

Full wwPDB X-ray Structure Validation Report (i)

Nov 21, 2023 – 03:15 AM JST

PDB ID	:	7EKX
Title	:	Crystal Structure of the Candida Glabrata Glycogen Debranching Enzyme
		(W470A E564Q) in complex with maltononaose
Authors	:	Shen, M.; Xiang, S.
Deposited on	:	2021-04-07
Resolution	:	3.40 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\hbox{-}RAY\,DIFFRACTION$

The reported resolution of this entry is 3.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	1026 (3.48-3.32)
Clashscore	141614	1055 (3.48-3.32)
Ramachandran outliers	138981	1038 (3.48-3.32)
Sidechain outliers	138945	1038 (3.48-3.32)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain		
1	А	1536	74%	23%	
1	В	1536	73%	23%	•••
2	С	3	100%		
3	D	2	50%	50%	
4	Е	5	60%	40%	
5	F	7	100%		

$7\mathrm{EKX}$

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 24729 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 4-alpha-glucanotransferase.

Mol	Chain	Residues		A	toms			ZeroOcc	AltConf	Trace
1	А	1526	Total 12269	C 7822	N 2065	O 2330	S 52	0	0	0
1	В	1526	Total 12269	C 7822	N 2065	O 2330	S 52	0	0	0

Chain	Residue	Modelled	Actual	Comment	Reference
А	470	ALA	TRP	engineered mutation	UNP Q6FSK0
А	564	GLN	GLU	engineered mutation	UNP Q6FSK0
А	1529	LEU	-	expression tag	UNP Q6FSK0
А	1530	GLU	-	expression tag	UNP Q6FSK0
А	1531	HIS	-	expression tag	UNP Q6FSK0
А	1532	HIS	-	expression tag	UNP Q6FSK0
A	1533	HIS	-	expression tag	UNP Q6FSK0
А	1534	HIS	-	expression tag	UNP Q6FSK0
А	1535	HIS	-	expression tag	UNP Q6FSK0
А	1536	HIS	-	expression tag	UNP Q6FSK0
В	470	ALA	TRP	engineered mutation	UNP Q6FSK0
В	564	GLN	GLU	engineered mutation	UNP Q6FSK0
В	1529	LEU	-	expression tag	UNP Q6FSK0
В	1530	GLU	-	expression tag	UNP Q6FSK0
В	1531	HIS	-	expression tag	UNP Q6FSK0
В	1532	HIS	-	expression tag	UNP Q6FSK0
В	1533	HIS	-	expression tag	UNP Q6FSK0
В	1534	HIS	-	expression tag	UNP Q6FSK0
B	1535	HIS	-	expression tag	UNP Q6FSK0
В	1536	HIS	-	expression tag	UNP Q6FSK0

There are 20 discrepancies between the modelled and reference sequences:

• Molecule 2 is an oligosaccharide called alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose.

Mol	Chain	Residues	At	oms		ZeroOcc	AltConf	Trace
2	С	3	Total 34	C 18	O 16	0	0	0

• Molecule 3 is an oligosaccharide called alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose.

Mol	Chain	Residues	At	\mathbf{oms}		ZeroOcc	AltConf	Trace
3	D	2	Total 23	C 12	0 11	0	0	0

• Molecule 4 is an oligosaccharide called alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose.

Mol	Chain	Residues	At	oms		ZeroOcc	AltConf	Trace
4	Е	5	Total 56	C 30	O 26	0	0	0

• Molecule 5 is an oligosaccharide called alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose.

Mol	Chain	Residues	At	oms		ZeroOcc	AltConf	Trace
5	F	7	Total 78	C 42	O 36	0	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Chain A: 74% 23%
- Molecule 1: 4-alpha-glucanotransferase

HIS HIS HIS HIS HIS HIS

• Molecule 1: 4-alpha-glucanotransferase

Chain B:	73%	23% ••
MET SER A3 H43 H43 H5 H3 L8 D13 C21	V27 L35 L35 L35 L35 L51 L51 L51 L53 L53 N65 V59 V59 V66 V59 V68 V68 V73 V58 V68 V73 V68 V73 V68 V73 V68 V73 V68 V73 V74 V74 V74 V74 V74 V74 V74 V74 V74 V74	F91 L99 V103 V103 V107 C108 C108 N115 L131 L131 L131 L131 L131 L131 L131 L
M148 V152 8153 K154 W155 1159 T159 T160 K161	K174 H179 H179 P182 L185 Q184 R186 Q186 Q195 Q197 Q197 Q197 Q197 C199 E200 F201 F201 F201 F201	V212 A213 A213 R220 L226 D230 D230 D230 C26 V261 V261 V261 V261 L259 L259 L259 L259 C251 C259 C251 C259 C250 C250 C250 C250 C250 C250 C250 C250
E264 E266 L266 D266 K267 K268 L269 L269 L269 L270 E274 M376 M376	1279 1279 1279 1288 1288 1288 1288 1288 1288 1288 128	W309 F311 7312 7312 7315 7315 7315 7317 7317 7316 7326 7326 7326 7326 7326 7326 7326 732
N346 L347 A349 A349 R350 N351 R352 R352 R352 R355 R355 R357 R370	1371 1372 1373 1373 1373 1374 1379 1379 1370 1370 1371 1371 1371 1371 1371 1371	Y411 P414 P414 P414 P418 F429 F429 F429 F426 F426 F426 F426 F426 F426 F426 F426
Q438 6439 P440 F444 L445 F445 S448 S448 F452 F452	R454 R465 A465 A465 R495 R490 R490 R490 R490 R490 R490 R490 R490	K520 K520 1523 H543 H543 H543 H543 H543 H543 H564 H566 H578 H566 H578 H566 H578 H566 H578 H566 H566 H578 H566 H578 H578 H578 H578 H578 H578 H578 H578
P617 L618 D626 D626 E631 E631 V643 V643	8647 8647 1648 1648 1649 1651 7652 7654 7664 7667 7667 7667 8672 8672 8672 8673 8675 867 874 874 874 874 875 865 861 8776 861 8776 8776 8617 8776 8677 8776 8677 7667 8677 7667 8677 7667 7677	7706 771 714 715 715 714 714 8715 8715 771 7719 7719 7719 7719 7719 7719 77
M754 H755 Q761 T764 R767 W776	K783 5785 5785 8787 8794 1796 1796 1810 1810 1810 1822 1823 1823 1823 1823 1826 1825 1823 1826 1826	1847 1847 9857 9861 1870 1871 1878 1878 890 890 1896 1896 1896 1896 1896 1896 1896 1896
5909 6910 6911 7921 7921 1928 1928 1929 1929	1940 1948 1948 1948 1948 1948 1948 1948 1948	Y1071 Y1071 S1082 L1083 R1084 R1108 R1108 R1108 R1108 R1125 A1125 A1125 A1134 A1136 A1136
V141 T142 T142 T143 G147 G147 K1154 V1155 R1156 R1157 R1157	F1155 F1165 D1162 E1164 F1165 F1165 F1165 F1166 F1175 A1177 A1177 A1177 F1176 F1176 F1176 F1176 F1176 F1176 F1176 F1176 F1176 F1176 F1180	11195 K1196 Y1197 F1199 E1199 A1200 A1200 A1200 A1202 A1202 A1202 A1202 A1202 A1202 A1206 D1207 B1206 D1207 B1206 C1224 C1217 V1217 C1213 A1233
C1236 C1237 G1237 M1240 M1241 M1243 G1244 G1244 E1245 E1245 E1245 E1247 K1247	1256 1256 1256 1256 1256 1256 1256 1264 1263 1281 1282 1289 1288 1288 1288 1288 1288	11299 K1320 K1320 F1321 F1322 F1323 F1323 F1323 T1324 T1334 T1341 K1345 T1344 T1344 T1344 T1345 T1345
R1357 11361 11366 11366 11384 11388 11403 81404 81404	P1405 N1408 N1408 D1411 D1412 C1421 R1422 P1428 P1428 V1432 F1437 F1435 F1437 F1436 C1456 C1452 C1452 C1452 S1456 S1456	A1458 A1459 K1460 K1461 K1461 F1461 F1463 F1474 R1472 R1472 R1472 R1472 R1474 R1474 R1474 R1479 R1479 R1479 R1496 K1496 K1496 K1496 K1496 K1496 K1496 K1496 K1496 K1496 K1496 K1496 K1496 K1496 K1496 K1460 K1472 K172 K172 K172 K172 K172 K172 K172 K1
81504 41510 41510 61514 61514 6120 6120 HIS HIS HIS	HIIS HIIS HIIS	

• Molecule 2: alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranos e

Chain C:

100%

GLC1 GLC2 GLC3

• Molecule 3: alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose

Chain D: 50% 50%

GLC1 GLC2

• Molecule 4: alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose

Chain E:	60%	40%

GLC1 GLC2 GLC3 GLC3 GLC4 GLC5

 \bullet Molecule 5: alpha-D-glucopyranose-(1-4)-alpha-D-gluco

Chain F:

100%

GLC1 GLC2 GLC3 GLC4 GLC6 GLC6

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 2 2 21	Depositor
Cell constants	160.65Å 206.28Å 258.05Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Resolution(A)	46.15 - 3.40	Depositor
Resolution (A)	46.15 - 3.40	EDS
% Data completeness	99.6 (46.15-3.40)	Depositor
(in resolution range)	99.6 (46.15-3.40)	EDS
R_{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$2.04 (at 3.40 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.17.1_3660	Depositor
P. P.	0.272 , 0.303	Depositor
n, n_{free}	0.272 , 0.303	DCC
R_{free} test set	2929 reflections (4.97%)	wwPDB-VP
Wilson B-factor (Å ²)	98.4	Xtriage
Anisotropy	0.555	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.23, 25.1	EDS
L-test for $twinning^2$	$ < L >=0.44, < L^2>=0.26$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.86	EDS
Total number of atoms	24729	wwPDB-VP
Average B, all atoms $(Å^2)$	141.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.36% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: GLC

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal Chain		Bond lengths		Bond angles	
1VIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.24	0/12578	0.40	0/17055
1	В	0.24	0/12578	0.41	1/17055~(0.0%)
All	All	0.24	0/25156	0.40	1/34110~(0.0%)

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	912	ARG	NE-CZ-NH1	5.07	122.83	120.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	12269	0	11957	174	0
1	В	12269	0	11957	193	3
2	С	34	0	30	0	0
3	D	23	0	21	0	0
4	Е	56	0	48	5	3
5	F	78	0	66	7	0
All	All	24729	0	24079	371	3

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 8.

All (371) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom_1	Atom_2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:268:LYS:HE2	1:B:305:GLU:HB3	1.58	0.85
1:B:816:ALA:HB2	1:B:826:ILE:HG13	1.61	0.81
1:B:1207:ASP:HA	5:F:5:GLC:H2	1.63	0.80
1:A:1114:ASN:HB2	1:A:1126:ALA:HB2	1.64	0.80
1:B:1114:ASN:HB2	1:B:1126:ALA:HB2	1.65	0.78
1:A:1248:LYS:HE2	1:A:1412:ASP:HB2	1.65	0.78
1:B:1123:ARG:HH22	1:B:1207:ASP:HB2	1.47	0.77
4:E:4:GLC:O3	4:E:5:GLC:O2	2.03	0.77
1:A:794:ARG:HD2	1:A:796:LYS:HE2	1.67	0.77
1:A:1361:THR:HG21	1:A:1437:PHE:HA	1.68	0.76
1:A:182:PRO:HD3	1:A:230:ASP:HB2	1.68	0.76
1:A:8:LEU:HB2	1:A:652:PRO:HG2	1.69	0.74
1:A:78:ASP:HB3	1:A:81:LYS:HB2	1.70	0.74
1:B:1361:THR:HG21	1:B:1437:PHE:HA	1.70	0.73
1:A:1463:PRO:HB3	1:A:1467:LEU:HD23	1.70	0.73
1:B:380:LEU:HB3	1:B:392:ILE:HD12	1.69	0.72
1:A:268:LYS:HG3	1:A:302:VAL:HG12	1.72	0.72
1:A:1123:ARG:HH21	4:E:4:GLC:H62	1.56	0.70
1:A:179:HIS:NE2	1:A:230:ASP:OD1	2.23	0.69
1:B:1208:ARG:HH21	5:F:6:GLC:H2	1.57	0.69
1:A:198:GLN:HG2	1:A:517:ARG:HH21	1.57	0.68
1:B:325:GLU:HG2	1:B:326:LYS:HG2	1.73	0.68
1:B:1384:ASP:OD1	1:B:1474:ARG:NH1	2.25	0.68
1:A:1245:GLU:HG3	1:A:1420:LYS:HB3	1.75	0.68
1:A:1083:LEU:HD22	1:A:1136:ALA:HB1	1.75	0.68
1:A:1196:LYS:HD2	1:A:1218:GLU:HG2	1.74	0.68
1:B:1240:MET:HE1	1:B:1357:ARG:HD3	1.74	0.68
1:A:816:ALA:HB2	1:A:826:ILE:HG13	1.77	0.67
1:A:1342:LYS:HE2	1:A:1353:ASP:HB3	1.77	0.67
1:A:766:HIS:HE1	1:A:865:THR:HG21	1.61	0.66
1:B:1115:LEU:HB3	1:B:1123:ARG:HB3	1.78	0.65
1:A:374:ASP:OD1	1:A:374:ASP:N	2.21	0.65
1:A:169:ARG:NH1	1:A:721:SER:O	2.29	0.64
1:B:8:LEU:HB2	1:B:652:PRO:HG2	1.78	0.64
1:B:647:SER:OG	1:B:648:GLU:N	2.31	0.64
1:A:430:ARG:HB3	1:A:438:GLN:HG3	1.80	0.64
1:B:184:GLN:HA	1:B:201:PHE:HA	1.80	0.64

A + a 1	1 J	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:131:LEU:HD13	1:B:143:LEU:HD13	1.80	0.63
1:B:220:ARG:NH1	1:B:530:ASN:OD1	2.33	0.62
1:B:1428:PRO:HB3	1:B:1493:LEU:HD21	1.82	0.62
1:B:1154:LYS:HG2	1:B:1179:THR:HG22	1.82	0.62
1:B:1463:PRO:HB3	1:B:1467:LEU:HD23	1.80	0.62
1:B:1452:CYS:HB3	1:B:1467:LEU:HB2	1.82	0.62
1:B:186:ARG:HG2	1:B:192:PRO:HA	1.81	0.61
1:B:452:PHE:HA	1:B:466:ALA:HA	1.81	0.61
1:A:590:MET:HB2	1:A:671:ASN:HD22	1.66	0.61
1:B:466:ALA:H	1:B:501:LYS:HD2	1.66	0.61
1:A:323:LEU:HD23	1:A:373:ILE:HG23	1.82	0.60
1:B:629:ILE:HG22	1:B:649:ILE:HA	1.82	0.60
1:A:691:ALA:HA	1:A:697:ILE:HG21	1.84	0.60
1:A:728:ILE:HD11	1:A:810:LEU:HD22	1.84	0.60
1:B:1248:LYS:HG3	1:B:1412:ASP:HB2	1.84	0.59
1:A:929:LEU:HD22	1:A:1006:VAL:HG13	1.83	0.59
1:A:251:TYR:CE1	1:A:501:LYS:HG3	2.37	0.59
1:B:287:THR:HB	1:B:290:ASP:HB3	1.84	0.59
1:A:1331:ASP:OD1	1:A:1333:THR:OG1	2.19	0.59
1:A:136:VAL:HG13	1:A:137:ASN:H	1.68	0.59
1:B:612:SER:OG	1:B:943:ASN:ND2	2.36	0.59
1:B:1405:PRO:HB2	1:B:1496:LYS:HB2	1.85	0.58
1:A:673:THR:HG22	1:A:675:ASN:H	1.69	0.58
1:B:616:VAL:HA	1:B:646:VAL:HG11	1.84	0.58
1:B:328:GLY:H	1:B:331:LYS:HE2	1.68	0.57
1:A:1436:TYR:HE1	1:A:1439:ARG:HH21	1.51	0.57
1:A:1455:GLU:HA	1:A:1462:LYS:H	1.67	0.57
1:A:1503:ASP:O	4:E:1:GLC:O2	2.20	0.57
1:B:418:VAL:HG22	1:B:490:ARG:HA	1.86	0.57
1:B:1275:ARG:NH2	1:B:1366:VAL:O	2.38	0.57
1:B:590:MET:HB2	1:B:671:ASN:HD22	1.69	0.56
1:B:611:GLY:HA2	1:B:997:LEU:HD23	1.87	0.56
1:B:1262:ALA:HB3	1:B:1345:TYR:HB3	1.87	0.56
1:B:5:ARG:HA	1:B:643:VAL:HG12	1.86	0.56
1:B:238:ASN:ND2	1:B:497:GLY:O	2.39	0.56
1:A:1209:VAL:HG12	1:A:1252:VAL:HG13	1.87	0.56
1:B:564:GLN:HG3	1:B:586:ILE:HD12	1.88	0.56
1:B:13:ASP:OD2	1:B:1479:ARG:NH2	2.33	0.56
1:A:131:LEU:HD13	1:A:143:LEU:HD13	1.88	0.56
1:A:1219:VAL:HG22	1:A:1230:GLY:HA3	1.88	0.56
1:B:68:ASN:ND2	1:B:108:CYS:SG	2.78	0.56

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:870:ILE:HD11	1:A:997:LEU:HD13	1.89	0.55
1:A:647:SER:OG	1:A:648:GLU:N	2.38	0.55
1:B:384:HIS:HB3	1:B:392:ILE:HD11	1.88	0.55
1:A:315:ASP:O	1:A:319:THR:OG1	2.19	0.55
1:A:77:PHE:O	1:A:554:ARG:NH1	2.40	0.55
1:B:673:THR:HG22	1:B:675:ASN:H	1.72	0.55
1:A:425:ARG:HH22	1:A:491:ARG:HB3	1.72	0.54
1:A:1355:GLN:OE1	1:A:1357:ARG:NH1	2.40	0.54
1:A:667:CYS:HA	1:A:671:ASN:HD21	1.72	0.54
1:A:5:ARG:HA	1:A:643:VAL:HG12	1.90	0.53
1:A:381:LYS:HD3	1:A:386:GLU:HG2	1.90	0.53
1:B:940:ILE:HD11	1:B:1003:ALA:HB1	1.90	0.53
1:A:1064:LEU:O	1:A:1505:SER:OG	2.20	0.53
1:B:264:GLU:HB2	1:B:309:TRP:HH2	1.74	0.53
1:B:179:HIS:NE2	1:B:230:ASP:OD1	2.41	0.53
1:A:400:LEU:O	1:A:404:ASN:ND2	2.41	0.53
1:A:251:TYR:HE1	1:A:501:LYS:HG3	1.74	0.53
1:B:309:TRP:HB2	1:B:411:TYR:HE1	1.73	0.53
1:B:199:LEU:HD11	1:B:520:LYS:HB2	1.90	0.53
1:B:27:VAL:HG22	1:B:578:GLU:HG3	1.91	0.53
1:B:1071:TYR:CE1	5:F:7:GLC:H3	2.44	0.53
1:A:9:LEU:HD11	1:A:17:PRO:HB3	1.92	0.52
1:A:1322:LYS:H	1:A:1322:LYS:HD2	1.74	0.52
1:B:286:LYS:HG2	1:B:431:ILE:HG23	1.91	0.52
1:A:335:ASP:OD1	1:A:336:ASP:N	2.41	0.52
1:A:425:ARG:NH2	1:A:491:ARG:HB3	2.25	0.52
1:A:1141:VAL:HA	1:A:1147:GLY:HA3	1.92	0.52
1:B:1435:GLY:HA3	1:B:1514:CYS:HB3	1.91	0.52
1:A:456:LYS:HG3	1:A:462:GLU:HG2	1.91	0.52
1:A:738:MET:HB3	1:A:776:TRP:CH2	2.45	0.52
1:B:152:VAL:HG12	1:B:154:LYS:HG2	1.92	0.52
1:A:115:ASN:OD1	1:A:116:ASP:N	2.43	0.52
1:B:300:GLU:HA	1:B:304:GLY:HA3	1.92	0.52
1:B:1503:ASP:O	5:F:2:GLC:O2	2.26	0.52
1:B:115:ASN:OD1	1:B:116:ASP:N	2.42	0.52
1:B:1242:LYS:HE3	1:B:1421:GLY:O	2.10	0.51
1:B:1108:LYS:HB3	1:B:1124:TYR:CZ	2.46	0.51
1:B:721:SER:HB3	1:B:822:ILE:HG23	1.93	0.51
1:A:136:VAL:HA	1:A:226:LEU:HD21	1.92	0.51
1:A:256:SER:HB2	1:A:258:HIS:CE1	2.46	0.51
1:A:1066:HIS:CG	4:E:1:GLC:H1	2.46	0.51

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:800:THR:O	1:B:847:THR:OG1	2.24	0.51
1:A:53:ILE:HD11	1:A:65:ILE:HD11	1.92	0.50
1:A:1493:LEU:HB3	1:A:1504:SER:HB2	1.94	0.50
1:B:116:ASP:N	1:B:116:ASP:OD1	2.45	0.50
1:B:428:TYR:HA	1:B:432:ASP:HA	1.92	0.50
1:A:295:MET:HA	1:A:298:ILE:HB	1.92	0.50
1:B:235:HIS:HB2	1:B:499:CYS:HB3	1.93	0.50
1:B:108:CYS:HB3	1:B:127:TYR:CD2	2.47	0.50
1:B:1320:LYS:HA	1:B:1338:ARG:HB3	1.93	0.50
1:B:870:ILE:HD11	1:B:997:LEU:HD13	1.94	0.50
1:A:306:LEU:HD13	1:A:309:TRP:CZ2	2.46	0.50
1:A:1452:CYS:HB3	1:A:1467:LEU:HD22	1.94	0.50
5:F:1:GLC:H61	5:F:2:GLC:O5	2.11	0.49
1:A:679:THR:OG1	1:A:783:LYS:HG2	2.12	0.49
1:B:72:ASP:OD1	1:B:73:PHE:N	2.42	0.49
1:B:160:ILE:HG12	1:B:205:VAL:HG12	1.94	0.49
1:B:754:MET:HG2	1:B:755:HIS:N	2.26	0.49
1:A:748:ASP:OD1	1:A:749:ILE:N	2.43	0.49
1:B:422:LEU:HD23	1:B:425:ARG:HE	1.77	0.49
1:A:418:VAL:HG22	1:A:490:ARG:HA	1.94	0.49
1:B:738:MET:HB3	1:B:776:TRP:CH2	2.47	0.49
1:A:1428:PRO:HB3	1:A:1493:LEU:HD21	1.94	0.49
1:B:728:ILE:HD11	1:B:810:LEU:HD22	1.95	0.49
1:B:466:ALA:HB3	1:B:501:LYS:HE3	1.94	0.49
1:B:1108:LYS:HE2	1:B:1109:HIS:CE1	2.47	0.49
1:B:1083:LEU:HD22	1:B:1136:ALA:HB1	1.95	0.49
1:B:206:PHE:HB3	1:B:211:GLU:HB3	1.93	0.48
1:A:468:ASN:HB3	1:A:501:LYS:HD3	1.94	0.48
1:A:1221:VAL:HG22	1:A:1228:ILE:HA	1.95	0.48
1:B:1192:ALA:O	1:B:1294:PRO:HD3	2.14	0.48
1:B:1398:PRO:HA	1:B:1403:TYR:CG	2.48	0.48
1:A:754:MET:HG2	1:A:755:HIS:N	2.27	0.48
1:A:1236:CYS:HB3	1:A:1241:ASP:HA	1.95	0.48
1:B:425:ARG:HH22	1:B:491:ARG:HB3	1.77	0.48
1:B:1158:ARG:HD3	1:B:1174:PHE:HB3	1.93	0.48
1:B:1167:PRO:HB2	1:B:1170:ASP:HB3	1.96	0.48
1:B:103:VAL:O	1:B:107:TYR:OH	2.18	0.48
1:B:213:ALA:HA	1:B:528:ILE:HG23	1.96	0.48
1:A:1078:ASP:O	1:A:1082:SER:OG	2.30	0.48
1:A:1206:LEU:O	4:E:4:GLC:H4	2.12	0.48
1:B:718:ARG:O	1:B:719:THR:HB	2.13	0.48

	A t area D	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:269:LEU:HA	1:A:272:PHE:HB3	1.95	0.48
1:A:1262:ALA:HB3	1:A:1345:TYR:HB3	1.94	0.48
1:A:1393:MET:HB3	1:A:1433:CYS:HB2	1.95	0.48
1:B:281:TYR:N	1:B:282:PRO:HD2	2.29	0.48
1:B:420:GLU:HA	1:B:423:PHE:CE2	2.49	0.48
1:B:921:TYR:HB2	1:B:948:PRO:HB2	1.96	0.48
1:B:1173:ALA:C	1:B:1175:SER:H	2.17	0.48
1:B:299:LYS:HD2	1:B:300:GLU:HG2	1.96	0.47
1:A:505:GLY:HA3	1:A:510:ASP:HB2	1.96	0.47
1:A:612:SER:OG	1:A:943:ASN:ND2	2.46	0.47
1:A:687:ALA:HB2	1:A:703:TYR:HE2	1.78	0.47
1:A:432:ASP:HB2	1:A:436:PRO:HB3	1.96	0.47
1:B:466:ALA:N	1:B:501:LYS:HD2	2.30	0.47
1:B:281:TYR:H	1:B:282:PRO:HD2	1.79	0.47
1:B:66:TRP:CH2	1:B:84:LYS:HE2	2.49	0.47
1:B:189:SER:HB3	1:B:714:VAL:HG13	1.97	0.47
1:B:717:LYS:HD2	1:B:717:LYS:HA	1.73	0.47
1:A:907:ASP:O	1:A:1047:LYS:HE2	2.15	0.47
1:B:929:LEU:HD22	1:B:1006:VAL:HG13	1.97	0.47
1:A:1422:ARG:HE	1:A:1422:ARG:HB3	1.44	0.47
1:B:136:VAL:HA	1:B:226:LEU:HD21	1.95	0.47
5:F:3:GLC:O6	5:F:4:GLC:O5	2.30	0.47
1:A:108:CYS:HB3	1:A:127:TYR:CD2	2.50	0.46
1:A:149:GLN:HG2	1:A:170:VAL:HG11	1.97	0.46
1:A:523:GLU:HB2	1:A:555:VAL:HG21	1.97	0.46
1:B:248:GLU:HA	1:B:252:ASN:ND2	2.29	0.46
1:A:39:LYS:HD2	1:A:44:MET:HG2	1.97	0.46
1:B:466:ALA:HB3	1:B:501:LYS:CE	2.46	0.46
1:B:1282:LYS:HB3	1:B:1282:LYS:HE3	1.75	0.46
1:B:324:ARG:H	1:B:324:ARG:HG3	1.56	0.46
1:B:681:GLU:HB2	1:B:783:LYS:HD3	1.96	0.46
1:B:928:GLY:HA2	1:B:966:ARG:NH2	2.30	0.46
1:B:78:ASP:HB3	1:B:81:LYS:HB3	1.96	0.46
1:B:155:TRP:NE1	1:B:716:GLU:O	2.48	0.46
1:A:182:PRO:HG2	1:A:192:PRO:O	2.15	0.46
1:A:326:LYS:HE2	1:A:329:ASN:H	1.79	0.46
1:A:818:ILE:H	1:A:818:ILE:HG12	1.61	0.46
1:B:452:PHE:CE1	1:B:466:ALA:HB2	2.50	0.46
1:A:1123:ARG:HH22	1:A:1207:ASP:HB2	1.81	0.46
1:A:66:TRP:CH2	1:A:84:LYS:HE2	2.50	0.46
1:B:154:LYS:HG3	1:B:155:TRP:CD1	2.51	0.46

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:1364:MET:HB3	1:A:1444:PHE:HE2	1.81	0.46
1:B:912:ARG:HA	1:B:912:ARG:HD3	1.62	0.46
1:B:1174:PHE:HD2	1:B:1174:PHE:N	2.14	0.46
1:B:783:LYS:HD2	1:B:857:GLN:HB2	1.98	0.46
1:A:169:ARG:NH1	1:A:701:TYR:OH	2.49	0.46
1:A:834:THR:HG22	1:A:835:GLY:H	1.81	0.46
1:B:324:ARG:HE	1:B:324:ARG:HB2	1.48	0.46
1:B:467:ASN:HB3	1:B:499:CYS:O	2.16	0.46
1:A:27:VAL:HG22	1:A:578:GLU:HG3	1.97	0.45
1:A:1396:LEU:HD21	1:A:1400:ASP:HB3	1.98	0.45
1:A:61:ARG:HG3	1:A:1465:SER:HB2	1.99	0.45
1:A:420:GLU:HA	1:A:423:PHE:CE2	2.51	0.45
1:B:51:LEU:HD11	1:B:99:LEU:HD11	1.99	0.45
1:B:270:LEU:O	1:B:274:GLU:HB2	2.16	0.45
1:A:331:LYS:HG2	1:A:381:LYS:HD2	1.98	0.45
1:A:890:SER:O	1:A:894:ILE:HG13	2.17	0.45
1:B:21:CYS:H	1:B:656:THR:HG21	1.81	0.45
1:B:309:TRP:HB2	1:B:411:TYR:CE1	2.52	0.45
1:B:425:ARG:NH2	1:B:491:ARG:HB3	2.31	0.45
1:A:414:ASP:O	1:A:418:VAL:HG23	2.17	0.45
1:B:136:VAL:HG13	1:B:137:ASN:H	1.82	0.45
1:B:331:LYS:HB3	1:B:332:SER:H	1.51	0.45
1:B:452:PHE:HB2	1:B:454:ARG:HH21	1.80	0.45
1:A:1242:LYS:HD2	1:A:1242:LYS:HA	1.70	0.45
1:A:370:LYS:HD2	1:A:370:LYS:HA	1.59	0.45
1:A:616:VAL:HA	1:A:646:VAL:HG11	1.98	0.45
1:B:286:LYS:HA	1:B:431:ILE:HD13	1.99	0.45
1:B:761:GLN:HE22	1:B:787:SER:HB2	1.81	0.45
1:B:1242:LYS:HZ1	1:B:1422:ARG:HA	1.82	0.45
1:A:1131:TRP:HA	1:A:1134:VAL:HG12	1.99	0.44
1:B:429:LEU:HB3	1:B:430:ARG:NH1	2.31	0.44
1:B:471:ILE:HD11	1:B:480:PHE:HB3	1.99	0.44
1:B:505:GLY:HA3	1:B:510:ASP:HB2	2.00	0.44
1:B:1125:ASN:O	1:B:1237:GLY:HA2	2.17	0.44
1:A:282:PRO:HG2	1:A:294:VAL:HG23	1.99	0.44
1:A:427:LYS:HB2	1:A:427:LYS:HE3	1.90	0.44
1:A:1398:PRO:HA	1:A:1403:TYR:CG	2.52	0.44
1:B:1259:ARG:HH12	1:B:1343:ASP:CG	2.19	0.44
1:A:622:PRO:O	1:A:624:PRO:HD3	2.18	0.44
1:A:713:LEU:H	1:A:713:LEU:HG	1.49	0.44
1:B:467:ASN:OD1	1:B:467:ASN:N	2.50	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:799:GLN:HB2	1:A:994:PRO:HG3	2.00	0.44
1:A:35:LEU:HG	1:A:133:ILE:HD13	2.00	0.44
1:A:800:THR:HG23	1:A:867:GLN:HA	2.00	0.44
1:A:1242:LYS:HE3	1:A:1421:GLY:O	2.18	0.44
1:B:414:ASP:O	1:B:418:VAL:HG23	2.17	0.44
1:A:608:ARG:HD2	1:A:749:ILE:HG12	1.99	0.44
1:A:1151:LEU:HA	1:A:1180:ILE:HB	1.99	0.44
1:A:1463:PRO:HD3	1:A:1526:TYR:CE1	2.53	0.44
1:B:265:LEU:HD13	1:B:265:LEU:HA	1.89	0.44
1:A:235:HIS:CG	1:A:499:CYS:HB3	2.53	0.44
1:B:251:TYR:HB2	1:B:501:LYS:NZ	2.32	0.44
1:B:1174:PHE:N	1:B:1174:PHE:CD2	2.84	0.44
1:B:1131:TRP:HA	1:B:1134:VAL:HG12	2.00	0.44
1:B:1141:VAL:HA	1:B:1147:GLY:HA3	1.99	0.44
1:A:19:THR:HA	1:A:656:THR:HG23	1.99	0.43
1:A:704:ASP:OD2	1:A:732:LYS:HG3	2.17	0.43
1:B:673:THR:HG21	1:B:707:PHE:O	2.17	0.43
1:B:1108:LYS:HB3	1:B:1124:TYR:CE2	2.53	0.43
1:B:1256:GLY:HA2	1:B:1422:ARG:NH1	2.33	0.43
1:B:695:SER:O	1:B:739:ARG:NH2	2.51	0.43
1:B:1411:GLU:O	1:B:1420:LYS:N	2.47	0.43
1:A:72:ASP:OD1	1:A:73:PHE:N	2.43	0.43
1:A:611:GLY:HA2	1:A:997:LEU:HD23	2.00	0.43
1:A:912:ARG:HA	1:A:912:ARG:HD3	1.90	0.43
1:B:427:LYS:HE3	1:B:427:LYS:HB3	1.77	0.43
1:B:878:ILE:HG21	1:B:1004:LEU:HD23	2.00	0.43
1:B:1432:TRP:CG	1:B:1510:TRP:CD1	3.07	0.43
1:B:1495:ASN:HB2	1:B:1499:GLU:HB3	2.01	0.43
1:A:649:ILE:H	1:A:649:ILE:HG13	1.64	0.43
1:B:53:ILE:HD11	1:B:65:ILE:HD11	2.00	0.43
1:B:328:GLY:HA2	1:B:331:LYS:HB2	2.00	0.43
1:B:251:TYR:HA	1:B:503:ARG:HD3	2.00	0.43
1:B:794:ARG:HD2	1:B:796:LYS:HE2	2.01	0.43
1:B:890:SER:O	1:B:894:ILE:HG13	2.18	0.43
1:A:1206:LEU:HB3	1:A:1207:ASP:H	1.74	0.43
1:B:402:ASP:HA	1:B:405:LEU:HG	2.01	0.43
1:B:1202:ALA:HB1	1:B:1215:PHE:CG	2.54	0.43
1:A:103:VAL:O	1:A:107:TYR:OH	2.22	0.43
1:A:896:TYR:CE2	1:A:973:LYS:HD3	2.53	0.43
1:A:928:GLY:HA2	1:A:966:ARG:NH2	2.34	0.43
1:B:1181:GLU:OE2	1:B:1287:LYS:HB2	2.18	0.43

	A + 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:1242:LYS:HA	1:B:1242:LYS:HD2	1.66	0.43
1:B:148:MET:SD	1:B:179:HIS:HB2	2.59	0.42
1:A:400:LEU:HD23	1:A:403:ILE:HD12	2.00	0.42
1:A:783:LYS:HD2	1:A:857:GLN:HB2	2.00	0.42
1:B:284:ASP:HB2	1:B:438:GLN:HG2	2.01	0.42
1:A:30:LEU:HD22	1:A:130:VAL:HG22	2.00	0.42
1:A:331:LYS:CD	1:A:378:ALA:HA	2.49	0.42
1:A:962:TYR:CZ	1:A:966:ARG:HD3	2.54	0.42
1:B:142:PRO:HG2	1:B:743:ALA:HB1	2.01	0.42
1:B:174:LYS:HA	1:B:174:LYS:HD3	1.74	0.42
1:A:1071:TYR:HD2	1:A:1115:LEU:HD11	1.85	0.42
1:B:1198:ARG:HG3	1:B:1199:GLU:N	2.34	0.42
1:A:871:ASP:OD2	1:A:989:ARG:NH2	2.53	0.42
1:A:1441:TYR:O	1:A:1445:ASN:HB2	2.20	0.42
1:B:286:LYS:HB2	1:B:438:GLN:OE1	2.19	0.42
1:B:626:ASP:OD1	1:B:626:ASP:N	2.50	0.42
1:B:667:CYS:HA	1:B:671:ASN:HD21	1.85	0.42
1:A:610:ILE:HA	1:A:753:GLU:HB3	2.01	0.42
1:B:381:LYS:HD3	1:B:386:GLU:HA	2.00	0.42
1:A:1107:LEU:HB3	1:A:1157:ARG:NH1	2.34	0.42
1:B:182:PRO:HD3	1:B:230:ASP:HB2	2.01	0.42
1:B:1084:ARG:HH11	1:B:1143:ILE:HD11	1.85	0.42
1:A:35:LEU:HD12	1:A:35:LEU:H	1.85	0.42
1:A:422:LEU:HD23	1:A:425:ARG:HE	1.84	0.42
1:A:1420:LYS:HD3	1:A:1420:LYS:HA	1.81	0.42
1:B:276:MET:HE3	1:B:447:LEU:HD22	2.02	0.42
1:B:871:ASP:OD2	1:B:989:ARG:NH2	2.53	0.42
1:B:1031:PHE:HB2	1:B:1479:ARG:HG3	2.01	0.42
5:F:1:GLC:H61	5:F:2:GLC:C5	2.50	0.42
1:A:506:LYS:HE3	1:A:506:LYS:HB2	1.93	0.42
1:A:597:GLU:HG2	1:A:600:ARG:NH2	2.33	0.42
1:A:1100:ILE:HG21	1:A:1150:LEU:HD21	2.01	0.42
1:A:1117:ASP:H	1:A:1122:PRO:HB3	1.84	0.42
1:B:399:ILE:HA	1:B:402:ASP:HB2	2.02	0.42
1:A:766:HIS:CE1	1:A:865:THR:HG21	2.46	0.42
1:A:895:ASN:HB2	1:A:1040:ILE:O	2.20	0.42
1:A:895:ASN:OD1	1:A:1044:SER:HB3	2.19	0.42
1:B:1337:ARG:HG3	1:B:1340:ILE:HD11	2.02	0.42
1:A:900:ARG:CZ	1:A:904:GLU:HB3	2.50	0.41
1:A:1104:ALA:HB3	1:A:1155:VAL:HG11	2.01	0.41
1:A:184:GLN:HA	1:A:201:PHE:HA	2.02	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:1243:MET:HA	1:B:1255:PRO:HA	2.02	0.41
1:A:302:VAL:O	1:A:306:LEU:HD12	2.20	0.41
1:A:415:ILE:HD13	1:A:415:ILE:HA	1.93	0.41
1:A:1435:GLY:HA3	1:A:1514:CYS:HB3	2.02	0.41
1:B:161:LYS:HD2	1:B:161:LYS:HA	1.89	0.41
1:A:44:MET:HE2	1:A:44:MET:HB2	1.96	0.41
1:A:1157:ARG:H	1:A:1177:SER:HA	1.85	0.41
1:A:1165:TYR:HB2	1:A:1166:ILE:H	1.80	0.41
1:A:1482:ILE:HD12	1:A:1489:GLY:HA2	2.03	0.41
1:B:91:PHE:HE1	1:B:1472:TYR:HB2	1.85	0.41
1:B:303:ILE:H	1:B:303:ILE:HG13	1.64	0.41
1:B:333:TRP:HB2	1:B:378:ALA:O	2.20	0.41
1:B:370:LYS:HD2	1:B:370:LYS:HA	1.68	0.41
1:B:1199:GLU:HG3	1:B:1215:PHE:HA	2.01	0.41
1:A:626:ASP:OD1	1:A:626:ASP:N	2.49	0.41
1:A:671:ASN:OD1	1:A:671:ASN:N	2.44	0.41
1:A:467:ASN:HB3	1:A:499:CYS:O	2.20	0.41
1:A:1452:CYS:HB3	1:A:1467:LEU:HB2	2.02	0.41
1:B:800:THR:HG23	1:B:867:GLN:HA	2.02	0.41
1:B:1493:LEU:HB3	1:B:1504:SER:HB2	2.02	0.41
1:A:1041:GLN:OE1	1:A:1507:THR:HG21	2.21	0.41
1:A:1392:GLY:C	1:A:1429:GLU:HB3	2.40	0.41
1:A:1432:TRP:CG	1:A:1510:TRP:CD1	3.09	0.41
1:B:962:TYR:CZ	1:B:966:ARG:HD3	2.56	0.41
1:B:1123:ARG:NH2	1:B:1207:ASP:HB2	2.27	0.41
1:B:618:LEU:HD22	1:B:933:VAL:HG13	2.02	0.41
1:B:1493:LEU:HD23	1:B:1494:THR:N	2.36	0.41
1:A:326:LYS:HG3	1:A:328:GLY:H	1.85	0.40
1:A:502:LEU:HD13	1:A:514:LEU:HD11	2.03	0.40
1:A:1107:LEU:O	1:A:1157:ARG:NH1	2.50	0.40
1:B:184:GLN:H	1:B:184:GLN:HG2	1.64	0.40
1:B:301:HIS:HA	1:B:305:GLU:HG3	2.03	0.40
1:B:608:ARG:HD2	1:B:749:ILE:HG12	2.02	0.40
1:A:1263:ALA:HA	1:A:1344:LEU:HD23	2.03	0.40
1:B:252:ASN:O	1:B:256:SER:N	2.54	0.40
1:B:259:LEU:HD12	1:B:501:LYS:HZ3	1.87	0.40
1:B:807:ALA:HB2	1:B:861:VAL:HG23	2.03	0.40
1:A:895:ASN:CG	1:A:1044:SER:HB3	2.41	0.40
1:A:1487:TRP:CE2	1:A:1506:PRO:HG2	2.56	0.40
1:B:348:ALA:HB1	1:B:403:ILE:HG13	2.04	0.40
1:B:437:LYS:HA	1:B:437:LYS:HD2	1.90	0.40

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:896:TYR:HA	1:B:900:ARG:HG2	2.02	0.40
1:B:1320:LYS:HE3	1:B:1320:LYS:HB2	1.86	0.40
1:B:1172:LYS:H	1:B:1172:LYS:HG3	1.68	0.40
1:A:940:ILE:HD11	1:A:1003:ALA:HB1	2.04	0.40
1:A:1164:GLU:HB3	1:A:1165:TYR:H	1.55	0.40
1:B:1164:GLU:HB3	1:B:1165:TYR:H	1.48	0.40

All (3) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:B:912:ARG:NH1	4:E:5:GLC:C5[5_445]	1.44	0.76
1:B:912:ARG:NH1	4:E:5:GLC:C6[5_445]	1.57	0.63
1:B:912:ARG:NH1	4:E:5:GLC:C4[5_445]	1.65	0.55

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	1524/1536~(99%)	1379 (90%)	131 (9%)	14 (1%)	17	49
1	В	1524/1536~(99%)	1365 (90%)	133 (9%)	26 (2%)	9	34
All	All	3048/3072~(99%)	2744 (90%)	264 (9%)	40 (1%)	12	39

All (40) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	436	PRO
1	В	196	TYR
1	В	281	TYR
1	В	1167	PRO
1	А	432	ASP

Mol	Chain	Res	Type
1	А	1163	ASP
1	В	283	VAL
1	В	718	ARG
1	В	1456	GLY
1	А	138	ASP
1	А	281	TYR
1	А	1168	TYR
1	А	1454	VAL
1	В	28	LEU
1	В	282	PRO
1	В	440	PRO
1	В	913	SER
1	В	1164	GLU
1	А	708	PRO
1	А	900	ARG
1	А	1206	LEU
1	А	1296	GLY
1	В	446	PRO
1	В	786	SER
1	В	1174	PHE
1	А	1448	THR
1	В	311	PHE
1	В	332	SER
1	В	501	LYS
1	В	706	VAL
1	В	900	ARG
1	В	1297	SER
1	А	440	PRO
1	А	1122	PRO
1	В	315	ASP
1	В	434	HIS
1	В	1194	GLY
1	В	1204	PRO
1	В	182	PRO
1	В	302	VAL

Continued from previous page...

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was

Mol	Chain	Analysed	Rotameric	Outliers	Perc	entiles
1	А	1343/1353~(99%)	1217 (91%)	126 (9%)	8	30
1	В	1343/1353~(99%)	1208 (90%)	135 (10%)	7	27
All	All	2686/2706~(99%)	2425 (90%)	261 (10%)	8	28

analysed, and the total number of residues.

All (261) residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	44	MET
1	А	79	ARG
1	А	81	LYS
1	А	135	SER
1	А	138	ASP
1	А	139	LYS
1	А	185	HIS
1	А	198	GLN
1	А	207	LYS
1	А	229	THR
1	А	281	TYR
1	А	283	VAL
1	А	284	ASP
1	А	287	THR
1	А	288	VAL
1	А	290	ASP
1	А	293	LYS
1	А	295	MET
1	А	300	GLU
1	А	308	LEU
1	А	316	VAL
1	А	318	GLN
1	А	330	SER
1	А	331	LYS
1	А	334	SER
1	А	338	ILE
1	А	349	GLN
1	А	374	ASP
1	А	430	ARG
1	А	434	HIS
1	А	442	THR
1	А	444	LYS
1	А	448	SER
1	А	467	ASN

Mol	Chain	Res	Type
1	А	471	ILE
1	А	495	VAL
1	А	567	SER
1	А	616	VAL
1	А	628	LYS
1	А	630	ASP
1	А	664	PHE
1	А	704	ASP
1	А	709	GLN
1	А	711	LEU
1	А	713	LEU
1	А	721	SER
1	А	754	MET
1	А	761	GLN
1	А	767	ARG
1	А	800	THR
1	А	818	ILE
1	А	822	ILE
1	А	823	ILE
1	А	824	GLU
1	А	834	THR
1	А	853	GLN
1	А	913	SER
1	А	1009	MET
1	А	1016	ARG
1	А	1044	SER
1	А	1055	GLN
1	А	1069	THR
1	А	1074	CYS
1	А	1082	SER
1	A	1092	ARG
1	А	1105	LYS
1	A	1107	LEU
1	А	1149	SER
1	A	1153	GLU
1	А	1157	ARG
1	A	1161	LEU
1	А	1162	ASP
1	A	1165	TYR
1	А	1166	ILE
1	A	1169	ASP
1	А	1170	ASP

Mol	Chain	Res	Type
1	А	1172	LYS
1	А	1174	PHE
1	А	1177	SER
1	А	1191	HIS
1	А	1199	GLU
1	А	1205	ASN
1	А	1208	ARG
1	А	1213	GLU
1	А	1216	ASN
1	А	1218	GLU
1	А	1220	ASN
1	А	1227	LEU
1	А	1233	GLN
1	А	1236	CYS
1	А	1243	MET
1	А	1248	LYS
1	А	1257	THR
1	А	1264	VAL
1	А	1265	GLU
1	А	1267	ASN
1	А	1279	GLN
1	А	1285	LYS
1	А	1289	THR
1	А	1290	GLU
1	А	1295	ASP
1	А	1297	SER
1	А	1298	LYS
1	А	1300	SER
1	А	1320	LYS
1	А	1321	ASN
1	А	1325	ASP
1	A	1330	ILE
1	А	1334	ILE
1	A	1340	ILE
1	A	1349	LYS
1	A	1356	PHE
1	А	1361	THR
1	A	1396	LEU
1	A	1408	ASN
1	А	1414	ASP
1	A	1422	ARG
1	А	1424	TYR

Mol	Chain	Res	Type
1	А	1442	HIS
1	А	1460	LYS
1	А	1462	LYS
1	А	1476	LEU
1	А	1493	LEU
1	А	1494	THR
1	А	1499	GLU
1	А	1527	GLU
1	В	35	LEU
1	В	59	VAL
1	В	103	VAL
1	В	116	ASP
1	В	122	THR
1	В	159	THR
1	В	160	ILE
1	В	183	LEU
1	В	184	GLN
1	В	196	TYR
1	В	198	GLN
1	В	199	LEU
1	В	200	GLU
1	В	205	VAL
1	В	206	PHE
1	В	261	SER
1	В	265	LEU
1	В	267	LYS
1	В	274	GLU
1	В	275	GLN
1	В	279	LEU
1	В	283	VAL
1	В	284	ASP
1	В	287	THR
1	В	290	ASP
1	В	295	MET
1	В	298	ILE
1	В	302	VAL
1	В	308	LEU
1	В	310	GLU
1	В	311	PHE
1	В	312	TYR
1	В	316	VAL
1	В	317	LYS

Mol	Chain	Res	Type
1	В	318	GLN
1	В	323	LEU
1	В	324	ARG
1	В	325	GLU
1	В	326	LYS
1	В	331	LYS
1	В	333	TRP
1	В	337	ASN
1	В	346	ASN
1	В	347	LEU
1	В	350	PHE
1	В	352	ARG
1	В	353	ASP
1	В	356	THR
1	В	371	ILE
1	В	373	ILE
1	В	389	ASN
1	В	398	LYS
1	В	399	ILE
1	В	421	GLN
1	В	426	ILE
1	В	431	ILE
1	В	437	LYS
1	В	444	LYS
1	В	445	LEU
1	В	448	SER
1	В	465	LEU
1	В	467	ASN
1	В	543	HIS
1	В	585	LEU
1	В	616	VAL
1	В	631	GLU
1	В	650	MET
1	В	664	PHE
1	В	704	ASP
1	В	715	GLN
1	В	716	GLU
1	В	742	ILE
1	В	751	ASP
1	В	754	MET
1	В	764	THR
1	В	767	ARG

Mol	Chain	Res	Type
1	В	787	SER
1	В	800	THR
1	В	811	GLU
1	В	822	ILE
1	В	824	GLU
1	В	834	THR
1	В	908	TYR
1	В	910	GLU
1	В	912	ARG
1	В	973	LYS
1	В	974	GLU
1	В	990	ILE
1	В	1082	SER
1	В	1155	VAL
1	В	1156	THR
1	В	1159	PHE
1	В	1162	ASP
1	В	1165	TYR
1	В	1166	ILE
1	В	1172	LYS
1	В	1174	PHE
1	В	1175	SER
1	В	1190	ARG
1	В	1195	ILE
1	В	1196	LYS
1	В	1198	ARG
1	В	1201	ASN
1	В	1206	LEU
1	В	1208	ARG
1	В	1216	ASN
1	В	1217	VAL
1	В	1224	GLU
1	В	1233	GLN
1	В	1236	CYS
1	В	1245	GLU
1	В	1247	GLU
1	В	1264	VAL
1	В	1280	LEU
1	В	1282	LYS
1	В	1289	THR
1	В	1290	GLU
1	В	1298	LYS

Mol	Chain	\mathbf{Res}	Type
1	В	1299	ILE
1	В	1320	LYS
1	В	1321	ASN
1	В	1323	GLU
1	В	1324	ASP
1	В	1330	ILE
1	В	1333	THR
1	В	1337	ARG
1	В	1342	LYS
1	В	1356	PHE
1	В	1361	THR
1	В	1408	ASN
1	В	1442	HIS
1	В	1457	SER
1	В	1459	LYS
1	В	1461	LEU
1	В	1462	LYS

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (1) such side chains are listed below:

Mol	Chain	Res	Type
1	А	766	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

17 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the

Mol	Type	Chain	Bos	Link	Bo	Bond lengths			ond ang	les
IVIOI	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
2	GLC	С	1	2	12,12,12	1.02	1 (8%)	17,17,17	1.05	1 (5%)
2	GLC	С	2	2	11,11,12	1.29	2 (18%)	15,15,17	1.22	1 (6%)
2	GLC	С	3	2	11,11,12	1.10	1 (9%)	15,15,17	1.47	2 (13%)
3	GLC	D	1	3	12,12,12	0.59	0	17,17,17	0.60	0
3	GLC	D	2	3	11,11,12	0.75	0	15,15,17	1.44	1 (6%)
4	GLC	Е	1	4	12,12,12	0.80	0	17,17,17	1.03	0
4	GLC	Е	2	4	11,11,12	1.13	1 (9%)	15,15,17	1.28	1 (6%)
4	GLC	Е	3	4	11,11,12	1.09	0	15,15,17	2.18	4 (26%)
4	GLC	Е	4	4	11,11,12	1.02	1 (9%)	15,15,17	2.36	6 (40%)
4	GLC	Е	5	4	11,11,12	0.85	0	15,15,17	2.70	4 (26%)
5	GLC	F	1	5	12,12,12	1.59	2 (16%)	17,17,17	1.11	1 (5%)
5	GLC	F	2	5	11,11,12	1.16	2 (18%)	15,15,17	1.45	3 (20%)
5	GLC	F	3	5	11,11,12	1.56	1 (9%)	15,15,17	1.81	4 (26%)
5	GLC	F	4	5	11,11,12	0.98	0	15,15,17	1.75	3 (20%)
5	GLC	F	5	5	11,11,12	1.27	2 (18%)	15,15,17	1.28	2 (13%)
5	GLC	F	6	5	11,11,12	1.23	1 (9%)	15,15,17	1.25	2 (13%)
5	GLC	F	7	5	11,11,12	0.95	0	15,15,17	1.74	1 (6%)

expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	GLC	С	1	2	-	0/2/22/22	0/1/1/1
2	GLC	С	2	2	-	1/2/19/22	0/1/1/1
2	GLC	С	3	2	-	0/2/19/22	0/1/1/1
3	GLC	D	1	3	-	0/2/22/22	0/1/1/1
3	GLC	D	2	3	-	0/2/19/22	0/1/1/1
4	GLC	Е	1	4	-	0/2/22/22	0/1/1/1
4	GLC	Е	2	4	-	1/2/19/22	0/1/1/1
4	GLC	Е	3	4	-	0/2/19/22	0/1/1/1
4	GLC	Е	4	4	-	1/2/19/22	0/1/1/1
4	GLC	Е	5	4	-	1/2/19/22	0/1/1/1
5	GLC	F	1	5	-	0/2/22/22	0/1/1/1
5	GLC	F	2	5	-	0/2/19/22	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	GLC	F	3	5	-	1/2/19/22	0/1/1/1
5	GLC	F	4	5	-	0/2/19/22	0/1/1/1
5	GLC	F	5	5	-	0/2/19/22	0/1/1/1
5	GLC	F	6	5	-	0/2/19/22	0/1/1/1
5	GLC	F	7	5	-	0/2/19/22	0/1/1/1

All (14) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
5	F	3	GLC	C4-C5	4.10	1.61	1.53
5	F	1	GLC	C4-C5	3.53	1.60	1.53
5	F	1	GLC	O4-C4	3.45	1.51	1.43
4	Ε	2	GLC	O4-C4	2.94	1.49	1.43
4	Е	4	GLC	O4-C4	2.81	1.49	1.43
2	С	3	GLC	O5-C1	2.63	1.47	1.43
5	F	2	GLC	C4-C3	2.29	1.58	1.52
5	F	5	GLC	O5-C5	2.18	1.47	1.43
5	F	6	GLC	C4-C5	2.15	1.57	1.53
2	С	2	GLC	O3-C3	2.12	1.48	1.43
5	F	2	GLC	O4-C4	2.12	1.48	1.43
2	С	2	GLC	O5-C5	2.11	1.47	1.43
5	F	5	GLC	04-C4	2.07	1.47	1.43
2	С	1	GLC	01-C1	2.04	1.46	1.39

All (36) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	Е	5	GLC	C6-C5-C4	5.66	126.25	113.00
5	F	7	GLC	O5-C5-C6	5.58	115.95	107.20
4	Е	3	GLC	C1-O5-C5	5.45	119.57	112.19
4	Е	5	GLC	C1-C2-C3	-5.36	103.07	109.67
4	Е	5	GLC	C1-O5-C5	-4.89	105.56	112.19
4	Е	4	GLC	O4-C4-C3	4.78	121.40	110.35
5	F	4	GLC	C1-O5-C5	-4.52	106.07	112.19
5	F	3	GLC	O4-C4-C5	4.31	120.00	109.30
4	Е	4	GLC	C1-O5-C5	4.28	117.99	112.19
4	Е	3	GLC	O5-C1-C2	-4.22	104.26	110.77
2	С	3	GLC	O5-C5-C6	4.19	113.77	107.20
3	D	2	GLC	O5-C5-C6	3.60	112.84	107.20
4	Е	4	GLC	O5-C1-C2	-3.56	105.28	110.77
4	Е	5	GLC	O4-C4-C3	-3.44	102.39	110.35
4	Е	2	GLC	O4-C4-C3	3.28	117.93	110.35

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	F	1	GLC	O4-C4-C5	3.07	116.92	109.30
4	Е	4	GLC	O5-C5-C6	-3.04	102.43	107.20
5	F	2	GLC	C2-C3-C4	-2.94	105.81	110.89
5	F	6	GLC	O5-C5-C6	2.88	111.72	107.20
5	F	3	GLC	O4-C4-C3	-2.77	103.95	110.35
4	Е	3	GLC	O2-C2-C1	2.76	114.80	109.15
5	F	4	GLC	C2-C3-C4	-2.75	106.13	110.89
5	F	3	GLC	C6-C5-C4	2.63	119.17	113.00
4	Е	4	GLC	C2-C3-C4	-2.62	106.37	110.89
4	Е	4	GLC	C1-C2-C3	2.59	112.85	109.67
5	F	4	GLC	C6-C5-C4	-2.57	106.98	113.00
5	F	5	GLC	O5-C5-C6	2.51	111.15	107.20
4	Е	3	GLC	C1-C2-C3	2.49	112.73	109.67
5	F	3	GLC	C1-C2-C3	2.37	112.57	109.67
5	F	6	GLC	O4-C4-C5	2.32	115.05	109.30
2	С	1	GLC	O3-C3-C2	-2.28	105.09	110.35
5	F	5	GLC	O4-C4-C5	2.27	114.94	109.30
2	С	3	GLC	O5-C1-C2	-2.24	107.31	110.77
5	F	2	GLC	C6-C5-C4	-2.16	107.94	113.00
2	С	2	GLC	O5-C1-C2	-2.12	107.50	110.77
5	F	2	GLC	O5-C1-C2	-2.06	107.59	110.77

There are no chirality outliers.

All (5) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	Е	5	GLC	O5-C5-C6-O6
5	F	3	GLC	O5-C5-C6-O6
2	С	2	GLC	O5-C5-C6-O6
4	Е	2	GLC	O5-C5-C6-O6
4	Е	4	GLC	O5-C5-C6-O6

There are no ring outliers.

10 monomers are involved in 15 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
5	F	2	GLC	3	0
5	F	6	GLC	1	0
5	F	3	GLC	1	0
4	Е	5	GLC	1	3
5	F	1	GLC	2	0

	J	1	1 5		
Mol	Chain	Res	Type	Clashes	Symm-Clashes
5	F	7	GLC	1	0
4	Ε	4	GLC	3	0
5	F	4	GLC	1	0
5	F	5	GLC	1	0
4	Ε	1	GLC	2	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.3 Carbohydrates (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.5 Other polymers (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

