

Full wwPDB X-ray Structure Validation Report (i)

Aug 22, 2023 – 06:46 PM EDT

ılla
8

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.51 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$		
R _{free}	130704	1161 (3.60-3.44)		
Clashscore	141614	1244 (3.60-3.44)		
Ramachandran outliers	138981	1206 (3.60-3.44)		
Sidechain outliers	138945	1207 (3.60-3.44)		
RSRZ outliers	127900	1080 (3.60-3.44)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of	chain
1	А	1066	58%	32% · 6%
1	С	1066	% 5 6%	33% 5% 6%

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 16218 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Allene oxide synthase-lipoxygenase protein.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
1	А	1002	Total 8065	C 5153	N 1377	O 1521	S 14	0	0	0
1	С	1002	Total 8065	C 5153	N 1377	O 1521	S 14	0	0	0

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	782	ILE	VAL	SEE REMARK 999	UNP O16025
А	963	ILE	VAL	SEE REMARK 999	UNP O16025
С	782	ILE	VAL	SEE REMARK 999	UNP O16025
С	963	ILE	VAL	SEE REMARK 999	UNP O16025

• Molecule 2 is FE (II) ION (three-letter code: FE2) (formula: Fe).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	1	Total Fe 1 1	0	0
2	С	1	Total Fe 1 1	0	0

• Molecule 3 is PROTOPORPHYRIN IX CONTAINING FE (three-letter code: HEM) (formula: $C_{34}H_{32}FeN_4O_4$).

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf		
3	Λ	1	Total	С	Fe	Ν	0	0	0
5	J A	1	43	34	1	4	4	0	0
2	C	1	Total	С	Fe	Ν	Ο	0	0
J	3 C	1	43	34	1	4	4	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Allene oxide synthase-lipoxygenase protein

11028 N910 110029 1913 110021 1900 110022 1913 110023 1913 110023 1913 110023 1913 110023 1913 110023 1913 110053 1935 110054 1935 110055 1936 110053 1943 110054 1956 110055 1966 110055 1966 110056 1966 110057 1966 110057 1966 110057 1966 110057 1966 110057 1966 110057 1966 110057 1966 110057 1966 110057 1966 110057 1966 11005 1980 11005 1980 11000 11000 11000 11000 11000

• Molecule 1: Allene oxide synthase-lipoxygenase protein

Chain C:	56%	33%	5% 6%
MET THR THR 43 43 67 67 78 13 813 813 813 825 730 730	21 736 737 741 741 744 745 847 845 847 847 847 848	L52 L52 T57 T57 T58 R63 R63 R64 A65 A65 T66 H67 T66 T66 T73 G75 G75 M81	190 190 191 192 193 193 193 196 196
F97 101 101 1005 1106 1106 1106 1112 6113 6113 6113 7119 7119	K122 K122 A124 A124 D127 D127 D137 L132 N136 W136 W146 W146	5147 P148 P148 1150 1150 1150 1150 1150 1173 1173 1173 1173 1173 1173 1173 1173 1173 1186 1186 1186 1186 1186 1186 1186 1186 1186 1186 1186 1186 1186 1186 1170 1186 1186 1170 1186	Y191 Y192 Y192 Y193 Q196 V196 M198 M198
204 204 211 211 211 2115 2115 2115 2115 2115 2	1230 1231 1230 1231 1233 1233 1233 1233	L254 E257 Y258 Y258 Y256 R261 R261 L271 L271 L271 L273 L275 H275 H275 D282	1286 F287 H288 A289 G290 G290 1291 L291 W293 D294 K295
H298 P299 P299 V200 V200 V200 V200 V200 V200 V210 V210	1324 1325 1326 1326 1326 1328 1328 1328 1328 1332 1341 143 143 143	V350 A351 V352 V353 T354 V355 V355 A355 A355 A356 P355 A356 A355 A42 A42 A42 A42 A42 A42 A42 A42 A42 A42	N377 V377 E379 E379 T382 C383 C384 D384 R385 E386
H387 1394 1394 1395 1395 1396 1396 1396 1396 1396 1396 1396 1396	ASP LYS LYS TRP HIS HIS ASP F418 6421 7426 T426 T426 T428	6430 6433 0432 0432 1436 1436 1438 1438 1433 1438 1433 1438 1433 1438 1438	1463 1463 1463 1465 8467 0467 0467 0468 8468 8470 8471
F473 R477 N428 K481 K481 K481 K481 A482 A488 A488 A490 F495 F495 F495 F495	P498 P499 1500 V501 C514 L514 W518 W518 N528 1529	0536 R539 F543 F543 F543 F545 8546 K547 8548 8552 8553 8554 8553 8554 8553 8554 8554 8557	L564 L567 PHE THR MET PHE GUU GUU ASN TRP
ASP SER TYR ASP ASP ASP TYR TIEU TYR ASN TRP LEU CLEU	THI THR PRO ASN ASP ASP ASP ASP F605 F605 F605 F605	6008 6609 6611 6612 6613 8614 8615 8615 8615 8615 8615 8633 8633 8633 8633 8633	N636 A637 1633 1633 1633 1641 N641 L645 L645
1649 1654 1655 1665 1662 1666 1667 1676 1676 1676 1676	TYR TYR LYS VAL ASP ASP HYS HYS ASP ASP ASP ASP ASP ASP	L700 F701 Y703 V703 V703 L706 L706 L706 H708 H708 N717 T712 P720 F720 F720	N727 N727 1728 P729 H730 H735 D736 N736 N738
M739 A740 K741 F741 W745 W746 V746 F751 H752 H752 C758 N756 H755 N756 H755	LT07 LT65 LT61 LT65 LT65 LT65 ET66 ET66 ET66 AT69 LT70 LT70 LT76	A779 H781 F781 F781 F782 F782 F785 F785 C785 C785 C785 C791 C792 C793 C792 C793 C792 C793 C792 C793 C792 C793 C793 C793 C793 C793 C793 C793 C793	1799 (880) 1880 1880 1880 1880 1880 1880 1880
1810 0813 0813 0816 0816 1815 0818 0818 0829 0829	N834 N834 D837 Y838 Y838 1839 1240 P841 N842 A843 K845 K845 K845 K846 K846	DB50 DB51 P855 P855 P855 P855 C857 P856 G857 F858 F856 F874 F874 F874 F874 F874 F874 F877 F877	F882 1986 1986 1989 1989 19892 19895
8897 1898 1898 1898 1998 1998 1998 1998	600 1000 1	ASP ASP ASP ASP ASP CIY CIY CIY A961 A965 A965 A965 A965 A965 A965 A965 A965	1 19 19 19 19 19 19 19 19 19 19 19 19 19
1996 E1005 (1011 71012 71013 11016 11024 D1025 R1029 R1029	0000 1041 1041 1044 N1045 N1045 1005 1005 1005 1005 1005 1005	11060 11061 N1002 01063 11064 A1066 11066	
		PROTEIN DATA BANK	

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 1 2 1	Depositor
Cell constants	235.52Å 77.49Å 157.97Å	Depositor
a, b, c, α , β , γ	90.00° 112.45° 90.00°	Depositor
$Resolution(\AA)$	20.86 - 3.51	Depositor
Resolution (A)	39.20 - 3.51	EDS
% Data completeness	98.1 (20.86-3.51)	Depositor
(in resolution range)	98.1 (39.20-3.51)	EDS
R_{merge}	0.14	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.87 (at 3.48 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.2.0005	Depositor
D D .	0.273 , 0.322	Depositor
$\mathbf{n}, \mathbf{n}_{free}$	0.261 , 0.303	DCC
R_{free} test set	1652 reflections (5.04%)	wwPDB-VP
Wilson B-factor $(Å^2)$	57.0	Xtriage
Anisotropy	0.224	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.25 , 24.9	EDS
L-test for $twinning^2$	$ < L >=0.48, < L^2>=0.31$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.86	EDS
Total number of atoms	16218	wwPDB-VP
Average B, all atoms $(Å^2)$	2.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.34% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: HEM, FE2

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	l Chain Bo		nd lengths	Bond angles		
1VIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.49	1/8272~(0.0%)	0.61	1/11212~(0.0%)	
1	С	0.50	1/8272~(0.0%)	0.61	0/11212	
All	All	0.50	2/16544~(0.0%)	0.61	$1/22424 \ (0.0\%)$	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	1
1	С	0	1
All	All	0	2

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	С	1066	ILE	C-OXT	-6.70	1.10	1.23
1	А	1066	ILE	C-OXT	6.31	1.35	1.23

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	52	LEU	CA-CB-CG	5.02	126.85	115.30

There are no chirality outliers.

All (2) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	А	1065	ALA	Peptide
1	С	1064	THR	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	8065	0	7846	276	0
1	С	8065	0	7846	277	0
2	А	1	0	0	0	0
2	С	1	0	0	0	0
3	А	43	0	30	4	0
3	С	43	0	30	1	0
All	All	16218	0	15752	554	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 17.

All (554) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:910:ASN:HB3	1:C:911:PRO:HD2	1.40	1.03
1:A:120:SER:HB3	1:A:135:VAL:HG12	1.42	0.99
1:A:481:LYS:HG3	1:A:482:ASP:H	1.26	0.99
1:C:481:LYS:HG3	1:C:482:ASP:H	1.28	0.97
1:C:120:SER:HB3	1:C:135:VAL:HG12	1.46	0.96
1:A:910:ASN:HB3	1:A:911:PRO:HD2	1.45	0.96
1:A:611:ASN:HD21	1:A:858:PHE:HA	1.31	0.94
1:C:282:ASP:HB3	1:C:286:ILE:HD11	1.49	0.92
1:C:611:ASN:HD21	1:C:858:PHE:HA	1.31	0.92
1:A:210:CYS:HB3	1:A:275:ILE:HG22	1.51	0.92
1:A:272:GLN:HG2	1:A:300:TRP:HB3	1.53	0.90
1:C:210:CYS:HB3	1:C:275:ILE:HG22	1.52	0.90
1:A:494:PHE:HD1	1:A:495:ASN:H	1.20	0.89
1:A:282:ASP:HB3	1:A:286:ILE:HD11	1.51	0.89
1:C:272:GLN:HG2	1:C:300:TRP:HB3	1.55	0.88
1:C:1054:TYR:HD1	1:C:1054:TYR:H	1.20	0.87

A 4 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:1054:TYR:HD1	1:A:1054:TYR:H	1.23	0.83
1:C:494:PHE:HD1	1:C:495:ASN:H	1.25	0.82
1:A:822:HIS:O	1:A:826:MET:HG2	1.80	0.81
1:C:62:PHE:HE1	1:C:359:LEU:HD12	1.46	0.80
1:A:288:HIS:HD2	1:A:290:GLY:H	1.32	0.77
1:C:288:HIS:HD2	1:C:290:GLY:H	1.29	0.77
1:A:620:ARG:HA	1:A:655:TYR:CD2	2.21	0.76
1:A:781:PRO:HB3	1:A:882:PHE:CD1	2.21	0.76
1:C:781:PRO:HB3	1:C:882:PHE:CD1	2.20	0.76
1:A:751:PHE:O	1:A:755:ASN:HB3	1.85	0.76
1:C:751:PHE:O	1:C:755:ASN:HB3	1.84	0.75
1:C:641:ARG:HG3	1:C:702:TYR:OH	1.88	0.74
1:A:397:ARG:HD2	1:A:407:TYR:CZ	2.22	0.74
1:C:822:HIS:O	1:C:826:MET:HG2	1.88	0.74
1:C:62:PHE:CE1	1:C:359:LEU:HD12	2.23	0.73
1:A:875:ILE:O	1:A:879:ILE:HG12	1.87	0.73
1:A:62:PHE:HE1	1:A:359:LEU:HD12	1.53	0.72
1:C:545:ASP:HA	1:C:548:SER:HB3	1.70	0.72
1:A:545:ASP:HA	1:A:548:SER:HB3	1.72	0.72
1:A:641:ARG:HG3	1:A:702:TYR:OH	1.88	0.72
1:A:1029:ARG:HG3	1:A:1029:ARG:HH11	1.54	0.72
1:C:910:ASN:HB3	1:C:911:PRO:CD	2.18	0.71
1:C:548:SER:O	1:C:552:GLN:HG2	1.90	0.71
1:C:620:ARG:HA	1:C:655:TYR:CD2	2.25	0.71
1:C:397:ARG:HD2	1:C:407:TYR:CZ	2.25	0.71
1:A:189:HIS:HA	1:A:216:PRO:HG3	1.73	0.71
1:A:1054:TYR:CD1	1:A:1054:TYR:N	2.56	0.71
1:C:803:GLU:O	1:C:810:ILE:HG22	1.91	0.70
1:A:548:SER:O	1:A:552:GLN:HG2	1.91	0.70
1:C:529:ILE:HB	1:C:770:LEU:CD2	2.22	0.70
1:A:611:ASN:HD21	1:A:858:PHE:CA	2.03	0.70
1:C:875:ILE:O	1:C:879:ILE:HG12	1.92	0.70
1:A:886:ASP:OD2	1:A:925:ARG:HG3	1.91	0.69
1:C:1054:TYR:CD1	1:C:1054:TYR:N	2.58	0.69
1:A:910:ASN:HB3	1:A:911:PRO:CD	2.22	0.69
1:C:611:ASN:HD21	1:C:858:PHE:CA	2.06	0.69
1:C:471:TYR:HB3	1:C:473:PHE:CE1	2.28	0.68
1:A:169:ASN:HB3	1:A:172:TYR:CD2	2.28	0.68
1:A:120:SER:CB	1:A:135:VAL:HG12	2.23	0.68
1:C:103:HIS:HE1	1:C:269:TYR:OH	1.75	0.68
1:C:850:ASP:O	1:C:852:PRO:HD3	1.93	0.68

A t 1	A 4 arra 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:397:ARG:HE	1:C:404:ARG:HD3	1.59	0.68
1:A:103:HIS:HE1	1:A:269:TYR:OH	1.77	0.67
1:A:529:ILE:HB	1:A:770:LEU:CD2	2.25	0.67
1:A:62:PHE:CE1	1:A:359:LEU:HD12	2.29	0.67
1:C:189:HIS:HA	1:C:216:PRO:HG3	1.75	0.67
1:A:481:LYS:HG3	1:A:482:ASP:N	2.05	0.66
1:A:481:LYS:CG	1:A:482:ASP:H	2.06	0.66
1:C:481:LYS:HG3	1:C:482:ASP:N	2.08	0.66
1:C:780:HIS:HD2	1:C:782:ILE:H	1.42	0.66
1:A:8:PHE:CZ	1:A:24:ILE:HD11	2.31	0.66
1:C:199:PRO:HD2	1:C:332:GLY:O	1.95	0.66
1:C:169:ASN:HB3	1:C:172:TYR:CD2	2.29	0.65
1:C:468:ASP:O	1:C:469:ARG:HG3	1.96	0.65
1:A:926:GLU:N	1:A:926:GLU:CD	2.50	0.64
1:C:288:HIS:CD2	1:C:290:GLY:H	2.12	0.64
1:A:105:ASN:N	1:A:105:ASN:OD1	2.29	0.64
1:C:702:TYR:HB3	1:C:712:ILE:HG21	1.80	0.64
1:A:804:LEU:HA	1:A:810:ILE:HG23	1.80	0.64
1:C:668:TYR:HB3	1:C:692:ARG:HD2	1.80	0.64
1:C:377:ASN:HB2	1:C:463:ILE:HB	1.80	0.63
1:A:780:HIS:HD2	1:A:782:ILE:H	1.46	0.63
1:C:471:TYR:HB3	1:C:473:PHE:HE1	1.62	0.63
1:A:803:GLU:O	1:A:810:ILE:HG22	1.99	0.63
1:A:949:SER:HA	1:A:1054:TYR:CD2	2.34	0.63
1:C:8:PHE:CZ	1:C:24:ILE:HD11	2.33	0.62
1:A:668:TYR:HB3	1:A:692:ARG:HD2	1.82	0.62
1:A:471:TYR:HB3	1:A:473:PHE:CE1	2.34	0.62
1:C:631:THR:H	1:C:634:HIS:HD2	1.47	0.62
1:A:276:HIS:ND1	1:A:298:HIS:HE1	1.98	0.62
1:C:804:LEU:HA	1:C:810:ILE:HG23	1.82	0.62
1:C:120:SER:CB	1:C:135:VAL:HG12	2.26	0.62
1:A:757:HIS:O	1:A:758:LEU:HB3	2.00	0.61
1:A:189:HIS:HE1	1:A:219:VAL:CG1	2.13	0.61
1:A:377:ASN:HB2	1:A:463:ILE:HB	1.82	0.61
1:C:105:ASN:N	1:C:105:ASN:OD1	2.32	0.61
1:A:702:TYR:HB3	1:A:712:ILE:HG21	1.81	0.61
1:C:766:GLU:O	1:C:769:ALA:HB3	2.00	0.61
1:A:189:HIS:HE1	1:A:219:VAL:HG12	1.66	0.61
1:A:781:PRO:HB3	1:A:882:PHE:CE1	2.36	0.61
1:A:850:ASP:O	1:A:852:PRO:HD3	2.01	0.61
1:C:781:PRO:HB3	1:C:882:PHE:CE1	2.35	0.61

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:397:ARG:NE	1:C:404:ARG:HD3	2.14	0.60
1:C:966:HIS:HB3	1:C:967:PRO:HD2	1.83	0.60
1:C:926:GLU:N	1:C:926:GLU:CD	2.54	0.60
1:C:91:PHE:CD2	1:C:303:LEU:HD11	2.36	0.60
1:A:768:PHE:HB3	1:A:935:LEU:HD21	1.84	0.60
1:C:127:ASP:OD2	1:C:319:LYS:HE2	2.01	0.60
1:C:757:HIS:O	1:C:758:LEU:HB3	2.01	0.60
1:C:276:HIS:ND1	1:C:298:HIS:HE1	2.00	0.60
1:C:397:ARG:HB2	1:C:407:TYR:CE2	2.36	0.60
1:A:400:GLY:HA2	1:A:437:GLN:HG3	1.84	0.60
1:A:792:GLY:HA3	1:A:1065:ALA:HB2	1.84	0.59
1:C:189:HIS:HE1	1:C:219:VAL:HG12	1.66	0.59
1:A:632:ASN:HB3	1:A:644:ASN:HD21	1.67	0.59
1:C:632:ASN:HB3	1:C:644:ASN:HD21	1.67	0.59
1:A:397:ARG:HD2	1:A:407:TYR:CE1	2.36	0.59
1:A:613:ALA:O	1:A:615:PRO:HD3	2.02	0.59
1:C:633:GLU:HA	1:C:636:ASN:HB2	1.85	0.59
1:A:224:GLU:C	1:A:226:GLU:H	2.06	0.59
1:A:272:GLN:HB3	1:A:300:TRP:CE3	2.38	0.59
1:A:1045:ASN:HB3	1:A:1051:PRO:HB3	1.84	0.59
1:A:397:ARG:HB2	1:A:407:TYR:CE2	2.37	0.59
1:A:966:HIS:HB3	1:A:967:PRO:HD2	1.85	0.59
1:C:400:GLY:HA2	1:C:437:GLN:HG3	1.85	0.59
1:C:949:SER:HA	1:C:1054:TYR:CD2	2.38	0.59
1:A:120:SER:HB3	1:A:135:VAL:CG1	2.28	0.59
1:C:436:ILE:HD11	1:C:464:SER:HB2	1.85	0.59
1:A:633:GLU:HA	1:A:636:ASN:HB2	1.86	0.58
1:C:62:PHE:O	1:C:360:ARG:HG2	2.02	0.58
1:A:892:ASP:O	1:A:896:GLN:HG2	2.03	0.58
1:A:53:PHE:CE1	3:A:1100:HEM:HAC	2.39	0.58
1:A:62:PHE:O	1:A:360:ARG:HG2	2.03	0.58
1:A:288:HIS:CD2	1:A:290:GLY:H	2.17	0.58
1:A:1029:ARG:HG3	1:A:1029:ARG:NH1	2.16	0.58
1:A:91:PHE:CD2	1:A:303:LEU:HD11	2.39	0.58
1:A:518:TRP:CH2	1:A:906:GLY:HA2	2.39	0.58
1:A:670:GLY:N	1:A:671:PRO:HD3	2.19	0.58
1:C:53:PHE:CE1	3:C:1100:HEM:HAC	2.39	0.58
1:C:64:ARG:HD3	1:C:102:ARG:NH1	2.18	0.58
1:A:737:TRP:NE1	1:A:741:LYS:HE3	2.18	0.58
1:A:282:ASP:CB	1:A:286:ILE:HD11	2.32	0.57
1:A:478:TRP:CD1	1:A:539:ARG:HG3	2.38	0.57

A + a 1	At any 9	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:799:ILE:CG2	1:A:803:GLU:HG3	2.35	0.57
1:C:189:HIS:HE1	1:C:219:VAL:CG1	2.17	0.57
1:C:1055:LEU:HA	1:C:1060:ILE:HD11	1.85	0.57
1:A:436:ILE:HD11	1:A:464:SER:HB2	1.86	0.57
1:C:886:ASP:OD2	1:C:925:ARG:HG3	2.04	0.57
1:A:199:PRO:HD2	1:A:332:GLY:O	2.05	0.57
1:C:119:PHE:HD2	1:C:119:PHE:O	1.87	0.57
1:C:606:GLY:HA3	1:C:709:LEU:O	2.03	0.57
1:A:67:HIS:HA	1:A:105:ASN:O	2.05	0.57
1:A:631:THR:H	1:A:634:HIS:HD2	1.52	0.57
1:C:211:ARG:HE	1:C:274:GLN:HE21	1.51	0.57
1:A:490:ALA:HB1	1:A:779:ALA:O	2.04	0.57
1:C:963:ILE:HD12	1:C:989:GLN:HG2	1.87	0.57
1:A:397:ARG:NE	1:A:404:ARG:HD3	2.20	0.57
1:C:1045:ASN:HB3	1:C:1051:PRO:HB3	1.86	0.57
1:C:610:LEU:HD13	1:C:857:GLY:O	2.05	0.56
1:C:613:ALA:O	1:C:615:PRO:HD3	2.04	0.56
1:A:397:ARG:HE	1:A:404:ARG:HD3	1.70	0.56
1:C:272:GLN:HB3	1:C:300:TRP:CE3	2.39	0.56
1:C:282:ASP:CB	1:C:286:ILE:HD11	2.30	0.56
1:C:397:ARG:HD2	1:C:407:TYR:CE1	2.39	0.56
1:A:471:TYR:HB3	1:A:473:PHE:HE1	1.68	0.56
1:A:753:GLN:HG2	1:A:815:LEU:HD11	1.86	0.56
1:A:1025:ASP:O	1:A:1028:ASN:HB3	2.05	0.56
1:A:8:PHE:HZ	1:A:24:ILE:HD11	1.69	0.56
1:A:606:GLY:HA3	1:A:709:LEU:O	2.05	0.56
1:C:49:PHE:HA	1:C:52:LEU:HB3	1.87	0.56
1:A:494:PHE:CD1	1:A:495:ASN:N	2.70	0.56
1:C:670:GLY:N	1:C:671:PRO:HD3	2.21	0.56
1:A:132:LEU:HD13	1:A:328:PRO:CD	2.36	0.56
1:A:963:ILE:HD12	1:A:989:GLN:HG2	1.88	0.56
1:A:468:ASP:O	1:A:469:ARG:HG3	2.06	0.55
1:C:889:VAL:HG21	1:C:925:ARG:HG2	1.89	0.55
1:C:119:PHE:O	1:C:119:PHE:CD2	2.60	0.55
1:C:224:GLU:C	1:C:226:GLU:H	2.09	0.55
1:A:353:TYR:O	1:A:357:GLN:HG3	2.07	0.55
1:A:132:LEU:HD13	1:A:328:PRO:HD3	1.89	0.55
1:A:926:GLU:CD	1:A:926:GLU:H	2.09	0.55
1:C:477:ARG:HG3	1:C:477:ARG:HH11	1.72	0.55
1:A:799:ILE:HG22	1:A:803:GLU:HG3	1.89	0.54
1:C:770:LEU:HD12	1:C:774:ARG:HG3	1.88	0.54

	At any 9	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:67:HIS:CE1	1:A:106:LEU:HD13	2.42	0.54
1:C:132:LEU:HD13	1:C:328:PRO:HD3	1.90	0.54
1:C:892:ASP:C	1:C:892:ASP:OD1	2.45	0.54
1:C:799:ILE:CG2	1:C:803:GLU:HG3	2.37	0.54
1:C:1025:ASP:O	1:C:1028:ASN:HB3	2.08	0.54
1:C:67:HIS:CE1	1:C:106:LEU:HD13	2.43	0.54
1:C:288:HIS:HD2	1:C:290:GLY:N	2.03	0.54
1:C:717:ASN:H	1:C:724:ASN:HD21	1.54	0.54
1:C:638:SER:OG	1:C:712:ILE:HG22	2.08	0.54
1:C:746:VAL:HA	1:C:961:PRO:O	2.08	0.54
1:A:787:GLN:HA	1:A:790:ILE:HG12	1.91	0.53
1:A:949:SER:HA	1:A:1054:TYR:CE2	2.43	0.53
1:C:73:GLY:HA2	1:C:312:LEU:HB2	1.90	0.53
1:C:103:HIS:CE1	1:C:269:TYR:OH	2.59	0.53
1:A:1000:LEU:O	1:A:1066:ILE:HG23	2.07	0.53
1:A:1055:LEU:HA	1:A:1060:ILE:HD11	1.90	0.53
1:C:103:HIS:HB3	1:C:187:PHE:CD2	2.43	0.53
1:C:949:SER:HA	1:C:1054:TYR:CE2	2.44	0.53
1:C:611:ASN:O	1:C:1052:TYR:HE1	1.91	0.53
1:C:478:TRP:CD1	1:C:539:ARG:HG3	2.44	0.53
1:A:183:ALA:HA	1:A:253:TYR:OH	2.08	0.53
1:A:729:PRO:HA	1:A:737:TRP:CD2	2.44	0.53
1:A:746:VAL:HA	1:A:961:PRO:O	2.08	0.53
1:A:49:PHE:HA	1:A:52:LEU:HB3	1.89	0.53
1:A:717:ASN:H	1:A:724:ASN:HD21	1.57	0.53
1:A:815:LEU:HA	1:A:962:ALA:HB1	1.91	0.53
1:C:611:ASN:HB3	1:C:1052:TYR:CE1	2.44	0.53
1:C:787:GLN:HA	1:C:790:ILE:HG12	1.89	0.53
1:A:802:LYS:HA	1:A:806:GLY:HA3	1.91	0.53
1:C:119:PHE:CE2	1:C:136:MET:HE3	2.44	0.53
1:A:325:ALA:HB2	1:A:350:VAL:HG22	1.92	0.52
1:A:1056:LEU:O	1:A:1060:ILE:HG12	2.08	0.52
1:A:796:ILE:HD13	1:A:1066:ILE:HD12	1.92	0.52
1:C:518:TRP:CH2	1:C:906:GLY:HA2	2.44	0.52
1:C:737:TRP:NE1	1:C:741:LYS:HE3	2.25	0.52
1:C:481:LYS:CG	1:C:482:ASP:H	2.07	0.52
1:C:799:ILE:HG22	1:C:803:GLU:HG3	1.91	0.52
1:C:727:TRP:CZ3	1:C:736:ASP:HB3	2.45	0.52
1:A:103:HIS:HB3	1:A:187:PHE:CD2	2.45	0.52
1:A:1061:PRO:O	1:A:1063:GLY:N	2.43	0.52
1:C:802:LYS:HA	1:C:806:GLY:HA3	1.91	0.52

A 4 1	A 4 a ma 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:766:GLU:O	1:A:769:ALA:HB3	2.10	0.52
1:A:73:GLY:HA2	1:A:312:LEU:HB2	1.92	0.52
1:A:610:LEU:HD13	1:A:857:GLY:O	2.09	0.52
1:A:746:VAL:HG21	1:A:964:LEU:HG	1.92	0.52
1:C:494:PHE:CD1	1:C:495:ASN:N	2.74	0.52
1:C:120:SER:HB3	1:C:135:VAL:CG1	2.31	0.52
1:A:467:GLN:HA	1:A:467:GLN:HE21	1.75	0.51
1:A:288:HIS:HB3	1:A:291:ILE:HG12	1.92	0.51
1:C:132:LEU:HD13	1:C:328:PRO:CD	2.40	0.51
1:C:857:GLY:HA2	1:C:859:TYR:CE2	2.45	0.51
1:C:40:LEU:O	1:C:41:LYS:C	2.48	0.51
1:C:426:TYR:CD1	1:C:426:TYR:N	2.79	0.51
1:C:729:PRO:HA	1:C:737:TRP:CD2	2.46	0.51
1:A:58:THR:HG23	1:A:468:ASP:O	2.11	0.51
1:A:127:ASP:OD2	1:A:319:LYS:HE2	2.10	0.51
1:A:188:ALA:O	1:A:216:PRO:HB3	2.11	0.51
1:A:712:ILE:O	1:A:729:PRO:HD3	2.10	0.51
1:A:792:GLY:O	1:A:796:ILE:HG22	2.11	0.51
1:A:638:SER:OG	1:A:712:ILE:HG22	2.11	0.51
1:C:1061:PRO:O	1:C:1063:GLY:N	2.44	0.51
1:C:8:PHE:HZ	1:C:24:ILE:HD11	1.74	0.51
1:C:610:LEU:HD22	1:C:858:PHE:CD1	2.46	0.51
1:C:776:LEU:HD21	1:C:898:TRP:HB2	1.92	0.51
1:A:631:THR:C	1:A:633:GLU:H	2.13	0.51
1:A:892:ASP:OD1	1:A:892:ASP:C	2.49	0.51
1:C:815:LEU:HA	1:C:962:ALA:HB1	1.92	0.51
1:A:288:HIS:HD2	1:A:290:GLY:N	2.05	0.51
1:C:467:GLN:HE21	1:C:467:GLN:HA	1.75	0.51
1:C:871:ILE:O	1:C:875:ILE:HG13	2.11	0.51
1:A:426:TYR:CD1	1:A:426:TYR:N	2.79	0.50
1:A:272:GLN:HB3	1:A:300:TRP:HE3	1.77	0.50
1:A:770:LEU:HD12	1:A:774:ARG:CD	2.41	0.50
1:C:37:PHE:HB3	1:C:1031:GLN:HG3	1.93	0.50
1:C:839:HIS:CD2	1:C:841:PRO:HG2	2.46	0.50
1:A:64:ARG:HD3	1:A:102:ARG:NH1	2.27	0.50
1:A:727:TRP:CZ3	1:A:736:ASP:HB3	2.47	0.50
1:A:789:HIS:ND1	1:A:1062:ASN:O	2.37	0.50
1:C:183:ALA:HA	1:C:253:TYR:OH	2.11	0.50
1:C:768:PHE:HB3	1:C:935:LEU:HD21	1.93	0.50
1:A:640:ASP:O	1:A:705:LYS:NZ	2.43	0.50
1:A:839:HIS:CD2	1:A:841:PRO:HG2	2.46	0.50

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:147:SER:HB3	1:A:148:PRO:HD3	1.93	0.50
1:A:37:PHE:HB3	1:A:1031:GLN:HG3	1.94	0.50
1:C:194:SER:OG	1:C:212:TYR:N	2.41	0.50
1:A:438:LEU:HA	1:A:473:PHE:HE2	1.77	0.49
1:C:288:HIS:HB3	1:C:291:ILE:HG12	1.93	0.49
1:C:640:ASP:OD1	1:C:702:TYR:OH	2.25	0.49
1:A:40:LEU:O	1:A:41:LYS:C	2.50	0.49
1:C:712:ILE:O	1:C:729:PRO:HD3	2.12	0.49
1:A:610:LEU:HD22	1:A:858:PHE:CD1	2.48	0.49
1:A:889:VAL:HG21	1:A:925:ARG:HG2	1.94	0.49
1:C:58:THR:HG23	1:C:468:ASP:O	2.13	0.49
1:C:353:TYR:O	1:C:357:GLN:HG3	2.12	0.49
1:A:611:ASN:HB3	1:A:1052:TYR:CE1	2.47	0.49
1:A:183:ALA:CA	1:A:253:TYR:OH	2.61	0.49
1:A:804:LEU:HA	1:A:810:ILE:CG2	2.42	0.49
1:C:188:ALA:O	1:C:216:PRO:HB3	2.13	0.49
1:C:892:ASP:O	1:C:896:GLN:HG2	2.13	0.49
1:C:966:HIS:HB3	1:C:967:PRO:CD	2.42	0.49
1:A:124:ALA:HB2	1:A:131:PRO:HD3	1.95	0.49
1:A:611:ASN:O	1:A:1052:TYR:HE1	1.96	0.49
1:A:966:HIS:HB3	1:A:967:PRO:CD	2.43	0.49
1:C:183:ALA:CA	1:C:253:TYR:OH	2.61	0.49
1:A:243:ARG:NH2	1:A:249:ARG:O	2.46	0.48
1:A:830:PHE:HA	1:A:833:VAL:HG23	1.94	0.48
1:A:871:ILE:O	1:A:875:ILE:HG13	2.13	0.48
1:C:397:ARG:HD3	1:C:440:GLU:OE2	2.13	0.48
1:C:770:LEU:CD1	1:C:774:ARG:HG3	2.43	0.48
1:A:211:ARG:HE	1:A:274:GLN:HE21	1.60	0.48
1:A:397:ARG:HD3	1:A:440:GLU:OE2	2.13	0.48
1:A:611:ASN:ND2	1:A:858:PHE:HA	2.15	0.48
1:A:757:HIS:O	1:A:758:LEU:CB	2.61	0.48
1:A:910:ASN:O	1:A:913:HIS:HB2	2.13	0.48
1:C:37:PHE:HD2	1:C:1031:GLN:HG3	1.78	0.48
1:C:707:GLY:HA2	1:C:856:PRO:HG2	1.95	0.48
1:A:644:ASN:ND2	1:A:645:LEU:H	2.11	0.48
1:C:114:ALA:HA	1:C:182:ARG:HA	1.95	0.48
1:A:119:PHE:HD2	1:A:119:PHE:O	1.96	0.48
1:A:258:TYR:O	1:A:258:TYR:CD2	2.66	0.48
1:C:746:VAL:HG21	1:C:964:LEU:HG	1.95	0.48
1:A:103:HIS:CE1	1:A:269:TYR:OH	2.63	0.48
1:A:273:ILE:HG22	1:A:303:LEU:HB2	1.95	0.48

			Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:670:GLY:N	1:A:671:PRO:CD	2.77	0.48
1:C:785:LEU:HD22	1:C:878:ILE:HG21	1.95	0.48
1:C:804:LEU:HA	1:C:810:ILE:CG2	2.44	0.48
1:A:324:ILE:HD11	1:A:349:ARG:HB2	1.95	0.48
1:C:743:TRP:O	1:C:746:VAL:HG12	2.13	0.48
1:C:781:PRO:CB	1:C:882:PHE:CD1	2.96	0.48
1:C:926:GLU:CD	1:C:926:GLU:H	2.17	0.48
1:C:325:ALA:HB2	1:C:350:VAL:HG22	1.96	0.47
1:C:395:THR:CG2	1:C:407:TYR:HB3	2.44	0.47
1:C:45:LYS:O	1:C:49:PHE:HD1	1.97	0.47
1:C:119:PHE:HB3	1:C:192:TYR:CG	2.50	0.47
1:C:147:SER:HB3	1:C:148:PRO:HD3	1.97	0.47
1:C:211:ARG:NE	1:C:274:GLN:NE2	2.61	0.47
1:C:743:TRP:HA	1:C:746:VAL:HG12	1.96	0.47
1:A:793:VAL:HG21	1:A:939:PHE:CE2	2.49	0.47
1:C:750:ASN:HD21	1:C:816:SER:HB3	1.79	0.47
1:A:30:PRO:HA	1:A:31:PRO:HD2	1.80	0.47
1:A:142:ASN:HD22	1:A:195:GLN:HE22	1.61	0.47
1:A:776:LEU:HD21	1:A:898:TRP:HB2	1.97	0.47
1:C:511:GLN:O	1:C:514:LEU:HB2	2.15	0.47
1:C:670:GLY:N	1:C:671:PRO:CD	2.77	0.47
1:C:752:HIS:NE2	1:C:946:VAL:HG13	2.30	0.47
1:A:797:ASP:O	1:A:801:ARG:HG3	2.15	0.47
1:C:393:THR:O	1:C:394:ILE:HD13	2.13	0.47
1:C:902:VAL:HA	1:C:906:GLY:HA3	1.97	0.47
1:A:477:ARG:HG3	1:A:477:ARG:HH11	1.79	0.47
1:C:668:TYR:HB2	1:C:818:GLY:O	2.15	0.47
1:A:793:VAL:HG21	1:A:939:PHE:HE2	1.80	0.47
1:A:858:PHE:CD2	1:A:861:ARG:CB	2.98	0.47
1:A:781:PRO:CB	1:A:882:PHE:CD1	2.96	0.46
1:A:796:ILE:CD1	1:A:1066:ILE:HD12	2.45	0.46
1:A:858:PHE:CD2	1:A:861:ARG:HB2	2.50	0.46
1:C:1029:ARG:HG3	1:C:1029:ARG:HH11	1.80	0.46
1:C:728:THR:C	1:C:730:HIS:H	2.19	0.46
1:C:1056:LEU:O	1:C:1060:ILE:HG12	2.15	0.46
1:C:753:GLN:HG2	1:C:815:LEU:HD11	1.97	0.46
1:A:668:TYR:HB2	1:A:818:GLY:O	2.15	0.46
1:C:95:ARG:HD2	1:C:97:PHE:CZ	2.50	0.46
1:C:273:ILE:HG22	1:C:303:LEU:HB2	1.97	0.46
1:A:43:LYS:O	1:A:46:LYS:HB2	2.15	0.46
1:A:64:ARG:H	1:A:64:ARG:HG2	1.48	0.46

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:707:GLY:HA2	1:A:856:PRO:HG2	1.98	0.46
1:C:213:ARG:O	1:C:271:LEU:HD12	2.15	0.46
1:A:791:TYR:CG	1:A:792:GLY:N	2.84	0.46
1:A:984:LEU:HB3	1:A:985:PRO:CD	2.45	0.46
1:C:67:HIS:HA	1:C:105:ASN:O	2.16	0.46
1:C:1053:ILE:O	1:C:1055:LEU:N	2.48	0.46
1:A:615:PRO:O	1:A:847:ARG:NH1	2.49	0.46
1:C:324:ILE:HD11	1:C:349:ARG:HB2	1.97	0.46
1:A:132:LEU:HA	1:A:326:ASN:O	2.16	0.46
1:C:382:THR:O	1:C:421:GLY:HA2	2.15	0.46
1:C:843:ALA:O	1:C:847:ARG:HG3	2.15	0.46
1:C:631:THR:C	1:C:633:GLU:H	2.18	0.46
1:A:102:ARG:HD3	3:A:1100:HEM:O2A	2.17	0.45
1:A:614:ASN:HD21	1:A:616:VAL:HG13	1.81	0.45
1:A:700:LEU:HB3	1:A:712:ILE:HD11	1.99	0.45
1:C:611:ASN:HB3	1:C:1052:TYR:CD1	2.51	0.45
1:A:119:PHE:HB3	1:A:192:TYR:CG	2.52	0.45
1:A:627:ASN:N	1:A:627:ASN:HD22	2.14	0.45
1:C:101:LEU:HD21	1:C:103:HIS:CE1	2.51	0.45
1:C:145:TRP:CD2	1:C:288:HIS:NE2	2.83	0.45
1:A:40:LEU:N	1:A:40:LEU:HD23	2.31	0.45
1:A:88:HIS:HD2	1:A:90:PHE:HB3	1.82	0.45
1:C:797:ASP:O	1:C:801:ARG:HG3	2.16	0.45
1:C:874:PHE:O	1:C:875:ILE:C	2.53	0.45
1:A:217:GLY:O	1:A:219:VAL:O	2.34	0.45
1:A:613:ALA:HB1	1:A:752:HIS:CD2	2.51	0.45
1:A:703:VAL:HG11	1:A:856:PRO:HD3	1.98	0.45
1:C:124:ALA:HB2	1:C:131:PRO:HD3	1.98	0.45
1:A:544:THR:O	1:A:547:LYS:N	2.50	0.45
1:A:224:GLU:O	1:A:226:GLU:N	2.47	0.45
1:C:64:ARG:HD3	1:C:102:ARG:CZ	2.47	0.45
1:C:490:ALA:HB1	1:C:779:ALA:O	2.16	0.45
1:A:217:GLY:O	1:A:219:VAL:N	2.50	0.45
1:A:645:LEU:O	1:A:649:ILE:HG12	2.17	0.45
1:C:830:PHE:HA	1:C:833:VAL:HG23	1.99	0.45
1:C:641:ARG:HA	1:C:705:LYS:HD3	1.99	0.45
1:A:186:THR:HA	1:A:254:LEU:CD1	2.46	0.44
1:C:37:PHE:CD2	1:C:1031:GLN:HG3	2.51	0.44
1:C:211:ARG:HE	1:C:274:GLN:NE2	2.15	0.44
1:C:438:LEU:HA	1:C:473:PHE:HE2	1.82	0.44
1:C:668:TYR:HB3	1:C:692:ARG:CD	2.47	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:45:LYS:O	1:A:49:PHE:HD1	2.01	0.44
1:A:122:LYS:HG3	1:A:133:ASP:OD1	2.17	0.44
1:A:253:TYR:CD1	1:A:253:TYR:C	2.89	0.44
1:A:350:VAL:HG12	1:A:351:ALA:N	2.32	0.44
1:A:436:ILE:HB	1:A:471:TYR:CD2	2.52	0.44
1:A:668:TYR:HB3	1:A:692:ARG:CD	2.46	0.44
3:A:1100:HEM:HBC2	3:A:1100:HEM:CMC	2.47	0.44
1:C:112:ALA:HB3	1:C:243:ARG:HE	1.82	0.44
1:C:610:LEU:HD21	1:C:855:LEU:HD11	1.99	0.44
1:C:816:SER:HB2	1:C:962:ALA:O	2.17	0.44
1:A:611:ASN:HB3	1:A:1052:TYR:CD1	2.53	0.44
1:A:75:GLY:HA3	1:A:307:SER:O	2.17	0.44
1:A:1029:ARG:H	1:A:1029:ARG:HG2	1.62	0.44
1:C:436:ILE:CD1	1:C:464:SER:HB2	2.46	0.44
1:A:430:GLY:O	1:A:431:PHE:C	2.55	0.44
1:C:544:THR:O	1:C:547:LYS:N	2.51	0.44
1:A:257:GLU:C	1:A:259:VAL:H	2.20	0.44
1:A:902:VAL:HA	1:A:906:GLY:HA3	1.98	0.44
1:C:44:LEU:O	1:C:47:GLU:HB2	2.18	0.44
1:C:253:TYR:CD1	1:C:253:TYR:C	2.90	0.44
1:A:119:PHE:O	1:A:119:PHE:CD2	2.70	0.44
1:C:615:PRO:O	1:C:847:ARG:NH1	2.51	0.44
1:A:88:HIS:HD2	1:A:91:PHE:H	1.64	0.44
1:A:123:PHE:CE2	1:A:132:LEU:HD23	2.53	0.44
1:A:400:GLY:HA3	1:A:433:VAL:HB	1.99	0.44
1:C:439:ILE:HG21	1:C:462:ILE:CD1	2.48	0.44
1:C:498:PRO:HD2	1:C:501:VAL:HG21	2.00	0.44
1:C:554:SER:HA	1:C:557:ALA:HB3	2.00	0.44
1:C:719:GLU:HA	1:C:720:PRO:HD3	1.86	0.44
1:A:211:ARG:NE	1:A:274:GLN:NE2	2.66	0.44
1:C:13:GLU:OE1	1:C:236:ARG:NH1	2.47	0.44
1:C:123:PHE:CE2	1:C:132:LEU:HD23	2.53	0.44
1:C:186:THR:HG21	1:C:261:ARG:NH2	2.33	0.44
1:C:757:HIS:O	1:C:758:LEU:CB	2.65	0.44
1:A:611:ASN:HD21	1:A:858:PHE:C	2.22	0.43
1:C:49:PHE:CE2	1:C:150:LEU:HD23	2.53	0.43
1:A:739:MET:CE	1:A:983:THR:HG21	2.48	0.43
1:A:858:PHE:CE2	1:A:861:ARG:HB2	2.52	0.43
1:A:37:PHE:HD2	1:A:1031:GLN:HG3	1.83	0.43
1:C:182:ARG:HD3	1:C:244:HIS:CE1	2.53	0.43
1:C:984:LEU:HB3	1:C:985:PRO:CD	2.47	0.43

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:755:ASN:ND2	1:A:829:CYS:SG	2.90	0.43
1:C:780:HIS:CD2	1:C:781:PRO:HD2	2.53	0.43
1:A:107:LYS:HE2	1:A:156:VAL:O	2.17	0.43
1:A:132:LEU:HD13	1:A:328:PRO:HD2	2.01	0.43
1:A:1065:ALA:O	1:A:1066:ILE:HB	2.19	0.43
1:C:88:HIS:HD2	1:C:90:PHE:HB3	1.84	0.43
1:A:851:ASP:O	1:A:853:SER:N	2.51	0.43
1:C:132:LEU:HA	1:C:326:ASN:O	2.17	0.43
1:C:231:THR:O	1:C:235:GLN:HG3	2.19	0.43
1:C:703:VAL:HG11	1:C:856:PRO:HD3	2.00	0.43
1:C:739:MET:CE	1:C:983:THR:HG21	2.49	0.43
1:A:632:ASN:HB3	1:A:644:ASN:ND2	2.33	0.43
1:C:1064:THR:O	1:C:1064:THR:HG22	2.19	0.43
1:C:119:PHE:CD2	1:C:119:PHE:C	2.91	0.43
1:C:632:ASN:HB3	1:C:644:ASN:ND2	2.32	0.43
1:A:132:LEU:HB2	1:A:328:PRO:HD3	2.00	0.43
1:C:186:THR:HA	1:C:254:LEU:CD1	2.49	0.43
1:C:791:TYR:CG	1:C:792:GLY:N	2.86	0.43
1:A:252:ASP:O	1:A:256:LYS:HB2	2.19	0.43
1:C:755:ASN:ND2	1:C:829:CYS:SG	2.89	0.43
1:A:45:LYS:O	1:A:46:LYS:C	2.56	0.42
1:A:64:ARG:HE	1:A:64:ARG:HB3	1.31	0.42
1:A:770:LEU:CD1	1:A:774:ARG:HG3	2.49	0.42
1:C:215:LEU:N	1:C:215:LEU:HD23	2.34	0.42
1:C:282:ASP:HB3	1:C:286:ILE:CD1	2.35	0.42
1:C:355:TRP:HH2	1:C:461:ILE:HD13	1.84	0.42
1:C:386:GLU:O	1:C:387:HIS:HB2	2.19	0.42
1:C:783:PHE:C	1:C:783:PHE:CD2	2.91	0.42
1:C:834:ASN:OD1	1:C:917:GLY:HA3	2.19	0.42
1:C:928:LEU:O	1:C:929:LYS:C	2.56	0.42
1:A:145:TRP:CD2	1:A:288:HIS:NE2	2.87	0.42
1:C:613:ALA:HB1	1:C:752:HIS:CD2	2.55	0.42
1:C:645:LEU:O	1:C:649:ILE:HG12	2.19	0.42
1:A:765:THR:O	1:A:766:GLU:C	2.57	0.42
1:C:258:TYR:O	1:C:258:TYR:CD2	2.73	0.42
1:C:644:ASN:ND2	1:C:645:LEU:H	2.17	0.42
1:C:765:THR:O	1:C:766:GLU:C	2.58	0.42
1:A:394:ILE:HD13	1:A:443:SER:HA	2.01	0.42
1:A:490:ALA:HB2	1:A:784:LYS:HD2	2.01	0.42
1:A:783:PHE:CD2	1:A:783:PHE:C	2.92	0.42
1:C:114:ALA:O	1:C:115:ASP:HB2	2.20	0.42

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:217:GLY:O	1:C:219:VAL:O	2.37	0.42
1:C:341:ASP:O	1:C:343:ASN:N	2.52	0.42
1:C:349:ARG:O	1:C:350:VAL:C	2.58	0.42
1:C:350:VAL:HG12	1:C:351:ALA:N	2.34	0.42
1:A:103:HIS:HD2	1:A:118:SER:O	2.02	0.42
1:A:839:HIS:HB3	1:A:842:ASN:HB2	2.00	0.42
1:A:843:ALA:O	1:A:847:ARG:HG3	2.19	0.42
1:C:64:ARG:H	1:C:64:ARG:HG2	1.50	0.42
1:C:257:GLU:C	1:C:259:VAL:H	2.22	0.42
1:A:37:PHE:CD2	1:A:1031:GLN:HG3	2.54	0.42
1:A:733:ASN:OD1	1:A:735:HIS:HB2	2.19	0.42
1:A:943:HIS:CD2	1:A:1064:THR:HG23	2.55	0.42
1:C:793:VAL:HG21	1:C:939:PHE:HE2	1.85	0.42
1:A:122:LYS:C	1:A:124:ALA:H	2.23	0.42
1:A:147:SER:O	1:A:150:LEU:HB3	2.19	0.42
1:A:698:LEU:HD11	1:A:718:GLN:HE22	1.84	0.42
1:A:857:GLY:HA2	1:A:859:TYR:CE2	2.54	0.42
1:C:44:LEU:HD13	1:C:1024:LEU:HD13	2.02	0.42
1:C:191:TYR:CE2	1:C:223:GLU:HG2	2.55	0.42
1:C:272:GLN:HB3	1:C:300:TRP:HE3	1.81	0.42
1:C:286:ILE:H	1:C:286:ILE:HG13	1.50	0.42
1:C:528:ASN:HB2	1:C:801:ARG:NH2	2.34	0.42
1:C:700:LEU:HB3	1:C:712:ILE:HD11	2.01	0.42
1:A:194:SER:HB3	1:A:212:TYR:HB2	2.02	0.42
1:A:528:ASN:HB2	1:A:801:ARG:NH2	2.35	0.42
1:C:430:GLY:O	1:C:431:PHE:C	2.57	0.42
1:C:668:TYR:HD2	1:C:692:ARG:NE	2.17	0.42
1:A:119:PHE:CD2	1:A:119:PHE:C	2.93	0.42
1:A:554:SER:HA	1:A:557:ALA:HB3	2.01	0.42
1:A:698:LEU:HD11	1:A:718:GLN:NE2	2.35	0.42
1:A:743:TRP:O	1:A:744:LEU:C	2.58	0.42
1:C:75:GLY:HA3	1:C:307:SER:O	2.20	0.42
1:C:810:ILE:HD11	1:C:996:THR:CG2	2.50	0.42
1:C:293:TRP:O	1:C:295:LYS:N	2.53	0.42
1:A:439:ILE:HG12	1:A:473:PHE:CD2	2.55	0.41
1:A:834:ASN:OD1	1:A:917:GLY:HA3	2.19	0.41
1:A:374:ALA:HB2	1:A:432:ASP:HB2	2.01	0.41
1:A:668:TYR:HD2	1:A:692:ARG:NE	2.18	0.41
1:C:122:LYS:C	1:C:124:ALA:H	2.22	0.41
1:C:400:GLY:HA3	1:C:433:VAL:HB	2.02	0.41
1:C:605:PHE:CE2	1:C:744:LEU:HD23	2.56	0.41

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:770:LEU:HD12	1:C:774:ARG:CD	2.50	0.41
1:C:1029:ARG:HG3	1:C:1029:ARG:NH1	2.35	0.41
1:A:13:GLU:OE1	1:A:236:ARG:NH1	2.47	0.41
1:A:764:THR:HB	1:A:907:TRP:CZ2	2.55	0.41
1:A:770:LEU:HD12	1:A:774:ARG:HG3	2.02	0.41
1:A:979:SER:O	1:A:980:ILE:C	2.59	0.41
1:C:293:TRP:O	1:C:294:ASP:C	2.58	0.41
1:C:735:HIS:HB3	1:C:980:ILE:HD11	2.01	0.41
1:C:793:VAL:HG21	1:C:939:PHE:CE2	2.55	0.41
1:A:88:HIS:CD2	1:A:90:PHE:HB3	2.55	0.41
1:A:639:LEU:HD21	1:A:654:ILE:HD11	2.01	0.41
1:A:729:PRO:HA	1:A:737:TRP:CE2	2.55	0.41
1:A:215:LEU:N	1:A:215:LEU:HD23	2.35	0.41
1:A:858:PHE:CD2	1:A:861:ARG:HB3	2.55	0.41
1:C:408:LEU:HD13	1:C:428:VAL:HB	2.03	0.41
1:C:1065:ALA:O	1:C:1066:ILE:HG23	2.21	0.41
1:A:91:PHE:CE1	1:A:331:LEU:HD11	2.56	0.41
1:A:661:VAL:O	1:A:828:LYS:HE2	2.20	0.41
1:C:494:PHE:C	1:C:496:GLU:H	2.23	0.41
1:C:794:LEU:HD23	1:C:794:LEU:HA	1.92	0.41
1:C:1011:GLY:O	1:C:1013:TYR:N	2.54	0.41
1:A:849:VAL:O	1:A:861:ARG:NH1	2.52	0.41
1:C:30:PRO:HA	1:C:31:PRO:HD2	1.82	0.41
1:C:910:ASN:O	1:C:913:HIS:HB2	2.21	0.41
1:A:231:THR:O	1:A:235:GLN:HG3	2.21	0.41
1:A:458:ASN:HD22	1:A:458:ASN:HA	1.69	0.41
1:A:511:GLN:O	1:A:514:LEU:HB2	2.21	0.41
1:A:793:VAL:HG22	1:A:1064:THR:HB	2.03	0.41
1:A:834:ASN:C	1:A:836:GLN:N	2.74	0.41
1:C:490:ALA:HB2	1:C:784:LYS:HD2	2.02	0.41
1:C:729:PRO:HA	1:C:737:TRP:CE2	2.56	0.41
1:C:839:HIS:HB3	1:C:842:ASN:HB2	2.03	0.41
1:C:62:PHE:HE1	1:C:359:LEU:CD1	2.27	0.41
1:A:345:ILE:HD13	1:A:345:ILE:HA	1.77	0.40
1:C:192:TYR:N	1:C:214:ALA:O	2.51	0.40
1:C:224:GLU:O	1:C:226:GLU:N	2.55	0.40
1:C:980:ILE:O	1:C:984:LEU:HG	2.21	0.40
1:A:750:ASN:HD21	1:A:816:SER:HB3	1.87	0.40
1:A:968:PRO:HA	1:A:969:PRO:HD3	1.93	0.40
1:C:639:LEU:HD21	1:C:654:ILE:HD11	2.02	0.40
1:C:1041:ILE:HG23	1:C:1044:ARG:NH2	2.36	0.40

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:118:SER:HB2	3:A:1100:HEM:CMA	2.51	0.40
1:A:338:SER:O	1:A:341:ASP:HB3	2.21	0.40
1:A:768:PHE:CE1	1:A:902:VAL:HG11	2.56	0.40
1:C:132:LEU:HB2	1:C:328:PRO:HD3	2.03	0.40
1:C:614:ASN:HD21	1:C:616:VAL:HG13	1.86	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Pe	erc	entiles
1	А	988/1066~(93%)	802 (81%)	150 (15%)	36~(4%)		3	28
1	С	988/1066~(93%)	792 (80%)	159 (16%)	37~(4%)		3	28
All	All	1976/2132~(93%)	1594 (81%)	309 (16%)	73 (4%)		3	28

All (73) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	243	ARG
1	А	610	LEU
1	А	615	PRO
1	А	1012	ASN
1	А	1062	ASN
1	С	243	ARG
1	С	610	LEU
1	С	615	PRO
1	С	1012	ASN
1	С	1062	ASN
1	А	7	GLY
1	А	14	LYS
1	А	93	ALA

Mol	Chain	Res	Type
1	А	106	LEU
1	А	225	ASP
1	А	231	THR
1	А	294	ASP
1	А	494	PHE
1	А	496	GLU
1	А	676	ILE
1	А	839	HIS
1	А	930	GLU
1	С	7	GLY
1	С	81	ASN
1	С	93	ALA
1	С	225	ASP
1	С	294	ASP
1	С	494	PHE
1	С	496	GLU
1	С	676	ILE
1	С	839	HIS
1	А	81	ASN
1	А	837	ASP
1	А	1054	TYR
1	С	14	LYS
1	С	106	LEU
1	С	231	THR
1	С	350	VAL
1	С	488	GLY
1	С	612	GLY
1	С	837	ASP
1	С	930	GLU
1	А	6	PHE
1	А	65	ALA
1	А	68	THR
1	А	115	ASP
1	А	123	PHE
1	А	218	ASP
1	А	431	PHE
1	А	973	GLY
1	С	6	PHE
1	С	65	ALA
1	С	115	ASP
1	С	218	ASP
1	С	431	PHE

Mol	Chain	Res	Type
1	С	973	GLY
1	С	1054	TYR
1	А	612	GLY
1	А	758	LEU
1	А	804	LEU
1	А	1061	PRO
1	А	1065	ALA
1	С	68	THR
1	С	123	PHE
1	С	342	TYR
1	С	407	TYR
1	С	758	LEU
1	С	1061	PRO
1	С	718	GLN
1	А	350	VAL
1	А	488	GLY
1	А	131	PRO
1	С	131	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	863/922~(94%)	784 (91%)	79~(9%)	9 37
1	С	863/922~(94%)	785 (91%)	78~(9%)	9 38
All	All	1726/1844~(94%)	1569 (91%)	157 (9%)	9 37

All (157) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	26	ASP
1	А	36	VAL
1	А	40	LEU
1	А	52	LEU
1	А	57	THR

Mol	Chain	Res	Type
1	А	64	ARG
1	А	95	ARG
1	А	96	THR
1	А	105	ASN
1	А	119	PHE
1	А	120	SER
1	А	135	VAL
1	А	173	TYR
1	А	196	VAL
1	А	198	MET
1	А	204	ASP
1	А	215	LEU
1	А	218	ASP
1	А	230	LEU
1	А	237	LYS
1	А	253	TYR
1	А	272	GLN
1	А	275	ILE
1	А	286	ILE
1	А	309	LYS
1	А	315	ASP
1	А	352	VAL
1	А	354	THR
1	А	358	HIS
1	А	359	LEU
1	А	379	GLU
1	А	384	ASP
1	А	395	THR
1	А	406	ASP
1	А	426	TYR
1	А	431	PHE
1	А	467	GLN
1	А	483	MET
1	A	496	GLU
1	А	500	ILE
1	A	536	ASP
1	A	543	PHE
1	A	547	LYS
1	A	560	VAL
1	A	564	ILE
1	A	$60\overline{2}$	ASP
1	A	608	GLN

Mol	Chain	Res	Type
1	А	627	ASN
1	А	628	PHE
1	А	644	ASN
1	A	645	LEU
1	А	662	LEU
1	А	672	VAL
1	A	674	GLU
1	А	675	ASP
1	А	676	ILE
1	А	688	GLU
1	А	706	LEU
1	А	749	SER
1	А	753	GLN
1	А	761	THR
1	А	770	LEU
1	А	802	LYS
1	А	804	LEU
1	А	805	ILE
1	А	807	SER
1	А	810	ILE
1	А	845	LYS
1	А	877	GLU
1	А	904	LYS
1	А	926	GLU
1	А	939	PHE
1	А	963	ILE
1	А	1016	THR
1	A	1024	LEU
1	А	1029	ARG
1	А	1031	GLN
1	A	1032	ASP
1	А	1054	TYR
1	C	26	ASP
1	С	36	VAL
1	С	52	LEU
1	С	57	THR
1	С	64	ARG
1	С	95	ARG
1	С	96	THR
1	С	105	ASN
1	\mathbf{C}	119	PHE
1	С	120	SER

Mol	Chain	Res	Type
1	С	135	VAL
1	С	173	TYR
1	С	185	ASP
1	С	196	VAL
1	С	198	MET
1	С	204	ASP
1	С	215	LEU
1	С	218	ASP
1	С	230	LEU
1	С	237	LYS
1	С	253	TYR
1	С	272	GLN
1	С	275	ILE
1	С	286	ILE
1	С	309	LYS
1	С	310	THR
1	С	315	ASP
1	С	352	VAL
1	С	358	HIS
1	С	359	LEU
1	С	379	GLU
1	С	384	ASP
1	С	395	THR
1	С	406	ASP
1	С	426	TYR
1	С	431	PHE
1	С	467	GLN
1	С	483	MET
1	С	496	GLU
1	С	500	ILE
1	С	536	ASP
1	С	543	PHE
1	C	547	LYS
1	C	560	VAL
1	C	564	ILE
1	С	602	ASP
1	С	608	GLN
1	С	627	ASN
1	С	644	ASN
1	С	645	LEU
1	С	662	LEU
1	С	672	VAL

Mol	Chain	Res	Type
1	С	674	GLU
1	С	675	ASP
1	С	676	ILE
1	С	688	GLU
1	С	706	LEU
1	С	753	GLN
1	С	761	THR
1	С	770	LEU
1	С	802	LYS
1	С	804	LEU
1	С	805	ILE
1	С	807	SER
1	С	810	ILE
1	С	845	LYS
1	С	853	SER
1	С	877	GLU
1	С	904	LYS
1	С	926	GLU
1	С	939	PHE
1	С	963	ILE
1	С	1016	THR
1	С	1024	LEU
1	С	1029	ARG
1	С	1031	GLN
1	С	1032	ASP
1	С	1054	TYR

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (50) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	88	HIS
1	А	103	HIS
1	А	142	ASN
1	А	189	HIS
1	А	244	HIS
1	А	274	GLN
1	А	298	HIS
1	А	437	GLN
1	А	458	ASN
1	A	506	GLN
1	A	528	ASN
1	А	611	ASN

Mol	Chain	Res	Type
1	А	627	ASN
1	А	634	HIS
1	А	644	ASN
1	А	718	GLN
1	А	724	ASN
1	А	753	GLN
1	А	780	HIS
1	А	836	GLN
1	А	839	HIS
1	А	842	ASN
1	А	893	ASN
1	А	905	ASN
1	А	1043	GLN
1	С	88	HIS
1	С	103	HIS
1	С	142	ASN
1	С	189	HIS
1	С	244	HIS
1	С	274	GLN
1	С	298	HIS
1	С	437	GLN
1	С	458	ASN
1	С	506	GLN
1	С	611	ASN
1	С	627	ASN
1	С	634	HIS
1	С	644	ASN
1	С	718	GLN
1	С	724	ASN
1	С	750	ASN
1	С	753	GLN
1	С	780	HIS
1	С	836	GLN
1	С	839	HIS
1	С	842	ASN
1	С	905	ASN
1	С	950	GLN
1	С	1043	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 4 ligands modelled in this entry, 2 are monoatomic - leaving 2 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal Trma C		Chain Dag		Timle	Bo	ond leng	ths	Bond angles		
Moi Type	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
3	HEM	А	1100	1	41,50,50	1.88	7 (17%)	45,82,82	1.57	6 (13%)
3	HEM	С	1100	1	41,50,50	1.94	6 (14%)	45,82,82	1.70	7 (15%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	HEM	А	1100	1	-	6/12/54/54	-
3	HEM	С	1100	1	-	6/12/54/54	-

All (13) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
3	С	1100	HEM	C3D-C2D	7.55	1.52	1.36
3	А	1100	HEM	C3D-C2D	7.19	1.52	1.36
3	С	1100	HEM	C3C-C2C	-5.24	1.33	1.40
3	А	1100	HEM	C3C-C2C	-4.69	1.33	1.40
3	А	1100	HEM	C3C-CAC	3.11	1.54	1.47
3	С	1100	HEM	C3C-CAC	3.10	1.54	1.47

Mol	Chain	\mathbf{Res}	Type	Atoms	\mathbf{Z}	Observed(Å)	Ideal(Å)
3	С	1100	HEM	FE-ND	3.07	2.12	1.96
3	А	1100	HEM	CAB-C3B	2.81	1.55	1.47
3	А	1100	HEM	FE-ND	2.71	2.10	1.96
3	С	1100	HEM	CAB-C3B	2.59	1.54	1.47
3	С	1100	HEM	CMB-C2B	2.43	1.55	1.50
3	А	1100	HEM	CMB-C2B	2.26	1.55	1.50
3	А	1100	HEM	CMC-C2C	2.04	1.56	1.51

All (13) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	С	1100	HEM	C4D-ND-C1D	5.83	111.10	105.07
3	А	1100	HEM	C4D-ND-C1D	5.49	110.74	105.07
3	С	1100	HEM	C4C-CHD-C1D	3.88	127.68	122.56
3	С	1100	HEM	CAA-CBA-CGA	-3.64	103.56	113.76
3	А	1100	HEM	CAA-CBA-CGA	-3.38	104.28	113.76
3	А	1100	HEM	C4C-CHD-C1D	3.26	126.86	122.56
3	С	1100	HEM	CBA-CAA-C2A	-2.94	107.60	112.62
3	С	1100	HEM	C4B-CHC-C1C	2.75	126.18	122.56
3	А	1100	HEM	C4B-CHC-C1C	2.37	125.68	122.56
3	С	1100	HEM	CAD-CBD-CGD	-2.32	108.60	113.60
3	А	1100	HEM	CAD-C3D-C4D	2.25	128.59	124.66
3	А	1100	HEM	C2C-C3C-C4C	2.06	108.34	106.90
3	C	1100	HEM	C2C-C3C-C4C	2.06	108.33	106.90

There are no chirality outliers.

All (12) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	А	1100	HEM	C2B-C3B-CAB-CBB
3	С	1100	HEM	C2B-C3B-CAB-CBB
3	А	1100	HEM	C4B-C3B-CAB-CBB
3	С	1100	HEM	CAD-CBD-CGD-O1D
3	А	1100	HEM	CAA-CBA-CGA-O1A
3	С	1100	HEM	CAA-CBA-CGA-O1A
3	А	1100	HEM	CAD-CBD-CGD-O1D
3	С	1100	HEM	CAA-CBA-CGA-O2A
3	А	1100	HEM	CAA-CBA-CGA-O2A
3	А	1100	HEM	CAD-CBD-CGD-O2D
3	С	1100	HEM	CAD-CBD-CGD-O2D
3	С	1100	HEM	C4B-C3B-CAB-CBB

There are no ring outliers.

2 monomers are involved in 5 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	А	1100	HEM	4	0
3	С	1100	HEM	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	1002/1066~(93%)	-0.30	4 (0%) 92 87	2, 2, 2, 2	0
1	С	1002/1066~(93%)	-0.30	7 (0%) 87 79	2, 2, 2, 2	0
All	All	2004/2132~(93%)	-0.30	11 (0%) 91 84	1	0

All (11) RSRZ outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	RSRZ
1	С	451	GLY	3.4
1	С	564	ILE	3.4
1	С	972	LYS	3.1
1	А	365	GLY	2.7
1	А	564	ILE	2.5
1	А	366	SER	2.3
1	С	671	PRO	2.2
1	С	246	ASN	2.2
1	С	1005	GLU	2.1
1	A	246	ASN	2.1
1	С	813	GLN	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathbf{A}^2)$	Q<0.9
2	FE2	А	1099	1/1	0.92	0.06	2,2,2,2	0
3	HEM	А	1100	43/43	0.92	0.24	2,2,2,2	0
3	HEM	С	1100	43/43	0.94	0.18	2,2,2,2	0
2	FE2	С	1099	1/1	0.97	0.08	18,18,18,18	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

