

Dec 11, 2022 - 05:39 am GMT

PDB ID	:	4D5L
EMDB ID	:	EMD-2810
Title	:	Cryo-EM structures of ribosomal 80S complexes with termination factors and
		cricket paralysis virus IRES reveal the IRES in the translocated state
Authors	:	Muhs, M.; Hilal, T.; Mielke, T.; Skabkin, M.A.; Sanbonmatsu, K.Y.; Pestova,
		T.V.; Spahn, C.M.T.
Deposited on	:	2014-11-05
Resolution	:	9.00 Å(reported)
Based on initial model	:	4CXC

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (i)) were used in the production of this report:

MolProbity : $4.02b-467$	
Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 20)19)
MapQ : $1.9.9$	
Ideal geometry (proteins) : Engh & Huber (2001)	
Ideal geometry (DNA, RNA) : Parkinson et al. (1996)	
Validation Pipeline (wwPDB-VP) : 2.31.3	

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 9.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	1	1869	3 6% 55%		• 7%
2	А	295	38% 72%	•	26%
3	В	264	71%	8%	• 19%
4	С	293	72%	•	24%
5	D	243	81%		6% 13%
6	Е	263	92%		6% •
7	F	204	84%		8% 8%
8	G	249	8%		6% 7%

Continue	nued from	n previous	page	
Mol	Chain	Length	Quality of chain	
			47%	
9	Н	194	94%	• • •
10	Ι	208	91%	8%
11	J	194	5% 86%	7% 8%
12	К	165	5% 52% 5% • 43%	
13	L	158	87%	5% 8%
14	М	132	83%	7% • 9%
15	Ν	151	95%	• ••
16	О	151	85%	5%• 9%
17	Р	145	75% 6% •	19%
18	Q	146	91%	• 5%
19	R	135	76% 5%	19%
20	S	152	82%	11% 7%
21	Т	145	92%	6% •
22	U	119	81%	15%
23	V	83	96%	·
24	W	130	94%	5%•
25	Х	142	86%	8% 6%
26	Y	133	84%	8% 8%
27	Ζ	125	55% 6% 39%	
28	a	115	74% 9%	17%
29	b	84	90%	5% 5%
30	с	69	83%	7% 10%
31	d	56	88%	7% 5%
32	е	59	81% 5	% 14%
33	f	156	37% • 61%	

Mol	Chain	Length	Quality of chain	
			30%	
34	g	317	93%	5%•

2 Entry composition (i)

There are 34 unique types of molecules in this entry. The entry contains 75320 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 18S RRNA 2.

Mol	Chain	Residues		1	AltConf	Trace			
1	1	1742	Total 37159	C 16589	N 6665	O 12164	Р 1741	0	0

• Molecule 2 is a protein called 40S RIBOSOMAL PROTEIN ES26.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	А	218	Total 1719	C 1091	N 301	O 319	S 8	0	0

• Molecule 3 is a protein called 40S RIBOSOMAL PROTEIN ES27.

Mol	Chain	Residues		At	AltConf	Trace			
3	В	213	Total 1729	C 1098	N 309	O 308	S 14	0	0

• Molecule 4 is a protein called 40S RIBOSOMAL PROTEIN ES28.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	С	222	Total 1724	C 1114	N 296	0 304	S 10	0	0

• Molecule 5 is a protein called 40S RIBOSOMAL PROTEIN US14.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	D	212	Total 1646	C 1050	N 299	O 290	S 7	0	0

• Molecule 6 is a protein called 40S RIBOSOMAL PROTEIN ES30.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	Ε	257	Total 2031	C 1298	N 381	0 344	S 8	0	0

• Molecule 7 is a protein called 40S RIBOSOMAL PROTEIN ES31.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	F	188	Total 1486	C 930	N 283	O 266	${ m S} 7$	0	0

• Molecule 8 is a protein called 40S RIBOSOMAL PROTEIN RACK1.

Mol	Chain	Residues	Atoms					AltConf	Trace
8	G	232	Total 1884	C 1176	N 379	0 322	${ m S} 7$	0	0

• Molecule 9 is a protein called 40S RIBOSOMAL PROTEIN ES7.

Mol	Chain	Residues	Atoms					AltConf	Trace
9	Н	191	Total 1535	C 978	N 282	0 274	S 1	0	0

• Molecule 10 is a protein called 40S RIBOSOMAL PROTEIN ES8.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
10	Ι	207	Total 1695	C 1064	N 334	O 292	${ m S}{ m 5}$	0	0

• Molecule 11 is a protein called 40S RIBOSOMAL PROTEIN US4.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	J	179	Total 1495	C 953	N 299	0 241	${S \over 2}$	0	0

• Molecule 12 is a protein called 40S RIBOSOMAL PROTEIN ES10.

Mol	Chain	Residues		At	oms	AltConf	Trace		
12	K	94	Total 791	C 519	N 138	0 129	${ m S}{ m 5}$	0	0

• Molecule 13 is a protein called 40S RIBOSOMAL PROTEIN US17.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	L	146	Total 1199	C 764	N 224	O 205	S 6	0	0

• Molecule 14 is a protein called 40S RIBOSOMAL PROTEIN ES12.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	М	120	Total 931	C 584	N 164	0 174	S 9	0	0

• Molecule 15 is a protein called 40S RIBOSOMAL PROTEIN US15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	Ν	150	Total 1207	C 773	N 229	O 204	S 1	0	0

• Molecule 16 is a protein called 40S RIBOSOMAL PROTEIN US11.

Mol	Chain	Residues		At	oms			AltConf	Trace
16	Ο	137	Total 1023	C 627	N 200	0 190	S 6	0	0

• Molecule 17 is a protein called 40S RIBOSOMAL PROTEIN US19.

Mol	Chain	Residues	Atoms					AltConf	Trace
17	Р	118	Total 981	C 625	N 183	0 166	${f S}7$	0	0

• Molecule 18 is a protein called 40S RIBOSOMAL PROTEIN US9.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	Q	139	Total 1108	С 704	N 210	0 191	${ m S} { m 3}$	0	0

• Molecule 19 is a protein called 40S RIBOSOMAL PROTEIN ES17.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	R	109	Total 893	C 561	N 170	O 159	${ m S} { m 3}$	0	0

• Molecule 20 is a protein called 40S RIBOSOMAL PROTEIN US13.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	S	142	Total 1172	C 736	N 236	O 199	S 1	0	0

 $\bullet\,$ Molecule 21 is a protein called 40S RIBOSOMAL PROTEIN ES19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	Т	143	Total 1112	$\begin{array}{c} \mathrm{C} \\ 697 \end{array}$	N 214	O 198	${ m S} { m 3}$	0	0

• Molecule 22 is a protein called 40S RIBOSOMAL PROTEIN US10.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	U	101	Total 803	C 502	N 153	0 144	$\frac{S}{4}$	0	0

• Molecule 23 is a protein called 40S RIBOSOMAL PROTEIN ES21.

Mol	Chain	Residues		At	oms			AltConf	Trace
23	V	83	Total 636	C 393	N 117	0 121	${f S}{5}$	0	0

• Molecule 24 is a protein called 40S RIBOSOMAL PROTEIN US8.

Mol	Chain	Residues		At	oms			AltConf	Trace
24	W	129	Total 1033	C 659	N 193	0 175	S 6	0	0

• Molecule 25 is a protein called 40S RIBOSOMAL PROTEIN US12.

Mol	Chain	Residues		At	oms			AltConf	Trace
25	Х	134	Total 1046	C 663	N 205	O 176	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 26 is a protein called 40S RIBOSOMAL PROTEIN ES24.

Mol	Chain	Residues		At	oms			AltConf	Trace
26	Y	122	Total 1002	C 635	N 196	0 166	${ m S}{ m 5}$	0	0

• Molecule 27 is a protein called 40S RIBOSOMAL PROTEIN ES25.

Mol	Chain	Residues		At	oms		AltConf	Trace	
27	Z	76	Total 605	C 387	N 112	O 105	S 1	0	0

• Molecule 28 is a protein called 40S RIBOSOMAL PROTEIN US2.

Mol	Chain	Residues		At	oms	AltConf	Trace		
28	a	96	Total 767	C 476	N 159	0 127	${f S}{5}$	0	0

• Molecule 29 is a protein called 40S RIBOSOMAL PROTEIN ES1.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	b	80	Total 625	C 391	N 116	0 111	${ m S} 7$	0	0

• Molecule 30 is a protein called 40S RIBOSOMAL PROTEIN US5.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
30	С	62	Total 490	C 298	N 99	0 91	${ m S} { m 2}$	0	0

• Molecule 31 is a protein called 40S RIBOSOMAL PROTEIN US3.

Mol	Chain	Residues	Atoms					AltConf	Trace
21	d	52	Total	С	Ν	0	S	0	0
	u		444	278	90	71	5	0	0

• Molecule 32 is a protein called 40S RIBOSOMAL PROTEIN ES4.

Mol	Chain	Residues	Atoms					AltConf	Trace
32	е	51	Total 412	C 258	N 90	O 63	S 1	0	0

• Molecule 33 is a protein called 40S RIBOSOMAL PROTEIN US7.

Mol	Chain	Residues	Atoms					AltConf	Trace
22	f	61	Total	С	Ν	Ο	S	0	0
- 55	1	01	497	312	94	84	7	0	0

• Molecule 34 is a protein called 40S RIBOSOMAL PROTEIN ES6.

Mol	Chain	Residues		At	AltConf	Trace			
34	g	314	Total 2440	C 1537	N 425	0 466	S 12	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 18S RRNA 2

-	A643 C644	C645	G646 116.47	0647 A648	U649	A650 11651	U652	A653	A054 A655	G656	U657 11658	0000 G659	C660	0661 G662	C663	A664 C665	UGGG	U667	A669 A669	A670	A671 A673	G673	C674	00/90 C676	G677	A679	G680	U682	G683 G683	4004 A685	U686 C687	U688	U689	G690 G691	<mark>G692</mark>	A693	4034 C695	6696 G	5	0 5	U
IJ	ں ت	. 9	D	0 0	5	υυ	0 0	0	P C	5	ن د	ა ლ	Å	5 U	U.	A C	o U	5 0	0 0	Ū	U U	0 0	00	с С736		U742	07 43 G7 44	C745	0/40	CT48	U749 7750	5	G754 C755	0	υυ	υ	D C	ۍ د ت	A U	ర ల	U
U	D II	Å	ი ი	0 0	IJ	A م	ņ	5	0 0	U	00	50	5	9 8	G789	1203	A794	A795	G795 C797	G798	U799	U801	A802	U804	1000 0	1 907	A810	A811 A812	101 E	0015 A816	G817 4818	G819	0820 G821	U822 11602	0823 C824	A825	A826 A827	6828 C829	A830	G831 G832	
C833	C834	C835	4837 A837	G 838	C839 C840	G841	C842	U844	<mark>G845</mark>	G846 4847	U848		C851 G852	-	C856	A861	A862	0003 A864	<u>A865</u>	U866 G867	6 868	A869		A872	G873 C874	A875	C876	U883		A886 U887	U888 11000	0680	G891	0896		0630 U899	<mark>C900</mark>	C911	C912 A913	U914	A916
U917	U918 4919	A920	<mark>G921</mark>	6924		C930	<mark>6933</mark>		C937 A938		0943	<mark>U946</mark>		C950 C951	G952	C953	A955	6956 • 657	A957 G958	G959	U960 C961	A962	A963	1966	<mark>C967</mark>	0.368	6970	4971 A972		G976	<mark>C977</mark>	C979	A980	C984	6.900	<mark>C988</mark>	<mark>C989 A990</mark>	6991	A992	<mark>6995</mark>	•
66	000	004	005 005	007	008	009	011	L	016	017	018	020	021	023	024	020		033	035 035	036			043	045 045		050 050	051 052	053 053	054 055	056	057 058	059		062	063 064	065	066 067		076	083 084	
69	<mark></mark>	U	<u>1</u>	5 5 -	A1	G1 G1	A1	1			€ E		5		A1	•		<u>1</u>		. A1	5		<u>19</u> 5	35		AT	19	C1	61		C1 V1	5		A1 A1	55	5 15	10 E		5	A1 A1	
C1085	G1086 A1087	U1088	G1089	C1080	G1096	G1097	U1101	5 7 7 7 7	61104	G1108	C1109	G1110 11111	U1112	A1113	U1115	C1116	C1117	A1119	U1120	G1121	C1124	2	G1131 C1132	A1133	U1136	U1137	C1138 C1139	G1140	G1141 G1142	A1143	4714 4	C1147 A1148	A1149	A1150 G1151	U1152	C1153 U1154	U1155	01150 G1157	G1158	U1161	
C1163	G1164 G1165	G1166	0 7 7 7 7 7 7 7	61169 A1170	G1171	G1 176		A1182	AII83	U1186	A1 180	COTTN	A1194		G1198	A1199 A1200		G1203	C1205	G1206	G1207	C1215	C1216	C1218	C1219	61221 61221	G1222 41222	61224 61224	71 00 E	G1236 G1236	C1237	01242	01243 01244	G1245	A1246 C1247	U1248	C1249 A1250	A1251 C1252	A1253	C1254 G1255	
G1256	G1257 41258	A1259	A1260	C1261 C1262	U1263	C1264	C1266	C1267	C1268 G1269	G1270	C1073	G1274 G1274	G1275	A1276	01277 A1278	C1279	A1282	C1283	A1284	G1286 G1286	A1287	01288	01789	U1297	U1300	A1301	G1302 C1303	TO C 111	U1308 U1308	C1309	01310 C1311	G1312 A1313	U1314	01315 C1316	C1317	G1318	U1323	61324 61325	U1326 61327		DCCT N
C1331	A1332 111333	G1334	G1335	01342	U1343	A1344 C1345	U1346	U1347	G1349 G1349	U1350	61351 61352	A1353	G1354	A1357	U1358	01359 111360	G1361	U1362	01364 01364		U1368 A1360	A1370	U1371		A1378	G1381	A1382	61384 C1384	C1 280	01390 U1390	C1391	G1393	G1394 C1395	A1396	01397 G1398	C1399	01400 A1401	A1402 C1403	01404	A1405 G1406	
U1407	U1408 A1409	C1410	G1411	G1412 G1413	A1414	C1415	C1416 C1417	C1418	C1419	61420 A1421	G1422	C1423	G1424	G1425	C1427	G1428	G1429 C1430	G1431	01432 C1433		C1435	C1436	01438 A1438	A1439	01440 U1441	U1442	01444 01444	U1445 A1446	61447	A1448	G1451	A1452 C1453	A1454	61456 G1456	U1457	G1461	U1462	C1464	A1465 G1466	C1467	C1471
1472	473 474	1475	476	1471 1478	[479	480	1482	483	1484 A BE	1486		489 490		[493	1495	1496	(497 (498	1499	1500		L506		1508 F/10	[510	[511 510	1513 1513	L514	L <mark>5</mark> 17	500	1521	1522 1523	001	1529 1529	1530 531	Too	1534 1531	1536	539	540	1541 1542	<mark>1543</mark>
44 C1	45 G1	47 G1	48 A1	50 U1	51 G1	52 A1	54 C1	55 Fr	57 A1	58 A1		61 61	62		68 G1 G1	69 70		73 U1	(4	77 U1	78 70	80 G1	81 A1	61 61	85 00 00	87 C1	88 88 03	61 61	91 61	95 01 01	96 97 07	98 80	00 C1	01 01 00	03	04 	00 06 61 0	07 08	00 15	10 11 C1	
2 C15	3 A15 1 G15	5 C15	615 7		015	0 G15 C15	2 C15	3 U15		5 C15	7 C15	1 A15	2 C15	5 G 15	5 C15	7 A15		0 G15		5 G15	6 U15	3 A15	9 C15		2 U15		5 A15		0 C15	2 015	3 U15	615	6 015 616	9 A16		2 G16	3 G16 G16	7 A16	3 C16	9 0 016	I
G1612	G1610 01610	U161E	U1616	C1618	A1619	A162(111621	U1622	A1623	01624 01625	C1626	C162	U1631	G1632	C1635	G1636	A1631	G1635	A164(C1644	C164t	C1640	G1648	U1645		G1652	G1654	C1655		C166(N1662	A1660	G1665	C1 66(G1665	G1671	U1672	01673 G1674	111677	A1678	A1675 G1680	

SER LEU ARG ALA SER LYS SER GLU SER SER GLU LYS SER CLU

• Molecule 9: 40S RIBOSOMAL PROTEIN ES7

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	109596	Depositor
Resolution determination method	Not provided	
CTF correction method	DEFOCUS GROUP	Depositor
Microscope	FEI TECNAI F20	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	20	Depositor
Minimum defocus (nm)	2000	Depositor
Maximum defocus (nm)	4000	Depositor
Magnification	65520	Depositor
Image detector	KODAK SO-163 FILM	Depositor
Maximum map value	12.036	Depositor
Minimum map value	-3.841	Depositor
Average map value	0.203	Depositor
Map value standard deviation	0.880	Depositor
Recommended contour level	2.5	Depositor
Map size (Å)	467.99997, 467.99997, 467.99997	wwPDB
Map dimensions	300, 300, 300	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.56, 1.56, 1.56	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	Bond angles				
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5			
1	1	0.37	2/41550~(0.0%)	0.80	6/64763~(0.0%)			
2	А	0.51	0/1756	0.68	0/2386			
3	В	0.51	0/1756	0.75	1/2350~(0.0%)			
4	С	0.42	0/1761	0.65	0/2379			
5	D	0.41	0/1672	0.66	0/2250			
6	Е	0.47	0/2072	0.70	0/2793			
7	F	0.43	0/1507	0.74	0/2026			
8	G	0.48	0/1907	0.74	0/2538			
9	Н	0.46	0/1558	0.74	1/2087~(0.0%)			
10	Ι	0.48	0/1724	0.72	0/2298			
11	J	0.45	0/1520	0.77	0/2030			
12	Κ	0.48	0/815	0.68	0/1101			
13	L	0.45	0/1220	0.72	0/1633			
14	М	0.48	0/941	0.72	0/1264			
15	Ν	0.43	0/1231	0.73	1/1656~(0.1%)			
16	0	0.46	0/1036	0.71	0/1391			
17	Р	0.43	0/1000	0.67	0/1335			
18	Q	0.43	0/1125	0.66	0/1506			
19	R	0.42	0/904	0.67	0/1208			
20	S	0.42	0/1190	0.68	0/1594			
21	Т	0.44	0/1131	0.69	0/1515			
22	U	0.50	0/813	0.70	0/1092			
23	V	0.47	0/643	0.71	0/860			
24	W	0.44	0/1050	0.69	0/1406			
25	Х	0.46	0/1063	0.70	0/1421			
26	Υ	0.45	0/1019	0.70	0/1354			
27	Ζ	0.46	0/611	0.71	0/820			
28	a	0.48	0/778	0.75	1/1041~(0.1%)			
29	b	0.48	0/637	0.68	0/854			
30	с	0.46	$0/\overline{492}$	0.74	$0/\overline{657}$			
31	d	0.51	0/454	0.77	0/603			
32	е	0.45	0/417	0.69	0/548			
33	f	0.53	0/507	0.84	1/673~(0.1%)			
34	g	0.45	0/2497	0.67	0/3399			

Mal	Chain	Bo	nd lengths	Bond angles				
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5			
All	All	0.42	2/80357~(0.0%)	0.76	11/116831 (0.0%)			

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	1	0	24

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
1	1	992	А	C6-N6	-6.31	1.28	1.33
1	1	1286	G	C2-N2	-5.29	1.29	1.34

All (11) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
1	1	502	С	C3'-C2'-C1'	-6.04	96.66	101.50
1	1	1441	U	C3'-C2'-C1'	-5.56	97.06	101.50
1	1	645	С	C3'-C2'-C1'	-5.51	97.09	101.50
15	Ν	6	ALA	N-CA-C	-5.40	96.41	111.00
9	Н	109	ARG	N-CA-CB	5.26	120.08	110.60
1	1	1422	G	C3'-C2'-C1'	-5.25	97.30	101.50
1	1	797	С	N1-C1'-C2'	-5.24	106.23	112.00
3	В	132	GLY	N-CA-C	5.24	126.20	113.10
33	f	124	ASP	N-CA-C	-5.13	97.14	111.00
1	1	1147	С	C3'-C2'-C1'	-5.06	97.45	101.50
28	a	5	ARG	N-CA-CB	-5.06	101.49	110.60

There are no chirality outliers.

All (24) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	1	111	А	Sidechain
1	1	1120	U	Sidechain
1	1	1288	U	Sidechain
1	1	1308	U	Sidechain
1	1	1414	А	Sidechain
1	1	1548	G	Sidechain

Mol	Chain	Res	Type	Group
1	1	1578	U	Sidechain
1	1	1624	U	Sidechain
1	1	1686	G	Sidechain
1	1	1823	А	Sidechain
1	1	216	С	Sidechain
1	1	235	А	Sidechain
1	1	44	U	Sidechain
1	1	570	С	Sidechain
1	1	572	U	Sidechain
1	1	643	А	Sidechain
1	1	645	С	Sidechain
1	1	747	U	Sidechain
1	1	77	А	Sidechain
1	1	799	U	Sidechain
1	1	84	A	Sidechain
1	1	867	G	Sidechain
1	1	88	G	Sidechain
1	1	897	U	Sidechain

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
2	А	216/295~(73%)	209 (97%)	5 (2%)	2(1%)	17	57
3	В	211/264~(80%)	176 (83%)	18 (8%)	17 (8%)	1	12
4	С	220/293~(75%)	213 (97%)	2(1%)	5 (2%)	6	34
5	D	210/243~(86%)	201 (96%)	4 (2%)	5 (2%)	6	33
6	Е	255/263~(97%)	237 (93%)	13 (5%)	5 (2%)	7	38

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
7	F	186/204~(91%)	163~(88%)	13~(7%)	10~(5%)	2	19
8	G	230/249~(92%)	216~(94%)	5(2%)	9~(4%)	3	23
9	Η	189/194~(97%)	178 (94%)	7~(4%)	4(2%)	7	36
10	Ι	205/208~(99%)	184 (90%)	14 (7%)	7 (3%)	3	26
11	J	177/194~(91%)	168~(95%)	6 (3%)	3~(2%)	9	42
12	Κ	92/165~(56%)	84 (91%)	1 (1%)	7 (8%)	1	13
13	L	144/158~(91%)	133~(92%)	5(4%)	6 (4%)	3	22
14	М	118/132~(89%)	111 (94%)	1 (1%)	6 (5%)	2	19
15	Ν	148/151~(98%)	138~(93%)	5(3%)	5(3%)	3	26
16	Ο	135/151~(89%)	129 (96%)	3~(2%)	3~(2%)	6	35
17	Р	116/145 (80%)	106 (91%)	5 (4%)	5 (4%)	2	22
18	Q	137/146~(94%)	129 (94%)	6 (4%)	2(2%)	10	46
19	R	105/135~(78%)	99 (94%)	4 (4%)	2(2%)	8	38
20	\mathbf{S}	140/152~(92%)	125 (89%)	7~(5%)	8 (6%)	1	18
21	Т	141/145~(97%)	135~(96%)	4 (3%)	2(1%)	11	46
22	U	99/119~(83%)	95~(96%)	3~(3%)	1 (1%)	15	55
23	V	81/83~(98%)	78~(96%)	1 (1%)	2(2%)	5	32
24	W	127/130~(98%)	118 (93%)	7~(6%)	2(2%)	9	44
25	Х	132/142~(93%)	120 (91%)	5 (4%)	7(5%)	2	19
26	Y	120/133~(90%)	114 (95%)	2(2%)	4 (3%)	4	26
27	Ζ	74/125~(59%)	71 (96%)	0	3 (4%)	3	23
28	a	94/115~(82%)	85~(90%)	5 (5%)	4 (4%)	2	22
29	b	78/84~(93%)	70 (90%)	8 (10%)	0	100	100
30	с	60/69~(87%)	57~(95%)	1 (2%)	2(3%)	4	26
31	d	51/56~(91%)	44 (86%)	7 (14%)	0	100	100
32	е	49/59~(83%)	43 (88%)	5 (10%)	1 (2%)	7	38
33	f	59/156~(38%)	53 (90%)	6 (10%)	0	100	100
34	g	312/317~(98%)	291 (93%)	14 (4%)	7 (2%)	6	35
All	All	4711/5475 (86%)	4373 (93%)	192 (4%)	146 (3%)	7	27

All (146) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
3	В	76	ASN
3	В	132	GLY
3	В	148	ASN
3	В	154	SER
3	В	176	VAL
3	В	177	GLN
3	В	207	LEU
3	В	221	PRO
4	С	64	THR
4	С	172	ASN
4	С	176	LYS
5	D	78	GLY
5	D	199	GLY
6	Е	204	SER
6	Е	205	PHE
7	F	20	PHE
7	F	22	LYS
7	F	40	ALA
7	F	48	TYR
7	F	80	GLY
7	F	132	GLY
7	F	185	SER
8	G	43	GLU
8	G	146	ASN
8	G	147	LEU
8	G	169	PRO
9	Н	88	SER
9	Н	135	PHE
10	Ι	123	ARG
10	Ι	131	PRO
10	Ι	134	GLU
10	Ι	142	SER
10	Ι	159	SER
12	K	30	PRO
12	К	32	HIS
12	K	36	ALA
12	K	84	HIS
12	K	87	PRO
13	L	8	ARG
13	L	19	ASN
15	N	7	PRO
15	N	108	ASP
16	Ο	100	THR

Mol	Chain	Res	Type
16	0	146	ARG
17	Р	29	SER
17	Р	126	VAL
19	R	72	LYS
20	S	78	LYS
20	S	79	ILE
20	S	134	GLN
21	Т	37	VAL
22	U	52	GLY
23	V	42	VAL
24	W	100	GLY
25	Х	61	GLN
25	Х	106	GLY
25	Х	107	ARG
25	Х	116	PRO
26	Y	33	ALA
26	Y	98	GLU
27	Ζ	95	GLY
34	g	255	SER
34	g	284	PRO
2	A	6	ASP
3	В	52	THR
3	В	78	GLU
3	В	127	VAL
3	В	209	ASP
4	С	174	ILE
5	D	81	GLU
6	Е	231	GLY
6	Е	243	GLY
7	F	34	SER
7	F	56	TYR
8	G	87	ARG
8	G	157	VAL
9	Н	164	ASN
12	K	64	TRP
13	L	119	ASP
14	М	30	GLY
14	М	60	MET
14	М	106	CYS
14	М	107	SER
15	N	143	SER
19	R	114	LEU

Mol	Chain	Res	Type
20	S	24	ARG
20	S	31	THR
20	S	90	VAL
20	S	92	ASP
23	V	48	GLY
28	a	61	ALA
34	g	276	SER
3	В	49	VAL
3	В	213	ARG
5	D	142	LEU
6	Е	203	GLY
7	F	79	HIS
8	G	91	GLU
8	G	92	ARG
9	Н	109	ARG
13	L	7	GLU
14	М	102	LYS
15	Ν	3	ARG
18	Q	17	LYS
18	Q	74	GLY
25	Х	33	GLY
25	Х	86	PRO
26	Y	64	PHE
27	Ζ	113	THR
28	a	81	SER
30	с	38	THR
15	Ν	62	GLN
17	Р	39	ALA
24	W	28	ARG
25	Х	75	ILE
26	Y	119	GLY
30	с	64	GLU
34	g	146	SER
4	С	261	PHE
8	G	88	ARG
11	J	138	ARG
11	J	169	ARG
13	L	115	PRO
17	Р	28	MET
17	Р	125	PRO
21	Т	51	ASN
27	Ζ	114	LYS

Mol	Chain	Res	Type
28	a	38	LYS
32	е	8	ARG
2	А	104	THR
3	В	23	ASP
3	В	210	VAL
10	Ι	12	ARG
20	S	6	PRO
28	a	84	VAL
3	В	64	GLY
11	J	170	PRO
12	Κ	86	PRO
13	L	29	GLY
14	М	100	PRO
34	g	103	GLY
10	Ι	20	PRO
16	0	53	ILE
34	g	61	GLY
34	g	265	ILE
5	D	63	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	\mathbf{ntiles}
2	А	181/243~(74%)	176~(97%)	5(3%)	43	65
3	В	194/231~(84%)	183 (94%)	11 (6%)	20	45
4	С	188/225~(84%)	181 (96%)	7~(4%)	34	58
5	D	175/202~(87%)	166~(95%)	9~(5%)	24	48
6	Ε	220/225~(98%)	208 (94%)	12 (6%)	21	47
7	F	158/170~(93%)	151 (96%)	7 (4%)	28	53
8	G	202/218~(93%)	195~(96%)	7 (4%)	36	59
9	Н	171/174~(98%)	167 (98%)	4 (2%)	50	70
10	Ι	179/180~(99%)	167 (93%)	12 (7%)	16	41

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
11	J	160/168~(95%)	150 (94%)	10 (6%)	18	43
12	Κ	85/136~(62%)	82~(96%)	3 (4%)	36	59
13	L	133/142 (94%)	131 (98%)	2 (2%)	65	80
14	М	102/108~(94%)	97~(95%)	5 (5%)	25	50
15	Ν	130/131 (99%)	128 (98%)	2 (2%)	65	80
16	Ο	107/119~(90%)	100 (94%)	7~(6%)	17	42
17	Р	107/130 (82%)	102 (95%)	5 (5%)	26	51
18	Q	115/121~(95%)	111 (96%)	4 (4%)	36	59
19	R	99/122~(81%)	94~(95%)	5 (5%)	24	48
20	S	123/132~(93%)	114 (93%)	9~(7%)	14	39
21	Т	113/115 (98%)	106 (94%)	7 (6%)	18	43
22	U	93/107~(87%)	89 (96%)	4 (4%)	29	53
23	V	67/67~(100%)	66~(98%)	1 (2%)	65	80
24	W	112/113~(99%)	107 (96%)	5 (4%)	27	52
25	Х	108/114 (95%)	103~(95%)	5 (5%)	27	52
26	Y	107/115~(93%)	101 (94%)	6 (6%)	21	46
27	Ζ	67/103~(65%)	63 (94%)	4 (6%)	19	44
28	a	83/98~(85%)	76~(92%)	7 (8%)	11	33
29	b	72/76~(95%)	68 (94%)	4 (6%)	21	46
30	с	55/62~(89%)	52 (94%)	3 (6%)	21	47
31	d	47/49~(96%)	43 (92%)	4 (8%)	10	33
32	е	42/48 (88%)	40 (95%)	2(5%)	25	51
33	f	54/140~(39%)	51 (94%)	3 (6%)	21	46
34	g	272/275~(99%)	260 (96%)	12 (4%)	28	53
All	All	4121/4659 (88%)	3928 (95%)	193 (5%)	30	51

All (193) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
2	А	8	LEU
2	А	10	MET
2	А	19	LEU
2	А	110	ASN
2	А	204	TYR

Mol	Chain	Res	Type
3	В	23	ASP
3	В	30	TRP
3	В	46	LYS
3	В	71	LEU
3	В	97	LEU
3	В	131	ASP
3	В	148	ASN
3	В	152	LYS
3	В	177	GLN
3	В	216	LYS
3	В	218	LEU
4	С	89	LYS
4	С	137	VAL
4	С	205	VAL
4	С	209	VAL
4	С	240	THR
4	С	252	THR
4	С	256	TRP
5	D	5	ILE
5	D	16	ILE
5	D	42	THR
5	D	66	ILE
5	D	93	THR
5	D	150	MET
5	D	162	ASP
5	D	193	ASP
5	D	211	VAL
6	Ε	23	LEU
6	Е	37	LYS
6	Е	51	ARG
6	E	95	THR
6	E	114	ILE
6	E	115	THR
6	E	128	LYS
6	Е	136	ILE
6	Е	148	ARG
6	Е	166	THR
6	Е	189	LEU
6	E	205	PHE
7	F	47	LYS
7	F	63	LYS
7	F	68	ILE

Mol	Chain	Res	Type
7	F	72	LEU
7	F	103	LEU
7	F	135	ARG
7	F	195	GLU
8	G	24	LEU
8	G	29	GLU
8	G	34	THR
8	G	87	ARG
8	G	160	LYS
8	G	176	ILE
8	G	195	LYS
9	Н	111	LYS
9	Н	116	ARG
9	Н	118	ARG
9	Н	152	ARG
10	Ι	19	LYS
10	Ι	21	TYR
10	Ι	29	LEU
10	Ι	48	VAL
10	Ι	55	TYR
10	Ι	62	VAL
10	Ι	78	ILE
10	Ι	93	THR
10	Ι	131	PRO
10	Ι	136	ILE
10	Ι	137	LEU
10	Ι	144	LYS
11	J	8	VAL
11	J	12	THR
11	J	30	LYS
11	J	41	ARG
11	J	47	LYS
11	J	78	LEU
11	J	128	VAL
11	J	130	ILE
11	J	147	PHE
11	J	163	SER
12	Κ	15	LEU
12	K	70	TYR
12	Κ	84	HIS
13	L	17	PHE
13	L	69	ARG

Mol	Chain	Res	Type
14	М	52	LEU
14	М	83	LYS
14	М	88	TRP
14	М	106	CYS
14	М	117	GLU
15	N	7	PRO
15	N	80	LEU
16	0	45	THR
16	0	63	LYS
16	0	100	THR
16	0	105	THR
16	0	129	ILE
16	0	132	VAL
16	0	140	THR
17	Р	16	THR
17	Р	29	SER
17	Р	40	ARG
17	Р	44	ARG
17	Р	74	GLU
18	Q	39	LEU
18	Q	43	GLU
18	Q	72	VAL
18	Q	105	LYS
19	R	22	THR
19	R	46	LEU
19	R	71	ILE
19	R	109	LEU
19	R	118	GLN
20	S	3	LEU
20	S	5	ILE
20	S	8	LYS
20	S	23	ARG
20	S	25	LYS
20	S	45	LEU
20	S	60	THR
$2\overline{0}$	S	99	LEU
20	S	139	THR
21	Т	5	THR
21	Т	33	TRP
21	Т	39	LEU
21	Т	64	LEU
21	Т	87	VAL

Mol	Chain	Res	Type
21	Т	121	ARG
21	Т	126	GLN
22	U	24	LEU
22	U	59	LYS
22	U	61	LEU
22	U	115	THR
23	V	2	GLN
24	W	4	MET
24	W	11	LEU
24	W	20	ARG
24	W	97	ARG
24	W	98	GLN
25	Х	17	ARG
25	Х	31	HIS
25	Х	37	LYS
25	Х	80	LYS
25	Х	81	ILE
26	Y	20	ARG
26	Y	21	LYS
26	Y	54	VAL
26	Y	84	LYS
26	Y	99	LYS
26	Y	100	LYS
27	Ζ	43	LYS
27	Ζ	62	VAL
27	Ζ	67	LEU
27	Ζ	111	ARG
28	a	21	ILE
28	a	23	CYS
28	a	32	LYS
28	a	37	LYS
28	a	64	LEU
28	a	71	LEU
28	a	84	VAL
29	b	7	LEU
29	b	56	CYS
29	b	59	CYS
29	b	63	LEU
30	с	9	ILE
30	с	17	VAL
30	с	32	VAL
31	d	28	HIS

Mol	Chain	Res	Type
31	d	40	ARG
31	d	44	ARG
31	d	48	LYS
32	е	18	LYS
32	е	46	VAL
33	f	97	LYS
33	f	104	LYS
33	f	148	TYR
34	g	20	GLN
34	g	26	GLN
34	g	54	ILE
34	g	94	THR
34	g	99	ARG
34	g	157	SER
34	g	164	ILE
34	g	189	ILE
34	g	255	SER
34	g	266	ILE
$\overline{34}$	g	287	THR
34	g	289	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (86) such sidechains are listed below:

Mol	Chain	Res	Type
2	А	50	ASN
2	А	110	ASN
2	А	215	GLN
3	В	40	ASN
3	В	53	GLN
3	В	149	GLN
3	В	157	GLN
3	В	160	GLN
3	В	177	GLN
4	С	267	GLN
5	D	4	GLN
5	D	56	GLN
5	D	57	ASN
5	D	101	GLN
5	D	179	GLN
6	Е	36	HIS
6	Е	138	HIS
6	Е	188	ASN

Mol	Chain	Res	Type
6	Е	216	ASN
6	Е	230	ASN
7	F	29	GLN
7	F	82	ASN
7	F	95	HIS
7	F	107	ASN
7	F	110	GLN
7	F	114	ASN
7	F	165	ASN
7	F	203	ASN
8	G	65	GLN
8	G	81	HIS
8	G	105	ASN
9	Н	25	GLN
9	Н	76	GLN
9	Н	97	GLN
9	Н	112	ASN
10	Ι	22	HIS
11	J	124	HIS
11	J	143	ASN
12	Κ	44	HIS
12	Κ	84	HIS
13	L	5	GLN
13	L	112	HIS
14	М	19	GLN
15	Ν	105	ASN
16	Ο	32	HIS
16	0	43	HIS
17	Р	35	GLN
17	Р	104	GLN
18	Q	11	GLN
18	Q	48	GLN
18	Q	80	GLN
18	Q	86	GLN
19	R	62	GLN
20	S	19	ASN
20	S	73	ASN
20	S	85	ASN
20	S	87	GLN
21	Т	63	HIS
21	Т	126	GLN
22	U	100	GLN

Mol	Chain	Res	Type
23	V	2	GLN
24	W	24	GLN
24	W	82	GLN
24	W	113	HIS
25	Х	61	GLN
25	Х	73	GLN
25	Х	77	ASN
26	Y	19	GLN
26	Y	22	GLN
26	Y	29	HIS
27	Ζ	103	HIS
28	a	19	GLN
29	b	49	HIS
30	с	45	ASN
31	d	5	GLN
31	d	16	GLN
31	d	26	ASN
31	d	41	GLN
32	е	22	GLN
32	е	44	ASN
34	g	20	GLN
34	g	26	GLN
34	g	56	GLN
34	g	64	HIS
34	g	117	ASN
34	g	196	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	1	1738/1869~(92%)	1037~(59%)	152 (8%)

All (1037) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	1	2	А
1	1	3	С
1	1	4	С
1	1	5	U
1	1	6	G
1	1	7	G

Mol	Chain	Res	Type
1	1	8	U
1	1	9	U
1	1	15	U
1	1	16	G
1	1	17	С
1	1	21	U
1	1	22	А
1	1	24	С
1	1	25	А
1	1	26	U
1	1	30	С
1	1	33	G
1	1	39	А
1	1	40	А
1	1	41	G
1	1	44	U
1	1	45	А
1	1	46	А
1	1	47	G
1	1	48	С
1	1	50	А
1	1	55	U
1	1	56	G
1	1	59	U
1	1	60	А
1	1	61	А
1	1	62	G
1	1	63	U
1	1	64	А
1	1	65	С
1	1	66	G
1	1	67	C
1	1	68	А
1	1	69	C
1	1	70	G
1	1	71	G
1	1	72	C
1	1	74	G
1	1	75	G
1	1	76	U
1	1	77	А
1	1	78	С

Mol	Chain	\mathbf{Res}	Type
1	1	79	А
1	1	80	G
1	1	81	U
1	1	82	G
1	1	83	А
1	1	84	А
1	1	87	U
1	1	98	С
1	1	99	А
1	1	101	U
1	1	103	А
1	1	104	А
1	1	105	U
1	1	106	С
1	1	109	U
1	1	110	U
1	1	111	А
1	1	112	U
1	1	113	G
1	1	114	G
1	1	115	U
1	1	116	U
1	1	117	С
1	1	118	С
1	1	120	U
1	1	121	U
1	1	122	G
1	1	123	G
1	1	124	U
1	1	125	С
1	1	126	G
1	1	127	С
1	1	128	U
1	1	129	С
1	1	130	G
1	1	131	С
1	1	132	U
1	1	133	С
1	1	134	С
1	1	135	U
1	1	136	С
1	1	137	U

Mol	Chain	Res	Type
1	1	138	С
1	1	139	С
1	1	140	С
1	1	141	А
1	1	142	С
1	1	143	U
1	1	144	U
1	1	145	G
1	1	146	G
1	1	147	А
1	1	150	А
1	1	151	С
1	1	152	U
1	1	153	G
1	1	158	А
1	1	160	U
1	1	161	U
1	1	162	С
1	1	163	U
1	1	164	А
1	1	166	А
1	1	167	G
1	1	168	С
1	1	169	U
1	1	171	А
1	1	173	А
1	1	174	С
1	1	176	U
1	1	179	С
1	1	180	G
1	1	181	А
1	1	182	C
1	1	183	G
1	1	184	G
1	1	185	G
1	1	187	G
1	1	193	C
1	1	198	U
1	1	199	C
1	1	200	G
1	1	201	C
1	1	202	G

Mol	Chain	Res	Type
1	1	204	G
1	1	205	G
1	1	207	G
1	1	208	G
1	1	209	А
1	1	210	U
1	1	211	G
1	1	213	G
1	1	214	U
1	1	215	G
1	1	216	С
1	1	217	А
1	1	218	U
1	1	219	U
1	1	220	U
1	1	225	G
1	1	226	А
1	1	227	U
1	1	228	С
1	1	229	А
1	1	230	А
1	1	233	С
1	1	234	С
1	1	235	А
1	1	236	А
1	1	237	С
1	1	238	С
1	1	239	С
1	1	298	G
1	1	301	А
1	1	303	C
1	1	304	C
1	1	305	U
1	1	306	С
1	1	307	G
1	1	308	G
1	1	309	G
1	1	310	С
1	1	311	С
1	1	312	G
1	1	313	A
1	1	314	U

Mol	Chain	Res	Type
1	1	315	С
1	1	317	С
1	1	318	А
1	1	319	С
1	1	320	G
1	1	321	С
1	1	327	G
1	1	328	U
1	1	329	G
1	1	330	G
1	1	332	G
1	1	333	G
1	1	337	С
1	1	338	G
1	1	339	A
1	1	343	A
1	1	344	U
1	1	345	U
1	1	346	С
1	1	347	G
1	1	350	С
1	1	352	U
1	1	353	C
1	1	354	U
1	1	356	С
1	1	357	C
1	1	358	С
1	1	359	U
1	1	362	C
1	1	363	A
1	1	364	A
1	1	368	U
1	1	369	С
1	1	371	A
1	1	372	U
1	1	375	U
1	1	376	A
1	1	378	U
1	1	379	С
1	1	380	G
1	1	381	C
1	1	382	С

Mol	Chain	Res	Type
1	1	383	G
1	1	384	U
1	1	386	С
1	1	389	А
1	1	395	G
1	1	399	С
1	1	400	С
1	1	407	G
1	1	408	А
1	1	409	С
1	1	410	G
1	1	412	G
1	1	416	U
1	1	421	G
1	1	422	U
1	1	423	U
1	1	424	С
1	1	426	А
1	1	427	U
1	1	429	С
1	1	431	G
1	1	433	А
1	1	435	А
1	1	436	G
1	1	438	G
1	1	440	G
1	1	441	С
1	1	442	С
1	1	443	U
1	1	445	А
1	1	447	А
1	1	448	A
1	1	449	А
1	1	450	С
1	1	451	G
1	1	452	G
1	1	454	U
1	1	459	С
1	1	460	A
1	1	463	С
1	1	464	A
1	1	465	A

Mol	Chain	Res	Type
1	1	466	G
1	1	467	G
1	1	468	А
1	1	472	С
1	1	473	А
1	1	474	G
1	1	475	С
1	1	476	А
1	1	477	G
1	1	480	G
1	1	482	G
1	1	485	А
1	1	487	U
1	1	488	U
1	1	489	А
1	1	491	С
1	1	492	С
1	1	493	А
1	1	495	U
1	1	496	С
1	1	497	С
1	1	499	G
1	1	500	А
1	1	501	С
1	1	502	С
1	1	503	С
1	1	504	G
1	1	506	G
1	1	507	G
1	1	509	G
1	1	510	G
1	1	512	A
1	1	516	А
1	1	517	C
1	1	518	G
1	1	523	А
1	1	525	A
1	1	526	A
1	1	527	C
1	1	529	A
1	1	530	U
1	1	533	А

Mol	Chain	Res	Type
1	1	535	G
1	1	536	А
1	1	537	С
1	1	538	U
1	1	539	С
1	1	541	U
1	1	542	U
1	1	543	С
1	1	544	G
1	1	545	А
1	1	546	G
1	1	547	G
1	1	548	С
1	1	549	С
1	1	550	С
1	1	553	U
1	1	554	А
1	1	555	А
1	1	559	G
1	1	560	А
1	1	562	U
1	1	564	А
1	1	565	G
1	1	566	U
1	1	568	С
1	1	570	С
1	1	571	U
1	1	572	U
1	1	573	U
1	1	574	A
1	1	575	A
1	1	576	A
1	1	577	U
1	1	578	С
1	1	579	C
1	1	580	U
1	1	582	U
1	1	586	G
1	1	587	A
1	1	588	G
1	1	589	G
1	1	590	A

Mol	Chain	Res	Type
1	1	591	U
1	1	592	С
1	1	593	С
1	1	594	А
1	1	595	U
1	1	596	U
1	1	597	G
1	1	599	А
1	1	600	G
1	1	603	С
1	1	604	А
1	1	605	А
1	1	606	G
1	1	607	U
1	1	608	С
1	1	609	U
1	1	612	U
1	1	613	G
1	1	614	С
1	1	617	G
1	1	619	А
1	1	620	G
1	1	621	С
1	1	623	G
1	1	624	С
1	1	627	U
1	1	628	A
1	1	629	А
1	1	630	U
1	1	631	U
1	1	634	A
1	1	638	С
1	1	643	A
1	1	644	G
1	1	645	С
1	1	647	U
1	1	648	A
1	1	650	A
1	1	651	U
1	1	652	U
1	1	654	A
1	1	655	A

Mol	Chain	Res	Type
1	1	656	G
1	1	657	U
1	1	658	U
1	1	659	G
1	1	660	С
1	1	661	U
1	1	663	С
1	1	664	А
1	1	665	G
1	1	666	U
1	1	668	А
1	1	669	А
1	1	671	А
1	1	672	A
1	1	673	G
1	1	674	С
1	1	675	U
1	1	676	С
1	1	677	G
1	1	679	А
1	1	680	G
1	1	681	U
1	1	683	G
1	1	684	G
1	1	686	U
1	1	688	U
1	1	689	U
1	1	692	G
1	1	694	G
1	1	695	С
1	1	742	U
1	1	743	U
1	1	744	G
1	1	745	С
1	1	746	С
1	1	747	U
1	1	748	С
1	1	749	U
1	1	750	С
1	1	754	G
1	1	755	С
1	1	793	G

Mol	Chain	Res	Type
1	1	795	А
1	1	796	G
1	1	797	С
1	1	798	G
1	1	799	U
1	1	800	U
1	1	801	U
1	1	802	А
1	1	803	С
1	1	804	U
1	1	807	G
1	1	810	A
1	1	812	А
1	1	815	U
1	1	816	А
1	1	818	A
1	1	819	G
1	1	820	U
1	1	821	G
1	1	822	U
1	1	823	U
1	1	825	А
1	1	827	А
1	1	829	С
1	1	830	A
1	1	831	G
1	1	834	С
1	1	835	С
1	1	837	А
1	1	838	G
1	1	839	С
1	1	840	С
1	1	841	G
1	1	842	С
1	1	844	U
1	1	845	G
1	1	847	А
1	1	848	U
1	1	851	С
1	1	852	G
1	1	856	С
1	1	861	А

Mol	Chain	Res	Type
1	1	862	А
1	1	863	U
1	1	865	А
1	1	869	А
1	1	870	А
1	1	873	G
1	1	874	G
1	1	875	А
1	1	876	С
1	1	886	А
1	1	887	U
1	1	888	U
1	1	889	U
1	1	890	U
1	1	891	G
1	1	896	U
1	1	897	U
1	1	898	U
1	1	899	U
1	1	900	С
1	1	911	С
1	1	912	С
1	1	913	А
1	1	914	U
1	1	915	G
1	1	917	U
1	1	918	U
1	1	919	А
1	1	920	А
1	1	921	G
1	1	924	G
1	1	930	C
1	1	933	G
1	1	937	C
1	1	938	A
1	1	943	U
1	1	946	U
1	1	950	C
1	1	951	C
1	1	953	C
1	1	955	A
1	1	956	G

Mol	Chain	Res	Type
1	1	957	А
1	1	958	G
1	1	959	G
1	1	960	U
1	1	961	G
1	1	962	А
1	1	963	А
1	1	966	U
1	1	967	С
1	1	968	U
1	1	969	U
1	1	970	G
1	1	971	G
1	1	972	А
1	1	975	G
1	1	977	С
1	1	979	С
1	1	980	А
1	1	984	С
1	1	985	G
1	1	988	С
1	1	990	А
1	1	991	G
1	1	995	G
1	1	999	G
1	1	1000	С
1	1	1004	U
1	1	1006	С
1	1	1007	С
1	1	1009	А
1	1	1011	A
1	1	1015	U
1	1	1016	U
1	1	1017	U
1	1	1018	U
1	1	1019	С
1	1	1020	A
1	1	1021	U
1	1	1022	U
1	1	1023	А
1	1	1024	А
1	1	1029	G

Mol	Chain	Res	Type
1	1	1033	G
1	1	1034	А
1	1	1035	А
1	1	1036	А
1	1	1040	G
1	1	1044	G
1	1	1045	U
1	1	1049	А
1	1	1050	А
1	1	1051	G
1	1	1052	А
1	1	1053	С
1	1	1055	А
1	1	1057	С
1	1	1058	А
1	1	1060	А
1	1	1061	U
1	1	1062	А
1	1	1064	С
1	1	1065	G
1	1	1067	С
1	1	1076	G
1	1	1083	А
1	1	1084	А
1	1	1085	С
1	1	1086	G
1	1	1087	А
1	1	1088	U
1	1	1089	G
1	1	1090	С
1	1	1096	G
1	1	1097	G
1	1	1101	U
1	1	1104	G
1	1	1108	G
1	1	1109	С
1	1	1110	G
1	1	1112	U
1	1	1115	U
1	1	1116	С
1	1	1117	C
1	1	1118	С

Mol	Chain	Res	Type
1	1	1120	U
1	1	1121	G
1	1	1124	С
1	1	1131	G
1	1	1132	С
1	1	1133	А
1	1	1136	U
1	1	1137	U
1	1	1139	С
1	1	1140	G
1	1	1141	G
1	1	1143	А
1	1	1144	А
1	1	1147	С
1	1	1148	А
1	1	1149	А
1	1	1150	А
1	1	1151	G
1	1	1153	С
1	1	1154	U
1	1	1155	U
1	1	1157	G
1	1	1158	G
1	1	1161	U
1	1	1163	С
1	1	1164	G
1	1	1165	G
1	1	1166	G
1	1	1169	G
1	1	1170	А
1	1	1171	G
1	1	1176	G
1	1	1182	A
1	1	1183	A
1	1	1186	U
1	1	1189	A
1	1	1194	A
1	1	1195	A
1	1	1198	G
1	1	1199	A
1	1	1200	А
1	1	1203	G

Mol	Chain	Res	Type
1	1	1205	С
1	1	1206	G
1	1	1207	G
1	1	1215	С
1	1	1216	С
1	1	1217	А
1	1	1218	С
1	1	1219	С
1	1	1221	G
1	1	1223	А
1	1	1224	G
1	1	1235	G
1	1	1236	G
1	1	1237	С
1	1	1242	U
1	1	1243	U
1	1	1245	G
1	1	1246	А
1	1	1247	С
1	1	1248	U
1	1	1249	С
1	1	1251	А
1	1	1253	А
1	1	1254	С
1	1	1255	G
1	1	1256	G
1	1	1257	G
1	1	1258	А
1	1	1259	А
1	1	1260	А
1	1	1261	С
1	1	1262	С
1	1	1263	U
1	1	1264	С
1	1	1265	А
1	1	1266	C
1	1	1267	С
1	1	1268	С
1	1	1269	G
1	1	$1\overline{270}$	G
1	1	1273	С
1	1	1274	G

Mol	Chain	Res	Type
1	1	1275	G
1	1	1276	А
1	1	1277	С
1	1	1278	А
1	1	1279	С
1	1	1282	А
1	1	1284	А
1	1	1285	G
1	1	1286	G
1	1	1287	А
1	1	1288	U
1	1	1289	U
1	1	1297	U
1	1	1300	U
1	1	1301	А
1	1	1302	G
1	1	1303	С
1	1	1307	U
1	1	1308	U
1	1	1310	U
1	1	1311	С
1	1	1312	G
1	1	1313	А
1	1	1314	U
1	1	1315	U
1	1	1317	С
1	1	1318	G
1	1	1323	U
1	1	1324	G
1	1	1325	G
1	1	1326	U
1	1	1327	G
1	1	1330	G
1	1	1331	С
1	1	1332	А
1	1	1333	U
1	1	1335	G
1	1	1343	U
1	1	1344	А
1	1	1345	G
1	1	1347	U
1	1	1349	G

Mol	Chain	Res	Type
1	1	1351	G
1	1	1352	G
1	1	1354	G
1	1	1357	А
1	1	1358	U
1	1	1359	U
1	1	1360	U
1	1	1363	\mathbf{C}
1	1	1364	U
1	1	1368	U
1	1	1369	А
1	1	1371	U
1	1	1372	U
1	1	1378	А
1	1	1381	G
1	1	1382	А
1	1	1384	С
1	1	1389	С
1	1	1390	U
1	1	1392	U
1	1	1393	G
1	1	1394	G
1	1	1395	C
1	1	1397	U
1	1	1399	С
1	1	1401	А
1	1	1402	А
1	1	1403	С
1	1	1404	U
1	1	1405	А
1	1	1406	G
1	1	1407	U
1	1	1408	U
1	1	1409	А
1	1	1410	С
1	1	1411	G
1	1	1412	С
1	1	1413	G
1	1	1415	С
1	1	1416	С
1	1	1417	C
1	1	1419	С

Mol	Chain	Res	Type
1	1	1420	G
1	1	1421	А
1	1	1422	G
1	1	1423	С
1	1	1424	G
1	1	1425	G
1	1	1426	U
1	1	1427	С
1	1	1428	G
1	1	1429	G
1	1	1430	С
1	1	1431	G
1	1	1432	U
1	1	1433	C
1	1	1434	С
1	1	1435	С
1	1	1436	С
1	1	1437	С
1	1	1438	А
1	1	1440	С
1	1	1441	U
1	1	1442	U
1	1	1443	С
1	1	1444	U
1	1	1445	U
1	1	1446	А
1	1	1447	G
1	1	1448	А
1	1	1451	G
1	1	1453	С
1	1	1454	A
1	1	1455	A
1	1	1456	G
1	1	1457	U
1	1	1461	G
1	1	1462	U
1	1	1463	U
1	1	1464	С
1	1	1465	A
1	1	1466	G
1	1	1467	С
1	1	1471	С

Mol	Chain	Res	Type
1	1	1472	С
1	1	1473	G
1	1	1475	G
1	1	1476	А
1	1	1477	U
1	1	1478	U
1	1	1480	А
1	1	1481	G
1	1	1482	С
1	1	1484	А
1	1	1486	А
1	1	1489	А
1	1	1490	G
1	1	1493	С
1	1	1494	U
1	1	1495	G
1	1	1496	U
1	1	1498	А
1	1	1500	G
1	1	1505	U
1	1	1507	G
1	1	1508	А
1	1	1509	U
1	1	1510	G
1	1	1511	U
1	1	1513	С
1	1	1514	G
1	1	1517	G
1	1	1520	G
1	1	1521	С
1	1	1522	А
1	1	1523	С
1	1	1528	G
1	1	1529	С
1	1	1530	U
1	1	1531	A
1	1	1535	U
1	1	1536	G
1	1	1539	U
1	1	1540	G
1	1	1541	G
1	1	1542	C

Mol	Chain	Res	Type
1	1	1543	U
1	1	1544	С
1	1	1545	А
1	1	1546	G
1	1	1547	С
1	1	1548	G
1	1	1549	U
1	1	1550	G
1	1	1551	U
1	1	1553	С
1	1	1554	C
1	1	1555	U
1	1	1556	А
1	1	1557	C
1	1	1558	С
1	1	1560	U
1	1	1561	А
1	1	1563	G
1	1	1568	С
1	1	1569	А
1	1	1570	G
1	1	1573	G
1	1	1574	С
1	1	1577	G
1	1	1578	U
1	1	1579	А
1	1	1580	А
1	1	1581	С
1	1	1582	С
1	1	1585	U
1	1	1586	U
1	1	1587	G
1	1	1588	A
1	1	1589	А
1	1	1591	С
1	1	1595	U
1	1	1597	С
1	1	1598	G
1	1	1599	U
1	1	1600	G
1	1	1601	A
1	1	1602	U

Mol	Chain	Res	Type
1	1	1603	G
1	1	1604	G
1	1	1605	G
1	1	1607	А
1	1	1609	С
1	1	1610	G
1	1	1612	G
1	1	1614	А
1	1	1615	U
1	1	1617	G
1	1	1618	С
1	1	1620	А
1	1	1621	U
1	1	1622	U
1	1	1623	А
1	1	1624	U
1	1	1625	U
1	1	1627	С
1	1	1631	U
1	1	1632	G
1	1	1635	С
1	1	1636	G
1	1	1637	А
1	1	1638	G
1	1	1639	G
1	1	1640	А
1	1	1644	С
1	1	1645	С
1	1	1647	А
1	1	1648	G
1	1	1649	U
1	1	1651	А
1	1	1652	G
1	1	1654	G
1	1	1655	С
1	1	1656	G
1	1	1660	C
1	1	1661	А
1	1	1662	U
1	1	1664	A
1	1	$16\overline{65}$	G
1	1	1666	С

Mol	Chain	Res	Type
1	1	1669	G
1	1	1671	G
1	1	1672	U
1	1	1673	U
1	1	1674	G
1	1	1677	U
1	1	1678	А
1	1	1679	А
1	1	1680	G
1	1	1682	С
1	1	1684	С
1	1	1685	U
1	1	1686	G
1	1	1687	C
1	1	1688	С
1	1	1689	C
1	1	1691	U
1	1	1692	U
1	1	1694	U
1	1	1696	С
1	1	1697	A
1	1	1698	С
1	1	1699	А
1	1	1700	C
1	1	1701	С
1	1	1702	G
1	1	1703	С
1	1	1707	U
1	1	1708	C
1	1	1709	G
1	1	1710	C
1	1	1714	U
1	1	1719	A
1	1	1720	U
1	1	1721	U
1	1	1722	G
1	1	1723	G
1	1	1728	U
1	1	1729	U
1	1	1731	A
1	1	1732	G
1	1	1735	А

Mol	Chain	Res	Type
1	1	1744	G
1	1	1745	А
1	1	1747	С
1	1	1749	G
1	1	1751	С
1	1	1752	С
1	1	1760	G
1	1	1761	U
1	1	1764	G
1	1	1765	С
1	1	1767	С
1	1	1768	А
1	1	1770	G
1	1	1775	С
1	1	1781	А
1	1	1782	G
1	1	1783	С
1	1	1788	А
1	1	1789	G
1	1	1790	А
1	1	1792	G
1	1	1794	С
1	1	1798	С
1	1	1800	А
1	1	1809	А
1	1	1811	С
1	1	1813	А
1	1	1817	G
1	1	1819	А
1	1	1823	А
1	1	1824	A
1	1	1825	A
1	1	1826	G
1	1	1827	U
1	1	1829	G
1	1	1831	A
1	1	1832	А
1	1	1833	С
1	1	1834	А
1	1	1835	A
1	1	1836	G
1	1	1837	G

Mol	Chain	Res	Type
1	1	1838	U
1	1	1839	U
1	1	1841	С
1	1	1843	G
1	1	1844	U
1	1	1846	G
1	1	1847	G
1	1	1849	G
1	1	1850	А
1	1	1851	А
1	1	1852	С
1	1	1856	С
1	1	1857	G
1	1	1860	А
1	1	1861	G
1	1	1862	G
1	1	1863	А
1	1	1864	U
1	1	1865	С
1	1	1866	А
1	1	1867	U
1	1	1868	U
1	1	1869	A

All (152) RNA pucker outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	1	24	С
1	1	44	U
1	1	61	А
1	1	64	А
1	1	66	G
1	1	68	А
1	1	77	А
1	1	78	С
1	1	102	А
1	1	111	А
1	1	113	G
1	1	124	U
1	1	131	С
1	1	136	С
1	1	139	С

Mol	Chain	Res	Type
1	1	140	С
1	1	147	А
1	1	162	С
1	1	181	А
1	1	183	G
1	1	199	С
1	1	200	G
1	1	207	G
1	1	209	А
1	1	227	U
1	1	304	С
1	1	307	G
1	1	308	G
1	1	310	С
1	1	312	G
1	1	317	С
1	1	319	С
1	1	332	G
1	1	338	G
1	1	356	С
1	1	363	А
1	1	368	U
1	1	370	G
1	1	383	G
1	1	399	С
1	1	428	U
1	1	448	А
1	1	465	А
1	1	475	С
1	1	486	А
1	1	487	U
1	1	501	C
1	1	517	С
1	1	544	G
1	1	546	G
1	1	547	G
1	1	558	G
1	1	577	U
1	1	578	С
1	1	589	G
1	1	590	A
1	1	593	С

Mol	Chain	Res	Type
1	1	604	А
1	1	656	G
1	1	662	G
1	1	671	А
1	1	687	С
1	1	743	U
1	1	799	U
1	1	811	А
1	1	821	G
1	1	822	U
1	1	833	С
1	1	834	С
1	1	840	С
1	1	899	U
1	1	913	А
1	1	970	G
1	1	971	G
1	1	1015	U
1	1	1016	U
1	1	1020	А
1	1	1021	U
1	1	1043	G
1	1	1060	А
1	1	1088	U
1	1	1108	G
1	1	1114	U
1	1	1115	U
1	1	1138	С
1	1	1150	А
1	1	1164	G
1	1	1198	G
1	1	1215	С
1	1	1242	U
1	1	1247	С
1	1	1250	A
1	1	1253	A
1	1	1257	G
1	1	1259	A
1	1	1261	С
1	1	1264	С
1	1	1277	С
1	1	1285	G

Mol	Chain	Res	Type
1	1	1301	А
1	1	1307	U
1	1	1308	U
1	1	1311	С
1	1	1313	А
1	1	1326	U
1	1	1342	U
1	1	1351	G
1	1	1362	U
1	1	1401	А
1	1	1404	U
1	1	1406	G
1	1	1411	G
1	1	1456	G
1	1	1476	А
1	1	1477	U
1	1	1494	U
1	1	1497	G
1	1	1508	А
1	1	1520	G
1	1	1534	С
1	1	1542	С
1	1	1543	U
1	1	1555	U
1	1	1556	А
1	1	1578	U
1	1	1586	U
1	1	1603	G
1	1	1624	U
1	1	1631	U
1	1	1635	С
1	1	1637	A
1	1	1638	G
1	1	1644	С
1	1	1648	G
1	1	1654	G
1	1	1655	С
1	1	1673	U
1	1	1697	A
1	1	1698	C
1	1	1700	С
1	1	1721	U

Mol	Chain	Res	Type
1	1	1781	А
1	1	1823	А
1	1	1824	А
1	1	1830	U
1	1	1833	С
1	1	1834	А
1	1	1836	G
1	1	1848	U
1	1	1860	А
1	1	1862	G
1	1	1867	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-2810. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 150

Y Index: 150

Z Index: 150

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 173

Y Index: 149

Z Index: 154

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 2.5. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 3628 nm^3 ; this corresponds to an approximate mass of 3277 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.111 $\rm \AA^{-1}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-2810 and PDB model 4D5L. Per-residue inclusion information can be found in section 3 on page 10.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 2.5 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (2.5).

9.4 Atom inclusion (i)

At the recommended contour level, 83% of all backbone atoms, 79% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (2.5) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.7895	0.1090
1	0.9134	0.1300
А	0.4631	0.0870
В	0.7134	0.1180
С	0.5851	0.1000
D	0.6494	0.0960
Е	0.7455	0.0850
F	0.7592	0.1020
G	0.8003	0.0860
Н	0.4124	0.0890
Ι	0.6993	0.0840
J	0.7902	0.0940
K	0.7736	0.0990
L	0.6186	0.0850
М	0.4351	0.0490
Ν	0.6892	0.1010
О	0.6841	0.0880
Р	0.7298	0.1050
Q	0.7808	0.0790
R	0.5803	0.0950
S	0.7635	0.0980
Т	0.7911	0.0900
U	0.6138	0.0550
V	0.3071	0.0670
W	0.6501	0.0720
Х	0.6989	0.0900
Y	0.8117	0.0920
Z	0.8356	0.1260
a	0.6585	0.0570
b	0.6183	0.0960
с	0.6851	0.0880
d	0.8099	0.0640
е	0.5945	0.0640
f	0.5507	0.0420
g	0.6046	0.0890

