

Full wwPDB X-ray Structure Validation Report (i)

Aug 23, 2023 – 01:37 PM EDT

PDB ID	:	3DUF
Title	:	Snapshots of catalysis in the E1 subunit of the pyruvate dehydrogenase multi-
		enzyme complex
Authors	:	Pei, X.Y.; Titman, C.M.; Frank, R.A.W.; Leeper, F.J.; Luisi, B.F.
Deposited on	:	2008-07-17
Resolution	:	2.50 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.50 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	4661 (2.50-2.50)
Clashscore	141614	5346 (2.50-2.50)
Ramachandran outliers	138981	$5231 \ (2.50-2.50)$
Sidechain outliers	138945	5233 (2.50-2.50)
RSRZ outliers	127900	4559 (2.50-2.50)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	369	82%	16%	••
1	С	369	% 81%	17%	••
1	Е	369	^{2%} 75%	22%	•••
1	G	369	% 75%	22%	••
2	В	325	81%	18%	•

Continued from previous page								
Mol	Chain	Length	Quality of chain					
2	D	325	% • 83%	16%				
2	F	325	% 74%	25%				
2	Н	325	78%	21% •				
3	Ι	428	5% • 91%					
3	J	428	.% 5% • 92%					

2 Entry composition (i)

There are 7 unique types of molecules in this entry. The entry contains 22480 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
1	Δ	265	Total	С	Ν	0	\mathbf{S}	0	0	0
	A	305	2866	1832	488	538	8	0	0	0
1	C	265	Total	С	Ν	0	S	0	0	0
		305	2845	1818	485	534	8			
1	F	265	Total	С	Ν	0	S	0	0	0
	305	2868	1832	488	540	8	0	0	0	
1 G	365	Total	С	Ν	0	S	0	0	0	
		2881	1843	489	541	8	0		0	

• Molecule 1 is a protein called Pyruvate dehydrogenase E1 component subunit alpha.

• Molecule 2 is a protein called Pyruvate dehydrogenase E1 component subunit beta.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
	В	294	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	D	324	2488	1586	424	470	8	0	0	0
0	Л	204	Total	С	Ν	0	S	0	0	0
	D	324	2488	1586	424	470	8			0
0	Б	204	Total	С	Ν	0	S	0	0	0
	324	2486	1583	424	471	8	0	0	0	
2 H	294	Total	С	Ν	0	S	0	0	0	
	11	324	2488	1586	424	470	8	0	0	0

• Molecule 3 is a protein called Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
2	Т	38	Total	С	Ν	Ο	S	0	0	0
0 1	1		277	168	59	49	1	0		
2	т	36	Total	С	Ν	Ο	S	0	0	0
ວ J		263	160	51	51	1	0	U	0	

• Molecule 4 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	1	Total Mg 1 1	0	0
4	С	1	Total Mg 1 1	0	0
4	D	1	Total Mg 1 1	0	0
4	Е	1	Total Mg 1 1	0	0
4	G	1	Total Mg 1 1	0	0

• Molecule 5 is 2-{4-[(4-AMINO-2-METHYLPYRIMIDIN-5-YL)METHYL]-5-[(1R)-1-HY DROXYETHYL]-3-METHYL-2-THIENYL}ETHYL TRIHYDROGEN DIPHOSPHATE (three-letter code: R1T) (formula: C₁₅H₂₃N₃O₈P₂S).

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf		
5 A	1	Total	С	Ν	Ο	Р	S	0	0		
		29	15	3	8	2	1	0	0		
5	5 C	С	1	Total	С	Ν	0	Р	S	0	0
0		1	29	15	3	8	2	1	0	0	
5	F	F 1	Total	С	Ν	0	Р	S	0	0	
D E	1	29	15	3	8	2	1	0	0		
5 G	С	G 1	Total	С	Ν	0	Р	S	0	0	
	G		29	15	3	8	2	1	0	0	

• Molecule 6 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	В	1	Total K 1 1	0	0
6	D	1	Total K 1 1	0	0

• Molecule 7 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	А	51	Total O 51 51	0	0
7	В	43	Total O 43 43	0	0
7	С	56	Total O 56 56	0	0
7	D	48	Total O 48 48	0	0
7	Ι	5	$\begin{array}{cc} \text{Total} & \text{O} \\ 5 & 5 \end{array}$	0	0
7	Е	54	$\begin{array}{ccc} \text{Total} & \text{O} \\ 54 & 54 \end{array}$	0	0
7	F	40	Total O 40 40	0	0
7	G	47	$\begin{array}{cc} \text{Total} & \text{O} \\ 47 & 47 \end{array}$	0	0
7	Н	55	Total O 55 55	0	0
7	J	8	Total O 8 8	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Pyruvate dehydrogenase E1 component subunit alpha

• Molecule 2: Pyruvate dehydrogenase E1 component subunit beta

Chain H:	78%	21%	
MET A1 A1 A12 N19 V36 F37	1.00 1.57 1.57 1.57 1.62 1.62 1.62 1.62 1.62 1.93 1.96 1.96 1.96 1.96 1.100 1.1100 1.1100	Glub H109 1111 11113 11113 11113 11113 11113 11133 11132 1123 1123 1123 1123 1123 1123 1123 1123 1123	E133
G141 V145 L157 L157 T161 P166	41/1 4176 4180 4181 6182 6182 6182 1192 1192 1192 1192 1193 1193 11234 11235 1233 1233 1233 1233 1233	1246 1246 1255 1257 1258 1268 1277 1281 1281 1281 1281 1281	Y297 Y298 P299
q302 W307 A318 V321 N322 N323 F324			
• Molecule 3: complex	Dihydrolipoyllysine-residue acetyl	transferase component of p	yruvate dehydrogenase
Chain I: 5% ·	91%		
MET ALA ALA GLU PHE LYS LYS LEU PRO ASP ILE	dury dury dury dury dury dury dury dury	LEU CYS QLU QLU QLU QLU ASP ASP ALA ALA ALA ALA YAL VAL VAL VAL VAL VAL VAL VAL VAL VAL CYS GLU CYS GLU CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	
VAL PRO GLU GLV GLY THR VAL ALA ALA THR VAL CLY	THR THR THR THR THR THR ASP ASP ASP ALA ALA CLU CLU CLU CLU CLU CLU	LTU CLU CLU CLU CLU CLU CLU CLU CLU CLU CL	ALA ALA ALA GLU
ALA GLU GLU GLY PRO ASN ASN ASN A12 V129 1130	M131 M132 P133 P133 P135 P135 P136 P136 P146 P146 P156 P156 P156 P156 P156 P156 P156 P156 P156 P156 P156 P156 P136	LEU LEU GLY GLY GLY GLY ALA ALA ALA ALA ALA ALA ALA ALA ALA A	ALA LYS PRO ALA ALA THR
THR GLU GLU GLU PHE PRO GLU THR ARG GLU	NET NET SER SER SER ALG ALG ALA ALA ALA ALA ALA ALA ALA ALA	MEI GLU GLU GLU ALA VAL LYS LLYS LLYS ALA ALA ALA ALA ALA ALA ALA	ALA GLY LYS CLY TLE TLS
LYS LEU THR PHE LEU PRO VAL VAL LYS	LLEU LLEU VAL SER SER ARG GLU TYR PRO VAL TYR ARG VAL LLEU ARS ASP ASP ASP ASP ASP ASP ASP ASP ASP AS	LYS HIS TYR TYR ASN ALA ALA ALA ALA ALA ASP ASP ASP ASP ASP ASP ASP ASP ASP AS	ILLS LYS HIS ALA ASP
ARG LYS PRO PRO TLE PHE ALA ALA ALA GLU GLU	ALL ALL ALLA ALLA ALLA ALLA ALLA ARG ALSP ALA ALA CLY GLY GLY GLY GLY GLY GLY GLY CLY CLY CLY CLY CLY CLY CLY CLY CLY C	THR ASN TLE GLY SER SLY SLA GLY GLY GLY CLA THR PTRP PTRP PRO TLE TLE TRP PRO PRO VAL	ALA TLE LLEU GLY TLE
GLY ARG ILE ALA GLU CYS PRO PRO TLE VAL ARG	ALST CILY CILY CILU CILU ALA ALA ALA ALA ALA ALA ARS ARS ARS ARS ARS ARS ARS ARS ARS AR	ALA CLYS LYS ALA ALA ALA ALA ALEU LEU CLU CLU CLU CLU CLU CLU CLU CLU CLU	GLU ALA
• Molecule 3: complex	Dihydrolipoyllysine-residue acetyl	transferase component of p	yruvate dehydrogenase
Chain J: 5% •	92%		

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	69.25Å 232.00 Å 92.61 Å	Deperitor
a, b, c, α , β , γ	90.00° 90.74° 90.00°	Depositor
$\mathbf{P}_{\text{oscolution}}(\hat{\mathbf{A}})$	59.44 - 2.50	Depositor
Resolution (A)	59.45 - 2.50	EDS
% Data completeness	98.9 (59.44-2.50)	Depositor
(in resolution range)	98.8(59.45 - 2.50)	EDS
R _{merge}	0.11	Depositor
R _{sym}	0.11	Depositor
$< I/\sigma(I) > 1$	$4.25 (at 2.51 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.2.0019	Depositor
D D.	0.188 , 0.263	Depositor
Π, Π_{free}	0.189 , 0.264	DCC
R_{free} test set	5027 reflections $(5.06%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	43.0	Xtriage
Anisotropy	0.402	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.32 , 24.9	EDS
L-test for twinning ²	$< L >=0.40, < L^2>=0.23$	Xtriage
Estimated twinning fraction	0.074 for h,-k,-l	Xtriage
F_o, F_c correlation	0.94	EDS
Total number of atoms	22480	wwPDB-VP
Average B, all atoms $(Å^2)$	42.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.68% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: K, MG, R1T

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles	
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.38	0/2929	0.59	1/3961~(0.0%)
1	С	0.38	0/2908	0.57	0/3937
1	Е	0.35	0/2930	0.57	2/3963~(0.1%)
1	G	0.37	0/2944	0.59	1/3980~(0.0%)
2	В	0.37	0/2534	0.64	1/3437~(0.0%)
2	D	0.39	0/2534	0.65	2/3437~(0.1%)
2	F	0.35	0/2532	0.61	0/3433
2	Н	0.36	0/2534	0.62	2/3437~(0.1%)
3	Ι	0.32	0/278	0.67	0/369
3	J	0.30	0/264	0.76	1/351~(0.3%)
All	All	0.37	0/22387	0.60	10/30305~(0.0%)

There are no bond length outliers.

A 11 /	(10)	1.1	1.	1 •		1 1	1.1.
AII ((10)) bond	angle	outners	are	listed	below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	Ε	207	SER	N-CA-CB	-7.11	99.84	110.50
1	А	284	LYS	CB-CA-C	-6.65	97.10	110.40
2	D	236	ARG	CB-CA-C	-6.55	97.30	110.40
2	В	236	ARG	CB-CA-C	-6.46	97.48	110.40
1	Ε	207	SER	N-CA-C	6.30	128.01	111.00
1	G	206	ILE	N-CA-C	-5.71	95.58	111.00
2	Н	96	GLN	N-CA-C	5.56	126.02	111.00
2	Η	236	ARG	CB-CA-C	-5.53	99.35	110.40
3	J	155	ASN	CB-CA-C	-5.52	99.37	110.40
2	D	123	HIS	N-CA-C	5.12	124.82	111.00

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2866	0	2818	53	0
1	С	2845	0	2776	52	0
1	Е	2868	0	2825	89	0
1	G	2881	0	2844	71	0
2	В	2488	0	2515	43	0
2	D	2488	0	2515	42	0
2	F	2486	0	2506	60	0
2	Н	2488	0	2515	59	0
3	Ι	277	0	277	28	0
3	J	263	0	259	25	0
4	А	1	0	0	0	0
4	С	1	0	0	0	0
4	D	1	0	0	0	0
4	Е	1	0	0	0	0
4	G	1	0	0	0	0
5	А	29	0	20	2	0
5	С	29	0	20	2	0
5	Е	29	0	20	6	0
5	G	29	0	20	5	0
6	В	1	0	0	0	0
6	D	1	0	0	0	0
7	А	51	0	0	2	0
7	В	43	0	0	3	0
7	С	56	0	0	1	0
7	D	48	0	0	3	0
7	Е	54	0	0	6	0
7	F	40	0	0	2	0
7	G	47	0	0	5	0
7	Н	55	0	0	2	0
7	Ι	5	0	0	0	0
7	J	8	0	0	0	0
All	All	22480	0	21930	476	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 11.

All (476) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
5:E:1370:R1T:N4'	5:E:1370:R1T:HP22	1.35	1.41
5:E:1370:R1T:H4'2	5:E:1370:R1T:CP2	1.64	1.08
1:E:115:LEU:HD21	1:E:325:ILE:HD13	1.36	1.03
1:E:206:ILE:HG22	1:E:207:SER:H	1.23	1.01
1:E:143:ILE:HD11	2:H:127:LEU:HD13	1.45	0.98
1:E:109:ILE:HD11	1:E:118:ALA:HB2	1.51	0.93
1:E:147:GLN:H	1:E:147:GLN:NE2	1.70	0.90
1:E:58:ILE:HD11	1:E:318:ILE:HG12	1.53	0.90
1:E:147:GLN:H	1:E:147:GLN:HE21	1.15	0.89
2:H:238:VAL:HB	2:H:268:ILE:HD13	1.54	0.87
5:E:1370:R1T:N4'	5:E:1370:R1T:CP2	2.30	0.85
3:I:154:LYS:HE2	3:I:154:LYS:N	1.95	0.82
1:G:69:GLN:HG3	1:G:71:ARG:HG3	1.62	0.81
1:A:277:ASP:HA	1:A:280:ARG:HG2	1.62	0.81
1:A:9:PHE:HZ	1:C:231:ILE:HD11	1.44	0.80
1:A:131:ILE:HD13	1:A:137:VAL:HG23	1.61	0.80
1:E:270:PRO:HG3	1:E:278:PRO:HB3	1.66	0.78
2:H:2:GLN:HG3	2:H:180:ARG:HH21	1.49	0.78
2:H:207:ILE:HD13	2:H:233:VAL:HG11	1.65	0.78
1:E:95:GLU:HG3	1:E:165:ALA:HB2	1.67	0.77
5:G:1370:R1T:H7'2	5:G:1370:R1T:OP1	1.83	0.77
1:E:9:PHE:CE1	1:G:231:ILE:HD11	2.20	0.76
1:E:206:ILE:HG22	1:E:207:SER:N	1.98	0.76
1:E:294:ASP:HB3	1:E:297:VAL:HG23	1.68	0.76
1:E:300:ARG:O	1:E:304:GLU:HG3	1.86	0.75
2:D:264:ARG:HD3	7:D:1327:HOH:O	1.86	0.75
5:E:1370:R1T:HP22	5:E:1370:R1T:H4'2	0.77	0.75
1:A:183:GLU:OE1	2:B:58:ALA:HB1	1.86	0.74
3:I:157:ARG:HE	3:I:158:VAL:HG13	1.53	0.73
2:B:117:PRO:HA	2:B:171:GLU:O	1.89	0.73
2:D:281:ILE:HG23	2:D:282:LEU:HD12	1.71	0.73
3:I:130:ILE:HD12	3:I:154:LYS:HD2	1.71	0.72
1:E:147:GLN:HE21	1:E:147:GLN:N	1.87	0.72
2:F:5:MET:O	2:F:9:ILE:HG12	1.90	0.72
3:I:132:MET:HE3	3:I:133:PRO:HD3	1.70	0.72
3:J:155:ASN:HB2	3:J:158:VAL:HG22	1.71	0.71
1:C:129:ASN:O	1:C:131:ILE:HD12	1.90	0.71
1:C:314:GLU:O	1:C:318:ILE:HG12	1.90	0.70
5:E:1370:R1T:H7'2	5:E:1370:R1T:OP1	1.90	0.70
2:D:146:ILE:HG12	2:D:170:LEU:HB2	1.71	0.70
2:B:29:ASP:HB2	7:B:1340:HOH:O	1.91	0.70
1:E:325:ILE:HG13	7:E:1418:HOH:O	1.91	0.69

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:G:277:ASP:HB3	1:G:280:ARG:HD3	1.75	0.69
1:C:142:ILE:HD13	1:C:142:ILE:O	1.93	0.69
1:G:131:ILE:HD12	1:G:131:ILE:H	1.57	0.69
2:B:311:PHE:O	2:B:315:ILE:HG12	1.93	0.69
2:F:120:GLY:HA3	2:F:298:TYR:OH	1.93	0.69
1:C:60:ASP:OD2	1:C:79:ALA:HB2	1.92	0.68
2:F:127:LEU:HD13	1:G:143:ILE:HD11	1.76	0.68
2:D:177:ARG:HD3	7:D:1346:HOH:O	1.93	0.67
1:C:98:ILE:HD13	1:C:111:HIS:CD2	2.29	0.67
2:F:243:ILE:HG21	2:F:279:ARG:NH1	2.10	0.67
1:G:28:GLU:CD	1:G:28:GLU:H	1.97	0.67
1:A:109:ILE:HD11	1:A:118:ALA:HB2	1.75	0.67
2:H:207:ILE:HD13	2:H:233:VAL:CG1	2.25	0.66
2:F:122:VAL:HG23	2:F:124:THR:HG23	1.77	0.66
2:H:2:GLN:HG3	2:H:180:ARG:NH2	2.08	0.66
2:F:20:ASP:HB3	2:F:23:VAL:HG23	1.78	0.66
1:A:206:ILE:HG22	1:A:207:SER:H	1.60	0.66
2:D:122:VAL:HG23	2:D:124:THR:HG23	1.78	0.66
2:F:33:ASN:ND2	2:F:38:ARG:HH12	1.94	0.65
1:G:109:ILE:HD11	1:G:118:ALA:HB2	1.76	0.65
1:A:27:ASN:HD21	1:A:31:GLU:HB2	1.61	0.65
1:G:217:LYS:HD2	1:G:218:THR:HG23	1.77	0.65
2:H:122:VAL:HG23	2:H:124:THR:HG23	1.77	0.65
2:H:286:ALA:HB1	2:H:287:PRO:HD2	1.78	0.64
3:I:155:ASN:HA	3:I:158:VAL:CG2	2.28	0.64
3:I:133:PRO:CD	3:I:134:SER:H	2.10	0.64
3:I:154:LYS:HE2	3:I:154:LYS:H	1.63	0.64
1:A:49:LEU:O	1:A:53:MET:HG3	1.98	0.64
1:E:270:PRO:CG	1:E:278:PRO:HB3	2.27	0.64
1:A:231:ILE:HD11	1:C:9:PHE:CZ	2.33	0.63
2:B:1:ALA:HB3	2:B:182:GLU:OE1	1.98	0.63
1:E:129:ASN:O	1:E:131:ILE:HD12	1.99	0.63
1:E:223:ALA:HB2	1:E:260:LEU:HD23	1.80	0.63
3:J:152:THR:HB	3:J:155:ASN:HD22	1.62	0.63
2:B:102:TYR:OH	2:D:299:PRO:HA	1.99	0.63
1:C:109:ILE:HD11	1:C:118:ALA:HB2	1.81	0.63
2:D:159:SER:OG	2:D:189:THR:HB	1.99	0.63
2:H:78:PRO:HG2	2:H:114:ILE:HD13	1.80	0.62
1:A:34:ASN:OD1	1:A:36:GLU:HG3	1.98	0.62
2:D:277:ASN:O	2:D:281:ILE:HB	1.99	0.62
2:F:57:LEU:HD11	5:G:1370:R1T:HM41	1.80	0.62

	A h o	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:D:89:VAL:O	2:D:89:VAL:HG22	1.99	0.62
1:E:321:ALA:O	1:E:325:ILE:HG12	1.99	0.62
2:B:299:PRO:HA	2:D:102:TYR:OH	2.00	0.62
1:E:57:ARG:O	1:E:61:GLN:HG3	1.99	0.62
1:E:300:ARG:HA	7:E:1417:HOH:O	1.99	0.62
2:H:38:ARG:HG2	2:H:38:ARG:HH11	1.64	0.62
1:E:246:LYS:HG3	7:E:1393:HOH:O	1.99	0.62
1:E:115:LEU:HD21	1:E:325:ILE:CD1	2.22	0.62
5:A:1370:R1T:OP1	5:A:1370:R1T:N4'	2.30	0.61
2:B:203:ASP:HB3	2:B:322:MET:HE2	1.81	0.61
1:A:206:ILE:HG22	1:A:207:SER:N	2.16	0.61
2:H:125:PRO:HG2	2:H:128:HIS:CE1	2.35	0.61
1:E:352:PRO:HD2	1:E:355:LEU:HD12	1.80	0.61
1:C:113:LEU:HD12	1:C:114:PRO:HD2	1.83	0.61
1:E:59:LEU:HA	7:E:1418:HOH:O	2.00	0.61
3:J:152:THR:HB	3:J:155:ASN:ND2	2.14	0.61
2:F:82:PHE:HB2	2:F:85:PHE:CE2	2.36	0.60
2:F:117:PRO:HA	2:F:171:GLU:O	2.01	0.60
2:F:299:PRO:HA	2:H:102:TYR:OH	2.01	0.60
2:F:58:ALA:HA	1:G:178:GLN:NE2	2.16	0.60
2:D:11:ASP:O	2:D:15:ILE:HG12	2.01	0.60
1:G:69:GLN:HG3	1:G:71:ARG:CG	2.31	0.60
3:I:152:THR:OG1	3:I:158:VAL:HG11	2.02	0.60
2:H:96:GLN:O	2:H:100:ILE:HG12	2.01	0.60
3:J:155:ASN:C	3:J:157:ARG:H	2.05	0.60
1:C:321:ALA:O	1:C:325:ILE:HG12	2.02	0.60
1:A:6:GLN:CD	1:A:6:GLN:H	2.06	0.60
1:A:123:ARG:HB3	2:D:302:GLN:HE21	1.68	0.59
1:A:95:GLU:HG3	1:A:165:ALA:HB2	1.83	0.59
2:B:128:HIS:HE1	1:C:142:ILE:HD11	1.67	0.59
1:C:10:ALA:O	1:C:14:GLU:HG3	2.02	0.59
2:H:228:ILE:HD12	2:H:228:ILE:N	2.17	0.59
3:I:133:PRO:HD2	3:I:134:SER:H	1.67	0.59
2:F:123:HIS:HD2	2:F:304:GLU:OE1	1.86	0.59
1:C:142:ILE:HD13	1:C:142:ILE:C	2.23	0.59
3:I:157:ARG:NE	3:I:158:VAL:HG13	2.17	0.58
1:G:330:LYS:O	1:G:334:GLU:HG3	2.02	0.58
1:E:270:PRO:CB	1:E:278:PRO:HB3	2.32	0.58
3:J:159:LEU:C	3:J:159:LEU:HD12	2.23	0.58
1:C:192:LYS:HE2	1:C:255:GLY:O	2.04	0.58
1:G:85:GLN:HG2	1:G:200:GLN:HE22	1.67	0.58

	A 4 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:G:105:VAL:O	1:G:109:ILE:HG12	2.04	0.58
1:A:284:LYS:O	1:A:284:LYS:HG2	2.03	0.58
2:D:117:PRO:HB2	2:D:173:LEU:HD21	1.85	0.58
1:G:56:THR:CB	1:G:86:ILE:HD11	2.34	0.58
2:B:120:GLY:HA3	2:B:298:TYR:OH	2.04	0.58
2:B:127:LEU:HD13	1:C:143:ILE:HD11	1.86	0.58
3:I:155:ASN:HA	3:I:158:VAL:HG22	1.84	0.58
1:A:301:LYS:HE2	7:A:1394:HOH:O	2.03	0.57
2:B:59:GLU:H	2:B:59:GLU:CD	2.07	0.57
1:G:92:LEU:HD11	1:G:168:ILE:HG21	1.84	0.57
3:I:157:ARG:C	3:I:157:ARG:HD2	2.24	0.57
2:F:36:VAL:HG23	2:F:37:PHE:CD2	2.39	0.57
2:B:38:ARG:HD2	2:B:41:GLU:OE1	2.05	0.57
2:D:155:GLY:HA3	2:D:190:ILE:HG12	1.87	0.57
3:I:157:ARG:HE	3:I:158:VAL:CG1	2.18	0.57
1:E:44:GLU:HB2	7:E:1407:HOH:O	2.05	0.57
1:E:326:LYS:O	1:E:329:ILE:HG22	2.04	0.57
2:F:296:THR:HG21	1:G:344:ILE:HD13	1.85	0.57
1:G:66:LEU:HD13	1:G:329:ILE:HD11	1.87	0.57
1:G:105:VAL:N	1:G:106:PRO:CD	2.68	0.57
1:A:284:LYS:O	1:A:288:ASN:ND2	2.38	0.57
3:I:155:ASN:ND2	3:I:158:VAL:HG23	2.20	0.57
1:G:304:GLU:HA	7:G:1384:HOH:O	2.04	0.57
1:E:362:TYR:O	1:E:366:GLU:HB2	2.05	0.56
2:F:54:ASP:HB3	7:G:1379:HOH:O	2.04	0.56
1:A:344:ILE:HG23	1:A:355:LEU:HD22	1.85	0.56
1:A:109:ILE:HD11	1:A:118:ALA:CB	2.35	0.56
1:C:330:LYS:O	1:C:334:GLU:HG3	2.05	0.56
3:J:152:THR:HB	3:J:158:VAL:HG11	1.87	0.56
1:E:155:ALA:HB2	1:E:195:ALA:HB2	1.88	0.56
1:E:280:ARG:NH2	2:H:36:VAL:HA	2.21	0.56
1:G:192:LYS:HE2	1:G:255:GLY:O	2.05	0.56
1:E:313:GLU:O	1:E:317:VAL:HG23	2.06	0.56
1:G:60:ASP:OD2	1:G:79:ALA:HB2	2.06	0.56
2:H:120:GLY:HA3	2:H:298:TYR:OH	2.05	0.56
2:H:277:ASN:O	2:H:281:ILE:HB	2.05	0.56
1:A:38:MET:SD	1:A:39:PRO:HD2	2.46	0.56
1:C:98:ILE:HD12	1:C:98:ILE:N	2.21	0.56
1:G:109:ILE:HD11	1:G:118:ALA:CB	2.36	0.56
1:E:40:GLU:CD	1:E:40:GLU:H	2.09	0.56
2:F:124:THR:HB	2:F:125:PRO:HD2	1.88	0.55

	1.5	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:E:32:VAL:HG23	7:E:1422:HOH:O	2.06	0.55
2:F:89:VAL:HG22	2:F:89:VAL:O	2.06	0.55
1:C:102:TYR:OH	5:C:1370:R1T:H71	2.06	0.55
1:E:339:LYS:HB3	1:E:366:GLU:OE2	2.07	0.55
1:A:102:TYR:OH	5:A:1370:R1T:H71	2.07	0.55
2:H:157:LEU:O	2:H:161:ILE:HG12	2.07	0.55
1:E:9:PHE:CD1	1:G:229:PRO:HB3	2.42	0.55
2:B:127:LEU:HD13	1:C:143:ILE:CD1	2.36	0.55
1:E:192:LYS:NZ	1:E:192:LYS:HB3	2.22	0.55
2:F:77:VAL:HG12	2:F:77:VAL:O	2.06	0.55
1:C:105:VAL:O	1:C:109:ILE:HG12	2.07	0.55
1:G:277:ASP:OD2	1:G:280:ARG:HG3	2.07	0.55
1:G:357:GLU:O	1:G:361:ILE:HG12	2.07	0.55
3:J:138:TYR:OH	3:J:160:LYS:HD3	2.07	0.55
2:B:228:ILE:HG23	2:B:322:MET:HE2	1.87	0.54
1:A:148:TYR:CE1	1:A:171:THR:HB	2.42	0.54
2:D:117:PRO:HA	2:D:171:GLU:O	2.08	0.54
3:I:130:ILE:CD1	3:I:154:LYS:HD2	2.36	0.54
2:B:90:MET:HG3	2:D:90:MET:HG3	1.90	0.54
1:E:98:ILE:HG12	1:E:168:ILE:HG22	1.90	0.54
2:F:134:GLY:HA3	2:H:138:GLN:HE22	1.72	0.54
2:F:296:THR:CG2	1:G:344:ILE:HD13	2.37	0.54
3:I:155:ASN:CG	3:I:158:VAL:HG23	2.28	0.54
1:E:39:PRO:HG3	1:E:243:ALA:HB2	1.89	0.54
1:E:58:ILE:CD1	1:E:318:ILE:HG23	2.38	0.54
1:A:215:VAL:O	1:A:215:VAL:HG22	2.08	0.54
2:H:89:VAL:HG22	2:H:89:VAL:O	2.09	0.53
2:H:117:PRO:HA	2:H:171:GLU:O	2.08	0.53
1:E:109:ILE:HD11	1:E:118:ALA:CB	2.33	0.53
1:G:51:ARG:HG3	1:G:51:ARG:HH11	1.74	0.53
2:H:246:ILE:O	2:H:250:VAL:HG23	2.09	0.53
1:G:271:HIS:CD2	1:G:272:THR:HG23	2.43	0.53
1:G:131:ILE:HD12	1:G:131:ILE:N	2.22	0.53
1:A:51:ARG:HG2	1:A:317:VAL:HG21	1.90	0.53
2:B:181:GLN:HG2	2:B:182:GLU:N	2.22	0.53
3:I:135:VAL:HG11	3:I:155:ASN:HB3	1.91	0.53
3:I:160:LYS:HE2	3:I:160:LYS:HA	1.91	0.53
1:E:98:ILE:HG12	1:E:168:ILE:CG2	2.38	0.53
2:H:109:HIS:ND1	2:H:111:PRO:HD3	2.23	0.53
2:B:5:MET:O	2:B:9:ILE:HG12	2.08	0.53
1:C:223:ALA:HB2	1:C:260:LEU:HD23	1.90	0.53

A t a sup 1	A 4 area 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:E:270:PRO:HB3	1:E:278:PRO:HB3	1.91	0.52
3:I:130:ILE:O	3:I:154:LYS:HB3	2.09	0.52
1:E:138:LEU:HD11	2:F:71:LEU:HD11	1.91	0.52
2:F:32:VAL:HG23	2:F:33:ASN:N	2.24	0.52
1:E:38:MET:SD	1:E:39:PRO:HD2	2.50	0.52
1:E:203:ARG:HH11	1:E:203:ARG:HG2	1.74	0.52
2:F:235:LEU:C	2:F:237:THR:H	2.12	0.52
3:J:130:ILE:O	3:J:154:LYS:HB3	2.09	0.52
1:G:26:LEU:HB2	1:G:237:ASP:OD1	2.10	0.52
1:G:38:MET:SD	1:G:39:PRO:HD2	2.50	0.52
1:G:130:GLN:HE21	2:H:105:GLY:HA3	1.75	0.52
1:A:131:ILE:HD13	1:A:137:VAL:CG2	2.36	0.52
1:E:209:PRO:HG2	1:E:212:LYS:HD2	1.92	0.52
2:H:112:ILE:O	2:H:166:PRO:HA	2.10	0.52
2:D:117:PRO:HB2	2:D:173:LEU:CD2	2.40	0.52
2:B:25:ILE:HD13	2:B:77:VAL:HB	1.92	0.51
1:C:183:GLU:OE1	2:D:58:ALA:HB1	2.09	0.51
2:H:180:ARG:HB3	7:H:349:HOH:O	2.09	0.51
1:G:129:ASN:O	1:G:131:ILE:HD12	2.10	0.51
3:J:138:TYR:CE1	3:J:159:LEU:HD11	2.46	0.51
1:E:211:GLU:C	1:E:212:LYS:HE2	2.30	0.51
1:G:206:ILE:HG22	1:G:207:SER:H	1.75	0.51
2:B:302:GLN:HB2	1:C:338:GLN:NE2	2.25	0.51
1:C:105:VAL:N	1:C:106:PRO:CD	2.73	0.51
3:I:133:PRO:CD	3:I:134:SER:N	2.73	0.51
1:E:329:ILE:HD13	1:E:329:ILE:O	2.11	0.51
2:F:300:PHE:CE2	1:G:126:PHE:HB3	2.46	0.51
3:J:152:THR:CB	3:J:158:VAL:HG11	2.40	0.51
1:G:69:GLN:CG	1:G:71:ARG:HG3	2.38	0.51
2:B:219:ALA:HA	2:B:315:ILE:HD11	1.93	0.51
1:A:9:PHE:CZ	1:C:231:ILE:HD11	2.35	0.50
1:E:205:ALA:O	1:E:206:ILE:HB	2.11	0.50
2:H:194:LYS:HD3	7:H:361:HOH:O	2.11	0.50
2:H:12:ALA:HB3	2:H:157:LEU:HD23	1.93	0.50
2:F:125:PRO:HG2	2:F:128:HIS:CE1	2.47	0.50
2:D:298:TYR:CG	2:D:299:PRO:HD2	2.47	0.50
2:F:311:PHE:O	2:F:315:ILE:HG12	2.10	0.50
1:A:143:ILE:HD11	2:D:127:LEU:HD13	1.93	0.50
2:B:324:PHE:HZ	2:D:282:LEU:HD11	1.76	0.50
2:F:79:GLU:O	2:F:80:ILE:HD13	2.12	0.50
1:G:43:ASP:O	1:G:47:LYS:HG3	2.12	0.50

	a de pagem	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:B:115:ARG:HD3	7:B:1332:HOH:O	2.12	0.50	
2:F:3:MET:HB2	2:F:7:GLN:HB2	1.94	0.50	
2:F:11:ASP:O	2:F:15:ILE:HG12	2.12	0.50	
1:G:131:ILE:H	1:G:131:ILE:CD1	2.24	0.50	
3:J:159:LEU:HD12	3:J:159:LEU:O	2.12	0.50	
1:G:15:LYS:O	1:G:18:GLU:HB3	2.12	0.49	
1:E:7:PHE:HB3	1:E:8:PRO:HD2	1.94	0.49	
1:E:304:GLU:C	1:E:306:LYS:H	2.13	0.49	
2:D:92:SER:O	2:D:96:GLN:HB2	2.13	0.49	
1:A:233:VAL:HG22	1:A:234:ASP:N	2.27	0.49	
1:A:280:ARG:NE	1:A:280:ARG:HA	2.28	0.49	
2:H:2:GLN:CG	2:H:180:ARG:HH21	2.20	0.49	
1:A:289:GLU:O	1:A:292:LYS:HG2	2.12	0.49	
2:F:114:ILE:HD12	2:F:114:ILE:N	2.28	0.49	
1:G:183:GLU:OE1	2:H:58:ALA:HB1	2.13	0.49	
2:D:286:ALA:HB1	2:D:287:PRO:HD2	1.95	0.49	
2:H:318:ALA:O	2:H:322:MET:HG2	2.13	0.49	
2:H:255:ARG:NH1	2:H:321:VAL:O	2.45	0.48	
2:B:277:ASN:O	2:B:281:ILE:HB	2.14	0.48	
1:E:223:ALA:HB2	1:E:260:LEU:CD2	2.44	0.48	
1:E:228:ILE:HB	1:E:229:PRO:HD2	1.96	0.48	
2:F:219:ALA:HA	2:F:315:ILE:HD11	1.94	0.48	
2:F:97:MET:HA	2:F:100:ILE:HG12	1.96	0.48	
2:F:204:ILE:HD11	2:F:257:ILE:HG23	1.95	0.48	
2:F:247:ILE:HD11	2:F:279:ARG:HD2	1.95	0.48	
3:I:157:ARG:HG2	3:I:157:ARG:HH21	1.78	0.48	
2:H:38:ARG:HG2	2:H:38:ARG:NH1	2.28	0.48	
2:H:228:ILE:HD12	2:H:228:ILE:H	1.76	0.48	
2:H:285:GLU:OE2	3:J:136:ARG:HD3	2.13	0.48	
3:J:132:MET:SD	3:J:135:VAL:HG21	2.53	0.48	
1:A:105:VAL:N	1:A:106:PRO:CD	2.76	0.48	
2:B:124:THR:HB	2:B:125:PRO:HD2	1.95	0.48	
2:B:235:LEU:HD21	2:B:246:ILE:HD11	1.94	0.48	
1:E:143:ILE:CD1	2:H:127:LEU:HD13	2.32	0.48	
2:D:118:PHE:O	2:D:172:HIS:HA	2.14	0.48	
2:F:281:ILE:HD12	3:J:133:PRO:HB2	1.96	0.48	
1:G:71:ARG:HH22	1:G:329:ILE:HG21	1.79	0.48	
1:A:277:ASP:HA	1:A:280:ARG:CG	2.36	0.48	
2:F:57:LEU:HD11	5:G:1370:R1T:CM4	2.44	0.48	
1:A:27:ASN:ND2	1:A:31:GLU:HB2	2.28	0.47	
3:I:132:MET:HG3	3:I:132:MET:O	2.14	0.47	

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
3:J:153:GLY:C	3:J:155:ASN:H	2.16	0.47	
1:A:231:ILE:HD11	1:C:9:PHE:CE1	2.49	0.47	
2:D:264:ARG:NH1	7:D:1327:HOH:O	2.47	0.47	
2:B:4:THR:OG1	2:B:7:GLN:HG3	2.14	0.47	
1:E:9:PHE:HE1	1:G:231:ILE:HD11	1.77	0.47	
2:D:299:PRO:HD3	2:D:307:TRP:CE2	2.49	0.47	
1:E:233:VAL:HG12	1:E:234:ASP:N	2.30	0.47	
2:F:219:ALA:O	2:F:223:LEU:HG	2.14	0.47	
1:G:293:LYS:HD2	7:G:1385:HOH:O	2.14	0.47	
1:A:277:ASP:CA	1:A:280:ARG:HG2	2.41	0.47	
2:D:120:GLY:HA3	2:D:298:TYR:OH	2.14	0.47	
1:E:7:PHE:CD1	1:E:7:PHE:N	2.83	0.47	
1:E:212:LYS:HE2	1:E:212:LYS:CA	2.44	0.47	
1:C:185:ILE:HG13	1:C:226:ALA:HB2	1.95	0.47	
1:A:300:ARG:O	1:A:304:GLU:HG3	2.14	0.47	
2:B:294:PRO:HG3	1:C:362:TYR:CZ	2.50	0.47	
1:C:98:ILE:HD13	1:C:111:HIS:NE2	2.29	0.47	
1:A:231:ILE:HD11	1:C:9:PHE:HZ	1.75	0.46	
1:E:212:LYS:HE2	1:E:212:LYS:N	2.30	0.46	
2:B:20:ASP:HB3	2:B:23:VAL:HG23	1.96	0.46	
1:E:58:ILE:HD13	1:E:318:ILE:HG23	1.97	0.46	
1:E:192:LYS:HB3	1:E:192:LYS:HZ3	1.78	0.46	
1:E:203:ARG:HG2	1:E:203:ARG:NH1	2.30	0.46	
2:F:102:TYR:OH	2:H:299:PRO:HA	2.15	0.46	
2:D:257:ILE:CG2	2:D:321:VAL:HG21	2.44	0.46	
1:A:102:TYR:HB3	1:A:142:ILE:HD13	1.98	0.46	
1:A:112:GLY:O	1:A:114:PRO:HD3	2.16	0.46	
2:F:93:ILE:HA	2:F:97:MET:HG2	1.98	0.46	
1:G:53:MET:HB3	1:G:296:LEU:HD21	1.97	0.46	
1:E:91:ALA:HB3	1:E:245:VAL:CG1	2.46	0.46	
2:H:2:GLN:HB3	2:H:180:ARG:HD3	1.98	0.46	
3:I:128:ARG:HH11	3:I:128:ARG:HG2	1.81	0.46	
2:H:60:SER:HA	2:H:89:VAL:HG23	1.96	0.46	
1:C:64:ILE:HG23	1:C:273:MET:CE	2.47	0.45	
1:E:27:ASN:OD1	1:E:31:GLU:HB2	2.16	0.45	
1:E:105:VAL:N	1:E:106:PRO:CD	2.79	0.45	
7:A:1371:HOH:O	1:C:215:VAL:HG22	2.15	0.45	
1:G:42:SER:OG	1:G:45:GLN:HG3	2.16	0.45	
1:G:304:GLU:C	1:G:306:LYS:H	2.18	0.45	
2:B:89:VAL:O	2:B:89:VAL:HG22	2.16	0.45	
1:C:23:PHE:CZ	1:C:25:ILE:HD11	2.51	0.45	

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:E:212:LYS:HE2	1:E:212:LYS:HA	1.97	0.45	
2:H:59:GLU:HB2	2:H:88:GLU:HB3	1.98	0.45	
3:J:152:THR:OG1	3:J:158:VAL:HG11	2.17	0.45	
3:J:153:GLY:C	3:J:155:ASN:N	2.70	0.45	
2:B:128:HIS:CE1	1:C:142:ILE:HD11	2.49	0.45	
1:C:99:LEU:N	1:C:99:LEU:HD12	2.31	0.45	
2:F:202:LYS:O	2:F:202:LYS:HD3	2.16	0.45	
1:G:56:THR:OG1	1:G:86:ILE:HD11	2.17	0.45	
5:G:1370:R1T:OP1	5:G:1370:R1T:C7'	2.59	0.45	
3:J:132:MET:HB2	3:J:135:VAL:HG23	1.98	0.45	
1:A:249:ARG:HG2	1:A:249:ARG:HH11	1.81	0.45	
2:F:20:ASP:HB3	2:F:23:VAL:CG2	2.45	0.45	
2:B:17:LEU:HD13	2:B:47:PHE:CD2	2.52	0.45	
1:C:69:GLN:HG3	7:C:1379:HOH:O	2.17	0.45	
1:C:125:HIS:HA	1:C:338:GLN:NE2	2.31	0.45	
1:C:217:LYS:HD3	2:F:1:ALA:HB2	1.99	0.45	
1:E:225:ALA:O	1:G:222:LYS:HE2	2.17	0.45	
1:E:294:ASP:HB3	1:E:297:VAL:CG2	2.41	0.45	
2:H:206:ILE:HG12	2:H:257:ILE:HD11	1.98	0.45	
3:J:154:LYS:HD3	3:J:154:LYS:N	2.32	0.45	
2:D:146:ILE:HD11	2:D:170:LEU:HD12	1.99	0.45	
1:G:96:ASP:OD1	1:G:166:VAL:HG22	2.17	0.45	
1:G:206:ILE:HG22	1:G:207:SER:N	2.31	0.45	
2:F:112:ILE:O	2:F:166:PRO:HA	2.17	0.44	
1:G:277:ASP:HB3	1:G:280:ARG:CD	2.45	0.44	
2:B:179:PHE:HE2	7:B:1343:HOH:O	2.00	0.44	
2:D:70:ALA:HB1	2:D:111:PRO:HD2	2.00	0.44	
2:D:299:PRO:HD3	2:D:307:TRP:CD2	2.51	0.44	
1:C:156:LEU:O	1:C:160:MET:HG3	2.18	0.44	
3:J:153:GLY:C	3:J:154:LYS:HG2	2.38	0.44	
2:F:243:ILE:HG21	2:F:279:ARG:HH11	1.78	0.44	
1:A:66:LEU:HD13	1:A:329:ILE:HG13	1.98	0.44	
2:H:2:GLN:NE2	2:H:182:GLU:OE1	2.50	0.44	
2:B:203:ASP:HB3	2:B:322:MET:CE	2.48	0.44	
2:D:223:LEU:HB3	2:D:228:ILE:HB	2.00	0.44	
2:H:233:VAL:HG13	2:H:233:VAL:O	2.18	0.44	
2:B:136:VAL:HG23	2:B:144:VAL:HG21	2.00	0.44	
2:D:315:ILE:O	2:D:319:LYS:HG2	2.18	0.44	
2:F:268:ILE:C	2:F:268:ILE:HD12	2.38	0.44	
3:J:155:ASN:C	3:J:157:ARG:N	2.71	0.44	
2:B:282:LEU:HA	3:I:134:SER:HB3	1.99	0.44	

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:E:192:LYS:NZ	1:E:255:GLY:O	2.49	0.44	
2:F:142:LEU:HD22	2:F:168:ILE:HD11	1.99	0.44	
1:G:79:ALA:HB3	7:G:1372:HOH:O	2.18	0.43	
3:J:138:TYR:O	3:J:142:LYS:HG2	2.18	0.43	
1:C:36:GLU:OE2	1:C:36:GLU:N	2.51	0.43	
1:E:183:GLU:OE1	2:F:58:ALA:HB1	2.18	0.43	
2:F:14:ARG:HG3	2:F:14:ARG:HH11	1.83	0.43	
2:H:58:ALA:O	2:H:62:ILE:HG13	2.18	0.43	
1:A:228:ILE:HB	1:A:229:PRO:HD2	2.00	0.43	
1:C:39:PRO:HG3	1:C:243:ALA:HB2	2.01	0.43	
2:F:6:VAL:HG13	2:F:7:GLN:N	2.33	0.43	
1:G:71:ARG:NH2	1:G:329:ILE:HG21	2.34	0.43	
1:C:313:GLU:O	1:C:317:VAL:HG23	2.17	0.43	
2:D:282:LEU:HA	3:I:132:MET:HB3	2.00	0.43	
1:G:205:ALA:O	1:G:206:ILE:HB	2.19	0.43	
2:F:299:PRO:HD3	2:F:307:TRP:CE2	2.53	0.43	
3:J:135:VAL:HG22	3:J:156:GLY:HA3	2.00	0.43	
1:A:95:GLU:HG3	1:A:165:ALA:CB	2.46	0.43	
3:I:138:TYR:OH	3:I:160:LYS:HD2	2.18	0.43	
1:E:14:GLU:O	1:E:18:GLU:HG3	2.18	0.43	
1:C:131:ILE:HD11	1:C:139:PRO:HG3	2.00	0.43	
2:D:2:GLN:HE22	2:D:182:GLU:HB2	1.84	0.43	
1:E:58:ILE:HD11	1:E:318:ILE:HG23	2.00	0.43	
1:E:206:ILE:CG2	1:E:207:SER:N	2.69	0.43	
1:G:318:ILE:CG2	1:G:322:LYS:HE2	2.49	0.43	
2:H:235:LEU:O	2:H:236:ARG:HB2	2.19	0.43	
1:A:280:ARG:HH22	2:D:38:ARG:HH22	1.65	0.43	
2:D:268:ILE:O	2:D:272:VAL:HG23	2.19	0.43	
1:E:9:PHE:CZ	1:G:231:ILE:HD11	2.53	0.43	
1:E:204:PHE:HB3	1:E:206:ILE:O	2.19	0.43	
2:F:189:THR:HG23	7:F:341:HOH:O	2.18	0.43	
1:G:41:LEU:HD21	1:G:242:TYR:CZ	2.52	0.43	
2:B:142:LEU:HD23	2:B:166:PRO:HB2	2.01	0.42	
1:C:121:PHE:CZ	1:C:140:PRO:HB2	2.54	0.42	
1:G:313:GLU:HA	1:G:316:ASN:HD22	1.83	0.42	
1:A:309:TRP:HE1	1:A:314:GLU:CD	2.22	0.42	
1:E:58:ILE:CD1	1:E:318:ILE:HG12	2.39	0.42	
1:E:86:ILE:HD12	1:E:86:ILE:N	2.34	0.42	
1:E:178:GLN:HE21	2:H:57:LEU:CD2	2.32	0.42	
1:A:283:SER:O	1:A:285:GLU:N	2.51	0.42	
3:I:146:ILE:O	3:I:149:VAL:HG22	2.19	0.42	

	a pagem	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:F:79:GLU:HG2	2:F:80:ILE:N	2.34	0.42
2:F:228:ILE:HD13	2:F:322:MET:HG3	2.02	0.42
1:G:348:PHE:CZ	2:H:141:GLY:HA2	2.54	0.42
2:D:5:MET:O	2:D:9:ILE:HG13	2.19	0.42
1:E:219:LEU:HB2	1:E:262:GLU:CD	2.39	0.42
2:H:78:PRO:CG	2:H:114:ILE:HD13	2.48	0.42
1:A:314:GLU:O	1:A:318:ILE:HG13	2.20	0.42
1:E:267:ARG:HG2	1:E:267:ARG:HH11	1.85	0.42
1:G:69:GLN:HE21	1:G:71:ARG:CD	2.33	0.42
3:I:135:VAL:HG22	3:I:156:GLY:HA2	2.01	0.42
1:E:362:TYR:CE2	2:H:294:PRO:HG3	2.54	0.42
1:G:283:SER:HB2	1:G:285:GLU:OE1	2.20	0.42
2:H:117:PRO:HB3	2:H:176:TYR:OH	2.20	0.42
1:C:206:ILE:HG22	1:C:207:SER:N	2.35	0.42
1:E:58:ILE:CD1	1:E:318:ILE:HA	2.50	0.42
2:F:118:PHE:CE1	2:F:170:LEU:HB3	2.55	0.42
2:B:302:GLN:HB2	1:C:124:GLY:O	2.20	0.42
1:C:217:LYS:CD	2:F:1:ALA:HB2	2.50	0.42
1:E:59:LEU:HD13	1:E:325:ILE:HD11	2.02	0.42
1:G:307:GLY:HA2	7:G:1384:HOH:O	2.19	0.42
2:H:238:VAL:CB	2:H:268:ILE:HD13	2.39	0.42
1:A:294:ASP:HB3	1:A:297:VAL:HG23	2.02	0.41
2:D:281:ILE:CG2	2:D:282:LEU:HD12	2.45	0.41
1:G:164:LYS:HE3	1:G:164:LYS:HA	2.02	0.41
2:H:145:VAL:HG21	2:H:192:ILE:HD12	2.01	0.41
2:H:297:VAL:O	2:H:298:TYR:C	2.59	0.41
3:J:138:TYR:HE1	3:J:159:LEU:HD11	1.82	0.41
2:B:287:PRO:HB3	2:D:281:ILE:HG21	2.01	0.41
1:E:222:LYS:HA	1:G:225:ALA:HA	2.02	0.41
2:F:324:PHE:HA	7:F:360:HOH:O	2.19	0.41
2:H:124:THR:HB	2:H:125:PRO:HD2	2.01	0.41
5:E:1370:R1T:HM41	2:H:57:LEU:HD11	2.01	0.41
1:C:331:LYS:HE2	1:C:331:LYS:HB3	1.83	0.41
1:G:31:GLU:OE1	1:G:31:GLU:N	2.53	0.41
1:A:6:GLN:CD	1:A:6:GLN:N	2.71	0.41
2:B:324:PHE:CZ	2:D:282:LEU:HD11	2.55	0.41
2:F:202:LYS:HD3	2:F:202:LYS:C	2.41	0.41
1:G:35:GLU:OE1	1:G:36:GLU:N	2.54	0.41
1:G:102:TYR:OH	5:G:1370:R1T:H71	2.20	0.41
1:G:237:ASP:OD2	1:G:240:ALA:HB2	2.20	0.41
1:C:25:ILE:HG12	1:C:240:ALA:HB2	2.03	0.41

A 4 amo 1	A 4 a ma 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:120:LEU:HD23	1:C:120:LEU:HA	1.93	0.41
2:D:308:LEU:HA	2:D:309:PRO:HD3	1.88	0.41
1:E:123:ARG:HD3	2:H:302:GLN:HE22	1.84	0.41
1:A:294:ASP:OD2	1:A:296:LEU:N	2.51	0.41
2:B:116:SER:O	2:B:170:LEU:HA	2.21	0.41
1:C:26:LEU:N	1:C:237:ASP:OD2	2.50	0.41
2:H:93:ILE:HA	2:H:97:MET:HG2	2.03	0.41
2:H:133:GLU:H	2:H:133:GLU:CD	2.23	0.41
1:A:283:SER:C	1:A:285:GLU:H	2.23	0.40
2:B:87:TYR:HA	2:B:90:MET:HG2	2.03	0.40
2:F:308:LEU:HA	2:F:309:PRO:HD3	1.94	0.40
1:G:11:GLU:O	1:G:14:GLU:HB3	2.21	0.40
1:A:294:ASP:HB3	1:A:297:VAL:CG2	2.51	0.40
1:E:114:PRO:HD2	1:E:117:GLN:OE1	2.21	0.40
1:E:121:PHE:CZ	1:E:140:PRO:HB2	2.56	0.40
2:F:91:ASP:O	2:F:96:GLN:HG2	2.22	0.40
1:A:43:ASP:O	1:A:47:LYS:HG3	2.22	0.40
1:G:250:GLU:O	1:G:254:ASN:ND2	2.54	0.40
2:B:81:GLN:OE1	5:C:1370:R1T:H7'1	2.22	0.40
1:C:329:ILE:HD13	1:C:329:ILE:HA	1.93	0.40
1:G:267:ARG:HG3	1:G:267:ARG:O	2.21	0.40
2:H:299:PRO:HD3	2:H:307:TRP:CD2	2.56	0.40
1:E:304:GLU:C	1:E:306:LYS:N	2.74	0.40
3:J:152:THR:HG22	3:J:152:THR:O	2.22	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	363/369~(98%)	351 (97%)	10 (3%)	2(1%)	25 43

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	С	363/369~(98%)	350 (96%)	11 (3%)	2(1%)	25	43
1	Е	363/369~(98%)	344 (95%)	17 (5%)	2(1%)	25	43
1	G	363/369~(98%)	349 (96%)	13 (4%)	1 (0%)	41	61
2	В	322/325~(99%)	308 (96%)	13 (4%)	1 (0%)	41	61
2	D	322/325~(99%)	307 (95%)	14 (4%)	1 (0%)	41	61
2	F	322/325~(99%)	307~(95%)	13 (4%)	2(1%)	25	43
2	Н	322/325~(99%)	307 (95%)	15 (5%)	0	100	100
3	Ι	36/428~(8%)	29 (81%)	6 (17%)	1 (3%)	5	7
3	J	34/428~(8%)	31 (91%)	2(6%)	1 (3%)	4	6
All	All	2810/3632 (77%)	2683 (96%)	114 (4%)	13 (0%)	29	48

All (13) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	284	LYS
2	В	236	ARG
3	Ι	133	PRO
1	G	206	ILE
3	J	153	GLY
1	А	206	ILE
1	С	206	ILE
1	С	275	GLY
1	Е	206	ILE
2	F	236	ARG
2	D	236	ARG
2	F	31	GLY
1	Е	278	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	294/305~(96%)	289~(98%)	5 (2%)	60 82
1	С	289/305~(95%)	281 (97%)	8 (3%)	43 70
1	Е	295/305~(97%)	286~(97%)	9(3%)	40 67
1	G	297/305~(97%)	288~(97%)	9(3%)	41 68
2	В	263/264~(100%)	258~(98%)	5 (2%)	57 80
2	D	263/264~(100%)	262 (100%)	1 (0%)	91 97
2	F	262/264~(99%)	256~(98%)	6 (2%)	50 76
2	Н	263/264~(100%)	258~(98%)	5(2%)	57 80
3	Ι	25/341 (7%)	21 (84%)	4 (16%)	2 4
3	J	25/341~(7%)	25 (100%)	0	100 100
All	All	2276/2958~(77%)	2224 (98%)	52 (2%)	50 76

All (52) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	55	TYR
1	А	173	ASP
1	А	311	GLU
1	А	314	GLU
1	А	329	ILE
2	В	131	SER
2	В	171	GLU
2	В	173	LEU
2	В	176	TYR
2	В	196	ASP
1	С	71	ARG
1	С	142	ILE
1	С	173	ASP
1	С	215	VAL
1	С	217	LYS
1	С	233	VAL
1	С	319	GLU
1	С	329	ILE
2	D	32	VAL
3	Ι	132	MET
3	Ι	133	PRO
3	Ι	136	ARG

Mol	Chain	Res	Type
3	Ι	157	ARG
1	Е	6	GLN
1	Е	40	GLU
1	Е	44	GLU
1	Е	147	GLN
1	Е	212	LYS
1	Е	231	ILE
1	Е	254	ASN
1	Е	282	ARG
1	Е	329	ILE
2	F	130	ASP
2	F	136	VAL
2	F	176	TYR
2	F	200	GLU
2	F	244	GLU
2	F	281	ILE
1	G	4	THR
1	G	35	GLU
1	G	38	MET
1	G	71	ARG
1	G	130	GLN
1	G	163	LYS
1	G	164	LYS
1	G	173	ASP
1	G	364	GLU
2	Н	19	ASN
2	Н	81	GLN
2	Н	180	ARG
2	Н	187	GLU
2	Н	277	ASN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (35) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	271	HIS
1	А	288	ASN
1	А	320	GLN
2	В	128	HIS
2	В	138	GLN
1	С	69	GLN
1	С	338	GLN
2	D	2	GLN

Mol	Chain	Res	Type
2	D	19	ASN
2	D	271	ASN
2	D	302	GLN
1	Е	6	GLN
1	Е	147	GLN
1	Е	178	GLN
1	Е	254	ASN
1	Е	315	ASN
2	F	7	GLN
2	F	33	ASN
2	F	123	HIS
2	F	138	GLN
2	F	239	GLN
2	F	265	GLN
1	G	69	GLN
1	G	130	GLN
1	G	200	GLN
1	G	254	ASN
1	G	288	ASN
1	G	316	ASN
2	Н	19	ASN
2	Н	72	GLN
2	Н	81	GLN
2	Н	123	HIS
2	Н	138	GLN
2	Н	302	GLN
3	J	155	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 11 ligands modelled in this entry, 7 are monoatomic - leaving 4 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tinle	Bond lengths			Bond angles		
MOI	туре	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
5	R1T	С	1370	4	26,30,30	1.62	3 (11%)	33,45,45	1.63	7 (21%)
5	R1T	А	1370	4	26,30,30	1.60	3 (11%)	33,45,45	1.64	8 (24%)
5	R1T	G	1370	4	26,30,30	6.48	16 (61%)	33,45,45	1.62	8 (24%)
5	R1T	Е	1370	4	26,30,30	6.29	13 (50%)	33,45,45	1.77	11 (33%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	R1T	С	1370	4	-	0/16/21/21	0/2/2/2
5	R1T	А	1370	4	-	0/16/21/21	0/2/2/2
5	R1T	G	1370	4	-	4/16/21/21	0/2/2/2
5	R1T	Е	1370	4	-	0/16/21/21	0/2/2/2

All (35) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
5	G	1370	R1T	C5-S1	-21.86	1.33	1.74
5	Е	1370	R1T	C2-S1	-21.24	1.34	1.74
5	G	1370	R1T	C2-S1	-17.63	1.41	1.74
5	Ε	1370	R1T	C5-S1	-16.50	1.43	1.74
5	Е	1370	R1T	C6-C5	11.83	1.56	1.50
5	G	1370	R1T	C6-C5	10.65	1.55	1.50
5	G	1370	R1T	C7'-C5'	-6.87	1.39	1.52
5	Е	1370	R1T	C7'-C5'	-6.15	1.40	1.52
5	С	1370	R1T	C6-C5	5.53	1.53	1.50
5	A	1370	R1T	C6-C5	5.51	1.53	1.50
5	G	1370	R1T	CM2-C2'	-4.87	1.35	1.49

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
5	Е	1370	R1T	CM2-C2'	-4.77	1.36	1.49
5	G	1370	R1T	PB-O1B	-4.30	1.36	1.50
5	Е	1370	R1T	PB-O3B	-4.24	1.38	1.54
5	G	1370	R1T	PA-O2A	-4.12	1.36	1.55
5	Е	1370	R1T	PB-O1B	-4.04	1.37	1.50
5	Е	1370	R1T	PB-O2B	-4.00	1.39	1.54
5	G	1370	R1T	PA-O7	-3.90	1.43	1.59
5	G	1370	R1T	PB-O2B	-3.79	1.40	1.54
5	Е	1370	R1T	PA-O2A	-3.61	1.38	1.55
5	G	1370	R1T	PB-O3B	-3.40	1.41	1.54
5	А	1370	R1T	PB-O1B	3.36	1.61	1.50
5	С	1370	R1T	PB-O1B	3.35	1.61	1.50
5	G	1370	R1T	C4'-N3'	-2.89	1.30	1.35
5	Е	1370	R1T	PA-O1A	-2.58	1.41	1.50
5	G	1370	R1T	C5'-C4'	-2.55	1.38	1.42
5	G	1370	R1T	PA-O1A	-2.50	1.42	1.50
5	Ε	1370	R1T	PA-O7	-2.48	1.49	1.59
5	Ε	1370	R1T	C4'-N3'	-2.47	1.31	1.35
5	G	1370	R1T	C3-C4	-2.19	1.31	1.37
5	G	1370	R1T	C2'-N3'	-2.18	1.30	1.34
5	Е	1370	R1T	C5'-C4'	-2.12	1.39	1.42
5	G	1370	R1T	C2-CP1	2.10	1.54	1.51
5	А	1370	R1T	C5'-C4'	-2.05	1.39	1.42
5	С	1370	R1T	C5'-C4'	-2.03	1.39	1.42

All (34) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
5	Е	1370	R1T	O3A-PB-O1B	-4.03	88.86	111.19
5	G	1370	R1T	C5'-C6'-N1'	-3.62	117.80	123.82
5	G	1370	R1T	C6'-N1'-C2'	3.36	121.68	115.96
5	Е	1370	R1T	C7'-C5'-C4'	3.29	126.71	122.17
5	Е	1370	R1T	CP2-CP1-C2	-3.17	106.77	112.15
5	G	1370	R1T	CM2-C2'-N1'	3.16	120.61	117.14
5	А	1370	R1T	C6'-N1'-C2'	3.05	121.16	115.96
5	Е	1370	R1T	C7'-C5'-C6'	-3.02	117.56	121.73
5	А	1370	R1T	N1'-C2'-N3'	-3.01	120.36	125.54
5	С	1370	R1T	PA-O3A-PB	-3.01	122.51	132.83
5	G	1370	R1T	O3B-PB-O2B	2.97	119.00	107.64
5	А	1370	R1T	PA-O3A-PB	-2.97	122.63	132.83
5	С	1370	R1T	C6'-N1'-C2'	2.96	120.99	115.96
5	С	1370	R1T	N1'-C2'-N3'	-2.95	120.47	125.54

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	Е	1370	R1T	C6'-N1'-C2'	2.78	120.69	115.96
5	А	1370	R1T	O3B-PB-O3A	2.76	113.90	104.64
5	Е	1370	R1T	O3B-PB-O2B	2.73	118.09	107.64
5	С	1370	R1T	O3B-PB-O3A	2.71	113.71	104.64
5	G	1370	R1T	O3A-PB-O1B	-2.62	96.67	111.19
5	С	1370	R1T	C7'-C5'-C6'	-2.61	118.12	121.73
5	С	1370	R1T	CM2-C2'-N1'	2.55	119.94	117.14
5	А	1370	R1T	CM2-C2'-N1'	2.51	119.89	117.14
5	А	1370	R1T	C7'-C5'-C6'	-2.47	118.32	121.73
5	Е	1370	R1T	C5'-C6'-N1'	-2.46	119.73	123.82
5	Е	1370	R1T	N1'-C2'-N3'	-2.35	121.50	125.54
5	G	1370	R1T	N1'-C2'-N3'	-2.32	121.55	125.54
5	Е	1370	R1T	CM2-C2'-N1'	2.25	119.61	117.14
5	А	1370	R1T	N4'-C4'-N3'	2.22	120.17	117.03
5	G	1370	R1T	C5'-C4'-N4'	-2.17	119.11	122.19
5	Е	1370	R1T	O2B-PB-O1B	2.07	118.78	110.68
5	С	1370	R1T	N4'-C4'-N3'	2.06	119.94	117.03
5	А	1370	R1T	C5'-C6'-N1'	-2.03	120.44	123.82
5	Е	1370	R1T	C5'-C4'-N4'	-2.01	119.33	122.19
5	G	1370	R1T	CP2-CP1-C2	2.01	115.56	112.15

There are no chirality outliers.

All (4) torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
5	G	1370	R1T	PA-O3A-PB-O3B
5	G	1370	R1T	PB-O3A-PA-O1A
5	G	1370	R1T	PA-O3A-PB-O2B
5	G	1370	R1T	PB-O3A-PA-O2A

There are no ring outliers.

4 monomers are involved in 15 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
5	С	1370	R1T	2	0
5	А	1370	R1T	2	0
5	G	1370	R1T	5	0
5	Е	1370	R1T	6	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In

addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2		$OWAB(Å^2)$	Q<0.9
1	А	365/369~(98%)	-0.37	1 (0%) 94 94		24, 37, 63, 80	2 (0%)
1	С	365/369~(98%)	-0.36	2 (0%) 91 91		20, 37, 63, 90	2 (0%)
1	Ε	365/369~(98%)	-0.24	6 (1%) 72 74		24, 45, 75, 96	2 (0%)
1	G	365/369~(98%)	-0.28	3 (0%) 86 87		28, 42, 66, 81	2 (0%)
2	В	324/325~(99%)	-0.34	0 100 100		21, 38, 57, 65	0
2	D	324/325~(99%)	-0.38	2 (0%) 89 90		22, 34, 50, 61	0
2	F	324/325~(99%)	-0.20	3 (0%) 84 86		28, 43, 60, 69	0
2	Η	324/325~(99%)	-0.31	0 100 100		24, 38, 53, 63	0
3	Ι	38/428~(8%)	0.26	1 (2%) 56 59		52, 68, 84, 93	0
3	J	36/428~(8%)	0.24	3 (8%) 11 11		54, 71, 89, 96	0
All	All	2830/3632 (77%)	-0.30	21 (0%) 87 89)	20, 40, 65, 96	8 (0%)

All (21) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
3	Ι	132	MET	4.6
3	J	145	ASP	4.0
1	Ε	165	ALA	2.9
1	С	290	TRP	2.8
2	F	223	LEU	2.7
1	А	282	ARG	2.6
2	F	204	ILE	2.6
1	G	268	TYR	2.5
3	J	146	ILE	2.5
2	F	57	LEU	2.5
1	G	217	LYS	2.4
1	G	343	LEU	2.4
1	С	268	TYR	2.3

Mol	Chain	Res	Type	RSRZ
2	D	324	PHE	2.2
1	Е	290	TRP	2.2
1	Е	278	PRO	2.2
1	Е	298	ARG	2.1
1	Е	26	LEU	2.1
3	J	132	MET	2.1
1	Е	346	ILE	2.1
2	D	57	LEU	2.0

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
4	MG	D	1326	1/1	0.90	0.27	64,64,64,64	0
4	MG	G	1371	1/1	0.96	0.08	23,23,23,23	0
4	MG	Е	1371	1/1	0.97	0.13	37,37,37,37	0
4	MG	С	1368	1/1	0.97	0.18	33,33,33,33	0
5	R1T	Е	1370	29/29	0.97	0.11	25,36,50,54	0
5	R1T	G	1370	29/29	0.97	0.12	20,34,45,63	0
5	R1T	С	1370	29/29	0.98	0.16	$19,\!31,\!38,\!43$	0
4	MG	А	1368	1/1	0.98	0.16	$17,\!17,\!17,\!17$	0
5	R1T	А	1370	29/29	0.98	0.12	$15,\!27,\!37,\!43$	0
6	K	В	1325	1/1	0.98	0.12	52,52,52,52	0
6	K	D	1325	1/1	0.99	0.12	32,32,32,32	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

