

Full wwPDB X-ray Structure Validation Report (i)

Mar 4, 2024 – 03:29 AM EST

PDB ID	:	1EC9
Title	:	E. COLI GLUCARATE DEHYDRATASE BOUND TO XYLAROHYDROX-
		AMATE
Authors	:	Gulick, A.M.; Hubbard, B.K.; Gerlt, J.A.; Rayment, I.
Deposited on	:	2000-01-25
Resolution	:	2.00 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 2.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
Clashscore	141614	9178 (2.00-2.00)
Ramachandran outliers	138981	9054 (2.00-2.00)
Sidechain outliers	138945	9053 (2.00-2.00)
RSRZ outliers	127900	7900 (2.00-2.00)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	446	% 7 5%	21%	•••
1	В	446	% 69%	26%	• •
1	С	446	% 70%	27%	
1	D	446	66%	28%	5%•

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 14854 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace		
1	Δ	442	Total	С	Ν	Ο	\mathbf{S}	0	0	0	
	A	440	3426	2164	600	641	21	0	0		
1	1 B	Р	442	Total	С	Ν	0	S	0	0	0
		440	3404	2152	594	637	21	0	0	0	
1	C	C 443	Total	С	Ν	0	S	0	1	0	
			3428	2166	599	642	21		L		
1	1 D	4.4.4	Total	С	Ν	0	S	0	0	0	
I D	444	3427	2166	602	638	21	0	0	U		

• Molecule 1 is a protein called GLUCARATE DEHYDRATASE.

• Molecule 2 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	1	Total Mg 1 1	0	0
2	В	1	Total Mg 1 1	0	0
2	С	1	Total Mg 1 1	0	0
2	D	1	Total Mg 1 1	0	0

• Molecule 3 is XYLAROHYDROXAMATE (three-letter code: XYH) (formula: $C_5H_8NO_7$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	Total C N O 13 5 1 7	0	0
3	В	1	Total C N O 13 5 1 7	0	0
3	С	1	Total C N O 13 5 1 7	0	0
3	D	1	Total C N O 13 5 1 7	0	0

• Molecule 4 is ISOPROPYL ALCOHOL (three-letter code: IPA) (formula: C_3H_8O).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 3 & 1 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 3 & 1 \end{array}$	0	0
4	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 3 & 1 \end{array}$	0	0
4	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 3 1 \end{array}$	0	0

• Molecule 5 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	316	Total O 316 316	0	0
5	В	231	Total O 231 231	0	0
5	С	302	Total O 302 302	0	0
5	D	248	Total O 248 248	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: GLUCARATE DEHYDRATASE

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1	Depositor
Cell constants	71.29Å 84.84Å 98.99Å	Depositor
a, b, c, α , β , γ	103.14° 94.31° 113.20°	Depositor
Bosolution(A)	30.00 - 2.00	Depositor
Resolution (A)	19.93 - 2.00	EDS
% Data completeness	(Not available) (30.00-2.00)	Depositor
(in resolution range)	94.9 (19.93-2.00)	EDS
R_{merge}	0.04	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.20 (at 2.01 \text{\AA})$	Xtriage
Refinement program	TNT 5E	Depositor
P. P.	0.179 , 0.281	Depositor
n, n_{free}	0.174 , (Not available)	DCC
R_{free} test set	No test flags present.	wwPDB-VP
Wilson B-factor $(Å^2)$	21.0	Xtriage
Anisotropy	0.135	Xtriage
Bulk solvent $k_{sol}(e/A^3)$, $B_{sol}(A^2)$	0.32 , 82.7	EDS
L-test for twinning ²	$ \langle L \rangle = 0.50, \langle L^2 \rangle = 0.34$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.96	EDS
Total number of atoms	14854	wwPDB-VP
Average B, all atoms $(Å^2)$	31.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.44% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: XYH, IPA, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bo	ond lengths	Bond angles		
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	1.01	20/3505~(0.6%)	1.23	42/4752~(0.9%)	
1	В	0.97	24/3483~(0.7%)	1.21	42/4726~(0.9%)	
1	С	0.98	13/3507~(0.4%)	1.19	38/4755~(0.8%)	
1	D	0.97	18/3506~(0.5%)	1.19	42/4752~(0.9%)	
All	All	0.98	75/14001~(0.5%)	1.21	164/18985~(0.9%)	

All (75) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	Observed(Å)	Ideal(Å)
1	С	214	GLU	CD-OE2	8.84	1.35	1.25
1	А	215	GLU	CD-OE2	7.69	1.34	1.25
1	В	54	GLU	CD-OE2	7.57	1.33	1.25
1	А	214	GLU	CD-OE2	6.76	1.33	1.25
1	С	384	GLU	CD-OE2	6.74	1.33	1.25
1	D	244	GLU	CD-OE2	6.63	1.32	1.25
1	А	412	GLU	CD-OE2	6.62	1.32	1.25
1	В	59	GLU	CD-OE2	6.58	1.32	1.25
1	А	54	GLU	CD-OE2	6.54	1.32	1.25
1	D	215	GLU	CD-OE2	6.47	1.32	1.25
1	В	181	GLU	CD-OE2	6.45	1.32	1.25
1	А	266	GLU	CD-OE2	6.42	1.32	1.25
1	D	218	GLU	CD-OE2	6.41	1.32	1.25
1	D	394	GLU	CD-OE2	6.39	1.32	1.25
1	D	412	GLU	CD-OE2	6.27	1.32	1.25
1	В	214	GLU	CD-OE2	6.26	1.32	1.25
1	В	273	GLU	CD-OE2	6.25	1.32	1.25
1	D	180	GLU	CD-OE2	6.23	1.32	1.25
1	В	215	GLU	CD-OE2	6.23	1.32	1.25
1	В	117	GLU	CD-OE2	6.21	1.32	1.25
1	D	384	GLU	CD-OE2	6.19	1.32	1.25
1	B	381	GLU	CD-OE2	6.06	1.32	1.25

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	D	59	GLU	CD-OE2	6.05	1.32	1.25
1	D	216	GLU	CD-OE2	6.01	1.32	1.25
1	С	117	GLU	CD-OE2	5.98	1.32	1.25
1	D	273	GLU	CD-OE2	5.98	1.32	1.25
1	В	394	GLU	CD-OE2	5.97	1.32	1.25
1	А	381	GLU	CD-OE2	5.95	1.32	1.25
1	D	79	GLU	CD-OE2	5.93	1.32	1.25
1	В	79	GLU	CD-OE2	5.93	1.32	1.25
1	А	266	GLU	CD-OE1	-5.92	1.19	1.25
1	А	384	GLU	CD-OE2	5.92	1.32	1.25
1	В	146	GLU	CD-OE2	5.92	1.32	1.25
1	С	401	GLU	CD-OE2	5.87	1.32	1.25
1	С	394	GLU	CD-OE2	5.85	1.32	1.25
1	В	144	GLU	CD-OE2	5.84	1.32	1.25
1	А	66	GLU	CD-OE2	5.79	1.32	1.25
1	А	394	GLU	CD-OE2	5.79	1.32	1.25
1	В	197	GLU	CD-OE2	5.78	1.32	1.25
1	D	381	GLU	CD-OE2	5.78	1.32	1.25
1	А	218	GLU	CD-OE2	5.77	1.32	1.25
1	В	244	GLU	CD-OE2	5.72	1.31	1.25
1	В	12	GLU	CD-OE2	5.72	1.31	1.25
1	А	273	GLU	CD-OE2	5.71	1.31	1.25
1	В	218	GLU	CD-OE2	5.70	1.31	1.25
1	В	193	GLU	CD-OE2	5.68	1.31	1.25
1	В	216	GLU	CD-OE2	5.68	1.31	1.25
1	A	117	GLU	CD-OE2	5.68	1.31	1.25
1	В	373	GLU	CD-OE2	5.67	1.31	1.25
1	D	193	GLU	CD-OE2	5.66	1.31	1.25
1	A	401	GLU	CD-OE2	5.64	1.31	1.25
1	D	401	GLU	CD-OE2	5.63	1.31	1.25
1	C	146	GLU	CD-OE2	5.62	1.31	1.25
1	A	12	GLU	CD-OE2	5.57	1.31	1.25
1	В	66	GLU	CD-OE2	5.54	1.31	1.25
1	С	197	GLU	CD-OE2	5.53	1.31	1.25
1	A	146	GLU	CD-OE2	5.52	1.31	1.25
1	C	381	GLU	CD-OE2	5.50	1.31	1.25
1	A	277	GLU	CD-OE2	5.50	1.31	1.25
1	C	218	GLU	CD-OE2	5.49	1.31	1.25
1	C	180	GLU	CD-OE2	5.46	1.31	1.25
1	C	244	GLU	CD-OE2	5.39	1.31	1.25
1	C	79	GLU	CD-OE2	5.39	1.31	1.25
1	C	215	GLU	CD-OE2	5.38	1.31	1.25

Mol	Chain	\mathbf{Res}	Type	Atoms		Observed(Å)	Ideal(Å)
1	А	384	GLU	CD-OE1	-5.35	1.19	1.25
1	D	66	GLU	CD-OE2	5.33	1.31	1.25
1	В	331	GLU	CD-OE2	5.33	1.31	1.25
1	В	180	GLU	CD-OE2	5.32	1.31	1.25
1	D	331	GLU	CD-OE2	5.29	1.31	1.25
1	D	12	GLU	CD-OE2	5.25	1.31	1.25
1	В	277	GLU	CD-OE1	-5.22	1.20	1.25
1	А	197	GLU	CD-OE2	5.22	1.31	1.25
1	D	197	GLU	CD-OE2	5.13	1.31	1.25
1	В	384	GLU	CD-OE2	5.02	1.31	1.25
1	А	273	GLU	CD-OE1	-5.01	1.20	1.25

All (164) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	294	ASP	CB-CG-OD2	-9.46	109.78	118.30
1	А	377	ARG	NE-CZ-NH1	9.03	124.81	120.30
1	А	294	ASP	CB-CG-OD1	8.93	126.34	118.30
1	С	366	ASP	CB-CG-OD2	-8.73	110.44	118.30
1	В	366	ASP	CB-CG-OD2	-8.72	110.45	118.30
1	В	169	ASP	CB-CG-OD2	-8.64	110.52	118.30
1	В	122	ASP	CB-CG-OD1	8.49	125.94	118.30
1	D	169	ASP	CB-CG-OD2	-8.48	110.67	118.30
1	С	122	ASP	CB-CG-OD2	-8.33	110.80	118.30
1	А	22	ASP	CB-CG-OD1	8.27	125.74	118.30
1	С	122	ASP	CB-CG-OD1	8.15	125.63	118.30
1	D	138	ASP	CB-CG-OD1	8.00	125.50	118.30
1	D	138	ASP	CB-CG-OD2	-7.88	111.21	118.30
1	В	122	ASP	CB-CG-OD2	-7.86	111.23	118.30
1	А	122	ASP	CB-CG-OD1	7.81	125.33	118.30
1	D	190	ARG	NE-CZ-NH2	-7.81	116.40	120.30
1	В	22	ASP	CB-CG-OD2	-7.72	111.35	118.30
1	В	279	ARG	NE-CZ-NH1	7.59	124.10	120.30
1	В	67	ASP	CB-CG-OD2	-7.59	111.47	118.30
1	В	366	ASP	CB-CG-OD1	7.57	125.11	118.30
1	В	138	ASP	CB-CG-OD1	7.44	124.99	118.30
1	В	294	ASP	CB-CG-OD1	7.42	124.97	118.30
1	А	22	ASP	CB-CG-OD2	-7.40	111.64	118.30
1	D	122	ASP	CB-CG-OD2	-7.35	111.68	118.30
1	D	405	ASP	CB-CG-OD2	-7.27	111.76	118.30
1	С	294	ASP	CB-CG-OD2	-7.27	111.76	118.30
1	А	190	ARG	NE-CZ-NH1	7.22	123.91	120.30

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
1	А	122	ASP	CB-CG-OD2	-7.17	111.84	118.30
1	С	38	ARG	NE-CZ-NH1	7.12	123.86	120.30
1	А	403	ASP	CB-CG-OD2	-7.10	111.91	118.30
1	D	67	ASP	CB-CG-OD2	-7.10	111.91	118.30
1	А	186	ASP	CB-CG-OD2	-7.07	111.94	118.30
1	D	308	ASP	CB-CG-OD2	-7.07	111.94	118.30
1	В	105	ASP	CB-CG-OD2	-7.00	112.00	118.30
1	С	279	ARG	NE-CZ-NH1	6.90	123.75	120.30
1	С	186	ASP	CB-CG-OD2	-6.89	112.09	118.30
1	А	308	ASP	CB-CG-OD2	-6.88	112.11	118.30
1	В	405	ASP	CB-CG-OD2	-6.85	112.14	118.30
1	В	67	ASP	CB-CG-OD1	6.84	124.46	118.30
1	В	138	ASP	CB-CG-OD2	-6.80	112.18	118.30
1	А	93	ASP	CB-CG-OD2	-6.76	112.22	118.30
1	В	294	ASP	CB-CG-OD2	-6.75	112.23	118.30
1	А	405	ASP	CB-CG-OD1	6.74	124.36	118.30
1	С	423	ASP	CB-CG-OD1	6.72	124.35	118.30
1	С	93	ASP	CB-CG-OD1	6.70	124.33	118.30
1	В	169	ASP	CB-CG-OD1	6.69	124.32	118.30
1	С	422	ARG	NE-CZ-NH1	6.69	123.65	120.30
1	В	203	ASP	CB-CG-OD2	-6.69	112.28	118.30
1	С	308	ASP	CB-CG-OD2	-6.64	112.32	118.30
1	D	438	ASP	CB-CG-OD2	-6.62	112.34	118.30
1	D	190	ARG	NE-CZ-NH1	6.61	123.60	120.30
1	А	173	ASP	CB-CG-OD2	-6.56	112.39	118.30
1	В	22	ASP	CB-CG-OD1	6.55	124.19	118.30
1	А	94	ARG	NE-CZ-NH1	6.54	123.57	120.30
1	А	405	ASP	CB-CG-OD2	-6.52	112.43	118.30
1	С	294	ASP	CB-CG-OD1	6.48	124.13	118.30
1	А	422	ARG	NE-CZ-NH2	-6.47	117.07	120.30
1	С	366	ASP	CB-CG-OD1	6.47	124.12	118.30
1	С	186	ASP	CB-CG-OD1	6.45	124.11	118.30
1	А	170	ASP	CB-CG-OD2	-6.43	112.51	118.30
1	D	105	ASP	CB-CG-OD2	-6.41	112.53	118.30
1	В	173	ASP	CB-CG-OD1	6.38	124.04	118.30
1	С	176	ARG	NE-CZ-NH2	-6.35	117.13	120.30
1	A	261	ASP	CB-CG-OD2	-6.34	112.59	118.30
1	A	67	ASP	CB-CG-OD2	-6.30	112.63	118.30
1	С	138	ASP	CB-CG-OD2	-6.29	112.64	118.30
1	В	95	ASP	CB-CG-OD2	-6.29	112.64	118.30
1	D	377	ARG	NE-CZ-NH1	6.27	123.44	120.30
1	А	423	ASP	CB-CG-OD2	-6.25	$1\overline{12.67}$	118.30

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
1	В	105	ASP	CB-CG-OD1	6.23	123.91	118.30
1	В	93	ASP	CB-CG-OD2	-6.22	112.70	118.30
1	В	173	ASP	CB-CG-OD2	-6.22	112.70	118.30
1	D	405	ASP	CB-CG-OD1	6.18	123.86	118.30
1	D	294	ASP	CB-CG-OD2	-6.17	112.75	118.30
1	В	424	ASP	CB-CG-OD2	-6.16	112.76	118.30
1	А	169	ASP	CB-CG-OD2	-6.16	112.76	118.30
1	В	176	ARG	NE-CZ-NH1	6.12	123.36	120.30
1	С	170	ASP	CB-CG-OD2	-6.09	112.82	118.30
1	С	422	ARG	NE-CZ-NH2	-6.09	117.26	120.30
1	А	235	ASP	CB-CG-OD2	-6.08	112.83	118.30
1	D	231	ARG	NE-CZ-NH1	6.08	123.34	120.30
1	А	366	ASP	CB-CG-OD1	6.07	123.77	118.30
1	С	95	ASP	CB-CG-OD2	-6.07	112.83	118.30
1	С	405[A]	ASP	CB-CG-OD2	-6.06	112.84	118.30
1	С	405[B]	ASP	CB-CG-OD2	-6.06	112.84	118.30
1	D	95	ASP	CB-CG-OD2	-6.05	112.86	118.30
1	D	67	ASP	CB-CG-OD1	6.04	123.74	118.30
1	А	178	ARG	NE-CZ-NH1	6.00	123.30	120.30
1	D	403	ASP	CB-CG-OD1	5.93	123.64	118.30
1	С	423	ASP	CB-CG-OD2	-5.93	112.97	118.30
1	D	169	ASP	CB-CG-OD1	5.92	123.62	118.30
1	D	22	ASP	CB-CG-OD2	-5.89	113.00	118.30
1	D	441	ARG	NE-CZ-NH2	-5.85	117.38	120.30
1	D	22	ASP	CB-CG-OD1	5.85	123.56	118.30
1	D	324	ARG	NE-CZ-NH1	5.84	123.22	120.30
1	D	170	ASP	CB-CG-OD2	-5.81	113.07	118.30
1	А	93	ASP	CB-CG-OD1	5.80	123.52	118.30
1	В	423	ASP	CB-CG-OD1	5.76	123.49	118.30
1	А	423	ASP	CB-CG-OD1	5.75	123.48	118.30
1	D	438	ASP	CB-CG-OD1	5.75	123.48	118.30
1	В	345	ASP	CB-CG-OD1	5.72	123.45	118.30
1	А	186	ASP	CB-CG-OD1	5.71	123.44	118.30
1	А	152	PHE	CB-CA-C	-5.70	99.01	110.40
1	С	279	ARG	NE-CZ-NH2	-5.69	117.46	120.30
1	А	169	ASP	CB-CG-OD1	5.67	123.40	118.30
_ 1	В	95	ASP	CB-CG-OD1	5.66	123.39	118.30
1	В	405	ASP	CB-CG-OD1	5.65	123.39	118.30
1	В	403	ASP	CB-CG-OD1	5.65	123.38	118.30
1	D	105	ASP	CB-CG-OD1	5.64	123.38	118.30
1	В	170	ASP	CB-CG-OD1	5.64	123.38	118.30
1	D	366	ASP	CB-CG-OD2	-5.63	113.23	118.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	190	ARG	CB-CA-C	5.58	121.57	110.40
1	С	67	ASP	CB-CG-OD2	-5.56	113.30	118.30
1	D	122	ASP	CB-CG-OD1	5.55	123.30	118.30
1	С	235	ASP	CB-CG-OD1	5.52	123.27	118.30
1	А	261	ASP	CB-CG-OD1	5.49	123.24	118.30
1	В	170	ASP	CB-CG-OD2	-5.48	113.37	118.30
1	С	176	ARG	NE-CZ-NH1	5.48	123.04	120.30
1	А	280	ARG	NE-CZ-NH1	5.47	123.04	120.30
1	D	150	TYR	CB-CG-CD2	-5.47	117.72	121.00
1	А	105	ASP	CB-CG-OD2	-5.46	113.38	118.30
1	С	405[A]	ASP	CB-CG-OD1	5.45	123.21	118.30
1	С	405[B]	ASP	CB-CG-OD1	5.45	123.21	118.30
1	А	170	ASP	CB-CG-OD1	5.45	123.20	118.30
1	С	22	ASP	CB-CG-OD1	5.44	123.20	118.30
1	D	203	ASP	CB-CG-OD2	-5.43	113.41	118.30
1	С	95	ASP	CB-CG-OD1	5.39	123.15	118.30
1	А	313	ASP	CB-CG-OD2	-5.36	113.48	118.30
1	В	186	ASP	CB-CG-OD2	-5.35	113.48	118.30
1	С	169	ASP	CB-CG-OD2	-5.35	113.49	118.30
1	В	403	ASP	CB-CG-OD2	-5.32	113.52	118.30
1	С	446	ARG	NE-CZ-NH1	5.30	122.95	120.30
1	А	438	ASP	CB-CG-OD1	5.29	123.06	118.30
1	D	90	THR	CA-CB-CG2	-5.27	105.03	112.40
1	D	318	THR	N-CA-CB	5.26	120.30	110.30
1	D	308	ASP	CB-CG-OD1	5.26	123.03	118.30
1	В	345	ASP	CB-CG-OD2	-5.25	113.58	118.30
1	А	345	ASP	CB-CG-OD2	-5.24	113.58	118.30
1	В	203	ASP	CB-CG-OD1	5.24	123.01	118.30
1	D	235	ASP	CB-CG-OD1	5.21	122.99	118.30
1	А	95	ASP	CB-CG-OD1	5.21	122.99	118.30
1	В	235	ASP	CB-CG-OD2	-5.21	113.61	118.30
1	D	423	ASP	CB-CG-OD1	5.21	122.99	118.30
1	С	138	ASP	CB-CG-OD1	5.19	122.97	118.30
1	В	169	ASP	N-CA-CB	5.18	119.93	110.60
1	В	93	ASP	CB-CG-OD1	5.17	122.95	118.30
1	В	423	ASP	CB-CG-OD2	-5.17	113.65	118.30
1	D	186	ASP	CB-CG-OD2	-5.16	113.66	118.30
1	А	95	ASP	CB-CG-OD2	-5.14	113.67	118.30
1	В	226	ARG	NE-CZ-NH1	5.13	122.87	120.30
1	С	280	ARG	NE-CZ-NH1	5.13	122.86	120.30
1	С	105	ASP	CB-CG-OD1	5.11	122.90	118.30
1	А	235	ASP	CB-CG-OD1	5.10	122.89	118.30

IEC9

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	D	203	ASP	CB-CG-OD1	5.10	122.89	118.30
1	С	170	ASP	CB-CG-OD1	5.09	122.88	118.30
1	С	93	ASP	CB-CG-OD2	-5.09	113.72	118.30
1	D	403	ASP	CB-CG-OD2	-5.09	113.72	118.30
1	В	96	ALA	CB-CA-C	5.07	117.70	110.10
1	D	88	ARG	NE-CZ-NH1	5.07	122.83	120.30
1	D	424	ASP	CB-CG-OD2	-5.05	113.75	118.30
1	А	173	ASP	CB-CG-OD1	5.05	122.84	118.30
1	С	173	ASP	CB-CG-OD2	-5.04	113.76	118.30
1	D	313	ASP	CB-CG-OD2	-5.04	113.77	118.30
1	D	173	ASP	CB-CG-OD2	-5.01	113.79	118.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3426	0	3347	60	0
1	В	3404	0	3309	84	0
1	С	3428	0	3346	67	0
1	D	3427	0	3352	110	0
2	А	1	0	0	0	0
2	В	1	0	0	0	0
2	С	1	0	0	0	0
2	D	1	0	0	0	0
3	А	13	0	7	3	0
3	В	13	0	7	1	0
3	С	13	0	6	1	0
3	D	13	0	6	0	0
4	А	8	0	16	3	0
4	В	4	0	8	2	0
4	D	4	0	8	3	0
5	А	316	0	0	8	0
5	В	231	0	0	3	0
5	C	302	0	0	6	0

Continued from previous page...

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
5	D	248	0	0	4	0
All	All	14854	0	13412	307	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 11.

All (307) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom_1	Atom-2	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:D:100:GLY:HA3	1:D:106:LEU:HD12	1.43	0.95	
1:B:293:THR:H	1:B:297:GLN:HE21	1.09	0.95	
1:B:128:LEU:HD23	1:D:7:THR:HG21	1.50	0.93	
1:B:302:LEU:HD22	4:B:604:IPA:H33	1.53	0.90	
1:D:384:GLU:HB2	1:D:386:LYS:HE3	1.56	0.88	
1:B:6:THR:HG23	1:D:5:PHE:H	1.40	0.86	
1:C:9:VAL:HG12	1:C:76:THR:HG22	1.57	0.86	
1:D:302:LEU:HD22	4:D:602:IPA:H12	1.58	0.85	
1:D:12:GLU:HG2	1:D:44:LYS:HB2	1.60	0.83	
1:B:6:THR:HG23	1:D:5:PHE:N	1.95	0.81	
1:B:293:THR:H	1:B:297:GLN:NE2	1.77	0.81	
1:A:416:LYS:HE2	1:A:417:HIS:NE2	1.97	0.79	
1:C:150:TYR:CZ	1:C:205:LYS:HE2	2.20	0.77	
1:D:417:HIS:HB2	1:D:419:LEU:CG	2.16	0.76	
1:C:241:SER:OG	1:C:244:GLU:HG2	1.86	0.76	
1:D:428:MET:CE	1:D:444:MET:HE1	2.17	0.75	
1:A:395:LYS:HD2	5:A:1171:HOH:O	1.86	0.75	
1:A:55:ILE:HB	1:A:56:PRO:HD2	1.69	0.74	
1:A:21:HIS:H	1:A:376:GLN:HE22	1.34	0.74	
1:D:76:THR:HG22	1:D:79:GLU:HG3	1.70	0.72	
1:B:6:THR:HG21	1:D:3:SER:HB3	1.70	0.72	
1:C:293:THR:H	1:C:297:GLN:NE2	1.87	0.72	
1:C:95:ASP:OD1	1:C:108:THR:N	2.23	0.71	
1:C:293:THR:H	1:C:297:GLN:HE21	1.37	0.71	
1:B:6:THR:CG2	1:D:5:PHE:H	2.03	0.71	
1:B:68:ALA:C	1:B:70:PRO:HD2	2.11	0.71	
1:D:384:GLU:OE2	1:D:386:LYS:HE2	1.92	0.69	
1:A:99:ARG:HB2	1:A:105:ASP:OD2	1.91	0.69	
1:C:93:ASP:OD1	1:C:94:ARG:HG2	1.93	0.69	
1:C:267:GLN:NE2	5:C:1468:HOH:O	2.25	0.69	
1:D:100:GLY:HA3	1:D:106:LEU:CD1	2.22	0.69	
1:A:4:GLN:NE2	1:A:5:PHE:H	1.90	0.69	

	page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:407:VAL:HG12	1:D:408:MET:CE	2.23	0.69
1:D:428:MET:HE3	1:D:444:MET:HE1	1.75	0.69
1:A:55:ILE:HD11	1:A:65:LEU:HD11	1.75	0.69
1:B:414:TYR:HA	1:B:419:LEU:HD12	1.74	0.69
1:A:262:PRO:HD2	1:A:275:MET:SD	2.33	0.68
1:B:128:LEU:HA	1:D:7:THR:HG21	1.74	0.68
1:D:417:HIS:HB2	1:D:419:LEU:HD11	1.76	0.68
1:B:384:GLU:HB2	1:B:386:LYS:HE3	1.77	0.67
1:D:332:PHE:CD2	4:D:602:IPA:H11	2.30	0.67
1:A:4:GLN:HE21	1:A:5:PHE:H	1.42	0.67
1:D:402:ILE:HD11	1:D:407:VAL:HG21	1.76	0.67
1:D:414:TYR:HA	1:D:419:LEU:HD12	1.78	0.66
1:C:241:SER:H	1:C:244:GLU:CG	2.09	0.66
1:A:99:ARG:HB2	1:A:105:ASP:CG	2.15	0.66
1:A:331:GLU:HG2	5:A:2020:HOH:O	1.96	0.66
1:B:108:THR:O	1:B:112:VAL:HG23	1.96	0.66
1:C:21:HIS:H	1:C:376:GLN:HE22	1.42	0.65
1:B:6:THR:O	1:D:5:PHE:HA	1.97	0.65
1:B:375:ASN:ND2	1:B:376:GLN:HG3	2.12	0.65
1:A:332:PHE:CD2	4:A:603:IPA:H31	2.31	0.65
1:A:237:ASN:ND2	3:A:499:XYH:OH6	2.25	0.65
1:C:313:ASP:HB3	1:C:316:PHE:CE1	2.32	0.65
1:D:384:GLU:CB	1:D:386:LYS:HE3	2.26	0.64
1:B:394:GLU:CD	1:B:394:GLU:H	1.99	0.63
1:A:339:HIS:NE2	3:A:499:XYH:H41	2.14	0.63
1:D:417:HIS:HB2	1:D:419:LEU:CD1	2.27	0.63
1:D:417:HIS:HB2	1:D:419:LEU:HG	1.79	0.63
1:A:34:PRO:HG3	1:A:162:LEU:HB3	1.80	0.63
1:B:25:LEU:HB2	1:B:32:HIS:CG	2.34	0.62
1:B:294:ASP:OD1	1:B:297:GLN:HG3	1.99	0.62
1:A:55:ILE:HB	1:A:56:PRO:CD	2.30	0.62
1:B:339:HIS:NE2	3:B:500:XYH:H41	2.14	0.62
1:D:407:VAL:HG12	1:D:408:MET:HE1	1.82	0.61
1:C:67:ASP:O	1:C:70:PRO:HD2	2.00	0.61
1:D:3:SER:O	1:D:4:GLN:HB2	2.00	0.61
1:A:21:HIS:H	1:A:376:GLN:NE2	1.98	0.61
4:A:601:IPA:H33	1:C:302:LEU:HD22	1.81	0.61
1:D:10:VAL:O	1:D:74:GLY:N	2.30	0.61
1:D:431:LEU:O	1:D:432:ILE:HG13	2.01	0.60
1:B:137:GLY:O	1:D:81:LYS:HD3	2.01	0.60
1:D:133:ALA:H	1:D:353:HIS:HD2	1.48	0.60

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:81:LYS:NZ	1:D:137:GLY:O	2.21	0.60
1:A:4:GLN:HG3	1:A:5:PHE:N	2.18	0.59
1:B:55:ILE:HD12	1:B:61:ILE:HG21	1.84	0.59
1:D:93:ASP:O	1:D:95:ASP:N	2.35	0.59
1:C:275:MET:HG3	1:C:291:ILE:HD13	1.82	0.59
1:B:331:GLU:CD	1:D:324:ARG:HH22	2.05	0.59
1:B:331:GLU:OE2	1:D:324:ARG:NH2	2.35	0.59
1:B:133:ALA:H	1:B:353:HIS:CD2	2.21	0.58
1:C:441:ARG:NH1	5:C:1580:HOH:O	2.35	0.58
1:D:76:THR:HG22	1:D:79:GLU:CG	2.33	0.58
1:D:246:ILE:HG22	1:D:250:LYS:HD2	1.84	0.58
1:B:27:ASN:HD21	1:B:29:SER:HB2	1.68	0.58
1:C:63:LYS:HE3	1:C:67:ASP:OD2	2.04	0.57
1:C:34:PRO:HG3	1:C:162:LEU:HB3	1.85	0.57
1:D:384:GLU:HB2	1:D:386:LYS:CE	2.33	0.57
1:B:395:LYS:HB2	1:B:396:PRO:HD2	1.86	0.56
1:D:217:ALA:O	1:D:221:VAL:HG23	2.05	0.56
1:D:133:ALA:H	1:D:353:HIS:CD2	2.23	0.56
1:A:414:TYR:HA	1:A:419:LEU:HD12	1.88	0.56
1:D:197:GLU:HB2	5:D:1437:HOH:O	2.06	0.56
1:A:25:LEU:HB3	1:A:152:PHE:CD1	2.41	0.56
1:B:148:LEU:HD11	1:B:366:ASP:HA	1.88	0.56
1:D:199:TYR:HB2	1:D:201:PHE:CE2	2.41	0.56
1:A:4:GLN:CG	1:A:5:PHE:H	2.19	0.55
1:C:160:THR:HB	1:C:161:PRO:HD2	1.88	0.55
1:D:76:THR:O	1:D:79:GLU:HB2	2.06	0.55
1:B:332:PHE:CD2	4:B:604:IPA:H32	2.41	0.55
1:B:55:ILE:HB	1:B:56:PRO:HD2	1.89	0.55
1:B:131:ASN:HD22	1:B:131:ASN:C	2.09	0.55
1:D:12:GLU:CG	1:D:44:LYS:HB2	2.35	0.55
1:B:71:LEU:HD22	1:B:86:LEU:HD21	1.88	0.54
1:A:267:GLN:NE2	5:A:1710:HOH:O	2.39	0.54
1:D:55:ILE:HB	1:D:56:PRO:HD2	1.88	0.54
1:B:188:VAL:O	1:B:191:LEU:HB2	2.07	0.54
1:D:156:ASN:ND2	1:D:158:LYS:H	2.06	0.54
1:C:58:GLY:HA3	5:C:1819:HOH:O	2.08	0.54
1:D:429:GLN:HA	1:D:429:GLN:OE1	2.07	0.54
1:A:378:LEU:O	1:A:402:ILE:HD12	2.07	0.54
1:B:128:LEU:HD23	1:D:7:THR:CG2	2.31	0.54
1:B:377:ARG:HB2	1:B:382:PRO:HG3	1.88	0.54
1:B:157:ARG:HD2	5:B:1605:HOH:O	2.08	0.54

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:13:MET:HA	1:A:42:ILE:O	2.07	0.53
1:D:167:GLN:N	1:D:168:PRO:HD3	2.24	0.53
4:D:602:IPA:H13	5:D:1314:HOH:O	2.07	0.53
1:D:63:LYS:O	1:D:66:GLU:HB3	2.09	0.53
1:A:14:GLN:HB3	5:A:1653:HOH:O	2.09	0.53
1:C:361:LYS:HE3	1:C:362:ILE:O	2.07	0.53
1:D:157:ARG:CZ	1:D:166:SER:HB3	2.39	0.53
1:D:122:ASP:O	1:D:126:GLN:HG3	2.09	0.53
1:D:407:VAL:HG12	1:D:408:MET:HE2	1.90	0.53
1:A:203:ASP:OD2	1:A:231:ARG:HB2	2.09	0.52
1:A:4:GLN:HG3	1:A:5:PHE:H	1.74	0.52
1:B:55:ILE:CD1	1:B:61:ILE:HG21	2.39	0.52
1:B:58:GLY:HA3	5:B:1200:HOH:O	2.10	0.52
1:C:313:ASP:HB3	1:C:316:PHE:CD1	2.44	0.52
1:B:33:ALA:HB1	1:B:34:PRO:HD2	1.93	0.51
1:B:375:ASN:HD22	1:B:376:GLN:HG3	1.72	0.51
1:B:287:ALA:HB2	1:B:309:ILE:HB	1.91	0.51
1:A:221:VAL:O	1:A:225:GLN:HG3	2.11	0.51
1:D:431:LEU:C	1:D:432:ILE:HG13	2.31	0.51
1:D:428:MET:CE	1:D:444:MET:CE	2.88	0.51
1:C:144:GLU:HG3	1:C:389:LEU:HD22	1.93	0.51
1:C:292:ALA:HA	1:C:297:GLN:HB3	1.93	0.51
1:A:49:HIS:HD2	5:A:1668:HOH:O	1.94	0.50
1:D:109:THR:O	1:D:113:VAL:HG23	2.10	0.50
1:D:262:PRO:HD2	1:D:275:MET:SD	2.52	0.50
1:C:18:VAL:HB	1:C:410:ALA:HB1	1.92	0.50
1:C:184:THR:HA	5:C:1855:HOH:O	2.11	0.50
1:C:185:PRO:O	1:C:189:VAL:HG23	2.12	0.50
1:D:26:MET:CE	1:D:444:MET:HE3	2.41	0.50
1:C:55:ILE:HB	1:C:56:PRO:HD2	1.93	0.50
1:C:429:GLN:OE1	1:C:434:GLY:N	2.45	0.50
1:D:114:THR:OG1	1:D:318:THR:HA	2.10	0.50
1:C:224:ALA:HB2	1:C:255:SER:HB3	1.94	0.49
1:B:69:ILE:N	1:B:70:PRO:HD2	2.27	0.49
1:C:241:SER:N	1:C:244:GLU:CG	2.76	0.49
1:A:395:LYS:HB2	1:A:396:PRO:HD2	1.93	0.49
1:D:55:ILE:HB	1:D:56:PRO:CD	2.42	0.49
1:C:413:LEU:O	1:C:417:HIS:HD2	1.94	0.49
1:A:17:PRO:HG3	1:A:62:ARG:HD3	1.94	0.49
1:D:184:THR:O	1:D:188:VAL:HG23	2.13	0.49
1:B:405:ASP:O	1:B:409:LYS:HG3	2.13	0.49

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:D:83:VAL:O	1:D:87:VAL:HG23	2.13	0.49	
1:C:111:HIS:HD2	1:C:315:HIS:O	1.96	0.49	
1:B:142:ARG:NH2	1:B:358:ALA:O	2.36	0.48	
1:C:55:ILE:HB	1:C:56:PRO:CD	2.43	0.48	
1:D:402:ILE:CD1	1:D:407:VAL:HG21	2.43	0.48	
1:B:295:TRP:HB3	1:D:331:GLU:HB3	1.95	0.48	
1:C:174:TRP:O	1:C:178:ARG:HG2	2.13	0.48	
1:D:167:GLN:N	1:D:168:PRO:CD	2.75	0.48	
1:A:4:GLN:CG	1:A:5:PHE:N	2.76	0.48	
1:A:21:HIS:N	1:A:376:GLN:HE22	2.06	0.48	
1:C:55:ILE:HD11	1:C:65:LEU:HD11	1.96	0.48	
1:D:26:MET:CE	1:D:444:MET:CE	2.91	0.48	
1:D:111:HIS:HD2	1:D:315:HIS:O	1.97	0.48	
1:B:6:THR:HG23	1:D:5:PHE:CA	2.44	0.48	
1:B:265:ALA:O	1:B:266:GLU:HB3	2.14	0.48	
1:D:246:ILE:CG2	1:D:250:LYS:HD2	2.43	0.48	
1:B:160:THR:HB	1:B:161:PRO:HD2	1.95	0.48	
1:A:346:ILE:HD11	1:A:402:ILE:HD13	1.95	0.48	
1:C:21:HIS:H	1:C:376:GLN:NE2	2.09	0.48	
1:C:110:ILE:CG2	1:C:111:HIS:N	2.77	0.48	
1:B:341:ASN:O	1:B:343:HIS:HD2	1.96	0.47	
1:C:193:GLU:OE1	1:C:226:ARG:NE	2.35	0.47	
1:D:265:ALA:O	1:D:266:GLU:HB3	2.15	0.47	
1:B:69:ILE:N	1:B:70:PRO:CD	2.77	0.47	
1:C:272:ARG:HA	1:C:291:ILE:HD12	1.96	0.47	
1:A:148:LEU:HD12	1:A:148:LEU:C	2.35	0.47	
1:B:331:GLU:HB3	1:D:295:TRP:HB3	1.96	0.47	
1:D:141:GLN:NE2	5:D:1275:HOH:O	2.43	0.47	
1:D:162:LEU:HB3	1:D:163:PRO:HD2	1.97	0.47	
1:A:68:ALA:C	1:A:70:PRO:HD2	2.35	0.47	
1:A:203:ASP:CG	1:A:231:ARG:HB2	2.34	0.47	
4:A:601:IPA:H31	5:C:1399:HOH:O	2.14	0.47	
1:C:240:TRP:HB3	1:C:244:GLU:HG3	1.97	0.47	
1:C:287:ALA:HA	1:C:309:ILE:O	2.14	0.47	
1:D:405:ASP:O	1:D:409:LYS:HG3	2.14	0.47	
1:B:377:ARG:HG3	1:B:379:THR:O	2.15	0.47	
1:B:59:GLU:CD	1:B:62:ARG:HE	2.15	0.46	
1:D:16:ILE:HD13	1:D:408:MET:HE1	1.97	0.46	
1:D:241:SER:OG	1:D:244:GLU:HG3	2.16	0.46	
1:D:393:PRO:HB3	1:D:395:LYS:NZ	2.31	0.46	
1:A:181:GLU:OE1	5:A:1965:HOH:O	2.21	0.46	

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:214:GLU:HG2	5:A:1184:HOH:O	2.15	0.46
1:D:404:MET:CE	1:D:408:MET:HE3	2.45	0.46
1:A:21:HIS:HD2	5:A:1661:HOH:O	1.99	0.46
1:A:69:ILE:N	1:A:70:PRO:HD2	2.31	0.46
1:A:331:GLU:HB3	1:C:295:TRP:HB3	1.98	0.46
1:B:148:LEU:C	1:B:148:LEU:HD12	2.36	0.46
1:D:73:VAL:CG1	1:D:74:GLY:N	2.79	0.46
1:C:160:THR:HB	1:C:161:PRO:CD	2.46	0.45
1:A:110:ILE:HD12	1:A:110:ILE:HA	1.71	0.45
1:B:13:MET:HB2	1:B:43:ILE:HG12	1.97	0.45
1:C:237:ASN:ND2	3:C:501:XYH:OH6	2.45	0.45
1:D:26:MET:HE1	1:D:444:MET:HE3	1.98	0.45
1:C:265:ALA:O	1:C:266:GLU:HB3	2.15	0.45
1:B:133:ALA:H	1:B:353:HIS:HD2	1.64	0.45
1:D:417:HIS:CB	1:D:419:LEU:HD21	2.46	0.45
1:C:414:TYR:HD1	1:C:415:GLN:HE21	1.65	0.45
1:D:73:VAL:HG12	1:D:74:GLY:N	2.31	0.45
1:D:404:MET:CE	1:D:408:MET:CE	2.94	0.45
1:B:73:VAL:HG12	1:B:74:GLY:N	2.32	0.45
1:C:69:ILE:N	1:C:70:PRO:CD	2.80	0.45
1:C:262:PRO:HD2	1:C:275:MET:SD	2.56	0.45
1:D:37:THR:C	1:D:38:ARG:HG2	2.38	0.45
1:B:21:HIS:CE1	1:B:35:PHE:HE1	2.35	0.44
1:B:148:LEU:HD12	1:B:148:LEU:O	2.18	0.44
1:A:294:ASP:OD1	1:A:297:GLN:HG3	2.17	0.44
1:A:18:VAL:HB	1:A:410:ALA:HB1	1.98	0.44
1:A:34:PRO:HD3	1:A:164:TYR:CZ	2.53	0.44
1:A:310:PRO:HG2	1:A:329:CYS:SG	2.57	0.44
1:C:198:LYS:HG2	1:C:199:TYR:CE1	2.52	0.44
1:C:416:LYS:HD3	1:C:417:HIS:CE1	2.52	0.44
1:D:417:HIS:HB2	1:D:419:LEU:CD2	2.47	0.44
1:D:428:MET:HE1	1:D:444:MET:HE1	1.94	0.44
1:B:373:GLU:CD	1:B:374:GLY:N	2.71	0.44
1:C:116:ILE:O	1:C:120:MET:HG2	2.17	0.44
1:C:197:GLU:HB2	5:C:1848:HOH:O	2.16	0.44
1:D:95:ASP:N	1:D:95:ASP:OD1	2.49	0.44
1:A:232:ILE:HG22	1:A:233:THR:N	2.32	0.44
1:D:229:GLN:OE1	1:D:229:GLN:HA	2.18	0.44
1:A:69:ILE:N	1:A:70:PRO:CD	2.81	0.44
1:D:29:SER:OG	1:D:102:GLN:NE2	2.50	0.44
1:A:313:ASP:HB3	1:A:316:PHE:CE1	2.53	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:416:LYS:HD3	1:C:417:HIS:NE2	2.33	0.44
1:B:17:PRO:HB2	1:B:414:TYR:CE1	2.52	0.44
1:D:45:ASP:C	1:D:47:SER:H	2.20	0.44
1:D:109:THR:O	1:D:112:VAL:HB	2.18	0.43
1:D:110:ILE:HD12	1:D:110:ILE:HA	1.76	0.43
1:B:13:MET:HA	1:B:42:ILE:O	2.19	0.43
1:D:110:ILE:CG2	1:D:111:HIS:N	2.82	0.43
1:A:17:PRO:HG3	1:A:62:ARG:CD	2.49	0.43
1:B:376:GLN:O	1:B:377:ARG:HB3	2.18	0.43
1:D:411:HIS:O	1:D:415:GLN:HG2	2.18	0.43
1:B:34:PRO:HG3	1:B:162:LEU:HB3	2.01	0.43
1:B:55:ILE:HB	1:B:56:PRO:CD	2.48	0.43
1:C:377:ARG:HD2	1:C:379:THR:O	2.18	0.43
1:C:384:GLU:HB2	1:C:386:LYS:HE2	1.99	0.43
1:D:45:ASP:O	1:D:47:SER:N	2.52	0.43
1:C:148:LEU:C	1:C:148:LEU:HD12	2.39	0.43
1:C:353:HIS:HE1	1:C:398:LEU:O	2.01	0.43
1:D:114:THR:HG21	1:D:315:HIS:HA	2.00	0.43
1:B:142:ARG:HG2	1:B:356:ALA:HA	2.01	0.43
1:A:167:GLN:HG3	1:A:179:HIS:NE2	2.34	0.43
1:A:8:PRO:HG3	1:A:47:SER:HB3	2.00	0.42
1:B:184:THR:O	1:B:187:ALA:HB3	2.19	0.42
1:D:275:MET:HG3	1:D:291:ILE:HD13	2.00	0.42
1:B:191:LEU:HD23	1:B:191:LEU:HA	1.83	0.42
1:B:55:ILE:CD1	1:B:61:ILE:CG2	2.96	0.42
1:B:309:ILE:HA	1:B:335:THR:O	2.19	0.42
1:D:99:ARG:HA	1:D:105:ASP:OD1	2.19	0.42
1:D:91:PHE:HB3	1:D:94:ARG:HD3	2.01	0.42
1:D:414:TYR:HD1	1:D:415:GLN:HE21	1.67	0.42
1:A:238:GLY:N	1:A:261:ASP:O	2.49	0.42
1:A:286:THR:OG1	1:A:307:VAL:HA	2.20	0.42
1:B:272:ARG:HA	1:B:291:ILE:HD12	2.02	0.42
1:D:417:HIS:HB2	1:D:419:LEU:HD21	2.01	0.42
1:A:339:HIS:NE2	3:A:499:XYH:C4	2.83	0.42
1:B:59:GLU:OE1	1:B:62:ARG:NE	2.34	0.42
1:B:24:MET:HE1	1:B:431:LEU:HD21	2.01	0.41
1:C:373:GLU:CD	1:C:374:GLY:N	2.74	0.41
1:A:232:ILE:CG2	1:A:233:THR:N	2.83	0.41
1:C:39:ASN:ND2	1:C:61:ILE:HG22	2.35	0.41
1:A:309:ILE:HA	1:A:335:THR:O	2.21	0.41
1:B:135:LEU:HA	1:B:135:LEU:HD23	1.82	0.41

A 4 1	A + 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:402:ILE:HD12	1:A:402:ILE:HA	1.80	0.41
1:B:55:ILE:HD11	1:B:61:ILE:CG2	2.50	0.41
1:C:126:GLN:HA	1:C:396:PRO:HB2	2.02	0.41
1:C:380:LYS:HG3	1:C:401:GLU:CB	2.50	0.41
1:D:142:ARG:HH11	1:D:142:ARG:HD3	1.64	0.41
1:B:316:PHE:HD2	5:B:1264:HOH:O	2.02	0.41
1:D:148:LEU:HD12	1:D:148:LEU:C	2.41	0.41
1:D:162:LEU:HD22	1:D:426:MET:HE1	2.02	0.41
1:B:45:ASP:OD2	1:B:45:ASP:C	2.59	0.41
1:C:365:ILE:HA	1:C:365:ILE:HD13	1.81	0.41
1:C:429:GLN:HE22	1:C:435:TRP:HB3	1.86	0.41
1:C:161:PRO:CG	1:C:430:TYR:CE2	3.03	0.41
1:D:252:LEU:O	1:D:253:LYS:C	2.58	0.41
1:B:13:MET:O	1:B:69:ILE:HD13	2.21	0.41
1:B:278:PHE:CD1	1:B:278:PHE:C	2.94	0.41
1:B:241:SER:OG	1:B:244:GLU:HG3	2.21	0.41
1:C:5:PHE:CD1	1:C:5:PHE:N	2.89	0.41
1:D:66:GLU:O	1:D:69:ILE:HG13	2.21	0.40
1:D:292:ALA:HA	1:D:297:GLN:HB3	2.04	0.40
1:B:29:SER:O	1:B:424:ASP:HB2	2.21	0.40
1:D:404:MET:HE3	1:D:408:MET:CE	2.51	0.40
1:B:217:ALA:O	1:B:221:VAL:HG23	2.22	0.40
1:B:313:ASP:HB3	1:B:316:PHE:CE2	2.56	0.40
1:C:142:ARG:HH11	1:C:142:ARG:HD3	1.68	0.40
1:C:243:ASN:HD22	1:C:243:ASN:HA	1.75	0.40
1:D:67:ASP:O	1:D:70:PRO:HD2	2.21	0.40
1:D:361:LYS:HD2	5:D:2079:HOH:O	2.22	0.40
1:A:345:ASP:OD2	1:A:345:ASP:N	2.43	0.40
1:B:71:LEU:HB3	1:B:86:LEU:HD23	2.04	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	441/446~(99%)	432 (98%)	8 (2%)	1 (0%)	47	44
1	В	441/446~(99%)	423~(96%)	18 (4%)	0	100	100
1	С	442/446~(99%)	426 (96%)	16 (4%)	0	100	100
1	D	442/446~(99%)	428~(97%)	11 (2%)	3~(1%)	22	16
All	All	1766/1784~(99%)	1709 (97%)	53 (3%)	4 (0%)	47	44

All (4) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	D	4	GLN
1	D	94	ARG
1	А	93	ASP
1	D	46	ASN

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	357/362~(99%)	347~(97%)	10 (3%)	43 44
1	В	352/362~(97%)	334~(95%)	18 (5%)	24 19
1	С	357/362~(99%)	345~(97%)	12 (3%)	37 36
1	D	356/362~(98%)	338~(95%)	18 (5%)	24 19
All	All	1422/1448 (98%)	1364 (96%)	58 (4%)	30 28

All (58) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	27	ASN
1	А	93	ASP
1	А	99	ARG
1	А	150	TYR
1	А	169	ASP
1	А	190	ARG
1	А	275	MET

Mol	Chain	Res	Type
1	А	339	HIS
1	А	395	LYS
1	А	439	ASN
1	В	6	THR
1	В	14	GLN
1	В	34	PRO
1	В	131	ASN
1	В	148	LEU
1	В	150	TYR
1	В	169	ASP
1	В	171	SER
1	В	207	LYS
1	В	214	GLU
1	В	275	MET
1	В	339	HIS
1	B	345	ASP
1	B	375	ASN
1	В	377	ARG
1	В	380	LYS
1	В	394	GLU
1	В	439	ASN
1	С	4	GLN
1	С	12	GLU
1	С	131	ASN
1	С	150	TYR
1	С	191	LEU
1	С	255	SER
1	С	314	PRO
1	С	339	HIS
1	С	340	SER
1	C	361	LYS
1	C	380	LYS
1	С	395	LYS
1	D	3	SER
1	D	4	GLN
1	D	14	GLN
1	D	27	ASN
1	D	75	LYS
1	D	94	ARG
1	D	95	ASP
1	D	106	LEU
1	D	150	TYR

Continued from pretious page			
Mol	Chain	\mathbf{Res}	Type
1	D	156	ASN
1	D	160	THR
1	D	253	LYS
1	D	275	MET
1	D	306	SER
1	D	339	HIS
1	D	409	LYS
1	D	426	MET
1	D	439	ASN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (46) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	4	GLN
1	А	21	HIS
1	А	39	ASN
1	А	49	HIS
1	А	102	GLN
1	А	165	GLN
1	А	243	ASN
1	А	267	GLN
1	А	305	GLN
1	А	376	GLN
1	А	391	GLN
1	В	14	GLN
1	В	27	ASN
1	В	102	GLN
1	В	131	ASN
1	В	140	GLN
1	В	225	GLN
1	В	243	ASN
1	В	297	GLN
1	В	341	ASN
1	В	353	HIS
1	В	375	ASN
1	В	415	GLN
1	В	439	ASN
1	С	4	GLN
1	С	39	ASN
1	С	102	GLN
1	С	111	HIS
1	С	131	ASN

Mol	Chain	Res	Type
1	С	140	GLN
1	С	229	GLN
1	С	243	ASN
1	С	267	GLN
1	С	297	GLN
1	С	353	HIS
1	С	376	GLN
1	С	415	GLN
1	С	417	HIS
1	D	4	GLN
1	D	39	ASN
1	D	102	GLN
1	D	141	GLN
1	D	156	ASN
1	D	353	HIS
1	D	415	GLN
1	D	439	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 12 ligands modelled in this entry, 4 are monoatomic - leaving 8 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	\mathbf{ths}	B	ond ang	les
INIOI	туре	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
3	XYH	А	499	2	12,12,12	2.71	4 (33%)	14,16,16	4.79	8 (57%)
4	IPA	В	604	-	3,3,3	0.64	0	3,3,3	0.28	0
4	IPA	D	602	-	3,3,3	0.56	0	3,3,3	0.60	0
3	XYH	В	500	2	12,12,12	2.77	2 (16%)	14,16,16	<mark>3.39</mark>	8 (57%)
4	IPA	А	601	-	3,3,3	0.44	0	3,3,3	0.40	0
3	XYH	D	502	2	12,12,12	2.90	1 (8%)	14,16,16	3.66	7 (50%)
3	XYH	С	501	2	12,12,12	2.63	3 (25%)	14,16,16	5.07	7 (50%)
4	IPA	А	603	-	3,3,3	0.51	0	3,3,3	0.43	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	XYH	С	501	2	-	7/18/18/18	-
3	XYH	А	499	2	-	4/18/18/18	-
3	XYH	D	502	2	-	7/18/18/18	-
3	XYH	В	500	2	-	7/18/18/18	-

All (10) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
3	D	502	XYH	OH5-C5	9.69	1.42	1.23
3	В	500	XYH	OH5-C5	8.70	1.40	1.23
3	А	499	XYH	OH5-C5	8.08	1.39	1.23
3	С	501	XYH	OH5-C5	7.32	1.37	1.23
3	С	501	XYH	C2-C1	-3.38	1.48	1.52
3	В	500	XYH	C5-N6	-2.55	1.30	1.33
3	С	501	XYH	C5-N6	-2.52	1.30	1.33
3	А	499	XYH	C5-N6	-2.43	1.30	1.33
3	А	499	XYH	O1B-C1	2.32	1.29	1.22
3	А	499	XYH	O1A-C1	-2.19	1.23	1.30

All (30) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	С	501	XYH	OH4-C4-C5	-15.44	77.36	110.63
3	А	499	XYH	OH4-C4-C5	-14.87	78.60	110.63
3	В	500	XYH	OH4-C4-C5	-10.07	88.93	110.63

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$Observed(^{o})$	$Ideal(^{o})$
3	D	502	XYH	OH4-C4-C5	-9.06	91.10	110.63
3	С	501	XYH	OH4-C4-C3	8.81	129.13	110.45
3	D	502	XYH	OH4-C4-C3	6.24	123.67	110.45
3	А	499	XYH	OH4-C4-C3	-5.18	99.47	110.45
3	А	499	XYH	C3-C4-C5	4.48	120.80	109.91
3	D	502	XYH	C3-C2-C1	4.47	114.94	109.32
3	А	499	XYH	OH3-C3-C2	3.48	115.54	109.21
3	А	499	XYH	OH3-C3-C4	3.40	115.39	109.21
3	С	501	XYH	C3-C2-C1	3.20	113.35	109.32
3	D	502	XYH	O1A-C1-C2	3.13	121.72	113.27
3	В	500	XYH	C3-C4-C5	3.09	117.43	109.91
3	D	502	XYH	OH3-C3-C2	3.04	114.74	109.21
3	В	500	XYH	OH5-C5-N6	-2.96	119.44	123.27
3	В	500	XYH	OH5-C5-C4	2.91	125.24	120.00
3	А	499	XYH	C3-C2-C1	2.88	112.94	109.32
3	В	500	XYH	C3-C2-C1	2.87	112.92	109.32
3	D	502	XYH	OH3-C3-C4	2.85	114.40	109.21
3	С	501	XYH	OH5-C5-N6	-2.82	119.62	123.27
3	D	502	XYH	C3-C4-C5	2.78	116.68	109.91
3	В	500	XYH	OH3-C3-C4	2.76	114.23	109.21
3	С	501	XYH	OH5-C5-C4	2.63	124.73	120.00
3	С	501	XYH	C3-C4-C5	2.61	116.27	109.91
3	А	499	XYH	OH5-C5-N6	-2.49	120.05	123.27
3	А	499	XYH	OH5-C5-C4	2.39	124.30	120.00
3	В	500	XYH	OH3-C3-C2	2.33	113.45	109.21
3	В	500	XYH	O1A-C1-C2	2.12	119.00	113.27
3	С	501	XYH	OH3-C3-C2	2.05	112.94	109.21

 $Continued \ from \ previous \ page...$

There are no chirality outliers.

All ((25)) torsion	outliers	are	listed	below:	

Mol	Chain	Res	Type	Atoms
3	А	499	XYH	OH3-C3-C4-C5
3	В	500	XYH	C1-C2-C3-C4
3	В	500	XYH	C3-C4-C5-OH5
3	В	500	XYH	C3-C4-C5-N6
3	С	501	XYH	С1-С2-С3-ОН3
3	С	501	XYH	C1-C2-C3-C4
3	С	501	XYH	OH2-C2-C3-C4
3	С	501	XYH	C2-C3-C4-OH4
3	С	501	XYH	C3-C4-C5-OH5
3	С	501	XYH	C3-C4-C5-N6

IEC9

	itaea ji en	e proces	o ao pago	
Mol	Chain	\mathbf{Res}	Type	Atoms
3	D	502	XYH	C1-C2-C3-C4
3	D	502	XYH	OH2-C2-C3-C4
3	D	502	XYH	C3-C4-C5-OH5
3	D	502	XYH	C3-C4-C5-N6
3	С	501	XYH	OH2-C2-C3-OH3
3	В	500	XYH	OH2-C2-C3-C4
3	А	499	XYH	C2-C3-C4-C5
3	В	500	XYH	С1-С2-С3-ОН3
3	D	502	XYH	С1-С2-С3-ОН3
3	А	499	XYH	C1-C2-C3-C4
3	В	500	XYH	OH4-C4-C5-N6
3	D	502	XYH	OH4-C4-C5-OH5
3	D	502	XYH	OH4-C4-C5-N6
3	А	499	XYH	C3-C4-C5-OH5
3	В	500	XYH	OH4-C4-C5-OH5

Continued from previous page...

There are no ring outliers.

7 monomers are involved in 13 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	А	499	XYH	3	0
4	В	604	IPA	2	0
4	D	602	IPA	3	0
3	В	500	XYH	1	0
4	А	601	IPA	2	0
3	С	501	XYH	1	0
4	А	603	IPA	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<rsrz></rsrz>	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	443/446~(99%)	-0.55	4 (0%) 84 83	15, 24, 51, 87	0
1	В	443/446~(99%)	-0.40	6 (1%) 75 74	15, 30, 60, 88	0
1	С	443/446~(99%)	-0.53	6 (1%) 75 74	14, 24, 50, 83	0
1	D	444/446~(99%)	-0.34	9 (2%) 65 63	14, 28, 61, 100	0
All	All	1773/1784~(99%)	-0.45	25 (1%) 75 74	14, 27, 57, 100	0

All (25) RSRZ outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	RSRZ
1	D	3	SER	7.7
1	D	93	ASP	5.7
1	D	4	GLN	4.7
1	D	92	ALA	4.4
1	С	96	ALA	3.7
1	А	96	ALA	3.2
1	С	93	ASP	3.0
1	D	96	ALA	2.9
1	С	101	LEU	2.9
1	А	98	GLY	2.8
1	D	418	GLY	2.6
1	D	95	ASP	2.6
1	С	92	ALA	2.6
1	А	228	PRO	2.6
1	D	106	LEU	2.6
1	В	93	ASP	2.4
1	D	101	LEU	2.3
1	А	97	GLY	2.3
1	С	97	GLY	2.2
1	В	228	PRO	2.1
1	С	4	GLN	2.1

Continued from previous page...

Mol	Chain	Res	Type	RSRZ
1	В	418	GLY	2.1
1	В	168	PRO	2.1
1	В	73	VAL	2.0
1	В	101	LEU	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
3	XYH	А	499	13/13	0.94	0.12	19,30,57,64	0
4	IPA	В	604	4/4	0.94	0.15	16,42,45,69	0
3	XYH	D	502	13/13	0.95	0.09	19,24,47,57	0
4	IPA	А	603	4/4	0.95	0.15	30,31,47,48	0
3	XYH	С	501	13/13	0.95	0.10	20,29,75,78	0
4	IPA	D	602	4/4	0.95	0.12	21,33,41,60	0
3	XYH	В	500	13/13	0.97	0.10	21,26,55,61	0
2	MG	В	498	1/1	0.97	0.03	24,24,24,24	0
4	IPA	А	601	4/4	0.98	0.13	12,31,43,100	0
2	MG	D	498	1/1	0.98	0.07	23,23,23,23	0
2	MG	С	498	1/1	0.99	0.04	23,23,23,23	0
2	MG	А	498	1/1	0.99	0.06	21,21,21,21	0

6.5 Other polymers (i)

There are no such residues in this entry.

