

# Full wwPDB X-ray Structure Validation Report (i)

#### Nov 20, 2023 – 02:32 PM JST

| PDB ID       | : | 7CPR                                 |
|--------------|---|--------------------------------------|
| Title        | : | glutamine synthetase from Drosophila |
| Authors      | : | Yin, H.S.; Chen, W.T.                |
| Deposited on | : | 2020-08-07                           |
| Resolution   | : | 2.12 Å(reported)                     |
|              |   |                                      |

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| MolProbity                     | : | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as541be (2020)                                 |
| Xtriage (Phenix)               | : | 1.13                                                               |
| $\mathrm{EDS}$                 | : | 2.36                                                               |
| buster-report                  | : | 1.1.7(2018)                                                        |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| Refmac                         | : | 5.8.0158                                                           |
| CCP4                           | : | 7.0.044 (Gargrove)                                                 |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.36                                                               |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $X\text{-}RAY \, DIFFRACTION$ 

The reported resolution of this entry is 2.12 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | $egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$ | ${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$ |
|-----------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|
| $R_{free}$            | 130704                                                               | 6241 (2.14-2.10)                                                          |
| Clashscore            | 141614                                                               | 6778 (2.14-2.10)                                                          |
| Ramachandran outliers | 138981                                                               | 6705 (2.14-2.10)                                                          |
| Sidechain outliers    | 138945                                                               | 6706 (2.14-2.10)                                                          |
| RSRZ outliers         | 127900                                                               | 6112 (2.14-2.10)                                                          |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain |     |    |
|-----|-------|--------|------------------|-----|----|
|     |       |        | 15%              |     |    |
|     | А     | 367    | 82%              | 16% | •  |
|     |       |        | 13%              |     |    |
| 1   | В     | 367    | 79%              | 18% | •  |
|     |       |        | 11%              |     |    |
| 1   | С     | 367    | 88%              | 11% | •  |
|     |       |        | 10%              |     |    |
| 1   | D     | 367    | 83%              | 14% | •• |
|     |       |        | 12%              |     |    |
| 1   | Ε     | 367    | 83%              | 14% | •• |
|     |       |        | 11%              |     |    |
| 1   | F     | 367    | 82%              | 15% | •  |



| Mol | Chain | Length | Quality of chain |     |     |
|-----|-------|--------|------------------|-----|-----|
| 1   | G     | 367    | 82%              | 15% | ••• |
| 1   | Н     | 367    | 83%              | 15% | •   |
| 1   | Ι     | 367    | 19%              | 16% | • • |
| 1   | J     | 367    | 16%              | 13% | •   |



#### $7 \mathrm{CPR}$

# 2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 29573 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain        | Residues |       | At           | oms |     |              | ZeroOcc | AltConf | Trace |
|-----|--------------|----------|-------|--------------|-----|-----|--------------|---------|---------|-------|
| 1   | Δ            | 367      | Total | С            | Ν   | 0   | S            | 0       | 0       | 0     |
| 1   | Л            | 507      | 2885  | 1807         | 508 | 553 | 17           | 0       | 0       | 0     |
| 1   | В            | 366      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | Ο       | 0     |
|     |              | 500      | 2884  | 1806         | 507 | 554 | 17           | 0       | 0       | 0     |
| 1   | C            | 366      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
| 1   | 0            | 500      | 2880  | 1804         | 507 | 552 | 17           | 0       | 0       | 0     |
| 1   | а            | 364      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
|     |              | 004      | 2867  | 1797         | 505 | 548 | 17           | 0       | 0       | U     |
| 1   | $\mathbf{E}$ | 365      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
| -   |              | 000      | 2872  | 1800         | 506 | 549 | 17           | 0       | 0       | 0     |
| 1   | F            | 367      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
| -   | 1            | 501      | 2889  | 1809         | 508 | 555 | 17           | 0       | 0       | 0     |
| 1   | G            | 365      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
| -   | <u> </u>     | 500      | 2872  | 1800         | 506 | 549 | 17           | 0       | 0       | 0     |
| 1   | Н            | 366      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
| -   | 11           | 500      | 2876  | 1801         | 506 | 552 | 17           | 0       | 0       | 0     |
| 1   | Т            | 365      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
| -   | 1            | 000      | 2875  | 1801         | 506 | 551 | 17           | Ŭ       | 0       |       |
| 1   | J            | 367      | Total | $\mathbf{C}$ | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
| 1   | U            | 001      | 2883  | 1806         | 505 | 555 | 17           |         | U       | U     |

• Molecule 1 is a protein called Glutamine synthetase 2 cytoplasmic.

• Molecule 2 is ADENOSINE-5'-DIPHOSPHATE (three-letter code: ADP) (formula:  $C_{10}H_{15}N_5O_{10}P_2$ ) (labeled as "Ligand of Interest" by depositor).





| Mol | Chain        | Residues |       | Ato          | oms          |              |              | ZeroOcc | AltConf |       |   |   |    |   |   |   |
|-----|--------------|----------|-------|--------------|--------------|--------------|--------------|---------|---------|-------|---|---|----|---|---|---|
| 0   | Δ            | 1        | Total | С            | Ν            | Ο            | Р            | 27      | 0       |       |   |   |    |   |   |   |
|     | A            | L        | 27    | 10           | 5            | 10           | 2            | 21      | 0       |       |   |   |    |   |   |   |
| 2   | В            | 1        | Total | С            | Ν            | Ο            | Р            | 27      | 0       |       |   |   |    |   |   |   |
| 2   | D            | T        | 27    | 10           | 5            | 10           | 2            | 21      | 0       |       |   |   |    |   |   |   |
| 2   | С            | 1        | Total | С            | Ν            | Ο            | Р            | 97      | Ο       |       |   |   |    |   |   |   |
|     | U            | U        | T     | 27           | 10           | 5            | 10           | 2       | 21      | 0     |   |   |    |   |   |   |
| 2   | Л            | 1        | Total | $\mathbf{C}$ | Ν            | Ο            | Р            | 27      | 0       |       |   |   |    |   |   |   |
|     | D            | I        | 27    | 10           | 5            | 10           | 2            | 21      | 0       |       |   |   |    |   |   |   |
| 2   | E            | 1        | Total | $\mathbf{C}$ | Ν            | Ο            | Р            | 27      | 0       |       |   |   |    |   |   |   |
|     | Ľ            | 1        | 27    | 10           | 5            | 10           | 2            | 21      |         |       |   |   |    |   |   |   |
| 2   | $\mathbf{F}$ | F        | F     | F            | $\mathbf{F}$ | $\mathbf{F}$ | $\mathbf{F}$ | F       | 1       | Total | С | Ν | Ο  | Р | 0 | 0 |
|     | 1            | 1        | 27    | 10           | 5            | 10           | 2            | 0       |         |       |   |   |    |   |   |   |
| 2   | G            | G        | G     | G            | G            | G            | 1            | Total   | С       | Ν     | Ο | Р | 27 | 0 |   |   |
|     |              | T        | 27    | 10           | 5            | 10           | 2            | 21      |         |       |   |   |    |   |   |   |
| 2   | Н            | 1        | Total | С            | Ν            | Ο            | Р            | 27      | 0       |       |   |   |    |   |   |   |
|     |              | *        | 27    | 10           | 5            | 10           | 2            | 21      |         |       |   |   |    |   |   |   |
| 2   | Т            | 1        | Total | С            | Ν            | Ο            | Р            | 27      | 0       |       |   |   |    |   |   |   |
|     | 1            | *        | 27    | 10           | 5            | 10           | 2            | 21      |         |       |   |   |    |   |   |   |
| 2   | Т            | 1        | Total | $\mathbf{C}$ | Ν            | Ο            | Р            | 0       | 0       |       |   |   |    |   |   |   |
|     | 5            |          | 27    | 10           | 5            | 10           | 2            | 0       |         |       |   |   |    |   |   |   |

• Molecule 3 is water.

| Mol | Chain | Residues | Atoms                                                              | ZeroOcc | AltConf |
|-----|-------|----------|--------------------------------------------------------------------|---------|---------|
| 3   | А     | 65       | $\begin{array}{cc} \text{Total} & \text{O} \\ 65 & 65 \end{array}$ | 0       | 0       |
| 3   | В     | 50       | $\begin{array}{cc} {\rm Total} & {\rm O} \\ 50 & 50 \end{array}$   | 0       | 0       |



Continued from previous page...

| Mol | Chain | Residues | Atoms                                                               | ZeroOcc | AltConf |
|-----|-------|----------|---------------------------------------------------------------------|---------|---------|
| 3   | С     | 34       | $\begin{array}{ccc} \text{Total} & \text{O} \\ 34 & 34 \end{array}$ | 0       | 0       |
| 3   | D     | 39       | Total O<br>39 39                                                    | 0       | 0       |
| 3   | Ε     | 62       | $\begin{array}{cc} \text{Total} & \text{O} \\ 62 & 62 \end{array}$  | 0       | 0       |
| 3   | F     | 56       | $\begin{array}{cc} {\rm Total} & {\rm O} \\ 56 & 56 \end{array}$    | 0       | 0       |
| 3   | G     | 39       | Total O<br>39 39                                                    | 0       | 0       |
| 3   | Н     | 45       | $\begin{array}{cc} \text{Total} & \text{O} \\ 45 & 45 \end{array}$  | 0       | 0       |
| 3   | Ι     | 62       | $\begin{array}{cc} \text{Total} & \text{O} \\ 62 & 62 \end{array}$  | 0       | 0       |
| 3   | J     | 68       | Total         O           68         68                             | 0       | 0       |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.



• Molecule 1: Glutamine synthetase 2 cytoplasmic



• Molecule 1: Glutamine synthetase 2 cytoplasmic







• Molecule 1: Glutamine synthetase 2 cytoplasmic





• Molecule 1: Glutamine synthetase 2 cytoplasmic



• Molecule 1: Glutamine synthetase 2 cytoplasmic











# I329 R330 R333 C334 V335 R333 R333 S344 S345 S345 R335 R335 R333 R347 R347 R347 R347 R347 R347 R348 R349 R349

• Molecule 1: Glutamine synthetase 2 cytoplasmic





# H310 W308 M3 7311 7315 M1 7311 231 M1 7311 231 M1 7311 235 M1 7311 235 M1 7311 235 M1 7311 235 M1 732 M2 M1 732 M2 M2 732 M3 M2 732 M2 M2 733 M2 M2 733 M2 M2 734 M2 M3 735 M2 M3 734 M3 M2 735 M3 M3 734 M3 M3 734 M3 M3 734 M3 M3 735 M3 M3 733 M3 M3 734 M3 M3 735 M3 M3 734</



# 4 Data and refinement statistics (i)

| Property                                    | Value                                                    | Source    |
|---------------------------------------------|----------------------------------------------------------|-----------|
| Space group                                 | C 1 2 1                                                  | Depositor |
| Cell constants                              | 229.70Å 102.92Å 206.51Å                                  | Depositor |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$      | $90.00^{\circ}$ $120.09^{\circ}$ $90.00^{\circ}$         | Depositor |
| Bosolution(Å)                               | 178.68 - 2.12                                            | Depositor |
| Resolution (A)                              | 27.37 - 2.12                                             | EDS       |
| % Data completeness                         | 96.6 (178.68-2.12)                                       | Depositor |
| (in resolution range)                       | 96.6 (27.37-2.12)                                        | EDS       |
| R <sub>merge</sub>                          | (Not available)                                          | Depositor |
| $R_{sym}$                                   | (Not available)                                          | Depositor |
| $< I/\sigma(I) > 1$                         | $2.19 (at 2.12 \text{\AA})$                              | Xtriage   |
| Refinement program                          | REFMAC 5.8.0073                                          | Depositor |
| D D .                                       | 0.198 , $0.246$                                          | Depositor |
| $n, n_{free}$                               | 0.203 , $0.248$                                          | DCC       |
| $R_{free}$ test set                         | 11245 reflections $(4.94%)$                              | wwPDB-VP  |
| Wilson B-factor $(Å^2)$                     | 32.3                                                     | Xtriage   |
| Anisotropy                                  | 0.498                                                    | Xtriage   |
| Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$ | 0.35 , $37.6$                                            | EDS       |
| L-test for $twinning^2$                     | $ \langle L  \rangle = 0.50, \langle L^2 \rangle = 0.33$ | Xtriage   |
| Estimated twinning fraction                 | No twinning to report.                                   | Xtriage   |
| $F_o, F_c$ correlation                      | 0.95                                                     | EDS       |
| Total number of atoms                       | 29573                                                    | wwPDB-VP  |
| Average B, all atoms $(Å^2)$                | 52.0                                                     | wwPDB-VP  |

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.85% of the height of the origin peak. No significant pseudotranslation is detected.

<sup>&</sup>lt;sup>2</sup>Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

# 5 Model quality (i)

# 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ADP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal  | Chain | Bo   | nd lengths     | Bond angles |                 |  |
|------|-------|------|----------------|-------------|-----------------|--|
| MIOI | Unain | RMSZ | # Z  > 5       | RMSZ        | # Z  > 5        |  |
| 1    | А     | 0.76 | 1/2957~(0.0%)  | 0.89        | 4/4013~(0.1%)   |  |
| 1    | В     | 0.75 | 0/2956         | 0.86        | 0/4011          |  |
| 1    | С     | 0.82 | 1/2952~(0.0%)  | 0.86        | 5/4006~(0.1%)   |  |
| 1    | D     | 0.87 | 0/2939         | 0.93        | 1/3988~(0.0%)   |  |
| 1    | Е     | 0.80 | 2/2944~(0.1%)  | 0.89        | 4/3995~(0.1%)   |  |
| 1    | F     | 0.84 | 2/2961~(0.1%)  | 0.91        | 1/4018~(0.0%)   |  |
| 1    | G     | 0.88 | 1/2944~(0.0%)  | 0.91        | 3/3995~(0.1%)   |  |
| 1    | Н     | 0.81 | 0/2948         | 0.91        | 4/4002~(0.1%)   |  |
| 1    | Ι     | 0.75 | 0/2947         | 0.87        | 2/3999~(0.1%)   |  |
| 1    | J     | 0.71 | 1/2955~(0.0%)  | 0.80        | 1/4011~(0.0%)   |  |
| All  | All   | 0.80 | 8/29503~(0.0%) | 0.88        | 25/40038~(0.1%) |  |

All (8) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms  | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|--------|-------|-------------|----------|
| 1   | С     | 73  | CYS  | CB-SG  | -7.50 | 1.69        | 1.82     |
| 1   | F     | 73  | CYS  | CB-SG  | -6.97 | 1.70        | 1.82     |
| 1   | J     | 73  | CYS  | CB-SG  | -6.96 | 1.70        | 1.82     |
| 1   | А     | 73  | CYS  | CB-SG  | -6.31 | 1.71        | 1.82     |
| 1   | G     | 235 | SER  | CB-OG  | -5.61 | 1.34        | 1.42     |
| 1   | Е     | 73  | CYS  | CB-SG  | -5.45 | 1.73        | 1.81     |
| 1   | Е     | 253 | TRP  | CB-CG  | -5.45 | 1.40        | 1.50     |
| 1   | F     | 91  | TYR  | CE1-CZ | -5.17 | 1.31        | 1.38     |

All (25) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms     | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------|-------|------------------|---------------|
| 1   | J     | 96  | ARG  | NE-CZ-NH2 | -7.31 | 116.65           | 120.30        |
| 1   | Н     | 268 | ARG  | NE-CZ-NH2 | -6.51 | 117.05           | 120.30        |
| 1   | Е     | 179 | ARG  | NE-CZ-NH1 | 6.27  | 123.44           | 120.30        |



| Mol | Chain | $\mathbf{Res}$ | Type | Atoms     |       | $Observed(^{o})$ | $ $ Ideal $(^{o})$ $ $ |
|-----|-------|----------------|------|-----------|-------|------------------|------------------------|
| 1   | А     | 222            | ASP  | CB-CG-OD1 | 5.80  | 123.52           | 118.30                 |
| 1   | G     | 96             | ARG  | NE-CZ-NH2 | -5.80 | 117.40           | 120.30                 |
| 1   | С     | 73             | CYS  | CB-CA-C   | -5.56 | 99.29            | 110.40                 |
| 1   | Н     | 97             | ARG  | NE-CZ-NH1 | -5.54 | 117.53           | 120.30                 |
| 1   | С     | 96             | ARG  | NE-CZ-NH2 | -5.52 | 117.54           | 120.30                 |
| 1   | G     | 204            | MET  | CA-CB-CG  | 5.47  | 122.60           | 113.30                 |
| 1   | F     | 47             | ARG  | NE-CZ-NH1 | 5.46  | 123.03           | 120.30                 |
| 1   | Е     | 96             | ARG  | NE-CZ-NH2 | -5.41 | 117.60           | 120.30                 |
| 1   | Ι     | 47             | ARG  | NE-CZ-NH1 | 5.40  | 123.00           | 120.30                 |
| 1   | Е     | 73             | CYS  | CB-CA-C   | -5.26 | 99.88            | 110.40                 |
| 1   | С     | 222            | ASP  | CB-CG-OD1 | 5.19  | 122.97           | 118.30                 |
| 1   | А     | 73             | CYS  | CB-CA-C   | -5.19 | 100.02           | 110.40                 |
| 1   | Н     | 304            | ARG  | NE-CZ-NH1 | 5.17  | 122.88           | 120.30                 |
| 1   | G     | 218            | ILE  | CB-CA-C   | -5.16 | 101.28           | 111.60                 |
| 1   | А     | 222            | ASP  | CB-CG-OD2 | -5.14 | 113.68           | 118.30                 |
| 1   | D     | 171            | VAL  | CB-CA-C   | -5.09 | 101.74           | 111.40                 |
| 1   | Е     | 96             | ARG  | NE-CZ-NH1 | 5.08  | 122.84           | 120.30                 |
| 1   | Н     | 268            | ARG  | NE-CZ-NH1 | 5.08  | 122.84           | 120.30                 |
| 1   | С     | 179            | ARG  | NE-CZ-NH1 | 5.05  | 122.83           | 120.30                 |
| 1   | А     | 204            | MET  | CG-SD-CE  | 5.04  | 108.26           | 100.20                 |
| 1   | Ι     | 223            | ASP  | CB-CG-OD1 | 5.02  | 122.82           | 118.30                 |
| 1   | С     | 179            | ARG  | NE-CZ-NH2 | -5.02 | 117.79           | 120.30                 |

There are no chirality outliers.

There are no planarity outliers.

#### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | А     | 2885  | 0        | 2764     | 48      | 0            |
| 1   | В     | 2884  | 0        | 2763     | 56      | 0            |
| 1   | С     | 2880  | 0        | 2762     | 23      | 0            |
| 1   | D     | 2867  | 0        | 2753     | 37      | 0            |
| 1   | Е     | 2872  | 0        | 2758     | 41      | 0            |
| 1   | F     | 2889  | 0        | 2768     | 48      | 0            |
| 1   | G     | 2872  | 0        | 2758     | 32      | 0            |



| 7CPR |  |
|------|--|
|------|--|

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | Н     | 2876  | 0        | 2751     | 44      | 0            |
| 1   | Ι     | 2875  | 0        | 2757     | 38      | 0            |
| 1   | J     | 2883  | 0        | 2757     | 34      | 0            |
| 2   | А     | 27    | 0        | 12       | 0       | 0            |
| 2   | В     | 27    | 0        | 12       | 0       | 0            |
| 2   | С     | 27    | 0        | 12       | 0       | 0            |
| 2   | D     | 27    | 0        | 12       | 0       | 0            |
| 2   | Ε     | 27    | 0        | 12       | 0       | 0            |
| 2   | F     | 27    | 0        | 12       | 0       | 0            |
| 2   | G     | 27    | 0        | 12       | 0       | 0            |
| 2   | Н     | 27    | 0        | 12       | 0       | 0            |
| 2   | Ι     | 27    | 0        | 12       | 0       | 0            |
| 2   | J     | 27    | 0        | 12       | 0       | 0            |
| 3   | А     | 65    | 0        | 0        | 1       | 0            |
| 3   | В     | 50    | 0        | 0        | 1       | 0            |
| 3   | С     | 34    | 0        | 0        | 0       | 0            |
| 3   | D     | 39    | 0        | 0        | 0       | 0            |
| 3   | Ε     | 62    | 0        | 0        | 1       | 0            |
| 3   | F     | 56    | 0        | 0        | 1       | 0            |
| 3   | G     | 39    | 0        | 0        | 0       | 0            |
| 3   | Н     | 45    | 0        | 0        | 4       | 0            |
| 3   | Ι     | 62    | 0        | 0        | 0       | 0            |
| 3   | J     | 68    | 0        | 0        | 2       | 0            |
| All | All   | 29573 | 0        | 27711    | 374     | 0            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 7.

All (374) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom-1           | Atom-2           | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|------------------|------------------|-----------------------------|----------------------|
| 1:F:204:MET:HB2  | 1:F:207:GLN:OE1  | 1.71                        | 0.90                 |
| 1:E:122:THR:HG22 | 1:E:359:GLU:OE1  | 1.77                        | 0.85                 |
| 1:H:204:MET:HB2  | 3:H:502:HOH:O    | 1.78                        | 0.83                 |
| 1:A:307:THR:OG1  | 1:A:315:ILE:HG22 | 1.77                        | 0.82                 |
| 1:F:204:MET:CE   | 1:F:253:TRP:CZ3  | 2.62                        | 0.82                 |
| 1:H:363:ARG:O    | 1:H:367:LEU:HB3  | 1.80                        | 0.82                 |
| 1:A:284:SER:HA   | 1:A:318:PHE:CZ   | 2.14                        | 0.82                 |
| 1:A:307:THR:HA   | 1:A:314:SER:HA   | 1.60                        | 0.81                 |
| 1:E:29:GLU:OE2   | 1:E:30:ASN:N     | 2.13                        | 0.81                 |
| 1:H:204:MET:CB   | 3:H:502:HOH:O    | 2.27                        | 0.81                 |



|                  | A h o            | Interatomic             | Clash       |  |
|------------------|------------------|-------------------------|-------------|--|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |  |
| 1:E:33:GLN:H     | 1:E:100:ASN:HD22 | 1.28                    | 0.81        |  |
| 1:A:33:GLN:H     | 1:A:100:ASN:HD22 | 1.28                    | 0.78        |  |
| 1:B:311:GLU:O    | 1:B:346:ARG:NH2  | 2.15                    | 0.78        |  |
| 1:I:247:LYS:HE3  | 1:I:250:PRO:HA   | 1.65                    | 0.78        |  |
| 1:A:287:HIS:HB2  | 1:A:318:PHE:HD2  | 1.47                    | 0.78        |  |
| 1:D:33:GLN:H     | 1:D:100:ASN:HD22 | 1.32                    | 0.76        |  |
| 1:J:33:GLN:H     | 1:J:100:ASN:HD22 | 1.29                    | 0.76        |  |
| 1:D:29:GLU:O     | 1:D:30:ASN:ND2   | 2.18                    | 0.74        |  |
| 1:J:141:GLN:HE22 | 1:J:228:ARG:HH21 | 1.35                    | 0.74        |  |
| 1:J:15:ASN:HD21  | 1:J:18:ILE:H     | 1.32                    | 0.74        |  |
| 1:B:367:LEU:O    | 1:B:369:GLU:N    | 2.21                    | 0.74        |  |
| 1:A:291:ILE:HD13 | 1:A:315:ILE:HG13 | 1.70                    | 0.73        |  |
| 1:A:141:GLN:HE22 | 1:A:228:ARG:HH21 | 1.36                    | 0.73        |  |
| 1:D:122:THR:HG22 | 1:D:359:GLU:OE1  | 1.87                    | 0.73        |  |
| 1:D:141:GLN:HE22 | 1:D:228:ARG:HH21 | 1.38                    | 0.72        |  |
| 1:H:204:MET:O    | 1:H:207:GLN:HB2  | 1.90                    | 0.72        |  |
| 1:E:255:GLY:HA3  | 1:E:305:ARG:HD3  | 1.71                    | 0.72        |  |
| 1:B:15:ASN:HD21  | 1:B:18:ILE:H     | 1.37                    | 0.72        |  |
| 1:G:33:GLN:H     | 1:G:100:ASN:HD22 | 1.36                    | 0.72        |  |
| 1:B:111:ASP:OD1  | 1:B:113:THR:HB   | 1.90                    | 0.71        |  |
| 1:I:141:GLN:HE22 | 1:I:228:ARG:HH21 | 1.38                    | 0.71        |  |
| 1:B:247:LYS:HD3  | 1:B:305:ARG:NH1  | 2.05                    | 0.71        |  |
| 1:C:111:ASP:OD1  | 1:C:113:THR:HG22 | 1.91                    | 0.71        |  |
| 1:B:141:GLN:HE22 | 1:B:228:ARG:HH21 | 1.36                    | 0.71        |  |
| 1:E:141:GLN:HE22 | 1:E:228:ARG:HH21 | 1.40                    | 0.70        |  |
| 1:G:15:ASN:HD21  | 1:G:18:ILE:H     | 1.37                    | 0.69        |  |
| 1:F:164:GLN:HE21 | 1:F:204:MET:HG2  | 1.56                    | 0.69        |  |
| 1:G:141:GLN:HE22 | 1:G:228:ARG:HH21 | 1.40                    | 0.69        |  |
| 1:F:33:GLN:H     | 1:F:100:ASN:HD22 | 1.41                    | 0.69        |  |
| 1:D:290:HIS:CE1  | 1:D:364:THR:HG21 | 2.28                    | 0.68        |  |
| 1:F:122:THR:HG22 | 1:F:359:GLU:OE1  | 1.93                    | 0.68        |  |
| 1:A:82:ASP:OD2   | 1:B:333:ARG:NH1  | 2.26                    | 0.68        |  |
| 1:H:164:GLN:HG3  | 1:H:204:MET:SD   | 2.35                    | 0.68        |  |
| 1:F:204:MET:SD   | 1:F:205:PRO:HD3  | 2.34                    | 0.67        |  |
| 1:F:141:GLN:HE22 | 1:F:228:ARG:HH21 | 1.42                    | 0.67        |  |
| 1:C:141:GLN:HE22 | 1:C:228:ARG:HH21 | 1.42                    | 0.67        |  |
| 1:H:33:GLN:H     | 1:H:100:ASN:HD22 | 1.42                    | 0.66        |  |
| 1:B:255:GLY:HA3  | 1:B:305:ARG:CG   | 2.26                    | 0.66        |  |
| 1:C:164:GLN:HE22 | 1:C:254:ASN:H    | 1.44                    | 0.66        |  |
| 1:E:164:GLN:CG   | 1:E:203:VAL:HG12 | 2.26                    | 0.66        |  |
| 1:A:287:HIS:HB2  | 1:A:318:PHE:CD2  | 2.29                    | 0.66        |  |



|                  | lo uo pugom      | Interatomic    | Clash       |
|------------------|------------------|----------------|-------------|
| Atom-1           | Atom-2           | distance $(Å)$ | overlap (Å) |
| 1:D:306:LEU:O    | 1:D:315:ILE:HG13 | 1.96           | 0.65        |
| 1:F:111:ASP:OD1  | 1:F:113:THR:HG22 | 1.97           | 0.65        |
| 1:E:255:GLY:HA3  | 1:E:305:ARG:CD   | 2.26           | 0.65        |
| 1:F:204:MET:HE1  | 1:F:253:TRP:CZ3  | 2.32           | 0.65        |
| 1:B:27:LEU:O     | 1:B:28:GLN:HB2   | 1.97           | 0.64        |
| 1:D:290:HIS:HE1  | 1:D:364:THR:HG21 | 1.60           | 0.64        |
| 1:J:28:GLN:OE1   | 1:J:30:ASN:ND2   | 2.31           | 0.64        |
| 1:F:204:MET:SD   | 1:F:253:TRP:CZ3  | 2.90           | 0.64        |
| 1:B:302:ASN:O    | 1:B:306:LEU:HD12 | 1.97           | 0.64        |
| 1:B:255:GLY:HA3  | 1:B:305:ARG:HG2  | 1.79           | 0.64        |
| 1:D:164:GLN:HE22 | 1:D:254:ASN:H    | 1.45           | 0.64        |
| 1:B:247:LYS:CE   | 1:B:250:PRO:HA   | 2.27           | 0.63        |
| 1:D:33:GLN:H     | 1:D:100:ASN:ND2  | 1.95           | 0.63        |
| 1:B:247:LYS:NZ   | 1:B:305:ARG:HH12 | 1.97           | 0.63        |
| 1:A:33:GLN:H     | 1:A:100:ASN:ND2  | 1.97           | 0.63        |
| 1:H:164:GLN:HE22 | 1:H:254:ASN:H    | 1.46           | 0.63        |
| 1:A:333:ARG:NH1  | 1:E:82:ASP:OD2   | 2.32           | 0.62        |
| 1:A:15:ASN:HD21  | 1:A:18:ILE:H     | 1.45           | 0.62        |
| 1:H:204:MET:HG3  | 1:H:205:PRO:HD2  | 1.80           | 0.62        |
| 1:H:164:GLN:CG   | 1:H:204:MET:SD   | 2.88           | 0.62        |
| 1:D:15:ASN:HD21  | 1:D:18:ILE:H     | 1.47           | 0.62        |
| 1:A:333:ARG:NH1  | 1:E:110:PHE:HB2  | 2.15           | 0.62        |
| 1:F:285:LYS:HD2  | 1:F:285:LYS:N    | 2.15           | 0.61        |
| 1:F:249:MET:HG3  | 3:F:501:HOH:O    | 2.00           | 0.61        |
| 1:J:28:GLN:CD    | 1:J:30:ASN:HD21  | 2.03           | 0.61        |
| 1:H:324:ASN:HB3  | 1:H:327:CYS:SG   | 2.39           | 0.61        |
| 1:H:11:ASN:HD21  | 1:I:178:ALA:H    | 1.48           | 0.61        |
| 1:D:286:CYS:HB2  | 1:D:289:ARG:HD3  | 1.83           | 0.61        |
| 1:E:29:GLU:OE2   | 1:E:29:GLU:HA    | 2.01           | 0.61        |
| 1:A:13:ARG:HB2   | 1:B:5:ILE:HD12   | 1.83           | 0.60        |
| 1:A:68:TYR:OH    | 1:A:75:GLN:NE2   | 2.35           | 0.60        |
| 1:A:255:GLY:HA3  | 1:A:305:ARG:HG3  | 1.84           | 0.60        |
| 1:F:130:CYS:SG   | 1:F:367:LEU:HD13 | 2.42           | 0.59        |
| 1:H:204:MET:CE   | 1:H:253:TRP:CZ3  | 2.85           | 0.59        |
| 1:I:292:ARG:O    | 1:I:298:GLN:HG3  | 2.02           | 0.59        |
| 1:A:123:CYS:SG   | 1:A:358:VAL:HG22 | 2.42           | 0.59        |
| 1:A:264:THR:OG1  | 1:A:267:MET:HG3  | 2.02           | 0.59        |
| 1:F:204:MET:SD   | 1:F:253:TRP:HZ3  | 2.25           | 0.59        |
| 1:J:33:GLN:H     | 1:J:100:ASN:ND2  | 1.99           | 0.59        |
| 1:H:204:MET:HE1  | 1:H:253:TRP:CZ3  | 2.38           | 0.59        |
| 1:H:21:ARG:HD2   | 1:I:20:ASP:OD2   | 2.04           | 0.58        |



|                  | lo ao pagom      | Interatomic  | Clash       |  |
|------------------|------------------|--------------|-------------|--|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |  |
| 1:B:253:TRP:O    | 1:B:305:ARG:NH2  | 2.37         | 0.58        |  |
| 1:G:263:SER:HA   | 1:G:267:MET:CE   | 2.34         | 0.57        |  |
| 1:A:291:ILE:CD1  | 1:A:315:ILE:HG13 | 2.34         | 0.57        |  |
| 1:I:28:GLN:NE2   | 1:I:30:ASN:OD1   | 2.36         | 0.57        |  |
| 1:I:252:ASP:HB2  | 1:I:310:HIS:CE1  | 2.39         | 0.57        |  |
| 1:A:287:HIS:CB   | 1:A:318:PHE:HD2  | 2.17         | 0.57        |  |
| 1:G:298:GLN:HA   | 1:G:298:GLN:HE21 | 1.70         | 0.57        |  |
| 1:E:255:GLY:CA   | 1:E:305:ARG:HD3  | 2.33         | 0.57        |  |
| 1:C:15:ASN:HD21  | 1:C:18:ILE:H     | 1.53         | 0.57        |  |
| 1:E:33:GLN:H     | 1:E:100:ASN:ND2  | 2.01         | 0.57        |  |
| 1:H:255:GLY:HA3  | 1:H:305:ARG:HD3  | 1.87         | 0.56        |  |
| 1:F:122:THR:CG2  | 1:F:359:GLU:OE1  | 2.54         | 0.56        |  |
| 1:D:255:GLY:HA3  | 1:D:305:ARG:HD2  | 1.87         | 0.56        |  |
| 1:H:297:LYS:O    | 1:H:298:GLN:HB3  | 2.06         | 0.56        |  |
| 1:A:24:SER:HB2   | 1:B:97:ARG:HH12  | 1.70         | 0.56        |  |
| 1:J:132:ALA:HB3  | 3:J:507:HOH:O    | 2.04         | 0.56        |  |
| 1:D:140:GLU:O    | 1:D:258:ALA:HA   | 2.06         | 0.56        |  |
| 1:I:19:LEU:HG    | 1:I:23:LEU:HD22  | 1.87         | 0.56        |  |
| 1:A:307:THR:HG1  | 1:A:315:ILE:HG22 | 1.69         | 0.56        |  |
| 1:B:324:ASN:ND2  | 1:B:327:CYS:SG   | 2.79         | 0.56        |  |
| 1:E:29:GLU:OE1   | 1:E:99:ASN:OD1   | 2.24         | 0.56        |  |
| 1:F:33:GLN:H     | 1:F:100:ASN:ND2  | 2.04         | 0.56        |  |
| 1:B:247:LYS:HE2  | 1:B:250:PRO:HA   | 1.88         | 0.55        |  |
| 1:D:255:GLY:HA3  | 1:D:305:ARG:CD   | 2.35         | 0.55        |  |
| 1:F:14:ILE:O     | 1:F:16:LYS:HE2   | 2.06         | 0.55        |  |
| 1:C:11:ASN:HD21  | 1:D:178:ALA:H    | 1.55         | 0.55        |  |
| 1:H:255:GLY:HA3  | 1:H:305:ARG:CD   | 2.37         | 0.55        |  |
| 1:G:33:GLN:H     | 1:G:100:ASN:ND2  | 2.04         | 0.55        |  |
| 1:F:164:GLN:HG3  | 1:F:204:MET:SD   | 2.47         | 0.55        |  |
| 1:A:185:HIS:HD2  | 3:A:558:HOH:O    | 1.90         | 0.55        |  |
| 1:E:29:GLU:OE2   | 1:E:29:GLU:CA    | 2.54         | 0.55        |  |
| 1:B:27:LEU:O     | 1:B:28:GLN:CB    | 2.55         | 0.55        |  |
| 1:H:204:MET:SD   | 1:H:205:PRO:HD3  | 2.47         | 0.54        |  |
| 1:F:164:GLN:HE22 | 1:F:254:ASN:H    | 1.56         | 0.54        |  |
| 1:G:263:SER:HA   | 1:G:267:MET:HE2  | 1.89         | 0.54        |  |
| 1:B:164:GLN:HE22 | 1:B:254:ASN:H    | 1.55         | 0.54        |  |
| 1:C:202:GLU:HB3  | 1:C:207:GLN:HE21 | 1.72         | 0.54        |  |
| 1:G:309:LYS:HG3  | 1:G:310:HIS:H    | 1.73         | 0.54        |  |
| 1:D:8:ASP:O      | 1:D:10:PRO:HD3   | 2.08         | 0.54        |  |
| 1:F:20:ASP:HA    | 1:F:23:LEU:HD22  | 1.90         | 0.54        |  |
| 1:F:284:SER:OG   | 1:F:285:LYS:HD2  | 2.06         | 0.54        |  |



|                  | A L O            | Interatomic             | Clash       |
|------------------|------------------|-------------------------|-------------|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |
| 1:I:141:GLN:NE2  | 1:I:228:ARG:HE   | 2.06                    | 0.54        |
| 1:H:141:GLN:HE22 | 1:H:228:ARG:HH21 | 1.56                    | 0.53        |
| 1:I:272:GLY:HA3  | 1:I:339:GLY:O    | 2.08                    | 0.53        |
| 1:G:267:MET:HE3  | 1:G:276:ILE:HG12 | 1.90                    | 0.53        |
| 1:F:204:MET:CE   | 1:F:253:TRP:HZ3  | 2.17                    | 0.52        |
| 1:A:111:ASP:OD1  | 1:A:113:THR:HB   | 2.09                    | 0.52        |
| 1:D:349:SER:OG   | 1:D:351:ASN:OD1  | 2.26                    | 0.52        |
| 1:J:204:MET:HE1  | 1:J:253:TRP:HB3  | 1.92                    | 0.52        |
| 1:F:164:GLN:CG   | 1:F:204:MET:SD   | 2.98                    | 0.52        |
| 1:H:204:MET:N    | 3:H:502:HOH:O    | 2.42                    | 0.52        |
| 1:D:252:ASP:HB2  | 1:D:310:HIS:CE1  | 2.45                    | 0.52        |
| 1:B:44:GLU:CG    | 1:B:296:PRO:HG2  | 2.39                    | 0.52        |
| 1:B:204:MET:O    | 1:B:207:GLN:HB2  | 2.09                    | 0.52        |
| 1:G:24:SER:CB    | 1:H:97:ARG:HH12  | 2.22                    | 0.52        |
| 1:A:141:GLN:NE2  | 1:A:228:ARG:HE   | 2.08                    | 0.52        |
| 1:D:305:ARG:NH2  | 1:D:310:HIS:HB2  | 2.25                    | 0.51        |
| 1:A:284:SER:HA   | 1:A:318:PHE:CE1  | 2.46                    | 0.51        |
| 1:F:290:HIS:HD2  | 1:F:294:TYR:OH   | 1.94                    | 0.51        |
| 1:D:305:ARG:HH21 | 1:D:312:THR:HG21 | 1.76                    | 0.51        |
| 1:A:256:ALA:N    | 1:A:305:ARG:HD3  | 2.25                    | 0.51        |
| 1:F:204:MET:CG   | 1:F:253:TRP:CE3  | 2.93                    | 0.51        |
| 1:B:255:GLY:HA3  | 1:B:305:ARG:HG3  | 1.93                    | 0.51        |
| 1:B:31:ILE:C     | 1:B:31:ILE:HD12  | 2.32                    | 0.50        |
| 1:E:164:GLN:CG   | 1:E:203:VAL:CG1  | 2.89                    | 0.50        |
| 1:F:16:LYS:HD2   | 1:J:18:ILE:HD11  | 1.93                    | 0.50        |
| 1:G:218:ILE:HD12 | 1:G:219:SER:N    | 2.26                    | 0.50        |
| 1:D:122:THR:CG2  | 1:D:359:GLU:OE1  | 2.57                    | 0.50        |
| 1:G:297:LYS:O    | 1:G:298:GLN:NE2  | 2.45                    | 0.50        |
| 1:I:11:ASN:HD21  | 1:J:178:ALA:H    | 1.58                    | 0.50        |
| 1:A:15:ASN:OD1   | 1:A:17:THR:HG22  | 2.12                    | 0.50        |
| 1:H:216:GLU:O    | 1:H:219:SER:HB2  | 2.11                    | 0.50        |
| 1:H:347:ARG:N    | 1:H:348:PRO:CD   | 2.74                    | 0.50        |
| 1:D:11:ASN:HD21  | 1:E:178:ALA:H    | 1.58                    | 0.50        |
| 1:D:318:PHE:HE2  | 1:D:329:ILE:HD13 | 1.77                    | 0.50        |
| 1:A:216:GLU:H    | 1:A:216:GLU:CD   | 2.15                    | 0.50        |
| 1:B:302:ASN:HB3  | 1:B:306:LEU:HD13 | 1.94                    | 0.50        |
| 1:I:9:SER:HB2    | 1:I:148:PHE:HB2  | 1.93                    | 0.50        |
| 1:C:15:ASN:ND2   | 1:C:18:ILE:H     | 2.09                    | 0.50        |
| 1:B:302:ASN:HD22 | 1:B:306:LEU:HD11 | 1.77                    | 0.49        |
| 1:E:118:ASN:C    | 1:E:118:ASN:OD1  | 2.50                    | 0.49        |
| 1:G:24:SER:HB2   | 1:H:97:ARG:HH12  | 1.77                    | 0.49        |



|                  |                  | Interatomic  | Clash       |  |
|------------------|------------------|--------------|-------------|--|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |  |
| 1:J:204:MET:CE   | 1:J:253:TRP:HB3  | 2.42         | 0.49        |  |
| 1:E:305:ARG:HH21 | 1:E:310:HIS:HB2  | 1.77         | 0.49        |  |
| 1:H:63:LEU:HD12  | 1:H:90:ILE:HD11  | 1.93         | 0.49        |  |
| 1:J:205:PRO:O    | 1:J:206:ALA:HB3  | 2.12         | 0.49        |  |
| 1:A:287:HIS:CG   | 1:A:318:PHE:HD2  | 2.30         | 0.49        |  |
| 1:G:254:ASN:ND2  | 1:G:310:HIS:HB3  | 2.28         | 0.49        |  |
| 1:F:130:CYS:SG   | 1:F:367:LEU:CD1  | 3.00         | 0.49        |  |
| 1:F:178:ALA:H    | 1:J:11:ASN:HD21  | 1.61         | 0.49        |  |
| 1:H:307:THR:HG23 | 1:H:309:LYS:HB2  | 1.95         | 0.49        |  |
| 1:J:15:ASN:ND2   | 1:J:18:ILE:H     | 2.07         | 0.49        |  |
| 1:J:255:GLY:HA3  | 1:J:305:ARG:HG2  | 1.94         | 0.49        |  |
| 1:B:245:ASP:O    | 1:B:248:PRO:HD3  | 2.12         | 0.49        |  |
| 1:F:141:GLN:NE2  | 1:F:228:ARG:HE   | 2.11         | 0.48        |  |
| 1:G:11:ASN:HD21  | 1:H:178:ALA:H    | 1.60         | 0.48        |  |
| 1:E:164:GLN:HG2  | 1:E:203:VAL:CG1  | 2.43         | 0.48        |  |
| 1:E:284:SER:CB   | 1:E:318:PHE:CE1  | 2.97         | 0.48        |  |
| 1:F:204:MET:HE2  | 1:F:253:TRP:CZ3  | 2.47         | 0.48        |  |
| 1:E:284:SER:HB2  | 1:E:318:PHE:CE1  | 2.49         | 0.48        |  |
| 1:I:269:GLU:O    | 1:I:271:GLY:N    | 2.43         | 0.48        |  |
| 1:D:141:GLN:NE2  | 1:D:228:ARG:HE   | 2.12         | 0.48        |  |
| 1:J:167:TYR:CE2  | 1:J:205:PRO:HG3  | 2.48         | 0.48        |  |
| 1:C:329:ILE:HG22 | 1:C:330:ARG:N    | 2.29         | 0.48        |  |
| 1:I:164:GLN:HE22 | 1:I:254:ASN:H    | 1.61         | 0.48        |  |
| 1:J:297:LYS:O    | 1:J:298:GLN:NE2  | 2.47         | 0.48        |  |
| 1:G:249:MET:HE3  | 1:G:250:PRO:HD2  | 1.94         | 0.48        |  |
| 1:I:323:ALA:HB2  | 1:I:333:ARG:HB2  | 1.96         | 0.47        |  |
| 1:G:167:TYR:CE2  | 1:G:205:PRO:HG3  | 2.48         | 0.47        |  |
| 1:H:267:MET:HG2  | 1:H:276:ILE:HG13 | 1.95         | 0.47        |  |
| 1:I:309:LYS:O    | 1:I:310:HIS:HB2  | 2.14         | 0.47        |  |
| 1:B:302:ASN:ND2  | 1:B:349:SER:HB2  | 2.29         | 0.47        |  |
| 1:E:29:GLU:O     | 1:E:30:ASN:HB2   | 2.14         | 0.47        |  |
| 1:A:322:VAL:HG22 | 1:A:331:ILE:HB   | 1.97         | 0.47        |  |
| 1:E:216:GLU:O    | 1:E:219:SER:HB2  | 2.14         | 0.47        |  |
| 1:H:255:GLY:CA   | 1:H:305:ARG:HD3  | 2.43         | 0.47        |  |
| 1:I:247:LYS:HD3  | 1:I:304:ARG:O    | 2.14         | 0.47        |  |
| 1:I:347:ARG:N    | 1:I:348:PRO:CD   | 2.78         | 0.47        |  |
| 1:C:349:SER:OG   | 1:C:351:ASN:OD1  | 2.33         | 0.47        |  |
| 1:E:204:MET:HB3  | 1:E:207:GLN:HB2  | 1.95         | 0.47        |  |
| 1:I:135:PRO:HA   | 1:I:263:SER:O    | 2.15         | 0.47        |  |
| 1:D:280:VAL:HG22 | 1:D:329:ILE:HG21 | 1.96         | 0.47        |  |
| 1:J:195:LYS:HD3  | 1:J:213:GLY:O    | 2.14         | 0.47        |  |



|                  |                  | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:J:182:VAL:HG21 | 1:J:208:TRP:CD2  | 2.50         | 0.46        |
| 1:F:28:GLN:O     | 1:F:29:GLU:HB2   | 2.16         | 0.46        |
| 1:F:204:MET:CG   | 1:F:253:TRP:HE3  | 2.28         | 0.46        |
| 1:A:287:HIS:ND1  | 1:A:318:PHE:CD2  | 2.83         | 0.46        |
| 1:B:25:LEU:O     | 1:C:187:ARG:NH2  | 2.47         | 0.46        |
| 1:B:367:LEU:O    | 1:B:368:ASP:C    | 2.53         | 0.46        |
| 1:C:11:ASN:ND2   | 1:D:178:ALA:H    | 2.13         | 0.46        |
| 1:F:92:LYS:HE3   | 1:F:191:TYR:CZ   | 2.51         | 0.46        |
| 1:B:276:ILE:O    | 1:B:280:VAL:HG23 | 2.16         | 0.46        |
| 1:B:247:LYS:CD   | 1:B:305:ARG:NH1  | 2.78         | 0.46        |
| 1:B:185:HIS:HE1  | 1:B:227:ALA:O    | 1.99         | 0.46        |
| 1:C:235:SER:HB3  | 1:C:240:ILE:O    | 2.16         | 0.46        |
| 1:C:302:ASN:OD1  | 1:C:349:SER:HB3  | 2.16         | 0.46        |
| 1:I:361:ILE:O    | 1:I:365:ILE:HB   | 2.16         | 0.46        |
| 1:G:165:GLY:N    | 1:G:166:PRO:CD   | 2.78         | 0.46        |
| 1:B:15:ASN:ND2   | 1:B:18:ILE:H     | 2.11         | 0.46        |
| 1:B:44:GLU:HG3   | 1:B:296:PRO:HG2  | 1.97         | 0.46        |
| 1:B:310:HIS:NE2  | 1:B:311:GLU:HB2  | 2.31         | 0.46        |
| 1:I:18:ILE:HD11  | 1:J:16:LYS:HD2   | 1.98         | 0.46        |
| 1:G:309:LYS:HG3  | 1:G:310:HIS:N    | 2.30         | 0.46        |
| 1:A:295:ASP:OD2  | 1:A:301:ASP:HB2  | 2.16         | 0.45        |
| 1:G:140:GLU:O    | 1:G:258:ALA:HA   | 2.16         | 0.45        |
| 1:H:144:THR:OG1  | 1:H:207:GLN:HG2  | 2.16         | 0.45        |
| 1:E:235:SER:HB3  | 1:E:240:ILE:O    | 2.16         | 0.45        |
| 1:B:9:SER:HB2    | 1:B:148:PHE:HB2  | 1.98         | 0.45        |
| 1:B:309:LYS:O    | 1:B:310:HIS:ND1  | 2.49         | 0.45        |
| 1:I:246:PRO:HA   | 1:I:256:ALA:HB3  | 1.98         | 0.45        |
| 1:A:287:HIS:CG   | 1:A:318:PHE:CD2  | 3.04         | 0.45        |
| 1:I:338:ASP:N    | 1:I:338:ASP:OD1  | 2.48         | 0.45        |
| 1:B:324:ASN:O    | 1:B:330:ARG:HD2  | 2.16         | 0.45        |
| 1:D:294:TYR:CD1  | 1:D:357:VAL:HG22 | 2.51         | 0.45        |
| 1:G:247:LYS:HG3  | 1:G:304:ARG:O    | 2.17         | 0.45        |
| 1:A:118:ASN:C    | 1:A:118:ASN:OD1  | 2.55         | 0.45        |
| 1:B:302:ASN:ND2  | 1:B:306:LEU:HD11 | 2.31         | 0.45        |
| 1:F:204:MET:HE3  | 1:F:205:PRO:CD   | 2.46         | 0.45        |
| 1:H:164:GLN:HG2  | 1:H:204:MET:SD   | 2.56         | 0.45        |
| 1:I:204:MET:HE2  | 1:I:254:ASN:O    | 2.16         | 0.45        |
| 1:H:69:ASP:OD1   | 1:H:71:SER:OG    | 2.21         | 0.45        |
| 1:H:297:LYS:O    | 1:H:298:GLN:CB   | 2.65         | 0.45        |
| 1:J:235:SER:HB3  | 1:J:240:ILE:O    | 2.17         | 0.45        |
| 1:A:27:LEU:HD22  | 1:B:187:ARG:NH1  | 2.32         | 0.44        |



|                  | A L O            | Interatomic             | Clash       |  |
|------------------|------------------|-------------------------|-------------|--|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |  |
| 1:I:204:MET:HG2  | 1:I:205:PRO:HD2  | 1.98                    | 0.44        |  |
| 1:E:290:HIS:O    | 1:E:294:TYR:CG   | 2.70                    | 0.44        |  |
| 1:C:204:MET:HB3  | 1:C:207:GLN:HB2  | 1.99                    | 0.44        |  |
| 1:H:204:MET:HG3  | 1:H:205:PRO:CD   | 2.45                    | 0.44        |  |
| 1:B:118:ASN:OD1  | 1:B:118:ASN:C    | 2.54                    | 0.44        |  |
| 1:D:11:ASN:ND2   | 1:E:178:ALA:H    | 2.16                    | 0.44        |  |
| 1:F:164:GLN:HG2  | 1:F:204:MET:SD   | 2.57                    | 0.44        |  |
| 1:F:255:GLY:HA3  | 1:F:305:ARG:HD2  | 1.98                    | 0.44        |  |
| 1:B:349:SER:OG   | 1:B:351:ASN:OD1  | 2.26                    | 0.44        |  |
| 1:B:251:GLY:O    | 1:B:305:ARG:NH2  | 2.48                    | 0.44        |  |
| 1:H:207:GLN:HG3  | 3:H:502:HOH:O    | 2.18                    | 0.44        |  |
| 1:J:185:HIS:HD2  | 3:J:556:HOH:O    | 2.01                    | 0.44        |  |
| 1:F:302:ASN:HA   | 1:F:349:SER:OG   | 2.17                    | 0.44        |  |
| 1:E:295:ASP:OD1  | 1:E:301:ASP:HB2  | 2.18                    | 0.43        |  |
| 1:J:264:THR:O    | 1:J:268:ARG:HG3  | 2.18                    | 0.43        |  |
| 1:A:13:ARG:HB2   | 1:B:5:ILE:CD1    | 2.48                    | 0.43        |  |
| 1:F:204:MET:HE1  | 1:F:253:TRP:HZ3  | 1.81                    | 0.43        |  |
| 1:F:235:SER:HB3  | 1:F:240:ILE:O    | 2.19                    | 0.43        |  |
| 1:G:67:ASN:HA    | 1:G:83:THR:O     | 2.17                    | 0.43        |  |
| 1:J:4:ARG:NH2    | 1:J:4:ARG:HG3    | 2.32                    | 0.43        |  |
| 1:C:15:ASN:ND2   | 1:C:18:ILE:HG13  | 2.34                    | 0.43        |  |
| 1:E:261:ASN:OD1  | 1:E:344:GLU:HG3  | 2.19                    | 0.43        |  |
| 1:I:306:LEU:HD12 | 1:I:312:THR:HG21 | 1.99                    | 0.43        |  |
| 1:I:332:PRO:O    | 1:I:333:ARG:C    | 2.57                    | 0.43        |  |
| 1:D:247:LYS:HZ3  | 1:D:305:ARG:NH1  | 2.16                    | 0.43        |  |
| 1:E:252:ASP:HA   | 1:E:310:HIS:HE1  | 1.84                    | 0.43        |  |
| 1:B:185:HIS:HD2  | 3:B:533:HOH:O    | 2.02                    | 0.43        |  |
| 1:E:59:SER:HB2   | 1:E:60:PRO:HD2   | 2.01                    | 0.43        |  |
| 1:G:185:HIS:HE1  | 1:G:227:ALA:O    | 2.02                    | 0.43        |  |
| 1:H:168:TYR:O    | 1:H:169:CYS:C    | 2.56                    | 0.43        |  |
| 1:I:249:MET:SD   | 1:I:250:PRO:HD2  | 2.59                    | 0.43        |  |
| 1:C:15:ASN:HD21  | 1:C:18:ILE:N     | 2.16                    | 0.43        |  |
| 1:E:347:ARG:N    | 1:E:348:PRO:CD   | 2.82                    | 0.43        |  |
| 1:G:317:ASP:HB3  | 1:G:328:SER:HG   | 1.84                    | 0.43        |  |
| 1:I:195:LYS:HE2  | 1:I:214:PRO:O    | 2.19                    | 0.43        |  |
| 1:A:284:SER:O    | 1:A:318:PHE:CD2  | 2.72                    | 0.43        |  |
| 1:E:67:ASN:ND2   | 3:E:503:HOH:O    | 2.47                    | 0.43        |  |
| 1:I:278:LYS:HE3  | 1:I:278:LYS:HA   | 2.01                    | 0.42        |  |
| 1:J:185:HIS:HE1  | 1:J:227:ALA:O    | 2.02                    | 0.42        |  |
| 1:A:152:PRO:HB2  | 1:A:155:TRP:CD1  | 2.54                    | 0.42        |  |
| 1:A:283:LEU:HD11 | 1:A:365:ILE:HG23 | 2.01                    | 0.42        |  |



|                  |                  | Interatomic Clash |             |  |
|------------------|------------------|-------------------|-------------|--|
| Atom-1           | Atom-2           | distance (Å)      | overlap (Å) |  |
| 1:E:290:HIS:O    | 1:E:294:TYR:CD1  | 2.72              | 0.42        |  |
| 1:D:132:ALA:O    | 1:D:265:LYS:HE2  | 2.20              | 0.42        |  |
| 1:F:314:SER:HB3  | 1:F:317:ASP:HB2  | 2.01              | 0.42        |  |
| 1:B:182:VAL:HG21 | 1:B:208:TRP:CD2  | 2.54              | 0.42        |  |
| 1:E:141:GLN:NE2  | 1:E:228:ARG:HE   | 2.17              | 0.42        |  |
| 1:J:164:GLN:HE22 | 1:J:254:ASN:H    | 1.68              | 0.42        |  |
| 1:A:289:ARG:HA   | 1:A:292:ARG:HH11 | 1.84              | 0.42        |  |
| 1:F:182:VAL:HG21 | 1:F:208:TRP:CD2  | 2.55              | 0.42        |  |
| 1:F:204:MET:HG2  | 1:F:253:TRP:HE3  | 1.83              | 0.42        |  |
| 1:G:8:ASP:O      | 1:G:10:PRO:HD3   | 2.19              | 0.42        |  |
| 1:J:245:ASP:O    | 1:J:248:PRO:HD3  | 2.19              | 0.42        |  |
| 1:B:141:GLN:NE2  | 1:B:228:ARG:HE   | 2.18              | 0.42        |  |
| 1:C:255:GLY:HA3  | 1:C:305:ARG:HG3  | 2.02              | 0.42        |  |
| 1:G:11:ASN:ND2   | 1:H:178:ALA:H    | 2.16              | 0.42        |  |
| 1:H:30:ASN:OD1   | 1:H:30:ASN:N     | 2.52              | 0.42        |  |
| 1:I:349:SER:OG   | 1:I:351:ASN:OD1  | 2.38              | 0.42        |  |
| 1:D:305:ARG:O    | 1:D:305:ARG:NE   | 2.53              | 0.42        |  |
| 1:I:235:SER:HB3  | 1:I:240:ILE:O    | 2.20              | 0.42        |  |
| 1:J:204:MET:HB3  | 1:J:207:GLN:HB2  | 2.02              | 0.42        |  |
| 1:A:185:HIS:HE1  | 1:A:227:ALA:O    | 2.03              | 0.42        |  |
| 1:B:247:LYS:CE   | 1:B:305:ARG:HH12 | 2.33              | 0.42        |  |
| 1:D:182:VAL:HG21 | 1:D:208:TRP:CD2  | 2.55              | 0.42        |  |
| 1:H:305:ARG:O    | 1:H:307:THR:N    | 2.52              | 0.42        |  |
| 1:E:284:SER:HA   | 1:E:318:PHE:CE2  | 2.55              | 0.41        |  |
| 1:E:290:HIS:HE1  | 1:E:364:THR:OG1  | 2.02              | 0.41        |  |
| 1:F:205:PRO:O    | 1:F:206:ALA:HB3  | 2.19              | 0.41        |  |
| 1:I:130:CYS:SG   | 1:I:367:LEU:HD13 | 2.59              | 0.41        |  |
| 1:C:141:GLN:NE2  | 1:C:228:ARG:HE   | 2.18              | 0.41        |  |
| 1:C:204:MET:HG3  | 1:C:205:PRO:HD2  | 2.01              | 0.41        |  |
| 1:D:360:ALA:O    | 1:D:364:THR:HG23 | 2.20              | 0.41        |  |
| 1:E:122:THR:HG22 | 1:E:359:GLU:CD   | 2.40              | 0.41        |  |
| 1:I:195:LYS:CE   | 1:I:214:PRO:O    | 2.68              | 0.41        |  |
| 1:J:295:ASP:OD2  | 1:J:301:ASP:HB2  | 2.20              | 0.41        |  |
| 1:B:302:ASN:C    | 1:B:306:LEU:CD1  | 2.89              | 0.41        |  |
| 1:E:255:GLY:HA3  | 1:E:305:ARG:HD2  | 2.02              | 0.41        |  |
| 1:I:247:LYS:CE   | 1:I:250:PRO:HA   | 2.43              | 0.41        |  |
| 1:A:282:LYS:NZ   | 1:A:368:ASP:OD1  | 2.53              | 0.41        |  |
| 1:B:295:ASP:N    | 1:B:295:ASP:OD1  | 2.54              | 0.41        |  |
| 1:D:15:ASN:ND2   | 1:D:18:ILE:HD12  | 2.36              | 0.41        |  |
| 1:E:305:ARG:NH2  | 1:E:310:HIS:HB2  | 2.35              | 0.41        |  |
| 1:F:178:ALA:H    | 1:J:11:ASN:ND2   | 2.19              | 0.41        |  |



|                  | A + a            | Interatomic             | Clash       |  |
|------------------|------------------|-------------------------|-------------|--|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |  |
| 1:F:318:PHE:CE2  | 1:F:329:ILE:HD13 | 2.55                    | 0.41        |  |
| 1:G:80:ASN:HD22  | 1:H:333:ARG:HH22 | 1.68                    | 0.41        |  |
| 1:G:290:HIS:HE1  | 1:G:364:THR:OG1  | 2.04                    | 0.41        |  |
| 1:G:309:LYS:HE2  | 1:G:310:HIS:HB2  | 2.02                    | 0.41        |  |
| 1:B:143:TYR:CZ   | 1:B:208:TRP:HB2  | 2.55                    | 0.41        |  |
| 1:F:306:LEU:HD22 | 1:F:312:THR:HG23 | 2.02                    | 0.41        |  |
| 1:H:161:PRO:HG2  | 1:H:204:MET:HE3  | 2.02                    | 0.41        |  |
| 1:I:23:LEU:HD12  | 1:I:23:LEU:HA    | 1.96                    | 0.41        |  |
| 1:J:255:GLY:HA3  | 1:J:305:ARG:CG   | 2.50                    | 0.41        |  |
| 1:A:283:LEU:CD1  | 1:A:365:ILE:HG23 | 2.49                    | 0.41        |  |
| 1:B:136:TRP:CE3  | 1:B:268:ARG:HD3  | 2.55                    | 0.41        |  |
| 1:D:273:ILE:O    | 1:D:277:GLU:HG3  | 2.21                    | 0.41        |  |
| 1:E:120:ARG:O    | 1:E:120:ARG:HG2  | 2.19                    | 0.41        |  |
| 1:G:319:SER:CB   | 1:G:328:SER:H    | 2.34                    | 0.41        |  |
| 1:A:15:ASN:ND2   | 1:A:18:ILE:HD12  | 2.36                    | 0.41        |  |
| 1:H:318:PHE:CG   | 1:H:319:SER:N    | 2.89                    | 0.41        |  |
| 1:J:118:ASN:C    | 1:J:118:ASN:OD1  | 2.57                    | 0.41        |  |
| 1:A:13:ARG:CB    | 1:B:5:ILE:HD12   | 2.50                    | 0.41        |  |
| 1:C:11:ASN:HA    | 1:C:14:ILE:HD12  | 2.03                    | 0.41        |  |
| 1:F:19:LEU:HG    | 1:F:23:LEU:HD13  | 2.02                    | 0.41        |  |
| 1:A:159:GLY:HA3  | 1:I:156:PRO:HG2  | 2.03                    | 0.41        |  |
| 1:C:246:PRO:HA   | 1:C:256:ALA:HB3  | 2.01                    | 0.41        |  |
| 1:D:165:GLY:N    | 1:D:166:PRO:CD   | 2.84                    | 0.41        |  |
| 1:G:167:TYR:CZ   | 1:G:205:PRO:HG3  | 2.55                    | 0.41        |  |
| 1:H:182:VAL:HG21 | 1:H:208:TRP:CD2  | 2.56                    | 0.41        |  |
| 1:J:295:ASP:O    | 1:J:297:LYS:O    | 2.39                    | 0.41        |  |
| 1:C:295:ASP:HB2  | 1:C:296:PRO:HD2  | 2.02                    | 0.41        |  |
| 1:F:322:VAL:O    | 1:F:323:ALA:C    | 2.60                    | 0.41        |  |
| 1:H:291:ILE:HD13 | 1:H:315:ILE:HG13 | 2.03                    | 0.41        |  |
| 1:G:302:ASN:ND2  | 1:G:349:SER:OG   | 2.53                    | 0.40        |  |
| 1:B:347:ARG:N    | 1:B:348:PRO:CD   | 2.84                    | 0.40        |  |
| 1:I:40:ASP:HB2   | 1:I:73:CYS:HB2   | 2.03                    | 0.40        |  |
| 1:J:305:ARG:HD2  | 1:J:312:THR:HG21 | 2.04                    | 0.40        |  |
| 1:A:13:ARG:CB    | 1:B:5:ILE:CD1    | 2.99                    | 0.40        |  |
| 1:C:16:LYS:HA    | 1:C:16:LYS:HD3   | 1.89                    | 0.40        |  |
| 1:D:362:LEU:HD12 | 1:D:362:LEU:HA   | 1.90                    | 0.40        |  |

There are no symmetry-related clashes.



### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Favoured   | Allowed  | Outliers | Perce | ntiles |
|-----|-------|-----------------|------------|----------|----------|-------|--------|
| 1   | А     | 365/367~(100%)  | 343 (94%)  | 20~(6%)  | 2~(0%)   | 29    | 25     |
| 1   | В     | 364/367~(99%)   | 341 (94%)  | 18 (5%)  | 5(1%)    | 11    | 6      |
| 1   | С     | 364/367~(99%)   | 348~(96%)  | 15 (4%)  | 1 (0%)   | 41    | 40     |
| 1   | D     | 362/367~(99%)   | 345~(95%)  | 17 (5%)  | 0        | 100   | 100    |
| 1   | Е     | 363/367~(99%)   | 340 (94%)  | 22~(6%)  | 1 (0%)   | 41    | 40     |
| 1   | F     | 365/367~(100%)  | 344~(94%)  | 18 (5%)  | 3~(1%)   | 19    | 14     |
| 1   | G     | 363/367~(99%)   | 348~(96%)  | 14 (4%)  | 1 (0%)   | 41    | 40     |
| 1   | Η     | 364/367~(99%)   | 345~(95%)  | 18 (5%)  | 1 (0%)   | 41    | 40     |
| 1   | Ι     | 363/367~(99%)   | 341 (94%)  | 20~(6%)  | 2(1%)    | 25    | 20     |
| 1   | J     | 365/367~(100%)  | 342 (94%)  | 22~(6%)  | 1 (0%)   | 41    | 40     |
| All | All   | 3638/3670~(99%) | 3437 (94%) | 184 (5%) | 17 (0%)  | 29    | 25     |

All (17) Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | В     | 28  | GLN  |
| 1   | В     | 286 | CYS  |
| 1   | В     | 368 | ASP  |
| 1   | С     | 298 | GLN  |
| 1   | F     | 298 | GLN  |
| 1   | F     | 368 | ASP  |
| 1   | Н     | 298 | GLN  |
| 1   | Е     | 30  | ASN  |
| 1   | F     | 323 | ALA  |
| 1   | Ι     | 310 | HIS  |
| 1   | А     | 286 | CYS  |
| 1   | Ι     | 24  | SER  |
| 1   | А     | 316 | ASN  |
| 1   | В     | 285 | LYS  |



 $Continued \ from \ previous \ page...$ 

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | J     | 76  | ALA  |
| 1   | В     | 303 | ALA  |
| 1   | G     | 320 | ALA  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed         | Rotameric  | Outliers | Percentiles |
|-----|-------|------------------|------------|----------|-------------|
| 1   | А     | 308/309~(100%)   | 287~(93%)  | 21 (7%)  | 16 12       |
| 1   | В     | 309/309~(100%)   | 282~(91%)  | 27~(9%)  | 10 6        |
| 1   | С     | 308/309~(100%)   | 297~(96%)  | 11 (4%)  | 35 35       |
| 1   | D     | 307/309~(99%)    | 285~(93%)  | 22 (7%)  | 14 11       |
| 1   | Е     | 307/309~(99%)    | 287~(94%)  | 20 (6%)  | 17 14       |
| 1   | F     | 309/309~(100%)   | 287~(93%)  | 22 (7%)  | 14 11       |
| 1   | G     | 307/309~(99%)    | 284 (92%)  | 23 (8%)  | 13 10       |
| 1   | Н     | 307/309~(99%)    | 290~(94%)  | 17 (6%)  | 21 18       |
| 1   | Ι     | 308/309~(100%)   | 283~(92%)  | 25~(8%)  | 11 8        |
| 1   | J     | 308/309~(100%)   | 296 (96%)  | 12 (4%)  | 32 32       |
| All | All   | 3078/3090~(100%) | 2878 (94%) | 200 (6%) | 17 14       |

All (200) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 7   | GLU  |
| 1   | А     | 20  | ASP  |
| 1   | А     | 23  | LEU  |
| 1   | А     | 58  | GLN  |
| 1   | А     | 61  | LYS  |
| 1   | А     | 67  | ASN  |
| 1   | А     | 77  | GLU  |
| 1   | А     | 186 | TYR  |
| 1   | А     | 195 | LYS  |
| 1   | А     | 254 | ASN  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 269 | GLU  |
| 1   | А     | 274 | ARG  |
| 1   | А     | 283 | LEU  |
| 1   | А     | 284 | SER  |
| 1   | А     | 292 | ARG  |
| 1   | А     | 306 | LEU  |
| 1   | А     | 307 | THR  |
| 1   | А     | 309 | LYS  |
| 1   | А     | 318 | PHE  |
| 1   | А     | 322 | VAL  |
| 1   | А     | 358 | VAL  |
| 1   | В     | 5   | ILE  |
| 1   | В     | 6   | LEU  |
| 1   | В     | 23  | LEU  |
| 1   | В     | 29  | GLU  |
| 1   | В     | 31  | ILE  |
| 1   | В     | 80  | ASN  |
| 1   | В     | 113 | THR  |
| 1   | В     | 133 | GLU  |
| 1   | В     | 186 | TYR  |
| 1   | В     | 247 | LYS  |
| 1   | В     | 249 | MET  |
| 1   | В     | 286 | CYS  |
| 1   | В     | 288 | GLU  |
| 1   | В     | 289 | ARG  |
| 1   | В     | 302 | ASN  |
| 1   | В     | 305 | ARG  |
| 1   | В     | 307 | THR  |
| 1   | В     | 314 | SER  |
| 1   | В     | 315 | ILE  |
| 1   | В     | 317 | ASP  |
| 1   | В     | 319 | SER  |
| 1   | В     | 325 | ARG  |
| 1   | В     | 328 | SER  |
| 1   | В     | 349 | SER  |
| 1   | В     | 362 | LEU  |
| 1   | В     | 367 | LEU  |
| 1   | В     | 368 | ASP  |
| 1   | С     | 17  | THR  |
| 1   | С     | 23  | LEU  |
| 1   | C     | 58  | GLN  |
| 1   | С     | 90  | ILE  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | С     | 186 | TYR  |
| 1   | С     | 254 | ASN  |
| 1   | С     | 273 | ILE  |
| 1   | С     | 285 | LYS  |
| 1   | С     | 328 | SER  |
| 1   | С     | 349 | SER  |
| 1   | С     | 368 | ASP  |
| 1   | D     | 4   | ARG  |
| 1   | D     | 28  | GLN  |
| 1   | D     | 29  | GLU  |
| 1   | D     | 30  | ASN  |
| 1   | D     | 58  | GLN  |
| 1   | D     | 80  | ASN  |
| 1   | D     | 122 | THR  |
| 1   | D     | 186 | TYR  |
| 1   | D     | 214 | PRO  |
| 1   | D     | 249 | MET  |
| 1   | D     | 254 | ASN  |
| 1   | D     | 265 | LYS  |
| 1   | D     | 270 | ASP  |
| 1   | D     | 274 | ARG  |
| 1   | D     | 278 | LYS  |
| 1   | D     | 295 | ASP  |
| 1   | D     | 312 | THR  |
| 1   | D     | 340 | LYS  |
| 1   | D     | 349 | SER  |
| 1   | D     | 362 | LEU  |
| 1   | D     | 364 | THR  |
| 1   | D     | 367 | LEU  |
| 1   | Е     | 4   | ARG  |
| 1   | Е     | 23  | LEU  |
| 1   | E     | 28  | GLN  |
| 1   | Е     | 29  | GLU  |
| 1   | Е     | 58  | GLN  |
| 1   | E     | 81  | SER  |
| 1   | Е     | 97  | ARG  |
| 1   | Е     | 164 | GLN  |
| 1   | Е     | 186 | TYR  |
| 1   | E     | 216 | GLU  |
| 1   | Е     | 219 | SER  |
| 1   | Ε     | 265 | LYS  |
| 1   | Е     | 274 | ARG  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | Е     | 277 | GLU  |
| 1   | Е     | 278 | LYS  |
| 1   | Е     | 305 | ARG  |
| 1   | Е     | 314 | SER  |
| 1   | Е     | 317 | ASP  |
| 1   | Е     | 327 | CYS  |
| 1   | Е     | 338 | ASP  |
| 1   | F     | 5   | ILE  |
| 1   | F     | 21  | ARG  |
| 1   | F     | 23  | LEU  |
| 1   | F     | 28  | GLN  |
| 1   | F     | 29  | GLU  |
| 1   | F     | 65  | VAL  |
| 1   | F     | 97  | ARG  |
| 1   | F     | 113 | THR  |
| 1   | F     | 122 | THR  |
| 1   | F     | 186 | TYR  |
| 1   | F     | 204 | MET  |
| 1   | F     | 254 | ASN  |
| 1   | F     | 285 | LYS  |
| 1   | F     | 289 | ARG  |
| 1   | F     | 295 | ASP  |
| 1   | F     | 307 | THR  |
| 1   | F     | 309 | LYS  |
| 1   | F     | 311 | GLU  |
| 1   | F     | 314 | SER  |
| 1   | F     | 315 | ILE  |
| 1   | F     | 319 | SER  |
| 1   | F     | 336 | ASN  |
| 1   | G     | 5   | ILE  |
| 1   | G     | 6   | LEU  |
| 1   | G     | 13  | ARG  |
| 1   | G     | 30  | ASN  |
| 1   | G     | 183 | ASP  |
| 1   | G     | 186 | TYR  |
| 1   | G     | 247 | LYS  |
| 1   | G     | 249 | MET  |
| 1   | G     | 252 | ASP  |
| 1   | G     | 269 | GLU  |
| 1   | G     | 285 | LYS  |
| 1   | G     | 289 | ARG  |
| 1   | G     | 298 | GLN  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | G     | 300 | GLN  |
| 1   | G     | 302 | ASN  |
| 1   | G     | 304 | ARG  |
| 1   | G     | 305 | ARG  |
| 1   | G     | 306 | LEU  |
| 1   | G     | 313 | SER  |
| 1   | G     | 314 | SER  |
| 1   | G     | 317 | ASP  |
| 1   | G     | 330 | ARG  |
| 1   | G     | 338 | ASP  |
| 1   | Н     | 6   | LEU  |
| 1   | Н     | 23  | LEU  |
| 1   | Н     | 27  | LEU  |
| 1   | Н     | 61  | LYS  |
| 1   | Н     | 186 | TYR  |
| 1   | Н     | 204 | MET  |
| 1   | Н     | 207 | GLN  |
| 1   | Н     | 219 | SER  |
| 1   | Н     | 252 | ASP  |
| 1   | Н     | 292 | ARG  |
| 1   | Н     | 298 | GLN  |
| 1   | Н     | 314 | SER  |
| 1   | Н     | 328 | SER  |
| 1   | Н     | 330 | ARG  |
| 1   | Н     | 335 | VAL  |
| 1   | Н     | 349 | SER  |
| 1   | Н     | 367 | LEU  |
| 1   | Ι     | 5   | ILE  |
| 1   | Ι     | 6   | LEU  |
| 1   | Ι     | 21  | ARG  |
| 1   | Ι     | 23  | LEU  |
| 1   | Ι     | 28  | GLN  |
| 1   | Ι     | 61  | LYS  |
| 1   | Ι     | 81  | SER  |
| 1   | Ι     | 186 | TYR  |
| 1   | Ι     | 252 | ASP  |
| 1   | Ι     | 254 | ASN  |
| 1   | Ι     | 268 | ARG  |
| 1   | Ι     | 274 | ARG  |
| 1   | Ι     | 278 | LYS  |
| 1   | Ι     | 283 | LEU  |
| 1   | Ι     | 298 | GLN  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | Ι     | 305 | ARG  |
| 1   | Ι     | 309 | LYS  |
| 1   | Ι     | 312 | THR  |
| 1   | Ι     | 314 | SER  |
| 1   | Ι     | 338 | ASP  |
| 1   | Ι     | 340 | LYS  |
| 1   | Ι     | 349 | SER  |
| 1   | Ι     | 362 | LEU  |
| 1   | Ι     | 365 | ILE  |
| 1   | Ι     | 368 | ASP  |
| 1   | J     | 29  | GLU  |
| 1   | J     | 30  | ASN  |
| 1   | J     | 61  | LYS  |
| 1   | J     | 77  | GLU  |
| 1   | J     | 96  | ARG  |
| 1   | J     | 133 | GLU  |
| 1   | J     | 186 | TYR  |
| 1   | J     | 195 | LYS  |
| 1   | J     | 297 | LYS  |
| 1   | J     | 305 | ARG  |
| 1   | J     | 338 | ASP  |
| 1   | J     | 349 | SER  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (97) such sidechains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 11  | ASN  |
| 1   | А     | 15  | ASN  |
| 1   | А     | 58  | GLN  |
| 1   | А     | 67  | ASN  |
| 1   | А     | 75  | GLN  |
| 1   | А     | 100 | ASN  |
| 1   | А     | 141 | GLN  |
| 1   | А     | 164 | GLN  |
| 1   | А     | 185 | HIS  |
| 1   | А     | 290 | HIS  |
| 1   | А     | 300 | GLN  |
| 1   | В     | 15  | ASN  |
| 1   | В     | 141 | GLN  |
| 1   | В     | 164 | GLN  |
| 1   | В     | 185 | HIS  |
| 1   | В     | 200 | ASN  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | В     | 254 | ASN  |
| 1   | В     | 290 | HIS  |
| 1   | В     | 298 | GLN  |
| 1   | В     | 302 | ASN  |
| 1   | С     | 11  | ASN  |
| 1   | С     | 15  | ASN  |
| 1   | С     | 141 | GLN  |
| 1   | С     | 158 | ASN  |
| 1   | С     | 164 | GLN  |
| 1   | С     | 207 | GLN  |
| 1   | С     | 254 | ASN  |
| 1   | С     | 290 | HIS  |
| 1   | С     | 316 | ASN  |
| 1   | С     | 336 | ASN  |
| 1   | D     | 11  | ASN  |
| 1   | D     | 15  | ASN  |
| 1   | D     | 100 | ASN  |
| 1   | D     | 141 | GLN  |
| 1   | D     | 164 | GLN  |
| 1   | D     | 200 | ASN  |
| 1   | D     | 254 | ASN  |
| 1   | D     | 287 | HIS  |
| 1   | Е     | 15  | ASN  |
| 1   | Е     | 99  | ASN  |
| 1   | Е     | 100 | ASN  |
| 1   | Е     | 141 | GLN  |
| 1   | Е     | 254 | ASN  |
| 1   | Е     | 290 | HIS  |
| 1   | Е     | 302 | ASN  |
| 1   | Ε     | 310 | HIS  |
| 1   | F     | 11  | ASN  |
| 1   | F     | 15  | ASN  |
| 1   | F     | 30  | ASN  |
| 1   | F     | 100 | ASN  |
| 1   | F     | 141 | GLN  |
| 1   | F     | 164 | GLN  |
| 1   | F     | 185 | HIS  |
| 1   | F     | 200 | ASN  |
| 1   | F     | 254 | ASN  |
| 1   | F     | 261 | ASN  |
| 1   | F     | 287 | HIS  |
| 1   | F     | 290 | HIS  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | F     | 310 | HIS  |
| 1   | F     | 336 | ASN  |
| 1   | G     | 11  | ASN  |
| 1   | G     | 15  | ASN  |
| 1   | G     | 30  | ASN  |
| 1   | G     | 80  | ASN  |
| 1   | G     | 100 | ASN  |
| 1   | G     | 141 | GLN  |
| 1   | G     | 185 | HIS  |
| 1   | G     | 254 | ASN  |
| 1   | G     | 290 | HIS  |
| 1   | G     | 298 | GLN  |
| 1   | G     | 302 | ASN  |
| 1   | Н     | 11  | ASN  |
| 1   | Н     | 100 | ASN  |
| 1   | Н     | 141 | GLN  |
| 1   | Н     | 164 | GLN  |
| 1   | Н     | 200 | ASN  |
| 1   | Н     | 207 | GLN  |
| 1   | Н     | 232 | HIS  |
| 1   | Н     | 290 | HIS  |
| 1   | Н     | 298 | GLN  |
| 1   | Н     | 300 | GLN  |
| 1   | Ι     | 11  | ASN  |
| 1   | Ι     | 80  | ASN  |
| 1   | Ι     | 141 | GLN  |
| 1   | Ι     | 164 | GLN  |
| 1   | Ι     | 207 | GLN  |
| 1   | Ι     | 254 | ASN  |
| 1   | Ι     | 290 | HIS  |
| 1   | J     | 11  | ASN  |
| 1   | J     | 15  | ASN  |
| 1   | J     | 30  | ASN  |
| 1   | J     | 100 | ASN  |
| 1   | J     | 141 | GLN  |
| 1   | J     | 164 | GLN  |
| 1   | J     | 185 | HIS  |
| 1   | J     | 200 | ASN  |
| 1   | J     | 290 | HIS  |



#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

#### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

#### 5.6 Ligand geometry (i)

10 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal  | Tuno | Chain   | Dog | Tink  | Bo       | ond leng | ths      | B        | ond ang | les     |
|------|------|---------|-----|-------|----------|----------|----------|----------|---------|---------|
| WIOI | туре | Ullalli | nes | LIIIK | Counts   | RMSZ     | # Z  > 2 | Counts   | RMSZ    | # Z >2  |
| 2    | ADP  | А       | 401 | -     | 24,29,29 | 0.96     | 0        | 29,45,45 | 1.30    | 3 (10%) |
| 2    | ADP  | F       | 401 | -     | 24,29,29 | 0.93     | 2 (8%)   | 29,45,45 | 1.49    | 4 (13%) |
| 2    | ADP  | С       | 401 | -     | 24,29,29 | 0.96     | 1 (4%)   | 29,45,45 | 1.48    | 4 (13%) |
| 2    | ADP  | D       | 401 | -     | 24,29,29 | 0.99     | 1 (4%)   | 29,45,45 | 1.50    | 4 (13%) |
| 2    | ADP  | В       | 401 | -     | 24,29,29 | 0.95     | 1 (4%)   | 29,45,45 | 1.43    | 4 (13%) |
| 2    | ADP  | Ι       | 401 | -     | 24,29,29 | 0.96     | 0        | 29,45,45 | 1.31    | 3 (10%) |
| 2    | ADP  | J       | 401 | -     | 24,29,29 | 0.96     | 2 (8%)   | 29,45,45 | 1.30    | 3 (10%) |
| 2    | ADP  | G       | 401 | -     | 24,29,29 | 0.95     | 0        | 29,45,45 | 1.34    | 4 (13%) |
| 2    | ADP  | Н       | 401 | -     | 24,29,29 | 0.96     | 1 (4%)   | 29,45,45 | 1.45    | 4 (13%) |
| 2    | ADP  | Е       | 401 | -     | 24,29,29 | 0.91     | 0        | 29,45,45 | 1.70    | 4 (13%) |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.



| Mol | Type | Chain | Res | Link | Chirals | Torsions   | Rings   |
|-----|------|-------|-----|------|---------|------------|---------|
| 2   | ADP  | А     | 401 | -    | -       | 5/12/32/32 | 0/3/3/3 |
| 2   | ADP  | F     | 401 | -    | -       | 5/12/32/32 | 0/3/3/3 |
| 2   | ADP  | С     | 401 | -    | -       | 4/12/32/32 | 0/3/3/3 |
| 2   | ADP  | D     | 401 | -    | -       | 2/12/32/32 | 0/3/3/3 |
| 2   | ADP  | В     | 401 | -    | -       | 0/12/32/32 | 0/3/3/3 |
| 2   | ADP  | Ι     | 401 | -    | -       | 5/12/32/32 | 0/3/3/3 |
| 2   | ADP  | J     | 401 | -    | -       | 2/12/32/32 | 0/3/3/3 |
| 2   | ADP  | G     | 401 | -    | -       | 5/12/32/32 | 0/3/3/3 |
| 2   | ADP  | Н     | 401 | -    | -       | 0/12/32/32 | 0/3/3/3 |
| 2   | ADP  | Ε     | 401 | -    | -       | 5/12/32/32 | 0/3/3/3 |

All (8) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms   | Z    | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|------|-------------|----------|
| 2   | D     | 401 | ADP  | C5-C4   | 2.73 | 1.48        | 1.40     |
| 2   | Н     | 401 | ADP  | C5-C4   | 2.52 | 1.47        | 1.40     |
| 2   | С     | 401 | ADP  | C5-C4   | 2.50 | 1.47        | 1.40     |
| 2   | В     | 401 | ADP  | C5-C4   | 2.47 | 1.47        | 1.40     |
| 2   | J     | 401 | ADP  | C5-C4   | 2.26 | 1.46        | 1.40     |
| 2   | J     | 401 | ADP  | O4'-C1' | 2.20 | 1.44        | 1.41     |
| 2   | F     | 401 | ADP  | O4'-C1' | 2.16 | 1.44        | 1.41     |
| 2   | F     | 401 | ADP  | C5-C4   | 2.10 | 1.46        | 1.40     |

All (37) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|------------------|---------------|
| 2   | Е     | 401 | ADP  | O4'-C1'-C2' | -5.04 | 99.56            | 106.93        |
| 2   | F     | 401 | ADP  | N3-C2-N1    | -4.93 | 120.97           | 128.68        |
| 2   | Е     | 401 | ADP  | N3-C2-N1    | -4.10 | 122.27           | 128.68        |
| 2   | J     | 401 | ADP  | N3-C2-N1    | -4.05 | 122.35           | 128.68        |
| 2   | Н     | 401 | ADP  | PA-O3A-PB   | -3.61 | 120.44           | 132.83        |
| 2   | С     | 401 | ADP  | PA-O3A-PB   | -3.57 | 120.59           | 132.83        |
| 2   | D     | 401 | ADP  | PA-O3A-PB   | -3.57 | 120.59           | 132.83        |
| 2   | В     | 401 | ADP  | PA-O3A-PB   | -3.53 | 120.71           | 132.83        |
| 2   | D     | 401 | ADP  | C3'-C2'-C1' | 3.41  | 106.12           | 100.98        |
| 2   | С     | 401 | ADP  | C3'-C2'-C1' | 3.25  | 105.88           | 100.98        |
| 2   | D     | 401 | ADP  | N3-C2-N1    | -3.25 | 123.61           | 128.68        |
| 2   | Н     | 401 | ADP  | N3-C2-N1    | -3.20 | 123.68           | 128.68        |
| 2   | С     | 401 | ADP  | N3-C2-N1    | -3.19 | 123.69           | 128.68        |
| 2   | Н     | 401 | ADP  | C3'-C2'-C1' | 3.16  | 105.73           | 100.98        |
| 2   | В     | 401 | ADP  | N3-C2-N1    | -3.14 | 123.77           | 128.68        |



| Mol | Chain | $\mathbf{Res}$ | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|----------------|------|-------------|-------|------------------|---------------|
| 2   | В     | 401            | ADP  | C3'-C2'-C1' | 3.12  | 105.67           | 100.98        |
| 2   | А     | 401            | ADP  | N3-C2-N1    | -3.01 | 123.97           | 128.68        |
| 2   | Е     | 401            | ADP  | C4-C5-N7    | -3.00 | 106.27           | 109.40        |
| 2   | G     | 401            | ADP  | N3-C2-N1    | -3.00 | 123.99           | 128.68        |
| 2   | Ι     | 401            | ADP  | N3-C2-N1    | -2.99 | 124.00           | 128.68        |
| 2   | Ι     | 401            | ADP  | C4-C5-N7    | -2.93 | 106.34           | 109.40        |
| 2   | G     | 401            | ADP  | C4-C5-N7    | -2.93 | 106.35           | 109.40        |
| 2   | F     | 401            | ADP  | C4-C5-N7    | -2.81 | 106.47           | 109.40        |
| 2   | А     | 401            | ADP  | C4-C5-N7    | -2.79 | 106.49           | 109.40        |
| 2   | С     | 401            | ADP  | C4-C5-N7    | -2.74 | 106.54           | 109.40        |
| 2   | В     | 401            | ADP  | C4-C5-N7    | -2.73 | 106.56           | 109.40        |
| 2   | F     | 401            | ADP  | C1'-N9-C4   | -2.67 | 121.94           | 126.64        |
| 2   | Н     | 401            | ADP  | C4-C5-N7    | -2.67 | 106.62           | 109.40        |
| 2   | D     | 401            | ADP  | C4-C5-N7    | -2.66 | 106.63           | 109.40        |
| 2   | Е     | 401            | ADP  | C2-N1-C6    | 2.61  | 123.22           | 118.75        |
| 2   | J     | 401            | ADP  | C4-C5-N7    | -2.47 | 106.82           | 109.40        |
| 2   | F     | 401            | ADP  | C2-N1-C6    | 2.43  | 122.91           | 118.75        |
| 2   | Ι     | 401            | ADP  | O4'-C1'-C2' | -2.38 | 103.45           | 106.93        |
| 2   | А     | 401            | ADP  | O4'-C1'-C2' | -2.36 | 103.48           | 106.93        |
| 2   | G     | 401            | ADP  | O4'-C1'-C2' | -2.36 | 103.48           | 106.93        |
| 2   | G     | 401            | ADP  | O3A-PB-O1B  | -2.10 | 99.56            | 111.19        |
| 2   | J     | 401            | ADP  | C1'-N9-C4   | -2.06 | 123.03           | 126.64        |

There are no chirality outliers.

All (33) torsion outliers are listed below:

| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 2   | С     | 401 | ADP  | C5'-O5'-PA-O1A  |
| 2   | С     | 401 | ADP  | C3'-C4'-C5'-O5' |
| 2   | F     | 401 | ADP  | C5'-O5'-PA-O1A  |
| 2   | F     | 401 | ADP  | C5'-O5'-PA-O3A  |
| 2   | F     | 401 | ADP  | C3'-C4'-C5'-O5' |
| 2   | G     | 401 | ADP  | PA-O3A-PB-O2B   |
| 2   | А     | 401 | ADP  | O4'-C4'-C5'-O5' |
| 2   | А     | 401 | ADP  | C3'-C4'-C5'-O5' |
| 2   | С     | 401 | ADP  | O4'-C4'-C5'-O5' |
| 2   | D     | 401 | ADP  | O4'-C4'-C5'-O5' |
| 2   | D     | 401 | ADP  | C3'-C4'-C5'-O5' |
| 2   | G     | 401 | ADP  | O4'-C4'-C5'-O5' |
| 2   | G     | 401 | ADP  | C3'-C4'-C5'-O5' |
| 2   | Ι     | 401 | ADP  | O4'-C4'-C5'-O5' |
| 2   | Ι     | 401 | ADP  | C3'-C4'-C5'-O5' |



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 2   | J     | 401 | ADP  | O4'-C4'-C5'-O5' |
| 2   | J     | 401 | ADP  | C3'-C4'-C5'-O5' |
| 2   | F     | 401 | ADP  | O4'-C4'-C5'-O5' |
| 2   | F     | 401 | ADP  | C4'-C5'-O5'-PA  |
| 2   | А     | 401 | ADP  | PA-O3A-PB-O1B   |
| 2   | Ε     | 401 | ADP  | PA-O3A-PB-O1B   |
| 2   | Ι     | 401 | ADP  | PA-O3A-PB-O1B   |
| 2   | Ε     | 401 | ADP  | O4'-C4'-C5'-O5' |
| 2   | G     | 401 | ADP  | PA-O3A-PB-O1B   |
| 2   | А     | 401 | ADP  | PA-O3A-PB-O2B   |
| 2   | А     | 401 | ADP  | PA-O3A-PB-O3B   |
| 2   | Ε     | 401 | ADP  | PA-O3A-PB-O2B   |
| 2   | Ε     | 401 | ADP  | PA-O3A-PB-O3B   |
| 2   | G     | 401 | ADP  | PA-O3A-PB-O3B   |
| 2   | Ι     | 401 | ADP  | PA-O3A-PB-O2B   |
| 2   | Ι     | 401 | ADP  | PA-O3A-PB-O3B   |
| 2   | С     | 401 | ADP  | C5'-O5'-PA-O3A  |
| 2   | Е     | 401 | ADP  | C3'-C4'-C5'-O5' |

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.





















# 5.7 Other polymers (i)

There are no such residues in this entry.



# 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Fit of model and data (i)

## 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

| Mol | Chain | Analysed        | $\langle RSRZ \rangle$ | #RSR      | $\mathbf{Z}>2$ | 2 | $OWAB(Å^2)$                   | Q<0.9 |
|-----|-------|-----------------|------------------------|-----------|----------------|---|-------------------------------|-------|
| 1   | А     | 367/367~(100%)  | 0.74                   | 55 (14%)  | 2              | 3 | 24, 46, 127, 170              | 0     |
| 1   | В     | 366/367~(99%)   | 0.55                   | 48 (13%)  | 3              | 4 | 23, 46, 110, 166              | 0     |
| 1   | С     | 366/367~(99%)   | 0.43                   | 42 (11%)  | 4              | 6 | 23, 39, 102, 150              | 0     |
| 1   | D     | 364/367~(99%)   | 0.20                   | 38 (10%)  | 6              | 8 | 23, 36, 96, 126               | 0     |
| 1   | Ε     | 365/367~(99%)   | 0.61                   | 45~(12%)  | 4              | 5 | 24, 42, 125, 183              | 0     |
| 1   | F     | 367/367~(100%)  | 0.40                   | 41 (11%)  | 5              | 6 | 24, 39, 101, 136              | 0     |
| 1   | G     | 365/367~(99%)   | 0.50                   | 43 (11%)  | 4              | 5 | 21, 37, 114, 155              | 0     |
| 1   | Η     | 366/367~(99%)   | 0.44                   | 42 (11%)  | 4              | 6 | 22, 41, 116, 190              | 0     |
| 1   | Ι     | 365/367~(99%)   | 0.73                   | 71 (19%)  | 1              | 1 | 24, 47, 109, 163              | 0     |
| 1   | J     | 367/367~(100%)  | 0.72                   | 60 (16%)  | 1              | 2 | $26, 48, \overline{118, 157}$ | 0     |
| All | All   | 3658/3670~(99%) | 0.53                   | 485 (13%) | 3              | 4 | 21, 42, 114, 190              | 0     |

All (485) RSRZ outliers are listed below:

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | Η     | 312 | THR  | 19.8 |
| 1   | G     | 318 | PHE  | 19.0 |
| 1   | Е     | 310 | HIS  | 14.7 |
| 1   | Ε     | 307 | THR  | 13.8 |
| 1   | Ε     | 302 | ASN  | 13.6 |
| 1   | С     | 307 | THR  | 13.2 |
| 1   | Ε     | 322 | VAL  | 13.0 |
| 1   | Ε     | 306 | LEU  | 12.2 |
| 1   | G     | 315 | ILE  | 12.1 |
| 1   | J     | 308 | GLY  | 10.8 |
| 1   | G     | 307 | THR  | 10.8 |
| 1   | Н     | 310 | HIS  | 10.6 |
| 1   | Ε     | 311 | GLU  | 10.5 |



| 7CPR |  |
|------|--|
|------|--|

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | С     | 308 | GLY  | 10.5 |
| 1   | J     | 307 | THR  | 10.2 |
| 1   | Е     | 303 | ALA  | 10.2 |
| 1   | Ι     | 310 | HIS  | 10.1 |
| 1   | С     | 312 | THR  | 9.9  |
| 1   | Н     | 298 | GLN  | 9.9  |
| 1   | J     | 309 | LYS  | 9.8  |
| 1   | Н     | 300 | GLN  | 9.5  |
| 1   | А     | 310 | HIS  | 9.5  |
| 1   | А     | 312 | THR  | 9.4  |
| 1   | G     | 320 | ALA  | 9.4  |
| 1   | Н     | 299 | GLY  | 9.2  |
| 1   | Ι     | 308 | GLY  | 9.2  |
| 1   | F     | 307 | THR  | 9.1  |
| 1   | А     | 302 | ASN  | 9.1  |
| 1   | В     | 316 | ASN  | 8.9  |
| 1   | F     | 308 | GLY  | 8.9  |
| 1   | А     | 311 | GLU  | 8.9  |
| 1   | Н     | 311 | GLU  | 8.8  |
| 1   | Е     | 309 | LYS  | 8.8  |
| 1   | Ι     | 309 | LYS  | 8.8  |
| 1   | А     | 299 | GLY  | 8.6  |
| 1   | Ι     | 316 | ASN  | 8.6  |
| 1   | Ι     | 315 | ILE  | 8.5  |
| 1   | G     | 304 | ARG  | 8.5  |
| 1   | А     | 309 | LYS  | 8.4  |
| 1   | Е     | 318 | PHE  | 8.4  |
| 1   | А     | 307 | THR  | 8.3  |
| 1   | С     | 322 | VAL  | 8.3  |
| 1   | А     | 316 | ASN  | 8.2  |
| 1   | J     | 316 | ASN  | 8.2  |
| 1   | E     | 312 | THR  | 8.2  |
| 1   | G     | 303 | ALA  | 8.1  |
| 1   | F     | 299 | GLY  | 8.0  |
| 1   | В     | 313 | SER  | 8.0  |
| 1   | А     | 306 | LEU  | 8.0  |
| 1   | Н     | 322 | VAL  | 7.8  |
| 1   | А     | 308 | GLY  | 7.8  |
| 1   | E     | 300 | GLN  | 7.8  |
| 1   | F     | 322 | VAL  | 7.8  |
| 1   | В     | 301 | ASP  | 7.8  |
| 1   | D     | 299 | GLY  | 7.8  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | F     | 300 | GLN  | 7.7  |
| 1   | Е     | 317 | ASP  | 7.7  |
| 1   | D     | 303 | ALA  | 7.7  |
| 1   | С     | 310 | HIS  | 7.6  |
| 1   | Ι     | 311 | GLU  | 7.6  |
| 1   | J     | 300 | GLN  | 7.6  |
| 1   | В     | 309 | LYS  | 7.5  |
| 1   | В     | 308 | GLY  | 7.5  |
| 1   | А     | 322 | VAL  | 7.5  |
| 1   | G     | 302 | ASN  | 7.4  |
| 1   | J     | 315 | ILE  | 7.4  |
| 1   | Ι     | 299 | GLY  | 7.3  |
| 1   | С     | 3   | ALA  | 7.2  |
| 1   | G     | 300 | GLN  | 7.2  |
| 1   | В     | 310 | HIS  | 7.2  |
| 1   | F     | 317 | ASP  | 7.2  |
| 1   | G     | 308 | GLY  | 7.2  |
| 1   | G     | 312 | THR  | 7.1  |
| 1   | А     | 298 | GLN  | 7.1  |
| 1   | С     | 306 | LEU  | 7.1  |
| 1   | Н     | 309 | LYS  | 7.1  |
| 1   | Н     | 307 | THR  | 7.1  |
| 1   | А     | 301 | ASP  | 7.0  |
| 1   | Н     | 305 | ARG  | 7.0  |
| 1   | F     | 311 | GLU  | 6.9  |
| 1   | А     | 313 | SER  | 6.8  |
| 1   | J     | 303 | ALA  | 6.7  |
| 1   | D     | 300 | GLN  | 6.7  |
| 1   | С     | 309 | LYS  | 6.7  |
| 1   | E     | 315 | ILE  | 6.7  |
| 1   | J     | 306 | LEU  | 6.6  |
| 1   | Ι     | 314 | SER  | 6.6  |
| 1   | J     | 299 | GLY  | 6.6  |
| 1   | С     | 311 | GLU  | 6.5  |
| 1   | A     | 300 | GLN  | 6.4  |
| 1   | B     | 300 | GLN  | 6.4  |
| 1   | D     | 315 | ILE  | 6.4  |
| 1   | С     | 316 | ASN  | 6.3  |
| 1   | E     | 313 | SER  | 6.3  |
| 1   | F     | 309 | LYS  | 6.3  |
| 1   | E     | 299 | GLY  | 6.2  |
| 1   | Н     | 308 | GLY  | 6.1  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | G     | 316 | ASN  | 6.1  |
| 1   | J     | 317 | ASP  | 6.1  |
| 1   | В     | 299 | GLY  | 6.0  |
| 1   | В     | 312 | THR  | 6.0  |
| 1   | Ι     | 322 | VAL  | 6.0  |
| 1   | Е     | 316 | ASN  | 6.0  |
| 1   | А     | 315 | ILE  | 6.0  |
| 1   | Е     | 308 | GLY  | 6.0  |
| 1   | G     | 305 | ARG  | 5.9  |
| 1   | В     | 303 | ALA  | 5.9  |
| 1   | Ι     | 274 | ARG  | 5.9  |
| 1   | А     | 318 | PHE  | 5.9  |
| 1   | В     | 307 | THR  | 5.9  |
| 1   | J     | 310 | HIS  | 5.9  |
| 1   | F     | 28  | GLN  | 5.8  |
| 1   | Ι     | 271 | GLY  | 5.8  |
| 1   | J     | 302 | ASN  | 5.8  |
| 1   | Е     | 301 | ASP  | 5.8  |
| 1   | F     | 312 | THR  | 5.8  |
| 1   | С     | 300 | GLN  | 5.7  |
| 1   | F     | 310 | HIS  | 5.7  |
| 1   | В     | 78  | GLY  | 5.7  |
| 1   | F     | 303 | ALA  | 5.6  |
| 1   | В     | 302 | ASN  | 5.5  |
| 1   | F     | 298 | GLN  | 5.5  |
| 1   | Ι     | 320 | ALA  | 5.5  |
| 1   | F     | 78  | GLY  | 5.5  |
| 1   | J     | 301 | ASP  | 5.5  |
| 1   | G     | 310 | HIS  | 5.4  |
| 1   | Н     | 368 | ASP  | 5.4  |
| 1   | Н     | 313 | SER  | 5.4  |
| 1   | А     | 303 | ALA  | 5.4  |
| 1   | Ι     | 292 | ARG  | 5.4  |
| 1   | Ι     | 303 | ALA  | 5.4  |
| 1   | А     | 295 | ASP  | 5.4  |
| 1   | Ι     | 300 | GLN  | 5.3  |
| 1   | Н     | 303 | ALA  | 5.3  |
| 1   | А     | 305 | ARG  | 5.3  |
| 1   | G     | 309 | LYS  | 5.2  |
| 1   | В     | 337 | ASP  | 5.2  |
| 1   | С     | 303 | ALA  | 5.2  |
| 1   | Н     | 301 | ASP  | 5.2  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | Ι     | 78  | GLY  | 5.2  |
| 1   | А     | 314 | SER  | 5.2  |
| 1   | G     | 306 | LEU  | 5.2  |
| 1   | С     | 285 | LYS  | 5.2  |
| 1   | А     | 304 | ARG  | 5.1  |
| 1   | Е     | 298 | GLN  | 5.1  |
| 1   | Ι     | 336 | ASN  | 5.0  |
| 1   | D     | 306 | LEU  | 5.0  |
| 1   | В     | 315 | ILE  | 5.0  |
| 1   | С     | 78  | GLY  | 5.0  |
| 1   | Н     | 318 | PHE  | 5.0  |
| 1   | F     | 369 | GLU  | 5.0  |
| 1   | Н     | 3   | ALA  | 5.0  |
| 1   | G     | 301 | ASP  | 5.0  |
| 1   | F     | 301 | ASP  | 4.9  |
| 1   | D     | 301 | ASP  | 4.9  |
| 1   | А     | 317 | ASP  | 4.8  |
| 1   | D     | 310 | HIS  | 4.8  |
| 1   | Н     | 302 | ASN  | 4.8  |
| 1   | Ι     | 317 | ASP  | 4.8  |
| 1   | F     | 321 | GLY  | 4.8  |
| 1   | А     | 369 | GLU  | 4.8  |
| 1   | В     | 369 | GLU  | 4.8  |
| 1   | Е     | 304 | ARG  | 4.8  |
| 1   | Е     | 323 | ALA  | 4.8  |
| 1   | А     | 3   | ALA  | 4.8  |
| 1   | А     | 292 | ARG  | 4.7  |
| 1   | С     | 299 | GLY  | 4.7  |
| 1   | J     | 312 | THR  | 4.7  |
| 1   | B     | 314 | SER  | 4.7  |
| 1   | Ι     | 306 | LEU  | 4.7  |
| 1   | E     | 305 | ARG  | 4.7  |
| 1   | D     | 29  | GLU  | 4.6  |
| 1   | Е     | 321 | GLY  | 4.6  |
| 1   | Н     | 317 | ASP  | 4.6  |
| 1   | F     | 306 | LEU  | 4.5  |
| 1   | E     | 252 | ASP  | 4.5  |
| 1   | A     | 319 | SER  | 4.5  |
| 1   | D     | 305 | ARG  | 4.5  |
| 1   | F     | 315 | ILE  | 4.5  |
| 1   | В     | 322 | VAL  | 4.5  |
| 1   | D     | 302 | ASN  | 4.5  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | G     | 297 | LYS  | 4.5  |
| 1   | G     | 78  | GLY  | 4.5  |
| 1   | D     | 316 | ASN  | 4.5  |
| 1   | J     | 314 | SER  | 4.5  |
| 1   | Ι     | 275 | ASP  | 4.5  |
| 1   | Ι     | 285 | LYS  | 4.5  |
| 1   | Е     | 288 | GLU  | 4.5  |
| 1   | Ι     | 307 | THR  | 4.4  |
| 1   | Ι     | 335 | VAL  | 4.4  |
| 1   | А     | 323 | ALA  | 4.4  |
| 1   | Е     | 319 | SER  | 4.4  |
| 1   | А     | 252 | ASP  | 4.3  |
| 1   | G     | 110 | PHE  | 4.3  |
| 1   | В     | 297 | LYS  | 4.2  |
| 1   | J     | 304 | ARG  | 4.2  |
| 1   | G     | 298 | GLN  | 4.2  |
| 1   | В     | 317 | ASP  | 4.2  |
| 1   | G     | 314 | SER  | 4.2  |
| 1   | J     | 252 | ASP  | 4.2  |
| 1   | J     | 321 | GLY  | 4.2  |
| 1   | D     | 307 | THR  | 4.2  |
| 1   | А     | 324 | ASN  | 4.2  |
| 1   | С     | 304 | ARG  | 4.1  |
| 1   | А     | 288 | GLU  | 4.1  |
| 1   | J     | 278 | LYS  | 4.1  |
| 1   | В     | 269 | GLU  | 4.0  |
| 1   | В     | 339 | GLY  | 4.0  |
| 1   | В     | 306 | LEU  | 4.0  |
| 1   | Ι     | 298 | GLN  | 4.0  |
| 1   | F     | 316 | ASN  | 4.0  |
| 1   | Н     | 252 | ASP  | 4.0  |
| 1   | H     | 297 | LYS  | 4.0  |
| 1   | C     | 314 | SER  | 4.0  |
| 1   | D     | 311 | GLU  | 4.0  |
| 1   | Ι     | 297 | LYS  | 4.0  |
| 1   | В     | 278 | LYS  | 3.9  |
| 1   | J     | 285 | LYS  | 3.9  |
| 1   | Н     | 316 | ASN  | 3.9  |
| 1   | D     | 309 | LYS  | 3.9  |
| 1   | J     | 311 | GLU  | 3.9  |
| 1   | Н     | 292 | ARG  | 3.9  |
| 1   | Ι     | 339 | GLY  | 3.9  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | F     | 274 | ARG  | 3.9  |
| 1   | F     | 79  | SER  | 3.9  |
| 1   | J     | 357 | VAL  | 3.9  |
| 1   | J     | 132 | ALA  | 3.8  |
| 1   | В     | 288 | GLU  | 3.8  |
| 1   | D     | 317 | ASP  | 3.8  |
| 1   | G     | 289 | ARG  | 3.8  |
| 1   | G     | 3   | ALA  | 3.8  |
| 1   | J     | 325 | ARG  | 3.8  |
| 1   | В     | 77  | GLU  | 3.8  |
| 1   | С     | 313 | SER  | 3.8  |
| 1   | J     | 260 | THR  | 3.7  |
| 1   | А     | 297 | LYS  | 3.7  |
| 1   | F     | 314 | SER  | 3.7  |
| 1   | Е     | 274 | ARG  | 3.7  |
| 1   | Ι     | 304 | ARG  | 3.7  |
| 1   | J     | 305 | ARG  | 3.7  |
| 1   | D     | 322 | VAL  | 3.7  |
| 1   | А     | 78  | GLY  | 3.7  |
| 1   | G     | 299 | GLY  | 3.7  |
| 1   | Н     | 306 | LEU  | 3.7  |
| 1   | Н     | 77  | GLU  | 3.6  |
| 1   | F     | 3   | ALA  | 3.6  |
| 1   | F     | 302 | ASN  | 3.6  |
| 1   | С     | 298 | GLN  | 3.6  |
| 1   | J     | 326 | GLY  | 3.6  |
| 1   | С     | 274 | ARG  | 3.6  |
| 1   | Ι     | 324 | ASN  | 3.6  |
| 1   | J     | 313 | SER  | 3.6  |
| 1   | С     | 323 | ALA  | 3.6  |
| 1   | В     | 304 | ARG  | 3.6  |
| 1   | Ι     | 286 | CYS  | 3.5  |
| 1   | А     | 320 | ALA  | 3.5  |
| 1   | Н     | 253 | TRP  | 3.5  |
| 1   | J     | 76  | ALA  | 3.5  |
| 1   | Н     | 78  | GLY  | 3.5  |
| 1   | С     | 315 | ILE  | 3.4  |
| 1   | С     | 301 | ASP  | 3.4  |
| 1   | Н     | 324 | ASN  | 3.4  |
| 1   | С     | 297 | LYS  | 3.4  |
| 1   | В     | 311 | GLU  | 3.4  |
| 1   | F     | 252 | ASP  | 3.4  |



| 7CPR |
|------|
|------|

| Continued from previous page |       |     |      |      |  |  |
|------------------------------|-------|-----|------|------|--|--|
| Mol                          | Chain | Res | Type | RSRZ |  |  |
| 1                            | Ι     | 301 | ASP  | 3.4  |  |  |
| 1                            | J     | 274 | ARG  | 3.4  |  |  |
| 1                            | С     | 317 | ASP  | 3.4  |  |  |
| 1                            | Е     | 297 | LYS  | 3.4  |  |  |
| 1                            | В     | 132 | ALA  | 3.4  |  |  |
| 1                            | J     | 361 | ILE  | 3.4  |  |  |
| 1                            | F     | 29  | GLU  | 3.4  |  |  |
| 1                            | Е     | 287 | HIS  | 3.4  |  |  |
| 1                            | J     | 3   | ALA  | 3.3  |  |  |
| 1                            | Ι     | 368 | ASP  | 3.3  |  |  |
| 1                            | Н     | 315 | ILE  | 3.3  |  |  |
| 1                            | Ι     | 288 | GLU  | 3.3  |  |  |
| 1                            | D     | 274 | ARG  | 3.2  |  |  |
| 1                            | А     | 77  | GLU  | 3.2  |  |  |
| 1                            | J     | 297 | LYS  | 3.2  |  |  |
| 1                            | С     | 29  | GLU  | 3.2  |  |  |
| 1                            | F     | 288 | GLU  | 3.2  |  |  |
| 1                            | Ι     | 269 | GLU  | 3.2  |  |  |
| 1                            | J     | 322 | VAL  | 3.2  |  |  |
| 1                            | Н     | 304 | ARG  | 3.2  |  |  |
| 1                            | J     | 277 | GLU  | 3.1  |  |  |
| 1                            | G     | 311 | GLU  | 3.1  |  |  |
| 1                            | Ι     | 318 | PHE  | 3.1  |  |  |
| 1                            | G     | 317 | ASP  | 3.1  |  |  |
| 1                            | F     | 304 | ARG  | 3.1  |  |  |
| 1                            | В     | 320 | ALA  | 3.1  |  |  |
| 1                            | D     | 285 | LYS  | 3.1  |  |  |
| 1                            | Ι     | 29  | GLU  | 3.1  |  |  |
| 1                            | Ι     | 281 | ALA  | 3.1  |  |  |
| 1                            | В     | 274 | ARG  | 3.1  |  |  |
| 1                            | Е     | 58  | GLN  | 3.0  |  |  |
| 1                            | Н     | 288 | GLU  | 3.0  |  |  |
| 1                            | G     | 29  | GLU  | 3.0  |  |  |
| 1                            | В     | 295 | ASP  | 3.0  |  |  |
| 1                            | Е     | 295 | ASP  | 3.0  |  |  |
| 1                            | А     | 260 | THR  | 3.0  |  |  |
| 1                            | С     | 302 | ASN  | 3.0  |  |  |
| 1                            | А     | 339 | GLY  | 3.0  |  |  |
| 1                            | G     | 28  | GLN  | 3.0  |  |  |
| 1                            | J     | 270 | ASP  | 3.0  |  |  |
| 1                            | А     | 327 | CYS  | 3.0  |  |  |
| 1                            | Ι     | 278 | LYS  | 3.0  |  |  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | F     | 253 | TRP  | 3.0  |
| 1   | D     | 79  | SER  | 3.0  |
| 1   | D     | 298 | GLN  | 2.9  |
| 1   | Н     | 80  | ASN  | 2.9  |
| 1   | Ι     | 319 | SER  | 2.9  |
| 1   | А     | 325 | ARG  | 2.9  |
| 1   | Ι     | 252 | ASP  | 2.9  |
| 1   | D     | 30  | ASN  | 2.9  |
| 1   | D     | 304 | ARG  | 2.9  |
| 1   | F     | 313 | SER  | 2.9  |
| 1   | В     | 338 | ASP  | 2.9  |
| 1   | С     | 288 | GLU  | 2.9  |
| 1   | G     | 288 | GLU  | 2.9  |
| 1   | D     | 31  | ILE  | 2.9  |
| 1   | Ι     | 273 | ILE  | 2.9  |
| 1   | Е     | 253 | TRP  | 2.9  |
| 1   | Ι     | 79  | SER  | 2.9  |
| 1   | F     | 305 | ARG  | 2.8  |
| 1   | В     | 252 | ASP  | 2.8  |
| 1   | J     | 275 | ASP  | 2.8  |
| 1   | Е     | 314 | SER  | 2.8  |
| 1   | А     | 131 | ALA  | 2.8  |
| 1   | В     | 110 | PHE  | 2.8  |
| 1   | Е     | 337 | ASP  | 2.8  |
| 1   | G     | 30  | ASN  | 2.8  |
| 1   | С     | 336 | ASN  | 2.8  |
| 1   | Ι     | 305 | ARG  | 2.8  |
| 1   | А     | 79  | SER  | 2.8  |
| 1   | В     | 79  | SER  | 2.8  |
| 1   | Е     | 325 | ARG  | 2.8  |
| 1   | J     | 262 | VAL  | 2.8  |
| 1   | А     | 291 | ILE  | 2.8  |
| 1   | D     | 78  | GLY  | 2.8  |
| 1   | D     | 308 | GLY  | 2.7  |
| 1   | Н     | 321 | GLY  | 2.7  |
| 1   | Ι     | 329 | ILE  | 2.7  |
| 1   | Ι     | 277 | GLU  | 2.7  |
| 1   | J     | 269 | GLU  | 2.7  |
| 1   | J     | 358 | VAL  | 2.7  |
| 1   | Е     | 292 | ARG  | 2.7  |
| 1   | D     | 318 | PHE  | 2.7  |
| 1   | А     | 326 | GLY  | 2.7  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | Ι     | 132 | ALA  | 2.7  |
| 1   | В     | 285 | LYS  | 2.7  |
| 1   | D     | 321 | GLY  | 2.7  |
| 1   | Ι     | 334 | GLY  | 2.7  |
| 1   | С     | 132 | ALA  | 2.7  |
| 1   | Ι     | 323 | ALA  | 2.7  |
| 1   | А     | 253 | TRP  | 2.7  |
| 1   | F     | 297 | LYS  | 2.7  |
| 1   | Ι     | 312 | THR  | 2.7  |
| 1   | С     | 80  | ASN  | 2.7  |
| 1   | Ι     | 61  | LYS  | 2.7  |
| 1   | Ι     | 266 | ALA  | 2.7  |
| 1   | G     | 292 | ARG  | 2.7  |
| 1   | Ι     | 328 | SER  | 2.6  |
| 1   | С     | 77  | GLU  | 2.6  |
| 1   | В     | 29  | GLU  | 2.6  |
| 1   | Е     | 289 | ARG  | 2.6  |
| 1   | J     | 54  | ASP  | 2.6  |
| 1   | В     | 80  | ASN  | 2.6  |
| 1   | F     | 368 | ASP  | 2.6  |
| 1   | В     | 305 | ARG  | 2.6  |
| 1   | Е     | 78  | GLY  | 2.6  |
| 1   | G     | 313 | SER  | 2.6  |
| 1   | Н     | 58  | GLN  | 2.6  |
| 1   | Ι     | 77  | GLU  | 2.6  |
| 1   | Е     | 285 | LYS  | 2.6  |
| 1   | Ι     | 110 | PHE  | 2.6  |
| 1   | Ι     | 341 | GLY  | 2.6  |
| 1   | Ι     | 337 | ASP  | 2.6  |
| 1   | J     | 271 | GLY  | 2.6  |
| 1   | Е     | 110 | PHE  | 2.6  |
| 1   | В     | 270 | ASP  | 2.5  |
| 1   | J     | 78  | GLY  | 2.5  |
| 1   | D     | 297 | LYS  | 2.5  |
| 1   | D     | 253 | TRP  | 2.5  |
| 1   | А     | 132 | ALA  | 2.5  |
| 1   | А     | 338 | ASP  | 2.5  |
| 1   | Н     | 29  | GLU  | 2.5  |
| 1   | Ι     | 340 | LYS  | 2.5  |
| 1   | А     | 274 | ARG  | 2.5  |
| 1   | F     | 30  | ASN  | 2.5  |
| 1   | Ι     | 313 | SER  | 2.5  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | С     | 324 | ASN  | 2.5  |
| 1   | J     | 323 | ALA  | 2.5  |
| 1   | В     | 28  | GLN  | 2.4  |
| 1   | J     | 253 | TRP  | 2.4  |
| 1   | С     | 252 | ASP  | 2.4  |
| 1   | F     | 270 | ASP  | 2.4  |
| 1   | J     | 327 | CYS  | 2.4  |
| 1   | В     | 325 | ARG  | 2.4  |
| 1   | Ι     | 331 | ILE  | 2.4  |
| 1   | D     | 269 | GLU  | 2.4  |
| 1   | Е     | 112 | GLY  | 2.4  |
| 1   | J     | 29  | GLU  | 2.4  |
| 1   | J     | 298 | GLN  | 2.4  |
| 1   | В     | 61  | LYS  | 2.4  |
| 1   | G     | 323 | ALA  | 2.4  |
| 1   | D     | 28  | GLN  | 2.4  |
| 1   | С     | 321 | GLY  | 2.4  |
| 1   | А     | 294 | TYR  | 2.4  |
| 1   | Ι     | 80  | ASN  | 2.3  |
| 1   | J     | 318 | PHE  | 2.3  |
| 1   | G     | 319 | SER  | 2.3  |
| 1   | С     | 270 | ASP  | 2.3  |
| 1   | G     | 31  | ILE  | 2.3  |
| 1   | С     | 289 | ARG  | 2.3  |
| 1   | Е     | 28  | GLN  | 2.3  |
| 1   | А     | 255 | GLY  | 2.3  |
| 1   | D     | 252 | ASP  | 2.3  |
| 1   | G     | 326 | GLY  | 2.3  |
| 1   | F     | 260 | THR  | 2.3  |
| 1   | Ι     | 58  | GLN  | 2.3  |
| 1   | D     | 313 | SER  | 2.3  |
| 1   | F     | 337 | ASP  | 2.3  |
| 1   | В     | 335 | VAL  | 2.3  |
| 1   | Ε     | 320 | ALA  | 2.3  |
| 1   | С     | 28  | GLN  | 2.3  |
| 1   | J     | 292 | ARG  | 2.3  |
| 1   | А     | 287 | HIS  | 2.3  |
| 1   | A     | 321 | GLY  | 2.3  |
| 1   | D     | 61  | LYS  | 2.3  |
| 1   | Н     | 284 | SER  | 2.3  |
| 1   | А     | 358 | VAL  | 2.3  |
| 1   | Н     | 289 | ARG  | 2.3  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | Ι     | 325 | ARG  | 2.3  |
| 1   | J     | 333 | ARG  | 2.3  |
| 1   | Ι     | 258 | ALA  | 2.3  |
| 1   | G     | 37  | VAL  | 2.3  |
| 1   | G     | 322 | VAL  | 2.3  |
| 1   | D     | 314 | SER  | 2.3  |
| 1   | В     | 277 | GLU  | 2.3  |
| 1   | Н     | 28  | GLN  | 2.3  |
| 1   | В     | 368 | ASP  | 2.2  |
| 1   | D     | 77  | GLU  | 2.2  |
| 1   | А     | 271 | GLY  | 2.2  |
| 1   | D     | 255 | GLY  | 2.2  |
| 1   | J     | 324 | ASN  | 2.2  |
| 1   | Н     | 30  | ASN  | 2.2  |
| 1   | С     | 271 | GLY  | 2.2  |
| 1   | J     | 79  | SER  | 2.2  |
| 1   | С     | 292 | ARG  | 2.2  |
| 1   | G     | 102 | LEU  | 2.2  |
| 1   | J     | 58  | GLN  | 2.2  |
| 1   | А     | 290 | HIS  | 2.2  |
| 1   | F     | 361 | ILE  | 2.2  |
| 1   | G     | 103 | VAL  | 2.2  |
| 1   | Ι     | 291 | ILE  | 2.2  |
| 1   | С     | 305 | ARG  | 2.2  |
| 1   | В     | 255 | GLY  | 2.2  |
| 1   | G     | 79  | SER  | 2.1  |
| 1   | Ι     | 260 | THR  | 2.1  |
| 1   | J     | 131 | ALA  | 2.1  |
| 1   | J     | 288 | GLU  | 2.1  |
| 1   | F     | 77  | GLU  | 2.1  |
| 1   | С     | 30  | ASN  | 2.1  |
| 1   | Н     | 286 | CYS  | 2.1  |
| 1   | F     | 338 | ASP  | 2.1  |
| 1   | Ι     | 224 | LEU  | 2.1  |
| 1   | J     | 128 | ASN  | 2.1  |
| 1   | D     | 54  | ASP  | 2.1  |
| 1   | J     | 337 | ASP  | 2.1  |
| 1   | Е     | 286 | CYS  | 2.1  |
| 1   | Ι     | 302 | ASN  | 2.1  |
| 1   | G     | 252 | ASP  | 2.0  |
| 1   | Ι     | 295 | ASP  | 2.0  |
| 1   | А     | 28  | GLN  | 2.0  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | J     | 348 | PRO  | 2.0  |
| 1   | G     | 357 | VAL  | 2.0  |
| 1   | Н     | 326 | GLY  | 2.0  |
| 1   | Ι     | 23  | LEU  | 2.0  |
| 1   | Е     | 3   | ALA  | 2.0  |
| 1   | Ι     | 37  | VAL  | 2.0  |
| 1   | Н     | 81  | SER  | 2.0  |
| 1   | Ι     | 129 | LYS  | 2.0  |
| 1   | J     | 250 | PRO  | 2.0  |
| 1   | Ι     | 293 | ALA  | 2.0  |

#### 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

#### 6.4 Ligands (i)

LIGAND-RSR INFOmissingINFO

#### 6.5 Other polymers (i)

There are no such residues in this entry.

