Full wwPDB EM Validation Report (i) Nov 22, 2022 – 06:58 PM JST PDB ID : 7ETJ EMDB ID : EMD-31298 Title: C5 portal vertex in the partially-enveloped virion capsid $\begin{array}{cccc} \text{Authors} & : & \text{Li, Z.; Yu, X.} \\ \text{Deposited on} & : & 2021\text{-}05\text{-}13 \end{array}$ Resolution : 4.00 Å(reported) This is a Full wwPDB EM Validation Report for a publicly released PDB entry. We welcome your comments at *validation@mail.wwpdb.org*A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol. The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types. The following versions of software and data (see references (1)) were used in the production of this report: EMDB validation analysis : 0.0.1.dev43 MolProbity: 4.02b-467 Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019) MapQ : 1.9.9 Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996) Validation Pipeline (wwPDB-VP) : 2.31.3 ## 1 Overall quality at a glance (i) The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$ The reported resolution of this entry is 4.00 Å. Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based. | Metric | Whole archive $(\# \mathrm{Entries})$ | ${ m EM\ structures} \ (\#{ m Entries})$ | |-----------------------|---------------------------------------|--| | Ramachandran outliers | 154571 | 4023 | | Sidechain outliers | 154315 | 3826 | The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion <40%). The numeric value is given above the bar. | Mol | Chain | Length | Quality of chain | | |-----|-------|--------|------------------|-----| | 1 | I | 306 | 98% | | | 1 | h | 306 | 98% | | | 1 | n | 306 | 95% | | | 1 | О | 306 | 94% | 6% | | 2 | Н | 2241 | • 99% | | | 2 | Р | 2241 | 99% | | | 3 | g | 290 | 78% | 22% | | 3 | m | 290 | 99% | | | 4 | M | 594 | 6%
78% | 21% | Continued on next page... $Continued\ from\ previous\ page...$ | Mol | Chain | Length | Quality of chain | | |-----|-------|--------|------------------|------| | 5 | N | 642 | 12% 88% | | | 5 | О | 642 | 11% 89% | | | 6 | 1 | 1048 | 10%
27% 73% | | | 7 | R | 75 | 27% | 16% | | 7 | S | 75 | 84% | 16% | | 7 | Т | 75 | 81% • | 16% | | 7 | i | 75 | 81% · | 16% | | 7 | j | 75 | 35%
83% | 16% | | 8 | В | 1370 | 97% | | | 8 | С | 1370 | 96% | | | 8 | D | 1370 | 94% | • 5% | | 8 | Y | 1370 | 98% | | | 8 | Z | 1370 | 97% | | | 8 | a | 1370 | 92% | • 7% | ## 2 Entry composition (i) There are 8 unique types of molecules in this entry. The entry contains 86613 atoms, of which 0 are hydrogens and 0 are deuteriums. In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms. • Molecule 1 is a protein called Triplex capsid protein 2. | Mol | Chain | Residues | | At | oms | | | AltConf | Trace | |-----|-------|----------|-------|------|-----|-----|----|---------|-------| | 1 | h | 300 | Total | С | N | О | S | 0 | 0 | | 1 | 11 | 300 | 2384 | 1528 | 415 | 424 | 17 | 0 | 0 | | 1 | Т | 301 | Total | С | N | О | S | 0 | 0 | | 1 | 1 | 301 | 2389 | 1531 | 417 | 424 | 17 | 0 | 0 | | 1 | n | 294 | Total | С | N | О | S | 0 | 0 | | 1 | n | 294 | 2329 | 1499 | 401 | 410 | 19 | 0 | 0 | | 1 | 0 | 289 | Total | С | N | О | S | 0 | 0 | | 1 | О | 209 | 2291 | 1473 | 393 | 407 | 18 | 0 | 0 | • Molecule 2 is a protein called Large tegument protein deneddylase. | Mol | Chain | Residues | | Ato | ms | AltConf | Trace | | | |-----|-------|----------|--------------|-----|----|---------|--------|---|---| | 2 | Н | 20 | Total
172 | _ | | _ | S
1 | 0 | 0 | | 2 | Р | 20 | Total
172 | _ | | _ | S
1 | 0 | 0 | • Molecule 3 is a protein called Triplex capsid protein 1. | Mol | Chain | Residues | | At | AltConf | Trace | | | | |-----|--------------|----------|-------|------|---------|-------|----|---|---| | 2 | ď | 227 | Total | С | N | О | S | 0 | 0 | |) | 3 g | 221 | 1822 | 1171 | 319 | 321 | 11 | 0 | | | 2 | m | 290 | Total | С | N | О | S | 0 | 0 | |) | m | 290 | 2325 | 1485 | 411 | 417 | 12 | 0 | 0 | • Molecule 4 is a protein called Capsid vertex component 1. | Mol | Chain | Residues | | At | AltConf | Trace | | | | |-----|-------|----------|-------|------|---------|-------|----|---|---| | 4 | М | 468 | Total | С | N | О | S | 0 | 0 | | 4 | 101 | 400 | 3848 | 2408 | 740 | 686 | 14 | U | U | • Molecule 5 is a protein called Capsid vertex component 2. | Mo | l Chain | Residues | | At | oms | AltConf | Trace | | | |----|---------|----------|-------|-----|-----|---------|-------|---|---| | 5 | N | 76 | Total | С | N | О | S | 0 | 0 | |) | 9 1 | 10 | 648 | 408 | 127 | 109 | 4 | 0 | | | 5 | 0 | 69 | Total | С | N | О | S | 0 | 0 | |) | | 09 | 589 | 371 | 113 | 102 | 3 | 0 | 0 | \bullet Molecule 6 is a protein called ORFL92C_UL32. | Mol | Chain | Residues | | At | AltConf | Trace | | | | |-----|-------|----------|---------------|-----------|----------|----------|---------|---|---| | 6 | 1 | 284 | Total
2320 | C
1463 | N
425 | O
420 | S
12 | 0 | 0 | • Molecule 7 is a protein called Small capsomere-interacting protein. | Mol | Chain | Residues | | Ato | ms | | AltConf | Trace | | |-----|-------|----------|-------|-----|----|----|---------|-------|---| | 7 | R | 63 | Total | С | N | О | S | 0 | 0 | | ' | n | 0.0 | 513 | 321 | 97 | 91 | 4 | 0 | 0 | | 7 | S | 63 | Total | С | N | О | S | 0 | 0 | | ' | B | 0.5 | 513 | 321 | 97 | 91 | 4 | 0 | U | | 7 | Т | 63 | Total | С | N | О | S | 0 | 0 | | ' | 1 | 0.5 | 513 | 321 | 97 | 91 | 4 | 0 | 0 | | 7 | i | 63 | Total | С | N | О | S | 0 | 0 | | ' | 1 | 0.5 | 513 | 321 | 97 | 91 | 4 | 0 | U | | 7 | ; | 63 | Total | С | N | О | S | 0 | 0 | | | J | 00 | 513 | 321 | 97 | 91 | 4 | U | U | • Molecule 8 is a protein called Major capsid protein. | Mol | Chain | Residues | | A | $\overline{ ext{toms}}$ | | | AltConf | Trace | |-----|-------|----------|-------|------|-------------------------|------|----|---------|-------| | 8 | a | 1275 | Total | С | N | О | S | 0 | 0 | | 0 | a | 1275 | 10079 | 6410 | 1756 | 1855 | 58 | | | | 8 | В | 1339 | Total | С | N | О | S | 0 | 0 | | 6 | Б | 1559 | 10617 | 6762 | 1838 | 1956 | 61 | U | U | | 8 | С | 1331 | Total | С | N | O | S | 0 | 0 | | 0 | | 1991 | 10536 | 6711 | 1827 | 1938 | 60 | | | | 8 | D | 1297 | Total | С | N | О | S | 0 | 0 | | | D | 1291 | 10269 | 6538 | 1785 | 1887 | 59 | 0 | U | | 8 | Y | 1347 | Total | С | N | O | S | 0 | 0 | | | 1 | 1941 | 10676 | 6799 | 1850 | 1966 | 61 | 0 | U | | 8 | Z | 1337 | Total | С | N | О | S | 0 | 0 | | | | 1001 | 10582 | 6740 | 1831 | 1952 | 59 | 0 | U | ## 3 Residue-property plots (i) These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey. • Molecule 1: Triplex capsid protein 2 Chain h: • Molecule 1: Triplex capsid protein 2 Chain I: 98% • Molecule 1: Triplex capsid protein 2 Chain n: 95% • Molecule 1: Triplex capsid protein 2 Chain o: 94% 6% • Molecule 2: Large tegument protein deneddylase Chain H: THE PROPERTY OF O • Molecule 2: Large tegument protein deneddylase • Molecule 3: Triplex capsid protein 1 Chain g: 78% 22% • Molecule 5: Capsid vertex component 2 #### PHE LEU VAL LEU GLY PHE LEU PRO SER VAL ALA • Molecule 6: ORFL92C UL32 10% Chain 1: 27% 73% • Molecule 7: Small capsomere-interacting protein Chain R: 84% 16% • Molecule 8: Major capsid protein • Molecule 8: Major capsid protein # 4 Experimental information (i) | Property | Value | Source | |----------------------------------|-------------------------------|-----------| | EM reconstruction method | SINGLE PARTICLE | Depositor | | Imposed symmetry | POINT, Not provided | | | Number of particles used | 42849 | Depositor | | Resolution determination method | FSC 0.143 CUT-OFF | Depositor | | CTF correction method | PHASE FLIPPING AND AMPLITUDE | Depositor | | | CORRECTION | | | Microscope | FEI TITAN KRIOS | Depositor | | Voltage (kV) | 300 | Depositor | | Electron dose $(e^-/\text{Å}^2)$ | 30 | Depositor | | Minimum defocus (nm) | Not provided | | | Maximum defocus (nm) | Not provided | | | Magnification | Not provided | | | Image detector | GATAN K3 BIOQUANTUM (6k x 4k) | Depositor | | Maximum map value | 0.093 | Depositor | | Minimum map value | -0.068 | Depositor | | Average map value | 0.005 | Depositor | | Map value standard deviation | 0.009 | Depositor | | Recommended contour level | 0.015 | Depositor | | Map size (Å) | 416.0, 416.0, 416.0 | wwPDB | | Map dimensions | 256, 256, 256 | wwPDB | | Map angles (°) | 90.0, 90.0, 90.0 | wwPDB | | Pixel spacing (Å) | 1.625, 1.625, 1.625 | Depositor | ## 5 Model quality (i) ## 5.1 Standard geometry (i) The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles). | Mol | Chain | Bond | lengths | Е | Bond angles | |-------|-------|------|----------|------|---------------------| | IVIOI | Chain | RMSZ | # Z > 5 | RMSZ | # Z > 5 | | 1 | I | 0.31 | 0/2436 | 0.65 | 2/3310 (0.1%) | | 1 | h | 0.31 | 0/2431 | 0.58 | 0/3306 | | 1 | n | 0.30 | 0/2374 | 0.52 | 0/3225 | | 1 | О | 0.30 | 0/2333 | 0.51 | 0/3167 | | 2 | Н | 0.27 | 0/174 | 0.60 | 0/233 | | 2 | Р | 0.28 | 0/174 | 0.51 | 0/233 | | 3 | g | 0.31 | 0/1860 | 0.57 | 0/2521 | | 3 | m | 0.34 | 0/2374 | 0.58 | 2/3221 (0.1%) | | 4 | M | 0.34 | 0/3935 | 0.57 | 0/5331 | | 5 | N | 0.30 | 0/662 | 0.62 | 0/892 | | 5 | О | 0.27 | 0/600 | 0.58 | 0/808 | | 6 | 1 | 0.28 | 0/2358 | 0.55 | 0/3182 | | 7 | R | 0.28 | 0/520 | 0.59 | 0/697 | | 7 | S | 0.31 | 0/520 | 0.59 | 0/697 | | 7 | Т | 0.27 | 0/520 | 0.62 | 1/697~(0.1%) | | 7 | i | 0.29 | 0/520 | 0.74 | 2/697~(0.3%) | | 7 | j | 0.30 | 0/520 | 0.64 | 0/697 | | 8 | В | 0.34 | 0/10870 | 0.58 | 2/14804 (0.0%) | | 8 | С | 0.34 | 0/10786 | 0.57 | 3/14692 (0.0%) | | 8 | D | 0.33 | 0/10513 | 0.54 | $1/14322 \ (0.0\%)$ | | 8 | Y | 0.32 | 0/10932 | 0.54 | 3/14892 (0.0%) | | 8 | Z | 0.33 | 0/10835 | 0.54 | $1/14762 \ (0.0\%)$ | | 8 | a | 0.34 | 0/10318 | 0.57 | 3/14057 (0.0%) | | All | All | 0.33 | 0/88565 | 0.56 | 20/120443 (0.0%) | Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a maintenain group or atoms of a sidechain that are expected to be planar. | \mathbf{Mol} | Chain | #Chirality outliers | #Planarity outliers | |----------------|-------|---------------------|---------------------| | 8 | С | 0 | 1 | | 8 | D | 0 | 1 | $Continued\ from\ previous\ page...$ | Mol | Chain | #Chirality outliers | #Planarity outliers | |-----|-------|---------------------|---------------------| | 8 | Y | 0 | 1 | | 8 | Z | 0 | 1 | | 8 | a | 0 | 1 | | All | All | 0 | 5 | There are no bond length outliers. All (20) bond angle outliers are listed below: | Mol | Chain | Res | Type | Atoms | ${f Z}$ | $\mathbf{Observed}(^o)$ | $\operatorname{Ideal}({}^o)$ | |-----|-------|------|------|------------|---------|-------------------------|------------------------------| | 8 | С | 1142 | LEU | CA-CB-CG | 8.64 | 135.16 | 115.30 | | 1 | I | 179 | ASP | CB-CG-OD2 | 8.31 | 125.78 | 118.30 | | 3 | m | 140 | LEU | CA-CB-CG | 6.81 | 130.96 | 115.30 | | 7 | i | 64 | LEU | CA-CB-CG | 6.66 | 130.63 | 115.30 | | 8 | С | 761 | ASP | CB-CG-OD2 | 6.65 | 124.28 | 118.30 | | 8 | В | 645 | LEU | CA-CB-CG | 6.27 | 129.72 | 115.30 | | 8 | Y | 1239 | LEU | CA-CB-CG | 5.95 | 128.99 | 115.30 | | 8 | С | 1176 | LEU | CA-CB-CG | 5.93 | 128.94 | 115.30 | | 7 | Т | 53 | LEU | CA-CB-CG | 5.82 | 128.69 | 115.30 | | 7 | i | 53 | LEU | CA-CB-CG | 5.71 | 128.43 | 115.30 | | 8 | В | 1292 | CYS | CA-CB-SG | 5.71 | 124.28 | 114.00 | | 8 | a | 744 | ILE | CG1-CB-CG2 | -5.67 | 98.93 | 111.40 | | 3 | m | 255 | LEU | CA-CB-CG | 5.25 | 127.37 | 115.30 | | 8 | Y | 645 | LEU | CA-CB-CG | 5.19 | 127.23 | 115.30 | | 8 | Y | 1047 | LEU | CA-CB-CG | 5.15 | 127.14 | 115.30 | | 8 | D | 362 | LEU | CA-CB-CG | 5.14 | 127.13 | 115.30 | | 1 | I | 202 | LEU | CA-CB-CG | 5.13 | 127.11 | 115.30 | | 8 | Z | 1034 | LEU | CA-CB-CG | 5.10 | 127.03 | 115.30 | | 8 | a | 879 | LEU | CA-CB-CG | 5.07 | 126.96 | 115.30 | | 8 | a | 1034 | LEU | CA-CB-CG | 5.06 | 126.93 | 115.30 | There are no chirality outliers. All (5) planarity outliers are listed below: | Mol | Chain | Res | Type | Group | |-----|-------|-----|------|---------| | 8 | С | 585 | ARG | Peptide | | 8 | D | 585 | ARG | Peptide | | 8 | Y | 585 | ARG | Peptide | | 8 | Z | 585 | ARG | Peptide | | 8 | a | 585 | ARG | Peptide | ## 5.2 Too-close contacts (i) Due to software issues we are unable to calculate clashes - this section is therefore empty. ### 5.3 Torsion angles (i) #### 5.3.1 Protein backbone (i) In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries. The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues. | Mol | Chain | Analysed | Favoured | Allowed | Outliers | Perce | ntiles | |-----|-------|-----------------|------------|---------|----------|-------|--------| | 1 | I | 299/306~(98%) | 287 (96%) | 12 (4%) | 0 | 100 | 100 | | 1 | h | 298/306~(97%) | 283 (95%) | 15 (5%) | 0 | 100 | 100 | | 1 | n | 290/306~(95%) | 273 (94%) | 17 (6%) | 0 | 100 | 100 | | 1 | О | 285/306~(93%) | 274 (96%) | 11 (4%) | 0 | 100 | 100 | | 2 | Н | 18/2241 (1%) | 18 (100%) | 0 | 0 | 100 | 100 | | 2 | P | 18/2241 (1%) | 18 (100%) | 0 | 0 | 100 | 100 | | 3 | g | 221/290 (76%) | 204 (92%) | 17 (8%) | 0 | 100 | 100 | | 3 | m | 288/290 (99%) | 274 (95%) | 14 (5%) | 0 | 100 | 100 | | 4 | M | 462/594 (78%) | 442 (96%) | 20 (4%) | 0 | 100 | 100 | | 5 | N | 74/642 (12%) | 70 (95%) | 4 (5%) | 0 | 100 | 100 | | 5 | О | 65/642 (10%) | 64 (98%) | 1 (2%) | 0 | 100 | 100 | | 6 | 1 | 282/1048 (27%) | 269 (95%) | 13 (5%) | 0 | 100 | 100 | | 7 | R | 61/75 (81%) | 60 (98%) | 1 (2%) | 0 | 100 | 100 | | 7 | S | 61/75 (81%) | 60 (98%) | 1 (2%) | 0 | 100 | 100 | | 7 | Т | 61/75 (81%) | 59 (97%) | 2 (3%) | 0 | 100 | 100 | | 7 | i | 61/75 (81%) | 58 (95%) | 3 (5%) | 0 | 100 | 100 | | 7 | j | 61/75 (81%) | 58 (95%) | 3 (5%) | 0 | 100 | 100 | | 8 | В | 1331/1370 (97%) | 1260 (95%) | 71 (5%) | 0 | 100 | 100 | | 8 | С | 1323/1370 (97%) | 1268 (96%) | 55 (4%) | 0 | 100 | 100 | | 8 | D | 1293/1370 (94%) | 1210 (94%) | 83 (6%) | 0 | 100 | 100 | | 8 | Y | 1343/1370 (98%) | 1267 (94%) | 76 (6%) | 0 | 100 | 100 | Continued from previous page... | Mol | Chain | Analysed | Favoured | Allowed | Outliers | Percer | ntiles | |-----|-------|-------------------|-------------|----------|----------|--------|--------| | 8 | Z | 1331/1370 (97%) | 1264 (95%) | 67 (5%) | 0 | 100 | 100 | | 8 | a | 1269/1370 (93%) | 1216 (96%) | 53 (4%) | 0 | 100 | 100 | | All | All | 10795/17807 (61%) | 10256 (95%) | 539 (5%) | 0 | 100 | 100 | There are no Ramachandran outliers to report. ### 5.3.2 Protein sidechains (i) In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries. The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues. | Mol | Chain | Analysed | Rotameric | Outliers | Perce | ntiles | |-----|-------|---------------------|-------------|----------|-------|--------| | 1 | I | $270/273\ (99\%)$ | 270 (100%) | 0 | 100 | 100 | | 1 | h | $270/273\ (99\%)$ | 270 (100%) | 0 | 100 | 100 | | 1 | n | 263/273 (96%) | 260 (99%) | 3 (1%) | 73 | 85 | | 1 | О | $259/273\ (95\%)$ | 258 (100%) | 1 (0%) | 91 | 94 | | 2 | Н | 19/1941 (1%) | 19 (100%) | 0 | 100 | 100 | | 2 | Р | 19/1941~(1%) | 19 (100%) | 0 | 100 | 100 | | 3 | g | 199/252 (79%) | 198 (100%) | 1 (0%) | 88 | 93 | | 3 | m | $252/252 \ (100\%)$ | 250 (99%) | 2 (1%) | 81 | 89 | | 4 | M | 395/500 (79%) | 392 (99%) | 3 (1%) | 81 | 89 | | 5 | N | 69/526~(13%) | 69 (100%) | 0 | 100 | 100 | | 5 | О | 64/526 (12%) | 64 (100%) | 0 | 100 | 100 | | 6 | 1 | 255/883 (29%) | 254 (100%) | 1 (0%) | 91 | 94 | | 7 | R | 59/68 (87%) | 59 (100%) | 0 | 100 | 100 | | 7 | S | 59/68 (87%) | 59 (100%) | 0 | 100 | 100 | | 7 | Т | 59/68 (87%) | 58 (98%) | 1 (2%) | 60 | 78 | | 7 | i | 59/68 (87%) | 59 (100%) | 0 | 100 | 100 | | 7 | j | 59/68 (87%) | 58 (98%) | 1 (2%) | 60 | 78 | | 8 | В | 1169/1192 (98%) | 1164 (100%) | 5 (0%) | 91 | 94 | | 8 | С | 1156/1192 (97%) | 1150 (100%) | 6 (0%) | 88 | 93 | Continued from previous page... | Mol | Chain | Analysed | Rotameric | Outliers | Perce | entiles | |-----|-------|---------------------|-------------|----------|-------|---------| | 8 | D | $1130/1192\ (95\%)$ | 1122 (99%) | 8 (1%) | 84 | 90 | | 8 | Y | 1174/1192 (98%) | 1172 (100%) | 2 (0%) | 93 | 96 | | 8 | Z | 1163/1192 (98%) | 1156 (99%) | 7 (1%) | 86 | 92 | | 8 | a | 1110/1192 (93%) | 1105 (100%) | 5 (0%) | 88 | 93 | | All | All | 9531/15405 (62%) | 9485 (100%) | 46 (0%) | 89 | 93 | All (46) residues with a non-rotameric sidechain are listed below: | Mol | Chain | Res | Type | |-----|-------|------|------| | 1 | n | 176 | THR | | 1 | n | 201 | CYS | | 1 | n | 303 | ILE | | 1 | О | 37 | ARG | | 3 | g | 49 | ARG | | 3 | m | 102 | LEU | | 3 | m | 179 | ARG | | 4 | M | 74 | ASP | | 4 | M | 507 | ARG | | 4 | M | 553 | ARG | | 6 | 1 | 48 | ARG | | 7 | Т | 57 | LYS | | 7 | j | 64 | LEU | | 8 | a | 60 | ARG | | 8 | a | 204 | ARG | | 8 | a | 466 | GLU | | 8 | a | 467 | ARG | | 8 | a | 565 | LEU | | 8 | В | 209 | ARG | | 8 | В | 256 | ASP | | 8 | В | 736 | ARG | | 8 | В | 1101 | ARG | | 8 | В | 1169 | LYS | | 8 | С | 204 | ARG | | 8 | С | 507 | ARG | | 8 | С | 753 | ASP | | 8 | C | 754 | VAL | | 8 | С | 1000 | ASN | | 8 | С | 1069 | ARG | | 8 | D | 410 | VAL | | 8 | D | 653 | LEU | | 8 | D | 736 | ARG | Continued from previous page... | Mol | Chain | Res | Type | |-----|-------|------|------| | 8 | D | 781 | GLN | | 8 | D | 814 | ARG | | 8 | D | 928 | LYS | | 8 | D | 937 | VAL | | 8 | D | 1015 | ILE | | 8 | Y | 1200 | LEU | | 8 | Y | 1292 | CYS | | 8 | Z | 186 | LYS | | 8 | Z | 432 | ASN | | 8 | Z | 736 | ARG | | 8 | Z | 1169 | LYS | | 8 | Z | 1181 | MET | | 8 | Z | 1276 | LYS | | 8 | Z | 1292 | CYS | Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (157) such side chains are listed below: | Mol | Chain | Res | Type | |-----|-------|------|------| | 1 | h | 14 | HIS | | 1 | h | 36 | GLN | | 1 | h | 123 | ASN | | 1 | h | 277 | GLN | | 1 | h | 297 | ASN | | 1 | I | 43 | HIS | | 1 | I | 79 | ASN | | 1 | I | 173 | GLN | | 1 | I | 235 | GLN | | 1 | I | 258 | HIS | | 1 | I | 277 | GLN | | 2 | Н | 2234 | HIS | | 2 | Р | 2233 | GLN | | 1 | n | 43 | HIS | | 1 | n | 50 | GLN | | 1 | n | 277 | GLN | | 1 | О | 7 | ASN | | 1 | О | 209 | ASN | | 3 | g | 249 | GLN | | 3 | m | 116 | GLN | | 3 | m | 266 | HIS | | 4 | M | 47 | ASN | | 4 | M | 145 | GLN | | 4 | M | 333 | ASN | Continued from previous page... | Continued from previous page | | | | |------------------------------|-------|------|------| | Mol | Chain | Res | Type | | 4 | M | 560 | GLN | | 5 | N | 5 | HIS | | 5 | N | 73 | GLN | | 5 | О | 22 | ASN | | 5 | О | 63 | GLN | | 6 | 1 | 18 | ASN | | 6 | 1 | 70 | ASN | | 6 | 1 | 120 | HIS | | 6 | 1 | 150 | GLN | | 6 | 1 | 158 | HIS | | 6 | 1 | 170 | ASN | | 6 | 1 | 201 | ASN | | 6 | 1 | 248 | ASN | | 7 | R | 18 | HIS | | 7 | R | 37 | HIS | | 7 | Т | 37 | HIS | | 7 | j | 20 | HIS | | 8 | a | 111 | GLN | | 8 | a | 338 | HIS | | 8 | a | 378 | ASN | | 8 | a | 485 | GLN | | 8 | a | 510 | ASN | | 8 | a | 534 | HIS | | 8 | a | 649 | HIS | | 8 | a | 731 | GLN | | 8 | a | 849 | GLN | | 8 | a | 903 | GLN | | 8 | a | 945 | ASN | | 8 | a | 1000 | ASN | | 8 | a | 1080 | ASN | | 8 | a | 1190 | ASN | | 8 | a | 1191 | ASN | | 8 | a | 1230 | ASN | | 8 | a | 1245 | ASN | | 8 | a | 1350 | HIS | | 8 | В | 76 | HIS | | 8 | В | 214 | ASN | | 8 | В | 231 | ASN | | 8 | В | 388 | ASN | | 8 | В | 438 | GLN | | 8 | В | 534 | HIS | | 8 | В | 543 | GLN | 8 | B | 543 | GLN | Continued on next page... Continued from previous page... | Continued from previous page | | | | |------------------------------|---|------|------------| | Mol | Chain | Res | Type | | 8 | В | 711 | HIS | | 8 | В | 740 | ASN | | 8 | В | 749 | HIS | | 8 | В | 849 | GLN | | 8 | В | 914 | GLN | | 8 | В | 985 | ASN | | 8 | В | 1000 | ASN | | 8 | В | 1023 | GLN | | 8 | В | 1027 | HIS | | 8 | В | 1029 | HIS | | 8 | В | 1061 | ASN | | 8 | В | 1160 | ASN | | 8 | В | 1166 | HIS | | 8 | В | 1319 | GLN | | 8 | В | 1369 | ASN | | 8 | B C C C C C C C C C C C C C C C C C C C | 166 | ASN | | 8 | С | 214 | ASN | | 8 | С | 462 | GLN | | 8 | С | 484 | GLN | | 8 | С | 510 | ASN | | 8 | С | 534 | HIS | | 8 | С | 620 | ASN | | 8 | С | 695 | ASN
GLN | | 8 | С | 874 | | | 8 | С | 901 | HIS | | 8 | С | 914 | GLN | | 8 | С | 985 | ASN | | 8 | | 1029 | HIS | | 8 | С | 1079 | GLN | | 8 | С | 1184 | ASN | | 8 | С | 1264 | GLN | | 8 | С | 1319 | GLN | | 8 | C C C D | 1363 | GLN | | 8 | | 96 | GLN | | 8 | D | 111 | GLN | | 8 | D | 153 | ASN | | 8 | D | 214 | ASN | | 8 | D | 326 | ASN | | 8 | D | 346 | GLN | | 8 | D | 371 | ASN | | 8 | D | 510 | ASN | | 8 | D | 543 | GLN | 8 D 543 GLN Continued on next page... Continued from previous page | Mol Chain Res Type 8 D 560 ASN 8 D 571 HIS 8 D 620 ASN 8 D 673 HIS 8 D 794 ASN 8 D 795 ASN 8 D 1000 ASN 8 D 1061 ASN 8 D 1061 ASN 8 D 1079 GLN 8 D 1166 HIS 8 D 1350 HIS 8 D 1369 ASN 8 Y 153 ASN 8 Y 199 ASN 8 Y 199 ASN 8 Y 281 GLN 8 Y 534 HIS 8 Y 708 ASN 8 Y | Continued from previous page | | | | |---|------------------------------|---------------|------|------| | 8 D 571 HIS 8 D 620 ASN 8 D 673 HIS 8 D 794 ASN 8 D 795 ASN 8 D 919 ASN 8 D 1000 ASN 8 D 1061 ASN 8 D 1079 GLN 8 D 1166 HIS 8 D 1350 HIS 8 D 1369 ASN 8 Y 153 ASN 8 Y 153 ASN 8 Y 199 ASN 8 Y 281 GLN 8 Y 510 ASN 8 Y 534 HIS 8 Y 795 ASN 8 Y 795 ASN 8 Y <td< th=""><th></th><th>Chain</th><th>Res</th><th>Type</th></td<> | | Chain | Res | Type | | 8 D 620 ASN 8 D 673 HIS 8 D 794 ASN 8 D 795 ASN 8 D 919 ASN 8 D 1000 ASN 8 D 1061 ASN 8 D 1079 GLN 8 D 1120 ASN 8 D 1360 HIS 8 D 1369 ASN 8 D 1369 ASN 8 Y 153 ASN 8 Y 199 ASN 8 Y 199 ASN 8 Y 510 ASN 8 Y 534 HIS 8 Y 708 ASN 8 Y 795 ASN 8 Y 940 HIS 8 Y <t< td=""><td></td><td></td><td></td><td></td></t<> | | | | | | 8 D 673 HIS 8 D 794 ASN 8 D 795 ASN 8 D 919 ASN 8 D 1000 ASN 8 D 1061 ASN 8 D 1079 GLN 8 D 1120 ASN 8 D 1360 HIS 8 D 1369 ASN 8 Y 153 ASN 8 Y 153 ASN 8 Y 199 ASN 8 Y 199 ASN 8 Y 199 ASN 8 Y 534 HIS 8 Y 534 HIS 8 Y 795 ASN 8 Y 940 HIS 8 Y 940 HIS 8 Y <td< td=""><td></td><td></td><td></td><td></td></td<> | | | | | | 8 D 794 ASN 8 D 795 ASN 8 D 919 ASN 8 D 1000 ASN 8 D 1061 ASN 8 D 1079 GLN 8 D 1120 ASN 8 D 1350 HIS 8 D 1369 ASN 8 Y 153 ASN 8 Y 153 ASN 8 Y 153 ASN 8 Y 199 ASN 8 Y 199 ASN 8 Y 510 ASN 8 Y 534 HIS 8 Y 708 ASN 8 Y 795 ASN 8 Y 940 HIS 8 Y 1080 ASN 8 Y <t< td=""><td></td><td></td><td></td><td></td></t<> | | | | | | 8 D 795 ASN 8 D 919 ASN 8 D 1000 ASN 8 D 1061 ASN 8 D 1079 GLN 8 D 1120 ASN 8 D 1166 HIS 8 D 1369 ASN 8 Y 153 ASN 8 Y 153 ASN 8 Y 199 ASN 8 Y 199 ASN 8 Y 281 GLN 8 Y 510 ASN 8 Y 534 HIS 8 Y 708 ASN 8 Y 795 ASN 8 Y 940 HIS 8 Y 940 HIS 8 Y 1029 HIS 8 Y <t< td=""><td></td><td>D</td><td></td><td></td></t<> | | D | | | | 8 D 919 ASN 8 D 1000 ASN 8 D 1061 ASN 8 D 1079 GLN 8 D 1120 ASN 8 D 1350 HIS 8 D 1369 ASN 8 Y 153 ASN 8 Y 153 ASN 8 Y 153 ASN 8 Y 153 ASN 8 Y 199 ASN 8 Y 199 ASN 8 Y 510 ASN 8 Y 534 HIS 8 Y 708 ASN 8 Y 795 ASN 8 Y 940 HIS 8 Y 1029 HIS 8 Y 1080 ASN 8 Y < | 8 | | 794 | ASN | | 8 D 1000 ASN 8 D 1061 ASN 8 D 1079 GLN 8 D 1120 ASN 8 D 1166 HIS 8 D 1369 ASN 8 Y 153 ASN 8 Y 199 ASN 8 Y 510 ASN 8 Y 534 HIS 8 Y 708 ASN 8 Y 795 ASN 8 Y 940 HIS 8 Y 1029 HIS 8 Y 1080 ASN 8 Y 1080 ASN 8 Y | | | 795 | | | 8 D 1079 GLN 8 D 1120 ASN 8 D 1166 HIS 8 D 1350 HIS 8 D 1369 ASN 8 Y 153 ASN 8 Y 199 ASN 8 Y 199 ASN 8 Y 510 ASN 8 Y 510 ASN 8 Y 534 HIS 8 Y 708 ASN 8 Y 795 ASN 8 Y 940 HIS 8 Y 940 HIS 8 Y 981 HIS 8 Y 1029 HIS 8 Y 1080 ASN 8 Y 1264 GLN 8 Y 1350 HIS 8 Z | 8 | | 919 | | | 8 D 1079 GLN 8 D 1120 ASN 8 D 1166 HIS 8 D 1350 HIS 8 D 1369 ASN 8 Y 153 ASN 8 Y 199 ASN 8 Y 199 ASN 8 Y 510 ASN 8 Y 510 ASN 8 Y 534 HIS 8 Y 708 ASN 8 Y 795 ASN 8 Y 940 HIS 8 Y 940 HIS 8 Y 981 HIS 8 Y 1029 HIS 8 Y 1080 ASN 8 Y 1264 GLN 8 Y 1350 HIS 8 Z | 8 | | 1000 | ASN | | 8 D 1120 ASN 8 D 1166 HIS 8 D 1350 HIS 8 D 1369 ASN 8 Y 153 ASN 8 Y 199 ASN 8 Y 281 GLN 8 Y 510 ASN 8 Y 534 HIS 8 Y 708 ASN 8 Y 795 ASN 8 Y 940 HIS 8 Y 940 HIS 8 Y 981 HIS 8 Y 1029 HIS 8 Y 1080 ASN 8 Y 1264 GLN 8 Y 1350 HIS 8 Z 76 HIS 8 Z 181 GLN 8 Z 257 ASN 8 Z 388 ASN 8 | 8 | D | 1061 | | | 8 D 1120 ASN 8 D 1166 HIS 8 D 1350 HIS 8 D 1369 ASN 8 Y 153 ASN 8 Y 199 ASN 8 Y 281 GLN 8 Y 510 ASN 8 Y 534 HIS 8 Y 708 ASN 8 Y 795 ASN 8 Y 940 HIS 8 Y 940 HIS 8 Y 981 HIS 8 Y 1029 HIS 8 Y 1080 ASN 8 Y 1264 GLN 8 Y 1350 HIS 8 Z 76 HIS 8 Z 181 GLN 8 Z 257 ASN 8 Z 388 ASN 8 | 8 | D | 1079 | GLN | | 8 D 1350 HIS 8 D 1369 ASN 8 Y 153 ASN 8 Y 199 ASN 8 Y 281 GLN 8 Y 510 ASN 8 Y 534 HIS 8 Y 708 ASN 8 Y 795 ASN 8 Y 940 HIS 8 Y 940 HIS 8 Y 981 HIS 8 Y 1029 HIS 8 Y 1080 ASN 8 Y 1264 GLN 8 Y 1350 HIS 8 Z 76 HIS 8 Z 181 GLN 8 Z 257 ASN 8 Z 388 ASN 8 Z 388 ASN 8 Z 497 HIS 8 | 8 | D | 1120 | ASN | | 8 D 1369 ASN 8 Y 153 ASN 8 Y 199 ASN 8 Y 281 GLN 8 Y 510 ASN 8 Y 534 HIS 8 Y 708 ASN 8 Y 795 ASN 8 Y 914 GLN 8 Y 940 HIS 8 Y 981 HIS 8 Y 1029 HIS 8 Y 1080 ASN 8 Y 1160 ASN 8 Y 1264 GLN 8 Y 1350 HIS 8 Z 76 HIS 8 Z 181 GLN 8 Z 257 ASN 8 Z 388 ASN 8 Z | 8 | | 1166 | HIS | | 8 D 1369 ASN 8 Y 153 ASN 8 Y 199 ASN 8 Y 281 GLN 8 Y 510 ASN 8 Y 534 HIS 8 Y 708 ASN 8 Y 795 ASN 8 Y 914 GLN 8 Y 940 HIS 8 Y 981 HIS 8 Y 1029 HIS 8 Y 1080 ASN 8 Y 1160 ASN 8 Y 1264 GLN 8 Y 1350 HIS 8 Z 76 HIS 8 Z 181 GLN 8 Z 257 ASN 8 Z 388 ASN 8 Z | 8 | D | 1350 | HIS | | 8 Y 199 ASN 8 Y 281 GLN 8 Y 510 ASN 8 Y 534 HIS 8 Y 708 ASN 8 Y 795 ASN 8 Y 914 GLN 8 Y 940 HIS 8 Y 981 HIS 8 Y 1029 HIS 8 Y 1080 ASN 8 Y 1160 ASN 8 Y 1264 GLN 8 Y 1350 HIS 8 Z 76 HIS 8 Z 181 GLN 8 Z 257 ASN 8 Z 388 ASN 8 Z 497 HIS 8 Z 514 GLN | 8 | D | 1369 | ASN | | 8 Y 199 ASN 8 Y 281 GLN 8 Y 510 ASN 8 Y 534 HIS 8 Y 708 ASN 8 Y 795 ASN 8 Y 914 GLN 8 Y 940 HIS 8 Y 981 HIS 8 Y 1029 HIS 8 Y 1080 ASN 8 Y 1160 ASN 8 Y 1264 GLN 8 Y 1350 HIS 8 Z 76 HIS 8 Z 181 GLN 8 Z 257 ASN 8 Z 388 ASN 8 Z 497 HIS 8 Z 514 GLN | 8 | Y | 153 | ASN | | 8 Y 1029 HIS 8 Y 1080 ASN 8 Y 1160 ASN 8 Y 1264 GLN 8 Y 1350 HIS 8 Z 76 HIS 8 Z 181 GLN 8 Z 257 ASN 8 Z 388 ASN 8 Z 497 HIS 8 Z 514 GLN | 8 | Y | | ASN | | 8 Y 1029 HIS 8 Y 1080 ASN 8 Y 1160 ASN 8 Y 1264 GLN 8 Y 1350 HIS 8 Z 76 HIS 8 Z 181 GLN 8 Z 257 ASN 8 Z 388 ASN 8 Z 497 HIS 8 Z 514 GLN | | Y | 281 | | | 8 Y 1029 HIS 8 Y 1080 ASN 8 Y 1160 ASN 8 Y 1264 GLN 8 Y 1350 HIS 8 Z 76 HIS 8 Z 181 GLN 8 Z 257 ASN 8 Z 388 ASN 8 Z 497 HIS 8 Z 514 GLN | | Y | | | | 8 Y 1029 HIS 8 Y 1080 ASN 8 Y 1160 ASN 8 Y 1264 GLN 8 Y 1350 HIS 8 Z 76 HIS 8 Z 181 GLN 8 Z 257 ASN 8 Z 388 ASN 8 Z 497 HIS 8 Z 514 GLN | | Y | | | | 8 Y 1029 HIS 8 Y 1080 ASN 8 Y 1160 ASN 8 Y 1264 GLN 8 Y 1350 HIS 8 Z 76 HIS 8 Z 181 GLN 8 Z 257 ASN 8 Z 388 ASN 8 Z 497 HIS 8 Z 514 GLN | | Y | | | | 8 Y 1029 HIS 8 Y 1080 ASN 8 Y 1160 ASN 8 Y 1264 GLN 8 Y 1350 HIS 8 Z 76 HIS 8 Z 181 GLN 8 Z 257 ASN 8 Z 388 ASN 8 Z 497 HIS 8 Z 514 GLN | | Y | | | | 8 Y 1029 HIS 8 Y 1080 ASN 8 Y 1160 ASN 8 Y 1264 GLN 8 Y 1350 HIS 8 Z 76 HIS 8 Z 181 GLN 8 Z 257 ASN 8 Z 388 ASN 8 Z 497 HIS 8 Z 514 GLN | | Y | | | | 8 Y 1029 HIS 8 Y 1080 ASN 8 Y 1160 ASN 8 Y 1264 GLN 8 Y 1350 HIS 8 Z 76 HIS 8 Z 181 GLN 8 Z 257 ASN 8 Z 388 ASN 8 Z 497 HIS 8 Z 514 GLN | | Y | | | | 8 Y 1029 HIS 8 Y 1080 ASN 8 Y 1160 ASN 8 Y 1264 GLN 8 Y 1350 HIS 8 Z 76 HIS 8 Z 181 GLN 8 Z 257 ASN 8 Z 388 ASN 8 Z 497 HIS 8 Z 514 GLN | | Y | | | | 8 Y 1264 GLN 8 Y 1350 HIS 8 Z 76 HIS 8 Z 181 GLN 8 Z 257 ASN 8 Z 388 ASN 8 Z 497 HIS 8 Z 514 GLN | | Y | | | | 8 Y 1264 GLN 8 Y 1350 HIS 8 Z 76 HIS 8 Z 181 GLN 8 Z 257 ASN 8 Z 388 ASN 8 Z 497 HIS 8 Z 514 GLN | | Y | | | | 8 Y 1264 GLN 8 Y 1350 HIS 8 Z 76 HIS 8 Z 181 GLN 8 Z 257 ASN 8 Z 388 ASN 8 Z 497 HIS 8 Z 514 GLN | | Y | | | | 8 Y 1350 HIS 8 Z 76 HIS 8 Z 181 GLN 8 Z 257 ASN 8 Z 388 ASN 8 Z 497 HIS 8 Z 514 GLN | | Y | | | | 8 Z 76 HIS
8 Z 181 GLN
8 Z 257 ASN
8 Z 388 ASN
8 Z 497 HIS
8 Z 514 GLN | | Y | | | | 8 Z 181 GLN 8 Z 257 ASN 8 Z 388 ASN 8 Z 497 HIS 8 Z 514 GLN | | | | | | 8 Z 257 ASN
8 Z 388 ASN
8 Z 497 HIS
8 Z 514 GLN | | | | | | 8 Z 514 GLN | | $\frac{Z}{Z}$ | | | | 8 Z 514 GLN | | $\frac{2}{7}$ | | | | 8 Z 514 GLN | | $\frac{Z}{Z}$ | | | | 8 Z 543 GLN | | <u>Z</u> | | | | | | 7 | | | | 8 Z 660 HIS | | <u>Z</u> | | | | 8 Z 697 GLN | | <u> </u> | | | | 8 Z 697 GLN 8 Z 901 HIS 8 Z 919 ASN | | 7. | | | | 8 Z 919 ASN | | <u> </u> | | | | 8 Z 984 HIS | 8 | <u> </u> | | | | 8 Z 1060 ASN | | 7. | | | | Continued on next page | U | | | | Continued from previous page... | Mol | Chain | Res | Type | |-----|-------|------|------| | 8 | Z | 1082 | ASN | | 8 | Z | 1223 | GLN | | 8 | Z | 1230 | ASN | | 8 | Z | 1264 | GLN | | 8 | Z | 1313 | ASN | | 8 | Z | 1363 | GLN | | 8 | Z | 1364 | GLN | #### 5.3.3 RNA (i) There are no RNA molecules in this entry. ### 5.4 Non-standard residues in protein, DNA, RNA chains (i) There are no non-standard protein/DNA/RNA residues in this entry. ## 5.5 Carbohydrates (i) There are no monosaccharides in this entry. ## 5.6 Ligand geometry (i) There are no ligands in this entry. ## 5.7 Other polymers (i) There are no such residues in this entry. ## 5.8 Polymer linkage issues (i) There are no chain breaks in this entry. ## 6 Map visualisation (i) This section contains visualisations of the EMDB entry EMD-31298. These allow visual inspection of the internal detail of the map and identification of artifacts. No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown. ### 6.1 Orthogonal projections (i) #### 6.1.1 Primary map The images above show the map projected in three orthogonal directions. ### 6.2 Central slices (i) #### 6.2.1 Primary map X Index: 128 Y Index: 128 Z Index: 128 The images above show central slices of the map in three orthogonal directions. ## 6.3 Largest variance slices (i) #### 6.3.1 Primary map X Index: 116 Y Index: 97 The images above show the largest variance slices of the map in three orthogonal directions. ## 6.4 Orthogonal surface views (i) #### 6.4.1 Primary map The images above show the 3D surface view of the map at the recommended contour level 0.015. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided. ## 6.5 Mask visualisation (i) This section was not generated. No masks/segmentation were deposited. ## 7 Map analysis (i) This section contains the results of statistical analysis of the map. ## 7.1 Map-value distribution (i) The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked. ### 7.2 Volume estimate (i) The volume at the recommended contour level is $6849~\mathrm{nm}^3$; this corresponds to an approximate mass of $6187~\mathrm{kDa}$. The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level. ## 7.3 Rotationally averaged power spectrum (i) ^{*}Reported resolution corresponds to spatial frequency of 0.250 $\rm \mathring{A}^{-1}$ ## 8 Fourier-Shell correlation (i) This section was not generated. No FSC curve or half-maps provided. ## 9 Map-model fit (i) This section contains information regarding the fit between EMDB map EMD-31298 and PDB model 7ETJ. Per-residue inclusion information can be found in section 3 on page 6. ### 9.1 Map-model overlays #### 9.1.1 Map-model overlay (i) ### 9.1.2 Map-model assembly overlay (i) The images above show the 3D surface view of the map at the recommended contour level 0.015 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map. ### 9.2 Q-score mapped to coordinate model (i) The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries. ## 9.3 Atom inclusion mapped to coordinate model (i) The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.015). ## 9.4 Atom inclusion (i) At the recommended contour level, 85% of all backbone atoms, 74% of all non-hydrogen atoms, are inside the map. ## 9.5 Map-model fit summary (i) The table lists the average atom inclusion at the recommended contour level (0.015) and Q-score for the entire model and for each chain. | Chain | Atom inclusion | Q-score | |-------|----------------|---------| | All | 0.7435 | 0.4060 | | 1 | 0.5073 | 0.3130 | | В | 0.7709 | 0.4180 | | С | 0.7895 | 0.4290 | | D | 0.7805 | 0.4160 | | Н | 0.4132 | 0.2030 | | I | 0.6933 | 0.3800 | | M | 0.7212 | 0.4020 | | N | 0.6100 | 0.3640 | | О | 0.5018 | 0.2500 | | Р | 0.5329 | 0.2810 | | R | 0.5060 | 0.3210 | | S | 0.5964 | 0.3500 | | Т | 0.3032 | 0.2460 | | Y | 0.7567 | 0.4060 | | Z | 0.7865 | 0.4280 | | a | 0.7768 | 0.4250 | | g | 0.5517 | 0.3090 | | h | 0.6854 | 0.3930 | | i | 0.3855 | 0.2820 | | j | 0.4478 | 0.3160 | | m | 0.7788 | 0.4300 | | n | 0.7739 | 0.4140 | | 0 | 0.7692 | 0.4100 |