

# Full wwPDB X-ray Structure Validation Report (i)

### Oct 11, 2023 – 03:08 PM EDT

| PDB ID       | : | 8ERB                                                            |
|--------------|---|-----------------------------------------------------------------|
| Title        | : | Crystal structure of Fub7 in complex with vinylglycine ketimine |
| Authors      | : | Hai, Y.                                                         |
| Deposited on | : | 2022-10-11                                                      |
| Resolution   | : | 1.98 Å(reported)                                                |

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| MolProbity                     | : | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as541be (2020)                                 |
| Xtriage (Phenix)               | : | 1.13                                                               |
| $\mathrm{EDS}$                 | : | 2.35.1                                                             |
| buster-report                  | : | 1.1.7(2018)                                                        |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| Refmac                         | : | 5.8.0158                                                           |
| CCP4                           | : | 7.0.044 (Gargrove)                                                 |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.35.1                                                             |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $X\text{-}RAY \, DIFFRACTION$ 

The reported resolution of this entry is 1.98 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | $egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$ | ${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$ |
|-----------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|
| R <sub>free</sub>     | 130704                                                               | 11647 (2.00-1.96)                                                         |
| Clashscore            | 141614                                                               | 1014 (1.98-1.98)                                                          |
| Ramachandran outliers | 138981                                                               | 1006 (1.98-1.98)                                                          |
| Sidechain outliers    | 138945                                                               | 1006 (1.98-1.98)                                                          |
| RSRZ outliers         | 127900                                                               | 11410 (2.00-1.96)                                                         |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain  |     |    |
|-----|-------|--------|-------------------|-----|----|
| 1   | А     | 433    | 2%<br><b>88%</b>  | 11% | ·  |
| 1   | В     | 433    | 2%<br>90%         | 9%  |    |
| 1   | С     | 433    | 2%<br><b>8</b> 9% | 9%  |    |
| 1   | D     | 433    | 2%<br>90%         | 8%  | ·  |
| 1   | Е     | 433    | 2%<br>85%         | 13% | •• |



| Conti | nueu fron | i previous        | paye             |        |
|-------|-----------|-------------------|------------------|--------|
| Mol   | Chain     | $\mathbf{Length}$ | Quality of chain |        |
| 1     | Б         | 400               | 2%               |        |
|       | F'        | 433               | 86%              | 12% •  |
| 1     | C         | 499               | 2%               |        |
|       | G         | 433               | 91%              | 8% •   |
| 1     | TT        | 499               | 2%               |        |
|       | Н         | 433               | 89%              | 9% ••  |
| 1     | т         | 499               | 3%<br>           |        |
|       | 1         | 433               | 91%              | 7% •   |
| 1     | т         | 499               | 2%               |        |
| 1     | J         | 433               | 91%              | 8% •   |
| 1     | TZ        | 499               | 2%               |        |
| 1     | K         | 433               | 87%              | 11% •• |
| 1     | т         | 499               | 2%               |        |
|       | L         | 433               | 91%              | 8% •   |
| 1     | м         | 400               | 2%               |        |
| 1     | M         | 433               | 89%              | 9% •   |
| 1     | ЪT        | 499               | .%               |        |
|       | N         | 433               | 88%              | 9% ••  |
| 1     |           | 499               | 2%               | _      |
|       | Р         | 433               | 88%              | 10% •• |
| 1     |           | 499               | 2%               | _      |
| 1     | Q         | 433               | 89%              | 9% ••  |



# 2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 55304 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain                                  | Residues |       | Ate          | oms |     |              | ZeroOcc | AltConf | Trace |
|-----|----------------------------------------|----------|-------|--------------|-----|-----|--------------|---------|---------|-------|
| 1   | А                                      | 428      | Total | С            | Ν   | 0   | $\mathbf{S}$ | 0       | 1       | 0     |
|     |                                        | 120      | 3300  | 2096         | 570 | 627 | 7            | Ŭ       | Ŧ       |       |
| 1   | В                                      | 427      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 1       | 0     |
|     | D                                      | 121      | 3300  | 2099         | 568 | 626 | 7            | Ŭ       | T       |       |
| 1   | С                                      | 427      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 1       | 0     |
| -   |                                        |          | 3293  | 2091         | 569 | 626 | 7            | Ŭ       | -       | Ŭ     |
| 1   | D                                      | 428      | Total | С            | Ν   | Ο   | S            | 0       | 0       | 0     |
|     |                                        | 120      | 3297  | 2094         | 568 | 628 | 7            | Ŭ       |         | Ŭ     |
| 1   | G                                      | 427      | Total | С            | Ν   | Ο   | S            | 0       | 1       | 0     |
| -   | ~                                      |          | 3296  | 2093         | 568 | 628 | 7            | Ŭ       | -       | Ŭ     |
| 1   | Н                                      | 426      | Total | С            | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
|     |                                        | 120      | 3281  | 2084         | 565 | 625 | 7            | Ŭ       |         |       |
| 1   | F                                      | 425      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 1       | 0     |
| -   | 1                                      | 120      | 3278  | 2083         | 564 | 624 | 7            | 0       | 1       | 0     |
| 1   | Т                                      | 428      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
|     | 1                                      | 120      | 3297  | 2094         | 568 | 628 | 7            | 0       | 0       | 0     |
| 1   | Р                                      | 428      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 1       | 0     |
|     | 1                                      | 120      | 3305  | 2099         | 571 | 628 | 7            |         | L       | 0     |
| 1   | I                                      | 427      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
|     | 0                                      | 121      | 3288  | 2089         | 566 | 626 | 7            | Ŭ       | 0       | 0     |
| 1   | М                                      | 428      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
| -   | 111                                    | 120      | 3292  | 2091         | 567 | 627 | 7            | Ŭ       | 0       | 0     |
| 1   | 0                                      | 429      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
|     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 120      | 3301  | 2096         | 569 | 629 | 7            | 0       | 0       | 0     |
| 1   | Ν                                      | 422      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 1       | 0     |
|     | 11                                     | 122      | 3263  | 2074         | 563 | 619 | 7            | 0       | I       | 0     |
| 1   | E                                      | 497      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 1       | 0     |
|     |                                        | 121      | 3296  | 2094         | 569 | 626 | 7            | 0       | I       | 0     |
| 1   | T.                                     | 428      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
|     |                                        | 420      | 3297  | 2094         | 568 | 628 | 7            | 0       | U       | 0     |
| 1   | K                                      | 420      | Total | $\mathbf{C}$ | Ν   | 0   | S            | 0       | Ο       | 0     |
|     | 17                                     | 723      | 3301  | 2096         | 569 | 629 | 7            |         | U       | 0     |

• Molecule 1 is a protein called Sulfhydrylase FUB7.



• Molecule 2 is (2E)-2-[({3-hydroxy-2-methyl-5-[(phosphonooxy)methyl]pyridin-4-yl}met hyl)imino]but-3-enoic acid (three-letter code: WBJ) (formula:  $C_{12}H_{15}N_2O_7P$ ) (labeled as "Ligand of Interest" by depositor).



| Mol | Chain  | Residues |       | Ato          | oms |                |   | ZeroOcc | AltConf |
|-----|--------|----------|-------|--------------|-----|----------------|---|---------|---------|
| 0   | ٨      | 1        | Total | С            | Ν   | 0              | Р | 0       | 0       |
|     | A      | 1        | 22    | 12           | 2   | $\overline{7}$ | 1 | 0       | 0       |
| 0   | р      | 1        | Total | С            | Ν   | Ο              | Р | 0       | 0       |
|     | В      | 1        | 22    | 12           | 2   | 7              | 1 | 0       | 0       |
| 0   | С      | 1        | Total | С            | Ν   | Ο              | Р | 0       | 0       |
|     | U      | 1        | 22    | 12           | 2   | 7              | 1 | 0       | 0       |
| 0   | D      | 1        | Total | С            | Ν   | Ο              | Р | 0       | 0       |
|     | D      | 1        | 22    | 12           | 2   | 7              | 1 | 0       | 0       |
| 0   | С      | 1        | Total | С            | Ν   | Ο              | Р | 0       | 0       |
|     | G      | 1        | 22    | 12           | 2   | $\overline{7}$ | 1 | 0       | 0       |
| 0   | ц      | 1        | Total | С            | Ν   | Ο              | Р | 0       | 0       |
|     | 11     | 1        | 22    | 12           | 2   | 7              | 1 | 0       | 0       |
| 0   | Б      | 1        | Total | С            | Ν   | Ο              | Р | 0       | 0       |
|     | Г      | 1        | 22    | 12           | 2   | 7              | 1 | 0       | 0       |
| 9   | Т      | 1        | Total | С            | Ν   | Ο              | Р | 0       | 0       |
| 2   | I      | T        | 22    | 12           | 2   | 7              | 1 | 0       | 0       |
| 2   | р      | 1        | Total | С            | Ν   | Ο              | Р | 0       | 0       |
| 2   | I      | T        | 22    | 12           | 2   | 7              | 1 | 0       | 0       |
| 2   | T      | 1        | Total | С            | Ν   | Ο              | Р | 0       | 0       |
| 2   | 5      | 1        | 22    | 12           | 2   | 7              | 1 | 0       | 0       |
| 2   | М      | 1        | Total | С            | N   | O              | Р | 0       | 0       |
| 2   | 101    | T        | 22    | 12           | 2   | 7              | 1 | 0       | 0       |
| 2   | 0      | 1        | Total | $\mathbf{C}$ | Ν   | Ο              | Р | 0       | 0       |
|     | V<br>V |          | 22    | 12           | 2   | $\overline{7}$ | 1 | U       |         |



Continued from previous page...

| Mol | Chain | Residues |       | Ato | oms |   |   | ZeroOcc | AltConf |
|-----|-------|----------|-------|-----|-----|---|---|---------|---------|
| 2   | Ν     | 1        | Total | С   | Ν   | Ο | Р | 0       | 0       |
|     | 11    | I        | 22    | 12  | 2   | 7 | 1 | 0       | 0       |
| 2   | F     | 1        | Total | С   | Ν   | 0 | Р | 0       | 0       |
|     | Ľ     | 1        | 22    | 12  | 2   | 7 | 1 | 0       | 0       |
| 0   | т     | т 1      | Total | С   | Ν   | 0 | Р | 0       | 0       |
|     |       | L        | 22    | 12  | 2   | 7 | 1 | 0       | 0       |
|     | K     | 1        | Total | С   | Ν   | 0 | Р | 0       | 0       |
|     | Γ     | T        | 22    | 12  | 2   | 7 | 1 | 0       | 0       |

• Molecule 3 is water.

| Mol | Chain | Residues | Atoms                                     | ZeroOcc | AltConf |
|-----|-------|----------|-------------------------------------------|---------|---------|
| 3   | А     | 224      | Total         O           224         224 | 0       | 0       |
| 3   | В     | 142      | Total         O           142         142 | 0       | 0       |
| 3   | С     | 206      | Total         O           206         206 | 0       | 0       |
| 3   | D     | 179      | Total O<br>179 179                        | 0       | 0       |
| 3   | G     | 144      | Total O<br>144 144                        | 0       | 0       |
| 3   | Н     | 104      | Total O<br>104 104                        | 0       | 0       |
| 3   | F     | 132      | Total         O           132         132 | 0       | 0       |
| 3   | Ι     | 121      | Total         O           121         121 | 0       | 0       |
| 3   | Р     | 119      | Total O<br>119 119                        | 0       | 0       |
| 3   | J     | 108      | Total O<br>108 108                        | 0       | 0       |
| 3   | М     | 148      | Total O<br>148 148                        | 0       | 0       |
| 3   | Q     | 151      | Total O<br>151 151                        | 0       | 0       |
| 3   | Ν     | 125      | Total         O           125         125 | 0       | 0       |
| 3   | Е     | 137      | Total O<br>137 137                        | 0       | 0       |
| 3   | L     | 120      | Total         O           120         120 | 0       | 0       |



| Mol | Chain | Residues | Atoms              | ZeroOcc | AltConf |
|-----|-------|----------|--------------------|---------|---------|
| 3   | K     | 107      | Total O<br>107 107 | 0       | 0       |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.



• Molecule 1: Sulfhydrylase FUB7



### 



• Molecule 1: Sulfhydrylase FUB7



GLY SER







# 4 Data and refinement statistics (i)

| Property                                          | Value                                           | Source    |
|---------------------------------------------------|-------------------------------------------------|-----------|
| Space group                                       | P 1 21 1                                        | Depositor |
| Cell constants                                    | 146.70Å 193.36Å 149.91Å                         | Depositor |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$            | $90.00^{\circ}$ $99.60^{\circ}$ $90.00^{\circ}$ | Depositor |
| $\mathbf{P}_{\text{acclution}}(\hat{\mathbf{A}})$ | 47.75 - 1.98                                    | Depositor |
| Resolution (A)                                    | 48.27 - 1.98                                    | EDS       |
| % Data completeness                               | 98.8 (47.75-1.98)                               | Depositor |
| (in resolution range)                             | 99.2 (48.27-1.98)                               | EDS       |
| R <sub>merge</sub>                                | (Not available)                                 | Depositor |
| R <sub>sym</sub>                                  | (Not available)                                 | Depositor |
| $< I/\sigma(I) > 1$                               | $2.65 (at 1.98 \text{\AA})$                     | Xtriage   |
| Refinement program                                | PHENIX 1.18.2_3874                              | Depositor |
| D D.                                              | 0.200 , $0.226$                                 | Depositor |
| $\Pi, \Pi_{free}$                                 | 0.200 , $0.225$                                 | DCC       |
| $R_{free}$ test set                               | 28351 reflections $(5.03%)$                     | wwPDB-VP  |
| Wilson B-factor $(Å^2)$                           | 18.7                                            | Xtriage   |
| Anisotropy                                        | 0.294                                           | Xtriage   |
| Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$       | 0.39 , $47.5$                                   | EDS       |
| L-test for twinning <sup>2</sup>                  | $< L >=0.50, < L^2>=0.33$                       | Xtriage   |
| Estimated twinning fraction                       | 0.006 for l,-k,h                                | Xtriage   |
| $F_o, F_c$ correlation                            | 0.94                                            | EDS       |
| Total number of atoms                             | 55304                                           | wwPDB-VP  |
| Average B, all atoms $(Å^2)$                      | 22.0                                            | wwPDB-VP  |

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 57.22 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 2.4422e-05. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

<sup>&</sup>lt;sup>2</sup>Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

# 5 Model quality (i)

## 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: WBJ

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal  | Chain | Bo   | ond lengths    | Bond angles |                 |  |  |
|------|-------|------|----------------|-------------|-----------------|--|--|
| WIOI |       | RMSZ | # Z  > 5       | RMSZ        | # Z  > 5        |  |  |
| 1    | А     | 0.47 | 0/3383         | 0.71        | 6/4595~(0.1%)   |  |  |
| 1    | В     | 0.46 | 0/3386         | 0.66        | 0/4597          |  |  |
| 1    | С     | 0.49 | 0/3376         | 0.67        | 0/4585          |  |  |
| 1    | D     | 0.53 | 2/3377~(0.1%)  | 0.98        | 8/4587~(0.2%)   |  |  |
| 1    | Е     | 0.50 | 1/3379~(0.0%)  | 1.21        | 6/4590~(0.1%)   |  |  |
| 1    | F     | 0.49 | 0/3360         | 0.68        | 3/4563~(0.1%)   |  |  |
| 1    | G     | 0.48 | 1/3376~(0.0%)  | 0.67        | 2/4586~(0.0%)   |  |  |
| 1    | Н     | 0.45 | 0/3361         | 0.83        | 4/4565~(0.1%)   |  |  |
| 1    | Ι     | 0.44 | 0/3377         | 0.72        | 7/4587~(0.2%)   |  |  |
| 1    | J     | 0.45 | 0/3368         | 0.67        | 1/4575~(0.0%)   |  |  |
| 1    | K     | 0.47 | 1/3381~(0.0%)  | 0.77        | 6/4592~(0.1%)   |  |  |
| 1    | L     | 0.48 | 1/3377~(0.0%)  | 0.67        | 4/4587~(0.1%)   |  |  |
| 1    | М     | 0.50 | 0/3372         | 0.73        | 6/4580~(0.1%)   |  |  |
| 1    | Ν     | 0.46 | 0/3345         | 0.67        | 3/4543~(0.1%)   |  |  |
| 1    | Р     | 0.47 | 0/3388         | 0.75        | 5/4602~(0.1%)   |  |  |
| 1    | Q     | 0.57 | 3/3381~(0.1%)  | 1.00        | 14/4592~(0.3%)  |  |  |
| All  | All   | 0.48 | 9/53987~(0.0%) | 0.79        | 75/73326~(0.1%) |  |  |

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

| Mol | Chain | #Chirality outliers | #Planarity outliers |
|-----|-------|---------------------|---------------------|
| 1   | F     | 0                   | 1                   |
| 1   | Н     | 0                   | 1                   |
| 1   | Κ     | 0                   | 2                   |
| 1   | М     | 0                   | 1                   |
| 1   | Ν     | 0                   | 1                   |
| 1   | Р     | 0                   | 1                   |
| 1   | Q     | 0                   | 2                   |



| Mol | Chain | #Chirality outliers | #Planarity outliers |
|-----|-------|---------------------|---------------------|
| All | All   | 0                   | 9                   |

All (9) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms  | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|--------|-------|-------------|----------|
| 1   | Q     | 306 | GLU  | CD-OE2 | 12.22 | 1.39        | 1.25     |
| 1   | Е     | 237 | ASP  | CG-OD2 | 11.35 | 1.51        | 1.25     |
| 1   | D     | 327 | GLU  | CB-CG  | 7.84  | 1.67        | 1.52     |
| 1   | Q     | 196 | ARG  | CG-CD  | -6.90 | 1.34        | 1.51     |
| 1   | Q     | 306 | GLU  | CD-OE1 | -6.34 | 1.18        | 1.25     |
| 1   | G     | 429 | LYS  | CG-CD  | 6.24  | 1.73        | 1.52     |
| 1   | Κ     | 132 | LYS  | CE-NZ  | -6.06 | 1.33        | 1.49     |
| 1   | D     | 234 | LYS  | CE-NZ  | 5.65  | 1.63        | 1.49     |
| 1   | L     | 346 | MET  | CG-SD  | -5.33 | 1.67        | 1.81     |

All (75) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms      | Z      | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|--------|------------------|---------------|
| 1   | Е     | 237 | ASP  | CB-CG-OD1  | 45.50  | 159.25           | 118.30        |
| 1   | Е     | 237 | ASP  | CB-CG-OD2  | -43.99 | 78.71            | 118.30        |
| 1   | D     | 327 | GLU  | OE1-CD-OE2 | -33.59 | 83.00            | 123.30        |
| 1   | Н     | 21  | ASP  | CB-CG-OD2  | -25.77 | 95.11            | 118.30        |
| 1   | Q     | 306 | GLU  | OE1-CD-OE2 | -23.51 | 95.08            | 123.30        |
| 1   | D     | 327 | GLU  | CG-CD-OE1  | 23.00  | 164.31           | 118.30        |
| 1   | Е     | 237 | ASP  | OD1-CG-OD2 | -22.47 | 80.60            | 123.30        |
| 1   | Q     | 21  | ASP  | CB-CG-OD2  | -21.43 | 99.02            | 118.30        |
| 1   | Н     | 21  | ASP  | CB-CG-OD1  | 21.36  | 137.52           | 118.30        |
| 1   | Q     | 21  | ASP  | CB-CG-OD1  | 20.08  | 136.37           | 118.30        |
| 1   | D     | 327 | GLU  | CG-CD-OE2  | -18.40 | 81.50            | 118.30        |
| 1   | Q     | 306 | GLU  | CG-CD-OE1  | 16.92  | 152.14           | 118.30        |
| 1   | Р     | 135 | ARG  | NE-CZ-NH2  | -16.03 | 112.29           | 120.30        |
| 1   | К     | 21  | ASP  | CB-CG-OD2  | -15.58 | 104.28           | 118.30        |
| 1   | K     | 21  | ASP  | CB-CG-OD1  | 15.09  | 131.88           | 118.30        |
| 1   | Q     | 306 | GLU  | CG-CD-OE2  | -14.45 | 89.41            | 118.30        |
| 1   | Q     | 196 | ARG  | NE-CZ-NH1  | -14.01 | 113.29           | 120.30        |
| 1   | Ι     | 126 | ARG  | NE-CZ-NH1  | -9.45  | 115.58           | 120.30        |
| 1   | Р     | 135 | ARG  | CD-NE-CZ   | 9.29   | 136.60           | 123.60        |
| 1   | Р     | 135 | ARG  | CB-CG-CD   | -8.35  | 89.89            | 111.60        |
| 1   | А     | 158 | MET  | CA-CB-CG   | 8.31   | 127.43           | 113.30        |
| 1   | N     | 252 | LEU  | CB-CG-CD2  | 8.30   | 125.11           | 111.00        |
| 1   | Ι     | 54  | LEU  | CB-CG-CD1  | 8.22   | 124.98           | 111.00        |
| 1   | Ι     | 126 | ARG  | NE-CZ-NH2  | 7.77   | 124.19           | 120.30        |



| Conti | Continued from previous page |     |      |            |       |                  |               |  |  |
|-------|------------------------------|-----|------|------------|-------|------------------|---------------|--|--|
| Mol   | Chain                        | Res | Type | Atoms      | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |  |  |
| 1     | Р                            | 135 | ARG  | NE-CZ-NH1  | 7.36  | 123.98           | 120.30        |  |  |
| 1     | М                            | 318 | VAL  | CG1-CB-CG2 | 7.34  | 122.65           | 110.90        |  |  |
| 1     | D                            | 195 | ILE  | CG1-CB-CG2 | -7.10 | 95.78            | 111.40        |  |  |
| 1     | Q                            | 196 | ARG  | CD-NE-CZ   | -7.09 | 113.68           | 123.60        |  |  |
| 1     | Е                            | 360 | LYS  | CD-CE-NZ   | -7.01 | 95.58            | 111.70        |  |  |
| 1     | J                            | 61  | LEU  | CB-CG-CD2  | -6.88 | 99.30            | 111.00        |  |  |
| 1     | F                            | 360 | LYS  | CD-CE-NZ   | -6.87 | 95.90            | 111.70        |  |  |
| 1     | Н                            | 21  | ASP  | OD1-CG-OD2 | -6.84 | 110.31           | 123.30        |  |  |
| 1     | L                            | 346 | MET  | CA-CB-CG   | -6.81 | 101.72           | 113.30        |  |  |
| 1     | Q                            | 398 | LEU  | CB-CG-CD1  | 6.72  | 122.43           | 111.00        |  |  |
| 1     | G                            | 252 | LEU  | CA-CB-CG   | 6.71  | 130.74           | 115.30        |  |  |
| 1     | Q                            | 195 | ILE  | CG1-CB-CG2 | -6.69 | 96.69            | 111.40        |  |  |
| 1     | D                            | 336 | LYS  | CD-CE-NZ   | -6.64 | 96.42            | 111.70        |  |  |
| 1     | F                            | 252 | LEU  | CA-CB-CG   | 6.43  | 130.09           | 115.30        |  |  |
| 1     | А                            | 398 | LEU  | CB-CG-CD1  | -6.38 | 100.16           | 111.00        |  |  |
| 1     | F                            | 429 | LYS  | CB-CG-CD   | -6.29 | 95.25            | 111.60        |  |  |
| 1     | Q                            | 354 | ASP  | CB-CG-OD2  | -6.23 | 112.69           | 118.30        |  |  |
| 1     | Е                            | 339 | LEU  | CB-CG-CD2  | -6.13 | 100.58           | 111.00        |  |  |
| 1     | Ι                            | 54  | LEU  | CB-CG-CD2  | 5.99  | 121.18           | 111.00        |  |  |
| 1     | Q                            | 252 | LEU  | CA-CB-CG   | 5.94  | 128.97           | 115.30        |  |  |
| 1     | D                            | 54  | LEU  | CB-CG-CD2  | -5.93 | 100.92           | 111.00        |  |  |
| 1     | N                            | 195 | ILE  | CG1-CB-CG2 | -5.93 | 98.36            | 111.40        |  |  |
| 1     | K                            | 306 | GLU  | CA-CB-CG   | 5.89  | 126.35           | 113.40        |  |  |
| 1     | А                            | 428 | GLN  | CA-CB-CG   | 5.81  | 126.18           | 113.40        |  |  |
| 1     | D                            | 234 | LYS  | CD-CE-NZ   | 5.80  | 125.03           | 111.70        |  |  |
| 1     | Q                            | 21  | ASP  | OD1-CG-OD2 | -5.74 | 112.40           | 123.30        |  |  |
| 1     | L                            | 322 | LEU  | CA-CB-CG   | 5.63  | 128.25           | 115.30        |  |  |
| 1     | Ι                            | 252 | LEU  | CA-CB-CG   | 5.61  | 128.19           | 115.30        |  |  |
| 1     | Н                            | 318 | VAL  | CG1-CB-CG2 | -5.58 | 101.97           | 110.90        |  |  |
| 1     | М                            | 428 | GLN  | CA-CB-CG   | -5.54 | 101.20           | 113.40        |  |  |
| 1     | K                            | 196 | ARG  | CD-NE-CZ   | -5.54 | 115.85           | 123.60        |  |  |
| 1     | А                            | 310 | LYS  | CD-CE-NZ   | 5.46  | 124.26           | 111.70        |  |  |
| 1     | M                            | 318 | VAL  | CA-CB-CG1  | 5.41  | 119.02           | 110.90        |  |  |
| 1     | Ι                            | 322 | LEU  | CB-CG-CD1  | -5.40 | 101.82           | 111.00        |  |  |
| 1     | K                            | 408 | ARG  | NE-CZ-NH1  | 5.38  | 122.99           | 120.30        |  |  |
| 1     | Е                            | 252 | LEU  | CA-CB-CG   | 5.37  | 127.65           | 115.30        |  |  |
| 1     | Q                            | 339 | LEU  | CB-CG-CD2  | -5.35 | 101.91           | 111.00        |  |  |
| 1     | D                            | 339 | LEU  | CB-CG-CD1  | 5.32  | 120.05           | 111.00        |  |  |
| 1     | Ι                            | 196 | ARG  | NE-CZ-NH1  | 5.32  | 122.96           | 120.30        |  |  |
| 1     | N                            | 341 | ARG  | CG-CD-NE   | 5.24  | 122.80           | 111.80        |  |  |
| 1     | А                            | 130 | LYS  | CD-CE-NZ   | 5.21  | 123.69           | 111.70        |  |  |
| 1     | М                            | 126 | ARG  | NE-CZ-NH1  | -5.20 | 117.70           | 120.30        |  |  |



| Mol | Chain | Res | Type | Atoms      | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|-------|------------------|---------------|
| 1   | Q     | 196 | ARG  | NE-CZ-NH2  | 5.19  | 122.90           | 120.30        |
| 1   | Κ     | 306 | GLU  | OE1-CD-OE2 | -5.18 | 117.09           | 123.30        |
| 1   | М     | 163 | TYR  | CB-CG-CD2  | -5.16 | 117.90           | 121.00        |
| 1   | L     | 252 | LEU  | CA-CB-CG   | 5.14  | 127.11           | 115.30        |
| 1   | Р     | 130 | LYS  | CB-CG-CD   | -5.10 | 98.34            | 111.60        |
| 1   | G     | 322 | LEU  | CA-CB-CG   | 5.09  | 127.01           | 115.30        |
| 1   | М     | 251 | GLY  | C-N-CA     | -5.06 | 109.05           | 121.70        |
| 1   | L     | 196 | ARG  | NE-CZ-NH2  | 5.03  | 122.82           | 120.30        |
| 1   | А     | 173 | LYS  | CD-CE-NZ   | -5.02 | 100.16           | 111.70        |

There are no chirality outliers.

All (9) planarity outliers are listed below:

| Mol | Chain | Res | Type | Group     |
|-----|-------|-----|------|-----------|
| 1   | F     | 207 | HIS  | Peptide   |
| 1   | Н     | 21  | ASP  | Sidechain |
| 1   | Κ     | 21  | ASP  | Sidechain |
| 1   | Κ     | 306 | GLU  | Sidechain |
| 1   | М     | 163 | TYR  | Sidechain |
| 1   | Ν     | 207 | HIS  | Peptide   |
| 1   | Р     | 135 | ARG  | Sidechain |
| 1   | Q     | 21  | ASP  | Sidechain |
| 1   | Q     | 306 | GLU  | Sidechain |

## 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | А     | 3300  | 0        | 3228     | 33      | 0            |
| 1   | В     | 3300  | 0        | 3238     | 32      | 0            |
| 1   | С     | 3293  | 0        | 3219     | 29      | 0            |
| 1   | D     | 3297  | 0        | 3220     | 19      | 0            |
| 1   | Е     | 3296  | 0        | 3225     | 39      | 0            |
| 1   | F     | 3278  | 0        | 3202     | 30      | 0            |
| 1   | G     | 3296  | 0        | 3217     | 20      | 0            |
| 1   | Н     | 3281  | 0        | 3203     | 32      | 0            |
| 1   | Ι     | 3297  | 0        | 3220     | 23      | 0            |



| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | J     | 3288  | 0        | 3212     | 26      | 0            |
| 1   | K     | 3301  | 0        | 3223     | 34      | 0            |
| 1   | L     | 3297  | 0        | 3220     | 25      | 0            |
| 1   | М     | 3292  | 0        | 3215     | 29      | 0            |
| 1   | N     | 3263  | 0        | 3190     | 31      | 0            |
| 1   | Р     | 3305  | 0        | 3233     | 35      | 0            |
| 1   | Q     | 3301  | 0        | 3223     | 23      | 0            |
| 2   | А     | 22    | 0        | 0        | 0       | 0            |
| 2   | В     | 22    | 0        | 0        | 1       | 0            |
| 2   | С     | 22    | 0        | 0        | 0       | 0            |
| 2   | D     | 22    | 0        | 0        | 0       | 0            |
| 2   | Е     | 22    | 0        | 0        | 0       | 0            |
| 2   | F     | 22    | 0        | 0        | 0       | 0            |
| 2   | G     | 22    | 0        | 0        | 0       | 0            |
| 2   | Н     | 22    | 0        | 0        | 0       | 0            |
| 2   | Ι     | 22    | 0        | 0        | 0       | 0            |
| 2   | J     | 22    | 0        | 0        | 0       | 0            |
| 2   | Κ     | 22    | 0        | 0        | 0       | 0            |
| 2   | L     | 22    | 0        | 0        | 1       | 0            |
| 2   | М     | 22    | 0        | 0        | 0       | 0            |
| 2   | Ν     | 22    | 0        | 0        | 0       | 0            |
| 2   | Р     | 22    | 0        | 0        | 0       | 0            |
| 2   | Q     | 22    | 0        | 0        | 0       | 0            |
| 3   | А     | 224   | 0        | 0        | 3       | 0            |
| 3   | В     | 142   | 0        | 0        | 2       | 0            |
| 3   | С     | 206   | 0        | 0        | 0       | 0            |
| 3   | D     | 179   | 0        | 0        | 1       | 0            |
| 3   | Е     | 137   | 0        | 0        | 0       | 0            |
| 3   | F     | 132   | 0        | 0        | 1       | 0            |
| 3   | G     | 144   | 0        | 0        | 1       | 0            |
| 3   | Н     | 104   | 0        | 0        | 1       | 0            |
| 3   | Ι     | 121   | 0        | 0        | 1       | 0            |
| 3   | J     | 108   | 0        | 0        | 0       | 0            |
| 3   | K     | 107   | 0        | 0        | 0       | 0            |
| 3   | L     | 120   | 0        | 0        | 1       | 0            |
| 3   | М     | 148   | 0        | 0        | 1       | 0            |
| 3   | N     | 125   | 0        | 0        | 1       | 0            |
| 3   | Р     | 119   | 0        | 0        | 0       | 0            |
| 3   | Q     | 151   | 0        | 0        | 2       | 0            |
| All | All   | 55304 | 0        | 51488    | 421     | 0            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.



| Atom-1              | Atom-2             | Interatomic  | Clash       |
|---------------------|--------------------|--------------|-------------|
|                     | 1100111-2          | distance (Å) | overlap (Å) |
| 1:A:128:GLY:O       | 3:A:601:HOH:O      | 1.82         | 0.97        |
| 1:A:130:LYS:NZ      | 3:A:601:HOH:O      | 2.03         | 0.90        |
| 1:H:306:GLU:OE2     | 1:H:310:LYS:NZ     | 2.12         | 0.82        |
| 1:I:196:ARG:HG3     | 1:I:196:ARG:HH11   | 1.48         | 0.79        |
| 1:B:196:ARG:HG2     | 1:B:196:ARG:NH1    | 1.96         | 0.78        |
| 1:B:196:ARG:HG2     | 1:B:196:ARG:HH11   | 1.51         | 0.76        |
| 1:A:385:TRP:CH2     | 1:A:394:GLU:HG2    | 2.22         | 0.74        |
| 1:H:196:ARG:HG3     | 1:H:196:ARG:HH11   | 1.52         | 0.72        |
| 1:N:193:TYR:CZ      | 1:N:341:ARG:HD3    | 2.24         | 0.72        |
| 1:H:301:HIS:HD2     | 1:H:411:VAL:O      | 1.72         | 0.72        |
| 1:J:123:LEU:O       | 1:J:126:ARG:HG2    | 1.90         | 0.72        |
| 1:E:92:GLN:HE21     | 1:E:119:GLN:HE22   | 1.38         | 0.72        |
| 1:A:61:LEU:HD11     | 1:A:273:ARG:HB2    | 1.74         | 0.70        |
| 1:A:196[B]:ARG:HH21 | 1:A:196[B]:ARG:HG3 | 1.57         | 0.70        |
| 1:M:319:SER:HB3     | 1:M:352:LYS:HG3    | 1.72         | 0.70        |
| 1:M:163:TYR:HB3     | 1:M:324:PRO:HG3    | 1.73         | 0.69        |
| 1:H:196:ARG:HG3     | 1:H:196:ARG:NH1    | 2.05         | 0.69        |
| 1:I:196:ARG:HG3     | 1:I:196:ARG:NH1    | 2.06         | 0.69        |
| 1:H:415:HIS:H       | 1:J:11:THR:HG22    | 1.58         | 0.68        |
| 1:M:153:ILE:HD12    | 1:M:175:ALA:HB2    | 1.75         | 0.68        |
| 1:N:314:SER:OG      | 3:N:601:HOH:O      | 2.01         | 0.68        |
| 1:L:196:ARG:HH21    | 1:L:196:ARG:HG3    | 1.57         | 0.67        |
| 1:P:163:TYR:HB3     | 1:P:324:PRO:HG3    | 1.76         | 0.67        |
| 1:L:301:HIS:HD2     | 1:L:411:VAL:O      | 1.79         | 0.66        |
| 1:C:196[B]:ARG:HB2  | 1:C:196[B]:ARG:CZ  | 2.24         | 0.66        |
| 1:I:309:SER:O       | 1:I:313:GLU:HG2    | 1.96         | 0.66        |
| 1:E:158:MET:HE1     | 1:E:339:LEU:HD21   | 1.79         | 0.65        |
| 1:M:319:SER:HA      | 1:M:352:LYS:HE3    | 1.79         | 0.65        |
| 1:E:61:LEU:HD21     | 1:E:273:ARG:HG3    | 1.79         | 0.65        |
| 1:P:354:ASP:HB2     | 1:P:357:ALA:HB2    | 1.79         | 0.64        |
| 1:K:196:ARG:HB2     | 1:K:196:ARG:CZ     | 2.27         | 0.64        |
| 1:H:123:LEU:O       | 1:H:126:ARG:HG2    | 1.97         | 0.64        |
| 1:A:250:HIS:HE1     | 1:C:390:GLU:O      | 1.80         | 0.64        |
| 1:J:319:SER:HB3     | 1:J:352:LYS:HG3    | 1.79         | 0.64        |
| 1:P:135:ARG:HB2     | 1:P:135:ARG:CZ     | 2.28         | 0.64        |
| 1:K:163:TYR:HB3     | 1:K:324:PRO:HG3    | 1.80         | 0.64        |
| 1:B:61:LEU:HD21     | 1:B:273:ARG:HA     | 1.80         | 0.63        |
| 1:E:158:MET:CE      | 1:E:339:LEU:HD21   | 2.29         | 0.63        |
| 1:H:163:TYR:HB3     | 1:H:324:PRO:HG3    | 1.78         | 0.63        |
| 1:Q:123:LEU:O       | 1:Q:126:ARG:HG2    | 1.99         | 0.63        |

All (421) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.



| Atom 1             | Atom 2             | Interatomic             | Clash       |
|--------------------|--------------------|-------------------------|-------------|
| Atom-1             | Atom-2             | distance $(\text{\AA})$ | overlap (Å) |
| 1:B:77:GLU:OE2     | 1:B:207:HIS:NE2    | 2.29                    | 0.63        |
| 1:P:135:ARG:HB2    | 1:P:135:ARG:NH1    | 2.14                    | 0.63        |
| 1:Q:153:ILE:HD12   | 1:Q:175:ALA:HB2    | 1.80                    | 0.63        |
| 1:C:123:LEU:O      | 1:C:126:ARG:HG2    | 2.00                    | 0.62        |
| 1:M:123:LEU:O      | 1:M:126:ARG:HG2    | 2.00                    | 0.62        |
| 1:B:163:TYR:HB3    | 1:B:324:PRO:HG3    | 1.82                    | 0.62        |
| 1:E:123:LEU:O      | 1:E:126:ARG:HG2    | 2.00                    | 0.61        |
| 1:C:77:GLU:OE1     | 1:C:207:HIS:NE2    | 2.32                    | 0.61        |
| 1:Q:425:GLN:NE2    | 1:Q:429:LYS:HE2    | 2.15                    | 0.61        |
| 1:B:123:LEU:HD22   | 1:D:274:ASP:HB3    | 1.82                    | 0.61        |
| 1:C:425:GLN:OE1    | 1:C:429:LYS:HE2    | 2.01                    | 0.61        |
| 1:P:123:LEU:O      | 1:P:126:ARG:HG2    | 2.01                    | 0.60        |
| 1:B:123:LEU:O      | 1:B:126:ARG:HG2    | 2.01                    | 0.60        |
| 1:I:163:TYR:HB3    | 1:I:324:PRO:HG3    | 1.82                    | 0.60        |
| 1:F:316:PRO:O      | 1:F:352:LYS:HE2    | 2.02                    | 0.60        |
| 1:K:120:LEU:HD23   | 1:K:124:LEU:HD12   | 1.84                    | 0.60        |
| 1:I:425:GLN:O      | 1:I:429:LYS:HD3    | 2.02                    | 0.60        |
| 1:A:390:GLU:O      | 1:C:250:HIS:HE1    | 1.85                    | 0.59        |
| 1:N:163:TYR:HB3    | 1:N:324:PRO:HG3    | 1.84                    | 0.59        |
| 1:G:123:LEU:O      | 1:G:126:ARG:HG2    | 2.02                    | 0.59        |
| 1:P:135:ARG:HB2    | 1:P:135:ARG:HH11   | 1.66                    | 0.59        |
| 1:Q:120:LEU:HD23   | 1:Q:124:LEU:HD12   | 1.84                    | 0.59        |
| 1:L:163:TYR:HB3    | 1:L:324:PRO:HG3    | 1.84                    | 0.59        |
| 1:K:123:LEU:O      | 1:K:126:ARG:HG2    | 2.01                    | 0.59        |
| 1:A:127:PHE:HB3    | 1:C:127:PHE:HD1    | 1.67                    | 0.59        |
| 1:L:123:LEU:O      | 1:L:126:ARG:HG2    | 2.02                    | 0.59        |
| 1:E:425:GLN:O      | 1:E:429:LYS:HG3    | 2.03                    | 0.59        |
| 1:B:139:LEU:HB3    | 1:B:174:ILE:HD11   | 1.85                    | 0.58        |
| 1:D:123:LEU:O      | 1:D:126:ARG:HG2    | 2.04                    | 0.58        |
| 1:G:163:TYR:HB3    | 1:G:324:PRO:HG3    | 1.84                    | 0.58        |
| 1:N:123:LEU:O      | 1:N:126:ARG:HG2    | 2.04                    | 0.58        |
| 1:E:196[A]:ARG:NH2 | 1:E:196[A]:ARG:HB2 | 2.18                    | 0.58        |
| 1:N:193:TYR:CE1    | 1:N:341:ARG:HD3    | 2.38                    | 0.58        |
| 1:K:117:TYR:CD1    | 1:K:392:LEU:HD11   | 2.38                    | 0.58        |
| 1:L:345:ALA:O      | 1:L:346:MET:HG3    | 2.04                    | 0.57        |
| 1:L:346:MET:HG2    | 1:L:409:ILE:O      | 2.04                    | 0.57        |
| 1:D:424:GLU:O      | 1:D:428:GLN:HG3    | 2.03                    | 0.57        |
| 1:H:139:LEU:HB3    | 1:H:174:ILE:HD11   | 1.86                    | 0.57        |
| 1:C:139:LEU:HB3    | 1:C:174:ILE:HD11   | 1.87                    | 0.57        |
| 1:C:120:LEU:HD23   | 1:C:124:LEU:HD12   | 1.87                    | 0.57        |
| 1:A:94:LEU:HG      | 1:A:271:MET:HB3    | 1.85                    | 0.57        |



| Atom 1             | Atom 2             | Interatomic             | Clash       |
|--------------------|--------------------|-------------------------|-------------|
| Atom-1             | Atom-2             | distance $(\text{\AA})$ | overlap (Å) |
| 1:A:138:LYS:HE2    | 1:A:141:ASP:OD2    | 2.04                    | 0.57        |
| 1:M:193:TYR:O      | 1:M:341:ARG:HD2    | 2.04                    | 0.57        |
| 1:J:313:GLU:OE2    | 1:J:321:VAL:HB     | 2.05                    | 0.56        |
| 1:N:173:LYS:O      | 1:N:177:GLU:HG3    | 2.06                    | 0.56        |
| 1:E:357:ALA:HA     | 1:E:360:LYS:HG2    | 1.86                    | 0.56        |
| 1:G:254:TYR:HB3    | 1:G:262:THR:HG23   | 1.87                    | 0.56        |
| 1:M:341:ARG:O      | 1:M:341:ARG:HG2    | 2.06                    | 0.56        |
| 1:A:127:PHE:HB3    | 1:C:127:PHE:CD1    | 2.39                    | 0.56        |
| 1:D:139:LEU:HB3    | 1:D:174:ILE:HD11   | 1.88                    | 0.56        |
| 1:J:306:GLU:OE2    | 1:J:310:LYS:HE3    | 2.07                    | 0.55        |
| 1:G:120:LEU:HD23   | 1:G:124:LEU:HD12   | 1.88                    | 0.55        |
| 1:Q:192:GLY:O      | 1:Q:196:ARG:HD2    | 2.06                    | 0.55        |
| 1:C:153:ILE:HG13   | 1:C:180:ILE:HD11   | 1.89                    | 0.55        |
| 1:Q:94:LEU:HG      | 1:Q:271:MET:HB3    | 1.88                    | 0.55        |
| 1:N:77:GLU:OE2     | 1:N:207:HIS:NE2    | 2.32                    | 0.55        |
| 1:D:392:LEU:HB3    | 1:D:396:GLU:HB2    | 1.89                    | 0.55        |
| 1:M:424:GLU:OE2    | 1:M:428:GLN:NE2    | 2.40                    | 0.55        |
| 1:D:15:HIS:O       | 3:D:601:HOH:O      | 2.18                    | 0.55        |
| 1:E:196[B]:ARG:HB3 | 1:E:196[B]:ARG:NH2 | 2.22                    | 0.55        |
| 1:J:163:TYR:HB3    | 1:J:324:PRO:HG3    | 1.90                    | 0.54        |
| 1:K:366:LYS:NZ     | 1:K:429:LYS:HZ3    | 2.05                    | 0.54        |
| 1:C:6:PHE:CZ       | 1:M:367:LEU:HD13   | 2.43                    | 0.54        |
| 1:F:14:LEU:HD12    | 1:L:414:GLU:HG3    | 1.88                    | 0.54        |
| 1:F:117:TYR:CD1    | 1:F:392:LEU:HD22   | 2.42                    | 0.54        |
| 1:L:59:SER:HA      | 1:L:62:MET:O       | 2.07                    | 0.54        |
| 1:A:356:SER:O      | 1:A:360:LYS:HG3    | 2.08                    | 0.54        |
| 1:M:249:TYR:HB2    | 1:M:252:LEU:HD22   | 1.88                    | 0.54        |
| 1:E:139:LEU:HB3    | 1:E:174:ILE:HD11   | 1.88                    | 0.54        |
| 1:F:173:LYS:NZ     | 1:E:318:VAL:O      | 2.38                    | 0.53        |
| 1:F:385:TRP:CZ2    | 1:F:394:GLU:HG2    | 2.43                    | 0.53        |
| 1:A:196[B]:ARG:HG3 | 1:A:196[B]:ARG:NH2 | 2.24                    | 0.53        |
| 1:A:367:LEU:HD13   | 1:E:6:PHE:CZ       | 2.43                    | 0.53        |
| 1:C:254:TYR:HB3    | 1:C:262:THR:HG23   | 1.91                    | 0.53        |
| 1:M:59:SER:HA      | 1:M:62:MET:O       | 2.09                    | 0.53        |
| 1:H:414:GLU:HB3    | 1:J:11:THR:HG22    | 1.90                    | 0.52        |
| 1:F:394:GLU:O      | 1:F:398:LEU:HG     | 2.09                    | 0.52        |
| 1:I:211:LYS:NZ     | 1:I:373:ASN:HD22   | 2.07                    | 0.52        |
| 1:K:161:PRO:HD3    | 1:K:389:HIS:CE1    | 2.45                    | 0.52        |
| 1:B:153:ILE:HD12   | 1:B:175:ALA:HB2    | 1.91                    | 0.52        |
| 1:E:105:ASN:ND2    | 1:E:132:LYS:HE2    | 2.25                    | 0.52        |
| 1:M:254:TYR:HB3    | 1:M:262:THR:HG23   | 1.91                    | 0.52        |



| Atom 1           | Atom 2           | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:L:354:ASP:OD2  | 1:L:355:ALA:N    | 2.42         | 0.52        |
| 1:M:120:LEU:HD23 | 1:M:124:LEU:HD12 | 1.92         | 0.52        |
| 1:E:161:PRO:HD3  | 1:E:389:HIS:CE1  | 2.44         | 0.52        |
| 1:K:130:LYS:N    | 1:K:130:LYS:HD3  | 2.25         | 0.52        |
| 1:I:306:GLU:OE2  | 1:I:310:LYS:HE3  | 2.10         | 0.52        |
| 1:P:139:LEU:HB3  | 1:P:174:ILE:HD11 | 1.91         | 0.51        |
| 1:E:92:GLN:HE21  | 1:E:119:GLN:NE2  | 2.08         | 0.51        |
| 1:C:59:SER:HA    | 1:C:62:MET:O     | 2.10         | 0.51        |
| 1:I:59:SER:HA    | 1:I:62:MET:O     | 2.09         | 0.51        |
| 1:N:195:ILE:HG12 | 1:N:339:LEU:HD11 | 1.92         | 0.51        |
| 1:A:120:LEU:HD23 | 1:A:124:LEU:HD12 | 1.92         | 0.51        |
| 1:N:153:ILE:HD12 | 1:N:175:ALA:HB2  | 1.93         | 0.51        |
| 1:P:174:ILE:O    | 1:P:178:HIS:HD2  | 1.94         | 0.51        |
| 1:A:153:ILE:HD12 | 1:A:175:ALA:HB2  | 1.92         | 0.51        |
| 1:Q:158:MET:CE   | 1:Q:324:PRO:HG3  | 2.41         | 0.51        |
| 1:K:309:SER:O    | 1:K:313:GLU:HG2  | 2.10         | 0.51        |
| 1:A:77:GLU:OE2   | 1:A:207:HIS:NE2  | 2.41         | 0.51        |
| 1:E:235:HIS:C    | 1:E:237:ASP:H    | 2.13         | 0.51        |
| 1:P:245:PRO:HG3  | 1:P:253:LYS:HE2  | 1.93         | 0.50        |
| 1:M:280:SER:HB2  | 1:M:281:PRO:HD2  | 1.94         | 0.50        |
| 1:K:425:GLN:HE22 | 1:K:429:LYS:NZ   | 2.09         | 0.50        |
| 1:F:21:ASP:OD1   | 1:F:21:ASP:N     | 2.45         | 0.50        |
| 1:E:77:GLU:OE2   | 1:E:207:HIS:NE2  | 2.40         | 0.50        |
| 1:A:414:GLU:HG3  | 1:E:14:LEU:HD12  | 1.94         | 0.50        |
| 1:J:139:LEU:HB3  | 1:J:174:ILE:HD11 | 1.93         | 0.50        |
| 1:Q:229:ARG:HD2  | 3:Q:609:HOH:O    | 2.11         | 0.50        |
| 1:N:173:LYS:NZ   | 1:N:177:GLU:OE2  | 2.36         | 0.50        |
| 1:N:195:ILE:HG12 | 1:N:339:LEU:CD1  | 2.42         | 0.50        |
| 1:K:14:LEU:HD23  | 1:K:292:GLU:HG2  | 1.93         | 0.50        |
| 1:I:394:GLU:O    | 1:I:398:LEU:HD22 | 2.12         | 0.50        |
| 1:I:429:LYS:HD2  | 1:I:429:LYS:N    | 2.27         | 0.50        |
| 1:J:174:ILE:O    | 1:J:178:HIS:HD2  | 1.94         | 0.50        |
| 1:F:383:HIS:CE1  | 1:F:385:TRP:HB3  | 2.47         | 0.50        |
| 1:A:59:SER:HA    | 1:A:62:MET:O     | 2.12         | 0.49        |
| 1:H:6:PHE:CZ     | 1:J:367:LEU:HD13 | 2.47         | 0.49        |
| 1:H:312:PHE:O    | 1:H:318:VAL:HG11 | 2.12         | 0.49        |
| 1:F:158:MET:HG2  | 1:F:165:VAL:HG22 | 1.94         | 0.49        |
| 1:F:139:LEU:HB3  | 1:F:174:ILE:HD11 | 1.93         | 0.49        |
| 1:A:130:LYS:HD3  | 1:A:130:LYS:N    | 2.27         | 0.49        |
| 1:C:424:GLU:O    | 1:C:428:GLN:HG3  | 2.12         | 0.49        |
| 1:J:383:HIS:CE1  | 1:J:385:TRP:HB3  | 2.48         | 0.49        |



|                  |                  | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:L:196:ARG:HG3  | 1:L:196:ARG:NH2  | 2.26         | 0.49        |
| 1:B:385:TRP:CE2  | 1:B:404:GLU:HB3  | 2.47         | 0.49        |
| 1:H:413:ILE:HG13 | 1:J:14:LEU:HD11  | 1.94         | 0.49        |
| 1:N:126:ARG:HG3  | 1:N:126:ARG:HH11 | 1.77         | 0.49        |
| 1:H:163:TYR:CB   | 1:H:324:PRO:HG3  | 2.42         | 0.49        |
| 1:P:120:LEU:HD23 | 1:P:124:LEU:HD12 | 1.95         | 0.49        |
| 1:Q:424:GLU:O    | 1:Q:428:GLN:HG2  | 2.13         | 0.49        |
| 1:K:59:SER:HA    | 1:K:62:MET:O     | 2.12         | 0.49        |
| 1:J:169:GLU:OE2  | 1:J:200:HIS:HD2  | 1.95         | 0.49        |
| 1:N:211:LYS:HD2  | 1:N:374:VAL:O    | 2.13         | 0.49        |
| 1:B:385:TRP:CD2  | 1:B:404:GLU:HB3  | 2.48         | 0.48        |
| 1:D:153:ILE:HD12 | 1:D:175:ALA:HB2  | 1.95         | 0.48        |
| 1:G:59:SER:HA    | 1:G:62:MET:O     | 2.12         | 0.48        |
| 1:N:193:TYR:O    | 1:N:341:ARG:HD2  | 2.11         | 0.48        |
| 1:L:416:VAL:O    | 1:L:420:ILE:HG13 | 2.13         | 0.48        |
| 1:H:120:LEU:HD23 | 1:H:124:LEU:HD12 | 1.95         | 0.48        |
| 1:F:367:LEU:HD13 | 1:L:6:PHE:CZ     | 2.48         | 0.48        |
| 1:M:250:HIS:HE1  | 1:E:390:GLU:O    | 1.97         | 0.48        |
| 1:G:126:ARG:HG3  | 1:G:126:ARG:HH11 | 1.78         | 0.48        |
| 1:F:59:SER:HA    | 1:F:62:MET:O     | 2.13         | 0.48        |
| 1:P:337:LYS:HD3  | 1:P:338:TYR:CZ   | 2.48         | 0.48        |
| 1:M:94:LEU:HG    | 1:M:271:MET:HB3  | 1.95         | 0.48        |
| 1:M:249:TYR:CB   | 1:M:252:LEU:HD22 | 2.44         | 0.48        |
| 1:N:126:ARG:HG3  | 1:N:126:ARG:NH1  | 2.29         | 0.48        |
| 1:C:229:ARG:HG2  | 1:C:229:ARG:HH11 | 1.77         | 0.48        |
| 1:G:371:LEU:HD11 | 1:G:380:LEU:HD22 | 1.94         | 0.48        |
| 1:E:164:VAL:HG13 | 1:E:331:THR:HG21 | 1.96         | 0.48        |
| 1:G:77:GLU:OE2   | 1:G:207:HIS:NE2  | 2.43         | 0.48        |
| 1:Q:77:GLU:OE2   | 1:Q:207:HIS:NE2  | 2.44         | 0.48        |
| 1:H:418:ASP:OD2  | 1:J:11:THR:HG21  | 2.14         | 0.48        |
| 1:F:253:LYS:HB3  | 3:F:674:HOH:O    | 2.13         | 0.48        |
| 1:K:207:HIS:HB2  | 1:K:223:VAL:HG12 | 1.96         | 0.48        |
| 1:B:6:PHE:CZ     | 1:N:367:LEU:HD13 | 2.50         | 0.47        |
| 1:D:270:GLU:O    | 1:D:274:ASP:HB2  | 2.14         | 0.47        |
| 1:A:6:PHE:CZ     | 1:E:367:LEU:HD13 | 2.50         | 0.47        |
| 1:B:126:ARG:HG3  | 1:B:126:ARG:HH11 | 1.79         | 0.47        |
| 1:P:94:LEU:HG    | 1:P:271:MET:HB3  | 1.96         | 0.47        |
| 1:H:415:HIS:N    | 1:J:11:THR:HG22  | 2.29         | 0.47        |
| 1:P:130:LYS:N    | 1:P:130:LYS:HD3  | 2.29         | 0.47        |
| 1:Q:158:MET:HE1  | 1:Q:324:PRO:HG3  | 1.97         | 0.47        |
| 1:J:309:SER:O    | 1:J:313:GLU:HG2  | 2.15         | 0.47        |



| Atom 1              | Atom 2           | Interatomic  | Clash       |
|---------------------|------------------|--------------|-------------|
| Atom-1              | Atom-2           | distance (Å) | overlap (Å) |
| 1:M:233:ASN:HA      | 1:M:243:VAL:HG11 | 1.96         | 0.47        |
| 1:N:323:TRP:CD1     | 1:N:324:PRO:HD2  | 2.50         | 0.47        |
| 1:A:413:ILE:HG13    | 1:E:14:LEU:HD11  | 1.96         | 0.47        |
| 1:B:384:PRO:HD2     | 3:B:663:HOH:O    | 2.14         | 0.47        |
| 1:H:31:ILE:HB       | 1:I:31:ILE:HB    | 1.97         | 0.47        |
| 1:H:59:SER:HA       | 1:H:62:MET:O     | 2.15         | 0.47        |
| 1:B:365:LEU:HD13    | 1:B:368:VAL:HB   | 1.96         | 0.47        |
| 1:H:415:HIS:H       | 1:J:11:THR:CG2   | 2.27         | 0.47        |
| 1:I:372:ALA:O       | 1:I:373:ASN:HB2  | 2.15         | 0.47        |
| 1:M:193:TYR:CZ      | 1:M:341:ARG:HD3  | 2.49         | 0.47        |
| 1:M:249:TYR:HB2     | 1:M:252:LEU:CD2  | 2.44         | 0.47        |
| 1:E:153:ILE:HD12    | 1:E:175:ALA:HB2  | 1.97         | 0.47        |
| 1:F:153:ILE:HD12    | 1:F:175:ALA:HB2  | 1.96         | 0.46        |
| 1:P:31:ILE:HB       | 1:L:31:ILE:HB    | 1.96         | 0.46        |
| 1:K:383:HIS:CE1     | 1:K:385:TRP:HB3  | 2.50         | 0.46        |
| 1:C:196[B]:ARG:HH11 | 1:C:341:ARG:NH2  | 2.13         | 0.46        |
| 1:I:164:VAL:HG13    | 1:I:331:THR:HG21 | 1.96         | 0.46        |
| 1:E:365:LEU:HD13    | 1:E:368:VAL:HB   | 1.96         | 0.46        |
| 1:D:120:LEU:HD23    | 1:D:124:LEU:HD12 | 1.97         | 0.46        |
| 1:Q:254:TYR:HB3     | 1:Q:262:THR:HG23 | 1.98         | 0.46        |
| 1:F:354:ASP:OD1     | 1:F:355:ALA:N    | 2.48         | 0.46        |
| 1:N:341:ARG:O       | 1:N:341:ARG:HG2  | 2.16         | 0.46        |
| 1:M:61:LEU:HD21     | 1:M:273:ARG:HG3  | 1.98         | 0.46        |
| 1:E:140:GLU:CD      | 1:E:140:GLU:H    | 2.18         | 0.46        |
| 1:B:158:MET:CE      | 1:B:339:LEU:HD21 | 2.45         | 0.46        |
| 1:C:158:MET:HG2     | 1:C:165:VAL:HG22 | 1.96         | 0.46        |
| 1:B:61:LEU:HD21     | 1:B:273:ARG:CA   | 2.45         | 0.46        |
| 1:C:94:LEU:HG       | 1:C:271:MET:HB3  | 1.98         | 0.46        |
| 1:A:161:PRO:HD3     | 1:A:389:HIS:CE1  | 2.50         | 0.46        |
| 1:K:394:GLU:O       | 1:K:398:LEU:HD23 | 2.16         | 0.45        |
| 1:B:231:ASN:CG      | 1:B:234:LYS:HG2  | 2.36         | 0.45        |
| 1:F:309:SER:O       | 1:F:313:GLU:HG2  | 2.16         | 0.45        |
| 1:Q:384:PRO:HD2     | 3:Q:688:HOH:O    | 2.16         | 0.45        |
| 1:A:104:ASP:N       | 3:A:601:HOH:O    | 2.50         | 0.45        |
| 1:F:14:LEU:HD23     | 1:F:292:GLU:HG2  | 1.96         | 0.45        |
| 1:G:153:ILE:HD12    | 1:G:175:ALA:HB2  | 1.99         | 0.45        |
| 1:N:280:SER:HB2     | 1:N:281:PRO:HD2  | 1.97         | 0.45        |
| 1:L:301:HIS:HE1     | 3:L:647:HOH:O    | 1.98         | 0.45        |
| 1:F:413:ILE:HG13    | 1:L:14:LEU:HD11  | 1.98         | 0.45        |
| 1:P:252:LEU:HD11    | 1:P:254:TYR:CD1  | 2.51         | 0.45        |
| 1:E:235:HIS:C       | 1:E:237:ASP:N    | 2.70         | 0.45        |



| Atom 1             | Atom 2              | Interatomic             | Clash       |
|--------------------|---------------------|-------------------------|-------------|
| Atom-1             | Atom-2              | $distance ( { m \AA} )$ | overlap (Å) |
| 1:B:403:THR:HG21   | 1:H:234:LYS:HD2     | 1.97                    | 0.45        |
| 1:F:97:ALA:HB1     | 1:P:127:PHE:HZ      | 1.82                    | 0.45        |
| 1:E:59:SER:HA      | 1:E:62:MET:O        | 2.16                    | 0.45        |
| 1:E:309:SER:O      | 1:E:313:GLU:HG2     | 2.17                    | 0.45        |
| 1:A:383:HIS:CE1    | 1:A:385:TRP:HB3     | 2.52                    | 0.45        |
| 1:C:126:ARG:HG3    | 1:C:126:ARG:HH11    | 1.82                    | 0.45        |
| 1:D:233:ASN:HB2    | 1:D:255:TRP:CE2     | 2.52                    | 0.45        |
| 1:F:422:ASP:O      | 1:F:425:GLN:HG3     | 2.16                    | 0.45        |
| 1:I:15:HIS:CD2     | 1:K:367:LEU:HD11    | 2.51                    | 0.45        |
| 1:P:21:ASP:HB3     | 1:L:23:HIS:CD2      | 2.52                    | 0.45        |
| 1:E:120:LEU:HD23   | 1:E:124:LEU:HD12    | 1.99                    | 0.45        |
| 1:K:193:TYR:CE2    | 1:K:341:ARG:HG2     | 2.51                    | 0.45        |
| 1:A:353:GLY:HA2    | 1:G:229:ARG:HH12    | 1.82                    | 0.45        |
| 1:B:59:SER:HA      | 1:B:62:MET:O        | 2.17                    | 0.45        |
| 1:C:196[A]:ARG:HG2 | 1:C:196[A]:ARG:HH11 | 1.81                    | 0.45        |
| 1:M:398:LEU:HD12   | 3:M:603:HOH:O       | 2.16                    | 0.45        |
| 1:N:161:PRO:HD3    | 1:N:389:HIS:CE1     | 2.52                    | 0.45        |
| 1:B:14:LEU:HD11    | 1:N:413:ILE:HG13    | 1.99                    | 0.45        |
| 1:F:193:TYR:CE2    | 1:F:341:ARG:HG2     | 2.52                    | 0.45        |
| 1:I:54:LEU:HD12    | 1:I:55:GLY:N        | 2.31                    | 0.45        |
| 1:P:59:SER:HA      | 1:P:62:MET:O        | 2.17                    | 0.45        |
| 1:Q:365:LEU:HD13   | 1:Q:368:VAL:HB      | 1.99                    | 0.45        |
| 1:N:365:LEU:HD13   | 1:N:368:VAL:HB      | 1.99                    | 0.45        |
| 1:I:296:LEU:HD12   | 3:I:706:HOH:O       | 2.16                    | 0.45        |
| 1:C:367:LEU:HD13   | 1:M:6:PHE:CZ        | 2.52                    | 0.44        |
| 1:F:365:LEU:HD13   | 1:F:368:VAL:HB      | 1.99                    | 0.44        |
| 1:B:193:TYR:CE2    | 1:B:341:ARG:HG2     | 2.52                    | 0.44        |
| 1:H:301:HIS:HE1    | 3:H:607:HOH:O       | 2.01                    | 0.44        |
| 1:I:383:HIS:CE1    | 1:I:385:TRP:HB3     | 2.52                    | 0.44        |
| 1:C:195:ILE:HD13   | 1:C:338:TYR:HB3     | 1.98                    | 0.44        |
| 1:I:163:TYR:CB     | 1:I:324:PRO:HG3     | 2.47                    | 0.44        |
| 1:K:86:SER:HB3     | 1:K:278:CYS:O       | 2.18                    | 0.44        |
| 1:M:236:SER:HB2    | 1:M:243:VAL:HG21    | 2.00                    | 0.44        |
| 1:L:212:TRP:CE2    | 1:L:375:GLY:HA2     | 2.52                    | 0.44        |
| 1:Q:61:LEU:HD21    | 1:Q:273:ARG:HA      | 1.98                    | 0.44        |
| 1:L:346:MET:CG     | 1:L:410:SER:HA      | 2.48                    | 0.44        |
| 1:H:193:TYR:CE2    | 1:H:341:ARG:HG2     | 2.53                    | 0.44        |
| 1:A:403:THR:HG21   | 1:G:234:LYS:HD2     | 1.99                    | 0.43        |
| 1:C:126:ARG:HG3    | 1:C:126:ARG:NH1     | 2.33                    | 0.43        |
| 1:D:77:GLU:OE1     | 1:D:207:HIS:NE2     | 2.51                    | 0.43        |
| 1:P:77:GLU:OE1     | 1:P:207:HIS:NE2     | 2.50                    | 0.43        |



| Atom 1           | Atom 2           | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:B:212:TRP:CE2  | 1:B:375:GLY:HA2  | 2.53         | 0.43        |
| 1:J:160:ASN:HA   | 1:J:161:PRO:HA   | 1.87         | 0.43        |
| 1:K:117:TYR:CD1  | 1:K:392:LEU:CD1  | 3.02         | 0.43        |
| 1:B:229:ARG:HG2  | 1:B:229:ARG:HH11 | 1.83         | 0.43        |
| 1:B:360:LYS:HE3  | 1:B:360:LYS:HB2  | 1.75         | 0.43        |
| 1:P:160:ASN:HA   | 1:P:161:PRO:HA   | 1.89         | 0.43        |
| 1:L:346:MET:HG2  | 1:L:410:SER:HA   | 2.00         | 0.43        |
| 1:K:156:GLU:HG2  | 1:K:185:ASP:HB3  | 2.00         | 0.43        |
| 1:D:212:TRP:CE2  | 1:D:375:GLY:HA2  | 2.53         | 0.43        |
| 1:Q:231:ASN:OD1  | 1:Q:234:LYS:HG3  | 2.18         | 0.43        |
| 1:L:243:VAL:O    | 1:L:253:LYS:HB3  | 2.18         | 0.43        |
| 1:B:126:ARG:HG3  | 1:B:126:ARG:NH1  | 2.32         | 0.43        |
| 1:C:61:LEU:HD11  | 1:C:273:ARG:HG3  | 2.00         | 0.43        |
| 1:H:218:THR:HG21 | 1:J:289:LEU:HD21 | 2.00         | 0.43        |
| 1:F:280:SER:HB2  | 1:F:281:PRO:HD2  | 2.00         | 0.43        |
| 1:H:254:TYR:HB3  | 1:H:262:THR:HG23 | 2.00         | 0.43        |
| 1:P:356:SER:OG   | 1:P:360:LYS:HE3  | 2.18         | 0.43        |
| 1:N:117:TYR:HB3  | 1:N:392:LEU:HD21 | 2.01         | 0.43        |
| 1:K:195:ILE:HG12 | 1:K:339:LEU:CD2  | 2.48         | 0.43        |
| 1:K:196:ARG:CZ   | 1:K:196:ARG:CB   | 2.93         | 0.43        |
| 1:G:105:ASN:HA   | 1:G:130:LYS:O    | 2.19         | 0.43        |
| 1:F:101:LYS:HE3  | 1:P:126:ARG:HB2  | 2.00         | 0.43        |
| 1:G:160:ASN:HA   | 1:G:161:PRO:HA   | 1.89         | 0.43        |
| 1:J:59:SER:HA    | 1:J:62:MET:O     | 2.19         | 0.43        |
| 1:G:117:TYR:CD1  | 1:G:392:LEU:HD22 | 2.54         | 0.42        |
| 1:H:315:SER:HB3  | 1:H:318:VAL:HG12 | 2.01         | 0.42        |
| 1:F:226:ASP:HB2  | 1:F:264:ILE:HB   | 2.00         | 0.42        |
| 1:I:211:LYS:HZ3  | 1:I:373:ASN:HD22 | 1.67         | 0.42        |
| 1:J:105:ASN:HA   | 1:J:130:LYS:O    | 2.19         | 0.42        |
| 1:J:322:LEU:HD12 | 1:J:322:LEU:HA   | 1.93         | 0.42        |
| 1:N:226:ASP:HB2  | 1:N:264:ILE:HB   | 2.00         | 0.42        |
| 1:A:107:VAL:O    | 1:A:153:ILE:HA   | 2.19         | 0.42        |
| 1:C:229:ARG:HG2  | 1:C:229:ARG:NH1  | 2.35         | 0.42        |
| 1:D:94:LEU:HG    | 1:D:271:MET:HB3  | 2.00         | 0.42        |
| 1:D:157:SER:HB2  | 1:D:195:ILE:HD13 | 2.01         | 0.42        |
| 1:G:193:TYR:CE2  | 1:G:341:ARG:HG2  | 2.55         | 0.42        |
| 1:H:101:LYS:HB2  | 1:K:126:ARG:O    | 2.20         | 0.42        |
| 1:H:280:SER:HB2  | 1:H:281:PRO:HD2  | 2.02         | 0.42        |
| 1:F:369:SER:HB3  | 1:F:371:LEU:HD23 | 2.01         | 0.42        |
| 1:M:323:TRP:CD1  | 1:M:324:PRO:HD2  | 2.55         | 0.42        |
| 1:L:237:ASP:N    | 1:L:237:ASP:OD1  | 2.50         | 0.42        |



| Atom 1              | Atom 2             | Interatomic             | Clash       |
|---------------------|--------------------|-------------------------|-------------|
| Atom-1              | Atom-2             | distance $(\text{\AA})$ | overlap (Å) |
| 1:K:77:GLU:OE1      | 1:K:207:HIS:NE2    | 2.46                    | 0.42        |
| 1:C:307:LYS:HD3     | 1:C:416:VAL:HG11   | 2.01                    | 0.42        |
| 1:I:360:LYS:O       | 1:I:360:LYS:HG2    | 2.18                    | 0.42        |
| 1:D:158:MET:HG2     | 1:D:165:VAL:HG22   | 2.01                    | 0.42        |
| 1:P:383:HIS:CE1     | 1:P:385:TRP:HB3    | 2.54                    | 0.42        |
| 1:K:130:LYS:HE2     | 1:K:130:LYS:HB2    | 1.67                    | 0.42        |
| 1:H:179:GLY:HA2     | 1:H:235:HIS:CE1    | 2.55                    | 0.42        |
| 1:P:135:ARG:HH11    | 1:P:135:ARG:CB     | 2.31                    | 0.42        |
| 1:D:195:ILE:HD13    | 1:D:195:ILE:HG21   | 1.81                    | 0.42        |
| 1:G:186:ASN:HB3     | 1:G:207:HIS:CE1    | 2.55                    | 0.42        |
| 1:H:127:PHE:HZ      | 1:K:97:ALA:HB1     | 1.85                    | 0.42        |
| 1:P:311:TYR:OH      | 1:P:424:GLU:HG2    | 2.20                    | 0.42        |
| 1:A:123:LEU:O       | 1:A:126:ARG:HB2    | 2.20                    | 0.42        |
| 1:C:105:ASN:CG      | 1:C:132:LYS:HE2    | 2.41                    | 0.42        |
| 1:D:161:PRO:HB3     | 1:D:408:ARG:HD3    | 2.02                    | 0.42        |
| 1:P:196[A]:ARG:HH11 | 1:P:196[A]:ARG:HG2 | 1.85                    | 0.42        |
| 1:Q:195:ILE:O       | 1:Q:196:ARG:HG3    | 2.20                    | 0.42        |
| 1:E:212:TRP:NE1     | 1:E:375:GLY:HA2    | 2.35                    | 0.42        |
| 1:L:301:HIS:CD2     | 1:L:411:VAL:O      | 2.67                    | 0.42        |
| 2:B:501:WBJ:O08     | 2:B:501:WBJ:N04    | 2.53                    | 0.41        |
| 1:J:195:ILE:HG12    | 1:J:339:LEU:CD2    | 2.50                    | 0.41        |
| 1:Q:227:SER:OG      | 1:Q:229:ARG:HG2    | 2.20                    | 0.41        |
| 1:B:254:TYR:HB3     | 1:B:262:THR:HG23   | 2.01                    | 0.41        |
| 1:I:89:GLN:HE21     | 1:J:274:ASP:HA     | 1.86                    | 0.41        |
| 1:N:59:SER:HA       | 1:N:62:MET:O       | 2.20                    | 0.41        |
| 1:P:156:GLU:HG2     | 1:P:185:ASP:HB3    | 2.01                    | 0.41        |
| 1:P:179:GLY:HA2     | 1:P:235:HIS:CD2    | 2.55                    | 0.41        |
| 1:N:32:TYR:CD2      | 1:N:64:PRO:HB2     | 2.55                    | 0.41        |
| 1:L:227:SER:OG      | 1:L:229:ARG:HG2    | 2.20                    | 0.41        |
| 1:K:346:MET:HE1     | 1:K:408:ARG:CD     | 2.50                    | 0.41        |
| 1:A:231:ASN:CG      | 1:A:234:LYS:HG2    | 2.41                    | 0.41        |
| 1:A:254:TYR:HB3     | 1:A:262:THR:HG23   | 2.03                    | 0.41        |
| 1:B:163:TYR:CB      | 1:B:324:PRO:HG3    | 2.50                    | 0.41        |
| 1:F:123:LEU:HD22    | 1:P:274:ASP:HB3    | 2.02                    | 0.41        |
| 1:F:196[A]:ARG:NE   | 1:F:199:GLU:OE2    | 2.53                    | 0.41        |
| 1:N:156:GLU:HG2     | 1:N:185:ASP:HB3    | 2.02                    | 0.41        |
| 1:E:94:LEU:HG       | 1:E:271:MET:HB3    | 2.02                    | 0.41        |
| 1:K:140:GLU:H       | 1:K:140:GLU:CD     | 2.21                    | 0.41        |
| 1:G:253:LYS:HB3     | 3:G:719:HOH:O      | 2.20                    | 0.41        |
| 1:I:120:LEU:HD23    | 1:I:124:LEU:HD12   | 2.01                    | 0.41        |
| 1:M:365:LEU:HD13    | 1:M:368:VAL:HB     | 2.02                    | 0.41        |



| Atom 1             | Atom 2            | Interatomic  | Clash       |
|--------------------|-------------------|--------------|-------------|
| Atom-1             | Atom-2            | distance (Å) | overlap (Å) |
| 1:Q:108:ALA:O      | 1:Q:133:PHE:HA    | 2.21         | 0.41        |
| 1:E:52:LYS:HE2     | 1:E:52:LYS:HA     | 2.03         | 0.41        |
| 1:B:158:MET:HE1    | 1:B:339:LEU:HD21  | 2.02         | 0.41        |
| 1:F:254:TYR:HB3    | 1:F:262:THR:HG23  | 2.01         | 0.41        |
| 1:M:37:TYR:CG      | 1:M:56:ASN:HB3    | 2.56         | 0.41        |
| 1:K:139:LEU:HB3    | 1:K:174:ILE:HD11  | 2.02         | 0.41        |
| 1:N:160:ASN:HA     | 1:N:161:PRO:HA    | 1.92         | 0.41        |
| 1:N:196[B]:ARG:HB2 | 1:N:196[B]:ARG:CZ | 2.50         | 0.41        |
| 1:E:147:ASP:HB3    | 1:E:149:GLN:H     | 1.85         | 0.41        |
| 1:L:174:ILE:O      | 1:L:178:HIS:HD2   | 2.03         | 0.41        |
| 1:A:130:LYS:HE2    | 1:A:130:LYS:HB2   | 1.42         | 0.41        |
| 1:D:59:SER:HA      | 1:D:62:MET:O      | 2.21         | 0.41        |
| 1:G:380:LEU:HB2    | 1:G:410:SER:HB3   | 2.02         | 0.41        |
| 1:P:130:LYS:HE2    | 1:P:130:LYS:HB2   | 1.45         | 0.41        |
| 1:P:212:TRP:CE2    | 1:P:375:GLY:HA2   | 2.56         | 0.41        |
| 1:P:289:LEU:HD23   | 1:P:289:LEU:HA    | 1.88         | 0.41        |
| 1:P:319:SER:HB3    | 1:P:352:LYS:HG2   | 2.03         | 0.41        |
| 1:M:153:ILE:HG13   | 1:M:180:ILE:HD11  | 2.02         | 0.41        |
| 1:E:5:VAL:HG12     | 1:E:6:PHE:CD2     | 2.56         | 0.41        |
| 1:E:226:ASP:HB2    | 1:E:264:ILE:HB    | 2.03         | 0.41        |
| 1:K:32:TYR:CD2     | 1:K:64:PRO:HB2    | 2.56         | 0.41        |
| 1:H:117:TYR:CD1    | 1:H:392:LEU:HD22  | 2.56         | 0.41        |
| 1:F:371:LEU:HD11   | 1:F:380:LEU:HD22  | 2.02         | 0.41        |
| 1:P:21:ASP:OD2     | 1:P:21:ASP:N      | 2.53         | 0.41        |
| 1:M:126:ARG:O      | 1:E:101:LYS:HB2   | 2.21         | 0.41        |
| 1:K:126:ARG:HH11   | 1:K:126:ARG:HG3   | 1.86         | 0.41        |
| 1:A:86:SER:HB3     | 1:A:278:CYS:O     | 2.21         | 0.40        |
| 1:B:323:TRP:CD1    | 1:B:324:PRO:HD2   | 2.55         | 0.40        |
| 3:B:637:HOH:O      | 1:D:249:TYR:HA    | 2.21         | 0.40        |
| 1:J:130:LYS:HE2    | 1:J:130:LYS:HB2   | 1.79         | 0.40        |
| 2:L:501:WBJ:O08    | 2:L:501:WBJ:N04   | 2.54         | 0.40        |
| 1:H:123:LEU:HD22   | 1:K:274:ASP:HB3   | 2.03         | 0.40        |
| 1:Q:161:PRO:HG2    | 1:Q:406:MET:SD    | 2.61         | 0.40        |
| 1:E:192:GLY:HA2    | 1:E:195:ILE:O     | 2.21         | 0.40        |
| 1:B:211[B]:LYS:HD2 | 1:B:374:VAL:O     | 2.21         | 0.40        |
| 1:G:32:TYR:CD2     | 1:G:64:PRO:HB2    | 2.57         | 0.40        |
| 1:I:136:SER:OG     | 1:I:141:ASP:OD2   | 2.28         | 0.40        |
| 1:Q:196:ARG:HH11   | 1:Q:196:ARG:HD3   | 1.28         | 0.40        |
| 1:N:120:LEU:HD23   | 1:N:124:LEU:HD12  | 2.02         | 0.40        |
| 1:E:323:TRP:CD1    | 1:E:324:PRO:HD2   | 2.57         | 0.40        |
| 1:L:425:GLN:OE1    | 1:L:429:LYS:HE2   | 2.21         | 0.40        |



| 8ERB |
|------|
|------|

| Atom-1            | Atom-2          | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|-------------------|-----------------|-----------------------------|----------------------|
| 1:C:186:ASN:HB3   | 1:C:207:HIS:CE1 | 2.56                        | 0.40                 |
| 1:G:126:ARG:HG3   | 1:G:126:ARG:NH1 | 2.36                        | 0.40                 |
| 1:H:160:ASN:HA    | 1:H:161:PRO:HA  | 1.90                        | 0.40                 |
| 1:E:280:SER:HB2   | 1:E:281:PRO:HD2 | 2.03                        | 0.40                 |
| 1:K:43:ALA:O      | 1:K:47:ARG:HG3  | 2.21                        | 0.40                 |
| 1:K:140:GLU:OE2   | 1:K:140:GLU:N   | 2.44                        | 0.40                 |
| 1:B:398:LEU:HD12  | 1:B:398:LEU:HA  | 1.86                        | 0.40                 |
| 1:P:323:TRP:CD1   | 1:P:324:PRO:HD2 | 2.57                        | 0.40                 |
| 1:J:385:TRP:CZ2   | 1:J:394:GLU:HG2 | 2.57                        | 0.40                 |
| 1:Q:126:ARG:HH11  | 1:Q:126:ARG:HG3 | 1.86                        | 0.40                 |
| 1:Q:160:ASN:HA    | 1:Q:161:PRO:HA  | 1.89                        | 0.40                 |
| 1:N:196[A]:ARG:NE | 1:N:199:GLU:OE2 | 2.42                        | 0.40                 |

There are no symmetry-related clashes.

### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed      | Favoured  | Allowed | Outliers | Perce | ntiles |
|-----|-------|---------------|-----------|---------|----------|-------|--------|
| 1   | А     | 427/433~(99%) | 418 (98%) | 9 (2%)  | 0        | 100   | 100    |
| 1   | В     | 427/433~(99%) | 416 (97%) | 11 (3%) | 0        | 100   | 100    |
| 1   | С     | 426/433~(98%) | 416 (98%) | 9(2%)   | 1 (0%)   | 47    | 38     |
| 1   | D     | 426/433~(98%) | 416 (98%) | 9 (2%)  | 1 (0%)   | 47    | 38     |
| 1   | Ε     | 426/433~(98%) | 415 (97%) | 11 (3%) | 0        | 100   | 100    |
| 1   | F     | 422/433~(98%) | 414 (98%) | 6 (1%)  | 2 (0%)   | 29    | 16     |
| 1   | G     | 426/433~(98%) | 417 (98%) | 8 (2%)  | 1 (0%)   | 47    | 38     |
| 1   | Н     | 424/433~(98%) | 414 (98%) | 9 (2%)  | 1 (0%)   | 47    | 38     |
| 1   | Ι     | 426/433~(98%) | 416 (98%) | 8 (2%)  | 2(0%)    | 29    | 16     |
| 1   | J     | 425/433~(98%) | 415 (98%) | 8 (2%)  | 2(0%)    | 29    | 16     |



| Mol | Chain | Analysed        | Favoured   | Allowed  | Outliers | Percentiles |
|-----|-------|-----------------|------------|----------|----------|-------------|
| 1   | K     | 427/433~(99%)   | 416 (97%)  | 8 (2%)   | 3~(1%)   | 22 11       |
| 1   | L     | 426/433~(98%)   | 417~(98%)  | 8 (2%)   | 1 (0%)   | 47 38       |
| 1   | М     | 426/433~(98%)   | 415 (97%)  | 10 (2%)  | 1 (0%)   | 47 38       |
| 1   | Ν     | 419/433~(97%)   | 409~(98%)  | 10 (2%)  | 0        | 100 100     |
| 1   | Р     | 427/433~(99%)   | 416 (97%)  | 10 (2%)  | 1 (0%)   | 47 38       |
| 1   | Q     | 427/433~(99%)   | 417 (98%)  | 9 (2%)   | 1 (0%)   | 47 38       |
| All | All   | 6807/6928~(98%) | 6647 (98%) | 143 (2%) | 17 (0%)  | 41 38       |

Continued from previous page...

All (17) Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | Κ     | 211 | LYS  |
| 1   | Ι     | 211 | LYS  |
| 1   | J     | 211 | LYS  |
| 1   | F     | 211 | LYS  |
| 1   | Κ     | 354 | ASP  |
| 1   | С     | 161 | PRO  |
| 1   | Ι     | 161 | PRO  |
| 1   | Q     | 161 | PRO  |
| 1   | D     | 161 | PRO  |
| 1   | Н     | 161 | PRO  |
| 1   | F     | 161 | PRO  |
| 1   | Р     | 161 | PRO  |
| 1   | М     | 161 | PRO  |
| 1   | L     | 161 | PRO  |
| 1   | K     | 161 | PRO  |
| 1   | J     | 161 | PRO  |
| 1   | G     | 161 | PRO  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.



| 8ERB |
|------|
|------|

| Mol | Chain | Analysed        | Rotameric   | Outliers | <b>Percentiles</b> |        |
|-----|-------|-----------------|-------------|----------|--------------------|--------|
| Mol | Chain | Analysed        | Rotameric   | Outliers | Perce              | ntiles |
| 1   | А     | 347/350~(99%)   | 347 (100%)  | 0        | 100                | 100    |
| 1   | В     | 348/350~(99%)   | 348 (100%)  | 0        | 100                | 100    |
| 1   | С     | 346/350~(99%)   | 344 (99%)   | 2 (1%)   | 86                 | 85     |
| 1   | D     | 347/350~(99%)   | 347 (100%)  | 0        | 100                | 100    |
| 1   | Е     | 347/350~(99%)   | 345 (99%)   | 2 (1%)   | 86                 | 85     |
| 1   | F     | 345/350~(99%)   | 343 (99%)   | 2 (1%)   | 86                 | 85     |
| 1   | G     | 347/350~(99%)   | 347 (100%)  | 0        | 100                | 100    |
| 1   | Н     | 345/350~(99%)   | 345 (100%)  | 0        | 100                | 100    |
| 1   | Ι     | 347/350~(99%)   | 346 (100%)  | 1 (0%)   | 92                 | 92     |
| 1   | J     | 346/350~(99%)   | 346 (100%)  | 0        | 100                | 100    |
| 1   | Κ     | 347/350~(99%)   | 347 (100%)  | 0        | 100                | 100    |
| 1   | L     | 347/350~(99%)   | 347 (100%)  | 0        | 100                | 100    |
| 1   | М     | 346/350~(99%)   | 346 (100%)  | 0        | 100                | 100    |
| 1   | Ν     | 344/350~(98%)   | 342 (99%)   | 2 (1%)   | 86                 | 85     |
| 1   | Р     | 348/350~(99%)   | 346 (99%)   | 2 (1%)   | 86                 | 85     |
| 1   | Q     | 347/350~(99%)   | 346 (100%)  | 1 (0%)   | 92                 | 92     |
| All | All   | 5544/5600 (99%) | 5532 (100%) | 12 (0%)  | 93                 | 93     |

All (12) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | Res    | Type |
|-----|-------|--------|------|
| 1   | С     | 196[A] | ARG  |
| 1   | С     | 196[B] | ARG  |
| 1   | F     | 196[A] | ARG  |
| 1   | F     | 196[B] | ARG  |
| 1   | Ι     | 54     | LEU  |
| 1   | Р     | 196[A] | ARG  |
| 1   | Р     | 196[B] | ARG  |
| 1   | Q     | 352    | LYS  |
| 1   | Ν     | 196[A] | ARG  |
| 1   | Ν     | 196[B] | ARG  |
| 1   | Е     | 196[A] | ARG  |
| 1   | Е     | 196[B] | ARG  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (54)



such sidechains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 92  | GLN  |
| 1   | А     | 119 | GLN  |
| 1   | А     | 178 | HIS  |
| 1   | А     | 250 | HIS  |
| 1   | В     | 92  | GLN  |
| 1   | С     | 89  | GLN  |
| 1   | С     | 92  | GLN  |
| 1   | С     | 250 | HIS  |
| 1   | С     | 303 | GLN  |
| 1   | С     | 428 | GLN  |
| 1   | D     | 92  | GLN  |
| 1   | D     | 119 | GLN  |
| 1   | D     | 178 | HIS  |
| 1   | D     | 250 | HIS  |
| 1   | D     | 303 | GLN  |
| 1   | D     | 428 | GLN  |
| 1   | Н     | 89  | GLN  |
| 1   | Н     | 92  | GLN  |
| 1   | Н     | 119 | GLN  |
| 1   | Н     | 301 | HIS  |
| 1   | Н     | 428 | GLN  |
| 1   | Ι     | 4   | GLN  |
| 1   | Ι     | 89  | GLN  |
| 1   | Ι     | 329 | HIS  |
| 1   | Ι     | 373 | ASN  |
| 1   | Р     | 23  | HIS  |
| 1   | Р     | 89  | GLN  |
| 1   | Р     | 178 | HIS  |
| 1   | Р     | 235 | HIS  |
| 1   | J     | 178 | HIS  |
| 1   | J     | 200 | HIS  |
| 1   | М     | 250 | HIS  |
| 1   | Q     | 4   | GLN  |
| 1   | Q     | 92  | GLN  |
| 1   | Q     | 178 | HIS  |
| 1   | Q     | 216 | HIS  |
| 1   | Q     | 235 | HIS  |
| 1   | Q     | 425 | GLN  |
| 1   | Ν     | 92  | GLN  |
| 1   | Ν     | 119 | GLN  |
| 1   | Е     | 23  | HIS  |
| 1   | Е     | 89  | GLN  |



|     | 3     | 1   | 1 0  |
|-----|-------|-----|------|
| Mol | Chain | Res | Type |
| 1   | Е     | 92  | GLN  |
| 1   | Е     | 105 | ASN  |
| 1   | Е     | 119 | GLN  |
| 1   | Е     | 149 | GLN  |
| 1   | L     | 23  | HIS  |
| 1   | L     | 178 | HIS  |
| 1   | L     | 301 | HIS  |
| 1   | L     | 303 | GLN  |
| 1   | L     | 428 | GLN  |
| 1   | К     | 119 | GLN  |
| 1   | К     | 178 | HIS  |
| 1   | K     | 425 | GLN  |

### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

## 5.6 Ligand geometry (i)

16 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol Type Chain |      | Thain Ros | Tink | Bond lengths |          |      | Bond angles |          |      |          |
|----------------|------|-----------|------|--------------|----------|------|-------------|----------|------|----------|
| Moi Type       | туре | Ullalli   | nes  |              | Counts   | RMSZ | # Z  > 2    | Counts   | RMSZ | # Z  > 2 |
| 2              | WBJ  | М         | 501  | -            | 21,22,22 | 2.12 | 3 (14%)     | 25,31,31 | 2.05 | 6 (24%)  |



| Mol Type | Tuno       | Chain   | Dog | Link | Bo       | Bond lengths |          |          | Bond angles |         |  |
|----------|------------|---------|-----|------|----------|--------------|----------|----------|-------------|---------|--|
|          | Mor Type C | Ullalli | nes |      | Counts   | RMSZ         | # Z  > 2 | Counts   | RMSZ        | # Z >2  |  |
| 2        | WBJ        | D       | 501 | -    | 21,22,22 | 1.89         | 3 (14%)  | 25,31,31 | 2.06        | 6 (24%) |  |
| 2        | WBJ        | Ι       | 501 | -    | 21,22,22 | 2.50         | 4 (19%)  | 25,31,31 | 2.05        | 7 (28%) |  |
| 2        | WBJ        | Q       | 501 | -    | 21,22,22 | 2.11         | 3 (14%)  | 25,31,31 | 1.95        | 6 (24%) |  |
| 2        | WBJ        | Ν       | 501 | -    | 21,22,22 | 2.14         | 4 (19%)  | 25,31,31 | 2.05        | 6 (24%) |  |
| 2        | WBJ        | L       | 501 | -    | 21,22,22 | 2.74         | 3 (14%)  | 25,31,31 | 2.01        | 7 (28%) |  |
| 2        | WBJ        | А       | 501 | -    | 21,22,22 | 2.23         | 3 (14%)  | 25,31,31 | 1.89        | 7 (28%) |  |
| 2        | WBJ        | В       | 501 | -    | 21,22,22 | 2.44         | 3 (14%)  | 25,31,31 | 1.84        | 7 (28%) |  |
| 2        | WBJ        | Р       | 501 | -    | 21,22,22 | 2.74         | 4 (19%)  | 25,31,31 | 2.08        | 6 (24%) |  |
| 2        | WBJ        | С       | 501 | -    | 21,22,22 | 2.08         | 3 (14%)  | 25,31,31 | 1.97        | 5 (20%) |  |
| 2        | WBJ        | Κ       | 501 | -    | 21,22,22 | 2.90         | 3 (14%)  | 25,31,31 | 1.96        | 7 (28%) |  |
| 2        | WBJ        | F       | 501 | -    | 21,22,22 | 2.69         | 5 (23%)  | 25,31,31 | 2.04        | 7 (28%) |  |
| 2        | WBJ        | Н       | 501 | -    | 21,22,22 | 2.88         | 3 (14%)  | 25,31,31 | 1.84        | 4 (16%) |  |
| 2        | WBJ        | G       | 501 | -    | 21,22,22 | 2.74         | 4 (19%)  | 25,31,31 | 1.93        | 8 (32%) |  |
| 2        | WBJ        | Е       | 501 | -    | 21,22,22 | 1.90         | 4 (19%)  | 25,31,31 | 2.05        | 7 (28%) |  |
| 2        | WBJ        | J       | 501 | -    | 21,22,22 | 2.82         | 4 (19%)  | 25,31,31 | 2.00        | 7 (28%) |  |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res | Link | Chirals | Torsions   | Rings   |
|-----|------|-------|-----|------|---------|------------|---------|
| 2   | WBJ  | М     | 501 | -    | -       | 6/14/17/17 | 0/1/1/1 |
| 2   | WBJ  | D     | 501 | -    | -       | 6/14/17/17 | 0/1/1/1 |
| 2   | WBJ  | Ι     | 501 | -    | -       | 6/14/17/17 | 0/1/1/1 |
| 2   | WBJ  | Q     | 501 | -    | -       | 5/14/17/17 | 0/1/1/1 |
| 2   | WBJ  | N     | 501 | -    | -       | 8/14/17/17 | 0/1/1/1 |
| 2   | WBJ  | L     | 501 | -    | -       | 6/14/17/17 | 0/1/1/1 |
| 2   | WBJ  | А     | 501 | -    | -       | 6/14/17/17 | 0/1/1/1 |
| 2   | WBJ  | В     | 501 | -    | -       | 4/14/17/17 | 0/1/1/1 |
| 2   | WBJ  | Р     | 501 | -    | -       | 6/14/17/17 | 0/1/1/1 |
| 2   | WBJ  | С     | 501 | -    | -       | 6/14/17/17 | 0/1/1/1 |
| 2   | WBJ  | K     | 501 | -    | -       | 3/14/17/17 | 0/1/1/1 |
| 2   | WBJ  | F     | 501 | -    | -       | 6/14/17/17 | 0/1/1/1 |
| 2   | WBJ  | Н     | 501 | -    | -       | 5/14/17/17 | 0/1/1/1 |
| 2   | WBJ  | G     | 501 | -    | -       | 4/14/17/17 | 0/1/1/1 |



Continued from previous page...

| Mol | Type | Chain | Res | Link | Chirals | Torsions   | Rings   |
|-----|------|-------|-----|------|---------|------------|---------|
| 2   | WBJ  | Е     | 501 | -    | -       | 8/14/17/17 | 0/1/1/1 |
| 2   | WBJ  | J     | 501 | -    | -       | 6/14/17/17 | 0/1/1/1 |

All (56) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|-------|-------------|----------|
| 2   | Н     | 501 | WBJ  | C03-C21 | 11.00 | 1.59        | 1.48     |
| 2   | K     | 501 | WBJ  | C03-C21 | 10.92 | 1.59        | 1.48     |
| 2   | J     | 501 | WBJ  | C03-C21 | 10.01 | 1.58        | 1.48     |
| 2   | F     | 501 | WBJ  | C03-C21 | 9.97  | 1.58        | 1.48     |
| 2   | Р     | 501 | WBJ  | C03-C21 | 9.95  | 1.58        | 1.48     |
| 2   | L     | 501 | WBJ  | C03-C21 | 9.95  | 1.58        | 1.48     |
| 2   | G     | 501 | WBJ  | C03-C21 | 9.74  | 1.58        | 1.48     |
| 2   | В     | 501 | WBJ  | C03-C21 | 9.20  | 1.57        | 1.48     |
| 2   | Ι     | 501 | WBJ  | C03-C21 | 8.55  | 1.56        | 1.48     |
| 2   | С     | 501 | WBJ  | C03-C21 | 7.99  | 1.56        | 1.48     |
| 2   | А     | 501 | WBJ  | C03-C21 | 7.89  | 1.56        | 1.48     |
| 2   | М     | 501 | WBJ  | C03-C21 | 7.37  | 1.55        | 1.48     |
| 2   | Ν     | 501 | WBJ  | C03-C21 | 7.14  | 1.55        | 1.48     |
| 2   | Q     | 501 | WBJ  | C03-C21 | 6.96  | 1.55        | 1.48     |
| 2   | D     | 501 | WBJ  | C03-C21 | 6.31  | 1.54        | 1.48     |
| 2   | J     | 501 | WBJ  | P17-O16 | 6.17  | 1.80        | 1.60     |
| 2   | G     | 501 | WBJ  | P17-O16 | 6.14  | 1.80        | 1.60     |
| 2   | L     | 501 | WBJ  | P17-O16 | 5.81  | 1.78        | 1.60     |
| 2   | К     | 501 | WBJ  | P17-O16 | 5.78  | 1.78        | 1.60     |
| 2   | Н     | 501 | WBJ  | P17-O16 | 5.72  | 1.78        | 1.60     |
| 2   | Ι     | 501 | WBJ  | P17-O16 | 5.68  | 1.78        | 1.60     |
| 2   | Е     | 501 | WBJ  | C03-C21 | 5.58  | 1.53        | 1.48     |
| 2   | Р     | 501 | WBJ  | P17-O16 | 5.30  | 1.77        | 1.60     |
| 2   | F     | 501 | WBJ  | P17-O16 | 5.02  | 1.76        | 1.60     |
| 2   | Q     | 501 | WBJ  | P17-O16 | 4.82  | 1.75        | 1.60     |
| 2   | А     | 501 | WBJ  | P17-O16 | 4.71  | 1.75        | 1.60     |
| 2   | В     | 501 | WBJ  | P17-O16 | 4.59  | 1.75        | 1.60     |
| 2   | Е     | 501 | WBJ  | P17-O16 | 4.37  | 1.74        | 1.60     |
| 2   | N     | 501 | WBJ  | P17-O16 | 4.33  | 1.74        | 1.60     |
| 2   | М     | 501 | WBJ  | P17-O16 | 4.13  | 1.73        | 1.60     |
| 2   | D     | 501 | WBJ  | P17-O16 | 3.48  | 1.71        | 1.60     |
| 2   | С     | 501 | WBJ  | P17-O16 | 2.94  | 1.69        | 1.60     |
| 2   | G     | 501 | WBJ  | O16-C15 | -2.69 | 1.35        | 1.45     |
| 2   | J     | 501 | WBJ  | O16-C15 | -2.68 | 1.35        | 1.45     |
| 2   | Ι     | 501 | WBJ  | O16-C15 | -2.66 | 1.35        | 1.45     |
| 2   | Р     | 501 | WBJ  | O16-C15 | -2.54 | 1.35        | 1.45     |



| Mol | Chain | Res | Type | Atoms   | Ζ     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|-------|-------------|----------|
| 2   | Κ     | 501 | WBJ  | O16-C15 | -2.52 | 1.35        | 1.45     |
| 2   | Н     | 501 | WBJ  | O16-C15 | -2.52 | 1.35        | 1.45     |
| 2   | G     | 501 | WBJ  | C07-C06 | 2.49  | 1.43        | 1.40     |
| 2   | L     | 501 | WBJ  | O16-C15 | -2.48 | 1.35        | 1.45     |
| 2   | F     | 501 | WBJ  | C07-C06 | 2.42  | 1.43        | 1.40     |
| 2   | F     | 501 | WBJ  | O16-C15 | -2.38 | 1.36        | 1.45     |
| 2   | А     | 501 | WBJ  | O16-C15 | -2.33 | 1.36        | 1.45     |
| 2   | Е     | 501 | WBJ  | O16-C15 | -2.22 | 1.36        | 1.45     |
| 2   | М     | 501 | WBJ  | O22-C21 | -2.21 | 1.24        | 1.30     |
| 2   | Е     | 501 | WBJ  | O22-C21 | -2.21 | 1.24        | 1.30     |
| 2   | D     | 501 | WBJ  | C12-C14 | 2.20  | 1.42        | 1.37     |
| 2   | Ν     | 501 | WBJ  | O22-C21 | -2.19 | 1.24        | 1.30     |
| 2   | Q     | 501 | WBJ  | O16-C15 | -2.17 | 1.36        | 1.45     |
| 2   | Ι     | 501 | WBJ  | O22-C21 | -2.15 | 1.24        | 1.30     |
| 2   | J     | 501 | WBJ  | O22-C21 | -2.15 | 1.24        | 1.30     |
| 2   | В     | 501 | WBJ  | O16-C15 | -2.11 | 1.37        | 1.45     |
| 2   | F     | 501 | WBJ  | O22-C21 | -2.08 | 1.24        | 1.30     |
| 2   | Р     | 501 | WBJ  | O22-C21 | -2.08 | 1.24        | 1.30     |
| 2   | N     | 501 | WBJ  | O16-C15 | -2.04 | 1.37        | 1.45     |
| 2   | С     | 501 | WBJ  | O16-C15 | -2.03 | 1.37        | 1.45     |

All (103) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|------------------|---------------|
| 2   | D     | 501 | WBJ  | C21-C03-N04 | -7.13 | 113.75           | 121.84        |
| 2   | Р     | 501 | WBJ  | C21-C03-N04 | -6.94 | 113.96           | 121.84        |
| 2   | С     | 501 | WBJ  | C21-C03-N04 | -6.91 | 114.00           | 121.84        |
| 2   | Н     | 501 | WBJ  | C21-C03-N04 | -6.84 | 114.08           | 121.84        |
| 2   | J     | 501 | WBJ  | C21-C03-N04 | -6.70 | 114.24           | 121.84        |
| 2   | Q     | 501 | WBJ  | C21-C03-N04 | -6.63 | 114.31           | 121.84        |
| 2   | М     | 501 | WBJ  | C21-C03-N04 | -6.60 | 114.35           | 121.84        |
| 2   | L     | 501 | WBJ  | C21-C03-N04 | -6.58 | 114.38           | 121.84        |
| 2   | N     | 501 | WBJ  | C21-C03-N04 | -6.55 | 114.41           | 121.84        |
| 2   | F     | 501 | WBJ  | C21-C03-N04 | -6.50 | 114.46           | 121.84        |
| 2   | K     | 501 | WBJ  | C21-C03-N04 | -6.39 | 114.59           | 121.84        |
| 2   | Е     | 501 | WBJ  | C21-C03-N04 | -6.38 | 114.61           | 121.84        |
| 2   | В     | 501 | WBJ  | C21-C03-N04 | -6.18 | 114.83           | 121.84        |
| 2   | А     | 501 | WBJ  | C21-C03-N04 | -6.16 | 114.85           | 121.84        |
| 2   | G     | 501 | WBJ  | C21-C03-N04 | -6.01 | 115.02           | 121.84        |
| 2   | Ι     | 501 | WBJ  | C21-C03-N04 | -5.40 | 115.71           | 121.84        |
| 2   | Ι     | 501 | WBJ  | O23-C21-C03 | -4.12 | 115.47           | 121.99        |
| 2   | Е     | 501 | WBJ  | O23-C21-C03 | -3.98 | 115.69           | 121.99        |



| Mol | Chain | Res | Type | Atoms       | Z     | Observed(°) | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|-------------|---------------|
| 2   | Ν     | 501 | WBJ  | O23-C21-C03 | -3.73 | 116.08      | 121.99        |
| 2   | Ι     | 501 | WBJ  | O22-C21-C03 | 3.50  | 119.18      | 113.42        |
| 2   | Р     | 501 | WBJ  | O23-C21-C03 | -3.44 | 116.54      | 121.99        |
| 2   | D     | 501 | WBJ  | O23-C21-C03 | -3.34 | 116.71      | 121.99        |
| 2   | F     | 501 | WBJ  | O23-C21-C03 | -3.33 | 116.71      | 121.99        |
| 2   | Р     | 501 | WBJ  | O22-C21-C03 | 3.19  | 118.68      | 113.42        |
| 2   | L     | 501 | WBJ  | O23-C21-C03 | -3.12 | 117.06      | 121.99        |
| 2   | Е     | 501 | WBJ  | O22-C21-C03 | 3.11  | 118.55      | 113.42        |
| 2   | Ι     | 501 | WBJ  | C07-C06-C14 | -3.10 | 115.75      | 118.72        |
| 2   | Ν     | 501 | WBJ  | O22-C21-C03 | 3.09  | 118.51      | 113.42        |
| 2   | L     | 501 | WBJ  | O22-C21-C03 | 3.04  | 118.43      | 113.42        |
| 2   | Q     | 501 | WBJ  | O23-C21-C03 | -3.03 | 117.19      | 121.99        |
| 2   | J     | 501 | WBJ  | O23-C21-C03 | -3.02 | 117.21      | 121.99        |
| 2   | Κ     | 501 | WBJ  | C07-C06-C14 | -3.01 | 115.83      | 118.72        |
| 2   | М     | 501 | WBJ  | C07-C06-C14 | -2.95 | 115.89      | 118.72        |
| 2   | F     | 501 | WBJ  | O22-C21-C03 | 2.94  | 118.27      | 113.42        |
| 2   | D     | 501 | WBJ  | O22-C21-C03 | 2.93  | 118.25      | 113.42        |
| 2   | М     | 501 | WBJ  | O23-C21-C03 | -2.91 | 117.38      | 121.99        |
| 2   | G     | 501 | WBJ  | C07-C06-C14 | -2.89 | 115.95      | 118.72        |
| 2   | М     | 501 | WBJ  | O16-P17-O20 | -2.88 | 98.38       | 106.47        |
| 2   | М     | 501 | WBJ  | O22-C21-C03 | 2.76  | 117.96      | 113.42        |
| 2   | J     | 501 | WBJ  | O22-C21-C03 | 2.69  | 117.85      | 113.42        |
| 2   | G     | 501 | WBJ  | O18-P17-O16 | -2.67 | 99.63       | 106.73        |
| 2   | А     | 501 | WBJ  | O23-C21-C03 | -2.66 | 117.78      | 121.99        |
| 2   | С     | 501 | WBJ  | O23-C21-C03 | -2.57 | 117.92      | 121.99        |
| 2   | G     | 501 | WBJ  | O23-C21-C03 | -2.56 | 117.94      | 121.99        |
| 2   | С     | 501 | WBJ  | C07-C06-C14 | -2.55 | 116.27      | 118.72        |
| 2   | С     | 501 | WBJ  | C10-C09-C07 | 2.55  | 124.04      | 120.89        |
| 2   | Ι     | 501 | WBJ  | C10-C09-C07 | 2.52  | 124.00      | 120.89        |
| 2   | А     | 501 | WBJ  | O19-P17-O18 | 2.52  | 117.27      | 107.64        |
| 2   | F     | 501 | WBJ  | C10-C09-C07 | 2.52  | 124.00      | 120.89        |
| 2   | N     | 501 | WBJ  | C07-C06-C14 | -2.51 | 116.31      | 118.72        |
| 2   | А     | 501 | WBJ  | C07-C06-C14 | -2.50 | 116.32      | 118.72        |
| 2   | Ι     | 501 | WBJ  | O19-P17-O18 | 2.48  | 117.12      | 107.64        |
| 2   | В     | 501 | WBJ  | O23-C21-C03 | -2.46 | 118.09      | 121.99        |
| 2   | А     | 501 | WBJ  | 018-P17-O16 | -2.44 | 100.24      | 106.73        |
| 2   | F     | 501 | WBJ  | O16-P17-O20 | -2.44 | 99.63       | 106.47        |
| 2   | F     | 501 | WBJ  | C07-C06-C14 | -2.43 | 116.38      | 118.72        |
| 2   | L     | 501 | WBJ  | O19-P17-O18 | 2.42  | 116.87      | 107.64        |
| 2   | М     | 501 | WBJ  | C10-C09-C07 | 2.41  | 123.86      | 120.89        |
| 2   | А     | 501 | WBJ  | O22-C21-C03 | 2.41  | 117.39      | 113.42        |
| 2   | D     | 501 | WBJ  | C07-C06-C14 | -2.39 | 116.42      | 118.72        |


| Mol | Chain | Res | Type | Atoms                    | Z     | Observed(°) | $Ideal(^{o})$ |
|-----|-------|-----|------|--------------------------|-------|-------------|---------------|
| 2   | В     | 501 | WBJ  | C07-C06-C14              | -2.38 | 116.43      | 118.72        |
| 2   | Е     | 501 | WBJ  | C10-C09-C07              | 2.38  | 123.82      | 120.89        |
| 2   | L     | 501 | WBJ  | C07-C06-C14              | -2.37 | 116.45      | 118.72        |
| 2   | В     | 501 | WBJ  | O19-P17-O18              | 2.37  | 116.68      | 107.64        |
| 2   | K     | 501 | WBJ  | O23-C21-C03              | -2.35 | 118.27      | 121.99        |
| 2   | Р     | 501 | WBJ  | C07-C06-C14              | -2.34 | 116.48      | 118.72        |
| 2   | K     | 501 | WBJ  | O22-C21-C03              | 2.33  | 117.26      | 113.42        |
| 2   | D     | 501 | WBJ  | O18-P17-O16              | -2.33 | 100.53      | 106.73        |
| 2   | Е     | 501 | WBJ  | O19-P17-O16              | -2.32 | 100.55      | 106.73        |
| 2   | Q     | 501 | WBJ  | O18-P17-O16              | -2.32 | 100.57      | 106.73        |
| 2   | Н     | 501 | WBJ  | C10-C09-C07              | 2.31  | 123.75      | 120.89        |
| 2   | Κ     | 501 | WBJ  | O18-P17-O16              | -2.31 | 100.58      | 106.73        |
| 2   | Ν     | 501 | WBJ  | O18-P17-O16              | -2.31 | 100.59      | 106.73        |
| 2   | L     | 501 | WBJ  | O19-P17-O16              | -2.29 | 100.64      | 106.73        |
| 2   | J     | 501 | WBJ  | O19-P17-O18              | 2.27  | 116.33      | 107.64        |
| 2   | G     | 501 | WBJ  | O22-C21-C03              | 2.27  | 117.15      | 113.42        |
| 2   | Q     | 501 | WBJ  | O19-P17-O18              | 2.26  | 116.28      | 107.64        |
| 2   | Р     | 501 | WBJ  | O16-P17-O20              | -2.26 | 100.14      | 106.47        |
| 2   | N     | 501 | WBJ  | C10-C09-C07              | 2.26  | 123.67      | 120.89        |
| 2   | J     | 501 | WBJ  | O16-P17-O20              | -2.25 | 100.16      | 106.47        |
| 2   | F     | 501 | WBJ  | O19-P17-O18              | 2.24  | 116.19      | 107.64        |
| 2   | G     | 501 | WBJ  | O19-P17-O18              | 2.23  | 116.17      | 107.64        |
| 2   | Q     | 501 | WBJ  | O22-C21-C03              | 2.23  | 117.09      | 113.42        |
| 2   | Κ     | 501 | WBJ  | O19-P17-O16              | -2.22 | 100.82      | 106.73        |
| 2   | G     | 501 | WBJ  | C10-C09-C07              | 2.22  | 123.63      | 120.89        |
| 2   | Н     | 501 | WBJ  | O23-C21-C03              | -2.21 | 118.48      | 121.99        |
| 2   | А     | 501 | WBJ  | C10-C09-C07              | 2.21  | 123.61      | 120.89        |
| 2   | Ε     | 501 | WBJ  | C07-C06-C14              | -2.21 | 116.60      | 118.72        |
| 2   | Q     | 501 | WBJ  | C07-C06-C14              | -2.21 | 116.60      | 118.72        |
| 2   | Е     | 501 | WBJ  | O18-P17-O16              | -2.19 | 100.89      | 106.73        |
| 2   | Р     | 501 | WBJ  | O19-P17-O18              | 2.19  | 116.01      | 107.64        |
| 2   | D     | 501 | WBJ  | O19-P17-O18              | 2.19  | 116.00      | 107.64        |
| 2   | В     | 501 | WBJ  | O18-P17-O16              | -2.17 | 100.96      | 106.73        |
| 2   | В     | 501 | WBJ  | O22-C21-C03              | 2.13  | 116.93      | 113.42        |
| 2   | В     | 501 | WBJ  | C10-C09-C07              | 2.12  | 123.50      | 120.89        |
| 2   | Ι     | 501 | WBJ  | O16-P17-O20              | -2.11 | 100.54      | 106.47        |
| 2   | J     | 501 | WBJ  | O18-P17-O16              | -2.07 | 101.22      | 106.73        |
| 2   | G     | 501 | WBJ  | O16-P17-O20              | -2.06 | 100.70      | 106.47        |
| 2   | J     | 501 | WBJ  | $C07-C06-C1\overline{4}$ | -2.04 | 116.76      | 118.72        |
| 2   | Н     | 501 | WBJ  | O19-P17-O18              | 2.04  | 115.42      | 107.64        |
| 2   | L     | 501 | WBJ  | C10-C09-C07              | 2.02  | 123.38      | 120.89        |
| 2   | С     | 501 | WBJ  | O22-C21-C03              | 2.01  | 116.72      | 113.42        |



Continued from previous page...

| Mol | Chain | Res | Type | Atoms       | Z    | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|------|------------------|---------------|
| 2   | Κ     | 501 | WBJ  | O19-P17-O18 | 2.00 | 115.28           | 107.64        |

There are no chirality outliers.

All (91) torsion outliers are listed below:

| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 2   | А     | 501 | WBJ  | C02-C03-C21-O22 |
| 2   | А     | 501 | WBJ  | N04-C03-C21-O22 |
| 2   | А     | 501 | WBJ  | C02-C03-C21-O23 |
| 2   | А     | 501 | WBJ  | N04-C05-C06-C07 |
| 2   | А     | 501 | WBJ  | N04-C05-C06-C14 |
| 2   | В     | 501 | WBJ  | C02-C03-C21-O22 |
| 2   | В     | 501 | WBJ  | N04-C05-C06-C07 |
| 2   | В     | 501 | WBJ  | N04-C05-C06-C14 |
| 2   | С     | 501 | WBJ  | C02-C03-C21-O22 |
| 2   | С     | 501 | WBJ  | N04-C03-C21-O22 |
| 2   | С     | 501 | WBJ  | C02-C03-C21-O23 |
| 2   | С     | 501 | WBJ  | N04-C05-C06-C07 |
| 2   | С     | 501 | WBJ  | N04-C05-C06-C14 |
| 2   | D     | 501 | WBJ  | C02-C03-C21-O22 |
| 2   | D     | 501 | WBJ  | N04-C03-C21-O22 |
| 2   | D     | 501 | WBJ  | C02-C03-C21-O23 |
| 2   | D     | 501 | WBJ  | N04-C05-C06-C07 |
| 2   | D     | 501 | WBJ  | N04-C05-C06-C14 |
| 2   | G     | 501 | WBJ  | C02-C03-C21-O22 |
| 2   | G     | 501 | WBJ  | N04-C03-C21-O23 |
| 2   | G     | 501 | WBJ  | N04-C05-C06-C07 |
| 2   | G     | 501 | WBJ  | N04-C05-C06-C14 |
| 2   | Н     | 501 | WBJ  | C02-C03-C21-O22 |
| 2   | Н     | 501 | WBJ  | C02-C03-C21-O23 |
| 2   | Н     | 501 | WBJ  | N04-C05-C06-C07 |
| 2   | Н     | 501 | WBJ  | N04-C05-C06-C14 |
| 2   | F     | 501 | WBJ  | C02-C03-C21-O22 |
| 2   | F     | 501 | WBJ  | N04-C03-C21-O22 |
| 2   | F     | 501 | WBJ  | C02-C03-C21-O23 |
| 2   | F     | 501 | WBJ  | N04-C03-C21-O23 |
| 2   | F     | 501 | WBJ  | N04-C05-C06-C07 |
| 2   | F     | 501 | WBJ  | N04-C05-C06-C14 |
| 2   | Ι     | 501 | WBJ  | C02-C03-C21-O22 |
| 2   | Ι     | 501 | WBJ  | N04-C03-C21-O22 |
| 2   | Ι     | 501 | WBJ  | C02-C03-C21-O23 |
| 2   | Ι     | 501 | WBJ  | N04-C03-C21-O23 |



| 8ERB |
|------|
|------|

| Continued from pretious page |       |     |      |                 |  |  |  |
|------------------------------|-------|-----|------|-----------------|--|--|--|
| Mol                          | Chain | Res | Type | Atoms           |  |  |  |
| 2                            | Ι     | 501 | WBJ  | N04-C05-C06-C07 |  |  |  |
| 2                            | Ι     | 501 | WBJ  | N04-C05-C06-C14 |  |  |  |
| 2                            | Р     | 501 | WBJ  | C02-C03-C21-O22 |  |  |  |
| 2                            | Р     | 501 | WBJ  | N04-C03-C21-O22 |  |  |  |
| 2                            | Р     | 501 | WBJ  | C02-C03-C21-O23 |  |  |  |
| 2                            | Р     | 501 | WBJ  | N04-C03-C21-O23 |  |  |  |
| 2                            | Р     | 501 | WBJ  | N04-C05-C06-C07 |  |  |  |
| 2                            | Р     | 501 | WBJ  | N04-C05-C06-C14 |  |  |  |
| 2                            | J     | 501 | WBJ  | C02-C03-C21-O22 |  |  |  |
| 2                            | J     | 501 | WBJ  | N04-C03-C21-O22 |  |  |  |
| 2                            | J     | 501 | WBJ  | C02-C03-C21-O23 |  |  |  |
| 2                            | J     | 501 | WBJ  | N04-C03-C21-O23 |  |  |  |
| 2                            | J     | 501 | WBJ  | N04-C05-C06-C07 |  |  |  |
| 2                            | J     | 501 | WBJ  | N04-C05-C06-C14 |  |  |  |
| 2                            | М     | 501 | WBJ  | C02-C03-C21-O22 |  |  |  |
| 2                            | М     | 501 | WBJ  | N04-C03-C21-O22 |  |  |  |
| 2                            | М     | 501 | WBJ  | C02-C03-C21-O23 |  |  |  |
| 2                            | М     | 501 | WBJ  | N04-C03-C21-O23 |  |  |  |
| 2                            | М     | 501 | WBJ  | N04-C05-C06-C07 |  |  |  |
| 2                            | М     | 501 | WBJ  | N04-C05-C06-C14 |  |  |  |
| 2                            | Q     | 501 | WBJ  | C02-C03-C21-O22 |  |  |  |
| 2                            | Q     | 501 | WBJ  | C02-C03-C21-O23 |  |  |  |
| 2                            | Q     | 501 | WBJ  | N04-C05-C06-C07 |  |  |  |
| 2                            | Q     | 501 | WBJ  | N04-C05-C06-C14 |  |  |  |
| 2                            | N     | 501 | WBJ  | C02-C03-C21-O22 |  |  |  |
| 2                            | Ν     | 501 | WBJ  | N04-C03-C21-O22 |  |  |  |
| 2                            | Ν     | 501 | WBJ  | C02-C03-C21-O23 |  |  |  |
| 2                            | N     | 501 | WBJ  | N04-C03-C21-O23 |  |  |  |
| 2                            | N     | 501 | WBJ  | N04-C05-C06-C07 |  |  |  |
| 2                            | N     | 501 | WBJ  | N04-C05-C06-C14 |  |  |  |
| 2                            | Е     | 501 | WBJ  | C02-C03-C21-O22 |  |  |  |
| 2                            | Е     | 501 | WBJ  | N04-C03-C21-O22 |  |  |  |
| 2                            | Е     | 501 | WBJ  | C02-C03-C21-O23 |  |  |  |
| 2                            | Е     | 501 | WBJ  | N04-C03-C21-O23 |  |  |  |
| 2                            | Е     | 501 | WBJ  | N04-C05-C06-C07 |  |  |  |
| 2                            | Е     | 501 | WBJ  | N04-C05-C06-C14 |  |  |  |
| 2                            | L     | 501 | WBJ  | C02-C03-C21-O22 |  |  |  |
| 2                            | L     | 501 | WBJ  | N04-C03-C21-O22 |  |  |  |
| 2                            | L     | 501 | WBJ  | C02-C03-C21-O23 |  |  |  |
| 2                            | L     | 501 | WBJ  | N04-C05-C06-C07 |  |  |  |
| 2                            | L     | 501 | WBJ  | N04-C05-C06-C14 |  |  |  |
| 2                            | K     | 501 | WBJ  | N04-C05-C06-C07 |  |  |  |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 2   | Κ     | 501 | WBJ  | N04-C05-C06-C14 |
| 2   | Ν     | 501 | WBJ  | C06-C14-C15-O16 |
| 2   | В     | 501 | WBJ  | N04-C03-C21-O23 |
| 2   | D     | 501 | WBJ  | N04-C03-C21-O23 |
| 2   | L     | 501 | WBJ  | N04-C03-C21-O23 |
| 2   | Κ     | 501 | WBJ  | N04-C03-C21-O23 |
| 2   | Н     | 501 | WBJ  | N04-C03-C21-O22 |
| 2   | Q     | 501 | WBJ  | N04-C03-C21-O22 |
| 2   | Ν     | 501 | WBJ  | C12-C14-C15-O16 |
| 2   | Е     | 501 | WBJ  | C12-C14-C15-O16 |
| 2   | Е     | 501 | WBJ  | C06-C14-C15-O16 |
| 2   | А     | 501 | WBJ  | N04-C03-C21-O23 |
| 2   | С     | 501 | WBJ  | N04-C03-C21-O23 |

Continued from previous page...

There are no ring outliers.

2 monomers are involved in 2 short contacts:

| Mol | Chain | Res | Type | Clashes | Symm-Clashes |
|-----|-------|-----|------|---------|--------------|
| 2   | L     | 501 | WBJ  | 1       | 0            |
| 2   | В     | 501 | WBJ  | 1       | 0            |

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

































































# 5.7 Other polymers (i)

There are no such residues in this entry.

## 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Fit of model and data (i)

## 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

| Mol | Chain | Analysed        | $\langle RSRZ \rangle$ | #RSRZ>2     | 2  | $\mathbf{OWAB}(\mathbf{\AA}^2)$ | Q<0.9  |
|-----|-------|-----------------|------------------------|-------------|----|---------------------------------|--------|
| 1   | А     | 428/433~(98%)   | -0.03                  | 8 (1%) 66   | 68 | 9,20,35,57                      | 1 (0%) |
| 1   | В     | 427/433~(98%)   | 0.02                   | 10 (2%) 60  | 62 | 11,21,36,64                     | 0      |
| 1   | С     | 427/433~(98%)   | -0.15                  | 10 (2%) 60  | 62 | 9,17,31,60                      | 0      |
| 1   | D     | 428/433~(98%)   | -0.07                  | 7 (1%) 72   | 73 | 9,18,32,54                      | 0      |
| 1   | Ε     | 427/433~(98%)   | 0.07                   | 8 (1%) 66   | 68 | 10, 22, 38, 64                  | 0      |
| 1   | F     | 425/433~(98%)   | 0.00                   | 10 (2%) 59  | 61 | 11, 21, 36, 55                  | 0      |
| 1   | G     | 427/433~(98%)   | -0.04                  | 10 (2%) 60  | 62 | 11, 21, 35, 55                  | 0      |
| 1   | Н     | 426/433~(98%)   | -0.00                  | 8 (1%) 66   | 68 | 12, 23, 37, 55                  | 0      |
| 1   | Ι     | 428/433~(98%)   | -0.01                  | 13 (3%) 50  | 52 | 13, 23, 38, 56                  | 0      |
| 1   | J     | 427/433~(98%)   | 0.04                   | 9 (2%) 63   | 65 | 12, 23, 38, 60                  | 0      |
| 1   | Κ     | 429/433~(99%)   | 0.02                   | 8 (1%) 66   | 68 | 13, 22, 39, 62                  | 0      |
| 1   | L     | 428/433~(98%)   | -0.06                  | 7 (1%) 72   | 73 | 11, 21, 37, 51                  | 0      |
| 1   | М     | 428/433~(98%)   | -0.07                  | 8 (1%) 66   | 68 | 10, 19, 33, 60                  | 0      |
| 1   | Ν     | 422/433~(97%)   | 0.02                   | 4 (0%) 84   | 85 | 10, 22, 35, 51                  | 0      |
| 1   | Р     | 428/433 (98%)   | -0.05                  | 10 (2%) 60  | 62 | 11, 21, 36, 58                  | 0      |
| 1   | Q     | 429/433~(99%)   | -0.08                  | 9 (2%) 63   | 65 | 10, 18, 33, 56                  | 0      |
| All | All   | 6834/6928~(98%) | -0.02                  | 139 (2%) 65 | 66 | 9, 21, 36, 64                   | 1 (0%) |

#### All (139) RSRZ outliers are listed below:

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | Е     | 5   | VAL  | 5.6  |
| 1   | Ν     | 7   | GLN  | 5.4  |
| 1   | Е     | 354 | ASP  | 5.1  |
| 1   | Κ     | 354 | ASP  | 5.0  |
| 1   | С     | 354 | ASP  | 4.8  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | В     | 7   | GLN  | 4.7  |
| 1   | В     | 5   | VAL  | 4.6  |
| 1   | Е     | 356 | SER  | 4.6  |
| 1   | Н     | 355 | ALA  | 4.5  |
| 1   | В     | 356 | SER  | 4.5  |
| 1   | Н     | 431 | TYR  | 4.5  |
| 1   | K     | 432 | GLY  | 4.2  |
| 1   | В     | 354 | ASP  | 4.2  |
| 1   | Р     | 354 | ASP  | 4.0  |
| 1   | Ι     | 354 | ASP  | 4.0  |
| 1   | J     | 354 | ASP  | 3.9  |
| 1   | Q     | 5   | VAL  | 3.8  |
| 1   | K     | 5   | VAL  | 3.8  |
| 1   | М     | 354 | ASP  | 3.8  |
| 1   | А     | 356 | SER  | 3.7  |
| 1   | D     | 4   | GLN  | 3.7  |
| 1   | G     | 5   | VAL  | 3.6  |
| 1   | F     | 353 | GLY  | 3.6  |
| 1   | М     | 5   | VAL  | 3.5  |
| 1   | Ι     | 5   | VAL  | 3.5  |
| 1   | С     | 355 | ALA  | 3.4  |
| 1   | А     | 354 | ASP  | 3.4  |
| 1   | G     | 354 | ASP  | 3.4  |
| 1   | М     | 7   | GLN  | 3.3  |
| 1   | F     | 428 | GLN  | 3.3  |
| 1   | K     | 431 | TYR  | 3.2  |
| 1   | F     | 354 | ASP  | 3.2  |
| 1   | А     | 7   | GLN  | 3.2  |
| 1   | K     | 352 | LYS  | 3.2  |
| 1   | С     | 432 | GLY  | 3.1  |
| 1   | Р     | 428 | GLN  | 3.1  |
| 1   | Ι     | 428 | GLN  | 3.1  |
| 1   | J     | 428 | GLN  | 3.0  |
| 1   | Н     | 7   | GLN  | 3.0  |
| 1   | Н     | 430 | ALA  | 3.0  |
| 1   | J     | 431 | TYR  | 3.0  |
| 1   | Ι     | 360 | LYS  | 2.9  |
| 1   | N     | 398 | LEU  | 2.9  |
| 1   | Q     | 354 | ASP  | 2.9  |
| 1   | L     | 354 | ASP  | 2.9  |
| 1   | L     | 428 | GLN  | 2.9  |
| 1   | А     | 31  | ILE  | 2.9  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | М     | 432 | GLY  | 2.9  |
| 1   | Р     | 147 | ASP  | 2.9  |
| 1   | D     | 354 | ASP  | 2.9  |
| 1   | L     | 355 | ALA  | 2.9  |
| 1   | Q     | 7   | GLN  | 2.9  |
| 1   | D     | 7   | GLN  | 2.8  |
| 1   | А     | 5   | VAL  | 2.8  |
| 1   | Q     | 356 | SER  | 2.8  |
| 1   | Е     | 7   | GLN  | 2.8  |
| 1   | G     | 355 | ALA  | 2.7  |
| 1   | D     | 5   | VAL  | 2.7  |
| 1   | F     | 360 | LYS  | 2.7  |
| 1   | М     | 282 | PHE  | 2.7  |
| 1   | Ι     | 431 | TYR  | 2.7  |
| 1   | J     | 355 | ALA  | 2.7  |
| 1   | Q     | 355 | ALA  | 2.7  |
| 1   | J     | 395 | ASP  | 2.6  |
| 1   | F     | 431 | TYR  | 2.6  |
| 1   | Н     | 428 | GLN  | 2.6  |
| 1   | С     | 6   | PHE  | 2.6  |
| 1   | G     | 431 | TYR  | 2.6  |
| 1   | D     | 31  | ILE  | 2.6  |
| 1   | М     | 353 | GLY  | 2.6  |
| 1   | Р     | 5   | VAL  | 2.5  |
| 1   | Р     | 135 | ARG  | 2.5  |
| 1   | G     | 428 | GLN  | 2.5  |
| 1   | С     | 7   | GLN  | 2.5  |
| 1   | Q     | 4   | GLN  | 2.5  |
| 1   | Ν     | 356 | SER  | 2.5  |
| 1   | L     | 7   | GLN  | 2.5  |
| 1   | В     | 355 | ALA  | 2.5  |
| 1   | F     | 7   | GLN  | 2.5  |
| 1   | Q     | 31  | ILE  | 2.5  |
| 1   | Е     | 252 | LEU  | 2.4  |
| 1   | Ι     | 7   | GLN  | 2.4  |
| 1   | Ι     | 353 | GLY  | 2.4  |
| 1   | H     | 427 | PHE  | 2.4  |
| 1   | G     | 353 | GLY  | 2.4  |
| 1   | G     | 7   | GLN  | 2.4  |
| 1   | L     | 356 | SER  | 2.4  |
| 1   | В     | 31  | ILE  | 2.4  |
| 1   | С     | 31  | ILE  | 2.4  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | Ι     | 357 | ALA  | 2.4  |
| 1   | Н     | 279 | LEU  | 2.3  |
| 1   | Е     | 23  | HIS  | 2.3  |
| 1   | С     | 282 | PHE  | 2.3  |
| 1   | G     | 430 | ALA  | 2.3  |
| 1   | Ι     | 54  | LEU  | 2.3  |
| 1   | J     | 356 | SER  | 2.3  |
| 1   | М     | 31  | ILE  | 2.3  |
| 1   | F     | 314 | SER  | 2.3  |
| 1   | Ι     | 356 | SER  | 2.3  |
| 1   | G     | 429 | LYS  | 2.3  |
| 1   | J     | 353 | GLY  | 2.2  |
| 1   | А     | 279 | LEU  | 2.2  |
| 1   | А     | 432 | GLY  | 2.2  |
| 1   | F     | 430 | ALA  | 2.2  |
| 1   | F     | 252 | LEU  | 2.2  |
| 1   | В     | 282 | PHE  | 2.2  |
| 1   | Κ     | 428 | GLN  | 2.2  |
| 1   | В     | 22  | PRO  | 2.2  |
| 1   | G     | 356 | SER  | 2.2  |
| 1   | L     | 431 | TYR  | 2.2  |
| 1   | K     | 23  | HIS  | 2.2  |
| 1   | F     | 429 | LYS  | 2.2  |
| 1   | В     | 428 | GLN  | 2.2  |
| 1   | Р     | 7   | GLN  | 2.2  |
| 1   | J     | 5   | VAL  | 2.2  |
| 1   | С     | 279 | LEU  | 2.1  |
| 1   | Q     | 21  | ASP  | 2.1  |
| 1   | Е     | 395 | ASP  | 2.1  |
| 1   | А     | 355 | ALA  | 2.1  |
| 1   | D     | 287 | LEU  | 2.1  |
| 1   | М     | 279 | LEU  | 2.1  |
| 1   | Q     | 279 | LEU  | 2.1  |
| 1   | K     | 430 | ALA  | 2.1  |
| 1   | J     | 23  | HIS  | 2.1  |
| 1   | Н     | 354 | ASP  | 2.1  |
| 1   | Ν     | 282 | PHE  | 2.1  |
| 1   | Ι     | 352 | LYS  | 2.1  |
| 1   | Р     | 355 | ALA  | 2.1  |
| 1   | L     | 314 | SER  | 2.1  |
| 1   | Р     | 4   | GLN  | 2.1  |
| 1   | Р     | 316 | PRO  | 2.1  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | Ι     | 4   | GLN  | 2.1  |
| 1   | В     | 353 | GLY  | 2.0  |
| 1   | Р     | 353 | GLY  | 2.0  |
| 1   | С     | 428 | GLN  | 2.0  |
| 1   | С     | 220 | ILE  | 2.0  |
| 1   | D     | 288 | LEU  | 2.0  |
| 1   | Е     | 31  | ILE  | 2.0  |
| 1   | Ι     | 135 | ARG  | 2.0  |

#### 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

### 6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

| Mol | Type | Chain | Res | Atoms | RSCC | RSR  | $B-factors(A^2)$    | Q<0.9 |
|-----|------|-------|-----|-------|------|------|---------------------|-------|
| 2   | WBJ  | В     | 501 | 22/22 | 0.96 | 0.12 | $13,\!19,\!26,\!29$ | 0     |
| 2   | WBJ  | G     | 501 | 22/22 | 0.96 | 0.12 | 13,19,24,26         | 0     |
| 2   | WBJ  | Н     | 501 | 22/22 | 0.97 | 0.11 | 14,19,31,33         | 0     |
| 2   | WBJ  | Ι     | 501 | 22/22 | 0.97 | 0.10 | 14,20,29,32         | 0     |
| 2   | WBJ  | J     | 501 | 22/22 | 0.97 | 0.10 | 13,23,29,35         | 0     |
| 2   | WBJ  | Е     | 501 | 22/22 | 0.97 | 0.11 | 14,21,28,34         | 0     |
| 2   | WBJ  | L     | 501 | 22/22 | 0.97 | 0.11 | 13,21,27,30         | 0     |
| 2   | WBJ  | D     | 501 | 22/22 | 0.98 | 0.10 | $9,\!15,\!26,\!29$  | 0     |
| 2   | WBJ  | Р     | 501 | 22/22 | 0.98 | 0.10 | 13,17,27,31         | 0     |
| 2   | WBJ  | А     | 501 | 22/22 | 0.98 | 0.12 | 11,15,26,29         | 0     |
| 2   | WBJ  | М     | 501 | 22/22 | 0.98 | 0.10 | 11,15,26,29         | 0     |
| 2   | WBJ  | Q     | 501 | 22/22 | 0.98 | 0.10 | 13,18,26,29         | 0     |
| 2   | WBJ  | N     | 501 | 22/22 | 0.98 | 0.11 | 14,21,29,32         | 0     |
| 2   | WBJ  | С     | 501 | 22/22 | 0.98 | 0.10 | 9,15,25,29          | 0     |
| 2   | WBJ  | F     | 501 | 22/22 | 0.98 | 0.10 | 12,20,29,31         | 0     |



Continued from previous page...

| Mol | Type | Chain | Res | Atoms | RSCC | RSR  | $\mathbf{B}	ext{-factors}(\mathrm{\AA}^2)$ | Q < 0.9 |
|-----|------|-------|-----|-------|------|------|--------------------------------------------|---------|
| 2   | WBJ  | Κ     | 501 | 22/22 | 0.98 | 0.10 | $14,\!20,\!30,\!34$                        | 0       |

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.






























































## 6.5 Other polymers (i)

There are no such residues in this entry.

