

# Full wwPDB X-ray Structure Validation Report (i)

#### Oct 26, 2023 – 12:06 PM EDT

| PDB ID       | : | 3E3L                                               |
|--------------|---|----------------------------------------------------|
| Title        | : | The R-state Glycogen Phosphorylase                 |
| Authors      | : | Leonidas, D.D.; Zographos, S.E.; Oikonomakos, N.G. |
| Deposited on | : | 2008-08-07                                         |
| Resolution   | : | 2.59  Å(reported)                                  |
|              |   |                                                    |

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| MolProbity                     | : | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as541be (2020)                                 |
| Xtriage (Phenix)               | : | 1.13                                                               |
| EDS                            | : | 2.36                                                               |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| Refmac                         | : | 5.8.0158                                                           |
| CCP4                           | : | 7.0.044 (Gargrove)                                                 |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.36                                                               |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $X\text{-}RAY \, DIFFRACTION$ 

The reported resolution of this entry is 2.59 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | $egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$ | ${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$ |  |  |  |  |  |  |
|-----------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|--|--|--|
| R <sub>free</sub>     | 130704                                                               | 3163 (2.60-2.60)                                                          |  |  |  |  |  |  |
| Clashscore            | 141614                                                               | 3518 (2.60-2.60)                                                          |  |  |  |  |  |  |
| Ramachandran outliers | 138981                                                               | 3455 (2.60-2.60)                                                          |  |  |  |  |  |  |
| Sidechain outliers    | 138945                                                               | 3455 (2.60-2.60)                                                          |  |  |  |  |  |  |
| RSRZ outliers         | 127900                                                               | 3104 (2.60-2.60)                                                          |  |  |  |  |  |  |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain |     |        |
|-----|-------|--------|------------------|-----|--------|
| 1   | А     | 842    | 4%<br>66%        | 25% | 5% •   |
| 1   | В     | 842    | 4% 70%           | 23% | •••    |
| 1   | С     | 842    | 4% 70%           | 21% | • •    |
| 1   | D     | 842    | 60%              | 30% | 6% • • |



## 2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 26533 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain | Residues |       |      | Atom | s    |   | ZeroOcc      | AltConf | Trace |   |  |
|-----|-------|----------|-------|------|------|------|---|--------------|---------|-------|---|--|
| 1   | Δ     | 810      | Total | С    | Ν    | Ο    | Р | $\mathbf{S}$ | 0       | 0     | 0 |  |
| 1   | Π     | 010      | 6601  | 4206 | 1164 | 1201 | 1 | 29           | 0       | 0     | 0 |  |
| 1   | В     | 811      | Total | С    | Ν    | Ο    | Р | $\mathbf{S}$ | 0       | 0     | 0 |  |
| 1   | D     | 011      | 6608  | 4208 | 1165 | 1205 | 1 | 29           | 0       | 0     | 0 |  |
| 1   | C     | 807      | Total | С    | Ν    | Ο    | Р | $\mathbf{S}$ | 0       | 0     | 0 |  |
| 1   |       | 807      | 6578  | 4192 | 1161 | 1195 | 1 | 29           | 0       | 0     | 0 |  |
| 1   | Л     | 806      | Total | С    | Ν    | Ο    | Р | S            | 0       | 0     | 0 |  |
| 1   | D     | 800      | 6576  | 4190 | 1159 | 1197 | 1 | 29           | 0       | 0     | 0 |  |

• Molecule 1 is a protein called Glycogen phosphorylase, muscle form.

• Molecule 2 is SULFATE ION (three-letter code: SO4) (formula: O<sub>4</sub>S).



| Mol | Chain | Residues | Atoms                                                                            | ZeroOcc | AltConf |
|-----|-------|----------|----------------------------------------------------------------------------------|---------|---------|
| 2   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 2   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |



Continued from previous page...

| Mol | Chain | Residues | Ato        | $\mathbf{ms}$ |              | ZeroOcc | AltConf |
|-----|-------|----------|------------|---------------|--------------|---------|---------|
| 2   | А     | 1        | Total      | 0             | S            | 0       | 0       |
|     |       |          | 0<br>Total | 4             | 1<br>C       |         |         |
| 2   | В     | 1        | Total      | 4             | 5<br>1       | 0       | 0       |
|     |       |          | 0<br>Total | 4             |              |         |         |
| 2   | В     | 1        | Total      |               | С<br>1       | 0       | 0       |
|     |       |          |            | 4             | 1            |         |         |
| 2   | В     | 1        | Total      | 0             | S            | 0       | 0       |
|     |       |          | 5          | 4             | 1            | _       | _       |
| 2   | С     | 1        | Total      | Ο             | $\mathbf{S}$ | 0       | 0       |
|     | C     | I        | 5          | 4             | 1            | 0       | 0       |
| 0   | С     | 1        | Total      | Ο             | $\mathbf{S}$ | 0       | 0       |
|     | U     | 1        | 5          | 4             | 1            | 0       | 0       |
| 0   | D     | 1        | Total      | Ο             | S            | 0       | 0       |
|     | D     | 1        | 5          | 4             | 1            | 0       | 0       |
| 0   | D     | 1        | Total      | Ο             | S            | 0       | 0       |
|     | D     | 1        | 5          | 4             | 1            | 0       | 0       |
| 0   | D     | 1        | Total      | 0             | S            | 0       | 0       |
|     | D     |          | 5          | 4             | 1            | U       |         |
| 0   | D     | 1        | Total      | 0             | S            | 0       | 0       |
|     | D     |          | 5          | 4             | 1            | U       | 0       |

• Molecule 3 is water.

| Mol | Chain | Residues | Atoms                                                              | ZeroOcc | AltConf |
|-----|-------|----------|--------------------------------------------------------------------|---------|---------|
| 3   | А     | 23       | TotalO2323                                                         | 0       | 0       |
| 3   | В     | 35       | Total         O           35         35                            | 0       | 0       |
| 3   | С     | 26       | TotalO2626                                                         | 0       | 0       |
| 3   | D     | 26       | $\begin{array}{cc} \text{Total} & \text{O} \\ 26 & 26 \end{array}$ | 0       | 0       |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.



• Molecule 1: Glycogen phosphorylase, muscle form





# W825 N727 R833 A728 L834 A729 ASP T732 ASP T733 ASS T744 T743 T744 T743 T744 F743 T744 F744 T745 F745 T744 F746 T745 F746 T765 F766 T766 T767 T776 F774 T776 F774 T777 F776 T777 M762 M775 M763 M764 M765 M776 M764 M765 M775 M776 M775 M776 M776 M776 M777 M775 M776



| Chai                         | n D          | :                    | %            |              |                  |              |                           | _              | 60           | )%                 | _             |              |              |               |      |              |                   |                    |              |          |              | 3            | 0%          |              |              |                          |                           | 6%                | •            | •    |                       |                   |
|------------------------------|--------------|----------------------|--------------|--------------|------------------|--------------|---------------------------|----------------|--------------|--------------------|---------------|--------------|--------------|---------------|------|--------------|-------------------|--------------------|--------------|----------|--------------|--------------|-------------|--------------|--------------|--------------------------|---------------------------|-------------------|--------------|------|-----------------------|-------------------|
| SER<br>ARG<br>PRO<br>I FU    | ASP          | GLN<br>K9            | R10          | S14<br>V15   | R16              | V21          | E22                       | R33<br>H34     | L35<br>H36   | F37                | T38<br>L39    | N40          | R43          | T47           | P48  | R49<br>D50   | -                 |                    | V59<br>R60   | <b>.</b> | V64          | 168          |             | 172<br>1     | Y75          | K77                      | R81                       | 182<br>           | L85<br>S86   | L87  | 1889<br>1890<br>190   | M9.1              |
| 195<br>195                   | V100         | D128                 | A129<br>G130 | L131         | L136<br>6137     | R138         | F143                      | S146           | M147<br>A148 | T149               | R160          | Y161         | G164         | 1165<br>F166  | N167 | Q168         | C171              | գ1 <mark>75</mark> | M176         | K191     | T209         | S210<br>0211 | 1004        | D227<br>T228 | P229         | P231                     | N235                      | N236<br>V237      | M241         | R242 | L243<br>W244<br>S245  | A246              |
| K247<br>N250                 |              | LYS<br>ASP           | PHE<br>ASN   | VAL<br>GLY   | GLY<br>Y262      | 1263<br>0001 | u264                      | R269           | N274         | R277               | V278<br>L279  | Y280<br>DBA  | ASN          | ASP           | PHE  | PHE<br>E287  | G288              | E290               | L291<br>R292 |          | GRZN         | V299         | L304        | 1308         | R309         | 0 TOU                    | S314<br>LYS               | PHE<br>GLY        | CYS<br>ARG   | ASP  | VAL<br>ARG            | T324              |
| F329<br>P330                 | K332         | 1335<br>1336<br>1337 | N338         | H341         | E348             | V352         | R358                      | W361           | D362<br>V363 |                    | A373          | V379         | E382         | V389          |      | L392         | L396              | H399               | L400         | 1403     | r404<br>E405 | G420         | 4<br>0<br>7 | R424<br>L425 | R426         | E433                     | K437                      | L444              | S449         |      | V455<br>A456<br>R457  | 1458              |
| H459<br>K465 ●               | K469         | L474                 | T483         | 1486<br>T487 | P488<br>R489     | R490         | <mark>4491</mark><br>L492 | V493<br>L494   | C495         | L499               | A500<br>E501  | I502<br>TEA2 | 000T         | 1507          | E509 | E510<br>Y511 | 1512<br>8513      | D514               | L515<br>D516 | Q517     |              | L521<br>L522 | S523        |              | D526<br>D577 | E528                     | A529<br>F530              | I531<br>R532      | D533         | A535 | K530<br>V537<br>K538  | <mark>q539</mark> |
| E540<br>N541<br>K542<br>F543 | F545         |                      | Y553         | K554<br>V555 | H556             | N558         | P559<br>N560              | S561           | F563         | <mark>ជូ566</mark> | H571          | E572<br>ve73 | K574         | R575<br>D576  | L577 | L578<br>N579 | <mark>C580</mark> | V583               | 1584<br>T585 | L586     | 1587<br>N588 | R589<br>I590 | K591        | K592<br>E593 | P594         | K596                     | F597                      | V599<br>P600      | R601<br>T602 |      | 1605                  | -                 |
| K617<br>L622<br>T623         | 1626         | 402/<br>D628<br>V629 | V630<br>N631 | H632<br>D633 | P634 •<br>V635 • | V636         | R639                      | L640<br>R641   | V642         | L645               | E646<br>N647  | Y648<br>De40 | V650         | S651<br>1.652 | A653 | E654<br>K655 | V656              | A659               | A660<br>D661 | L662     | 5003<br>E664 | 0665<br>1666 | <b>S667</b> | G670         | T671         | S674                     | <mark>G675</mark><br>T676 | G677<br>N678      | M679<br>K680 | F681 | M082<br>L683          | A686              |
| L687<br>T688<br>1689         | M692<br>D693 | 4034<br>A695<br>N696 | V697<br>E698 | M699         | E702<br>A703     | G7 04        | E7.05<br>E7.06            | N707<br>F708   | F709         | M7 13              | R714<br>V715  | E716         | Q723         | R724<br>G725  | Y726 | N727<br>A728 | 0729<br>5730      | E/ 30              | Y732<br>D733 | R734     | 1/30         | L738<br>R739 | Q7 40       | 1/41<br>1742 | E743         | 4/ <del>11</del><br>L745 | S746                      | F750              | K753<br>0754 | P755 | D/ 56<br>L757<br>F758 | K759              |
| M764<br>L765<br>M766         | R770         | • <u>1777</u>        | K782<br>C783 | Q784         | A789             | Y791         | K792<br>N793              | P7 94<br>R7 95 | E796         | T7 98              | R7 99<br>M800 | V801         | 1002<br>R803 | T807          | S808 | G809<br>K810 | F811              | 2012<br>S813       | D814<br>R815 | T816     | 1817<br>A818 | 0819         | R822        | E823<br>1824 | W825<br>Cone | V827                     | E828<br>P829              | <mark>8830</mark> | R833         | A836 | ASP<br>GLU            | LYS               |
| ILE<br>PRO                   |              |                      |              |              |                  |              |                           |                |              |                    |               |              |              |               |      |              |                   |                    |              |          |              |              |             |              |              |                          |                           |                   |              |      |                       |                   |



## 4 Data and refinement statistics (i)

| Property                                    | Value                                            | Source    |
|---------------------------------------------|--------------------------------------------------|-----------|
| Space group                                 | P 1 21 1                                         | Depositor |
| Cell constants                              | 118.89Å 189.92Å 88.16Å                           | Deperitor |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$      | $90.00^{\circ}$ $109.27^{\circ}$ $90.00^{\circ}$ | Depositor |
| <b>D</b> ecolution $(\hat{\lambda})$        | 29.59 - 2.59                                     | Depositor |
| Resolution (A)                              | 29.59 - 2.60                                     | EDS       |
| % Data completeness                         | 99.3 (29.59-2.59)                                | Depositor |
| (in resolution range)                       | 99.4 (29.59-2.60)                                | EDS       |
| R <sub>merge</sub>                          | (Not available)                                  | Depositor |
| R <sub>sym</sub>                            | 0.06                                             | Depositor |
| $< I/\sigma(I) > 1$                         | $3.92 (at 2.61 \text{\AA})$                      | Xtriage   |
| Refinement program                          | REFMAC 5.2.0019                                  | Depositor |
| D D                                         | 0.207 , $0.266$                                  | Depositor |
| $n, n_{free}$                               | 0.207 , $0.266$                                  | DCC       |
| $R_{free}$ test set                         | 5654 reflections $(5.01%)$                       | wwPDB-VP  |
| Wilson B-factor $(Å^2)$                     | 54.2                                             | Xtriage   |
| Anisotropy                                  | 0.021                                            | Xtriage   |
| Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$ | 0.28, $51.9$                                     | EDS       |
| L-test for twinning <sup>2</sup>            | $< L >=0.50, < L^2>=0.34$                        | Xtriage   |
| Estimated twinning fraction                 | 0.013 for -h-l,-k,l                              | Xtriage   |
| $F_o, F_c$ correlation                      | 0.95                                             | EDS       |
| Total number of atoms                       | 26533                                            | wwPDB-VP  |
| Average B, all atoms $(Å^2)$                | 49.0                                             | wwPDB-VP  |

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.57% of the height of the origin peak. No significant pseudotranslation is detected.

<sup>&</sup>lt;sup>2</sup>Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

# 5 Model quality (i)

## 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: SO4, LLP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | Chain | Bo   | nd lengths     | Bond angles |                |  |  |  |  |  |
|-----|-------|------|----------------|-------------|----------------|--|--|--|--|--|
|     | Chain | RMSZ | # Z  > 5       | RMSZ        | # Z  > 5       |  |  |  |  |  |
| 1   | А     | 0.49 | 0/6721         | 0.66        | 0/9091         |  |  |  |  |  |
| 1   | В     | 0.49 | 0/6728         | 0.66        | 1/9100~(0.0%)  |  |  |  |  |  |
| 1   | С     | 0.50 | 1/6697~(0.0%)  | 0.66        | 2/9058~(0.0%)  |  |  |  |  |  |
| 1   | D     | 0.50 | 0/6695         | 0.66        | 1/9055~(0.0%)  |  |  |  |  |  |
| All | All   | 0.49 | 1/26841~(0.0%) | 0.66        | 4/36304~(0.0%) |  |  |  |  |  |

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

| Mol | Chain | #Chirality outliers | #Planarity outliers |
|-----|-------|---------------------|---------------------|
| 1   | А     | 0                   | 1                   |

All (1) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms  | Z    | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|--------|------|-------------|----------|
| 1   | С     | 795 | ARG  | CZ-NH1 | 6.38 | 1.41        | 1.33     |

All (4) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms     |       | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------|-------|------------------|---------------|
| 1   | С     | 795 | ARG  | NE-CZ-NH2 | -6.38 | 117.11           | 120.30        |
| 1   | D     | 87  | LEU  | CA-CB-CG  | -5.98 | 101.54           | 115.30        |
| 1   | С     | 279 | LEU  | CA-CB-CG  | 5.30  | 127.48           | 115.30        |
| 1   | В     | 662 | LEU  | CA-CB-CG  | 5.26  | 127.40           | 115.30        |

There are no chirality outliers.

All (1) planarity outliers are listed below:



| Mol | Chain | Res | Type | Group   |
|-----|-------|-----|------|---------|
| 1   | А     | 21  | VAL  | Peptide |

#### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | А     | 6601  | 0        | 6554     | 153     | 0            |
| 1   | В     | 6608  | 0        | 6554     | 116     | 0            |
| 1   | С     | 6578  | 0        | 6537     | 138     | 0            |
| 1   | D     | 6576  | 0        | 6528     | 203     | 0            |
| 2   | А     | 15    | 0        | 0        | 1       | 0            |
| 2   | В     | 15    | 0        | 0        | 0       | 0            |
| 2   | С     | 10    | 0        | 0        | 0       | 0            |
| 2   | D     | 20    | 0        | 0        | 1       | 0            |
| 3   | А     | 23    | 0        | 0        | 0       | 0            |
| 3   | В     | 35    | 0        | 0        | 0       | 0            |
| 3   | С     | 26    | 0        | 0        | 0       | 0            |
| 3   | D     | 26    | 0        | 0        | 1       | 0            |
| All | All   | 26533 | 0        | 26173    | 597     | 0            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 11.

All (597) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom-1           | Atom-2           | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|------------------|------------------|-----------------------------|----------------------|
| 1:A:712:GLY:H    | 1:A:779:GLU:HG2  | 1.22                        | 1.03                 |
| 1:B:641:ARG:HG3  | 1:B:641:ARG:HH11 | 1.24                        | 0.98                 |
| 1:A:20:GLY:O     | 1:A:21:VAL:HG13  | 1.65                        | 0.96                 |
| 1:D:707:ASN:HA   | 1:D:800:MET:SD   | 2.09                        | 0.93                 |
| 1:C:274:ASN:H    | 1:C:274:ASN:HD22 | 1.18                        | 0.92                 |
| 1:D:146:SER:OG   | 1:D:813:SER:HB2  | 1.66                        | 0.92                 |
| 1:D:588:ASN:HD21 | 1:D:744:GLN:HE22 | 1.00                        | 0.91                 |
| 1:C:138:ARG:O    | 1:C:138:ARG:HD3  | 1.70                        | 0.90                 |
| 1:B:455:VAL:H    | 1:B:459:HIS:HD2  | 1.18                        | 0.88                 |
| 1:C:66:ARG:HG3   | 1:C:66:ARG:HH11  | 1.39                        | 0.87                 |
| 1:A:682:MET:HE3  | 1:A:808:SER:HB2  | 1.55                        | 0.87                 |



|                  | ,                | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:B:676:THR:HG22 | 1:B:680:LLP:H4'1 | 1.58         | 0.86        |
| 1:A:93:ARG:O     | 1:A:490:ARG:NH2  | 2.08         | 0.86        |
| 1:A:262:TYR:HB3  | 1:A:264:GLN:NE2  | 1.91         | 0.86        |
| 1:A:227:ASP:OD1  | 1:A:242:ARG:HD3  | 1.76         | 0.85        |
| 1:C:516:ASP:O    | 1:C:519:ARG:HG2  | 1.76         | 0.85        |
| 1:C:455:VAL:CG1  | 1:C:674:SER:HB2  | 2.09         | 0.83        |
| 1:A:87:LEU:HD21  | 1:A:292:ARG:NH2  | 1.94         | 0.83        |
| 1:A:703:ALA:HA   | 1:A:807:THR:HG21 | 1.60         | 0.82        |
| 1:A:426:ARG:HH21 | 1:D:755:PRO:HD3  | 1.45         | 0.81        |
| 1:D:455:VAL:HG12 | 1:D:674:SER:HB2  | 1.63         | 0.81        |
| 1:C:274:ASN:H    | 1:C:274:ASN:ND2  | 1.79         | 0.81        |
| 1:A:615:MET:CE   | 1:A:761:ILE:HG12 | 2.11         | 0.81        |
| 1:D:495:CYS:HB2  | 1:D:654:GLU:O    | 1.81         | 0.81        |
| 1:C:703:ALA:HA   | 1:C:807:THR:HG21 | 1.63         | 0.80        |
| 1:B:687:LEU:HD13 | 1:B:800:MET:HE2  | 1.63         | 0.80        |
| 1:B:486:ILE:HD11 | 1:B:676:THR:HG23 | 1.64         | 0.79        |
| 1:C:739:ARG:O    | 1:C:743:GLU:HG2  | 1.82         | 0.79        |
| 1:D:791:TYR:HA   | 1:D:797:TRP:CD1  | 2.17         | 0.79        |
| 1:A:457:ARG:HG2  | 1:A:457:ARG:HH11 | 1.46         | 0.79        |
| 1:D:836:ALA:HB1  | 1:D:837:PRO:HA   | 1.65         | 0.79        |
| 1:D:739:ARG:O    | 1:D:743:GLU:HG2  | 1.83         | 0.78        |
| 1:A:682:MET:CE   | 1:A:808:SER:HB2  | 2.12         | 0.78        |
| 1:B:641:ARG:HH11 | 1:B:641:ARG:CG   | 1.96         | 0.78        |
| 1:A:168:GLN:HE21 | 1:A:647:ASN:H    | 1.28         | 0.77        |
| 1:D:588:ASN:HD21 | 1:D:744:GLN:NE2  | 1.81         | 0.77        |
| 1:B:47:THR:HG22  | 1:B:49:ARG:H     | 1.50         | 0.76        |
| 1:B:227:ASP:OD1  | 1:B:242:ARG:HD3  | 1.84         | 0.76        |
| 1:D:813:SER:O    | 1:D:817:ILE:HG12 | 1.85         | 0.76        |
| 1:A:741:ILE:HA   | 1:A:744:GLN:HE21 | 1.51         | 0.76        |
| 1:B:703:ALA:HA   | 1:B:807:THR:HG21 | 1.66         | 0.76        |
| 1:A:110:GLU:HG3  | 1:A:114:GLN:HE21 | 1.50         | 0.75        |
| 1:D:588:ASN:ND2  | 1:D:744:GLN:HE22 | 1.80         | 0.75        |
| 1:C:168:GLN:HG3  | 1:C:175:GLN:HG3  | 1.67         | 0.75        |
| 1:D:455:VAL:CG1  | 1:D:674:SER:HB2  | 2.15         | 0.75        |
| 1:D:665:GLN:HB3  | 1:D:696:ASN:HD21 | 1.52         | 0.75        |
| 1:A:262:TYR:HB3  | 1:A:264:GLN:HE22 | 1.53         | 0.74        |
| 1:A:455:VAL:H    | 1:A:459:HIS:HD2  | 1.35         | 0.74        |
| 1:C:47:THR:HG23  | 1:C:48:PRO:HD2   | 1.70         | 0.74        |
| 1:C:274:ASN:HD22 | 1:C:274:ASN:N    | 1.82         | 0.74        |
| 1:C:588:ASN:HD21 | 1:C:744:GLN:HE22 | 1.37         | 0.73        |
| 1:C:741:ILE:HA   | 1:C:744:GLN:HE21 | 1.54         | 0.73        |



|                  |                  | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:D:455:VAL:H    | 1:D:459:HIS:HD2  | 1.36         | 0.73        |
| 1:A:739:ARG:O    | 1:A:743:GLU:HG2  | 1.89         | 0.72        |
| 1:B:455:VAL:H    | 1:B:459:HIS:CD2  | 2.06         | 0.72        |
| 1:C:60:ARG:O     | 1:C:64:VAL:HG13  | 1.90         | 0.72        |
| 1:A:85:LEU:HD21  | 1:A:303:THR:HG21 | 1.70         | 0.71        |
| 1:A:615:MET:HE1  | 1:A:761:ILE:HG12 | 1.73         | 0.71        |
| 1:B:729:GLN:HG2  | 1:C:724:ARG:HA   | 1.73         | 0.71        |
| 1:C:574:LYS:HB2  | 1:C:576:GLN:HE22 | 1.53         | 0.71        |
| 1:A:47:THR:HG22  | 1:A:49:ARG:H     | 1.57         | 0.70        |
| 1:A:712:GLY:N    | 1:A:779:GLU:HG2  | 2.01         | 0.70        |
| 1:B:168:GLN:HE21 | 1:B:647:ASN:H    | 1.39         | 0.70        |
| 1:C:235:ASN:H    | 1:C:235:ASN:HD22 | 1.38         | 0.70        |
| 1:A:438:ARG:HH11 | 1:A:438:ARG:CG   | 2.05         | 0.70        |
| 1:A:582:HIS:HD2  | 1:A:781:VAL:HG12 | 1.54         | 0.70        |
| 1:A:269:ARG:HH21 | 1:B:277:ARG:HH22 | 1.36         | 0.70        |
| 1:B:336:GLN:NE2  | 1:B:373:ALA:HB3  | 2.08         | 0.69        |
| 1:D:800:MET:C    | 1:D:802:ILE:H    | 1.96         | 0.68        |
| 1:A:756:ASP:HB2  | 1:A:759:LYS:HG3  | 1.75         | 0.68        |
| 1:A:615:MET:HE3  | 1:A:761:ILE:HG12 | 1.75         | 0.68        |
| 1:C:227:ASP:OD1  | 1:C:242:ARG:HD3  | 1.94         | 0.68        |
| 1:C:308:ILE:HD12 | 1:C:352:VAL:HG11 | 1.75         | 0.68        |
| 1:A:21:VAL:HG21  | 1:A:26:GLU:HG3   | 1.74         | 0.68        |
| 1:C:47:THR:HG22  | 1:C:49:ARG:H     | 1.58         | 0.67        |
| 1:C:378:THR:HG21 | 1:C:383:ALA:HB3  | 1.76         | 0.67        |
| 1:B:458:ILE:O    | 1:B:462:ILE:HG12 | 1.95         | 0.67        |
| 1:A:168:GLN:NE2  | 1:A:647:ASN:H    | 1.93         | 0.66        |
| 1:A:703:ALA:CA   | 1:A:807:THR:HG21 | 2.25         | 0.66        |
| 1:D:800:MET:O    | 1:D:802:ILE:N    | 2.27         | 0.66        |
| 1:B:741:ILE:HA   | 1:B:744:GLN:HE21 | 1.60         | 0.66        |
| 1:C:252:PHE:HZ   | 1:C:269:ARG:HB2  | 1.59         | 0.66        |
| 1:D:801:VAL:HG12 | 1:D:801:VAL:O    | 1.95         | 0.66        |
| 1:C:144:LEU:HD23 | 1:C:147:MET:CE   | 2.26         | 0.65        |
| 1:C:336:GLN:NE2  | 1:C:373:ALA:HB3  | 2.10         | 0.65        |
| 1:D:681:PHE:O    | 1:D:686:ALA:HB3  | 1.96         | 0.65        |
| 1:A:250:ASN:HB3  | 1:A:252:PHE:HE2  | 1.62         | 0.65        |
| 1:B:100:VAL:O    | 1:B:234:ARG:NH1  | 2.29         | 0.65        |
| 1:D:689:ILE:HG23 | 1:D:689:ILE:O    | 1.97         | 0.65        |
| 1:A:365:TRP:O    | 1:A:369:VAL:HG23 | 1.96         | 0.65        |
| 1:B:157:TYR:OH   | 1:B:306:ASP:OD2  | 2.13         | 0.65        |
| 1:B:280:TYR:HD1  | 1:B:281:PRO:HA   | 1.62         | 0.64        |
| 1:A:138:ARG:O    | 1:A:138:ARG:HD3  | 1.98         | 0.64        |



|                  | , and pagetti    | Interatomic  | Clash       |  |
|------------------|------------------|--------------|-------------|--|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |  |
| 1:B:306:ASP:OD1  | 1:B:309:ARG:NH1  | 2.31         | 0.64        |  |
| 1:D:14:SER:OG    | 1:D:16:ARG:HG2   | 1.97         | 0.64        |  |
| 1:D:627:GLY:HA2  | 1:D:642:VAL:HB   | 1.80         | 0.64        |  |
| 1:D:590:ILE:HG22 | 1:D:590:ILE:O    | 1.98         | 0.64        |  |
| 1:C:262:TYR:HB2  | 1:C:264:GLN:OE1  | 1.97         | 0.64        |  |
| 1:D:60:ARG:O     | 1:D:64:VAL:HG12  | 1.98         | 0.63        |  |
| 1:A:795:ARG:O    | 1:A:799:ARG:HG3  | 1.99         | 0.63        |  |
| 1:D:211:GLN:HG3  | 1:D:358:ARG:NH2  | 2.13         | 0.63        |  |
| 1:C:21:VAL:HG22  | 1:C:22:GLU:HG2   | 1.80         | 0.63        |  |
| 1:D:146:SER:HG   | 1:D:813:SER:HB2  | 1.62         | 0.63        |  |
| 1:C:378:THR:CG2  | 1:C:383:ALA:HB3  | 2.29         | 0.63        |  |
| 1:C:455:VAL:H    | 1:C:459:HIS:HD2  | 1.45         | 0.63        |  |
| 1:D:455:VAL:N    | 1:D:459:HIS:HD2  | 1.97         | 0.63        |  |
| 1:C:676:THR:HG22 | 1:C:680:LLP:H5'1 | 1.82         | 0.62        |  |
| 1:A:445:CYS:O    | 1:A:449:SER:OG   | 2.17         | 0.62        |  |
| 1:D:741:ILE:HA   | 1:D:744:GLN:HE21 | 1.64         | 0.62        |  |
| 1:D:661:ASP:HB3  | 1:D:797:TRP:CH2  | 2.34         | 0.62        |  |
| 1:B:575:ARG:NH2  | 1:B:776:ASP:HB2  | 2.15         | 0.62        |  |
| 1:D:574:LYS:HB3  | 1:D:576:GLN:NE2  | 2.15         | 0.62        |  |
| 1:D:507:ILE:HD12 | 1:D:517:GLN:HG2  | 1.81         | 0.62        |  |
| 1:B:34:HIS:HE1   | 1:B:61:ASP:OD2   | 1.83         | 0.61        |  |
| 1:A:49:ARG:HA    | 1:A:125:ILE:HG21 | 1.83         | 0.61        |  |
| 1:C:225:PRO:HB2  | 1:C:242:ARG:HD2  | 1.82         | 0.61        |  |
| 1:B:687:LEU:HD13 | 1:B:800:MET:CE   | 2.30         | 0.61        |  |
| 1:B:803:ARG:O    | 1:B:807:THR:HG22 | 2.01         | 0.61        |  |
| 1:A:225:PRO:HB2  | 1:A:242:ARG:HD2  | 1.82         | 0.61        |  |
| 1:B:15:VAL:HA    | 1:B:18:LEU:HD22  | 1.81         | 0.61        |  |
| 1:D:801:VAL:O    | 1:D:801:VAL:CG1  | 2.49         | 0.60        |  |
| 1:C:424:ARG:NH2  | 1:C:473:GLU:OE1  | 2.35         | 0.60        |  |
| 1:A:110:GLU:HG3  | 1:A:114:GLN:NE2  | 2.17         | 0.60        |  |
| 1:A:582:HIS:CD2  | 1:A:781:VAL:HG12 | 2.36         | 0.60        |  |
| 1:A:549:LEU:O    | 1:A:552:GLU:O    | 2.20         | 0.59        |  |
| 1:D:566:GLN:HE22 | 1:D:576:GLN:HA   | 1.66         | 0.59        |  |
| 1:C:509:GLU:HG2  | 1:C:512:ILE:HD12 | 1.82         | 0.59        |  |
| 1:D:563:PHE:HD2  | 1:D:659:ALA:O    | 1.85         | 0.59        |  |
| 1:D:599:VAL:HG12 | 1:D:600:PRO:O    | 2.03         | 0.59        |  |
| 1:A:680:LLP:NZ   | 1:A:680:LLP:O3   | 2.36         | 0.59        |  |
| 1:B:225:PRO:HB2  | 1:B:242:ARG:HD2  | 1.84         | 0.59        |  |
| 1:D:600:PRO:HB3  | 1:D:639:ARG:HA   | 1.83         | 0.59        |  |
| 1:A:630:VAL:HG21 | 1:A:642:VAL:HG23 | 1.83         | 0.59        |  |
| 1:C:165:ILE:O    | 1:C:166:PHE:O    | 2.21         | 0.59        |  |



|                  | to as pagem      | Interatomic  | Clash       |  |
|------------------|------------------|--------------|-------------|--|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |  |
| 1:D:539:GLN:C    | 1:D:541:ASN:H    | 2.06         | 0.59        |  |
| 1:D:662:LEU:HD23 | 1:D:687:LEU:O    | 2.02         | 0.59        |  |
| 1:B:96:GLN:HA    | 1:B:99:MET:HE2   | 1.85         | 0.59        |  |
| 1:C:579:ASN:HD22 | 1:C:579:ASN:C    | 2.06         | 0.58        |  |
| 1:A:296:GLU:OE2  | 1:A:385:GLU:OE2  | 2.21         | 0.58        |  |
| 1:A:9:LYS:H      | 1:A:9:LYS:HD2    | 1.69         | 0.58        |  |
| 1:D:580:CYS:O    | 1:D:584:ILE:HG13 | 2.03         | 0.58        |  |
| 1:C:574:LYS:HB2  | 1:C:576:GLN:NE2  | 2.18         | 0.58        |  |
| 1:D:676:THR:HG22 | 1:D:680:LLP:H5'1 | 1.84         | 0.58        |  |
| 1:D:21:VAL:CG2   | 1:D:22:GLU:N     | 2.67         | 0.58        |  |
| 1:C:270:ASN:O    | 1:C:274:ASN:ND2  | 2.37         | 0.58        |  |
| 1:D:348:GLU:OE1  | 1:D:399:HIS:HE1  | 1.87         | 0.58        |  |
| 1:B:160:ARG:HB2  | 1:B:243:LEU:HB3  | 1.85         | 0.57        |  |
| 1:D:227:ASP:OD1  | 1:D:242:ARG:HD3  | 2.03         | 0.57        |  |
| 1:D:573:TYR:HD2  | 1:D:671:THR:HG1  | 1.52         | 0.57        |  |
| 1:A:311:PHE:CG   | 1:A:311:PHE:O    | 2.57         | 0.57        |  |
| 1:C:33:ARG:HE    | 1:D:33:ARG:NE    | 2.03         | 0.57        |  |
| 1:A:336:GLN:HG2  | 1:A:825:TRP:HE1  | 1.70         | 0.57        |  |
| 1:C:279:LEU:HD22 | 1:C:280:TYR:H    | 1.70         | 0.57        |  |
| 1:D:129:ALA:HB1  | 1:D:131:LEU:HD22 | 1.87         | 0.57        |  |
| 1:D:651:SER:HA   | 1:D:654:GLU:HG2  | 1.86         | 0.57        |  |
| 1:A:110:GLU:O    | 1:A:114:GLN:HG2  | 2.05         | 0.57        |  |
| 1:B:615:MET:HE3  | 1:B:761:ILE:HG12 | 1.87         | 0.57        |  |
| 1:B:105:GLU:OE1  | 1:B:105:GLU:HA   | 2.04         | 0.57        |  |
| 1:B:615:MET:CE   | 1:B:761:ILE:HG12 | 2.34         | 0.57        |  |
| 1:A:426:ARG:CZ   | 1:A:426:ARG:HB2  | 2.33         | 0.57        |  |
| 1:A:457:ARG:HH11 | 1:A:457:ARG:CG   | 2.18         | 0.57        |  |
| 1:D:87:LEU:HD13  | 1:D:341:HIS:HB3  | 1.87         | 0.57        |  |
| 1:C:64:VAL:HG22  | 1:D:37:PHE:HD1   | 1.70         | 0.56        |  |
| 1:A:87:LEU:HD21  | 1:A:292:ARG:HH22 | 1.68         | 0.56        |  |
| 1:D:579:ASN:HD22 | 1:D:605:ILE:HD11 | 1.70         | 0.56        |  |
| 1:D:702:GLU:OE2  | 1:D:702:GLU:HA   | 2.04         | 0.56        |  |
| 1:A:815:ARG:NH1  | 1:A:816:THR:HA   | 2.19         | 0.56        |  |
| 1:D:584:ILE:HG22 | 1:D:741:ILE:HG22 | 1.86         | 0.56        |  |
| 1:A:554:LYS:HD3  | 1:A:554:LYS:N    | 2.20         | 0.56        |  |
| 1:B:391:LEU:O    | 1:B:395:LEU:HD23 | 2.06         | 0.56        |  |
| 1:D:663:SER:HB2  | 1:D:681:PHE:HB3  | 1.88         | 0.56        |  |
| 1:D:455:VAL:H    | 1:D:459:HIS:CD2  | 2.21         | 0.56        |  |
| 1:D:47:THR:HG22  | 1:D:50:ASP:H     | 1.69         | 0.56        |  |
| 1:A:336:GLN:NE2  | 1:A:373:ALA:HB3  | 2.21         | 0.55        |  |
| 1:D:336:GLN:HE21 | 1:D:825:TRP:HE1  | 1.54         | 0.55        |  |



|                  | le us page       | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:D:574:LYS:HB3  | 1:D:576:GLN:HE22 | 1.70         | 0.55        |
| 1:A:824:ILE:HG22 | 1:A:825:TRP:CD1  | 2.41         | 0.55        |
| 1:A:782:LYS:HE3  | 1:A:782:LYS:HA   | 1.88         | 0.55        |
| 1:D:702:GLU:OE2  | 1:D:702:GLU:CA   | 2.54         | 0.55        |
| 1:A:486:ILE:CD1  | 1:A:676:THR:O    | 2.55         | 0.55        |
| 1:B:678:ASN:HB3  | 1:B:679:MET:HG3  | 1.89         | 0.55        |
| 1:D:21:VAL:HG22  | 1:D:22:GLU:N     | 2.22         | 0.55        |
| 1:D:703:ALA:O    | 1:D:707:ASN:ND2  | 2.40         | 0.55        |
| 1:B:227:ASP:OD1  | 1:B:242:ARG:CD   | 2.54         | 0.55        |
| 1:D:149:THR:HG21 | 1:D:489:ARG:HH12 | 1.70         | 0.55        |
| 1:B:280:TYR:CD1  | 1:B:281:PRO:HA   | 2.41         | 0.55        |
| 1:C:756:ASP:HB2  | 1:C:759:LYS:HD2  | 1.89         | 0.55        |
| 1:B:346:ILE:HB   | 1:B:347:PRO:HD3  | 1.89         | 0.54        |
| 1:B:718:VAL:HG13 | 1:B:772:LYS:HZ2  | 1.72         | 0.54        |
| 1:C:486:ILE:HD11 | 1:C:680:LLP:HE2  | 1.88         | 0.54        |
| 1:A:166:PHE:CD2  | 1:A:177:GLU:HB3  | 2.42         | 0.54        |
| 1:A:361:TRP:CZ3  | 1:A:409:ARG:HD2  | 2.43         | 0.54        |
| 1:A:455:VAL:HG13 | 1:A:674:SER:HB2  | 1.89         | 0.54        |
| 1:D:670:GLY:H    | 1:D:693:ASP:CG   | 2.10         | 0.54        |
| 1:B:168:GLN:NE2  | 1:B:647:ASN:H    | 2.03         | 0.54        |
| 1:D:160:ARG:HB2  | 1:D:243:LEU:HB3  | 1.88         | 0.54        |
| 1:C:599:VAL:HG21 | 1:C:788:SER:O    | 2.07         | 0.54        |
| 1:D:241:MET:HG2  | 1:D:243:LEU:HD13 | 1.89         | 0.54        |
| 1:A:88:GLU:HB3   | 1:A:132:GLY:HA2  | 1.90         | 0.54        |
| 1:B:136:LEU:HD23 | 1:B:338:ASN:ND2  | 2.23         | 0.54        |
| 1:D:689:ILE:HD12 | 1:D:784:GLN:OE1  | 2.07         | 0.54        |
| 1:B:685:GLY:HA2  | 1:B:801:VAL:HG13 | 1.89         | 0.54        |
| 1:B:474:LEU:HD13 | 1:B:475:GLU:HG3  | 1.90         | 0.53        |
| 1:C:252:PHE:CZ   | 1:C:269:ARG:HB2  | 2.41         | 0.53        |
| 1:D:791:TYR:C    | 1:D:793:ASN:H    | 2.10         | 0.53        |
| 1:D:274:ASN:HB2  | 1:D:277:ARG:HD3  | 1.89         | 0.53        |
| 1:D:800:MET:C    | 1:D:802:ILE:N    | 2.62         | 0.53        |
| 1:C:271:LEU:HA   | 1:C:274:ASN:HD21 | 1.73         | 0.53        |
| 1:D:558:ASN:O    | 1:D:561:SER:HB2  | 2.08         | 0.53        |
| 1:D:636:VAL:O    | 1:D:639:ARG:HG3  | 2.08         | 0.53        |
| 1:C:34:HIS:HE1   | 1:C:61:ASP:OD2   | 1.91         | 0.53        |
| 1:C:306:ASP:OD1  | 1:C:309:ARG:NH1  | 2.41         | 0.53        |
| 1:C:232:GLY:HA3  | 1:C:235:ASN:HD21 | 1.74         | 0.53        |
| 1:D:68:ILE:O     | 1:D:72:GLN:HG3   | 2.08         | 0.53        |
| 1:D:143:PHE:HB3  | 1:D:147:MET:HE2  | 1.90         | 0.53        |
| 1:B:112:THR:HG22 | 1:B:117:LEU:O    | 2.08         | 0.53        |



|                  | i ageni          | Interatomic  | Clash       |  |
|------------------|------------------|--------------|-------------|--|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |  |
| 1:B:588:ASN:HD21 | 1:B:744:GLN:HE22 | 1.54         | 0.53        |  |
| 1:C:522:LEU:HD22 | 1:C:806:ALA:HB1  | 1.90         | 0.53        |  |
| 1:C:66:ARG:HH11  | 1:C:66:ARG:CG    | 2.16         | 0.53        |  |
| 1:C:680:LLP:NZ   | 1:C:680:LLP:O3   | 2.42         | 0.53        |  |
| 1:C:764:MET:HA   | 1:C:768:HIS:CE1  | 2.44         | 0.53        |  |
| 1:A:264:GLN:H    | 1:A:264:GLN:HE21 | 1.56         | 0.53        |  |
| 1:B:738:LEU:O    | 1:B:742:ILE:HG12 | 2.08         | 0.53        |  |
| 1:D:136:LEU:HD22 | 1:D:338:ASN:HD21 | 1.73         | 0.53        |  |
| 1:D:235:ASN:CG   | 1:D:237:VAL:HG13 | 2.30         | 0.53        |  |
| 1:A:709:PHE:HB3  | 1:A:783:CYS:SG   | 2.49         | 0.52        |  |
| 1:B:834:LEU:O    | 1:B:835:PRO:O    | 2.27         | 0.52        |  |
| 1:C:455:VAL:HG12 | 1:C:674:SER:HB2  | 1.89         | 0.52        |  |
| 1:D:171:CYS:SG   | 1:D:176:MET:HG3  | 2.49         | 0.52        |  |
| 1:D:533:ASP:HA   | 1:D:536:LYS:HB3  | 1.91         | 0.52        |  |
| 1:B:641:ARG:HG3  | 1:B:641:ARG:NH1  | 2.05         | 0.52        |  |
| 1:D:589:ARG:O    | 1:D:591:LYS:N    | 2.33         | 0.52        |  |
| 1:D:63:LEU:HD13  | 1:D:229:PRO:HG2  | 1.92         | 0.52        |  |
| 1:B:353:LEU:O    | 1:B:359:LEU:HB2  | 2.08         | 0.52        |  |
| 1:A:237:VAL:HG12 | 1:A:834:LEU:HD13 | 1.92         | 0.52        |  |
| 1:A:575:ARG:NH2  | 1:A:776:ASP:HB2  | 2.23         | 0.52        |  |
| 1:C:455:VAL:H    | 1:C:459:HIS:CD2  | 2.26         | 0.52        |  |
| 1:C:235:ASN:H    | 1:C:235:ASN:ND2  | 2.06         | 0.52        |  |
| 1:A:676:THR:HG23 | 1:A:680:LLP:H4'1 | 1.92         | 0.52        |  |
| 1:A:554:LYS:HD3  | 1:A:554:LYS:H    | 1.75         | 0.52        |  |
| 1:B:466:THR:OG1  | 1:B:467:ILE:HD12 | 2.10         | 0.52        |  |
| 1:C:168:GLN:HE21 | 1:C:647:ASN:H    | 1.56         | 0.52        |  |
| 1:D:663:SER:OG   | 1:D:688:THR:HG23 | 2.10         | 0.52        |  |
| 1:D:308:ILE:HD13 | 1:D:352:VAL:HG11 | 1.92         | 0.52        |  |
| 1:D:728:ALA:HB3  | 1:D:766:MET:O    | 2.10         | 0.52        |  |
| 1:C:224:MET:SD   | 1:C:247:LYS:HE3  | 2.49         | 0.51        |  |
| 1:C:590:ILE:HG12 | 1:C:598:VAL:HG11 | 1.92         | 0.51        |  |
| 1:D:503:ILE:HG23 | 1:D:521:LEU:HD11 | 1.92         | 0.51        |  |
| 1:D:815:ARG:O    | 1:D:819:GLN:HG3  | 2.10         | 0.51        |  |
| 1:D:595:ASN:O    | 1:D:596:LYS:C    | 2.48         | 0.51        |  |
| 1:A:703:ALA:CB   | 1:A:807:THR:HG21 | 2.41         | 0.51        |  |
| 1:B:241:MET:HG2  | 1:B:243:LEU:HD13 | 1.91         | 0.51        |  |
| 1:D:584:ILE:HG23 | 1:D:750:PHE:HZ   | 1.76         | 0.51        |  |
| 1:A:486:ILE:HD11 | 1:A:676:THR:O    | 2.10         | 0.51        |  |
| 1:D:336:GLN:NE2  | 1:D:825:TRP:HE1  | 2.09         | 0.51        |  |
| 1:A:687:LEU:HD12 | 1:A:797:TRP:CE2  | 2.45         | 0.51        |  |
| 1:B:168:GLN:HG3  | 1:B:175:GLN:HG3  | 1.93         | 0.51        |  |



|                  | i agem           | Interatomic  | Clash       |  |
|------------------|------------------|--------------|-------------|--|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |  |
| 1:A:34:HIS:HE1   | 1:A:61:ASP:OD2   | 1.94         | 0.51        |  |
| 1:B:16:ARG:HG3   | 1:B:17:GLY:H     | 1.76         | 0.51        |  |
| 1:B:426:ARG:CZ   | 1:C:755:PRO:HD2  | 2.40         | 0.51        |  |
| 1:D:580:CYS:SG   | 1:D:623:ILE:HG12 | 2.51         | 0.51        |  |
| 1:B:566:GLN:HE22 | 1:B:576:GLN:HA   | 1.76         | 0.51        |  |
| 1:B:433:GLU:OE2  | 1:B:437:LYS:HE2  | 2.11         | 0.51        |  |
| 1:C:355:ASP:OD2  | 1:C:398:ARG:HD3  | 2.11         | 0.51        |  |
| 1:B:575:ARG:HH22 | 1:B:776:ASP:HB2  | 1.75         | 0.50        |  |
| 1:D:508:GLY:O    | 1:D:510:GLU:N    | 2.45         | 0.50        |  |
| 1:A:232:GLY:HA3  | 1:A:235:ASN:HD21 | 1.74         | 0.50        |  |
| 1:A:379:VAL:HG21 | 1:A:670:GLY:O    | 2.10         | 0.50        |  |
| 1:B:680:LLP:NZ   | 1:B:680:LLP:O3   | 2.44         | 0.50        |  |
| 1:A:23:ASN:HB3   | 1:A:26:GLU:HG2   | 1.92         | 0.50        |  |
| 1:A:34:HIS:HD2   | 1:A:38:THR:OG1   | 1.94         | 0.50        |  |
| 1:C:246:ALA:C    | 1:C:247:LYS:HG2  | 2.32         | 0.50        |  |
| 1:D:571:HIS:CD2  | 1:D:613:TYR:HE2  | 2.29         | 0.50        |  |
| 1:A:78:ASP:OD2   | 1:A:332:LYS:NZ   | 2.44         | 0.50        |  |
| 1:A:573:TYR:HB3  | 1:A:771:PHE:CE1  | 2.47         | 0.50        |  |
| 1:C:169:LYS:NZ   | 1:C:178:GLU:OE1  | 2.45         | 0.50        |  |
| 1:D:263:ILE:HG13 | 1:D:263:ILE:O    | 2.12         | 0.50        |  |
| 1:D:336:GLN:HE22 | 1:D:373:ALA:HB3  | 1.76         | 0.50        |  |
| 1:D:63:LEU:HD21  | 1:D:231:PRO:HB3  | 1.94         | 0.50        |  |
| 1:A:575:ARG:HD3  | 1:A:666:ILE:O    | 2.12         | 0.50        |  |
| 1:B:34:HIS:HD2   | 1:B:38:THR:OG1   | 1.95         | 0.50        |  |
| 1:A:661:ASP:HB3  | 1:A:797:TRP:CH2  | 2.47         | 0.50        |  |
| 1:C:34:HIS:HD2   | 1:C:38:THR:OG1   | 1.95         | 0.50        |  |
| 1:C:324:THR:O    | 1:C:325:ASN:O    | 2.30         | 0.50        |  |
| 1:A:20:GLY:O     | 1:A:21:VAL:CG1   | 2.51         | 0.49        |  |
| 1:A:386:ARG:HG2  | 1:A:440:ASN:HA   | 1.93         | 0.49        |  |
| 1:D:280:TYR:OH   | 1:D:291:LEU:HD12 | 2.12         | 0.49        |  |
| 1:D:661:ASP:HB3  | 1:D:797:TRP:HH2  | 1.74         | 0.49        |  |
| 1:B:395:LEU:HD23 | 1:B:395:LEU:H    | 1.77         | 0.49        |  |
| 1:C:160:ARG:HB2  | 1:C:243:LEU:HB3  | 1.94         | 0.49        |  |
| 1:D:818:ALA:O    | 1:D:822:ARG:HG3  | 2.12         | 0.49        |  |
| 1:A:235:ASN:HD22 | 1:A:236:ASN:N    | 2.10         | 0.49        |  |
| 1:B:348:GLU:OE1  | 1:B:399:HIS:CE1  | 2.65         | 0.49        |  |
| 1:D:21:VAL:CG2   | 1:D:22:GLU:H     | 2.25         | 0.49        |  |
| 1:D:85:LEU:HD12  | 1:D:335:ILE:HG23 | 1.93         | 0.49        |  |
| 1:C:741:ILE:HA   | 1:C:744:GLN:NE2  | 2.26         | 0.49        |  |
| 1:D:575:ARG:C    | 1:D:577:LEU:N    | 2.65         | 0.49        |  |
| 1:C:336:GLN:HE21 | 1:C:825:TRP:HE1  | 1.59         | 0.49        |  |



|                  | lo ao pagom      | Interatomic  | Clash<br>overlap (Å) |  |
|------------------|------------------|--------------|----------------------|--|
| Atom-1           | Atom-2           | distance (Å) |                      |  |
| 1:B:162:GLU:HA   | 1:B:183:LEU:HD12 | 1.94         | 0.49                 |  |
| 1:C:676:THR:HG22 | 1:C:680:LLP:H4'1 | 1.94         | 0.49                 |  |
| 1:D:584:ILE:HG23 | 1:D:750:PHE:CZ   | 2.47         | 0.49                 |  |
| 1:A:142:CYS:SG   | 1:A:487:THR:HG22 | 2.52         | 0.49                 |  |
| 1:D:545:PHE:O    | 1:D:549:LEU:HB2  | 2.12         | 0.49                 |  |
| 1:A:24:VAL:O     | 1:A:28:LYS:HG3   | 2.12         | 0.49                 |  |
| 1:A:227:ASP:OD1  | 1:A:242:ARG:CD   | 2.56         | 0.49                 |  |
| 1:A:241:MET:HG2  | 1:A:243:LEU:HD13 | 1.95         | 0.49                 |  |
| 1:A:740:GLN:O    | 1:A:744:GLN:HG3  | 2.12         | 0.49                 |  |
| 1:D:405:GLU:OE1  | 1:D:405:GLU:HA   | 2.13         | 0.49                 |  |
| 1:A:731:TYR:CE1  | 1:A:775:ALA:HA   | 2.48         | 0.49                 |  |
| 1:B:528:GLU:OE1  | 1:B:795:ARG:NH1  | 2.45         | 0.49                 |  |
| 1:C:346:ILE:HB   | 1:C:347:PRO:HD3  | 1.95         | 0.49                 |  |
| 1:D:96:GLN:O     | 1:D:100:VAL:HG13 | 2.13         | 0.49                 |  |
| 1:A:456:ALA:C    | 1:A:481:ASN:HD21 | 2.15         | 0.49                 |  |
| 1:A:474:LEU:O    | 1:A:475:GLU:HG3  | 2.12         | 0.49                 |  |
| 1:C:63:LEU:HD13  | 1:C:229:PRO:HG2  | 1.95         | 0.48                 |  |
| 1:A:340:THR:OG1  | 1:A:385:GLU:HB2  | 2.13         | 0.48                 |  |
| 1:D:389:VAL:HG22 | 1:D:437:LYS:O    | 2.12         | 0.48                 |  |
| 1:D:589:ARG:C    | 1:D:591:LYS:H    | 2.15         | 0.48                 |  |
| 1:A:309:ARG:NH2  | 2:A:902:SO4:O1   | 2.46         | 0.48                 |  |
| 1:C:23:ASN:HB3   | 1:C:26:GLU:HB2   | 1.94         | 0.48                 |  |
| 1:C:193:ARG:HB2  | 1:C:225:PRO:HG2  | 1.96         | 0.48                 |  |
| 1:A:455:VAL:H    | 1:A:459:HIS:CD2  | 2.22         | 0.48                 |  |
| 1:D:168:GLN:NE2  | 1:D:647:ASN:H    | 2.12         | 0.48                 |  |
| 1:A:47:THR:HG22  | 1:A:49:ARG:N     | 2.26         | 0.48                 |  |
| 1:A:438:ARG:HH11 | 1:A:438:ARG:HG3  | 1.78         | 0.48                 |  |
| 1:A:568:LYS:NZ   | 1:A:680:LLP:OP1  | 2.47         | 0.48                 |  |
| 1:D:424:ARG:NH2  | 1:D:473:GLU:OE1  | 2.47         | 0.48                 |  |
| 1:D:85:LEU:CD1   | 1:D:335:ILE:HG23 | 2.44         | 0.48                 |  |
| 1:D:836:ALA:CB   | 1:D:837:PRO:HA   | 2.37         | 0.48                 |  |
| 1:A:103:ALA:HB2  | 1:A:234:ARG:HE   | 1.78         | 0.48                 |  |
| 1:C:170:ILE:HA   | 1:C:174:TRP:O    | 2.14         | 0.48                 |  |
| 1:C:336:GLN:NE2  | 1:C:825:TRP:HE1  | 2.12         | 0.48                 |  |
| 1:D:348:GLU:OE1  | 1:D:399:HIS:CE1  | 2.67         | 0.48                 |  |
| 1:B:428:MET:SD   | 1:B:470:ASP:HB3  | 2.54         | 0.47                 |  |
| 1:C:378:THR:HG22 | 1:C:380:LEU:H    | 1.79         | 0.47                 |  |
| 1:D:146:SER:HB2  | 1:D:817:ILE:HG13 | 1.96         | 0.47                 |  |
| 1:B:739:ARG:O    | 1:B:743:GLU:HG2  | 2.14         | 0.47                 |  |
| 1:C:670:GLY:H    | 1:C:693:ASP:CG   | 2.17         | 0.47                 |  |
| 1:D:549:LEU:HD23 | 1:D:557:ILE:HG21 | 1.96         | 0.47                 |  |



|                  | io ao pagom      | Interatomic  | Clash       |  |
|------------------|------------------|--------------|-------------|--|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |  |
| 1:B:338:ASN:OD1  | 1:B:377:HIS:CE1  | 2.68         | 0.47        |  |
| 1:C:324:THR:O    | 1:C:325:ASN:C    | 2.53         | 0.47        |  |
| 1:D:274:ASN:HD22 | 1:D:274:ASN:C    | 2.18         | 0.47        |  |
| 1:C:727:ASN:HD21 | 1:C:729:GLN:HB3  | 1.79         | 0.47        |  |
| 1:A:526:ASP:OD1  | 1:A:799:ARG:NH1  | 2.48         | 0.47        |  |
| 1:B:274:ASN:HA   | 1:B:277:ARG:HB2  | 1.95         | 0.47        |  |
| 1:C:130:GLY:O    | 1:C:164:GLY:HA2  | 2.14         | 0.47        |  |
| 1:C:269:ARG:NH1  | 1:C:273:GLU:OE1  | 2.43         | 0.47        |  |
| 1:C:274:ASN:HA   | 1:C:277:ARG:HB2  | 1.97         | 0.47        |  |
| 1:B:507:ILE:HG21 | 1:B:520:LYS:HB3  | 1.96         | 0.47        |  |
| 1:D:732:TYR:HB2  | 1:D:766:MET:HE1  | 1.97         | 0.47        |  |
| 1:A:23:ASN:HD22  | 1:A:23:ASN:HA    | 1.58         | 0.47        |  |
| 1:A:727:ASN:HD21 | 1:D:725:GLY:HA3  | 1.80         | 0.47        |  |
| 1:B:128:ASP:OD2  | 1:B:649:ARG:HG3  | 2.15         | 0.46        |  |
| 1:B:373:ALA:HA   | 1:B:449:SER:HB3  | 1.97         | 0.46        |  |
| 1:A:160:ARG:HB2  | 1:A:243:LEU:HB3  | 1.97         | 0.46        |  |
| 1:B:138:ARG:HD3  | 1:B:138:ARG:O    | 2.16         | 0.46        |  |
| 1:C:336:GLN:HG2  | 1:C:825:TRP:HE1  | 1.79         | 0.46        |  |
| 1:A:380:LEU:HD12 | 1:A:380:LEU:HA   | 1.86         | 0.46        |  |
| 1:A:438:ARG:HH11 | 1:A:438:ARG:HG2  | 1.78         | 0.46        |  |
| 1:D:546:ALA:HA   | 1:D:549:LEU:HB3  | 1.98         | 0.46        |  |
| 1:D:563:PHE:CD1  | 1:D:602:THR:OG1  | 2.68         | 0.46        |  |
| 1:B:336:GLN:HG2  | 1:B:825:TRP:HE1  | 1.79         | 0.46        |  |
| 1:B:336:GLN:HE22 | 1:B:373:ALA:HB3  | 1.79         | 0.46        |  |
| 1:B:462:ILE:HG12 | 1:B:462:ILE:H    | 1.62         | 0.46        |  |
| 1:D:43:ARG:NH1   | 2:D:900:SO4:O1   | 2.44         | 0.46        |  |
| 1:D:87:LEU:HD13  | 1:D:341:HIS:CB   | 2.44         | 0.46        |  |
| 1:A:464:LYS:HG2  | 1:A:472:TYR:CD1  | 2.51         | 0.46        |  |
| 1:D:663:SER:HB3  | 1:D:688:THR:HA   | 1.98         | 0.46        |  |
| 1:D:836:ALA:HB1  | 1:D:837:PRO:CA   | 2.40         | 0.46        |  |
| 1:D:662:LEU:HD22 | 1:D:689:ILE:HG22 | 1.98         | 0.46        |  |
| 1:B:235:ASN:H    | 1:B:235:ASN:HD22 | 1.64         | 0.46        |  |
| 1:B:665:GLN:HB3  | 1:B:696:ASN:HD21 | 1.81         | 0.46        |  |
| 1:D:575:ARG:C    | 1:D:577:LEU:H    | 2.19         | 0.46        |  |
| 1:D:699:MET:HA   | 1:D:811:PHE:CZ   | 2.51         | 0.46        |  |
| 1:C:677:GLY:HA2  | 1:C:680:LLP:HD3  | 1.97         | 0.46        |  |
| 1:D:458:ILE:HD11 | 1:D:694:GLY:H    | 1.81         | 0.46        |  |
| 1:C:47:THR:CG2   | 1:C:48:PRO:HD2   | 2.43         | 0.45        |  |
| 1:D:47:THR:HG23  | 1:D:49:ARG:H     | 1.81         | 0.45        |  |
| 1:D:631:ASN:HA   | 1:D:641:ARG:NH1  | 2.31         | 0.45        |  |
| 1:A:450:HIS:O    | 1:A:478:LYS:HG3  | 2.16         | 0.45        |  |



|                  |                  | Interatomic | Clash       |  |
|------------------|------------------|-------------|-------------|--|
| Atom-1           | om-1 Atom-2      |             | overlap (Å) |  |
| 1:A:781:VAL:O    | 1:A:785:GLU:HG3  | 2.16        | 0.45        |  |
| 1:D:665:GLN:HG2  | 1:D:678:ASN:OD1  | 2.16        | 0.45        |  |
| 1:C:66:ARG:HG3   | 1:C:66:ARG:NH1   | 2.19        | 0.45        |  |
| 1:C:336:GLN:HE22 | 1:C:373:ALA:HB3  | 1.79        | 0.45        |  |
| 1:A:47:THR:HG23  | 1:A:48:PRO:HD2   | 1.98        | 0.45        |  |
| 1:A:438:ARG:CG   | 1:A:438:ARG:NH1  | 2.72        | 0.45        |  |
| 1:A:804:ASN:O    | 1:A:807:THR:HG22 | 2.15        | 0.45        |  |
| 1:B:348:GLU:OE1  | 1:B:399:HIS:HE1  | 2.00        | 0.45        |  |
| 1:B:503:ILE:HG23 | 1:B:521:LEU:HD11 | 1.99        | 0.45        |  |
| 1:C:575:ARG:HD2  | 1:C:668:THR:H    | 1.81        | 0.45        |  |
| 1:D:309:ARG:HH11 | 1:D:309:ARG:HB3  | 1.82        | 0.45        |  |
| 1:D:563:PHE:CD2  | 1:D:659:ALA:O    | 2.68        | 0.45        |  |
| 1:D:557:ILE:HG22 | 1:D:557:ILE:O    | 2.15        | 0.45        |  |
| 1:B:557:ILE:HD13 | 1:B:557:ILE:HA   | 1.83        | 0.45        |  |
| 1:C:388:PRO:HA   | 1:C:438:ARG:HG2  | 1.98        | 0.45        |  |
| 1:C:571:HIS:ND1  | 1:C:573:TYR:HD1  | 2.15        | 0.45        |  |
| 1:C:618:MET:HB3  | 1:C:761:ILE:HD11 | 1.98        | 0.45        |  |
| 1:C:687:LEU:HD22 | 1:C:800:MET:HE2  | 1.98        | 0.45        |  |
| 1:D:602:THR:HG22 | 1:D:641:ARG:HB2  | 1.99        | 0.45        |  |
| 1:A:472:TYR:C    | 1:A:474:LEU:H    | 2.20        | 0.45        |  |
| 1:A:550:GLU:HG2  | 1:A:555:VAL:O    | 2.16        | 0.45        |  |
| 1:C:279:LEU:CD2  | 1:C:280:TYR:H    | 2.30        | 0.45        |  |
| 1:A:89:PHE:O     | 1:A:131:LEU:HB3  | 2.17        | 0.45        |  |
| 1:A:348:GLU:OE1  | 1:A:399:HIS:HE1  | 2.00        | 0.45        |  |
| 1:B:47:THR:HG23  | 1:B:48:PRO:HD2   | 1.98        | 0.45        |  |
| 1:B:738:LEU:HD12 | 1:B:741:ILE:HD11 | 1.99        | 0.45        |  |
| 1:A:21:VAL:HG21  | 1:A:26:GLU:CG    | 2.43        | 0.45        |  |
| 1:A:454:GLY:HA3  | 1:A:460:SER:OG   | 2.17        | 0.45        |  |
| 1:C:129:ALA:HB1  | 1:C:131:LEU:HD22 | 1.99        | 0.45        |  |
| 1:C:274:ASN:ND2  | 1:C:274:ASN:N    | 2.47        | 0.45        |  |
| 1:C:455:VAL:HG13 | 1:C:674:SER:HB2  | 1.96        | 0.45        |  |
| 1:C:584:ILE:H    | 1:C:584:ILE:HG13 | 1.67        | 0.45        |  |
| 1:A:456:ALA:C    | 1:A:481:ASN:ND2  | 2.70        | 0.45        |  |
| 1:B:601:ARG:NH2  | 1:B:784:GLN:OE1  | 2.46        | 0.45        |  |
| 1:D:810:LYS:O    | 1:D:815:ARG:NE   | 2.34        | 0.45        |  |
| 1:A:580:CYS:O    | 1:A:584:ILE:HG13 | 2.17        | 0.44        |  |
| 1:C:571:HIS:ND1  | 1:C:573:TYR:CD1  | 2.85        | 0.44        |  |
| 1:A:465:LYS:O    | 1:A:469:LYS:HD2  | 2.18        | 0.44        |  |
| 1:B:16:ARG:HG3   | 1:B:17:GLY:N     | 2.33        | 0.44        |  |
| 1:A:12:GLN:HE22  | 1:B:28:LYS:HZ2   | 1.65        | 0.44        |  |
| 1:B:456:ALA:HB3  | 1:B:673:ALA:O    | 2.18        | 0.44        |  |



|                  |                  | Interatomic Clash |             |  |
|------------------|------------------|-------------------|-------------|--|
| Atom-1           | Atom-2           | distance (Å)      | overlap (Å) |  |
| 1:C:309:ARG:NH1  | 1:C:309:ARG:HB3  | 2.32              | 0.44        |  |
| 1:D:489:ARG:H    | 1:D:489:ARG:HE   | 1.65              | 0.44        |  |
| 1:B:575:ARG:HH22 | 1:B:776:ASP:CB   | 2.29              | 0.44        |  |
| 1:B:599:VAL:HG21 | 1:B:788:SER:O    | 2.17              | 0.44        |  |
| 1:C:329:PHE:HB3  | 1:C:330:PRO:HD3  | 1.99              | 0.44        |  |
| 1:A:810:LYS:HG2  | 1:A:810:LYS:O    | 2.16              | 0.44        |  |
| 1:C:235:ASN:HD22 | 1:C:235:ASN:N    | 2.04              | 0.44        |  |
| 1:C:729:GLN:O    | 1:C:732:TYR:HB3  | 2.16              | 0.44        |  |
| 1:C:799:ARG:O    | 1:C:803:ARG:HG3  | 2.18              | 0.44        |  |
| 1:D:735:ILE:H    | 1:D:735:ILE:HG12 | 1.46              | 0.44        |  |
| 1:C:290:GLU:HG2  | 1:C:294:LYS:HD2  | 1.99              | 0.44        |  |
| 1:B:329:PHE:HB3  | 1:B:330:PRO:HD3  | 2.00              | 0.44        |  |
| 1:D:295:GLN:O    | 1:D:299:VAL:HG12 | 2.17              | 0.44        |  |
| 1:D:650:VAL:HA   | 1:D:680:LLP:H2'1 | 2.00              | 0.44        |  |
| 1:D:803:ARG:HE   | 1:D:803:ARG:HB2  | 1.63              | 0.44        |  |
| 1:A:396:LEU:HB3  | 1:A:399:HIS:HB2  | 1.99              | 0.44        |  |
| 1:B:136:LEU:CD2  | 1:B:338:ASN:ND2  | 2.80              | 0.44        |  |
| 1:B:836:ALA:HB1  | 1:B:837:PRO:HA   | 2.00              | 0.44        |  |
| 1:D:493:VAL:HG21 | 1:D:512:ILE:HG21 | 2.00              | 0.44        |  |
| 1:A:753:LYS:N    | 1:A:753:LYS:HD2  | 2.33              | 0.43        |  |
| 1:D:289:LYS:HG3  | 1:D:291:LEU:H    | 1.83              | 0.43        |  |
| 1:C:195:GLU:H    | 1:C:195:GLU:HG3  | 1.50              | 0.43        |  |
| 1:C:492:LEU:HG   | 1:C:683:LEU:HD22 | 1.99              | 0.43        |  |
| 1:D:677:GLY:O    | 1:D:681:PHE:HD1  | 2.00              | 0.43        |  |
| 1:D:754:GLN:HG2  | 1:D:757:LEU:HD13 | 2.00              | 0.43        |  |
| 1:D:495:CYS:HB3  | 1:D:654:GLU:HB2  | 2.01              | 0.43        |  |
| 1:D:699:MET:HA   | 1:D:811:PHE:HZ   | 1.82              | 0.43        |  |
| 1:A:457:ARG:CG   | 1:A:457:ARG:NH1  | 2.80              | 0.43        |  |
| 1:A:817:ILE:HD13 | 1:A:817:ILE:HA   | 1.89              | 0.43        |  |
| 1:B:263:ILE:O    | 1:B:266:VAL:HG23 | 2.19              | 0.43        |  |
| 1:B:355:ASP:OD2  | 1:B:398:ARG:HD3  | 2.19              | 0.43        |  |
| 1:B:835:PRO:HB2  | 1:B:836:ALA:H    | 1.62              | 0.43        |  |
| 1:D:34:HIS:HD2   | 1:D:38:THR:OG1   | 2.01              | 0.43        |  |
| 1:D:396:LEU:HB3  | 1:D:399:HIS:HB2  | 2.00              | 0.43        |  |
| 1:B:63:LEU:HD13  | 1:B:229:PRO:HG2  | 2.00              | 0.43        |  |
| 1:C:676:THR:CG2  | 1:C:680:LLP:H4'1 | 2.48              | 0.43        |  |
| 1:A:19:ALA:HB1   | 1:A:30:ASN:HD21  | 1.84              | 0.43        |  |
| 1:A:381:PRO:O    | 1:A:386:ARG:NH2  | 2.52              | 0.43        |  |
| 1:D:136:LEU:HD22 | 1:D:338:ASN:ND2  | 2.34              | 0.43        |  |
| 1:D:578:LEU:HB3  | 1:D:666:ILE:HD12 | 2.01              | 0.43        |  |
| 1:B:267:LEU:H    | 1:B:267:LEU:HG   | 1.68              | 0.43        |  |



|                  |                  | Interatomic  | Clash       |  |
|------------------|------------------|--------------|-------------|--|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |  |
| 1:B:424:ARG:NH2  | 1:B:473:GLU:OE1  | 2.52         | 0.43        |  |
| 1:B:795:ARG:O    | 1:B:799:ARG:HG3  | 2.19         | 0.43        |  |
| 1:C:53:PHE:CE1   | 1:C:188:PRO:HG3  | 2.53         | 0.43        |  |
| 1:D:627:GLY:O    | 1:D:631:ASN:ND2  | 2.52         | 0.43        |  |
| 1:D:645:LEU:HD11 | 1:D:656:VAL:HG21 | 2.00         | 0.43        |  |
| 1:A:836:ALA:HA   | 1:A:837:PRO:HA   | 1.89         | 0.43        |  |
| 1:C:458:ILE:O    | 1:C:462:ILE:HG23 | 2.19         | 0.43        |  |
| 1:C:751:SER:O    | 1:C:752:PRO:C    | 2.57         | 0.43        |  |
| 1:D:309:ARG:HB3  | 1:D:309:ARG:NH1  | 2.33         | 0.43        |  |
| 1:D:329:PHE:HB3  | 1:D:330:PRO:HD3  | 2.01         | 0.43        |  |
| 1:D:589:ARG:C    | 1:D:591:LYS:N    | 2.72         | 0.43        |  |
| 1:D:730:GLU:HG3  | 1:D:731:TYR:N    | 2.34         | 0.43        |  |
| 1:A:359:LEU:HD12 | 1:A:363:LYS:HG2  | 2.00         | 0.42        |  |
| 1:A:423:ASP:O    | 1:A:426:ARG:NH1  | 2.49         | 0.42        |  |
| 1:A:575:ARG:HH22 | 1:A:776:ASP:HB2  | 1.84         | 0.42        |  |
| 1:A:724:ARG:C    | 1:D:729:GLN:HG2  | 2.40         | 0.42        |  |
| 1:B:455:VAL:HG13 | 1:B:484:ASN:ND2  | 2.34         | 0.42        |  |
| 1:B:641:ARG:CG   | 1:B:641:ARG:NH1  | 2.65         | 0.42        |  |
| 1:D:264:GLN:HA   | 1:D:264:GLN:OE1  | 2.18         | 0.42        |  |
| 1:D:373:ALA:HA   | 1:D:449:SER:HB3  | 2.01         | 0.42        |  |
| 1:A:571:HIS:H    | 1:A:576:GLN:NE2  | 2.16         | 0.42        |  |
| 1:B:60:ARG:O     | 1:B:64:VAL:HG13  | 2.19         | 0.42        |  |
| 1:C:309:ARG:HB3  | 1:C:309:ARG:HH11 | 1.84         | 0.42        |  |
| 1:C:422:VAL:O    | 1:C:425:LEU:HB2  | 2.18         | 0.42        |  |
| 1:C:741:ILE:H    | 1:C:741:ILE:HG12 | 1.60         | 0.42        |  |
| 1:B:34:HIS:CE1   | 1:B:61:ASP:OD2   | 2.68         | 0.42        |  |
| 1:B:233:TYR:CZ   | 1:B:234:ARG:HD3  | 2.55         | 0.42        |  |
| 1:D:530:PHE:C    | 1:D:532:ARG:N    | 2.72         | 0.42        |  |
| 1:D:650:VAL:O    | 1:D:650:VAL:CG1  | 2.66         | 0.42        |  |
| 1:D:739:ARG:NH1  | 1:D:739:ARG:HB2  | 2.34         | 0.42        |  |
| 1:B:361:TRP:CZ3  | 1:B:409:ARG:HD2  | 2.54         | 0.42        |  |
| 1:C:759:LYS:O    | 1:C:763:ASN:HB2  | 2.19         | 0.42        |  |
| 1:D:499:LEU:N    | 1:D:537:VAL:HG11 | 2.35         | 0.42        |  |
| 1:D:587:TYR:O    | 1:D:591:LYS:HB2  | 2.19         | 0.42        |  |
| 1:D:597:PHE:O    | 1:D:792:LYS:NZ   | 2.38         | 0.42        |  |
| 1:C:19:ALA:HA    | 1:C:20:GLY:HA3   | 1.73         | 0.42        |  |
| 1:D:741:ILE:O    | 1:D:745:LEU:HG   | 2.20         | 0.42        |  |
| 1:A:12:GLN:HE22  | 1:B:28:LYS:NZ    | 2.17         | 0.42        |  |
| 1:A:81:ARG:HG2   | 1:A:155:TYR:HE2  | 1.84         | 0.42        |  |
| 1:C:515:LEU:HD22 | 1:C:812:SER:HB2  | 2.01         | 0.42        |  |
| 1:D:517:GLN:CG   | 1:D:517:GLN:O    | 2.67         | 0.42        |  |



|                  |                  | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:D:542:LYS:O    | 1:D:546:ALA:CB   | 2.68         | 0.42        |
| 1:A:714:ARG:O    | 1:A:718:VAL:HG23 | 2.19         | 0.42        |
| 1:D:517:GLN:HG2  | 1:D:517:GLN:O    | 2.19         | 0.42        |
| 1.D.683.LEU.HD23 | 1.D.683.LEU.HA   | 1.83         | 0.42        |
| 1:C:689:ILE:HA   | 1:C:709:PHE:O    | 2.20         | 0.42        |
| 1:D:483:THR:O    | 1:D:816:THR:HG23 | 2.19         | 0.42        |
| 1:D:487:THR:HG23 | 1:D:490:ARG:HB3  | 2.01         | 0.42        |
| 1:D:665:GLN:HE21 | 1:D:678:ASN:HA   | 1.85         | 0.42        |
| 1:D:738:LEU:HB2  | 1:D:777:TYR:CE2  | 2.55         | 0.42        |
| 1:D:791:TYR:CA   | 1:D:797:TRP:CD1  | 2.97         | 0.42        |
| 1:A:600:PRO:HA   | 1:A:639:ABG:O    | 2.20         | 0.42        |
| 1:B:292:ARG:HH21 | 1:B:341:HIS:CD2  | 2.38         | 0.42        |
| 1:B:760:ASP:HA   | 1:B:763:ASN:HB2  | 2.01         | 0.42        |
| 1:C:378:THR:O    | 1:C:459:HIS:HE1  | 2.01         | 0.42        |
| 1:D:562:LEU:HD23 | 1:D:563:PHE:N    | 2.35         | 0.42        |
| 1:A:503:ILE:HG12 | 1:A:521:LEU:HD21 | 2.02         | 0.41        |
| 1:C:172:GLY:O    | 1:C:621:LYS:NZ   | 2.53         | 0.41        |
| 1:C:293:LEU:HD23 | 1:C:395:LEU:HD21 | 2.02         | 0.41        |
| 1:D:511:TYR:O    | 1:D:514:ASP:C    | 2.57         | 0.41        |
| 1:D:515:LEU:HD23 | 1:D:809:GLY:HA2  | 2.01         | 0.41        |
| 1:D:527:ASP:O    | 1:D:532:ARG:NH2  | 2.36         | 0.41        |
| 1:A:37:PHE:CD1   | 1:B:64:VAL:HG22  | 2.55         | 0.41        |
| 1:C:325:ASN:C    | 1:C:327:ASP:N    | 2.74         | 0.41        |
| 1:C:650:VAL:HA   | 1:C:680:LLP:H2'1 | 2.02         | 0.41        |
| 1:D:252:PHE:HD2  | 1:D:269:ARG:HG2  | 1.86         | 0.41        |
| 1:D:542:LYS:HE3  | 1:D:563:PHE:CG   | 2.55         | 0.41        |
| 1:D:822:ARG:NH1  | 1:D:828:GLU:OE2  | 2.51         | 0.41        |
| 1:C:73:HIS:CD2   | 1:C:834:LEU:HD11 | 2.55         | 0.41        |
| 1:C:774:PHE:C    | 1:C:776:ASP:H    | 2.24         | 0.41        |
| 1:D:803:ARG:O    | 1:D:807:THR:HG22 | 2.20         | 0.41        |
| 1:C:626:ILE:O    | 1:C:630:VAL:HG13 | 2.20         | 0.41        |
| 1:D:143:PHE:CG   | 1:D:817:ILE:HD11 | 2.56         | 0.41        |
| 1:D:571:HIS:ND1  | 1:D:573:TYR:HD1  | 2.18         | 0.41        |
| 1:D:715:VAL:O    | 1:D:715:VAL:HG12 | 2.21         | 0.41        |
| 1:D:795:ARG:O    | 1:D:799:ARG:HG3  | 2.21         | 0.41        |
| 1:A:100:VAL:O    | 1:A:234:ARG:NH1  | 2.53         | 0.41        |
| 1:A:467:ILE:H    | 1:A:467:ILE:HD12 | 1.85         | 0.41        |
| 1:D:168:GLN:HG3  | 1:D:175:GLN:HG3  | 2.03         | 0.41        |
| 1:A:85:LEU:CD2   | 1:A:303:THR:HG21 | 2.44         | 0.41        |
| 1:C:64:VAL:CG2   | 1:D:37:PHE:HD1   | 2.32         | 0.41        |
| 1:C:124:GLU:CD   | 1:C:655:LYS:HZ1  | 2.24         | 0.41        |



|                  | i agein          | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:D:665:GLN:NE2  | 1:D:678:ASN:OD1  | 2.53         | 0.41        |
| 1:A:129:ALA:HB1  | 1:A:131:LEU:HD22 | 2.03         | 0.41        |
| 1:A:230:VAL:HG22 | 1:A:230:VAL:O    | 2.20         | 0.41        |
| 1:A:807:THR:O    | 1:A:807:THR:HG23 | 2.21         | 0.41        |
| 1:B:157:TYR:CE2  | 1:B:242:ARG:HG2  | 2.56         | 0.41        |
| 1:C:805:ILE:O    | 1:C:805:ILE:HG22 | 2.21         | 0.41        |
| 1:D:55:LEU:O     | 1:D:59:VAL:HG23  | 2.21         | 0.41        |
| 1:A:136:LEU:HD11 | 1:A:338:ASN:ND2  | 2.35         | 0.41        |
| 1:A:495:CYS:HB3  | 1:A:654:GLU:HB2  | 2.01         | 0.41        |
| 1:B:67:TRP:HA    | 1:B:238:VAL:HB   | 2.03         | 0.41        |
| 1:B:262:TYR:HB3  | 1:B:264:GLN:HE22 | 1.85         | 0.41        |
| 1:B:819:GLN:O    | 1:B:823:GLU:HB2  | 2.21         | 0.41        |
| 1:C:100:VAL:O    | 1:C:234:ARG:NH1  | 2.53         | 0.41        |
| 1:C:727:ASN:O    | 1:C:730:GLU:HG2  | 2.21         | 0.41        |
| 1:D:764:MET:HE2  | 3:D:910:HOH:O    | 2.21         | 0.41        |
| 1:D:791:TYR:HD1  | 1:D:797:TRP:CE2  | 2.38         | 0.41        |
| 1:C:433:GLU:OE1  | 1:C:433:GLU:HA   | 2.21         | 0.41        |
| 1:D:235:ASN:OD1  | 1:D:237:VAL:HG13 | 2.21         | 0.41        |
| 1:D:363:LYS:HA   | 1:D:363:LYS:HD2  | 1.89         | 0.41        |
| 1:A:34:HIS:CD2   | 1:A:38:THR:OG1   | 2.73         | 0.40        |
| 1:A:268:ASP:N    | 1:A:268:ASP:OD1  | 2.54         | 0.40        |
| 1:B:292:ARG:O    | 1:B:296:GLU:HG3  | 2.20         | 0.40        |
| 1:B:571:HIS:H    | 1:B:576:GLN:NE2  | 2.18         | 0.40        |
| 1:C:348:GLU:OE1  | 1:C:399:HIS:HE1  | 2.04         | 0.40        |
| 1:D:161:TYR:CZ   | 1:D:279:LEU:HG   | 2.55         | 0.40        |
| 1:B:170:ILE:HG12 | 1:B:646:GLU:HG3  | 2.03         | 0.40        |
| 1:B:458:ILE:HD11 | 1:B:694:GLY:CA   | 2.51         | 0.40        |
| 1:B:571:HIS:O    | 1:B:576:GLN:NE2  | 2.54         | 0.40        |
| 1:B:591:LYS:HA   | 1:B:591:LYS:HD3  | 1.86         | 0.40        |
| 1:C:21:VAL:HG23  | 1:C:62:HIS:CD2   | 2.56         | 0.40        |
| 1:C:85:LEU:HD11  | 1:C:303:THR:HG21 | 2.02         | 0.40        |
| 1:C:336:GLN:HG3  | 1:C:825:TRP:HZ2  | 1.86         | 0.40        |
| 1:C:545:PHE:O    | 1:C:549:LEU:HB2  | 2.21         | 0.40        |
| 1:C:717:ASP:OD1  | 1:C:717:ASP:N    | 2.54         | 0.40        |
| 1:D:36:HIS:O     | 1:D:40:VAL:HA    | 2.20         | 0.40        |
| 1:D:274:ASN:HA   | 1:D:277:ARG:HB2  | 2.02         | 0.40        |
| 1:A:766:MET:HA   | 1:A:766:MET:CE   | 2.51         | 0.40        |
| 1:D:211:GLN:HG3  | 1:D:358:ARG:HH22 | 1.84         | 0.40        |
| 1:D:808:SER:O    | 1:D:811:PHE:N    | 2.48         | 0.40        |
| 1:A:515:LEU:HD23 | 1:A:809:GLY:HA2  | 2.03         | 0.40        |
| 1:C:53:PHE:CD1   | 1:C:188:PRO:HG3  | 2.56         | 0.40        |



| Atom-1           | Atom-2           | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|------------------|------------------|-----------------------------|----------------------|
| 1:C:782:LYS:O    | 1:C:785:GLU:HB2  | 2.21                        | 0.40                 |
| 1:D:665:GLN:NE2  | 1:D:678:ASN:HA   | 2.35                        | 0.40                 |
| 1:A:250:ASN:HB3  | 1:A:252:PHE:CE2  | 2.49                        | 0.40                 |
| 1:A:269:ARG:HH21 | 1:B:277:ARG:NH2  | 2.12                        | 0.40                 |
| 1:A:305:GLN:O    | 1:A:309:ARG:HB2  | 2.21                        | 0.40                 |
| 1:A:682:MET:HE3  | 1:A:808:SER:CB   | 2.39                        | 0.40                 |
| 1:C:347:PRO:HD3  | 1:C:444:LEU:HD11 | 2.03                        | 0.40                 |
| 1:D:399:HIS:O    | 1:D:403:ILE:HG13 | 2.22                        | 0.40                 |
| 1:D:433:GLU:H    | 1:D:433:GLU:HG2  | 1.72                        | 0.40                 |
| 1:D:523:SER:HB2  | 1:D:524:TYR:CE1  | 2.56                        | 0.40                 |
| 1:D:571:HIS:CD2  | 1:D:613:TYR:CE2  | 3.09                        | 0.40                 |
| 1:D:584:ILE:HD11 | 1:D:626:ILE:HD11 | 2.03                        | 0.40                 |

There are no symmetry-related clashes.

#### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Favoured   | Allowed  | Outliers | Perce | entiles |
|-----|-------|-----------------|------------|----------|----------|-------|---------|
| 1   | А     | 801/842~(95%)   | 745 (93%)  | 43 (5%)  | 13 (2%)  | 9     | 19      |
| 1   | В     | 802/842~(95%)   | 754 (94%)  | 37~(5%)  | 11 (1%)  | 11    | 22      |
| 1   | С     | 798/842~(95%)   | 746 (94%)  | 43~(5%)  | 9 (1%)   | 14    | 30      |
| 1   | D     | 797/842~(95%)   | 698~(88%)  | 78 (10%) | 21 (3%)  | 5     | 9       |
| All | All   | 3198/3368~(95%) | 2943 (92%) | 201 (6%) | 54 (2%)  | 9     | 18      |

All (54) Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 21  | VAL  |
| 1   | А     | 514 | ASP  |
| 1   | А     | 551 | ARG  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 835 | PRO  |
| 1   | В     | 678 | ASN  |
| 1   | В     | 835 | PRO  |
| 1   | С     | 16  | ARG  |
| 1   | С     | 19  | ALA  |
| 1   | С     | 166 | PHE  |
| 1   | С     | 325 | ASN  |
| 1   | D     | 21  | VAL  |
| 1   | D     | 509 | GLU  |
| 1   | D     | 510 | GLU  |
| 1   | D     | 590 | ILE  |
| 1   | D     | 801 | VAL  |
| 1   | А     | 166 | PHE  |
| 1   | A     | 261 | GLY  |
| 1   | А     | 421 | ASP  |
| 1   | А     | 477 | HIS  |
| 1   | C     | 18  | LEU  |
| 1   | С     | 724 | ARG  |
| 1   | D     | 166 | PHE  |
| 1   | D     | 489 | ARG  |
| 1   | D     | 724 | ARG  |
| 1   | D     | 792 | LYS  |
| 1   | А     | 473 | GLU  |
| 1   | В     | 166 | PHE  |
| 1   | В     | 211 | GLN  |
| 1   | В     | 613 | TYR  |
| 1   | D     | 576 | GLN  |
| 1   | D     | 591 | LYS  |
| 1   | D     | 596 | LYS  |
| 1   | D     | 693 | ASP  |
| 1   | А     | 836 | ALA  |
| 1   | В     | 421 | ASP  |
| 1   | С     | 778 | GLU  |
| 1   | D     | 251 | ASP  |
| 1   | D     | 540 | GLU  |
| 1   | D     | 561 | SER  |
| 1   | D     | 697 | VAL  |
| 1   | А     | 329 | PHE  |
| 1   | В     | 268 | ASP  |
| 1   | В     | 551 | ARG  |
| 1   | С     | 752 | PRO  |
| 1   | D     | 830 | SER  |



| 0011111 | naca ji on | Proces         | e ae page |
|---------|------------|----------------|-----------|
| Mol     | Chain      | $\mathbf{Res}$ | Type      |
| 1       | В          | 836            | ALA       |
| 1       | С          | 775            | ALA       |
| 1       | D          | 523            | SER       |
| 1       | D          | 558            | ASN       |
| 1       | А          | 260            | GLY       |
| 1       | В          | 20             | GLY       |
| 1       | D          | 836            | ALA       |
| 1       | А          | 263            | ILE       |
| 1       | В          | 837            | PRO       |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Rotameric  | Outliers  | Percentiles |
|-----|-------|-----------------|------------|-----------|-------------|
| 1   | А     | 699/730~(96%)   | 604 (86%)  | 95 (14%)  | 3 6         |
| 1   | В     | 700/730~(96%)   | 609~(87%)  | 91 (13%)  | 4 7         |
| 1   | С     | 697/730~(96%)   | 626~(90%)  | 71 (10%)  | 7 14        |
| 1   | D     | 697/730~(96%)   | 593~(85%)  | 104 (15%) | 3 5         |
| All | All   | 2793/2920~(96%) | 2432 (87%) | 361 (13%) | 4 7         |

All (361) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 8   | GLU  |
| 1   | А     | 10  | ARG  |
| 1   | А     | 15  | VAL  |
| 1   | А     | 16  | ARG  |
| 1   | А     | 18  | LEU  |
| 1   | А     | 23  | ASN  |
| 1   | А     | 29  | LYS  |
| 1   | А     | 39  | LEU  |
| 1   | А     | 63  | LEU  |
| 1   | А     | 71  | GLN  |
| 1   | А     | 76  | GLU  |
| 1   | А     | 81  | ARG  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 82  | ILE  |
| 1   | А     | 90  | TYR  |
| 1   | А     | 91  | MET  |
| 1   | А     | 95  | LEU  |
| 1   | А     | 128 | ASP  |
| 1   | А     | 131 | LEU  |
| 1   | А     | 138 | ARG  |
| 1   | А     | 169 | LYS  |
| 1   | А     | 216 | VAL  |
| 1   | А     | 228 | THR  |
| 1   | А     | 230 | VAL  |
| 1   | А     | 235 | ASN  |
| 1   | А     | 237 | VAL  |
| 1   | А     | 242 | ARG  |
| 1   | А     | 243 | LEU  |
| 1   | А     | 251 | ASP  |
| 1   | А     | 262 | TYR  |
| 1   | А     | 264 | GLN  |
| 1   | А     | 268 | ASP  |
| 1   | А     | 274 | ASN  |
| 1   | А     | 287 | GLU  |
| 1   | А     | 292 | ARG  |
| 1   | А     | 325 | ASN  |
| 1   | А     | 332 | LYS  |
| 1   | А     | 339 | ASP  |
| 1   | А     | 358 | ARG  |
| 1   | А     | 361 | TRP  |
| 1   | А     | 371 | THR  |
| 1   | А     | 380 | LEU  |
| 1   | А     | 382 | GLU  |
| 1   | А     | 391 | LEU  |
| 1   | A     | 392 | LEU  |
| 1   | А     | 396 | LEU  |
| 1   | A     | 400 | LEU  |
| 1   | А     | 408 | GLN  |
| 1   | А     | 425 | LEU  |
| 1   | А     | 426 | ARG  |
| 1   | А     | 437 | LYS  |
| 1   | А     | 438 | ARG  |
| 1   | А     | 441 | MET  |
| 1   | А     | 444 | LEU  |
| 1   | А     | 449 | SER  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 453 | ASN  |
| 1   | А     | 455 | VAL  |
| 1   | А     | 457 | ARG  |
| 1   | А     | 458 | ILE  |
| 1   | А     | 486 | ILE  |
| 1   | А     | 490 | ARG  |
| 1   | А     | 492 | LEU  |
| 1   | А     | 521 | LEU  |
| 1   | А     | 522 | LEU  |
| 1   | А     | 543 | LEU  |
| 1   | А     | 549 | LEU  |
| 1   | А     | 554 | LYS  |
| 1   | А     | 565 | VAL  |
| 1   | А     | 568 | LYS  |
| 1   | А     | 569 | ARG  |
| 1   | А     | 576 | GLN  |
| 1   | А     | 579 | ASN  |
| 1   | А     | 593 | GLU  |
| 1   | А     | 622 | LEU  |
| 1   | А     | 639 | ARG  |
| 1   | А     | 640 | LEU  |
| 1   | А     | 649 | ARG  |
| 1   | А     | 652 | LEU  |
| 1   | А     | 662 | LEU  |
| 1   | А     | 678 | ASN  |
| 1   | А     | 683 | LEU  |
| 1   | А     | 705 | GLU  |
| 1   | А     | 706 | GLU  |
| 1   | А     | 708 | PHE  |
| 1   | А     | 713 | MET  |
| 1   | А     | 714 | ARG  |
| 1   | А     | 716 | GLU  |
| 1   | А     | 743 | GLU  |
| 1   | А     | 749 | PHE  |
| 1   | А     | 753 | LYS  |
| 1   | А     | 760 | ASP  |
| 1   | А     | 765 | LEU  |
| 1   | А     | 782 | LYS  |
| 1   | А     | 797 | TRP  |
| 1   | А     | 807 | THR  |
| 1   | А     | 827 | VAL  |
| 1   | В     | 10  | ARG  |



| 1       B       15       VAL         1       B       21       VAL         1       B       39       LEU         1       B       64       VAL         1       B       66       ARG         1       B       69       ARG         1       B       82       ILE         1       B       85       LEU         1       B       90       TYR         1       B       91       MET         1       B       94       THR         1       B       95       LEU         1       B       95       LEU         1       B       100       VAL         1       B       104       LEU         1       B       104       LEU         1       B       131       LEU         1       B       131       LEU         1       B       133       ARG         1       B       165       ILE         1       B       177       GLU         1       B       177       GLU         1       B | Mol | Chain | Res | Type |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-----|------|
| 1       B       21       VAL         1       B $39$ LEU         1       B $64$ VAL         1       B $66$ ARG         1       B $69$ ARG         1       B $69$ ARG         1       B $82$ ILE         1       B $82$ ILE         1       B $90$ TYR         1       B $90$ TYR         1       B $91$ MET         1       B $94$ THR         1       B $100$ VAL         1       B $101$ LEU         1       B $131$ LEU                                                                                                                                                                                                                                    | 1   | В     | 15  | VAL  |
| 1B $39$ LEU1B $64$ VAL1B $66$ ARG1B $69$ ARG1B $82$ ILE1B $85$ LEU1B $90$ TYR1B $91$ MET1B $94$ THR1B $95$ LEU1B $100$ VAL1B $100$ VAL1B $104$ LEU1B $128$ ASP1B $131$ LEU1B $138$ ARG1B $165$ ILE1B $177$ GLU1B $191$ LYS1B $234$ ARG1B $235$ ASN1B $242$ ARG1B $251$ ASP1B $262$ TYR1B $262$ TYR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1   | В     | 21  | VAL  |
| 1       B $64$ VAL         1       B $66$ ARG         1       B $69$ ARG         1       B $82$ ILE         1       B $85$ LEU         1       B $90$ TYR         1       B $91$ MET         1       B $91$ MET         1       B $94$ THR         1       B $95$ LEU         1       B $100$ VAL         1       B $100$ VAL         1       B $100$ VAL         1       B $104$ LEU         1       B $104$ LEU         1       B $131$ LEU         1       B $131$ LEU         1       B $165$ ILE         1       B $177$ GLU         1       B $177$ GLU         1       B $234$ ARG         1       B $235$ ASN <th>1</th> <th>В</th> <th>39</th> <th>LEU</th>                                                                                                                                                                                             | 1   | В     | 39  | LEU  |
| 1       B $66$ ARG         1       B $69$ ARG         1       B $82$ ILE         1       B $85$ LEU         1       B $90$ TYR         1       B $90$ TYR         1       B $91$ MET         1       B $94$ THR         1       B $95$ LEU         1       B $100$ VAL         1       B $100$ VAL         1       B $104$ LEU         1       B $104$ LEU         1       B $128$ ASP         1       B $131$ LEU         1       B $131$ LEU         1       B $165$ ILE         1       B $177$ GLU         1       B $177$ GLU         1       B $234$ ARG         1       B $235$ ASN         1       B $242$ ARG </th <th>1</th> <th>В</th> <th>64</th> <th>VAL</th>                                                                                                                                                                                       | 1   | В     | 64  | VAL  |
| 1B $69$ ARG1B $82$ ILE1B $85$ LEU1B $90$ TYR1B $91$ MET1B $94$ THR1B $95$ LEU1B $100$ VAL1B $100$ VAL1B $104$ LEU1B $104$ LEU1B $131$ LEU1B $131$ LEU1B $138$ ARG1B $165$ ILE1B $177$ GLU1B $191$ LYS1B $234$ ARG1B $234$ ARG1B $242$ ARG1B $251$ ASP1B $262$ TYR1B $264$ GLN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1   | В     | 66  | ARG  |
| 1       B       82       ILE         1       B       85       LEU         1       B       90       TYR         1       B       91       MET         1       B       94       THR         1       B       95       LEU         1       B       100       VAL         1       B       104       LEU         1       B       104       LEU         1       B       128       ASP         1       B       131       LEU         1       B       138       ARG         1       B       165       ILE         1       B       165       ILE         1       B       171       CYS         1       B       177       GLU         1       B       191       LYS         1       B       234       ARG         1       B       235       ASN         1       B       251       ASP         1       B       262       TYR         1       B       264       GLN            | 1   | В     | 69  | ARG  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1   | В     | 82  | ILE  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1   | В     | 85  | LEU  |
| 1       B       91       MET         1       B       94       THR         1       B       95       LEU         1       B       100       VAL         1       B       100       VAL         1       B       104       LEU         1       B       128       ASP         1       B       131       LEU         1       B       133       ARG         1       B       138       ARG         1       B       165       ILE         1       B       171       CYS         1       B       177       GLU         1       B       191       LYS         1       B       214       LYS         1       B       235       ASN         1       B       242       ARG         1       B       251       ASP         1       B       262       TYR         1       B       264       GLN                                                                                     | 1   | В     | 90  | TYR  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1   | В     | 91  | MET  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1   | В     | 94  | THR  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1   | В     | 95  | LEU  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1   | В     | 100 | VAL  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1   | В     | 104 | LEU  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1   | В     | 128 | ASP  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1   | В     | 131 | LEU  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1   | В     | 138 | ARG  |
| 1       B       171       CYS         1       B       177       GLU         1       B       191       LYS         1       B       214       LYS         1       B       234       ARG         1       B       235       ASN         1       B       242       ARG         1       B       251       ASP         1       B       262       TYR         1       B       264       GLN                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | В     | 165 | ILE  |
| 1       B       177       GLU         1       B       191       LYS         1       B       214       LYS         1       B       234       ARG         1       B       235       ASN         1       B       242       ARG         1       B       251       ASP         1       B       262       TYR         1       B       264       GLN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1   | В     | 171 | CYS  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1   | В     | 177 | GLU  |
| 1         B         214         LYS           1         B         234         ARG           1         B         235         ASN           1         B         242         ARG           1         B         251         ASP           1         B         262         TYR           1         B         264         GLN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | В     | 191 | LYS  |
| 1         B         234         ARG           1         B         235         ASN           1         B         242         ARG           1         B         251         ASP           1         B         262         TYR           1         B         264         GLN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1   | В     | 214 | LYS  |
| 1         B         235         ASN           1         B         242         ARG           1         B         251         ASP           1         B         262         TYR           1         B         264         GLN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   | В     | 234 | ARG  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1   | В     | 235 | ASN  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1   | В     | 242 | ARG  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1   | В     | 251 | ASP  |
| 1 B 264 GLN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   | В     | 262 | TYR  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1   | В     | 264 | GLN  |
| 1 B 267 LEU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   | В     | 267 | LEU  |
| 1 B 269 ARG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   | В     | 269 | ARG  |
| 1 B 274 ASN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   | В     | 274 | ASN  |
| 1 B 289 LYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   | В     | 289 | LYS  |
| 1 B 291 LEU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   | В     | 291 | LEU  |
| 1 B 314 SER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   | В     | 314 | SER  |
| 1 B 325 ASN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   | В     | 325 | ASN  |
| 1 B 337 LEU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   | В     | 337 | LEU  |
| 1 B 339 ASP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   | В     | 339 | ASP  |
| 1 B 359 LEU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   | В     | 359 | LEU  |
| 1 B 360 ASP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   | В     | 360 | ASP  |
| 1 B 361 TRP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   | В     | 361 | TRP  |
| 1 B 363 LYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   | В     | 363 | LYS  |
| 1 B 380 LEU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   | В     | 380 | LEU  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | В     | 382 | GLU  |
| 1   | В     | 392 | LEU  |
| 1   | В     | 396 | LEU  |
| 1   | В     | 400 | LEU  |
| 1   | В     | 423 | ASP  |
| 1   | В     | 425 | LEU  |
| 1   | В     | 444 | LEU  |
| 1   | В     | 462 | ILE  |
| 1   | В     | 469 | LYS  |
| 1   | В     | 474 | LEU  |
| 1   | В     | 486 | ILE  |
| 1   | В     | 489 | ARG  |
| 1   | В     | 492 | LEU  |
| 1   | В     | 506 | ARG  |
| 1   | В     | 516 | ASP  |
| 1   | В     | 525 | VAL  |
| 1   | В     | 554 | LYS  |
| 1   | В     | 560 | ASN  |
| 1   | В     | 569 | ARG  |
| 1   | В     | 574 | LYS  |
| 1   | В     | 576 | GLN  |
| 1   | В     | 579 | ASN  |
| 1   | В     | 589 | ARG  |
| 1   | В     | 613 | TYR  |
| 1   | В     | 622 | LEU  |
| 1   | В     | 640 | LEU  |
| 1   | В     | 641 | ARG  |
| 1   | В     | 649 | ARG  |
| 1   | В     | 652 | LEU  |
| 1   | В     | 662 | LEU  |
| 1   | В     | 665 | GLN  |
| 1   | В     | 667 | SER  |
| 1   | В     | 676 | THR  |
| 1   | В     | 683 | LEU  |
| 1   | В     | 692 | MET  |
| 1   | В     | 706 | GLU  |
| 1   | В     | 708 | PHE  |
| 1   | В     | 714 | ARG  |
| 1   | В     | 737 | GLU  |
| 1   | В     | 741 | ILE  |
| 1   | В     | 745 | LEU  |
| 1   | В     | 753 | LYS  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | В     | 765 | LEU  |
| 1   | В     | 766 | MET  |
| 1   | В     | 768 | HIS  |
| 1   | В     | 779 | GLU  |
| 1   | В     | 833 | ARG  |
| 1   | В     | 839 | GLU  |
| 1   | С     | 9   | LYS  |
| 1   | С     | 12  | GLN  |
| 1   | С     | 15  | VAL  |
| 1   | С     | 16  | ARG  |
| 1   | С     | 18  | LEU  |
| 1   | С     | 23  | ASN  |
| 1   | С     | 39  | LEU  |
| 1   | С     | 64  | VAL  |
| 1   | С     | 66  | ARG  |
| 1   | С     | 90  | TYR  |
| 1   | С     | 95  | LEU  |
| 1   | С     | 128 | ASP  |
| 1   | С     | 131 | LEU  |
| 1   | С     | 169 | LYS  |
| 1   | С     | 177 | GLU  |
| 1   | С     | 191 | LYS  |
| 1   | С     | 195 | GLU  |
| 1   | С     | 234 | ARG  |
| 1   | С     | 235 | ASN  |
| 1   | С     | 237 | VAL  |
| 1   | С     | 242 | ARG  |
| 1   | С     | 243 | LEU  |
| 1   | C     | 247 | LYS  |
| 1   | С     | 254 | LEU  |
| 1   | С     | 264 | GLN  |
| 1   | С     | 267 | LEU  |
| 1   | С     | 274 | ASN  |
| 1   | С     | 278 | VAL  |
| 1   | С     | 279 | LEU  |
| 1   | С     | 292 | ARG  |
| 1   | С     | 332 | LYS  |
| 1   | С     | 337 | LEU  |
| 1   | С     | 339 | ASP  |
| 1   | С     | 356 | LEU  |
| 1   | С     | 361 | TRP  |
| 1   | С     | 378 | THR  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | С     | 384 | LEU  |
| 1   | С     | 395 | LEU  |
| 1   | С     | 396 | LEU  |
| 1   | С     | 400 | LEU  |
| 1   | С     | 425 | LEU  |
| 1   | С     | 474 | LEU  |
| 1   | С     | 486 | ILE  |
| 1   | С     | 492 | LEU  |
| 1   | С     | 509 | GLU  |
| 1   | С     | 522 | LEU  |
| 1   | С     | 538 | LYS  |
| 1   | С     | 539 | GLN  |
| 1   | С     | 543 | LEU  |
| 1   | С     | 565 | VAL  |
| 1   | С     | 576 | GLN  |
| 1   | С     | 579 | ASN  |
| 1   | C     | 584 | ILE  |
| 1   | С     | 622 | LEU  |
| 1   | С     | 630 | VAL  |
| 1   | С     | 639 | ARG  |
| 1   | С     | 641 | ARG  |
| 1   | С     | 652 | LEU  |
| 1   | С     | 662 | LEU  |
| 1   | С     | 676 | THR  |
| 1   | С     | 678 | ASN  |
| 1   | С     | 683 | LEU  |
| 1   | С     | 714 | ARG  |
| 1   | С     | 717 | ASP  |
| 1   | С     | 724 | ARG  |
| 1   | С     | 741 | ILE  |
| 1   | С     | 753 | LYS  |
| 1   | С     | 760 | ASP  |
| 1   | C     | 763 | ASN  |
| 1   | C     | 788 | SER  |
| 1   | С     | 833 | ARG  |
| 1   | D     | 15  | VAL  |
| 1   | D     | 16  | ARG  |
| 1   | D     | 21  | VAL  |
| 1   | D     | 39  | LEU  |
| 1   | D     | 47  | THR  |
| 1   | D     | 64  | VAL  |
| 1   | D     | 77  | LYS  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | D     | 81  | ARG  |
| 1   | D     | 82  | ILE  |
| 1   | D     | 85  | LEU  |
| 1   | D     | 87  | LEU  |
| 1   | D     | 88  | GLU  |
| 1   | D     | 90  | TYR  |
| 1   | D     | 91  | MET  |
| 1   | D     | 95  | LEU  |
| 1   | D     | 100 | VAL  |
| 1   | D     | 128 | ASP  |
| 1   | D     | 131 | LEU  |
| 1   | D     | 136 | LEU  |
| 1   | D     | 138 | ARG  |
| 1   | D     | 171 | CYS  |
| 1   | D     | 191 | LYS  |
| 1   | D     | 211 | GLN  |
| 1   | D     | 237 | VAL  |
| 1   | D     | 242 | ARG  |
| 1   | D     | 245 | SER  |
| 1   | D     | 247 | LYS  |
| 1   | D     | 264 | GLN  |
| 1   | D     | 269 | ARG  |
| 1   | D     | 274 | ASN  |
| 1   | D     | 280 | TYR  |
| 1   | D     | 292 | ARG  |
| 1   | D     | 304 | LEU  |
| 1   | D     | 310 | ARG  |
| 1   | D     | 332 | LYS  |
| 1   | D     | 337 | LEU  |
| 1   | D     | 358 | ARG  |
| 1   | D     | 361 | TRP  |
| 1   | D     | 382 | GLU  |
| 1   | D     | 392 | LEU  |
| 1   | D     | 396 | LEU  |
| 1   | D     | 400 | LEU  |
| 1   | D     | 405 | GLU  |
| 1   | D     | 425 | LEU  |
| 1   | D     | 426 | ARG  |
| 1   | D     | 433 | GLU  |
| 1   | D     | 437 | LYS  |
| 1   | D     | 444 | LEU  |
| 1   | D     | 457 | ARG  |



| 1 D $4c0$ LVC                      |              |
|------------------------------------|--------------|
| $1 \qquad D \qquad 409 \qquad LYS$ | ,            |
| 1 D 474 LEU                        | 1            |
| 1 D 486 ILE                        |              |
| 1 D 489 ARC                        | <del>,</del> |
| 1 D 490 ARC                        | 1            |
| 1 D 492 LEU                        | 1            |
| 1 D 501 GLU                        | J            |
| 1 D 517 GLN                        | 1            |
| 1 D 518 LEU                        | Γ            |
| 1 D 522 LEU                        | 1            |
| 1 D 526 ASP                        | ,            |
| 1 D 528 GLU                        | J            |
| 1 D 530 PHE                        | 2            |
| 1 D 532 ARC                        | <b>1</b>     |
| 1 D 536 LYS                        | ,            |
| 1 D 555 VAL                        |              |
| 1 D 561 SER                        |              |
| 1 D 576 GLN                        | 1            |
| 1 D 579 ASN                        | [            |
| 1 D 583 VAL                        |              |
| 1 D 585 THF                        | 2            |
| 1 D 617 LYS                        | ,            |
| 1 D 622 LEU                        | ſ            |
| 1 D 629 VAI                        |              |
| 1 D 649 ARC                        | 1<br>T       |
| 1 D 652 LEU                        | ſ            |
| 1 D 665 GLN                        | 1            |
| 1 D 667 SER                        | l.           |
| 1 D 676 THF                        | 2            |
| 1 D 679 MET                        |              |
| 1 D 683 LEU                        | Г            |
| 1 D 688 THF                        | 2            |
| 1 D 702 GLU                        | J            |
| 1 D 705 GLU                        | J            |
| 1 D 706 GLU                        | J            |
| 1 D 713 MET                        |              |
| 1 D 716 GLU                        | J            |
| 1 D 723 GLN                        | 1            |
| 1 D 724 ARC                        | 1<br>x       |
| 1 D 727 ASN                        |              |
| 1 D 735 ILE                        |              |
| 1 D 746 SER                        | ,            |



| $\mathbf{Mol}$ | Chain | $\mathbf{Res}$ | Type |
|----------------|-------|----------------|------|
| 1              | D     | 753            | LYS  |
| 1              | D     | 756            | ASP  |
| 1              | D     | 759            | LYS  |
| 1              | D     | 765            | LEU  |
| 1              | D     | 766            | MET  |
| 1              | D     | 770            | ARG  |
| 1              | D     | 782            | LYS  |
| 1              | D     | 795            | ARG  |
| 1              | D     | 810            | LYS  |
| 1              | D     | 812            | SER  |
| 1              | D     | 813            | SER  |
| 1              | D     | 823            | GLU  |
| 1              | D     | 827            | VAL  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (89) such sidechains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 12  | GLN  |
| 1   | А     | 23  | ASN  |
| 1   | А     | 30  | ASN  |
| 1   | А     | 34  | HIS  |
| 1   | А     | 114 | GLN  |
| 1   | А     | 167 | ASN  |
| 1   | А     | 168 | GLN  |
| 1   | А     | 235 | ASN  |
| 1   | А     | 264 | GLN  |
| 1   | А     | 274 | ASN  |
| 1   | А     | 325 | ASN  |
| 1   | А     | 336 | GLN  |
| 1   | А     | 399 | HIS  |
| 1   | А     | 408 | GLN  |
| 1   | А     | 412 | ASN  |
| 1   | А     | 459 | HIS  |
| 1   | А     | 481 | ASN  |
| 1   | А     | 541 | ASN  |
| 1   | А     | 566 | GLN  |
| 1   | А     | 576 | GLN  |
| 1   | А     | 579 | ASN  |
| 1   | А     | 582 | HIS  |
| 1   | А     | 727 | ASN  |
| 1   | А     | 744 | GLN  |
| 1   | А     | 754 | GLN  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | В     | 12  | GLN  |
| 1   | В     | 34  | HIS  |
| 1   | В     | 44  | ASN  |
| 1   | В     | 167 | ASN  |
| 1   | В     | 168 | GLN  |
| 1   | В     | 211 | GLN  |
| 1   | В     | 235 | ASN  |
| 1   | В     | 264 | GLN  |
| 1   | В     | 274 | ASN  |
| 1   | В     | 325 | ASN  |
| 1   | В     | 336 | GLN  |
| 1   | В     | 377 | HIS  |
| 1   | В     | 399 | HIS  |
| 1   | В     | 453 | ASN  |
| 1   | В     | 459 | HIS  |
| 1   | В     | 481 | ASN  |
| 1   | В     | 541 | ASN  |
| 1   | В     | 566 | GLN  |
| 1   | В     | 576 | GLN  |
| 1   | В     | 579 | ASN  |
| 1   | В     | 696 | ASN  |
| 1   | В     | 727 | ASN  |
| 1   | В     | 744 | GLN  |
| 1   | С     | 23  | ASN  |
| 1   | С     | 34  | HIS  |
| 1   | С     | 168 | GLN  |
| 1   | С     | 235 | ASN  |
| 1   | С     | 274 | ASN  |
| 1   | С     | 336 | GLN  |
| 1   | С     | 399 | HIS  |
| 1   | С     | 412 | ASN  |
| 1   | С     | 453 | ASN  |
| 1   | С     | 459 | HIS  |
| 1   | С     | 481 | ASN  |
| 1   | С     | 541 | ASN  |
| 1   | C     | 566 | GLN  |
| 1   | С     | 576 | GLN  |
| 1   | С     | 579 | ASN  |
| 1   | С     | 727 | ASN  |
| 1   | C     | 744 | GLN  |
| 1   | С     | 763 | ASN  |
| 1   | С     | 768 | HIS  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | D     | 34  | HIS  |
| 1   | D     | 44  | ASN  |
| 1   | D     | 73  | HIS  |
| 1   | D     | 168 | GLN  |
| 1   | D     | 187 | ASN  |
| 1   | D     | 274 | ASN  |
| 1   | D     | 336 | GLN  |
| 1   | D     | 338 | ASN  |
| 1   | D     | 341 | HIS  |
| 1   | D     | 377 | HIS  |
| 1   | D     | 399 | HIS  |
| 1   | D     | 459 | HIS  |
| 1   | D     | 481 | ASN  |
| 1   | D     | 541 | ASN  |
| 1   | D     | 566 | GLN  |
| 1   | D     | 576 | GLN  |
| 1   | D     | 579 | ASN  |
| 1   | D     | 696 | ASN  |
| 1   | D     | 723 | GLN  |
| 1   | D     | 727 | ASN  |
| 1   | D     | 744 | GLN  |
| 1   | D     | 767 | HIS  |

#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

#### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

4 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol Ty | Tuno | Chain | Dog | Tink  | Bo       | nd lengths |          | Bond angles |      |          |
|--------|------|-------|-----|-------|----------|------------|----------|-------------|------|----------|
|        | Type |       | nes | LIIIK | Counts   | RMSZ       | # Z  > 2 | Counts      | RMSZ | # Z  > 2 |
| 1      | LLP  | D     | 680 | 1     | 23,24,25 | 1.79       | 5 (21%)  | 25,32,34    | 1.43 | 5 (20%)  |



| Mol Type | Chain          | Dec | Tiple | Bo     | Bond lengths   |        |         | Bond angles    |          |         |
|----------|----------------|-----|-------|--------|----------------|--------|---------|----------------|----------|---------|
| WIOI     | Moi Type Chain | nes |       | Counts | RMSZ           | # Z >2 | Counts  | RMSZ           | # Z  > 2 |         |
| 1        | LLP            | С   | 680   | 1      | 23,24,25       | 1.71   | 4 (17%) | $25,\!32,\!34$ | 1.24     | 3 (12%) |
| 1        | LLP            | А   | 680   | 1      | $23,\!24,\!25$ | 1.81   | 5 (21%) | $25,\!32,\!34$ | 1.31     | 3 (12%) |
| 1        | LLP            | В   | 680   | 1      | 23,24,25       | 1.75   | 5 (21%) | $25,\!32,\!34$ | 1.31     | 3 (12%) |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res | Link | Chirals | Torsions   | Rings   |
|-----|------|-------|-----|------|---------|------------|---------|
| 1   | LLP  | D     | 680 | 1    | -       | 2/16/17/19 | 0/1/1/1 |
| 1   | LLP  | С     | 680 | 1    | -       | 1/16/17/19 | 0/1/1/1 |
| 1   | LLP  | А     | 680 | 1    | -       | 0/16/17/19 | 0/1/1/1 |
| 1   | LLP  | В     | 680 | 1    | -       | 4/16/17/19 | 0/1/1/1 |

| Mol | Chain | Res | Type | Atoms  | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|--------|-------|-------------|----------|
| 1   | А     | 680 | LLP  | O3-C3  | -6.25 | 1.22        | 1.37     |
| 1   | D     | 680 | LLP  | O3-C3  | -5.91 | 1.23        | 1.37     |
| 1   | В     | 680 | LLP  | O3-C3  | -5.85 | 1.23        | 1.37     |
| 1   | С     | 680 | LLP  | O3-C3  | -5.74 | 1.23        | 1.37     |
| 1   | D     | 680 | LLP  | C4-C4' | 2.95  | 1.52        | 1.46     |
| 1   | А     | 680 | LLP  | C4-C4' | 2.66  | 1.51        | 1.46     |
| 1   | С     | 680 | LLP  | C2-N1  | 2.57  | 1.38        | 1.33     |
| 1   | D     | 680 | LLP  | C2-N1  | 2.51  | 1.38        | 1.33     |
| 1   | В     | 680 | LLP  | C4-C4' | 2.48  | 1.51        | 1.46     |
| 1   | D     | 680 | LLP  | CE-NZ  | 2.47  | 1.52        | 1.46     |
| 1   | В     | 680 | LLP  | C2-N1  | 2.47  | 1.38        | 1.33     |
| 1   | С     | 680 | LLP  | C4-C4' | 2.45  | 1.51        | 1.46     |
| 1   | А     | 680 | LLP  | CE-NZ  | 2.32  | 1.51        | 1.46     |
| 1   | А     | 680 | LLP  | C2-N1  | 2.29  | 1.38        | 1.33     |
| 1   | А     | 680 | LLP  | C4'-NZ | 2.28  | 1.34        | 1.27     |
| 1   | В     | 680 | LLP  | C4'-NZ | 2.16  | 1.34        | 1.27     |
| 1   | С     | 680 | LLP  | C4'-NZ | 2.16  | 1.34        | 1.27     |
| 1   | D     | 680 | LLP  | C4'-NZ | 2.14  | 1.34        | 1.27     |
| 1   | В     | 680 | LLP  | C6-N1  | 2.14  | 1.38        | 1.34     |

All (19) bond length outliers are listed below:

All (14) bond angle outliers are listed below:



| Mol | Chain | Res | Type | Atoms      | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|-------|------------------|---------------|
| 1   | А     | 680 | LLP  | C4-C4'-NZ  | -2.85 | 111.22           | 124.31        |
| 1   | В     | 680 | LLP  | OP4-C5'-C5 | 2.79  | 114.67           | 109.35        |
| 1   | А     | 680 | LLP  | C5-C6-N1   | -2.77 | 119.20           | 123.82        |
| 1   | В     | 680 | LLP  | C4-C4'-NZ  | -2.64 | 112.19           | 124.31        |
| 1   | D     | 680 | LLP  | C5'-C5-C6  | -2.47 | 115.31           | 119.37        |
| 1   | D     | 680 | LLP  | CE-NZ-C4'  | -2.45 | 111.39           | 118.90        |
| 1   | С     | 680 | LLP  | C5-C6-N1   | -2.42 | 119.79           | 123.82        |
| 1   | С     | 680 | LLP  | C4-C4'-NZ  | -2.40 | 113.31           | 124.31        |
| 1   | С     | 680 | LLP  | CE-NZ-C4'  | -2.38 | 111.60           | 118.90        |
| 1   | D     | 680 | LLP  | C5-C6-N1   | -2.32 | 119.96           | 123.82        |
| 1   | В     | 680 | LLP  | C5-C6-N1   | -2.27 | 120.03           | 123.82        |
| 1   | А     | 680 | LLP  | OP3-P-OP4  | -2.25 | 100.74           | 106.73        |
| 1   | D     | 680 | LLP  | OP4-C5'-C5 | -2.20 | 105.15           | 109.35        |
| 1   | D     | 680 | LLP  | CD-CE-NZ   | 2.11  | 116.10           | 110.93        |

There are no chirality outliers.

All (7) torsion outliers are listed below:

| Mol | Chain | Res | Type | Atoms         |
|-----|-------|-----|------|---------------|
| 1   | В     | 680 | LLP  | C5'-OP4-P-OP2 |
| 1   | В     | 680 | LLP  | C5'-OP4-P-OP3 |
| 1   | D     | 680 | LLP  | C5'-OP4-P-OP2 |
| 1   | В     | 680 | LLP  | C5'-OP4-P-OP1 |
| 1   | D     | 680 | LLP  | C5'-OP4-P-OP3 |
| 1   | В     | 680 | LLP  | CE-CD-CG-CB   |
| 1   | С     | 680 | LLP  | CA-CB-CG-CD   |

There are no ring outliers.

4 monomers are involved in 14 short contacts:

| Mol | Chain | Res | Type | Clashes | Symm-Clashes |
|-----|-------|-----|------|---------|--------------|
| 1   | D     | 680 | LLP  | 2       | 0            |
| 1   | С     | 680 | LLP  | 7       | 0            |
| 1   | А     | 680 | LLP  | 3       | 0            |
| 1   | В     | 680 | LLP  | 2       | 0            |

## 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.



#### 5.6 Ligand geometry (i)

12 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal  | Mol Type Chain Res I |       | Tink | B     | Bond lengths |      |        | Bond angles |      |        |
|------|----------------------|-------|------|-------|--------------|------|--------|-------------|------|--------|
| WIOI | туре                 | Unain | nes  | LIIIK | Counts       | RMSZ | # Z >2 | Counts      | RMSZ | # Z >2 |
| 2    | SO4                  | A     | 902  | -     | 4,4,4        | 0.13 | 0      | $6,\!6,\!6$ | 0.43 | 0      |
| 2    | SO4                  | С     | 901  | -     | 4,4,4        | 0.18 | 0      | 6,6,6       | 0.57 | 0      |
| 2    | SO4                  | В     | 902  | -     | 4,4,4        | 0.15 | 0      | $6,\!6,\!6$ | 0.40 | 0      |
| 2    | SO4                  | D     | 903  | -     | 4,4,4        | 0.13 | 0      | 6,6,6       | 0.28 | 0      |
| 2    | SO4                  | D     | 902  | -     | 4,4,4        | 0.18 | 0      | $6,\!6,\!6$ | 0.29 | 0      |
| 2    | SO4                  | А     | 901  | -     | 4,4,4        | 0.18 | 0      | 6,6,6       | 0.41 | 0      |
| 2    | SO4                  | D     | 900  | -     | 4,4,4        | 0.16 | 0      | 6,6,6       | 0.36 | 0      |
| 2    | SO4                  | В     | 900  | -     | 4,4,4        | 0.20 | 0      | 6,6,6       | 0.20 | 0      |
| 2    | SO4                  | А     | 900  | -     | 4,4,4        | 0.14 | 0      | 6,6,6       | 0.36 | 0      |
| 2    | SO4                  | D     | 901  | -     | 4,4,4        | 0.20 | 0      | $6,\!6,\!6$ | 0.28 | 0      |
| 2    | SO4                  | С     | 902  | -     | 4,4,4        | 0.16 | 0      | 6,6,6       | 0.16 | 0      |
| 2    | SO4                  | В     | 901  | -     | 4,4,4        | 0.16 | 0      | 6,6,6       | 0.30 | 0      |

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

2 monomers are involved in 2 short contacts:

| Mol | Chain | Res | Type | Clashes | Symm-Clashes |
|-----|-------|-----|------|---------|--------------|
| 2   | А     | 902 | SO4  | 1       | 0            |
| 2   | D     | 900 | SO4  | 1       | 0            |

#### 5.7 Other polymers (i)

There are no such residues in this entry.



## 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



## 6 Fit of model and data (i)

### 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

| Mol | Chain | Analysed        | < <b>RSRZ</b> > | #RSRZ>2        | $OWAB(Å^2)$     | Q<0.9 |
|-----|-------|-----------------|-----------------|----------------|-----------------|-------|
| 1   | А     | 809/842~(96%)   | 0.18            | 36 (4%) 34 27  | 29, 46, 62, 74  | 0     |
| 1   | В     | 810/842~(96%)   | 0.17            | 36 (4%) 34 27  | 28, 46, 66, 78  | 0     |
| 1   | С     | 806/842~(95%)   | 0.22            | 37 (4%) 32 26  | 23, 48, 71, 83  | 0     |
| 1   | D     | 805/842~(95%)   | 0.42            | 61 (7%) 13 10  | 34, 53, 87, 102 | 0     |
| All | All   | 3230/3368~(95%) | 0.25            | 170 (5%) 26 20 | 23, 48, 73, 102 | 0     |

All (170) RSRZ outliers are listed below:

| Mol | Chain | Res Type |     | RSRZ |
|-----|-------|----------|-----|------|
| 1   | D     | 288      | GLY | 7.7  |
| 1   | А     | 252      | PHE | 6.5  |
| 1   | D     | 252      | PHE | 6.4  |
| 1   | С     | 252      | PHE | 6.1  |
| 1   | А     | 260      | GLY | 5.9  |
| 1   | D     | 530      | PHE | 5.3  |
| 1   | А     | 75       | TYR | 5.3  |
| 1   | А     | 261      | GLY | 5.3  |
| 1   | В     | 288      | GLY | 5.2  |
| 1   | С     | 324      | THR | 5.2  |
| 1   | С     | 253      | ASN | 4.7  |
| 1   | С     | 254      | LEU | 4.6  |
| 1   | D     | 597      | PHE | 4.6  |
| 1   | В     | 252      | PHE | 4.5  |
| 1   | А     | 281      | PRO | 4.4  |
| 1   | А     | 165      | ILE | 4.2  |
| 1   | D     | 22       | GLU | 4.2  |
| 1   | D     | 543      | LEU | 4.0  |
| 1   | В     | 314      | SER | 4.0  |
| 1   | D     | 789      | ALA | 3.9  |
| 1   | D     | 833      | ARG | 3.9  |



| 3E3L |
|------|
|      |

| Mol | Chain | Res Type |     | RSRZ |
|-----|-------|----------|-----|------|
| 1   | В     | 553      | TYR | 3.9  |
| 1   | С     | 556      | HIS | 3.8  |
| 1   | В     | 554      | LYS | 3.8  |
| 1   | D     | 113      | TYR | 3.8  |
| 1   | С     | 580      | CYS | 3.8  |
| 1   | В     | 165      | ILE | 3.7  |
| 1   | С     | 565      | VAL | 3.7  |
| 1   | D     | 598      | VAL | 3.6  |
| 1   | В     | 176      | MET | 3.5  |
| 1   | В     | 551      | ARG | 3.5  |
| 1   | С     | 251      | ASP | 3.5  |
| 1   | В     | 280      | TYR | 3.5  |
| 1   | В     | 345      | ALA | 3.4  |
| 1   | D     | 527      | ASP | 3.4  |
| 1   | А     | 418      | PHE | 3.4  |
| 1   | D     | 632      | HIS | 3.4  |
| 1   | D     | 733      | ASP | 3.3  |
| 1   | А     | 612      | GLY | 3.3  |
| 1   | С     | 598      | VAL | 3.3  |
| 1   | С     | 597      | PHE | 3.3  |
| 1   | А     | 422      | VAL | 3.3  |
| 1   | В     | 21       | VAL | 3.2  |
| 1   | D     | 556      | HIS | 3.2  |
| 1   | D     | 522      | LEU | 3.2  |
| 1   | D     | 75       | TYR | 3.2  |
| 1   | В     | 251      | ASP | 3.2  |
| 1   | D     | 250      | ASN | 3.2  |
| 1   | А     | 380      | LEU | 3.2  |
| 1   | В     | 720      | ARG | 3.2  |
| 1   | D     | 507      | ILE | 3.1  |
| 1   | С     | 525      | VAL | 3.1  |
| 1   | D     | 210      | SER | 3.1  |
| 1   | В     | 337      | LEU | 3.0  |
| 1   | D     | 536      | LYS | 3.0  |
| 1   | D     | 287      | GLU | 3.0  |
| 1   | D     | 509      | GLU | 3.0  |
| 1   | В     | 380      | LEU | 2.9  |
| 1   | С     | 526      | ASP | 2.9  |
| 1   | А     | 16       | ARG | 2.9  |
| 1   | С     | 579      | ASN | 2.9  |
| 1   | D     | 777      | TYR | 2.9  |
| 1   | С     | 16       | ARG | 2.9  |



| 3E3L |
|------|
|      |

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | D     | 85  | LEU  | 2.9  |
| 1   | D     | 791 | TYR  | 2.8  |
| 1   | А     | 210 | SER  | 2.8  |
| 1   | А     | 426 | ARG  | 2.8  |
| 1   | А     | 211 | GLN  | 2.8  |
| 1   | В     | 723 | GLN  | 2.8  |
| 1   | С     | 835 | PRO  | 2.7  |
| 1   | В     | 344 | LEU  | 2.7  |
| 1   | D     | 715 | VAL  | 2.7  |
| 1   | D     | 692 | MET  | 2.7  |
| 1   | С     | 768 | HIS  | 2.7  |
| 1   | D     | 595 | ASN  | 2.7  |
| 1   | D     | 211 | GLN  | 2.7  |
| 1   | С     | 752 | PRO  | 2.6  |
| 1   | А     | 723 | GLN  | 2.6  |
| 1   | D     | 561 | SER  | 2.6  |
| 1   | А     | 565 | VAL  | 2.6  |
| 1   | А     | 372 | CYS  | 2.6  |
| 1   | D     | 630 | VAL  | 2.6  |
| 1   | А     | 337 | LEU  | 2.6  |
| 1   | D     | 553 | TYR  | 2.6  |
| 1   | А     | 10  | ARG  | 2.6  |
| 1   | D     | 594 | PRO  | 2.6  |
| 1   | А     | 554 | LYS  | 2.6  |
| 1   | D     | 592 | LYS  | 2.6  |
| 1   | С     | 262 | TYR  | 2.6  |
| 1   | С     | 553 | TYR  | 2.6  |
| 1   | D     | 164 | GLY  | 2.6  |
| 1   | В     | 838 | ASP  | 2.6  |
| 1   | С     | 10  | ARG  | 2.5  |
| 1   | В     | 382 | GLU  | 2.5  |
| 1   | D     | 533 | ASP  | 2.5  |
| 1   | С     | 263 | ILE  | 2.5  |
| 1   | D     | 10  | ARG  | 2.5  |
| 1   | В     | 271 | LEU  | 2.5  |
| 1   | С     | 554 | LYS  | 2.5  |
| 1   | С     | 581 | LEU  | 2.5  |
| 1   | С     | 250 | ASN  | 2.5  |
| 1   | D     | 251 | ASP  | 2.5  |
| 1   | A     | 676 | THR  | 2.5  |
| 1   | С     | 113 | TYR  | 2.5  |
| 1   | С     | 753 | LYS  | 2.5  |



| 3E3L |
|------|
|      |

| Continued from previous page |       |     |      |      |  |  |  |
|------------------------------|-------|-----|------|------|--|--|--|
| Mol                          | Chain | Res | Type | RSRZ |  |  |  |
| 1                            | D     | 726 | TYR  | 2.4  |  |  |  |
| 1                            | D     | 634 | PRO  | 2.4  |  |  |  |
| 1                            | А     | 342 | PRO  | 2.4  |  |  |  |
| 1                            | С     | 345 | ALA  | 2.4  |  |  |  |
| 1                            | А     | 280 | TYR  | 2.4  |  |  |  |
| 1                            | В     | 75  | TYR  | 2.4  |  |  |  |
| 1                            | В     | 833 | ARG  | 2.4  |  |  |  |
| 1                            | D     | 314 | SER  | 2.4  |  |  |  |
| 1                            | D     | 635 | VAL  | 2.4  |  |  |  |
| 1                            | D     | 728 | ALA  | 2.4  |  |  |  |
| 1                            | А     | 287 | GLU  | 2.4  |  |  |  |
| 1                            | В     | 343 | SER  | 2.4  |  |  |  |
| 1                            | А     | 580 | CYS  | 2.3  |  |  |  |
| 1                            | С     | 833 | ARG  | 2.3  |  |  |  |
| 1                            | В     | 211 | GLN  | 2.3  |  |  |  |
| 1                            | С     | 792 | LYS  | 2.3  |  |  |  |
| 1                            | D     | 531 | ILE  | 2.3  |  |  |  |
| 1                            | А     | 382 | GLU  | 2.3  |  |  |  |
| 1                            | А     | 259 | VAL  | 2.3  |  |  |  |
| 1                            | А     | 415 | ALA  | 2.3  |  |  |  |
| 1                            | С     | 720 | ARG  | 2.3  |  |  |  |
| 1                            | С     | 560 | ASN  | 2.3  |  |  |  |
| 1                            | D     | 545 | PHE  | 2.3  |  |  |  |
| 1                            | D     | 324 | THR  | 2.3  |  |  |  |
| 1                            | D     | 795 | ARG  | 2.2  |  |  |  |
| 1                            | А     | 381 | PRO  | 2.2  |  |  |  |
| 1                            | В     | 580 | CYS  | 2.2  |  |  |  |
| 1                            | D     | 525 | VAL  | 2.2  |  |  |  |
| 1                            | А     | 22  | GLU  | 2.2  |  |  |  |
| 1                            | В     | 445 | CYS  | 2.2  |  |  |  |
| 1                            | D     | 165 | ILE  | 2.2  |  |  |  |
| 1                            | В     | 113 | TYR  | 2.2  |  |  |  |
| 1                            | С     | 548 | TYR  | 2.2  |  |  |  |
| 1                            | В     | 565 | VAL  | 2.2  |  |  |  |
| 1                            | С     | 749 | PHE  | 2.2  |  |  |  |
| 1                            | D     | 534 | VAL  | 2.2  |  |  |  |
| 1                            | В     | 552 | GLU  | 2.1  |  |  |  |
| 1                            | В     | 16  | ARG  | 2.1  |  |  |  |
| 1                            | В     | 548 | TYR  | 2.1  |  |  |  |
| 1                            | D     | 379 | VAL  | 2.1  |  |  |  |
| 1                            | А     | 288 | GLY  | 2.1  |  |  |  |
| 1                            | А     | 837 | PRO  | 2.1  |  |  |  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | А     | 472 | TYR  | 2.1  |
| 1   | В     | 20  | GLY  | 2.1  |
| 1   | D     | 600 | PRO  | 2.1  |
| 1   | D     | 465 | LYS  | 2.1  |
| 1   | D     | 782 | LYS  | 2.1  |
| 1   | D     | 560 | ASN  | 2.1  |
| 1   | В     | 576 | GLN  | 2.1  |
| 1   | С     | 551 | ARG  | 2.1  |
| 1   | В     | 163 | PHE  | 2.1  |
| 1   | D     | 709 | PHE  | 2.1  |
| 1   | В     | 792 | LYS  | 2.1  |
| 1   | А     | 768 | HIS  | 2.1  |
| 1   | D     | 420 | GLY  | 2.1  |
| 1   | D     | 557 | ILE  | 2.0  |
| 1   | D     | 695 | ALA  | 2.0  |
| 1   | С     | 718 | VAL  | 2.0  |
| 1   | А     | 85  | LEU  | 2.0  |
| 1   | С     | 280 | TYR  | 2.0  |
| 1   | А     | 345 | ALA  | 2.0  |
| 1   | С     | 208 | HIS  | 2.0  |
| 1   | D     | 209 | THR  | 2.0  |
| 1   | D     | 555 | VAL  | 2.0  |
| 1   | В     | 164 | GLY  | 2.0  |

#### 6.2 Non-standard residues in protein, DNA, RNA chains (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

| Mol | Type | Chain | Res | Atoms | RSCC | RSR  | $\mathbf{B}	ext{-factors}(\mathbf{A}^2)$ | Q<0.9 |
|-----|------|-------|-----|-------|------|------|------------------------------------------|-------|
| 1   | LLP  | D     | 680 | 24/25 | 0.94 | 0.15 | $51,\!58,\!62,\!63$                      | 0     |
| 1   | LLP  | А     | 680 | 24/25 | 0.96 | 0.19 | 28,31,36,39                              | 0     |
| 1   | LLP  | С     | 680 | 24/25 | 0.97 | 0.15 | 40,42,48,49                              | 0     |
| 1   | LLP  | В     | 680 | 24/25 | 0.97 | 0.18 | 37,38,40,42                              | 0     |

#### 6.3 Carbohydrates (i)

There are no monosaccharides in this entry.



### 6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

| Mol | Type | Chain | Res | Atoms | RSCC | RSR  | $B-factors(Å^2)$ | Q<0.9 |
|-----|------|-------|-----|-------|------|------|------------------|-------|
| 2   | SO4  | D     | 900 | 5/5   | 0.83 | 0.21 | 88,89,89,90      | 0     |
| 2   | SO4  | С     | 901 | 5/5   | 0.86 | 0.23 | 74,76,77,77      | 0     |
| 2   | SO4  | А     | 901 | 5/5   | 0.86 | 0.19 | 82,83,83,84      | 0     |
| 2   | SO4  | А     | 902 | 5/5   | 0.90 | 0.16 | 79,80,81,81      | 0     |
| 2   | SO4  | В     | 901 | 5/5   | 0.91 | 0.19 | 76,77,79,79      | 0     |
| 2   | SO4  | В     | 900 | 5/5   | 0.92 | 0.23 | 81,81,82,83      | 0     |
| 2   | SO4  | D     | 901 | 5/5   | 0.93 | 0.17 | 83,84,84,85      | 0     |
| 2   | SO4  | D     | 902 | 5/5   | 0.93 | 0.15 | 77,77,78,78      | 0     |
| 2   | SO4  | D     | 903 | 5/5   | 0.94 | 0.14 | 68,69,69,70      | 0     |
| 2   | SO4  | А     | 900 | 5/5   | 0.95 | 0.13 | 71,72,72,73      | 0     |
| 2   | SO4  | В     | 902 | 5/5   | 0.97 | 0.12 | 58,58,58,60      | 0     |
| 2   | SO4  | С     | 902 | 5/5   | 0.98 | 0.09 | 64,64,65,65      | 0     |

#### 6.5 Other polymers (i)

There are no such residues in this entry.

