

Full wwPDB X-ray Structure Validation Report (i)

Sep 5, 2023 – 05:28 PM EDT

PDB ID	:	4E45
Title	:	Crystal structure of the hMHF1/hMHF2 Histone-Fold Tetramer in Complex
		with Fanconi Anemia Associated Helicase hFANCM
Authors	:	Fox III, D.; Zhao, Y.; Yang, W.; Weidong, W.
Deposited on	:	2012-03-12
Resolution	:	2.00 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 2.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	8085 (2.00-2.00)
Clashscore	141614	9178 (2.00-2.00)
Ramachandran outliers	138981	9054 (2.00-2.00)
Sidechain outliers	138945	9053 (2.00-2.00)
RSRZ outliers	127900	7900 (2.00-2.00)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	112	90%		• 9%
1	С	112	80%	•	16%
1	F	112	4%		• 9%
1	Н	112	80%	•	16%
1	К	112	4% 79%	5%	16%

		i previous		
Mol	Chain	Length	Quality of chain	
		110	2%	
	M	112	79%	• 17%
2	В	83	80%	10% 11%
2	D	83	89%	11%
_	~		<u>6%</u>	
2	G	83	82%	6% • 11%
			2%	
2	Ι	83	84%	5% 11%
2	L	83	81%	7% • 11%
			.%	
2	Ν	83	87%	• 11%
			3%	
3	Ε	137	70% 7%	23%
			2%	
3	J	137	69% 7% ·	23%
	_		7%	
3	0	137	64% 8% ·	26%

Continued from previous page...

2 Entry composition (i)

There are 6 unique types of molecules in this entry. The entry contains 11040 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	1 A	102	Total	С	Ν	0	\mathbf{S}	0	0	0
	Л	102	791	491	142	153	5	0	0	0
1	С	04	Total	С	Ν	0	S	0	9	0
		94	759	475	136	142	6	0		0
1	F	109	Total	С	Ν	0	S	0	0	0
	I.	102	796	496	139	156	5	0	0	0
1	ц	04	Total	С	Ν	0	S	0	1	0
	11	94	738	464	126	142	6	0	I	0
1	K	04	Total	С	Ν	0	S	0	0	0
	Γ	94	726	454	127	140	5	0	0	0
1	М	03	Total	С	Ν	Ο	\mathbf{S}	0	1	0
	93	729	455	129	139	6	U		U	

• Molecule 1 is a protein called Centromere protein S.

There are 12 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	-1	GLY	-	expression tag	UNP Q8N2Z9
А	0	SER	-	expression tag	UNP Q8N2Z9
С	-1	GLY	-	expression tag	UNP Q8N2Z9
С	0	SER	-	expression tag	UNP Q8N2Z9
F	-1	GLY	-	expression tag	UNP Q8N2Z9
F	0	SER	-	expression tag	UNP Q8N2Z9
Н	-1	GLY	-	expression tag	UNP Q8N2Z9
Н	0	SER	-	expression tag	UNP Q8N2Z9
K	-1	GLY	-	expression tag	UNP Q8N2Z9
K	0	SER	-	expression tag	UNP Q8N2Z9
М	-1	GLY	-	expression tag	UNP Q8N2Z9
М	0	SER	-	expression tag	UNP Q8N2Z9

• Molecule 2 is a protein called Centromere protein X.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
0	Р	74	Total	С	Ν	0	\mathbf{S}	0	0	0
	D	14	566	363	98	104	1	0	0	0
2	П	74	Total	С	Ν	0	S	0	1	0
	D	14	584	371	104	108	1	0		0
2	0 7	C 74	Total	С	Ν	0	S	0	0	0
	G	14	559	360	95	103	1	0	0	0
2	т	74	Total	С	Ν	0	S	0	1	0
	1	14	586	375	104	106	1	0	I	0
2	т	74	Total	С	Ν	0	S	0	0	0
		14	549	353	94	101	1	0	0	0
9	N	74	Total	С	Ν	Ο	S	0	0	0
2 N	74	574	367	102	104	1	0	0	U	

There are 12 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
В	-1	GLY	-	expression tag	UNP A8MT69
В	0	SER	-	expression tag	UNP A8MT69
D	-1	GLY	-	expression tag	UNP A8MT69
D	0	SER	-	expression tag	UNP A8MT69
G	-1	GLY	-	expression tag	UNP A8MT69
G	0	SER	-	expression tag	UNP A8MT69
Ι	-1	GLY	-	expression tag	UNP A8MT69
Ι	0	SER	-	expression tag	UNP A8MT69
L	-1	GLY	-	expression tag	UNP A8MT69
L	0	SER	-	expression tag	UNP A8MT69
N	-1	GLY	-	expression tag	UNP A8MT69
N	0	SER	-	expression tag	UNP A8MT69

• Molecule 3 is a protein called Fanconi anemia group M protein.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
2	F	105	Total	С	Ν	0	S	0	2	0
0	Ľ	105	858	544	153	155	6	0		0
2	т	105	Total	С	Ν	0	S	0	0	0
3	J	105	854	540	150	158	6	0	0	0
9	0	101	Total	С	Ν	0	\mathbf{S}	0	0	0
3	U	101	810	517	143	144	6	0	0	U

There are 12 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Е	664	GLY	-	expression tag	UNP Q8IYD8
-				a r. I	1

Chain	Residue	Modelled	Actual	Comment	Reference
E	665	ALA	-	expression tag	UNP Q8IYD8
E	666	MET	-	expression tag	UNP Q8IYD8
E	668	PRO	GLY	conflict	UNP Q8IYD8
J	664	GLY	-	expression tag	UNP Q8IYD8
J	665	ALA	-	expression tag	UNP Q8IYD8
J	666	MET	-	expression tag	UNP Q8IYD8
J	668	PRO	GLY	conflict	UNP Q8IYD8
0	664	GLY	-	expression tag	UNP Q8IYD8
0	665	ALA	-	expression tag	UNP Q8IYD8
Ō	666	MET	_	expression tag	UNP Q8IYD8
0	668	PRO	GLY	conflict	UNP Q8IYD8

• Molecule 4 is GLYCEROL (three-letter code: GOL) (formula: $C_3H_8O_3$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
4	Н	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0

• Molecule 5 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Aton	ns	ZeroOcc	AltConf
5	D	1	Total 1	Zn 1	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	J	1	Total Zn 1 1	0	0
5	Ν	1	Total Zn 1 1	0	0

• Molecule 6 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	А	37	Total O 37 37	0	0
6	В	27	$\begin{array}{ccc} \text{Total} & \text{O} \\ 27 & 27 \end{array}$	0	0
6	С	48	Total O 48 48	0	0
6	D	37	Total O 37 37	0	0
6	Е	77	Total O 77 77	0	0
6	F	43	Total O 43 43	0	0
6	G	30	Total O 30 30	0	0
6	Н	44	Total O 44 44	0	0
6	Ι	24	Total O 24 24	0	0
6	J	75	Total O 75 75	0	0
6	K	12	Total O 12 12	0	0
6	L	10	Total O 10 10	0	0
6	М	20	TotalO2020	0	0
6	Ν	22	$\begin{array}{ccc} \text{Total} & \text{O} \\ 22 & 22 \end{array}$	0	0
6	О	40	Total O 40 40	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Centromere protein S

• Molecule 1: Centromere protein S

4E45

Chain M:	79%	• 17%
CLY SER MET GLU GLU GLU GLU GLU E3 GLU CLU CLU GLU CLU CLU GLU CLU CLU GLU CLU CLU CLU CLU CLU CLU CLU CLU CLU C	A40 E52 E52 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10	
• Molecule 2: Centre	omere protein X	
Chain B:	80%	10% 11%
GLY SER MET GLV GLV GLY ALA ALA ALA GLZ G12 G12 G12 G12 G12 G12 G12 G12 G12 G12	q 36 V44 Q56 B60 D68 F81	
• Molecule 2: Centre	omere protein X	
Chain D:	89%	11%
GLY SER MET MET GLU GLY ALA ALA ALA ALA ALA F81 F81		
• Molecule 2: Centre	omere protein X	
Chain G:	82%	6% • 11%
GLY BER MET MET GLU GLY ALA ALA ALA ALA ALA 216 SB S16 CL 35 CL 35 CL 35 CL 35 CL 35 CL 36 CLY 37 CLY 37 CLY 35 C C C C C C C C C C C C C C C C C C	A49 E71 276 276 276 178 177 178 178 178 178 178 178	
• Molecule 2: Centre	omere protein X	
Chain I:	84%	5% 11%
GLY SER MET GLU GLY ALA ALA ALA ALA ALA ALA ALA ALA ALA A	F175 F176 F81 F81	
• Molecule 2: Centre	omere protein X	
Chain L:	81%	7% • 11%
GLY SER MET MET GLU GLY ALA ALA ALA ALA ALA ALA CLY CL3 E 13 E	V44 A49 E71 F81	
• Molecule 2: Centre	omere protein X	
Chain N:	87%	• 11%
GLV SER MET GLU GLU GLY ALA ALA ALA ALA ALA ALA ALA ALA ALA A	r B B	

 \bullet Molecule 3: Fanconi anemia group M protein

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	110.98Å 69.97 Å 116.05 Å	Deperitor
a, b, c, α , β , γ	90.00° 91.60° 90.00°	Depositor
$\mathbf{P}_{\text{accolution}}\left(\overset{\text{\&}}{\mathbf{A}}\right)$	49.51 - 2.00	Depositor
Resolution (A)	43.47 - 2.00	EDS
% Data completeness	98.9 (49.51-2.00)	Depositor
(in resolution range)	98.9 (43.47-2.00)	EDS
R_{merge}	0.05	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$2.94 (at 2.00 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.6.0117	Depositor
B B c	0.202 , 0.245	Depositor
It, Itfree	0.203 , 0.245	DCC
R_{free} test set	5972 reflections $(5.01%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	35.5	Xtriage
Anisotropy	0.123	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.36 , 49.5	EDS
L-test for $twinning^2$	$< L > = 0.49, < L^2 > = 0.32$	Xtriage
	0.004 for l,k,-h	
Estimated twinning fraction	0.019 for h,-k,-l	Xtriage
	0.014 for l,-k,h	
F_o, F_c correlation	0.95	EDS
Total number of atoms	11040	wwPDB-VP
Average B, all atoms $(Å^2)$	40.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.68% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, GOL

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	Bond angles		
MOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.78	0/800	0.78	0/1078	
1	С	0.75	0/768	0.78	0/1031	
1	F	0.76	0/805	0.79	3/1084~(0.3%)	
1	Н	0.78	0/747	0.81	1/1004~(0.1%)	
1	Κ	0.57	0/735	0.70	0/990	
1	М	0.67	0/738	0.78	0/993	
2	В	0.83	0/572	0.78	0/773	
2	D	0.77	0/593	0.85	0/799	
2	G	0.76	0/565	0.78	0/765	
2	Ι	0.80	0/595	0.82	0/801	
2	L	0.59	0/555	0.69	0/753	
2	Ν	0.72	0/580	0.70	0/781	
3	Е	0.89	1/883~(0.1%)	0.93	2/1197~(0.2%)	
3	J	0.89	0/876	0.94	1/1187~(0.1%)	
3	0	0.78	0/831	0.76	0/1126	
All	All	0.77	1/10643~(0.0%)	0.80	7/14362~(0.0%)	

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
3	Ε	736	TRP	CD2-CE2	6.07	1.48	1.41

All (7) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms Z		$Observed(^{o})$	$Ideal(^{o})$
3	J	693	ARG	NE-CZ-NH1	7.93	124.27	120.30
3	Е	693	ARG	NE-CZ-NH1	6.77	123.69	120.30
1	Н	64	ASP	CB-CG-OD2	-5.72	113.15	118.30
1	F	87	ARG	NE-CZ-NH1	-5.54	117.53	120.30
3	Е	737	ARG	NE-CZ-NH1	5.48	123.04	120.30

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	F	87	ARG	NE-CZ-NH2	5.18	122.89	120.30
1	F	64	ASP	CB-CG-OD1	5.06	122.86	118.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	791	0	755	1	0
1	С	759	0	751	2	0
1	F	796	0	766	1	0
1	Н	738	0	719	3	0
1	Κ	726	0	692	6	0
1	М	729	0	699	4	0
2	В	566	0	570	5	0
2	D	584	0	591	0	0
2	G	559	0	556	4	0
2	Ι	586	0	602	3	0
2	L	549	0	534	7	0
2	Ν	574	0	585	3	0
3	Ε	858	0	780	4	0
3	J	854	0	773	8	0
3	0	810	0	728	12	0
4	В	6	0	8	0	0
4	Н	6	0	8	0	0
5	D	1	0	0	0	0
5	J	1	0	0	0	0
5	Ν	1	0	0	0	0
6	А	37	0	0	0	0
6	В	27	0	0	0	0
6	С	48	0	0	1	0
6	D	37	0	0	0	0
6	Е	77	0	0	0	0
6	F	43	0	0	0	0
6	G	30	0	0	0	0

	$j \cdot \cdot$	- P	Fagan			
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
6	Н	44	0	0	0	0
6	Ι	24	0	0	0	0
6	J	75	0	0	0	0
6	Κ	12	0	0	0	0
6	L	10	0	0	0	0
6	М	20	0	0	0	0
6	Ν	22	0	0	0	0
6	0	40	0	0	1	0
All	All	11040	0	10117	44	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

All (44) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

A 4 amo 1	A + a	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:L:30:VAL:HG11	2:L:35:LEU:HD13	1.59	0.84	
3:O:689:ASN:HD21	3:O:693:ARG:HH11	1.45	0.64	
1:K:69:ALA:HB2	1:K:81:ASP:OD2	2.01	0.60	
2:L:30:VAL:CG1	2:L:35:LEU:HD13	2.31	0.59	
2:B:32:GLY:O	2:B:36:GLN:HG3	2.03	0.59	
1:K:53:LEU:HB2	3:O:761:LEU:HD21	1.85	0.57	
2:B:60:GLU:HA	2:I:27:LYS:HE3	1.88	0.56	
1:M:52:GLU:HG3	3:O:705:LEU:HD23	1.87	0.56	
3:J:705:LEU:CD2	3:J:731:LEU:HD12	2.38	0.53	
2:G:49:ALA:HB2	2:G:77:LEU:HD21	1.91	0.53	
3:E:705:LEU:CD2	3:E:731:LEU:HD12	2.39	0.52	
2:B:56:GLN:NE2	2:B:60:GLU:OE2	2.41	0.52	
3:O:693:ARG:HG3	3:O:694:LEU:N	2.26	0.50	
2:L:49:ALA:HB2	2:L:77:LEU:HD21	1.93	0.50	
2:I:74:LEU:HB3	2:I:75:PRO:HD3	1.95	0.49	
1:K:53:LEU:HD21	2:L:77:LEU:HD23	1.94	0.48	
2:L:67:VAL:HB	3:O:765:ILE:HG23	1.96	0.48	
2:G:16:SER:HB2	2:G:35:LEU:HD21	1.96	0.47	
2:L:71:GLU:HG3	3:O:765:ILE:HG21	1.96	0.47	
3:J:700:ILE:HG21	3:J:703:ILE:CD1	2.46	0.46	
3:O:689:ASN:OD1	3:O:695:ARG:NH2	2.48	0.46	
1:H:45:GLN:NE2	3:J:700:ILE:HD12	2.31	0.46	
1:M:49:ALA:HA	3:O:703:ILE:HG21	1.98	0.45	
1:H:33:GLU:OE2	2:I:8:SER:CB	2.65	0.45	
1:K:95:TYR:CE1	2:L:44:VAL:HG21	2.53	0.44	

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:K:17:GLN:NE2	3:O:781:VAL:HG12	2.32	0.44
1:M:33:GLU:OE2	2:N:8:SER:N	2.52	0.43
1:M:82:VAL:HG11	2:N:37:LEU:HB3	2.01	0.43
3:E:705:LEU:HD23	3:E:731:LEU:HD12	2.01	0.42
1:C:16:GLN:NE2	6:C:235:HOH:O	2.52	0.42
2:G:74:LEU:HD12	2:G:74:LEU:HA	1.89	0.42
1:A:95:TYR:CE2	2:B:44:VAL:HG21	2.55	0.42
3:J:747:HIS:CD2	3:J:748:GLN:HG3	2.55	0.42
3:J:688:TRP:CH2	3:J:693:ARG:HD3	2.54	0.41
1:H:44:LYS:NZ	3:J:698:ASP:OD2	2.51	0.41
2:G:71:GLU:CG	3:J:765:ILE:HG21	2.51	0.41
3:O:785:LEU:HD12	6:O:912:HOH:O	2.19	0.41
1:K:89:SER:HB2	3:O:708:VAL:HG11	2.02	0.41
2:B:74:LEU:HD11	3:E:761:LEU:HD23	2.03	0.41
3:J:700:ILE:HG21	3:J:703:ILE:HD11	2.03	0.41
2:N:37:LEU:HD23	2:N:37:LEU:HA	1.94	0.40
1:C:45:GLN:OE1	3:E:700:ILE:HD13	2.21	0.40
3:O:705:LEU:CD2	3:O:731:LEU:HD12	2.51	0.40
1:F:65:LEU:HB3	1:F:77:ILE:HD13	2.04	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	100/112~(89%)	100 (100%)	0	0	100	100
1	С	94/112~(84%)	93~(99%)	1 (1%)	0	100	100
1	F	100/112~(89%)	98~(98%)	2(2%)	0	100	100
1	Н	93/112~(83%)	92 (99%)	1 (1%)	0	100	100
1	K	92/112~(82%)	91 (99%)	1 (1%)	0	100	100

4E45

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	М	92/112~(82%)	87~(95%)	5 (5%)	0	100	100
2	В	72/83~(87%)	71 (99%)	1 (1%)	0	100	100
2	D	73/83~(88%)	73~(100%)	0	0	100	100
2	G	72/83~(87%)	71 (99%)	1 (1%)	0	100	100
2	Ι	73/83~(88%)	72~(99%)	1 (1%)	0	100	100
2	L	72/83~(87%)	72 (100%)	0	0	100	100
2	Ν	72/83~(87%)	70~(97%)	2(3%)	0	100	100
3	Ε	103/137~(75%)	101 (98%)	2(2%)	0	100	100
3	J	101/137~(74%)	100 (99%)	1 (1%)	0	100	100
3	Ο	95/137~(69%)	89 (94%)	6 (6%)	0	100	100
All	All	1304/1581~(82%)	1280 (98%)	24 (2%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric Outliers		Percentiles
1	А	80/99~(81%)	80 (100%)	0	100 100
1	С	80/99~(81%)	78~(98%)	2(2%)	47 49
1	F	82/99~(83%)	81 (99%)	1 (1%)	71 76
1	Н	77/99~(78%)	77 (100%)	0	100 100
1	Κ	74/99~(75%)	74 (100%)	0	100 100
1	М	75/99~(76%)	74 (99%)	1 (1%)	69 74
2	В	59/68~(87%)	57~(97%)	2(3%)	37 36
2	D	62/68~(91%)	62 (100%)	0	100 100
2	G	57/68~(84%)	56~(98%)	1 (2%)	59 63
2	Ι	62/68~(91%)	62 (100%)	0	100 100
2	L	54/68~(79%)	53 (98%)	1 (2%)	57 61

Mol	Chain	Analysed	Rotameric Outliers		Percentiles		
2	Ν	60/68~(88%)	60 (100%)	0	100 100		
3	Е	89/129~(69%)	87~(98%)	2(2%)	52 55		
3	J	90/129~(70%)	90 (100%)	0	100 100		
3	Ο	83/129~(64%)	80~(96%)	3~(4%)	35 34		
All	All	1084/1389~(78%)	1071 (99%)	13 (1%)	71 76		

All (13) residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
2	В	26	ASP
2	В	68	ASP
1	С	36	LEU
1	С	100	SER
3	Е	711	SER
3	Ε	735	GLU
1	F	44	LYS
2	G	74	LEU
2	L	35	LEU
1	М	95	TYR
3	0	689	ASN
3	0	695	ARG
3	0	697	SER

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (2) such side chains are listed below:

Mol	Chain	Res	Type
1	Κ	16	GLN
1	Κ	17	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 5 ligands modelled in this entry, 3 are monoatomic - leaving 2 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	who Chain		Deg Link	B	Bond lengths			Bond angles		
MOI	Mol Type C	Unain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2	
4	GOL	Н	201	-	5,5,5	0.41	0	$5,\!5,\!5$	0.32	0	
4	GOL	В	101	-	5,5,5	0.47	0	$5,\!5,\!5$	0.49	0	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	GOL	Н	201	-	-	2/4/4/4	-
4	GOL	В	101	-	-	2/4/4/4	-

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (4) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	Н	201	GOL	O1-C1-C2-C3
4	Н	201	GOL	O1-C1-C2-O2
4	В	101	GOL	O1-C1-C2-C3
4	В	101	GOL	O1-C1-C2-O2

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	102/112~(91%)	0.09	7 (6%) 16 16	23, 36, 59, 74	0
1	С	94/112~(83%)	-0.01	0 100 100	22, 34, 62, 74	0
1	F	102/112~(91%)	0.17	4 (3%) 39 38	22, 38, 59, 78	0
1	Н	94/112~(83%)	0.24	6 (6%) 19 18	22, 36, 67, 84	0
1	Κ	94/112~(83%)	0.40	5 (5%) 26 25	33, 48, 74, 82	0
1	М	93/112~(83%)	0.26	2 (2%) 62 60	26, 44, 69, 83	0
2	В	74/83~(89%)	-0.14	0 100 100	24, 34, 54, 64	0
2	D	74/83~(89%)	-0.15	0 100 100	19, 30, 43, 56	0
2	G	74/83~(89%)	0.17	5 (6%) 17 16	24, 35, 54, 61	0
2	Ι	74/83~(89%)	0.02	2 (2%) 54 53	22, 32, 55, 67	0
2	L	74/83~(89%)	0.22	0 100 100	28, 46, 62, 73	0
2	Ν	74/83~(89%)	0.12	1 (1%) 75 74	28, 40, 60, 77	0
3	Ε	105/137~(76%)	-0.11	4 (3%) 40 39	22, 33, 63, 78	0
3	J	105/137~(76%)	0.11	3 (2%) 51 50	24, 35, 58, 96	0
3	Ο	101/137 (73%)	0.53	9 (8%) 9 8	27, 50, 73, 79	0
All	All	1334/1581 (84%)	0.14	48 (3%) 42 42	19, 38, 67, 96	0

All (48) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	А	5	ALA	5.7
3	J	772	GLU	5.0
3	J	774	GLU	4.6
1	Н	104	ALA	4.6
1	F	5	ALA	4.3
1	Н	103	ILE	4.0
1	Н	105	GLN	3.9

Mol	Chain	Res	Type	RSRZ
2	Ν	63	LEU	3.9
1	А	7	THR	3.8
2	G	63	LEU	3.6
1	А	104	ALA	3.5
1	А	4	GLU	3.5
1	Κ	13	PHE	3.3
1	F	7	THR	3.3
3	0	700	ILE	3.2
3	Е	773	GLY	3.1
3	0	697	SER	3.1
1	Κ	9	GLU	3.1
3	J	773	GLY	3.0
1	Н	101	GLU	2.8
2	Ι	61	ASP	2.7
2	G	81	PHE	2.7
2	G	77	LEU	2.7
1	F	104	ALA	2.7
3	0	790	VAL	2.6
1	Н	102	GLU	2.5
1	М	98	ASP	2.5
1	Κ	14	SER	2.4
3	0	787	MET	2.4
1	К	11	GLN	2.4
1	Κ	10	GLN	2.3
1	М	36	LEU	2.3
3	0	696	ASP	2.3
3	0	728	ILE	2.3
3	Е	791	THR	2.3
1	А	9	GLU	2.3
1	Н	98	ASP	2.2
2	G	79	LEU	2.2
3	Ο	725	THR	2.2
1	А	103	ILE	2.2
3	Е	726	THR	2.2
2	Ι	79	LEU	2.1
1	F	105	GLN	2.1
2	G	75	PRO	2.1
3	0	695	ARG	2.1
3	О	781	VAL	2.0
3	Е	725	THR	2.0
1	А	10	GLN	2.0

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	${f B} ext{-factors}({ m \AA}^2)$	Q < 0.9
4	GOL	В	101	6/6	0.82	0.23	$57,\!66,\!68,\!69$	0
4	GOL	Н	201	6/6	0.82	0.23	$73,\!73,\!75,\!75$	0
5	ZN	D	101	1/1	0.97	0.07	38,38,38,38	1
5	ZN	J	901	1/1	0.97	0.06	37,37,37,37	1
5	ZN	N	101	1/1	0.97	0.06	44,44,44,44	1

6.5 Other polymers (i)

There are no such residues in this entry.

