L22.

Mol	Chain	Residues		Ato	\mathbf{ms}		AltConf	Trace
26	U	98	Total 791	C 513	N 137	O 141	0	0

• Molecule 27 is a protein called 60S ribosomal protein L23-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	V	136	Total 1015	C 638	N 189	O 180	S 8	0	0

• Molecule 28 is a protein called 60S ribosomal protein L25-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
28	Х	117	Total 939	C 599	N 173	0 166	S 1	0	0

• Molecule 29 is a protein called 60S ribosomal protein L26.

Mol	Chain	Residues	Atoms					AltConf	Trace
29	Y	125	Total 998	C 622	N 201	0 173	$\frac{S}{2}$	0	0

• Molecule 30 is a protein called 60S ribosomal protein L27-A.

Mol	Chain	Residues		Atoms					Trace
30	Ζ	134	Total 1072	C 693	N 199	0 178	${ m S} { m 2}$	0	0

• Molecule 31 is a protein called 60S ribosomal protein L28-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
31	a	147	Total 1169	C 740	N 235	0 192	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 32 is a protein called 60S ribosomal protein L29.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
32	b	56	Total 471	C 284	N 107	O 80	0	0

• Molecule 33 is a protein called 60S ribosomal protein L30-2.

Mol	Chain	Residues		At	oms			AltConf	Trace
33	с	95	Total 712	C 453	N 124	0 131	${S \atop 4}$	0	0

• Molecule 34 is a protein called 60S ribosomal protein L31.

Mol	Chain	Residues		At	oms			AltConf	Trace
34	d	97	Total 810	C 512	N 159	O 136	${ m S} { m 3}$	0	0

• Molecule 35 is a protein called 60S ribosomal protein L32-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	е	117	Total 939	C 588	N 190	0 156	${ m S}{ m 5}$	0	0

• Molecule 36 is a protein called 60S ribosomal protein L33-B.

Mol	Chain	Residues		At	oms			AltConf	Trace
36	f	106	Total 839	С 534	N 162	0 140	${ m S} { m 3}$	0	0

• Molecule 37 is a protein called 60S ribosomal protein L34-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
37	g	106	Total 861	C 540	N 177	0 142	${ m S} { m 2}$	0	0

• Molecule 38 is a protein called 60S ribosomal protein L35.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
38	h	121	Total 999	C 629	N 194	O 176	0	0

• Molecule 39 is a protein called 60S ribosomal protein L36-B.

Mol	Chain	Residues		At	oms			AltConf	Trace
39	i	96	Total 767	C 478	N 160	0 128	S 1	0	0

• Molecule 40 is a protein called 60S ribosomal protein L37-B.

Mol	Chain	Residues		At	oms	AltConf	Trace		
40	j	83	Total 657	C 402	N 141	0 107	S 7	0	0

• Molecule 41 is a protein called 60S ribosomal protein L38-1.

Mol	Chain	Residues		At	oms			AltConf	Trace
41	k	70	Total 564	$\begin{array}{c} \mathrm{C} \\ 357 \end{array}$	N 104	O 102	S 1	0	0

• Molecule 42 is a protein called Ribosome biogenesis protein erb1.

Mol	Chain	Residues		At	oms			AltConf	Trace
42	m	425	Total 3376	C 2168	N 592	O 605	S 11	0	0

• Molecule 43 is a protein called Pescadillo homolog.

Mol	Chain	Residues		At	AltConf	Trace			
43	n	361	Total 2966	C 1933	N 511	O 510	S 12	0	0

• Molecule 44 is a protein called 60S ribosomal protein L42.

Mol	Chain	Residues	Atoms				AltConf	Trace	
44	О	98	Total 796	C 502	N 159	O 130	${ m S}{ m 5}$	0	0

• Molecule 45 is a protein called Ribosome biogenesis protein ytm1.

Mol	Chain	Residues	Atoms				AltConf	Trace
45	р	284	Total 1401	C 833	N 284	0 284	0	0

• Molecule 46 is a protein called Ribosome biogenesis protein rlp24.

Mol	Chain	Residues	Atoms					AltConf	Trace
46	u	59	Total 493	C 315	N 100	0 72	S 6	0	0

• Molecule 47 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
47	j	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: RNA (2863-MER)

U C C C C C C C C C C C C C C C C C C C
U 4 4 4 4 4 4 4 4 4 4 4 4 4
0.034997 1034986 10320 1000 100
• Molecule 2: RNA (152-MER)
Chain 2: 75% 21% ·
A A A B A A A A A A A A A A A A A
C 198
• Molecule 3: Protein mak16
Chain 3: 39% · 59%
MET MET 42 42 42 41 413 413 413 413 414 414 414 414 414
111 112 143 144 145 145 145 147 147 147 147 147 147 147 147 147 147
GLU ILEU GLU ILEU ASP LEU ASP TASP GLU GLU GLU GLU GLU GLU GLU GLU GLU GLU
HIS TILE GLU GLU GLU GLU GLU GLU GLU CIVS ASN ASN ASN ASN ASN ASN ASN ASN ASN AS
• Molecule 4: 60S ribosomal protein L39
Chain 8: 98% .
• Molecule 5: RNA (118-MER)
Chain 9: 45% 6% 48%
2012 83 83 83 83 83 83 83 83 83 83 83 83 83

A 100 A	n
\bullet Molecule 6: 60S ribosomal protein L2-A	
Chain A: 96% ·	
MET G2 R192 A15 A14 A14 A14 A14 A14 A14 A14 A14 A14 A14	
• Molecule 7: 60S ribosomal protein L3-A	
Chain B: 97% ·	
MET SER HIS CYS CYS C381 LIYS ALA ALA ALA	
• Molecule 8: 60S ribosomal protein L4-B	
Chain C: 99%	
MET ALA ALA ALA B156 N363	
• Molecule 9: 60S ribosomal protein L5-A	
Chain D: 96% ···	
MET PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	
• Molecule 10: 60S ribosomal protein L6	
Chain E: 93% • 6%	
MET THR THR VAL VAL VAL VAL ASN ASN ASN GLY GLY GLY GLY GLY GLY CLY ASN CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	
• Molecule 11: 60S ribosomal protein L7-B	
Chain F: 85% • 14%	
MET ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	

• Molecule 12: 60S ribosomal	protein L8		
Chain G:	88%	·	12%
MET ALA PRO LYS SER SER SER VAL PRO PRO PRO PRO GLN GLN CYS CIVS THR THR	K23 R30 A117 A117 K120 K120 A122 A122 A122 A122	R204 R204 ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
• Molecule 13: 60S ribosomal	protein L9-A		
Chain H:	92%		8%
MET GLY ARG ASP ASP ASP ASP C C C C C C C C C C C C C C C C C C C	R62 E105 N106 Q107 P128 P128	s133 1134 SER SER SER SER ALA VAL LVS D140 E141 E141 CUU	
• Molecule 14: 60S ribosomal	protein L10-A		
^{9%} Chain I:	76%	24%	
MET ALA ARG ARG PRO PRO ALA ARG CYS CYS CYS CYS CYS CYS CYS CYS CYS SRC TYR SSC ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	ARN ALA ALA P27 P27 P27 P24 ANC T27 ANC T1LE ANC T1LE ANC T1LE ANC	MET LEU SER CYS CYS ALA ALA ALA ALA ARG CLN THR THR MET MET HIS	ALA PHE GLY CLYS PRO N123 N123
R1 85 81 86 81 86 81 87 81 87 61 88 11 90 11 90 11 90 12 10 12 10 12 11 12 12 12 12 12 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 1	A216 2216 5218 1219 M219 ALA ALA		
• Molecule 15: 60S ribosomal	protein L11-A		
Chain J:	94%		• •
MET ALA CIU CIU LYS A5 A5 C24 C24 C24 C24 C25 C25 C27 C27 C24 C27 C24 C27 C24 C27 C27 C27 C27 C27 C27 C27 C27 C27 C24 C27 C24 C24 C24 C27 C24 C27 C27 C27 C27 C27 C27 C27 C27 C27 C27	Reo Breo Reo Breo Bro Bro Bro Bro Bro Bro Bro Bro Bro Br	H109 1110 1111 1112 1112 1112 1112 1112 1	1122 1122 1122 1125 1125 1125 6173 6173 6173
• Molecule 16: 60S ribosomal	protein L43-A		
Chain K:	95%		
MET THR 83 83 92 92 92 92 92			
• Molecule 17: 60S ribosomal	protein L13		
Chain L:	97%		·
MET A2 A203 GLU LLYS LLYS LLYS LLYS			

 \bullet Molecule 18: 60S ribosomal protein L14

Chain M:	93%	7%
MET GLU GLU GLV HA MB5 MB5 MB5 MB5 MB5 MB5 MB5 MB5 MB5 MB5		
• Molecule 19: 60S riboso	mal protein L15-A	
Chain N:	99%	
861 12 12 12 12 12 12 12 12 12 12 12 12 12		
• Molecule 20: 60S riboso	mal protein L16-B	
Chain O:	99%	
MET 22 Y197		
• Molecule 21: 60S riboso	mal protein L17-A	
Chain P:	92%	• 7%
MET NET P2 P2 P2 P2 P2 P2 P2 P1 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2	V1 64	
• Molecule 22: 60S riboson	mal protein L18-A	
Chain Q:	99%	
MET 187 V187		
• Molecule 23: 60S riboso	mal protein L19-A	
Chain R:	77%	23%
MET A2 E148 A149 M150 A149 CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	ALA ALA ALA ALA ALA ALA ALA ALA ALA ALA	THR ALA ALA ALA CLU CLU CLU GLU GLU
• Molecule 24: 60S ribosor	mal protein L20-A	
Chain S:	95%	5%
MET A2 T156 GLY VAL VAL DGLY GLY K164 Y176		
• Molecule 25: 60S riboso	mal protein L21-A	

Chain T:	98%	
MET P2 Q103 C123 C125 S142 S142 T159 T160		
• Molecule 26: 60S ribos	somal protein L22	
Chain U:	82%	• 16%
MET VAL LYS LYS ASN THR LYS VAL S9 89 N21 N21 S2 K23 F26 F26	D36 D41 C48 C48 S54 S54 S54 S54 S54 C48 S54 S54 C48 S54 C48 S54 C48 S54 C48 S54 C48 S54 C48 S54 C48 S54 C48 S54 C48 S54 S54 C48 S55 C48 S57 S57 S57 S57 S57 S57 S57 S57 S57 S57	Y106 ASN VAL VAL VAL VAL CLY ASN ASP GLU GLU GLU GLU
• Molecule 27: 60S ribos	somal protein L23-A	
Chain V:	96%	
MET SER ARG G4 D91 V139		
• Molecule 28: 60S ribos	somal protein L25-A	
Chain X:	82%	• 17%
MET SER VAL ALA ALA ALA ALA ALA ALA ALA ALA ALA	ASN VAL AVAL LYS LYS V25 D133 D133	
• Molecule 29: 60S ribos	somal protein L26	
Chain Y:	98%	
M1 K2 GLU GLU		
• Molecule 30: 60S ribos	somal protein L27-A	
Chain Z:	97%	
MET VAL K3 833 833 F136		
• Molecule 31: 60S ribos	somal protein L28-A	
Chain a:	99%	·
MET P.2 E966		
• Molecule 32: 60S ribos	somal protein L29	

Chain b:	90%	• 8%
MET ALA LIYS SER LIYS NG H7 S60		
• Molecule 33	: 60S ribosomal protein L30-2	
Chain c:	80%	• 19%
MET SER ALA ALA ALA PRO THR THR ALA PRO VAL	ALA VALA VALA VAL LYS LYS LYS LYS LYS CIT ASP CIT BI11 B113 B113 B113 B113 B113 B113	
• Molecule 34	: 60S ribosomal protein L31	
Chain d:	86%	14%
MET ALA ALA ASN THR LYS SER SER ALA ASN	011 D86 GLU ASP ASP ASP ASP ASP ASP ASP ASP GLU GLU	
• Molecule 35	: 60S ribosomal protein L32-A	
Chain e:	91%	• 8%
MET ALA ALA ALA V4 D20 G120 ALA ALA LYS	VAL SER GLN GLU	
• Molecule 36	: 60S ribosomal protein L33-B	
Chain f:	98%	·
MET PRO A3 I108		
• Molecule 37	: 60S ribosomal protein L34-A	
Chain g:	93%	• 5%
MET ALA Q3 R4 E9 T E9 T SER SER	LIYS	
• Molecule 38	: 60S ribosomal protein L35	
Chain h:	99%	
MET A2 A122		

• Molecule 39: 60S ribosomal protein L36-B

Chai	n i:			96%			•••	
MET A2 S90	L97							
• Mo	olecule 40:	60S riboso	mal proteir	n L37-B				
Chai	n j:			91%			9%	
MET T2 A84	ALA ALA VAL ALA ALA SER SER							
• Mo	elecule 41:	60S riboso	mal proteir	n L38-1				
Chai	n k:			91%			• 5%	
MET P2 S6	K18 K18 D50	K52 E55 D64	LYS LYS ALA					
• Mo	olecule 42:	Ribosome	biogenesis	protein erb	o1			
Chai	n m:	4%	57%		•	43%		
MET GLU THR GLY	ASN ASN ARG LYS ARG SER SER	SER LYS ARG ASN SER VAL	GLY VAL GLU LYS ASP LYS GLU LYS	GLU LYS SER LYS GLY VAL SER ASN	VAL PRO ASN GLU CLU CLU THR GLU	SER SER SER HIS GLU PRO SER PHE	LYS LYS ASP VAL ASP GLU GLU	PRO
SER LEU THR ALA	GLU GLU GLU GLU GLU GLU	GLY GLU TYR SER SER GLU SER GLY	ARG SER THR PRO GLU LEU SER PRO	ASP ASP PHE GLU ASP ALA ASP ASP	GLU GLU GLU GLU GLU GLU ASP	ALA GLY TYR SER SER ASP SER SER SER	THR GLU ASP VAL ALA PRO GLY	LEU TYR
GLU SER PRO TYR	ASP GLU ASN LEU TYR ILE ASN	TYR ASP ASP ILE ASP GLY LYS LYS ILYS	THR ARG PRO ALA THR PRO ALA ALA	LEU ASP SER SER LEU TLE SER SER	ASP LYS LYS LYS GLY THR THR	ILE VAL ASP PRO MET MET GLY LYS	PRO VAL ASN LEU THR THR GLU	TEU GLU
GLY LEU LYS	ARG LEU ALA ALA GLN SER GLU	PRO ASP GLU ASN PHE ASP PRO TYR	PRO ASP TYR ASP PHE PHE THR	ASN THR VAL ARG GLU FHR FHR FHR	SER SER ALA PRO CLU CYS ARC	ARG PHE ALA P227 S228 K229	4232 R233 R234 1235 L236	A233 A240 ALA ILE
ARG LYS GLY ARG	TILE LLEU THR SER GLU GLU ARC	ALA ALA GLU GLU ARG GLU SER SER	S262 S262 D268 ASP ASP ASP	ASP GLN THR VAL GLN GLN	LIVS LEU ASP AS86 H296	E304 E305 X306 LEU LYS GLN SFR	SER ASP PHE P314 K315 K316	Y317 K318 S319 L320 R321
V322	A325 Y326 S327 R347	THR THR LYS LEU ASN ASP ASP P355	E356 S357 L358 L358 L359 P360 K361	P363 T364 E367 L368 R369 P370	F371 F374 R374 I380 C381	H382 K383 S390 L398 A399	S400 D403 V412 M413	T414 6415 R416 K420 C421 C421 C421 ASP SER SER
GLY ASN ALA HTS	ASN ILLE ASP SER ASP GLU ASP	ALA ALA VAL ASN GLU SER LEU SER HIS	SER THR LYS SER SER SER 1451	L460 2461 2462 2463 7464 7465	A469 V470 D471 E472 T473 V474	P480 P481 F482 E485	4486 1487 E488 A489 E492	F494 T495 SER SER ALA PRO TYR GLN
GLU SER S503	R507 R508 GLY ALA LYS GLN	SER LEU GLN L516 H517 G519	R539 T549 S561	G563 A564 S570 L601	P644 R687	Y689 8690 D691 L692 L693 A694	N706 H707 K708 K723	G731 € 735 € 740 €

• Molecule 43: Pescadillo homolog

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	59000	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	TFS KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	90	Depositor
Minimum defocus (nm)	750	Depositor
Maximum defocus (nm)	2500	Depositor
Magnification	Not provided	
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor
Maximum map value	0.589	Depositor
Minimum map value	-0.293	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.012	Depositor
Recommended contour level	0.05	Depositor
Map size (Å)	542.72, 542.72, 542.72	wwPDB
Map dimensions	512, 512, 512	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.06, 1.06, 1.06	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond	l angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	1	0.42	0/68374	0.73	0/106528
2	2	0.45	0/3748	0.73	0/5835
3	3	0.35	0/1064	0.56	0/1431
4	8	0.30	0/448	0.58	0/597
5	9	0.26	0/2816	0.69	0/4388
6	А	0.31	0/1896	0.57	0/2556
7	В	0.29	0/3069	0.53	0/4130
8	С	0.30	0/2848	0.52	0/3842
9	D	0.26	0/2336	0.49	0/3142
10	Е	0.28	0/1444	0.52	0/1948
11	F	0.30	0/1781	0.50	0/2389
12	G	0.29	0/1833	0.49	0/2467
13	Н	0.24	0/860	0.43	0/1193
14	Ι	0.25	0/1379	0.49	0/1848
15	J	0.28	0/1382	0.53	0/1850
16	Κ	0.30	0/704	0.60	0/941
17	L	0.29	0/1644	0.53	0/2215
18	М	0.27	0/1024	0.52	0/1375
19	Ν	0.33	0/1717	0.56	0/2304
20	0	0.31	0/1588	0.50	0/2128
21	Р	0.31	0/1393	0.52	0/1866
22	Q	0.30	0/1511	0.55	0/2019
23	R	0.28	0/1248	0.54	0/1661
24	S	0.28	0/1444	0.52	0/1939
25	Т	0.32	0/1317	0.53	0/1772
26	U	0.29	0/805	0.49	0/1080
27	V	0.30	0/1031	0.53	0/1388
28	Х	0.30	0/955	0.53	0/1285
29	Y	0.28	0/1008	0.58	0/1341
30	Ζ	0.29	0/1095	0.53	0/1467
31	a	0.31	0/1198	0.55	0/1608
32	b	0.30	0/479	0.57	0/634

Mal	Chain	Bond	lengths	Bond	l angles
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
33	с	0.27	0/721	0.47	0/969
34	d	0.29	0/824	0.54	0/1106
35	е	0.31	0/953	0.56	0/1271
36	f	0.31	0/859	0.53	0/1152
37	g	0.35	0/873	0.60	0/1170
38	h	0.29	0/1008	0.52	0/1340
39	i	0.27	0/774	0.56	0/1028
40	j	0.35	0/671	0.57	0/888
41	k	0.30	0/570	0.56	0/762
42	m	0.28	0/3471	0.50	0/4715
43	n	0.26	0/3037	0.47	0/4087
44	0	0.27	0/810	0.50	0/1074
45	р	0.24	0/1396	0.44	0/1935
46	u	0.50	0/509	0.63	0/678
All	All	0.37	0/131915	0.65	0/193342

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
3	3	121/302~(40%)	112 (93%)	7~(6%)	2(2%)	9	36
4	8	48/51~(94%)	46 (96%)	2 (4%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
6	А	243/253~(96%)	234~(96%)	9~(4%)	0	100	100
7	В	375/388~(97%)	362~(96%)	13~(4%)	0	100	100
8	С	357/363~(98%)	338~(95%)	19~(5%)	0	100	100
9	D	282/294~(96%)	278~(99%)	4 (1%)	0	100	100
10	Ε	181/195~(93%)	167 (92%)	13 (7%)	1 (1%)	25	59
11	F	212/250~(85%)	206 (97%)	6 (3%)	0	100	100
12	G	227/259~(88%)	223~(98%)	4 (2%)	0	100	100
13	Н	171/190~(90%)	167 (98%)	4 (2%)	0	100	100
14	Ι	164/221~(74%)	161 (98%)	3(2%)	0	100	100
15	J	167/174~(96%)	163 (98%)	4 (2%)	0	100	100
16	K	88/94~(94%)	84 (96%)	4 (4%)	0	100	100
17	L	200/208~(96%)	190 (95%)	10 (5%)	0	100	100
18	М	123/134 (92%)	117 (95%)	6(5%)	0	100	100
19	N	198/201~(98%)	188 (95%)	10 (5%)	0	100	100
20	Ο	194/197~(98%)	193 (100%)	1 (0%)	0	100	100
21	Р	169/187~(90%)	162 (96%)	7 (4%)	0	100	100
22	Q	184/187~(98%)	173 (94%)	10 (5%)	1 (0%)	29	64
23	R	147/193~(76%)	146 (99%)	1 (1%)	0	100	100
24	S	164/176~(93%)	153 (93%)	11 (7%)	0	100	100
25	Т	157/160~(98%)	154 (98%)	3 (2%)	0	100	100
26	U	96/117~(82%)	90 (94%)	6 (6%)	0	100	100
27	V	134/139~(96%)	131 (98%)	3 (2%)	0	100	100
28	Х	115/141 (82%)	114 (99%)	1 (1%)	0	100	100
29	Y	123/126~(98%)	119 (97%)	4 (3%)	0	100	100
30	Ζ	132/136~(97%)	125~(95%)	7(5%)	0	100	100
31	a	145/148~(98%)	139 (96%)	6 (4%)	0	100	100
32	b	54/61~(88%)	51 (94%)	2(4%)	1 (2%)	8	33
33	с	93/117~(80%)	90 (97%)	3(3%)	0	100	100
34	d	93/113~(82%)	92 (99%)	1 (1%)	0	100	100
35	е	115/127~(91%)	113 (98%)	2 (2%)	0	100	100
36	f	104/108~(96%)	99~(95%)	5 (5%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
37	g	104/112~(93%)	98~(94%)	6 (6%)	0	100	100
38	h	119/122~(98%)	118 (99%)	1 (1%)	0	100	100
39	i	94/99~(95%)	90~(96%)	4 (4%)	0	100	100
40	j	81/91~(89%)	78~(96%)	3(4%)	0	100	100
41	k	68/74~(92%)	66~(97%)	2(3%)	0	100	100
42	m	409/740~(55%)	386 (94%)	23~(6%)	0	100	100
43	n	351/607~(58%)	331 (94%)	20~(6%)	0	100	100
44	О	96/106~(91%)	93~(97%)	3(3%)	0	100	100
45	р	274/440~(62%)	265~(97%)	9(3%)	0	100	100
46	u	57/192~(30%)	55~(96%)	2(4%)	0	100	100
All	All	7029/8593~(82%)	6760 (96%)	264 (4%)	5(0%)	54	83

All (5) Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
3	3	13	HIS
3	3	11	VAL
22	Q	184	ALA
32	b	7	HIS
10	Е	135	LYS

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
3	3	111/271~(41%)	109 (98%)	2(2%)	59	82
4	8	46/47~(98%)	46 (100%)	0	100	100
6	А	188/192~(98%)	187 (100%)	1 (0%)	88	94
7	В	316/326~(97%)	315 (100%)	1 (0%)	92	96
8	С	296/297~(100%)	295 (100%)	1 (0%)	92	96

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
9	D	234/241~(97%)	231~(99%)	3~(1%)	69	87
10	Ε	146/155~(94%)	145~(99%)	1 (1%)	84	93
11	F	180/210~(86%)	178~(99%)	2(1%)	73	89
12	G	191/212~(90%)	189 (99%)	2(1%)	76	90
14	Ι	144/187~(77%)	143 (99%)	1 (1%)	84	93
15	J	142/146~(97%)	137~(96%)	5 (4%)	36	68
16	Κ	71/75~(95%)	70~(99%)	1 (1%)	67	86
17	L	162/167~(97%)	162 (100%)	0	100	100
18	М	108/113~(96%)	108 (100%)	0	100	100
19	Ν	175/176~(99%)	174 (99%)	1 (1%)	86	94
20	О	161/162~(99%)	161 (100%)	0	100	100
21	Р	139/149~(93%)	138 (99%)	1 (1%)	84	93
22	Q	158/159~(99%)	158 (100%)	0	100	100
23	R	127/162~(78%)	127 (100%)	0	100	100
24	S	150/154~(97%)	150 (100%)	0	100	100
25	Т	138/139~(99%)	136 (99%)	2 (1%)	67	86
26	U	85/103 (82%)	83 (98%)	2(2%)	49	76
27	V	104/107~(97%)	102 (98%)	2(2%)	57	81
28	Х	104/122~(85%)	103~(99%)	1 (1%)	76	90
29	Y	110/111~(99%)	109 (99%)	1 (1%)	78	91
30	Ζ	113/115~(98%)	111 (98%)	2(2%)	59	82
31	a	121/122~(99%)	121 (100%)	0	100	100
32	b	47/51~(92%)	47 (100%)	0	100	100
33	с	76/91~(84%)	75~(99%)	1 (1%)	69	87
34	d	89/102~(87%)	89 (100%)	0	100	100
35	е	$\overline{100/107} \; (94\%)$	99~(99%)	1 (1%)	76	90
36	f	89/91~(98%)	89 (100%)	0	100	100
37	g	92/97~(95%)	90~(98%)	2 (2%)	52	78
38	h	106/107~(99%)	106 (100%)	0	100	100
39	i	82/84~(98%)	81 (99%)	1 (1%)	71	88
40	j	68/71 (96%)	68 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
41	k	63/66~(96%)	60~(95%)	3~(5%)	25	58
42	m	378/659~(57%)	374~(99%)	4 (1%)	73	89
43	n	319/532~(60%)	315~(99%)	4 (1%)	69	87
44	О	88/93~(95%)	88 (100%)	0	100	100
46	u	52/168~(31%)	48 (92%)	4 (8%)	13	41
All	All	5669/6739~(84%)	5617~(99%)	52~(1%)	79	91

All (52) residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
3	3	47	ASN
3	3	114	ARG
6	А	192	ARG
7	В	378	GLN
8	С	156	ASP
9	D	90	TRP
9	D	158	ARG
9	D	281	LYS
10	Е	16	MET
11	F	89	LYS
11	F	234	ASP
12	G	30	ARG
12	G	204	ARG
14	Ι	202	LYS
15	J	7	ASN
15	J	43	GLN
15	J	97	SER
15	J	125	MET
15	J	161	ASN
16	Κ	83	SER
19	Ν	122	ASN
21	Р	69	ARG
25	Т	103	GLN
25	Т	142	SER
26	U	41	ASP
26	U	73	TYR
27	V	76	MET
27	V	91	ASP
28	Х	133	ASP
29	Y	2	LYS

Mol	Chain	Res	Type
30	Ζ	26	LEU
30	Ζ	33	SER
33	с	50	SER
35	е	20	ASP
37	g	4	ARG
37	g	97	GLU
39	i	90	SER
41	k	6	SER
41	k	9	LYS
41	k	18	LYS
42	m	306	TYR
42	m	644	ASP
42	m	665	TYR
42	m	689	TYR
43	n	244	ARG
43	n	248	LYS
43	n	362	ARG
43	n	366	ARG
46	u	2	ARG
46	u	4	HIS
46	u	7	TYR
46	u	55	TYR

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (9) such sidechains are listed below:

Mol	Chain	Res	Type
7	В	182	GLN
15	J	68	HIS
21	Р	97	ASN
25	Т	98	HIS
28	Х	136	ASN
32	b	43	GLN
37	g	98	GLN
43	n	190	GLN
46	u	37	HIS

5.3.3 RNA (i)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
	1	1	2823/3498~(80%)	580 (20%)	10 (0%)

$\alpha \cdot \cdot \cdot \cdot$	C		
Continued	from	previous	page
Contentaca	<i>J1011</i>	precious	1

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
2	2	157/165~(95%)	33~(21%)	1 (0%)
5	9	117/229~(51%)	14 (11%)	0
All	All	3097/3892~(79%)	627~(20%)	11 (0%)

All (627) RNA backbone outliers are listed below:

\mathbf{Mol}	Chain	\mathbf{Res}	Type
1	1	4	U
1	1	5	G
1	1	25	U
1	1	26	А
1	1	30	G
1	1	40	А
1	1	43	А
1	1	49	А
1	1	59	G
1	1	60	А
1	1	63	А
1	1	65	А
1	1	66	А
1	1	68	А
1	1	74	А
1	1	92	G
1	1	96	G
1	1	99	А
1	1	109	А
1	1	110	G
1	1	111	С
1	1	116	А
1	1	122	А
1	1	132	С
1	1	147	С
1	1	153	U
1	1	154	G
1	1	156	А
1	1	161	С
1	1	162	А
1	1	163	A
1	1	167	G
1	1	168	C
1	1	169	U
1	1	170	G

Mol	Chain	Res	Type
1	1	175	G
1	1	178	U
1	1	181	А
1	1	188	С
1	1	189	G
1	1	190	G
1	1	193	U
1	1	197	U
1	1	198	U
1	1	207	C
1	1	213	G
1	1	217	G
1	1	218	А
1	1	219	G
1	1	220	А
1	1	225	G
1	1	226	А
1	1	227	G
1	1	239	U
1	1	241	G
1	1	243	С
1	1	244	G
1	1	247	U
1	1	252	А
1	1	257	A
1	1	258	U
1	1	259	A
1	1	260	U
1	1	261	А
1	1	266	G
1	1	269	U
1	1	270	U
1	1	274	A
1	1	277	G
1	1	289	G
1	1	292	A
1	1	293	A
1	1	303	A
1	1	305	A
1	1	310	U
1	1	311	G
1	1	312	G

Mol	Chain	Res	Type
1	1	313	U
1	1	315	А
1	1	319	U
1	1	321	А
1	1	322	U
1	1	324	U
1	1	331	А
1	1	337	U
1	1	339	G
1	1	344	А
1	1	345	G
1	1	346	А
1	1	347	С
1	1	359	A
1	1	360	А
1	1	367	U
1	1	377	А
1	1	378	U
1	1	384	G
1	1	406	U
1	1	410	А
1	1	411	С
1	1	429	G
1	1	430	А
1	1	437	G
1	1	445	G
1	1	449	U
1	1	505	G
1	1	531	А
1	1	532	А
1	1	534	A
1	1	540	А
1	1	544	А
1	1	545	A
1	1	546	G
1	1	547	G
1	1	550	G
1	1	551	C
1	1	577	U
1	1	578	U
1	1	579	A
1	1	581	A

Mol	Chain	Res	Type
1	1	582	G
1	1	591	G
1	1	592	U
1	1	602	A
1	1	603	С
1	1	616	А
1	1	618	U
1	1	629	G
1	1	634	G
1	1	635	G
1	1	636	А
1	1	646	A
1	1	647	А
1	1	661	С
1	1	672	А
1	1	674	A
1	1	676	G
1	1	685	А
1	1	700	C
1	1	702	А
1	1	706	U
1	1	708	U
1	1	732	А
1	1	739	G
1	1	742	А
1	1	747	А
1	1	765	G
1	1	770	G
1	1	774	С
1	1	775	A
1	1	778	G
1	1	783	A
1	1	786	С
1	1	794	U
1	1	795	G
1	1	796	U
1	1	797	С
1	1	798	A
1	1	802	G
1	1	806	G
1	1	807	G
1	1	808	U

Mol	Chain	Res	Type
1	1	809	U
1	1	812	А
1	1	813	G
1	1	816	А
1	1	817	G
1	1	833	А
1	1	840	А
1	1	846	U
1	1	848	А
1	1	849	А
1	1	862	А
1	1	877	G
1	1	878	А
1	1	882	U
1	1	889	G
1	1	893	С
1	1	902	А
1	1	903	U
1	1	906	U
1	1	911	U
1	1	912	G
1	1	928	А
1	1	939	G
1	1	940	G
1	1	946	А
1	1	947	А
1	1	948	G
1	1	949	А
1	1	953	А
1	1	955	С
1	1	956	G
1	1	957	A
1	1	958	A
1	1	965	A
1	1	969	G
1	1	976	С
1	1	985	G
1	1	991	С
1	1	992	U
1	1	993	С
1	1	995	G
1	1	1002	А

Mol	Chain	Res	Type
1	1	1006	А
1	1	1008	U
1	1	1011	G
1	1	1012	А
1	1	1013	U
1	1	1026	G
1	1	1034	А
1	1	1042	G
1	1	1046	U
1	1	1073	U
1	1	1079	А
1	1	1081	С
1	1	1095	G
1	1	1096	A
1	1	1097	С
1	1	1113	U
1	1	1119	G
1	1	1126	А
1	1	1127	U
1	1	1129	G
1	1	1130	А
1	1	1135	G
1	1	1139	U
1	1	1147	G
1	1	1148	G
1	1	1162	G
1	1	1166	А
1	1	1171	G
1	1	1175	U
1	1	1184	A
1	1	1185	A
1	1	1186	C
1	1	1190	A
1	1	1205	G
1	1	1211	A
1	1	1212	U
1	1	1223	C
1	1	1224	A
1	1	1227	C
1	1	1231	A
1	1	1232	G
1	1	1239	U

Mol	Chain	Res	Type
1	1	1243	А
1	1	1326	G
1	1	1339	А
1	1	1340	U
1	1	1356	U
1	1	1361	А
1	1	1362	U
1	1	1363	А
1	1	1379	U
1	1	1380	А
1	1	1388	G
1	1	1389	А
1	1	1390	A
1	1	1421	G
1	1	1433	U
1	1	1434	G
1	1	1452	А
1	1	1453	А
1	1	1455	А
1	1	1459	U
1	1	1465	G
1	1	1466	С
1	1	1468	G
1	1	1471	С
1	1	1477	G
1	1	1484	G
1	1	1487	А
1	1	1489	U
1	1	1503	С
1	1	1515	Α
1	1	1516	А
1	1	1517	G
1	1	1521	G
1	1	1525	A
1	1	1528	U
1	1	1536	G
1	1	1537	А
1	1	1542	С
1	1	1561	С
1	1	1571	А
1	1	1573	A
1	1	1581	G

Mol	Chain	Res	Type
1	1	1587	U
1	1	1588	А
1	1	1589	U
1	1	1590	G
1	1	1600	С
1	1	1602	А
1	1	1603	U
1	1	1604	U
1	1	1606	U
1	1	1608	С
1	1	1609	G
1	1	1618	А
1	1	1622	А
1	1	1624	A
1	1	1629	А
1	1	1640	A
1	1	1655	G
1	1	1664	А
1	1	1666	С
1	1	1677	А
1	1	1678	А
1	1	1691	А
1	1	1692	С
1	1	1697	G
1	1	1712	A
1	1	1713	G
1	1	1723	U
1	1	1724	U
1	1	1754	А
1	1	1756	U
1	1	1764	U
1	1	1770	G
1	1	1780	G
1	1	1781	G
1	1	1786	U
1	1	1789	A
1	1	1790	A
1	1	1791	G
1	1	1792	A
1	1	1811	A
1	1	1816	G
1	1	1819	G

Mol	Chain	Res	Type
1	1	1821	G
1	1	1829	С
1	1	1837	G
1	1	1838	А
1	1	1839	А
1	1	1842	U
1	1	1873	U
1	1	1874	U
1	1	1876	U
1	1	1880	А
1	1	1897	А
1	1	1901	С
1	1	1902	А
1	1	1904	С
1	1	1905	A
1	1	1913	А
1	1	1933	G
1	1	1935	U
1	1	1936	А
1	1	1940	С
1	1	1941	А
1	1	1944	G
1	1	1961	G
1	1	1963	А
1	1	1989	G
1	1	1990	G
1	1	1999	U
1	1	2001	А
1	1	2003	G
1	1	2188	А
1	1	2189	С
1	1	2190	U
1	1	2191	U
1	1	$2\overline{195}$	A
1	1	2199	G
1	1	2202	C
1	1	2203	G
1	1	2204	G
1	1	$2\overline{209}$	G
1	1	2210	G
1	1	2214	A
1	1	2215	U

Mol	Chain	Res	Type
1	1	2219	А
1	1	2228	U
1	1	2232	A
1	1	2234	С
1	1	2246	А
1	1	2257	G
1	1	2266	А
1	1	2272	U
1	1	2276	A
1	1	2280	С
1	1	2298	G
1	1	2299	U
1	1	2311	A
1	1	2313	U
1	1	2360	G
1	1	2361	G
1	1	2369	А
1	1	2371	G
1	1	2386	U
1	1	2395	G
1	1	2396	С
1	1	2397	A
1	1	2398	U
1	1	2401	А
1	1	2403	G
1	1	2406	U
1	1	2422	U
1	1	2424	U
1	1	2435	U
1	1	2461	А
1	1	$2\overline{462}$	C
1	1	2463	G
1	1	2466	С
1	1	2467	С
1	1	2471	С
1	1	$2\overline{473}$	A
1	1	2474	A
1	1	2477	С
1	1	2481	G
1	1	2485	A
1	1	2488	G
1	1	2490	A

Mol	Chain	Res	Type
1	1	2491	G
1	1	2492	A
1	1	2493	С
1	1	2499	U
1	1	2505	U
1	1	2506	G
1	1	2522	U
1	1	2523	G
1	1	2525	G
1	1	2610	U
1	1	2611	А
1	1	2618	G
1	1	2620	А
1	1	2622	С
1	1	2647	U
1	1	2648	С
1	1	2650	A
1	1	2654	U
1	1	2657	А
1	1	2658	А
1	1	2661	U
1	1	2668	С
1	1	2669	G
1	1	2674	G
1	1	2675	А
1	1	2676	U
1	1	2688	A
1	1	2689	С
1	1	2695	С
1	1	2697	G
1	1	2701	G
1	1	2702	G
1	1	2705	G
1	1	2709	G
1	1	2721	A
1	1	2722	C
1	1	2733	A
1	1	2743	G
1	1	2746	G
1	1	2747	U
1	1	2751	A
1	1	2768	A

Mol	Chain	Res	Type
1	1	2769	А
1	1	2778	U
1	1	2780	G
1	1	2781	A
1	1	2784	А
1	1	2786	A
1	1	2787	А
1	1	2789	А
1	1	2799	А
1	1	2809	G
1	1	2814	U
1	1	2815	G
1	1	2821	C
1	1	2823	G
1	1	2824	U
1	1	2832	C
1	1	2847	U
1	1	2848	G
1	1	2850	С
1	1	2872	G
1	1	2873	А
1	1	2875	А
1	1	2894	А
1	1	2895	G
1	1	2896	А
1	1	2897	А
1	1	2905	С
1	1	2907	С
1	1	2909	G
1	1	2912	А
1	1	2917	U
1	1	2932	A
1	1	2933	A
1	1	2948	G
1	1	2949	U
1	1	2966	G
1	1	2971	С
1	1	2982	A
1	1	2989	C
1	1	3006	A
1	1	3018	U
1	1	3020	С

Mol	Chain	Res	Type
1	1	3021	А
1	1	3028	А
1	1	3030	U
1	1	3031	А
1	1	3040	G
1	1	3041	А
1	1	3042	G
1	1	3046	G
1	1	3050	U
1	1	3066	А
1	1	3067	G
1	1	3070	U
1	1	3078	С
1	1	3082	A
1	1	3085	G
1	1	3087	U
1	1	3108	А
1	1	3117	А
1	1	3118	G
1	1	3127	G
1	1	3155	G
1	1	3174	А
1	1	3176	G
1	1	3182	G
1	1	3188	U
1	1	3189	С
1	1	3196	С
1	1	3197	G
1	1	3200	U
1	1	3220	G
1	1	3225	А
1	1	3226	A
1	1	3227	U
1	1	3238	A
1	1	3239	A
1	1	3248	U
1	1	3269	A
1	1	3270	U
1	1	3271	G
1	1	3272	U
1	1	3273	A
1	1	3275	A

Mol	Chain	Res	Type
1	1	3276	А
1	1	3281	А
1	1	3282	G
1	1	3307	U
1	1	3308	G
1	1	3310	А
1	1	3311	U
1	1	3314	U
1	1	3317	А
1	1	3318	А
1	1	3319	G
1	1	3329	G
1	1	3343	А
1	1	3345	G
1	1	3346	U
1	1	3347	G
1	1	3358	U
1	1	3359	U
1	1	3370	U
1	1	3371	U
1	1	3372	С
1	1	3373	С
1	1	3396	А
1	1	3405	С
1	1	3417	А
1	1	3418	U
1	1	3420	U
1	1	3425	С
1	1	3435	U
1	1	3436	A
1	1	3442	U
1	1	3443	A
1	1	3464	U
1	1	3470	G
1	1	3479	С
1	1	3483	U
1	1	3490	A
1	1	3491	A
1	1	3492	G
1	1	3497	G
1	1	3498	U
2	2	9	A

Mol	Chain	Res	Type
2	2	31	U
2	2	42	U
2	2	43	С
2	2	67	А
2	2	70	С
2	2	71	G
2	2	83	G
2	2	87	A
2	2	89	U
2	2	90	U
2	2	91	С
2	2	92	С
2	2	93	G
2	2	94	U
2	2	95	G
2	2	98	U
2	2	103	G
2	2	112	А
2	2	114	С
2	2	115	G
2	2	119	А
2	2	120	U
2	2	121	U
2	2	122	G
2	2	124	G
2	2	132	G
2	2	135	С
2	2	136	U
2	2	156	G
2	2	159	U
2	2	162	C
2	2	165	U
5	9	57	G
5	9	72	A
5	9	83	U
5	9	92	A
5	9	100	A
5	9	103	U
5	9	104	A
5	9	114	G
5	9	$12\overline{2}$	U
5	9	124	А

Continued from previous page...

Mol	Chain	Res	Type
5	9	141	С
5	9	150	А
5	9	160	G
5	9	166	G

All (11) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	1	269	U
1	1	311	G
1	1	628	U
1	1	805	G
1	1	948	G
1	1	1388	G
1	1	1628	А
1	1	1640	А
1	1	2198	G
1	1	3441	G
2	2	131	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 1 ligands modelled in this entry, 1 is monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-24423. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 256

Y Index: 256

Z Index: 256

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 282

Y Index: 262

Z Index: 276

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.05. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1266 $\rm nm^3;$ this corresponds to an approximate mass of 1144 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.323 ${\rm \AA}^{-1}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-24423 and PDB model 8EUI. Per-residue inclusion information can be found in section 3 on page 12.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.05 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.05).

9.4 Atom inclusion (i)

At the recommended contour level, 93% of all backbone atoms, 92% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.05) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.9220	0.5360
1	0.9815	0.5650
2	0.9642	0.5680
3	0.7532	0.4160
8	0.9760	0.5880
9	0.9798	0.4840
А	0.9561	0.5800
В	0.9422	0.5610
С	0.9486	0.5700
D	0.8234	0.4530
${ m E}$	0.7971	0.4580
F	0.9295	0.5540
G	0.8889	0.5290
Н	0.8051	0.3970
Ι	0.7110	0.4400
J	0.6424	0.3590
K	0.9535	0.5710
L	0.9255	0.5650
М	0.9222	0.4980
Ν	0.9844	0.6080
О	0.9492	0.5530
Р	0.9189	0.5520
Q	0.9596	0.5710
R	0.9423	0.5570
S	0.9126	0.5180
Т	0.9273	0.5490
U	0.7056	0.4050
V	0.9484	0.5560
Х	0.9553	0.5750
Y	0.9293	0.5520
Ζ	0.9110	0.5250
a	0.9514	0.5850
b	0.9161	0.5410
с	0.8398	0.4990
d	0.9462	0.5760

Chain	Atom inclusion	Q-score
е	0.9724	0.5910
f	0.9644	0.5720
g	0.9504	0.5840
h	0.9379	0.5660
i	0.9293	0.5410
j	0.9889	0.6120
k	0.8236	0.4730
m	0.5993	0.3460
n	0.6156	0.3550
0	0.8943	0.5390
р	0.1827	0.2420
u	0.9116	0.4920

