

Full wwPDB NMR Structure Validation Report (i)

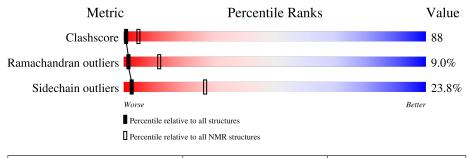
Feb 9, 2022 – 06:42 AM EST

PDB ID	:	1DVW
Title	:	NMR structure of 18 residue peptide from merp protein
Authors	:	Veglia, G.; Porcelli, F.; De Silva, T.M.; Prantner, A.M.; Opella, S.J.
Deposited on	:	2000-01-22

This is a Full wwPDB NMR Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/NMRValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (i)) were used in the production of this report:


MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
RCI	:	v_1n_11_5_13_A (Berjanski et al., 2005)
PANAV	:	Wang et al. (2010)
ShiftChecker	:	2.26
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.26

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $SOLUTION\ NMR$

The overall completeness of chemical shifts assignment was not calculated.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f NMR} \ {f archive} \ (\#{f Entries})$
Clashscore	158937	12864
Ramachandran outliers	154571	11451
Sidechain outliers	154315	11428

The table below summarises the geometric issues observed across the polymeric chains and their fit to the experimental data. The red, orange, yellow and green segments indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A cyan segment indicates the fraction of residues that are not part of the well-defined cores, and a grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain			
1	А	18	6%	44%	6%	44%

2 Ensemble composition and analysis (i)

This entry contains 10 models. Model 3 is the overall representative, medoid model (most similar to other models). The authors have identified model 10 as representative, based on the following criterion: *fewest violations*.

The following residues are included in the computation of the global validation metrics.

Well-defined (core) protein residues					
Well-defined core Residue range (total) Backbone RMSD (Å) Medoid model					
1	A:8-A:17 (10)	0.13	3		

Ill-defined regions of proteins are excluded from the global statistics.

Ligands and non-protein polymers are included in the analysis.

The models can be grouped into 2 clusters and 1 single-model cluster was found.

Cluster number	Models
1	1, 3, 4, 7, 8
2	2, 5, 9, 10
Single-model clusters	6

3 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 262 atoms, of which 138 are hydrogens and 0 are deuteriums.

• Molecule 1 is a protein called 18 RESIDUE PEPTIDE FROM MERP PROTEIN.

Mol	Chain	Residues	Atoms			Trace			
1	Δ	10	Total	С	Η	Ν	Ο	S	0
	A	18	261	78	138	20	22	3	0

• Molecule 2 is MERCURY (II) ION (three-letter code: HG) (formula: Hg).

Mol	Chain	Residues	Atoms	
2	Δ	1	Total Hg	
2	Л	1	1 1	

4 Residue-property plots (i)

4.1 Average score per residue in the NMR ensemble

These plots are provided for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey.

• Molecule 1: 18 RESIDUE PEPTIDE FROM MERP PROTEIN

4.2 Scores per residue for each member of the ensemble

Colouring as in section 4.1 above.

4.2.1 Score per residue for model 1

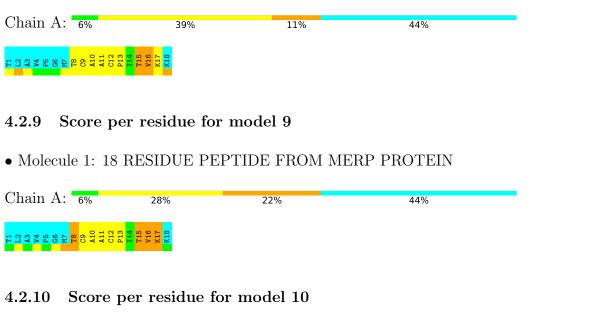
• Molecule 1: 18 RESIDUE PEPTIDE FROM MERP PROTEIN

Chain A:	44%	11%	44%	
11 12 12 12 13 13 13 13 13	C9 A110 A11 C112 C112 C113 T14 V16 K17 K18			

4.2.2 Score per residue for model 2

• Molecule 1: 18 RESIDUE PEPTIDE FROM MERP PROTEIN

Chain A: 50% 6% 44%


4.2.3 Score per residue for model 3 (medoid)

• Molecule 1: 18 RESIDUE PEPTIDE FROM MERP PROTEIN

Chain A:	44%	11%	44%
11 12 143 143 143 143 143 15 11 11 11	P13 114 115 K17 K18		
4.2.4 Score p	er residue for a	model 4	
• Molecule 1: 18	RESIDUE PEP	TIDE FROM ME	RP PROTEIN
Chain A: 6%	39%	11%	44%
T1 A3 66 78 A10 A11 A11 C12 C12 C12 C12 C12	P13 T14 V16 K17 K18		
4.2.5 Score p	er residue for 1	model 5	
_			
• Molecule 1: 18	3 RESIDUE PEP	TIDE FROM ME	CRP PROTEIN
Chain A: 179	6 28%	11%	44%
T1 L2 A3 A3 P5 G6 G6 G6 A1 A1 A10 C12 C12	P13 114 715 V16 K17 K18		
4.2.6 Score p	er residue for a	model 6	
• Molecule 1: 18	RESIDUE PEP	TIDE FROM ME	RP PROTEIN
Chain A:	28%	28%	44%
11 12 12 13 14 14 14 15 12 12 12 12 12 12 12 12 12 12 12 12 12	13 114 116 116 117 118		
4.2.7 Score p	er residue for a	model 7	
• Molecule 1: 18	RESIDUE PEP	TIDE FROM ME	RP PROTEIN
Chain A: 6%	39%	11%	44%
C 11 C 12 C 12	114 115 117 117 117 118		
HHAND ZHOAAD	THR XX		
4.2.8 Score p	er residue for a	model 8	
• Molecule 1: 18	RESIDUE PEP	TIDE FROM ME	RP PROTEIN

• Molecule 1: 18 RESIDUE PEPTIDE FROM MERP PROTEIN

Chain A:	6%	39%	11%	44%
T1 L2 P5 M7 M7	18 A10 C9 C12 C12 P13 P13 T15 T15 K17 K17 K18			

5 Refinement protocol and experimental data overview (i)

The models were refined using the following method: $hybrid\ distance\ geometry/simulated\ annealing.$

Of the 50 calculated structures, 10 were deposited, based on the following criterion: *structures with acceptable covalent geometry, structures with favorable non-bond energy, structures with the least restraint violations.*

The following table shows the software used for structure solution, optimisation and refinement.

Software name	Classification	Version
X-PLOR	structure solution	3.840
X-PLOR	refinement	3.840

No chemical shift data was provided.

6 Model quality (i)

6.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: HG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the (average) root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	B	ond lengths	Bond angles		
	Chain	RMSZ	$\#Z{>}5$	RMSZ	#Z>5	
1	А	$0.84{\pm}0.01$	$0{\pm}0/68~(~0.0{\pm}~0.0\%)$	$1.31 {\pm} 0.02$	$0{\pm}0/94~(~0.1{\pm}~0.3\%)$	
All	All	0.84	0/680~(~0.0%)	1.31	1/940~(~0.1%)	

There are no bond-length outliers.

All unique angle outliers are listed below.

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$\mathrm{Ideal}(^{o})$	Moo Worst	dels Total
1	А	11	ALA	N-CA-CB	-5.00	103.09	110.10	6	1

There are no chirality outliers.

There are no planarity outliers.

6.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble.

Mol	Chain	Non-H	H(model)	H(added)	Clashes
1	А	67	72	72	12 ± 2
All	All	680	720	720	123

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 88.

All unique clashes are listed below, sorted by their clash magnitude.

1DVW	T
------	---

Atom-1	Atom-2	Clash(Å)	Distance(Å)	Models	
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
1:A:15:THR:HG22	1:A:16:VAL:HG23	0.87	1.43	2	7
1:A:9:CYS:SG	1:A:11:ALA:HB3	0.85	2.12	4	9
1:A:15:THR:HG22	1:A:16:VAL:HG13	0.73	1.60	6	1
1:A:16:VAL:O	1:A:16:VAL:HG12	0.71	1.85	5	6
1:A:8:THR:O	1:A:8:THR:HG22	0.69	1.88	8	6
1:A:15:THR:HG22	1:A:16:VAL:N	0.68	2.02	7	10
1:A:12:CYS:N	1:A:13:PRO:CD	0.67	2.57	6	10
1:A:13:PRO:O	1:A:17:LYS:CB	0.55	2.55	10	7
1:A:17:LYS:CD	1:A:17:LYS:O	0.52	2.57	3	1
1:A:8:THR:HG23	1:A:13:PRO:HB3	0.52	1.81	2	1
1:A:15:THR:HG22	1:A:16:VAL:CG2	0.52	2.33	3	1
1:A:16:VAL:O	1:A:16:VAL:CG1	0.52	2.58	5	4
1:A:15:THR:CG2	1:A:16:VAL:N	0.51	2.72	7	6
1:A:15:THR:CG2	1:A:16:VAL:HG23	0.51	2.28	2	1
1:A:9:CYS:SG	1:A:11:ALA:CB	0.50	2.96	7	9
1:A:12:CYS:N	1:A:13:PRO:HD3	0.50	2.22	7	1
1:A:13:PRO:O	1:A:17:LYS:CA	0.49	2.60	1	6
1:A:9:CYS:C	1:A:11:ALA:N	0.48	2.66	6	10
1:A:8:THR:O	1:A:8:THR:CG2	0.47	2.62	10	3
1:A:17:LYS:CD	1:A:17:LYS:C	0.47	2.83	6	1
1:A:9:CYS:O	1:A:10:ALA:C	0.46	2.53	6	10
1:A:16:VAL:O	1:A:16:VAL:HG22	0.46	2.10	8	1
1:A:12:CYS:O	1:A:16:VAL:HG12	0.46	2.11	8	1
1:A:13:PRO:O	1:A:17:LYS:HB3	0.45	2.12	9	3
1:A:13:PRO:O	1:A:17:LYS:HB2	0.42	2.15	8	2
1:A:13:PRO:O	1:A:17:LYS:CG	0.42	2.68	10	1
1:A:17:LYS:O	1:A:17:LYS:HD3	0.41	2.15	3	1
1:A:13:PRO:O	1:A:17:LYS:HG2	0.41	2.16	3	1
1:A:8:THR:C	1:A:9:CYS:SG	0.41	2.98	6	1
1:A:8:THR:HA	1:A:13:PRO:CA	0.40	2.46	2	1
1:A:9:CYS:O	1:A:11:ALA:N	0.40	2.54	5	1

6.3 Torsion angles (i)

6.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the backbone conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed Outliers		P	erc	entiles
1	А	10/18~(56%)	$3\pm1~(31\pm7\%)$	$6\pm1~(60\pm10\%)$	$1\pm1 (9\pm7\%)$		1	12
All	All	100/180~(56%)	31 (31%)	60 (60%)	9 (9%)		1	12

All 3 unique Ramachandran outliers are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Models (Total)
1	А	16	VAL	5
1	А	8	THR	3
1	А	9	CYS	1

6.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the sidechain conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perc	entiles
1	А	8/14~(57%)	$6\pm1~(76\pm15\%)$	$2\pm1 (24\pm15\%)$	2	27
All	All	80/140~(57%)	61 (76%)	19 (24%)	2	27

All 5 unique residues with a non-rotameric sidechain are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Models (Total)
1	А	15	THR	10
1	А	14	ILE	4
1	А	17	LYS	3
1	А	9	CYS	1
1	А	12	CYS	1

6.3.3 RNA (i)

There are no RNA molecules in this entry.

6.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.5 Carbohydrates (i)

There are no monosaccharides in this entry.

6.6 Ligand geometry (i)

Of 1 ligands modelled in this entry, 1 is monoatomic - leaving 0 for Mogul analysis.

6.7 Other polymers (i)

There are no such molecules in this entry.

6.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

7 Chemical shift validation (i)

No chemical shift data were provided

