

Full wwPDB X-ray Structure Validation Report (i)

May 29, 2020 - 05:02 am BST

PDB ID	:	4CMY
Title	:	Chlorobium tepidum Ferritin
Authors	:	Pohl, E.; Arenas, M.; Townsend, P.D.; Yevenes, A
Deposited on	:	2014-01-18
Resolution	:	2.59 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.13
EDS	:	2.11
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.11

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 2.59 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	$3163\ (2.60-2.60)$
Clashscore	141614	$3518 \ (2.60-2.60)$
Ramachandran outliers	138981	3455(2.60-2.60)
Sidechain outliers	138945	3455(2.60-2.60)
RSRZ outliers	127900	3104 (2.60-2.60)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain			
1	А	203	71%	5%	•	20%
1	В	203	69%	8%	•	19%
1	С	203	69%	7%	•	20%
1	D	203	67%	11%		20%
1	Е	203	72%	5%	•	20%
1	F	203	71%	7%	•	20%

Mol	Chain	Length	Quality of chain			
1	G	203	72%	5%	•	20%
1	Н	203	69%	8%	••	20%
1	Ι	203	% 	7%	•	19%
1	J	203	70%	7%	•	19%
1	K	203	71%	7%	•	20%
1	L	203	70%	7%	•	20%
1	М	203	69%	8%	•	20%
1	Ν	203	67%	9%	••	19%
1	0	203	70%	8%	•	19%
1	Р	203	²⁰ 68%	8%	•	20%
1	Q	203	70%	7%	•	20%
1	R	203	⁹⁰ 69%	9%	•	20%
1	S	203	69%	7%	•	20%
1	Т	203	72%	6%	•	20%
1	U	203	70%	8%	•	19%
1	W	203	72%	6%	•	19%
1	X	203	70%	6%	•	20%
2	V	203	70%	7%	•	20%

$4\mathrm{CMY}$

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 32293 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Δ	169	Total	С	Ν	Ο	S	0	0	0
	A	105	1318	842	220	250	6	0	0	0
1	D	164	Total	С	Ν	Ο	S	0	2	0
	D	104	1335	854	223	251	7	0	2	0
1	C	163	Total	С	Ν	Ο	S	0	0	0
		105	1318	842	220	250	6	0	0	0
1	п	163	Total	С	Ν	Ο	S	0	0	0
L	D	105	1318	842	220	250	6	0	0	0
1	F	163	Total	С	Ν	Ο	S	0	0	0
L	Ľ	105	1318	842	220	250	6	0	0	0
1	F	163	Total	С	Ν	Ο	\mathbf{S}	0	1	0
L T	T,	105	1325	847	222	250	6	0	L	0
1	C	163	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	G	105	1318	842	220	250	6	0	0	0
1	Ц	163	Total	С	Ν	Ο	\mathbf{S}	0	0	0
L	11	105	1318	842	220	250	6		0	0
1	T	164	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	L	104	1323	845	221	251	6		0	0
1	Т	164	Total	С	Ν	Ο	\mathbf{S}	0	1	Ο
	J	104	1330	850	223	251	6	0	T	0
1	K	163	Total	С	Ν	Ο	\mathbf{S}	0	1	Ο
	17	105	1325	847	222	250	6	0	T	0
1	T.	163	Total	С	Ν	Ο	\mathbf{S}	0	1	Ο
	Ľ	105	1325	847	222	250	6	0	T	0
1	М	163	Total	С	Ν	Ο	\mathbf{S}	0	1	Ο
	111	105	1325	847	222	250	6	0	L	0
1	Ν	164	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	1 1	104	1323	845	221	251	6	0	0	0
1	\cap	164	Total	С	Ν	Ο	S	0	1	Ο
		104	1330	850	223	251	6		1	U
1	Р	163	Total	С	Ν	Ο	S	0	1	0
	L	100	1322	845	220	251	6			U

• Molecule 1 is a protein called FERRITIN.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	0	162	Total	С	Ν	Ο	S	0	1	0
	Q	105	1325	847	222	250	6	0	1	0
1	1 P	162	Total	С	Ν	Ο	S	0	0	0
	π	105	1329	850	222	251	6	0	2	0
1	C	169	Total	С	Ν	Ο	S	0	0	0
		102	1313	839	219	249	6	0	0	0
1	T 16	163	Total	С	Ν	Ο	S	0	n	0
	1		1333	852	223	251	7	0	2	0
1	T	164	Total	С	Ν	Ο	\mathbf{S}	0	1	0
L	U	104	1330	850	223	251	6	0	1	0
1	W	164	Total	С	Ν	Ο	S	0	1	0
L	vv	104	1331	850	222	252	7	0	1	0
1	v	V 169	Total	С	Ν	Ο	S	0	1	0
	Λ	100	1325	847	222	250	6	0		U

• Molecule 2 is a protein called FERRITIN.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
2	V	163	Total 1329	$\begin{array}{c} \mathrm{C} \\ 850 \end{array}$	N 222	0 251	S 6	0	1	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
V	145	ASP	ASN	$\operatorname{conflict}$	UNP Q8KBP5

• Molecule 3 is FE (III) ION (three-letter code: FE) (formula: Fe).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	Р	2	Total Fe 2 2	0	0
3	Κ	2	Total Fe 2 2	0	0
3	В	2	Total Fe 2 2	0	0
3	W	2	Total Fe 2 2	0	0
3	Ν	2	Total Fe 2 2	0	0
3	Х	2	Total Fe 2 2	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	S	2	Total Fe 2 2	0	0
3	J	2	Total Fe 2 2	0	0
3	Е	2	Total Fe 2 2	0	0
3	V	2	Total Fe 2 2	0	0
3	А	2	Total Fe 2 2	0	0
3	R	2	Total Fe 2 2	0	0
3	М	2	Total Fe 2 2	0	0
3	D	2	Total Fe 2 2	0	0
3	Ι	2	Total Fe 2 2	0	0
3	U	2	Total Fe 2 2	0	0
3	L	2	Total Fe 2 2	0	0
3	G	2	Total Fe 2 2	0	0
3	Q	2	Total Fe 2 2	0	0
3	Н	2	Total Fe 2 2	0	0
3	С	2	Total Fe 2 2	0	0
3	Т	2	TotalFe22	0	0
3	О	2	TotalFe22	0	0
3	F	2	Total Fe 2 2	0	0

• Molecule 4 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	31	Total O 31 31	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	В	16	Total O 16 16	0	0
4	С	30	Total O 30 30	0	0
4	D	17	Total O 17 17	0	0
4	Е	20	TotalO2020	0	0
4	F	6	Total O 6 6	0	0
4	G	14	Total O 14 14	0	0
4	Н	16	Total O 16 16	0	0
4	Ι	18	Total O 18 18	0	0
4	J	29	Total O 29 29	0	0
4	К	33	Total O 33 33	0	0
4	L	23	TotalO2323	0	0
4	М	10	Total O 10 10	0	0
4	Ν	20	$\begin{array}{cc} \text{Total} & \text{O} \\ 20 & 20 \end{array}$	0	0
4	О	10	Total O 10 10	0	0
4	Р	10	Total O 10 10	0	0
4	Q	11	Total O 11 11	0	0
4	R	13	Total O 13 13	0	0
4	S	17	Total O 17 17	0	0
4	Т	13	Total O 13 13	0	0
4	U	30	$\begin{array}{cc} {\rm Total} & {\rm O} \\ {\rm 30} & {\rm 30} \end{array}$	0	0
4	V	26	TotalO2626	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	W	25	$\begin{array}{cc} \text{Total} & \text{O} \\ 25 & 25 \end{array}$	0	0
4	Х	21	TotalO2121	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: FERRITIN

• Molecule 1: FERRITIN			
Chain E:	72%	5% •	20%
M1 L7 F16 L36 L36 A47 K51 L57 L57 L57 L104	L109 Q118 Q118 R154 R154 R154 R15 R15 R15 R15 R15 R15 R15 R15 R15 R15	GLN GLN PRO PHE PHE LEU	GLN VAL CILY CILY PRO PRO LIYS HIS HIS ASP CILY HIS
ASP GLY LEU HIS HIS HIS CLM HIS SER SER HIS SER HIS SER HIS SER HIS			
• Molecule 1: FERRITIN			
Chain F:	71%	7% •	20%
M1 L7 F16 F16 F26 447 L26 Q26 Q26 D103 L104 L109 L109	8115 Q118 Q118 Q113 A150 A150 A150 A150 A150 A150 A15 A150 A15 A150 A150	GLN CLN PRO PHE PHE	GLIN VAL GILY GILY PRO PRO LLYS HIS HIS GLY HIS
ASP ACP ACP ACP ACP ACP ACP ACP ACP ACP AC			
• Molecule 1: FERRITIN			
Chain G:	72%	5% •	20%
M1 17 16 16 12 18 14 14 16 16 11 16 11 10 4	1100 0118 0118 0118 0118 01133 01133 01133 0113 011	HIS HIS GLN GLN FRO PRO MET	PHE LEU GLN VAL GLY PRO PRO LLYS HIS ALA ALA ALA ALA ALA
GLY ALSP ALSP ALSP ALSP CLIV ALA ALA ALA ALA ALA ALA ALA ALA ALA AL			
• Molecule 1: FERRITIN			
Chain H:	69%	8% ••	20%
M1 L7 F16 F16 F16 M22 M22 M22 M22 M22 M22 M22 M22 M22 M2	D103 1104 1104 1107 1107 1109 1118 1120 1118 1123 1123 1123 1123 1123 1123 1123	H154 V163 LEU HIS HIS	GLU GLU HIS CHU CHU CHU CHU CHU CHU CHU CHU CHU CHU
01.7 ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	STRI MITS		
• Molecule 1: FERRITIN			
Chain I:	70%	7% •	19%
M L1 126 126 126 126 126 126 126 126 126 12	T107 A108 A108 A108 A108 A133 A133 A133 A148 A133 A148 A148 A148 A148 A148 A148 A148 A148	L164 HIS HIS GLU HIS HIS GLN	GLM LYS PRO PHE PHE LLU GLN GLN PRO ALA ALA PRO
LIYS HIS HIS HIS HIS ASP ASP ASP ASP AIS ASP AIS AIS AIS AIS AIS AIS AIS AIS AIS AIS			
• Molecule 1: FERRITIN			

PROTEIN DATA BANK

Chain J:	70%	7% • 19%
M1 L7 L7 L7 F16 M27 M27 M27 M27 M27 M27 L6 M27 L6 L6 L6 L6 L69 L69 L69 L69	D103 L104 T107 A108 A148 C138 C138 C138 C138 C138 C138 C138 C13	HILE PACE PACE PACE PACE PACE PACE PACE PAC
HIS HIS GLY GLY GLY HIS CLBU HIS SIR HIS SIR THIS SIR THIS SIR THIS SIR THIS SIR THIS SIR THIS SIR THIS SIR THIS SIR THIS SIR SIR SIR SIR SIR SIR SIR SIR SIR S		
• Molecule 1: FERRITIN		
Chain K:	71%	7% • 20%
M1 17 17 14 14 125 144 144 125 125 125 125 125 126 126 126 126 126 126 126 126 126 126	1104 1107 1107 1108 1138 1138 1138 1138 1138 1138 1138	HIS HIS HIS HIS HIS HIS HIS HIS HIS HIS
0 CLV CLSC CLSC CLSC CLSC CLSC CLSC CLSC C		
• Molecule 1: FERRITIN		
Chain L:	70%	7% • 20%
M1 17 17 14 14 12 12 14 16 12 15 15 15 15 15 15 15 15 15 15 15 15 15	1286 11003 11004 11004 1100 1100 1100 1100 1	VIGS HIS HIS HIS HIS HIS HIS HIS HIS HIS HI
LIVS HILS ASP ASP ASP ASP ASP ASP ASP ALA ALA ALA ALA ALA ALA ALA ALA ALA AL		
• Molecule 1: FERRITIN		
Chain M:	69%	8% • 20%
M1 L7 L7 L7 L25 R46 R44 R44 R44 R44 R44 R44 R44 R44 R44	L67 L86 L86 L86 L90 L100 L100 L100 L100 L100 L100 L100	0114 1150 1150 1150 1150 1151 1152 1152 1153 1153 1154 1155 1153 1154 1155 1154 1155 1154 1155 1154 1155 1
GLM VAL VAL PRO PRO PRO ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	HIS TTAP CITY CITY CITY HIS	
• Molecule 1: FERRITIN		
Chain N:	67%	9% • 19%
M. L7 F16 F16 H22 H22 H22 H22 H22 H25 K61 K61 L67 L67	F78 F78 F78 F78 F186 F103 F103 F103 F103 F103 F103 F1109 F1109 F1109 F1109 F1109 F1109 F1109 F1109 F1109 F1109 F1108 F10	M151 M151 A151 A151 A151 A154 A156 A166 A166 A166 A166 A166 A166 A166
LYS PRO PRE PRO PRE PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	HIA HIS CUIN SER SER THP SER THP SER HIS CUIY	
• Molecule 1: FERRITIN		
Chain O:	70%	8% • 19%

ASP GLY CLEU HIS ALA ALA HIS SER HIS SER TRP SER HIS SER

• Molecule 1: FERRITIN

HIS ASP GLY GLY GLY CLEU HIS GLN HIS SER SER SER SER SER TRP SER SER HIS

• Molecule 1: FERRITIN

ASP GLY CLEU HIS ALA ALA HIS SER HIS SER HIS SER HIS

• Molecule 1: FERRITIN

HIS ASP GLY GLY ASP ASP GLY HIS GLY HIS SER SER SER HIS SER HIS

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	123.31Å 190.37 Å 242.07 Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
$\mathbf{Baselution} \left(\overset{\circ}{\mathbf{A}} \right)$	103.71 - 2.59	Depositor
	102.14 - 2.59	EDS
$\% { m Data \ completeness}$	$100.0\ (103.71-2.59)$	Depositor
(in resolution range $)$	$100.0 \ (102.14 - 2.59)$	EDS
R_{merge}	0.15	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$2.05 (at 2.58 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.7.0029	Depositor
D D .	0.193 , 0.218	Depositor
$\mathbf{n}, \mathbf{n}_{free}$	0.195 , 0.193	DCC
R_{free} test set	8902 reflections $(5.01%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	37.5	Xtriage
Anisotropy	0.019	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.33 , 26.6	EDS
L-test for $twinning^2$	$ < L >=0.48, < L^2>=0.31$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.94	EDS
Total number of atoms	32293	wwPDB-VP
Average B, all atoms $(Å^2)$	41.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.67% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: FE

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	Bond angles		
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.72	0/1348	0.86	7/1825~(0.4%)	
1	В	0.72	0/1372	0.86	7/1857~(0.4%)	
1	С	0.71	0/1348	0.89	7/1825~(0.4%)	
1	D	0.74	1/1348~(0.1%)	0.86	7/1825~(0.4%)	
1	Е	0.68	0/1348	0.74	3/1825~(0.2%)	
1	F	0.67	0/1359	0.78	4/1840~(0.2%)	
1	G	0.68	0/1348	0.79	6/1825~(0.3%)	
1	Н	0.75	1/1348~(0.1%)	0.98	9/1825~(0.5%)	
1	Ι	0.68	0/1353	0.79	5/1832~(0.3%)	
1	J	0.78	1/1364~(0.1%)	0.82	5/1847~(0.3%)	
1	Κ	0.74	0/1359	0.82	5/1840~(0.3%)	
1	L	0.76	1/1359~(0.1%)	0.82	5/1840~(0.3%)	
1	М	0.74	0/1359	0.84	6/1840~(0.3%)	
1	Ν	0.72	0/1353	0.88	9/1832~(0.5%)	
1	0	0.70	0/1364	0.85	9/1847~(0.5%)	
1	Р	0.74	0/1355	0.87	9/1835~(0.5%)	
1	Q	0.74	0/1359	0.85	5/1840~(0.3%)	
1	R	0.77	2/1366~(0.1%)	0.86	6/1850~(0.3%)	
1	S	0.70	0/1343	0.80	5/1818~(0.3%)	
1	Т	0.71	0/1367	0.80	3/1850~(0.2%)	
1	U	0.79	2/1364~(0.1%)	0.84	5/1847~(0.3%)	
1	W	0.74	0/1361	0.80	4/1842~(0.2%)	
1	Х	0.77	$1/\overline{1359}~(0.1\%)$	0.86	5/1840~(0.3%)	
2	V	0.69	0/1363	0.76	3/1844~(0.2%)	
All	All	0.73	9/32567~(0.0%)	0.84	139/44091~(0.3%)	

All (9) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms		$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
1	R	49	GLU	CD-OE1	-8.10	1.16	1.25
1	J	129	GLU	CD-OE1	-8.02	1.16	1.25

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	Х	51	LYS	CA-CB	6.62	1.68	1.53
1	Н	148	ASP	CA-CB	6.36	1.68	1.53
1	R	49	GLU	CD-OE2	6.14	1.32	1.25
1	D	146	THR	N-CA	6.03	1.58	1.46
1	U	8	ASP	CB-CG	5.35	1.62	1.51
1	U	50	GLU	CD-OE2	5.32	1.31	1.25
1	L	161	LYS	CD-CE	5.20	1.64	1.51

All (139) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	Н	57	LEU	CB-CG-CD1	-16.70	82.61	111.00
1	С	44	ARG	NE-CZ-NH1	12.73	126.66	120.30
1	Х	147	MET	CG-SD-CE	11.50	118.60	100.20
1	Q	147	MET	CG-SD-CE	11.34	118.34	100.20
1	N	160	ARG	NE-CZ-NH1	11.25	125.92	120.30
1	С	44	ARG	NE-CZ-NH2	-10.76	114.92	120.30
1	В	44	ARG	NE-CZ-NH1	10.50	125.55	120.30
1	М	154	ARG	CG-CD-NE	10.36	133.55	111.80
1	Н	154	ARG	NE-CZ-NH1	10.27	125.44	120.30
1	R	144	ILE	CA-CB-CG1	10.15	130.29	111.00
1	А	154	ARG	NE-CZ-NH2	-10.10	115.25	120.30
1	Н	154	ARG	NE-CZ-NH2	-10.09	115.26	120.30
1	Т	147	MET	CG-SD-CE	10.04	116.26	100.20
1	А	154	ARG	NE-CZ-NH1	9.96	125.28	120.30
1	Н	57	LEU	CB-CG-CD2	9.72	127.53	111.00
1	K	154	ARG	NE-CZ-NH1	9.48	125.04	120.30
1	С	1	MET	CB-CG-SD	9.30	140.31	112.40
1	F	1	MET	CG-SD-CE	9.03	114.66	100.20
1	Q	1	MET	CG-SD-CE	9.00	114.60	100.20
1	J	129	GLU	CG-CD-OE2	8.99	136.28	118.30
1	N	1	MET	CB-CG-SD	8.94	139.21	112.40
1	K	154	ARG	NE-CZ-NH2	-8.72	115.94	120.30
1	Р	2	LEU	N-CA-CB	8.45	127.30	110.40
1	0	161	LYS	CD-CE-NZ	8.42	131.07	111.70
1	Н	154	ARG	CG-CD-NE	8.35	129.33	111.80
1	А	154	ARG	CG-CD-NE	8.25	129.12	111.80
1	R	49	GLU	CG-CD-OE2	8.20	134.69	118.30
1	J	147	MET	CG-SD-CE	-8.13	87.19	100.20
1	I	147	MET	CB-CG-SD	8.10	136.71	112.40
1	W	1[A]	MET	CG-SD-CE	7.91	112.85	100.20
1	W	1[B]	MET	CG-SD-CE	7.91	112.85	100.20

<i>a</i> 1	0		
Continued	from	previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	J	129	GLU	CG-CD-OE1	-7.70	102.89	118.30
1	U	8	ASP	CB-CG-OD2	7.68	125.22	118.30
1	Х	51	LYS	CB-CA-C	7.37	125.13	110.40
1	U	86	LEU	CA-CB-CG	7.34	132.17	115.30
1	R	49	GLU	CG-CD-OE1	-7.33	103.63	118.30
1	L	86	LEU	CA-CB-CG	7.32	132.15	115.30
1	D	146	THR	N-CA-CB	7.26	124.10	110.30
1	Р	146[A]	THR	N-CA-CB	-7.26	96.51	110.30
1	Р	146[B]	THR	N-CA-CB	-7.26	96.51	110.30
1	0	110	ARG	CB-CA-C	-7.23	95.95	110.40
1	Ι	86	LEU	CA-CB-CG	7.20	131.87	115.30
1	М	86	LEU	CA-CB-CG	7.13	131.69	115.30
1	К	86	LEU	CA-CB-CG	7.10	131.64	115.30
2	V	86	LEU	CA-CB-CG	7.09	131.61	115.30
1	Р	86	LEU	CA-CB-CG	7.09	131.60	115.30
1	N	160	ARG	NE-CZ-NH2	-7.06	116.77	120.30
1	0	86	LEU	CA-CB-CG	7.04	131.49	115.30
1	N	161	LYS	CB-CG-CD	7.03	129.89	111.60
1	В	86	LEU	CA-CB-CG	6.98	131.36	115.30
1	G	1	MET	CG-SD-CE	6.95	111.32	100.20
1	G	86	LEU	CA-CB-CG	6.94	131.25	115.30
1	Х	86	LEU	CA-CB-CG	6.93	131.24	115.30
1	R	86	LEU	CA-CB-CG	6.92	131.21	115.30
1	U	4	LYS	CD-CE-NZ	-6.90	95.84	111.70
1	Н	86	LEU	CA-CB-CG	6.88	131.12	115.30
1	Т	86	LEU	CA-CB-CG	6.88	131.11	115.30
1	S	86	LEU	CA-CB-CG	6.87	131.09	115.30
1	J	86	LEU	CA-CB-CG	6.86	131.08	115.30
1	Ν	86	LEU	CA-CB-CG	6.86	131.07	115.30
1	W	86	LEU	CA-CB-CG	6.86	131.07	115.30
1	C	86	LEU	CA-CB-CG	$6.8\overline{1}$	130.96	115.30
1	D	86	LEU	CA-CB-CG	6.79	$130.9\overline{3}$	115.30
1	Q	86	LEU	CA-CB-CG	6.77	130.86	115.30
1	F	86	LEU	CA-CB-CG	6.76	130.84	115.30
1	Ε	86	LEU	CA-CB-CG	6.71	130.74	115.30
1	D	145	ASN	N-CA-C	-6.70	92.91	111.00
1	В	44	ARG	NE-CZ-NH2	-6.70	116.95	120.30
1	A	86	LEU	CA-CB-CG	6.68	130.68	115.30
1	0	110	ARG	CA-CB-CG	6.63	$127.9\overline{8}$	113.40
1	D	161	LYS	CB-CG-CD	6.57	128.67	111.60
1	G	146	THR	N-CA-CB	-6.46	98.02	110.30
1	С	146	THR	N-CA-CB	-6.45	98.05	110.30

Conti	Continued from previous page							
\mathbf{Mol}	Chain	\mathbf{Res}	\mathbf{Type}	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$	
1	N	72	GLU	CA-CB-CG	6.29	127.23	113.40	
1	В	146	THR	CA-CB-CG2	-6.27	103.62	112.40	
1	R	9	LYS	CD-CE-NZ	6.20	125.95	111.70	
1	F	121	GLN	CG-CD-OE1	-6.05	109.49	121.60	
1	L	44	ARG	CG-CD-NE	6.05	124.52	111.80	
1	0	150	ARG	NE-CZ-NH1	6.02	123.31	120.30	
1	L	161	LYS	CB-CG-CD	5.98	127.15	111.60	
1	Х	161	LYS	CA-CB-CG	5.93	126.44	113.40	
1	G	146	THR	CA-CB-CG2	5.88	120.63	112.40	
1	Н	121	GLN	CG-CD-OE1	-5.85	109.90	121.60	
1	Р	1	MET	CA-C-O	5.83	132.35	120.10	
1	Ι	109	LEU	CB-CG-CD1	-5.78	101.17	111.00	
1	N	160	ARG	CD-NE-CZ	5.73	131.62	123.60	
1	С	146	THR	CA-CB-CG2	5.72	120.41	112.40	
1	W	57	LEU	CA-CB-CG	5.68	128.38	115.30	
1	М	150	ARG	NE-CZ-NH1	5.57	123.08	120.30	
1	S	109	LEU	CB-CG-CD1	-5.57	101.54	111.00	
1	D	57	LEU	CA-CB-CG	5.56	128.08	115.30	
1	0	110	ARG	N-CA-CB	5.54	120.57	110.60	
1	Т	57	LEU	CA-CB-CG	5.51	127.98	115.30	
2	V	57	LEU	CA-CB-CG	5.48	127.91	115.30	
1	Q	57	LEU	CA-CB-CG	5.48	127.90	115.30	
1	S	34	GLN	CG-CD-OE1	-5.47	110.65	121.60	
1	Н	148	ASP	CB-CA-C	5.47	121.33	110.40	
1	N	57	LEU	CA-CB-CG	5.47	127.87	115.30	
2	V	150	ARG	NE-CZ-NH1	5.47	123.03	120.30	
1	А	146	THR	CA-CB-CG2	5.44	120.02	112.40	
1	0	57	LEU	CA-CB-CG	5.44	127.81	115.30	
1	S	150	ARG	NE-CZ-NH1	5.44	123.02	120.30	
1	R	57	LEU	CA-CB-CG	5.43	127.80	115.30	
1	U	57	LEU	CA-CB-CG	5.43	127.80	115.30	
1	С	57	LEU	CA-CB-CG	5.42	127.77	115.30	
1	М	34	GLN	CG-CD-OE1	-5.42	110.76	121.60	
1	0	154	ARG	NE-CZ-NH1	-5.42	117.59	120.30	
1	Р	146[A]	THR	CA-CB-CG2	5.41	119.98	112.40	
1	Р	146 B	THR	CA-CB-CG2	5.41	119.98	112.40	
1	Ι	57	LEU	CA-CB-CG	5.40	127.73	115.30	
1	Q	146	THR	CA-CB-OG1	5.40	120.34	109.00	
1	Е	150	ARG	NE-CZ-NH1	5.39	123.00	120.30	
1	K	57	LEU	CA-CB-CG	5.38	127.67	115.30	
1	L	57	LEU	CA-CB-CG	5.37	127.66	115.30	
1	D	147	MET	CA-CB-CG	-5.36	104.19	113.30	

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
1	K	161	LYS	CB-CG-CD	5.35	125.51	111.60
1	J	57	LEU	CA-CB-CG	5.35	127.60	115.30
1	L	34	GLN	CG-CD-OE1	-5.34	110.93	121.60
1	Р	150	ARG	NE-CZ-NH1	5.28	122.94	120.30
1	0	161	LYS	CG-CD-CE	5.26	127.68	111.90
1	А	57	LEU	CA-CB-CG	5.25	127.37	115.30
1	В	57	LEU	CA-CB-CG	5.25	127.37	115.30
1	Р	57	LEU	CA-CB-CG	5.23	127.33	115.30
1	U	8	ASP	CB-CG-OD1	-5.20	113.62	118.30
1	N	44	ARG	NE-CZ-NH1	-5.19	117.71	120.30
1	G	44	ARG	NE-CZ-NH2	-5.18	117.71	120.30
1	М	44	ARG	NE-CZ-NH1	-5.15	117.72	120.30
1	В	1[A]	MET	CG-SD-CE	5.14	108.43	100.20
1	В	1[B]	MET	CG-SD-CE	5.14	108.43	100.20
1	Е	57	LEU	CA-CB-CG	5.14	127.12	115.30
1	S	57	LEU	CA-CB-CG	5.12	127.07	115.30
1	Х	51	LYS	CB-CG-CD	5.11	124.87	111.60
1	М	154	ARG	NE-CZ-NH1	5.10	122.85	120.30
1	G	57	LEU	CA-CB-CG	5.09	127.01	115.30
1	Ι	150	ARG	NE-CZ-NH1	5.08	122.84	120.30
1	A	154	ARG	CB-CG-CD	5.07	124.79	111.60
1	D	51	LYS	CB-CG-CD	5.05	124.72	111.60
1	F	150	ARG	NE-CZ-NH1	5.04	122.82	120.30
1	Н	150	ARG	NE-CZ-NH1	5.03	122.82	120.30

Continued from previous page...

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1318	0	1263	10	0
1	В	1335	0	1283	9	0
1	С	1318	0	1263	10	0
1	D	1318	0	1263	14	0
1	Е	1318	0	1263	7	0

4	С	М	Υ
4	C	M	Y

Mol	Chain	Non-H	$\mathbf{H}(\mathbf{model})$	H(added)	Clashes	Symm-Clashes
1	F	1325	0	1270	5	0
1	G	1318	0	1263	7	0
1	H	1318	0	1263	18	0
1	Ι	1323	0	1265	12	0
1	J	1330	0	1272	14	0
1	K	1325	0	1270	10	0
1	L	1325	0	1270	10	0
1	М	1325	0	1270	9	0
1	N	1323	0	1265	18	0
1	0	1330	0	1272	14	0
1	Р	1322	0	1270	14	0
1	Q	1325	0	1270	10	0
1	R	1329	0	1277	8	0
1	S	1313	0	1261	10	0
1	Т	1333	0	1278	7	0
1	U	1330	0	1272	5	0
1	W	1331	0	1275	11	0
1	Х	1325	0	1269	17	0
2	V	1329	0	1279	12	0
3	А	2	0	0	0	0
3	В	2	0	0	0	0
3	С	2	0	0	0	0
3	D	2	0	0	0	0
3	Е	2	0	0	0	0
3	F	2	0	0	0	0
3	G	2	0	0	0	0
3	Н	2	0	0	0	0
3	Ι	2	0	0	0	0
3	J	2	0	0	0	0
3	K	2	0	0	0	0
3	L	2	0	0	0	0
3	M	2	0	0	0	0
3	N	2	0	0	0	0
3	0	2	0	0	0	0
3	Р	2	0	0	0	0
3	Q	2	0	0	0	0
3	R	2	0	0	0	0
3	S	2	0	0	0	0
		2	0	0	0	0
3	U	2	0	0	0	0
3	V	2	0	0	0	0
3	W	2	0	0	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
3	Х	2	0	0	0	0
4	А	31	0	0	4	0
4	В	16	0	0	1	0
4	С	30	0	0	0	0
4	D	17	0	0	3	0
4	Е	20	0	0	0	0
4	F	6	0	0	0	0
4	G	14	0	0	0	0
4	Н	16	0	0	1	0
4	Ι	18	0	0	0	0
4	J	29	0	0	1	0
4	K	33	0	0	3	0
4	L	23	0	0	0	0
4	М	10	0	0	0	0
4	Ν	20	0	0	3	0
4	0	10	0	0	2	0
4	Р	10	0	0	1	0
4	Q	11	0	0	0	0
4	R	13	0	0	0	0
4	S	17	0	0	3	0
4	Т	13	0	0	0	0
4	U	30	0	0	1	0
4	V	26	0	0	1	0
4	W	25	0	0	0	0
4	Х	21	0	0	3	0
All	All	32293	0	30466	196	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

All (196) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:J:48:GLU:OE2	1:X:51:LYS:NZ	1.59	1.33
1:K:51:LYS:HE2	1:L:51:LYS:CE	1.58	1.32
1:K:51:LYS:CE	1:L:51:LYS:HE2	1.62	1.28
1:I:51:LYS:HE2	1:Q:51:LYS:CE	1.70	1.20
1:I:51:LYS:CE	1:Q:51:LYS:HE2	1.70	1.20
2:V:51:LYS:HE2	1:W:51:LYS:CE	1.70	1.19
2:V:51:LYS:CE	1:W:51:LYS:HE2	1.71	1.19
1:D:146:THR:HG22	1:D:149:GLY:H	1.05	1.13

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:X:48:GLU:OE2	1:X:51:LYS:HE3	1.52	1.09
1:C:48:GLU:OE1	1:E:51:LYS:NZ	1.84	1.08
1:H:57:LEU:N	1:H:57:LEU:HD12	1.76	0.98
1:H:57:LEU:H	1:H:57:LEU:HD12	1.30	0.95
1:J:48:GLU:CD	1:X:51:LYS:NZ	2.20	0.94
2:V:51:LYS:HE2	1:W:51:LYS:HE2	0.89	0.89
1:D:146:THR:HG22	1:D:149:GLY:N	1.90	0.85
1:G:51:LYS:HE3	1:T:51:LYS:HE2	1.60	0.83
1:N:51:LYS:HE3	1:O:51:LYS:HE2	1.60	0.83
1:I:51:LYS:HE2	1:Q:51:LYS:HE2	0.83	0.78
1:D:146:THR:CG2	1:D:149:GLY:H	1.93	0.76
1:N:72:GLU:OE1	1:N:72:GLU:N	2.19	0.76
1:R:5[B]:THR:HG21	1:R:111:GLU:OE2	1.87	0.74
1:G:51:LYS:CE	1:T:51:LYS:HE2	2.22	0.70
1:R:5[B]:THR:CG2	1:R:111:GLU:OE2	2.40	0.70
1:J:129:GLU:OE1	1:J:129:GLU:HA	1.92	0.70
1:P:159:VAL:O	1:P:162:SER:O	2.09	0.69
1:H:53:HIS:O	1:H:57:LEU:CD1	2.41	0.69
1:A:153:PHE:CD1	4:A:2031:HOH:O	2.46	0.68
1:S:22:HIS:HD2	4:S:2011:HOH:O	1.76	0.67
1:P:1:MET:O	4:P:2002:HOH:O	2.11	0.67
1:K:51:LYS:CE	1:L:51:LYS:CE	2.44	0.67
1:N:51:LYS:CE	1:O:51:LYS:HE2	2.24	0.67
2:V:81:LYS:HG3	2:V:85:GLU:OE1	1.94	0.67
1:J:48:GLU:OE1	1:X:51:LYS:NZ	2.27	0.67
1:P:146[A]:THR:HG22	1:P:149:GLY:H	1.60	0.66
1:D:69:LEU:HA	1:F:26:GLN:HE22	1.62	0.64
1:H:57:LEU:CD1	1:H:123:TYR:OH	2.46	0.64
1:G:146:THR:HG22	1:G:149:GLY:H	1.62	0.64
1:A:153:PHE:CE1	4:A:2031:HOH:O	2.50	0.64
1:J:48:GLU:CD	1:X:51:LYS:HZ3	1.97	0.64
1:C:146:THR:HG22	1:C:149:GLY:H	1.62	0.64
1:L:103:ASP:O	1:L:107:THR:HG23	1.98	0.64
1:D:143:ILE:O	1:D:146:THR:HB	1.98	0.64
1:C:103:ASP:O	1:C:107:THR:HG23	1.98	0.63
1:H:57:LEU:HD11	1:H:123:TYR:OH	1.98	0.63
1:K:51:LYS:HE2	1:L:51:LYS:HE2	0.73	0.63
1:I:103:ASP:O	1:I:107:THR:HG23	1.99	0.63
1:N:154:ARG:HG2	1:P:154:ARG:HH22	1.64	0.62
1:H:103:ASP:O	1:H:107:THR:HG23	2.00	0.62
1:M:103:ASP:O	1:M:107:THR:HG23	1.99	0.62

Atom 1	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:103:ASP:O	1:A:107:THR:HG23	2.00	0.62	
1:J:103:ASP:O	1:J:107:THR:HG23	2.00	0.62	
1:K:103:ASP:O	1:K:107:THR:HG23	2.00	0.61	
1:O:139[B]:HIS:HE1	4:O:2010:HOH:O	1.82	0.61	
1:N:103:ASP:O	1:N:107:THR:HG23	2.00	0.61	
1:O:103:ASP:O	1:O:107:THR:HG23	2.01	0.60	
1:B:103:ASP:O	1:B:107:THR:HG23	2.00	0.60	
4:N:2006:HOH:O	1:P:139:HIS:HB3	2.00	0.60	
1:F:103:ASP:O	1:F:107:THR:HG23	2.01	0.60	
1:Q:103:ASP:O	1:Q:107:THR:HG23	2.01	0.60	
1:W:103:ASP:O	1:W:107:THR:HG23	2.01	0.60	
1:X:103:ASP:O	1:X:107:THR:HG23	2.01	0.60	
1:S:103:ASP:O	1:S:107:THR:HG23	2.01	0.60	
1:H:57:LEU:H	1:H:57:LEU:CD1	2.11	0.59	
2:V:44:ARG:NH1	1:W:59:ASP:OD1	2.28	0.59	
1:H:154:ARG:HD3	4:K:2032:HOH:O	2.01	0.59	
1:W:154:ARG:NH2	1:X:154:ARG:HG2	2.17	0.59	
1:I:69:LEU:HA	1:Q:26:GLN:HE22	1.66	0.59	
1:H:69:LEU:HA	1:P:26:GLN:HE22	1.67	0.58	
2:V:103:ASP:O	2:V:107:THR:HG23	2.03	0.58	
1:H:51:LYS:NZ	1:P:51:LYS:HD3	2.19	0.57	
1:J:69:LEU:HA	1:X:26:GLN:HE22	1.68	0.57	
1:C:48:GLU:CD	1:E:51:LYS:NZ	2.59	0.56	
1:A:51:LYS:NZ	1:M:48:GLU:OE1	2.33	0.56	
1:S:48:GLU:OE1	1:U:51:LYS:NZ	2.35	0.56	
1:B:163:VAL:O	1:B:164:LEU:CB	2.53	0.55	
2:V:81:LYS:CG	2:V:85:GLU:OE1	2.56	0.54	
1:N:59:ASP:OD1	1:O:44:ARG:NH1	2.29	0.54	
1:D:152:LEU:HB3	1:E:36:LEU:HD21	1.90	0.53	
1:H:148:ASP:N	1:H:148:ASP:OD1	2.41	0.53	
1:J:129:GLU:CA	1:J:129:GLU:OE1	2.56	0.52	
1:N:163:VAL:O	1:N:164:LEU:CB	2.56	0.52	
1:N:22:HIS:HD2	4:N:2015:HOH:O	1.92	0.52	
1:G:154:ARG:HH22	1:O:154:ARG:HG2	1.75	0.51	
1:P:1:MET:O	1:P:2:LEU:CB	2.59	0.51	
1:A:22:HIS:HD2	4:A:2018:HOH:O	1.93	0.51	
4:H:2010:HOH:O	1:P:22:HIS:HD2	1.94	0.50	
1:J:1:MET:N	4:J:2001:HOH:O	2.39	0.50	
1:D:150:ARG:NH1	1:N:151:ALA:HA	2.24	0.50	
1:E:147:MET:HA	1:E:150:ARG:NH1	2.27	0.50	
1:G:51:LYS:NZ	1:T:51:LYS:HE2	2.26	0.49	

	Atom D	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:J:154:ARG:HH22	1:M:154:ARG:HG2	1.77	0.49
1:P:1:MET:O	1:P:2:LEU:HB2	2.12	0.49
1:I:51:LYS:CE	1:Q:51:LYS:CE	2.54	0.49
2:V:51:LYS:CE	1:W:51:LYS:CE	2.53	0.49
1:X:147:MET:HG3	4:X:2020:HOH:O	2.13	0.49
1:N:103:ASP:O	1:N:107:THR:CG2	2.62	0.48
1:G:51:LYS:NZ	1:T:51:LYS:CE	2.76	0.48
1:D:142:ARG:O	1:D:145:ASN:O	2.32	0.48
1:C:103:ASP:O	1:C:107:THR:CG2	2.62	0.48
1:I:1:MET:HA	1:I:1:MET:HE2	1.95	0.47
1:T:157:GLU:O	1:T:161:LYS:HG3	2.14	0.47
1:F:103:ASP:O	1:F:107:THR:CG2	2.63	0.47
1:L:103:ASP:O	1:L:107:THR:CG2	2.62	0.47
1:I:103:ASP:O	1:I:107:THR:CG2	2.63	0.47
1:K:103:ASP:O	1:K:107:THR:CG2	2.63	0.47
1:S:154:ARG:HG2	1:X:154:ARG:HH22	1.80	0.47
1:W:103:ASP:O	1:W:107:THR:CG2	2.62	0.47
1:B:146:THR:HG23	1:B:149:GLY:H	1.79	0.47
1:H:53:HIS:O	1:H:57:LEU:HD13	2.15	0.47
1:I:154:ARG:HG2	1:T:154:ARG:NH2	2.30	0.47
1:J:103:ASP:O	1:J:107:THR:CG2	2.63	0.47
1:X:139[B]:HIS:CE1	4:X:2017:HOH:O	2.68	0.46
1:H:103:ASP:O	1:H:107:THR:CG2	2.62	0.46
1:S:103:ASP:O	1:S:107:THR:CG2	2.63	0.46
1:U:1:MET:HA	1:U:1:MET:HE2	1.96	0.46
1:H:57:LEU:HD11	1:H:123:TYR:CZ	2.49	0.46
1:Q:103:ASP:O	1:Q:107:THR:CG2	2.64	0.46
1:N:25:LEU:HD13	1:N:47:ALA:CB	2.46	0.46
1:X:103:ASP:O	1:X:107:THR:CG2	2.64	0.46
2:V:103:ASP:O	2:V:107:THR:CG2	2.64	0.46
2:V:25:LEU:HD13	2:V:47:ALA:CB	2.45	0.46
1:D:49:GLU:OE1	4:D:2006:HOH:O	2.21	0.46
1:H:57:LEU:HD12	1:H:123:TYR:OH	2.13	0.46
1:O:25:LEU:HD13	1:0:47:ALA:CB	2.45	0.46
1:L:25:LEU:HD13	1:L:47:ALA:CB	2.46	0.46
1:O:103:ASP:O	1:O:107:THR:CG2	2.63	0.45
1:S:110:ARG:NH2	4:S:2015:HOH:O	2.49	0.45
1:J:25:LEU:HD13	1:J:47:ALA:CB	2.46	0.45
1:R:25:LEU:HD13	1:R:47:ALA:CB	2.46	0.45
1:S:109:LEU:HD22	1:S:117:PHE:CE1	2.51	0.45
1:D:25:LEU:HD13	1:D:47:ALA:CB	2.47	0.45

Atom-1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:78:PRO:HG2	1:R:67:LEU:HD21	1.99	0.45
1:B:103:ASP:O	1:B:107:THR:CG2	2.63	0.45
1:B:25:LEU:HD13	1:B:47:ALA:CB	2.46	0.45
1:I:25:LEU:HD13	1:I:47:ALA:CB	2.47	0.45
1:M:103:ASP:O	1:M:107:THR:CG2	2.63	0.45
1:M:25:LEU:HD13	1:M:47:ALA:CB	2.47	0.45
1:A:44:ARG:NH2	1:M:59:ASP:OD2	2.48	0.45
1:O:139[B]:HIS:CE1	4:O:2010:HOH:O	2.64	0.45
1:S:25:LEU:HD13	1:S:47:ALA:CB	2.47	0.45
1:A:103:ASP:O	1:A:107:THR:CG2	2.63	0.45
1:A:25:LEU:HD13	1:A:47:ALA:CB	2.46	0.45
1:B:21:ALA:CB	1:B:51:LYS:HE2	2.47	0.45
1:K:139[A]:HIS:CD2	4:K:2031:HOH:O	2.70	0.45
1:D:126:GLU:OE2	4:D:2006:HOH:O	2.21	0.44
1:B:22:HIS:HD2	4:B:2010:HOH:O	2.01	0.44
1:C:25:LEU:HD13	1:C:47:ALA:CB	2.48	0.44
1:Q:25:LEU:HD13	1:Q:47:ALA:CB	2.48	0.44
1:P:25:LEU:HD13	1:P:47:ALA:CB	2.47	0.44
1:U:25:LEU:HD13	1:U:47:ALA:CB	2.47	0.44
1:T:25:LEU:HD13	1:T:47:ALA:CB	2.48	0.44
1:C:35:SER:OG	1:L:139[B]:HIS:CD2	2.71	0.44
1:X:139[B]:HIS:HE1	4:X:2017:HOH:O	1.99	0.44
1:E:25:LEU:HD13	1:E:47:ALA:CB	2.48	0.43
1:A:153:PHE:HB3	1:O:154:ARG:NH1	2.33	0.43
1:G:25:LEU:HD13	1:G:47:ALA:CB	2.47	0.43
1:N:67:LEU:HD21	1:0:78:PRO:HG2	1.99	0.43
1:S:44:ARG:NH2	1:U:59:ASP:OD2	2.51	0.43
1:K:25:LEU:HD13	1:K:47:ALA:CB	2.47	0.43
1:X:25:LEU:HD13	1:X:47:ALA:CB	2.48	0.43
1:H:51:LYS:HZ3	1:P:48:GLU:CD	2.22	0.43
1:R:5[B]:THR:HG22	1:R:111:GLU:OE2	2.16	0.43
1:X:161:LYS:HB2	1:X:161:LYS:HE2	1.80	0.43
1:W:25:LEU:HD13	1:W:47:ALA:CB	2.48	0.43
1:F:25:LEU:HD13	1:F:47:ALA:CB	2.49	0.42
1:N:1:MET:N	4:N:2001:HOH:O	2.43	0.42
1:H:25:LEU:HD13	1:H:47:ALA:CB	2.49	0.42
1:I:109:LEU:HD22	1:I:117:PHE:CE1	2.54	0.42
1:R:140:LYS:O	1:R:144:ILE:HG12	2.20	0.42
1:S:139:HIS:HB2	4:S:2017:HOH:O	2.19	0.42
1:C:59:ASP:OD2	1:E:44:ARG:NH2	2.53	0.42
1:K:44:ARG:NH2	1:L:59:ASP:OD2	2.52	0.42

Atom 1	Atom 2	Interatomic	Clash
	Atom-2	distance (Å)	overlap (Å)
1:N:51:LYS:NZ	1:O:51:LYS:CE	2.83	0.42
1:K:67:LEU:HD21	1:L:78:PRO:HG2	2.02	0.42
1:W:154:ARG:HH21	1:X:154:ARG:HG2	1.83	0.42
1:C:124:VAL:CG1	1:R:115:SER:HA	2.50	0.41
1:A:78:PRO:HG2	1:M:67:LEU:HD21	2.02	0.41
1:D:99:GLN:HG2	4:D:2010:HOH:O	2.20	0.41
4:A:2016:HOH:O	1:M:22:HIS:HD2	2.03	0.41
1:H:154:ARG:CD	4:K:2032:HOH:O	2.65	0.41
1:E:154:ARG:HH22	1:P:154:ARG:HG2	1.85	0.41
1:D:154:ARG:HG2	1:N:154:ARG:HH22	1.86	0.41
1:N:78:PRO:HG2	1:O:67:LEU:HD21	2.03	0.41
1:Q:27:MET:SD	1:Q:86:LEU:HD13	2.61	0.41
2:V:1:MET:N	4:V:2001:HOH:O	2.46	0.41
1:F:115:SER:HA	1:N:124:VAL:CG1	2.51	0.40
1:J:27:MET:SD	1:J:86:LEU:HD13	2.61	0.40
2:V:59:ASP:OD1	1:W:44:ARG:NH1	2.38	0.40
1:I:59:ASP:OD2	1:Q:44:ARG:NH2	2.54	0.40
1:N:51:LYS:HE3	1:O:51:LYS:CE	2.40	0.40
1:J:44:ARG:NH2	1:X:59:ASP:OD2	2.55	0.40
1:B:154:ARG:HG2	1:C:154:ARG:HH22	1.86	0.40
1:D:27:MET:SD	1:D:86:LEU:HD13	2.62	0.40
1:M:124:VAL:CG1	1:P:115:SER:HA	2.52	0.40
1:R:5[B]:THR:CG2	1:R:6:ILE:N	2.83	0.40
1:U:9:LYS:HE2	4:U:2005:HOH:O	2.22	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	161/203~(79%)	160~(99%)	1 (1%)	0	100 100

4	С	М	Υ

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percen	itiles
1	В	163/203~(80%)	161~(99%)	2~(1%)	0	100	100
1	С	161/203~(79%)	161~(100%)	0	0	100	100
1	D	161/203~(79%)	160~(99%)	0	1 (1%)	25	47
1	Ε	161/203~(79%)	161~(100%)	0	0	100	100
1	F	162/203~(80%)	162~(100%)	0	0	100	100
1	G	161/203~(79%)	161~(100%)	0	0	100	100
1	Н	161/203~(79%)	161~(100%)	0	0	100	100
1	Ι	162/203~(80%)	160~(99%)	1 (1%)	1 (1%)	25	47
1	J	163/203~(80%)	161~(99%)	1 (1%)	1 (1%)	25	47
1	K	162/203~(80%)	162~(100%)	0	0	100	100
1	L	162/203~(80%)	161~(99%)	1 (1%)	0	100	100
1	М	162/203~(80%)	162~(100%)	0	0	100	100
1	Ν	162/203~(80%)	161~(99%)	1 (1%)	0	100	100
1	О	163/203~(80%)	162~(99%)	0	1 (1%)	25	47
1	Р	162/203~(80%)	161~(99%)	0	1 (1%)	25	47
1	Q	162/203~(80%)	162~(100%)	0	0	100	100
1	R	163/203~(80%)	163~(100%)	0	0	100	100
1	S	160/203~(79%)	160~(100%)	0	0	100	100
1	Т	162/203~(80%)	162~(100%)	0	0	100	100
1	U	163/203~(80%)	161~(99%)	1 (1%)	1 (1%)	25	47
1	W	162/203~(80%)	160~(99%)	1 (1%)	1 (1%)	25	47
1	Х	162/203~(80%)	162~(100%)	0	0	100	100
2	V	162/203~(80%)	$161 \ (99\%)$	1 (1%)	0	100	100
All	All	3885/4872 (80%)	$3\overline{868}$ (100%)	$10 \ (0\%)$	7 (0%)	47	71

All (7) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	D	146	THR
1	Р	2	LEU
1	Ι	163	VAL
1	J	163	VAL
1	0	163	VAL
1	W	163	VAL

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type
1	U	163	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	137/175~(78%)	123~(90%)	14 (10%)	7	14
1	В	139/175~(79%)	127~(91%)	12 (9%)	10	20
1	С	137/175~(78%)	124 (90%)	13 (10%)	8	16
1	D	137/175~(78%)	124~(90%)	13 (10%)	8	16
1	Е	137/175~(78%)	126~(92%)	11 (8%)	12	24
1	F	138/175~(79%)	127~(92%)	11 (8%)	12	24
1	G	137/175~(78%)	125~(91%)	12 (9%)	10	19
1	Η	137/175~(78%)	124 (90%)	13 (10%)	8	16
1	Ι	137/175~(78%)	124 (90%)	13 (10%)	8	16
1	J	138/175~(79%)	127~(92%)	11 (8%)	12	24
1	K	138/175~(79%)	126 (91%)	12 (9%)	10	20
1	L	138/175~(79%)	125~(91%)	13 (9%)	8	17
1	М	138/175~(79%)	124 (90%)	14 (10%)	7	14
1	Ν	137/175~(78%)	121 (88%)	16 (12%)	5	10
1	Ο	138/175~(79%)	127~(92%)	11 (8%)	12	24
1	Р	138/175~(79%)	127~(92%)	11 (8%)	12	24
1	Q	138/175~(79%)	126 (91%)	12 (9%)	10	20
1	R	139/175~(79%)	127 (91%)	12 (9%)	10	20
1	S	137/175~(78%)	124 (90%)	13 (10%)	8	16
1	Т	139/175~(79%)	128 (92%)	11 (8%)	12	24
1	U	138/175~(79%)	124 (90%)	14 (10%)	7	14
1	W	138/175~(79%)	127 (92%)	11 (8%)	12	24
1	X	138/175~(79%)	126 (91%)	12 (9%)	10	20

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
2	V	139/175~(79%)	126~(91%)	13 (9%)	8 17
All	All	3307/4200 (79%)	3009 (91%)	298 (9%)	9 18

All (298) residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	7	LEU
1	А	16	PHE
1	А	22	HIS
1	А	25	LEU
1	А	51	LYS
1	А	57	LEU
1	А	86	LEU
1	А	104	LEU
1	А	107	THR
1	А	109	LEU
1	А	118	GLN
1	А	138	LEU
1	А	146	THR
1	А	154	ARG
1	В	7	LEU
1	В	16	PHE
1	В	22	HIS
1	В	25	LEU
1	В	57	LEU
1	В	86	LEU
1	В	104	LEU
1	В	107	THR
1	В	109	LEU
1	В	118	GLN
1	В	138	LEU
1	В	154	ARG
1	С	1	MET
1	С	7	LEU
1	С	16	PHE
1	С	25	LEU
1	С	57	LEU
1	С	86	LEU
1	С	104	LEU
1	С	107	THR
1	С	109	LEU
1	С	118	GLN

Mol	Chain	Res	Type
1	С	138	LEU
1	С	139	HIS
1	С	154	ARG
1	D	7	LEU
1	D	16	PHE
1	D	22	HIS
1	D	25	LEU
1	D	57	LEU
1	D	86	LEU
1	D	104	LEU
1	D	109	LEU
1	D	118	GLN
1	D	138	LEU
1	D	139	HIS
1	D	145	ASN
1	D	154	ARG
1	Е	7	LEU
1	Е	16	PHE
1	Е	25	LEU
1	Е	57	LEU
1	Е	86	LEU
1	Е	104	LEU
1	Е	109	LEU
1	Е	118	GLN
1	Е	138	LEU
1	Е	150	ARG
1	Е	154	ARG
1	F	7	LEU
1	F	16	PHE
1	F	22	HIS
1	F	25	LEU
1	F	86	LEU
1	F	104	LEU
1	F	107	THR
1	F	109	LEU
1	F	118	GLN
1	F	138	LEU
1	F	154	ARG
1	G	7	LEU
1	G	16	PHE
1	G	22	HIS
1	G	25	LEU

Mol	Chain	\mathbf{Res}	Type
1	G	51	LYS
1	G	57	LEU
1	G	86	LEU
1	G	104	LEU
1	G	109	LEU
1	G	118	GLN
1	G	138	LEU
1	G	154	ARG
1	Н	1	MET
1	Н	7	LEU
1	Н	16	PHE
1	Н	22	HIS
1	Н	25	LEU
1	Н	86	LEU
1	Н	104	LEU
1	Н	107	THR
1	Н	109	LEU
1	Н	118	GLN
1	Н	138	LEU
1	Н	148	ASP
1	Н	154	ARG
1	Ι	7	LEU
1	Ι	16	PHE
1	Ι	25	LEU
1	Ι	57	LEU
1	Ι	86	LEU
1	Ι	104	LEU
1	Ι	107	THR
1	Ι	109	LEU
1	Ι	118	GLN
1	Ι	138	LEU
1	Ι	139	HIS
1	Ι	147	MET
1	Ι	154	ARG
1	J	7	LEU
1	J	16	PHE
1	J	25	LEU
1	J	57	LEU
1	J	86	LEU
1	J	104	LEU
1	J	107	THR
1	J	109	LEU

Mol	Chain	Res	Type
1	J	118	GLN
1	J	138	LEU
1	J	154	ARG
1	Κ	1	MET
1	K	7	LEU
1	K	16	PHE
1	Κ	25	LEU
1	Κ	57	LEU
1	Κ	86	LEU
1	Κ	104	LEU
1	Κ	107	THR
1	Κ	109	LEU
1	K	118	GLN
1	K	138	LEU
1	Κ	154	ARG
1	L	7	LEU
1	L	16	PHE
1	L	25	LEU
1	L	57	LEU
1	L	86	LEU
1	L	104	LEU
1	L	107	THR
1	L	109	LEU
1	L	118	GLN
1	L	138	LEU
1	L	139[A]	HIS
1	L	139[B]	HIS
1	L	154	ARG
1	M	7	LEU
1	M	16	PHE
1	M	22	HIS
1	M	25	LEU
1	M	57	LEU
1	M	86	LEU
1	M	104	LEU
1	M	107	THR
1	M	109	LEU
1	M	118	GLN
	M	138	LEU
1	M	139[A]	HIS
1	M	139[B]	HIS
1	M	154	ARG

Mol	Chain	Res	Type
1	N	1	MET
1	N	7	LEU
1	N	16	PHE
1	N	22	HIS
1	N	25	LEU
1	N	51	LYS
1	N	57	LEU
1	N	72	GLU
1	N	86	LEU
1	N	104	LEU
1	N	107	THR
1	N	109	LEU
1	N	118	GLN
1	N	138	LEU
1	N	139	HIS
1	N	154	ARG
1	0	7	LEU
1	0	16	PHE
1	0	25	LEU
1	0	57	LEU
1	0	86	LEU
1	0	104	LEU
1	0	107	THR
1	0	109	LEU
1	0	118	GLN
1	0	138	LEU
1	0	154	ARG
1	Р	7	LEU
1	Р	16	PHE
1	Р	22	HIS
1	P	25	LEU
1	Р	57	LEU
1	P	86	LEU
1	P	104	LEU
1	P	109	LEU
1	Р	118	GLN
1	P	138	LEU
1	Р	154	ARG
1	Q	7	LEU
1	Q	16	PHE
1	Q	25	LEU
1	Q	57	LEU

\mathbf{Mol}	Chain	\mathbf{Res}	Type
1	Q	86	LEU
1	Q	104	LEU
1	Q	107	THR
1	Q	109	LEU
1	Q	118	GLN
1	Q	138	LEU
1	Q	146	THR
1	Q	154	ARG
1	R	7	LEU
1	R	16	PHE
1	R	22	HIS
1	R	25	LEU
1	R	51	LYS
1	R	57	LEU
1	R	86	LEU
1	R	104	LEU
1	R	109	LEU
1	R	118	GLN
1	R	138	LEU
1	R	154	ARG
1	S	7	LEU
1	S	16	PHE
1	S	22	HIS
1	S	25	LEU
1	S	57	LEU
1	S	86	LEU
1	S	104	LEU
1	S	107	THR
1	S	109	LEU
1	S	118	GLN
1	S	138	LEU
1	S	147	MET
1	S	154	ARG
1	Т	7	LEU
1	Т	16	PHE
1	Т	22	HIS
1	Т	25	LEU
1	Т	57	LEU
1	Т	86	LEU
1	Т	104	LEU
1	Т	109	LEU
1	Т	118	GLN

Mol	Chain	Res	Type
1	Т	138	LEU
1	Т	154	ARG
1	U	7	LEU
1	U	16	PHE
1	U	25	LEU
1	U	51	LYS
1	U	57	LEU
1	U	86	LEU
1	U	99	GLN
1	U	104	LEU
1	U	109	LEU
1	U	118	GLN
1	U	138	LEU
1	U	139[A]	HIS
1	U	139[B]	HIS
1	U	154	ARG
2	V	1	MET
2	V	7	LEU
2	V	16	PHE
2	V	25	LEU
2	V	57	LEU
2	V	81	LYS
2	V	86	LEU
2	V	104	LEU
2	V	107	THR
2	V	109	LEU
2	V	118	GLN
2	V	138	LEU
2	V	154	ARG
1	W	7	LEU
1	W	16	PHE
1	W	25	LEU
1	W	57	LEU
1	W	86	LEU
1	W	104	LEU
1	W	107	THR
1	W	109	LEU
1	W	118	GLN
1	W	138	LEU
1	W	154	ARG
1	Х	7	LEU
1	Х	16	PHE

Mol	Chain	Res	Type
1	Х	25	LEU
1	Х	51	LYS
1	Х	57	LEU
1	Х	86	LEU
1	Х	104	LEU
1	Х	107	THR
1	Х	109	LEU
1	Х	118	GLN
1	Х	138	LEU
1	Х	154	ARG

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (72) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	15	ASN
1	А	102	ASN
1	А	139	HIS
1	В	15	ASN
1	В	99	GLN
1	В	102	ASN
1	С	15	ASN
1	С	102	ASN
1	D	15	ASN
1	D	102	ASN
1	D	127	GLN
1	Е	15	ASN
1	Е	102	ASN
1	Е	139	HIS
1	F	15	ASN
1	F	26	GLN
1	F	102	ASN
1	F	118	GLN
1	F	121	GLN
1	G	15	ASN
1	G	102	ASN
1	G	139	HIS
1	Н	15	ASN
1	Н	102	ASN
1	Н	121	GLN
1	Н	127	GLN
1	Ι	15	ASN
1	Ι	102	ASN

Mol	Chain	Res	Type
1	Ι	127	GLN
1	J	15	ASN
1	J	99	GLN
1	J	102	ASN
1	J	127	GLN
1	K	15	ASN
1	K	102	ASN
1	L	15	ASN
1	L	102	ASN
1	М	15	ASN
1	М	102	ASN
1	М	118	GLN
1	N	15	ASN
1	N	22	HIS
1	N	102	ASN
1	0	15	ASN
1	0	102	ASN
1	Р	15	ASN
1	Р	26	GLN
1	Р	102	ASN
1	Р	118	GLN
1	Q	15	ASN
1	Q	26	GLN
1	Q	102	ASN
1	Q	127	GLN
1	R	15	ASN
1	R	102	ASN
1	S	15	ASN
1	S	22	HIS
1	S	102	ASN
1	S	139	HIS
1	Т	15	ASN
1	Т	102	ASN
1	U	15	ASN
1	U	102	ASN
2	V	15	ASN
2	V	99	GLN
2	V	102	ASN
1	W	15	ASN
1	W	102	ASN
1	W	139	HIS
1	X	15	ASN

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type
1	Х	26	GLN
1	Х	102	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no carbohydrates in this entry.

5.6 Ligand geometry (i)

Of 48 ligands modelled in this entry, 48 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$<$ RSRZ $>$	$\# RSRZ {>}2$	$\mathbf{OWAB}(\mathrm{\AA}^2)$	Q < 0.9
1	А	163/203~(80%)	0.07	0 100 100	24, 33, 61, 79	0
1	В	164/203~(80%)	0.08	1 (0%) 89 88	27, 40, 69, 84	1 (0%)
1	С	163/203~(80%)	-0.05	0 100 100	26, 40, 67, 84	0
1	D	163/203~(80%)	0.14	2 (1%) 79 76	30, 41, 70, 96	0
1	Ε	163/203~(80%)	0.08	0 100 100	25, 38, 70, 94	0
1	F	163/203~(80%)	0.10	0 100 100	29, 43, 68, 84	0
1	G	163/203~(80%)	0.08	1 (0%) 89 88	31, 42, 70, 86	0
1	Η	163/203~(80%)	-0.04	1 (0%) 89 88	27, 40, 71, 94	0
1	Ι	164/203~(80%)	0.03	2 (1%) 79 76	28, 41, 71, 98	0
1	J	164/203~(80%)	0.00	1 (0%) 89 88	22, 33, 59, 79	1 (0%)
1	K	163/203~(80%)	0.06	0 100 100	22, 32, 59, 87	0
1	L	163/203~(80%)	0.02	0 100 100	22, 34, 65, 82	0
1	М	163/203~(80%)	0.17	2 (1%) 79 76	25, 39, 66, 99	0
1	Ν	164/203~(80%)	0.09	2 (1%) 79 76	29, 43, 74, 91	0
1	Ο	164/203~(80%)	0.06	1 (0%) 89 88	29, 42, 71, 85	0
1	Р	163/203~(80%)	0.03	3 (1%) 68 64	29, 43, 77, 96	0
1	Q	163/203~(80%)	0.26	2 (1%) 79 76	26, 38, 66, 78	0
1	R	163/203~(80%)	0.18	3 (1%) 68 64	25, 39, 71, 94	0
1	S	162/203~(79%)	-0.05	1 (0%) 89 88	24, 38, 65, 88	0
1	Т	163/203~(80%)	-0.00	0 100 100	28,37,62,93	0
1	U	164/203~(80%)	0.06	2 (1%) 79 76	20, 33, 65, 83	0
1	W	164/203~(80%)	0.01	1 (0%) 89 88	23, 32, 62, 77	0
1	X	163/203~(80%)	-0.05	0 100 100	22,33,65,87	0
2	V	163/203~(80%)	0.03	0 100 100	24, 36, 69, 92	0

Mol	Chain	Analysed	$<$ RSRZ $>$	#RSRZ >2	$OWAB(Å^2)$	Q<0.9
All	All	3918/4872~(80%)	0.06	25 (0%) 89 88	20, 39, 69, 99	2 (0%)

All (25) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	R	148	ASP	4.0
1	М	147	MET	3.7
1	R	152	LEU	3.4
1	Н	147	MET	3.4
1	Ι	148	ASP	3.4
1	М	148	ASP	3.3
1	В	161	LYS	3.2
1	Ν	154	ARG	3.2
1	Ι	147	MET	3.0
1	D	145	ASN	2.9
1	N	147	MET	2.9
1	R	147	MET	2.8
1	0	164	LEU	2.8
1	Q	152	LEU	2.5
1	U	164	LEU	2.5
1	Р	147	MET	2.5
1	Р	144	ILE	2.3
1	Q	125	ALA	2.3
1	U	147	MET	2.2
1	S	157	GLU	2.2
1	D	147	MET	2.2
1	Р	146[A]	THR	2.1
1	G	157	GLU	2.1
1	W	162	SER	2.1
1	J	153	PHE	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no carbohydrates in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	${f B}$ -factors(Å ²)	Q<0.9
3	FE	0	1166	1/1	0.98	0.16	34,34,34,34	0
3	FE	V	1164	1/1	0.98	0.17	37,37,37,37	0
3	FE	Ι	1165	1/1	0.98	0.13	38,38,38,38	0
3	FE	D	1165	1/1	0.99	0.14	38,38,38,38	0
3	FE	U	1165	1/1	0.99	0.17	26, 26, 26, 26, 26	0
3	FE	В	1165	1/1	0.99	0.14	$39,\!39,\!39,\!39,\!39$	0
3	FE	G	1164	1/1	0.99	0.14	$34,\!34,\!34,\!34$	0
3	FE	Т	1165	1/1	0.99	0.14	$39,\!39,\!39,\!39,\!39$	0
3	FE	А	1165	1/1	0.99	0.14	$35,\!35,\!35,\!35$	0
3	FE	L	1165	1/1	0.99	0.17	$25,\!25,\!25,\!25$	0
3	FE	Р	1164	1/1	0.99	0.16	32,32,32,32	0
3	FE	S	1163	1/1	0.99	0.14	$36,\!36,\!36,\!36$	0
3	FE	Н	1165	1/1	0.99	0.14	$39,\!39,\!39,\!39,\!39$	0
3	FE	J	1165	1/1	0.99	0.15	$31,\!31,\!31,\!31$	0
3	FE	F	1165	1/1	0.99	0.12	$42,\!42,\!42,\!42$	0
3	FE	L	1164	1/1	0.99	0.17	$34,\!34,\!34,\!34$	0
3	FE	Q	1165	1/1	0.99	0.12	28, 28, 28, 28, 28	0
3	FE	Е	1164	1/1	0.99	0.14	$35,\!35,\!35,\!35$	0
3	FE	Х	1164	1/1	0.99	0.17	21,21,21,21	0
3	FE	D	1164	1/1	0.99	0.15	29, 29, 29, 29, 29	0
3	FE	А	1164	1/1	0.99	0.15	$27,\!27,\!27,\!27$	0
3	FE	W	1165	1/1	0.99	0.18	$22,\!22,\!22,\!22$	0
3	FE	V	1165	1/1	0.99	0.16	32,32,32,32	0
3	FE	Е	1165	1/1	0.99	0.14	$30,\!30,\!30,\!30$	0
3	FE	R	1164	1/1	0.99	0.17	$32,\!32,\!32,\!32$	0
3	FE	М	1164	1/1	0.99	0.12	$38,\!38,\!38,\!38,\!38$	0
3	FE	K	1164	1/1	0.99	0.15	31,31,31,31	0
3	FE	W	1166	1/1	0.99	0.17	$33,\!33,\!33,\!33$	0
3	FE	N	1165	1/1	0.99	0.14	36, 36, 36, 36, 36	0
3	FE	0	1165	1/1	0.99	0.15	$41,\!41,\!41,\!41$	0
3	FE	R	1165	1/1	0.99	0.13	$35,\!35,\!35,\!35$	0
3	FE	U	1166	1/1	0.99	0.17	$3\overline{1,31,31,31}$	0
3	FE	G	1165	1/1	0.99	0.12	48,48,48,48	0
3	FE	Q	1164	1/1	0.99	0.12	39, 39, 39, 39, 39	0
3	FE	K	1165	1/1	0.99	0.17	24,24,24,24	0
3	FE	Х	1165	1/1	0.99	0.15	31,31,31,31	0
3	FE	C	1164	1/1	0.99	0.17	30,30,30,30	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathbf{A}^2)$	Q<0.9
3	FE	В	1166	1/1	0.99	0.14	27, 27, 27, 27, 27	0
3	FE	N	1166	1/1	0.99	0.12	45,45,45,45	0
3	FE	Р	1165	1/1	0.99	0.14	$45,\!45,\!45,\!45$	0
3	FE	Т	1164	1/1	1.00	0.16	27,27,27,27	0
3	FE	М	1165	1/1	1.00	0.13	$30,\!30,\!30,\!30$	0
3	FE	Н	1164	1/1	1.00	0.17	34,34,34,34	0
3	FE	J	1166	1/1	1.00	0.16	26, 26, 26, 26, 26	0
3	FE	S	1164	1/1	1.00	0.16	27, 27, 27, 27, 27	0
3	FE	F	1164	1/1	1.00	0.18	$36,\!36,\!36,\!36$	0
3	FE	С	1165	1/1	1.00	0.16	38,38,38,38	0
3	FE	Ι	1166	1/1	1.00	0.14	32,32,32,32	0

6.5 Other polymers (i)

There are no such residues in this entry.

